

Lecture Notes in Computer Science 3344
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jacques Malenfant Bjarte M. Østvold (Eds.)

Object-Oriented Technology

ECOOP 2004 Workshop Reader

ECOOP 2004 Workshops
Oslo, Norway, June 14-18, 2004
Final Reports

13

Volume Editors

Jacques Malenfant
LIP6, Université Pierre et Marie Curis and CNRS
8 rue du Capitaine Scott, 75015 Paris, France
E-mail: Jacques.Malenfant@lip6.fr

Bjarte M. Østvold
Norwegian Computing Center
PO Box 114 Blindern, 0314 Oslo, Norway
E-mail: bjarte@nr.no

Library of Congress Control Number: 2004117083

CR Subject Classification (1998): D.1-3, H.2, F.3, C.2, K.4, J.1

ISSN 0302-9743
ISBN 3-540-23988-X Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11363484 06/3142 5 4 3 2 1 0

Preface

This year, for the eighth time, the European Conference on Object-Oriented
Programming (ECOOP) series, in cooperation with Springer, is glad to offer
the object-oriented research community the ECOOP 2004 Workshop Reader, a
compendium of workshop reports pertaining to the ECOOP 2004 conference,
held in Oslo from June 15 to 19, 2004.

ECOOP 2004 hosted 19 high-quality workshops covering a large spectrum of
hot research topics. These workshops were chosen through a tight peer review
process following a specific call for proposals ending on November 30, 2003. We
are very grateful to the members of the Workshop Selection Committee for their
careful reviews and hard work to put together the excellent workshop program.
We also want to thank all submitters, accepted or not, to whom the workshop
program equally owes its quality. This selection process was then followed by
a selection of workshop participants, done by each team of organizers based on
an open call for position papers. This participant selection process ensured that
we gathered the most active researchers in each workshop research area, and
therefore a fruitful working meeting.

Following the tradition of the ECOOP Workshop Reader, we strove for high-
quality, value-adding and open-ended workshop reports. The result, as you can
judge from the following pages, is a thought-provoking snapshot of the current re-
search in object-orientation, full of pointers for further exploration of the covered
topics. We want to thank our workshop organizers who, despite the additional
burden, did a great job in putting together these reports.

Each report you will find in this volume provides you with a starting point to
understand and explore the currently debated issues in each area of concern. To
achieve this, after summarizing the workshop goals, each report offers a critical
summary of the participants’ position papers as well as a transcript of the actual
debates aroused by the talks. You will also find the full list of participants, with
contact information, as well as the list of contributed position papers. Several
of the reports also add a list of relevant publications and Web sites, including
the workshop home page, where you will usually find the contributed position
papers themselves as well as other material that goes into each covered topic
more closely.

Finally, as editors, we harmonized the report titles to mention only the topics
of the workshops and to avoid repeated references to ECOOP 2004. However,
each workshop report should be referenced as “Report from the ECOOP 2004
Workshop on ...” where you fill in the blanks with the workshop title.

September 2004 Jacques Malenfant
Bjarte M. Østvold

Organization

ECOOP 2004 was organized by the University of Oslo, the Norwegian Computing
Center and Sintef, under the auspices of AITO (Association Internationale pour
les Technologie Objets) in cooperation with ACM/SIGPLAN. The proceedings
of the conference itself were published as LNCS volume 3086.

Workshop Organization

Workshop co-chairs: Jacques Malenfant (LIP6, Univ. P. et M. Curie and CNRS)
Bjarte M. Østvold (Norwegian Computing Center)

Workshop Selection Committee

Bente Anda Simula Research Laboratory
Martine Devos OOPSLA 2003 Workshop Chair

Avayalabs, Avaya Inc.
Jacques Malenfant ECOOP 2004 Workshop Co-chair

LIP6, Univ. P. et M. Curie and CNRS
Bjarte M. Østvold ECOOP 2004 Workshop Co-chair

Norwegian Computing Center
Jean-François Perrot LIP6, Univ. P. et M. Curie and CNRS

Sponsoring Institutions

Table of Contents

Object Orientation and Web Services
Christian Zirpins, Giacomo Piccinelli, Winfried Lamersdorf,
Anthony Finkelstein . 1

Practical Problems of Programming in the Large (PPPL)
Ralf Reussner, Wolfgang Weck . 10

8th Workshop on Quantitative Approaches in Object-Oriented Software
Engineering (QAOOSE 2004)

Coral Calero, Fernando Brito e Abreu, Geert Poels,
Houari A. Sahraoui . 23

Eighth Workshop on Pedagogies and Tools for the Teaching and
Learning of Object Oriented Concepts

Jürgen Börstler, Isabel Michiels, Annita Fjuk . 36

2nd Workshop on Object-Oriented Language Engineering for the
Post-Java Era: Back to Dynamicity

Sebastián González, Wolfgang De Meuter, Pascal Costanza,
Stéphane Ducasse, Richard Gabriel, Theo D’Hondt 49

Philosophy, Ontology, and Information Systems
Petra Becker-Pechau, Pierre Grenon, Mark Lycett, Chris Partridge,
Jörg Pechau, Dirk Siebert . 62

Communication Abstractions for Distributed Systems
Antoine Beugnard, Ludger Fiege, Robert Filman, Eric Jul,
Salah Sadou, Eiko Yoneki . 67

Formal Techniques for Java-Like Programs (FTfJP)
Alessandro Coglio, Marieke Huisman, Joseph R. Kiniry,
Peter Müller, Erik Poll . 76

Component-Oriented Approaches to Context-Aware Computing
Simon Dobson . 84

The Combined 14th Workshop for PhD Students in Object-Oriented
Systems and Doctoral Symposium

Susanne Jucknath, Jan Wloka, Eric Jul, Sari R. Eldadah,
Ademar Aguiar . 94

VIII Table of Contents

MASPEGHI 2004 Mechanisms for Specialization, Generalization and
Inheritance

Ph. Lahire, G. Arévalo, H. Astudillo, A.P. Black, E. Ernst,
M. Huchard, T. Opluštil, M. Sakkinen, P. Valtchev 101

Software Evolution: A Trip Through Reflective, Aspect, and Meta-data
Oriented Techniques

Walter Cazzola, Shigeru Chiba, Gunter Saake . 118

Coordination and Adaptation Techniques for Software Entities
Carlos Canal, Juan Manuel Murillo, Pascal Poizat 133

Model-Driven Development (WMDD 2004)
Jan Øyvind Aagedal, Jean Bézivin, Peter F. Linington 148

Component-Oriented Programming (WCOP 2004)
Jan Bosch, Clemens Szyperski, Wolfgang Weck . 158

10th Workshop on Mobile Object Systems
Ciarán Bryce, Crzegorz Czajkowski . 169

Fifth International Workshop on Object-Oriented Reengineering
Roel Wuyts, Stéphane Ducasse, Serge Demeyer, Kim Mens 177

Evolution and Reuse of Language Specifications for DSLs (ERLS)
Thomas Cleenewerck, Krzysztof Czarnecki, Jörg Striegnitz,
Markus Völter . 187

Programming Languages and Operating Systems
Olaf Spinczyk, Michael Schoettner, Andreas Gal 202

Author Index . 215

Object Orientation and Web Services�

Christian Zirpins1, Giacomo Piccinelli2, Winfried Lamersdorf1,
and Anthony Finkelstein2

1 Department of Computer Science, University of Hamburg, Germany
{Zirpins, Lamersdorf}@informatik.uni-hamburg.de

2 Department of Computer Science, University College London, United Kingdom
{A.Finkelstein, G.Piccinelli}@cs.ucl.ac.uk

Abstract. The annual European workshop on Object Orientation and
Web Services focusses challenges and potentials of service-oriented com-
puting in relation to object-oriented technologies and methodologies. In
particular it brings together the academic and the industrial perspective
on Web Services. This year’s issue was characterised by the competency
and motivation of the participants, both workshop activists who pre-
sented their specific results as well as organisers and invited speaker,
who contributed their broad experience. This report outlines the contri-
butions and discussions of the event, as well as the conclusions reached
by the participants.

1 Structure of the Workshop

The second annual European workshop on Object Orientation and Web Services
(EOOWS’04) brought together researchers and practitioners interested in the
relation of service-oriented- and object-oriented computing paradigms (section
2). With this year’s event, EOOWS entered its second round since initiation at
ECOOP 2003 in Darmstadt and proved its role as a constant workshop series.
The workshop was lead by Giacomo Piccinelli and Winfried Lamersdorf, who
compiled an attractive mix that included general perspectives of an invited talk,
a brought variety of specific contributions and lively discussions spanning the
whole event. Around fifteen people where participating, including presenting and
non-presenting attendees.

Initially, the invited talk added an interdisciplinary perspective to the work-
shop and extended the discussions beyond usual Web Service scenarios. The
talk was given by Daragh Byrne from the Edinburgh Parallel Computing Cen-
ter (EPCC) [1]. Daragh Byrne works at EPCC as an Applications Consultant.
At the time of this writing, he is engaged in the OGSA-DAI project, which in-
volves generalizing data access for the Grid. The talk provided an architectural
blueprint of Grid systems with special focus on the Open Grid Service Architec-

� The title of this report should be referenced as “Report from the ECOOP 2004
Workshop on Object Orientation and Web Services”.

J. Malenfant and B.M. Østvold (Eds.): ECOOP 2004, LNCS 3344, pp. 1–9, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

2 C. Zirpins et al.

ture [2, 3] of the Global Grid Forum [4]. In particular, it detailed the relationship
and interplay of Grid- and Web Service technologies.

Presentations of individual contributions made up the main part of the work-
shop. From the response to the call for papers, nine papers where selected for
presentation. The contributions ranged from genuine and upcoming research to
industrial experience (section 3). Presentations where given in relaxed 20 minute
intervals and where always followed by intense discussion that resulted in fur-
ther insights for listeners as well as contributors and lead to quite some network
building. The workshop was concluded by a plenary discussion (section 4).

2 Themes and Objectives

Web Services are evolving beyond their SOAP, WSDL, and UDDI roots toward
being able to solve significant real-world integration problems. Developers of Web
Services systems are currently working on new generations of systems that in-
corporate security, transactions, orchestration and choreography, grid computing
capabilities, business documents and processes, and simplified integration with
existing middleware systems. Current economic issues continue to force consol-
idation and reduction in enterprise computing resources, which is resulting in
developers discovering that Web Services can provide the foundation engineering
and realisation of complex computing systems.

The question of how Web Services could and should change system and solu-
tion development is very much open. Are Web Services just about standards,
or do they imply a new conceptual framework for engineering and develop-
ment? Similarly open is the question of how requirements coming from sys-
tem and solution development could and should make Web Services evolve. In
particular, methodologies as well as technologies based on the object-oriented
conceptual framework are an established reality. How do Web Services and
object-orientation relate? How can Web Services leverage the experience built
into current object-oriented practices?

The overall theme of the workshop is the relation between Web Services
and object orientation. Such relation can be explored from different perspec-
tives, ranging from system modelling and engineering to system development,
management, maintenance, and evolution. Aspects of particular interest are the
modularisation of a system into components and the (possibly cross-domain)
composition and orchestration of different modules. Components and compo-
sition are closely connected with the issue of reuse, and an important thread
of discussion within the workshop will address the way in which Web Services
impact reuse.

The objective of the workshop is twofold: assessing the current work on Web
Services, and discussing lines of development and possible cooperation. Current
work includes research activities as well as practical experiences. The assess-
ment covers an analysis of driving factors and a retrospective on lessons learned.
The identification and prioritisation of new lines of research and activity is a key

Object Orientation and Web Services 3

outcome of the workshop. In particular, the intention is to foster future cooper-
ation among the participants.

3 Contributions

The workshop contributions can be classified into four categories. Three contri-
butions revolve around software development for and with Web Services. Another
two contributions where related to interaction processes for the composition of
Web Services. The topic of Web Service management with emphasis on context
awareness and autonomy was the main line of two contributions. Finally, two
contributions where concerned about architectural patterns and general mod-
elling of Web Service based systems. In the rest of this section, the categories
and contributions will be outlined.

3.1 Software Development of and with Web Services

Web Services border on internal software systems at two points. First, the func-
tionality of a Web Service has to be realised by an internal software system.
Second, the functionality of a Web Service is to be used by an internal software
system. The relation to object-orientation is obvious in the case that these soft-
ware systems are designed and/or implemented in an object-oriented way. There
where workshop contributions for each of these points.

The first contribution came from Guadalupe Ortiz from the Quercus Soft-
ware Engineering Group, University of Extremadura, Spain. During presenta-
tion of her work on “Decoupling Non-Functional Properties in Web Services: An
Aspect-Oriented Approach”, she stressed the point that Web Service technolo-
gies offer a new and successful way for interoperability among web applications.
However, current approaches do not propose an acceptable method to decou-
ple non-functional properties from Web Service implementations, having a large
amount of code scattered and tangled all over the application, thus raising prob-
lems at design. implementation, maintenance and evolution. She argued that
Aspect-oriented techniques allow these properties to be easily modularised and
reused. Furthermore, she showed how information about properties can be added
in the WSDL file, in order to keep clients informed about the characteristics of
the service they are going to use.

A contribution concerning the second aspect came from Takashi Koshida
from the Department of Information Engineering, Matsue National College of
Technology, Japan. He presented an “Automated Dynamic Invocation System for
Web Service with a User-defined Data Type”. In particular, he claimed that this
system can automatically discover the WSDL file describing a Web Service from
a UDDI registry. After analysing the WSDL file, the system extracts and auto-
matically sets up the parameters needed for dynamic invocation. Furthermore,
the system dynamically generates and compiles the Java code for a user-defined
data type. Finally, he presented experimental results and demonstrated the va-
lidity of this system by invoking published Web Services as practical examples.

4 C. Zirpins et al.

Finally, Fabien Baligand and Valrie Monfort from IBM , MDTVision, France
contributed their work on “A pragmatic Use of Contracts and Aspects to gain
in Adaptability and Reusability” as an industrial paper that offers a practical
perspective on the integration of software application systems based on Web
Services. They argue that buying and selling of company departments involves
huge changes in their information systems (IS). Often, the technical solution to
connect distant IS is based on Web Services. This requires to model organisa-
tional structures and business processes, which are used and shared to deploy
service-oriented infrastructure and Web Services. However, practice shows that
distant IS are supported by different and heterogeneous technical infrastructures.
The authors claim experience with SOA and Web Services for industrial projects
in heterogeneous contexts. They encountered different problems like the lack of
methodology to develop Web Services w.r.t. new emerging standards. Faced with
industrial realities, they defined such a methodology for Enterprise Application
Integration (EAI) and SOA. Moreover, they propose solutions to lacks of new
WS-I standards as Policies and Meta data. They based their technical solution
on contracts and aspects to gain in flexibility and reusability.

3.2 Interaction Processes for Web Service Composition

Interactions are significant for Web Service concepts. The interaction between
different roles of the Web Service Model is eminent from the basic invocation of
a single operation up to the choreography of a complex composite e-Service. In
the later case, interactions form the building blocks for collaboration procedures
between organisations [5]. Such interaction processes that represent an e-Service
are complemented by meta interaction processes that implement a methodology
leading to the enactment of e-Services. These complementary perspectives where
each represented by one workshop contribution.

Christian Zirpins from the Distributed Systems and Information Systems
Group (VSIS) at Hamburg University, Germany based his contribution about
“Service Cooperation Patterns and their Customised Coordination” on the first
perspective. He argued that service-oriented computing is meant to support loose
relationships between organisations. Such relationships constitute cooperation
procedures that translates to interaction processes via Web Services. Service
composition deals with the specification and automated enforcement of such
interaction processes and its predominant approach is orchestration, where a
workflow management system (WFMS) is pro-actively coordinating the interac-
tion activities. In most cases, the orchestration process is regarded as an implicit
result of cooperation logic (actually, they are often the same) but the reverse im-
pact of operational coordination on cooperation logic are often neglected. Based
on that, he claimed that the choice of coordination alternatives impacts the
quality of service and has to be customised to actual service cases and their
individual participants. He proposed a potential solution approach that revolves
around service cooperation patterns. Therein, paradigms of patterns/idioms that
are well known from object-oriented design/development are applied to cooper-
ation procedures and orchestration processes. This approach allows studying a)

Object Orientation and Web Services 5

reusable cooperation patterns typical for service relation-ships and b) for each
pattern a range of possible coordination idioms. Finally, he sketched a technique
that is intended to refine a composition process based on an analysis of its co-
operation patterns and the application of suitable coordination idioms selected
by rules in terms of the service context.

The second perspective is taken by Muhammad F. Kaleem from the Techni-
cal University Hamburg, Germany who was not present at the workshop. In his
contribution about ”Interactions for Composition as a Means for Enacting Ro-
bust Composite Services”, he focuses on the importance of the composite service
enactment process for robust composite services. He discusses why this focus is
necessary, and describes a methodology currently being developed which allows
autonomous service providers to interact with each other for composite service
enactment.

3.3 Management of and with Web Services

One of the current trends in Web Service research and – in particularly – in
practice is the internal and cross-organisational operations management of plat-
forms for atomic and composite Web Services [6]. In particular, Web Services
allow for Service Level Management (SLM) of metrics that are close to the appli-
cation domain (e.g. control of order throughput). Complementary, Web Service
technology can act as an instrument for the management of any heterogeneous
systems and build a basis for the development of new management paradigms.
Two of the workshop contributions where revolving around this topics.

Concerning SLM, Clemens Kerer from the Distributed Systems Group, In-
formation Systems Institute, Vienna University of Technology, Austria presented
his work on “Presence-Aware Infrastructure using Web services and RFID tech-
nologies”. He explained that Web services have the potential to serve as a key en-
abling technology for environments facilitating collaborative scenarios. His group
analysed a same room/same time collaborative scenario, a program committee
(PC) meeting. They focus on design and implementation of a service-oriented
approach for PC meetings. Their proposed solution includes various Web services
for the actual support of the work, Web applications combining those services,
and presence-aware technology, in this case RFID (Radio Frequency Identifica-
tion) tags. The essence of this contribution was to show how a presence-aware
infrastructure comprising Web services and RFID technology can be built and
how they provide support for the envisaged scenario.

In contrast, Amir Zeid from the Department of Computer Science at the
American University in Cairo, Egypt presented his efforts “Towards Autonomic
Web Services”, that presents management with Web Services. He explained
autonomic computing that was introduced with the promise of achieving self
management; however, most of the current work does not address the prob-
lem of designing autonomic computing systems so that computing systems can
be evolved towards self-management paradigm. Regarding this problem, his re-
search ties autonomic computing with Web services to achieve a new approach,
which is autonomic Web services, where each entity is a Web service behav-

6 C. Zirpins et al.

ing autonomically. Adopting Web services supports the dynamic and seamless
integration among computational units. He claimed that this research aims at
proving that: with autonomic Web services, computing systems will be able to
manage themselves as well as their relationships with each other. To achieve
this objective, the research proposes a system that implements the concept of
autonomic Web services; a proof-of-concept prototype of this system is currently
under development and testing.

3.4 Modelling and Patterns of Web Service-Based Systems

The benefit of modelling in the development cycle of software systems is com-
monly agreed and Web Service-based systems are no exception to this rule. Many
powerful modelling techniques emerged from the field of object-oriented devel-
opment. Their application to Web Services is promising but has to be verified
and customised in order to meet disparities of the paradigms. One of the most
prominent approaches is the Unified Modelling Language (UML) [7] that pro-
vides fundamental modelling capabilities. A family of more specific approach
revolves around capturing mature knowledge in common design- or implemen-
tation patterns [8, 9] that can be reused by system engineers as proven solutions
for building new systems. The mapping of these approaches to Web Services was
the main line of the two concluding workshop contributions.

Concerning the utilisation of UML for Web Service modelling, Rafik Amir
from the Department of Computer Science at the American University in Cairo,
Egypt presented his contribution about a “UML Profile for Service Oriented
Architectures based on W3C Web Service Architectures”. He pointed out again
that Service Oriented Computing (SOC) is the new emerging paradigm for Dis-
tributed computing and e-business processing that is changing the way software
applications are designed, architected, delivered and consumed. Services are au-
tonomous platform-independent computational elements that can be described,
published, discovered, orchestrated and programmed using standard protocols
for the purpose of building agile networks of collaborating business applications
distributed within and across organizational boundaries. He came to the con-
clusion that engineering and modelling service-oriented architectures need ex-
tensions to existing modelling techniques and methodologies. Subsequently, he
propose a UML profile for service-oriented architectures.

As an example for service-oriented design patterns, Simon Martin from the
Space Science and Technology Department, Rutherford Appleton Laboratory,
UK presented “The Service Cache Pattern and Grid Services in the European
Grid of Solar Observations (EGSO)”. He introduced the EGSO project [10] that
has developed a reusable messaging infrastructure for communication between
Grid applications, whereby message-relay services transparently leverage direc-
tory, storage and logging services in order to provide enhanced functionality to
consumer applications. He continued to describe the proposed Service Cache
pattern, which has been applied to the engineering of these services. Finally
he claimed that the main potential benefits derived from the application of this

Object Orientation and Web Services 7

pattern include improved manageability and predictability of service delivery,
and faster response times for consumers.

4 Main Lines of Discussion

The workshop closed with a plenary discussion. It mainly revolved around three
topics. First, the invited talk gave reason to question the relationship between
Web Services and Grids. Second, the number of contributions that combined
aspect oriented techniques with Web Services promoted to fathom the potential
of this constellation. Then, after addressing just a few facets of all new trends
and standards, the discussion turned to the vast proliferation in the Web Service
arena and raised general questions of rationale and expedience of this evolution.
Finally, the thread returned to the foundation of it all and evaluated the basic
Web Service standards after nearly half a decade since the emergence of WSDL
and SOAP.

Web Services and Grids. Motivated by the talk of Daragh Byrne and his
brought experience, an initial thread of discussion was about the relation of Web
Services and the Grid. Especially the Open Grid Service Architecture (OGSA)
[2] and Infrastructure (OGSI) where regarded. In fact, the situation is manifold:
On the one hand, it is Web Service technology that facilitates many of the OGSA
capabilities. Actually, OGSA builds on an extension of WSDL (GWSDL) that
enables inheritance of port types and defines additional such port types for vital
features like stable references, state maintenance and lifecycle management. That
is, Grid Services are by far more sophisticated then traditional Web Services. On
the other hand, Grid Services are intended for much finer grained entities then
Web Services. That is, Grid Services are tailored to represent low-level resources
while Web Service are normally positioned very close to application-level (busi-
ness) objects. As a result, the technical relationship must not be confused with
the usage of these entities (e.g. in a business-to-business interaction scenario):
Web Services (if anything) are the choice for representing organizational end-
points for the cross-organizational interactions while Grid Services offer means to
implement them beneath. This answers one of the main questions that emerged:
could and should Web Services and Grid Services be integrated? The answer is
no, because they reside on a different level of abstraction.

Web Services and AOP. A lively discussion revolved around the relation of
Web Services and separation of concerns with aspect oriented programming [11].
The later is around in object-oriented development for quite a while and its ap-
plication to Web Services should not come as a surprise. However, there are
several alternatives for this combination. A first one is to utilize an aspect ori-
ented language to implement Web Services and factor out service properties as
aspects. This was the approach presented by Guadalupe Ortiz (see section 3.1)
who could report on positive results with using AspectJ [12] for this purpose.
More positive experiences in this direction where told by co-attendees from the

8 C. Zirpins et al.

AOP workshop. One question here was about the dynamics of such approaches.
Certainly, the possibility to use aspects for the static development of Web Ser-
vices is already a benefit but it would be even better to allow the adaptation
of service properties in running systems (e.g. to be used by service manage-
ment systems). A different idea that was discussed revolved around separation
of concerns in service composition. One possibility to do this is to code service
composition logic using aspect oriented languages and prevent “hard” coding
by factoring out composition aspects. Also aspect oriented concepts have been
applied to workflow evolution [13]. As workflow is the underlying principle of
many service composition approaches, it might be worthwhile to investigate in
the separation of concerns within collaborative service processes.

Evolution of Web Service Standards. In the end of the session, the dis-
cussion shifted towards the evolution and future development of Web Services
themselves. The ongoing process of organisations including diverse standard bod-
ies (e.g. OASIS, W3C, WSI...) and companies (IBM, Microsoft...) flooding the
Web Service scene with an ever-growing number of standard-like specifications
was discussed very critically. This is by no means a coordinated process and the
fact that numerous of such approaches overlap or contradict each other (some-
times completely) is a clear indicator for that. Not to mention that some of
them are obviously not consistent or even complete, the vast majority of new
Web Service specifications keeps quite aloof from implementation issues and just
state properties of Web Services.

As regards the foundational and by now established core Web Service stan-
dards (i.e. WSDL, SOAP), there where little worries and subsequently no press-
ing need to evolve them was felt by the participants. On the contrary the mind
within the plenum was more in the direction of applying and better understand-
ing a stable core. We will return to this point when eventually more complex
application scenarios and applications are reached and the Web Service core
comes across its conceptual limits dating back to its middleware roots.

5 Conclusion

In the end, the workshop was perceived as a very positive experience by every-
body. Thanks to competency and motivation of the participants, there was a
concentrated and productive atmosphere in terms of both, interesting presenta-
tions of single contributions and fruitful discussions.

As a result, it can be concluded that Web Service research enters a more
advanced but still very early stage that is yet far from the goals of business-to-
business interaction aimed by the general service-oriented computing paradigm.
In fact, the centre of gravity is still close to middleware and system integration.
Meanwhile, the basic principles of this setting seem to be well understood and
start to become settled knowledge that is represented, for example, as design pat-
terns. On this basis, attention shifts to more sophisticated issues. Concepts that

Object Orientation and Web Services 9

only very recently entered the object-oriented arena are already being aligned
with and transferred to Web Services.

An example is the obvious trend towards separation of concerns in Web Ser-
vices that can be witnessed for service implementation (utilisation of aspect ori-
ented technology) and service models (e.g. aspects of service composition logic).
While in the former case Web Services benefit from the experience of the object-
oriented community, the later case shows that the relationship is not one-sided:
the innovative power of the (still) young Web Service discipline pays back in the
currency of new concepts for issues that are out of scope for others. This is one
step further towards the final goal: dynamic and flexible mega-programming for
open application-level interactions.

References

1. EPCC: Computing for business and science. http://www.epcc.ed.ac.uk/ accessed
at:1.8.2004 (2004)

2. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the grid: An open
grid services architecture for distributed systems integration. Technical report,
Open Grid Service Infrastructure WG, Global Grid Forum (2002)

3. The Globus Project: Towards open grid services architecture. Published on the
Globus website: http://www.globus.org/ogsa/ accessed at:1.7.2004 (2004)

4. GGF: Global grid forum. http://www.ggf.org/ accessed at:15.8.2004 (2004)
5. Zirpins, C., Piccinelli, G.: Interaction-driven definition of e-business processes. In:

Proc. 26th International Computer Software and Applications Conference (COMP-
SAC 2002), Prolonging Software Life: Development and Redevelopment, 26-29 Au-
gust 2002, Oxford, England. IEEE Computer Society (2002) 738–740

6. Casati, F., Shan, E., Dayal, U., Shan, M.C.: Business-oriented management of web
services. Commun. ACM 46 (2003) 55–60

7. OMG: Unified modeling language, v1.5. Technical Report formal/03-03-01, Object
Management Group (Mar 2003)

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements
of Reusable Object-Oriented Software. Professional Computing Series. Addison-
Wesley, USA (1994)

9. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.: Pattern-Oriented Soft-
ware Architecture - A System of Patterns. Wiley and Sons Ltd. (1996)

10. EGSO: European grid of solar observations. http://www.mssl.ucl.ac.uk/grid/egso/
accessed at:15.8.2004 (2004)

11. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, Boston (2000)

12. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An overview of aspectj. In Knudsen, J.L., ed.: Proc. ECOOP 2001 - Object-
Oriented Programming, 15th European Conference, Budapest, Hungary. LNCS
2072. Springer (2001)

13. Bachmendo, B., Unland, R.: Aspect-based workflow evolution. In Rashid, A., ed.:
Workshop on Aspect-Oriented Programming and Separation of Concerns (Lan-
caster). (2001)

Practical Problems of Programming in the Large
(PPPL)

Ralf Reussner1 and Wolfgang Weck2

1 Software Engineering Group, University of Oldenburg, Germany
reussner@informatik.uni-oldenburg.de

2 Independent Software-Architect, Zurich, Switzerland
wolfgang.weck@iaeth.ch

Abstract. Practical Problems of Programming in the Large are those
issues that IT industry experiences today when working on large soft-
ware systems or when integrating software within entire organisations.
Relevant and current topics include Software Architecture, Component
Software, Middleware platforms, Model-Driven-Architecture, but also
Enterprise Application Integration, and others.

The workshop had practitioners and researchers concerned with tech-
nology transfer presenting their views on problems currently seen as most
pressing in the above areas. In addition, the discussions were focussed
by an ”Example of a problem of programming in the large” concerning
the step-wise re-engineering a complex legacy information system. Par-
ticipants discussed how they would approach this exemplary problem,
identified key challenges and compared their solution strategies.

In the afternoon, general problems of transferring academic research
results into practice were discussed. The invited talk of Dave Thomas
discussed current problematic trends in software engineering research,
such as the concentration on general purpose programming languages for
developing domain-specific enterprise software. Finally, we discussed spe-
cific needs for a software engineering education from industrial
perspective.

1 Motivation

Programming in the Large means to handle software with huge amounts of ob-
jects, classes, and relations between them. A commonly known problem of this
is that people loose track of a system’s coarse grained structure. The result is
often addressed as object sea.

Current state-of-the-art programming languages use object-orientation mostly
for fine-grained structuring. How does this scale up with large systems? What
is the practical experience? How does the software industry today experience
Programming in the Large and what problems are encountered and should be
addressed by the academic world?

J. Malenfant and B.M. Østvold (Eds.): ECOOP 2004, LNCS 3344, pp. 10–22, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Practical Problems of Programming in the Large (PPPL) 11

Besides these questions, the workshop was motivated by the observation that
academic researchers and industrial developers rarely interact on conferences.
So are ECOOP workshops (like workshops of other conferences in our field)
mainly populated by academics. We think that a closer interaction between sci-
entific researchers and industrial software developers can create a mutual win-
win situation: Researchers get an understanding of pressing ”real” problems
(hopefully sparking new research motivation) while industrial developers get an
understanding of novel research results and how to apply them to specific prob-
lems.

Therefore, the ECOOP-Workshop on Practical Problems of Programming in
the Large was thought to present a forum for

1. Practitioners to present their currently most pressing problems in the area
of programming in the large object oriented systems and

2. Researchers looking for current open questions in object orientation and
beyond in IT industry.

This report is organised according to the course of the workshop sessions.
Hence, we first sketch the presentations of the accepted papers with their asso-
ciated discussions of the first morning session. Then we summarise the example
of a problem of programming in the large and the following discussion. In the
description of the afternoon sessions, we report on problems of transferring aca-
demic research results into practice followed by a summary of Dave Thomas
thought-provoking invited keynote worse-is-worse. The last session presents our
discussions about what should be taught to software engineers in academic
courses.

2 Presentations

The morning sessions saw four presentations of submitted and reviewed papers:

1. Abdelwahab Hamou-Lhadj, Timothy C. Lethbridge: Reasoning about the
Concept of Utilities (presented by Abdelwahab Hamou-Lhadj)

2. Ulf Schreier, Alexander Prack: Dynamically distributable Java Application
Components (presented by Ulf Schreier)

3. Jonathan Sillito, Kris De Volder: Tool Support for Working With Large Sys-
tems (presented by Jonathan Sillito)

4. Peter Tabeling, Bernhard Gröne: Handling Complexity of Large Software
Systems by Mapping Objects and Classes to Conceptual Architectural Ele-
ments (presented by Bernhard Gröne)

These papers presented recent research results and work in progress in areas
that the authors have experienced as important with programming in the large.
Each presentation was followed by a discussion with the audience.

12 R. Reussner and W. Weck

2.1 Reasoning About the Concept of Utilities

The authors realised as one problem of programming in the large, to identify in
an existing large system, what is important and what is not, to facilitate reengi-
neering. A common method of reengineering is to run the software and collect
execution traces. As to be expected, with large systems these traces get large
as well and need to be filtered to allow readers to focus on the relevant issues.
The hypothesis of the authors is that we can distinguish between substantial
parts of a system and utilities that merely support the substantial system units.
UML 1.5 has a definition for utilities. In practice, however, it appears that this
definition not always exactly describes what people consider being utilities. The
authors hence interviewed software engineers to see, how they characterize the
concept of utilities. Three main aspects became apparent: Scope, Packaging, and
Role.

1. Scope: Despite the feeling that utilities are usually the components that
are used by many other components of the entire system, in reality, there
might have narrower scopes such as a specific subsystem. Therefore, any
metric that aims at detecting utilities should take into consideration the
scope attribute.

2. Packaging : Despite the feeling that utilities are packaged in units that only
contain other utilities, local utilities are included in normal packages. This
is, because utilities are often designed by and for a specific group of
people.

3. Role: Almost by definition, utilities are seen as things the programmer should
not worry about when looking at the big picture.

However, the conclusion was, that the subjective conception what a utility is
differs from objective conception and that there are always several exceptions to
whatever rule one might try.

In the following discussion the question was raised, what to do, once utilities
are identified. It is not clear, whether and when they really should be excluded
from analysis. This, however, is further research yet to be done.

A further proposal to remedy the lack of general and objective criteria for
utility identification was that tools should only suggest classifications to be re-
viewed by users. This actually links to the third presentation of the session.

2.2 Dynamically Distributable Java Application Components

The second presentation was based on experience with component program-
ming in Java. It addressed the claim that components would exist at a class
level only. Here, the term component is used in accordance with the Composite
Component Model of UML 2, requiring components to have identified provided
and required interfaces according to a connector model. The authors identified
seven problems with component programming in Java. These can be roughly
categorised as

Practical Problems of Programming in the Large (PPPL) 13

1. component design, that is how to arrive at a sensible ”componentisation”
2. component reuse, when existing components do not completely meet the

requirements or internal dependencies occur
3. rediscovering components in the code
4. the schism between components and the units of distribution, which may

require to repackage components when adapting local distribution of software
parts

Java, in particular, does not support composite components in the language.
Packages and jar files are only conventions, and there is no tool support enforcing
correct usage. Consequently, there is no protection against programmers spoiling
the component architecture when changing code locally. Frameworks, such as
EJB, seem not to be the solution either, because they introduce extra overhead
both at runtime as well as in development. The proposed solution is an XML-
based extension of Java, that allows to express componentisation to be made
explicit, allowing for automated checks whether the actual code still meets the
specified component structure.

In the discussion it was pointed out that there are possibly further and non-
technical issues as well as solutions to consider. The author’s experience was,
however, that these can be quite unpopular with developers. A second question
addressed crosscutting issues, but these are subject to further research.

2.3 Tool Support for Working with Large Systems

The third presentation started from the observation that complexity is inherent
with larger software systems. Because of this, long ago modules were proposed
as a means of structuring by Parnas and others. The problem is, that mod-
ules can only represent a single decomposition at a time, while large complex
systems may need to be decomposed in several ways, depending on the perspec-
tives necessary to achieve individual tasks. Modules also require some degree
of localization. Hence non-localisable tasks are hard to structure. It gets hard
to identify and to maintain mental model what belongs together. The research
question put forward by the authors is whether the editing environment can
help here, so that one would not have to structure the system explicitly but
get structures presented by the editor. The obvious approach today seems to be
to use several displays simultaneously to present more information. Experience
seems to show, however, that this just presents too much information but no ad-
ditional structure. The proposed solution is that the programming environment
(editor) should somehow know what other parts of a system would be impor-
tant, when a certain part is being edited. These parts could than dynamically
be presented close to the editing focus. Mainly, this research aims at changing
the established object or class browser-based editing paradigm, towards a more
scratchpad-oriented way of organizing information on screen.

The discussion mostly focused on the obvious open research question, how
the editor should select what to display close to the editing focus. One answer was

14 R. Reussner and W. Weck

that this needs experimenting. A remark was made, that there is generally too
little research done about what those (few?) people, who can keep overview of
large systems, actually do and which support they would need. Another sugges-
tion was that the editor should not actually structure a system, that is, produce
a mental model, but make a separately specified high-level structure explicit. It
could then also ensure conformance between programs and that high-level struc-
ture. A final question addressed round-trip engineering tools, which are conceived
as being complementary to an editor of the kind described by the authors.

2.4 Handling Complexity of Large Software Systems by Mapping
Objects and Classes to Conceptual Architectural Elements

The fourth presentation started from the observation that there are three differ-
ent structures involved with programming in the large. One is the general system
structure or conceptual architecture, consisting of large-grained components or
subsystems, such as databases and web servers. Second is the software structure,
relating to all the software artefacts, such as, programs, database schema, deploy-
ment descriptors, and so on, which need to be organized and related. The third
and final structure becomes apparent in the running system only and consists of
entities such as instantiated objects and references between them. The problem
addressed by the authors is the mapping between the various structures, in par-
ticular, how to impose a system structure on a collection of objects. A related
question is how to map object terminology to system structure terminology. As a
first categorization, the authors propose to distinguish between agents and stor-
ages. Next, they separate four different views of the system structure: Object
Agent View, Abstract Data Type View, Functional View, and Low-Level View.
For each of these views a mapping guide can be given, explaining how objects
are subsumed under certain system structure entities.

The discussion raised the question for tool support, which does not exist
yet. Currently, the proposal is at the level of patterns. Another question was
what to do, if there are so many objects instantiated, that the object-agent view
(considered as a snapshot of the running system) becomes incomprehensible. In
this case, one has to combine objects into higher-level units, which is seen as a
task for the human user, who has to develop a mental model for structuring.

3 EoPPPL

While planning the workshop, the organisers thought about presenting an ex-
emplary problem of programming in the large (EoPPPL) to focus discussions
and to give authors the possibility to present the benefits of their particular
approach, presented in the previous session. The EoPPPL was taken from a co-
operation between the OFFIS research institute [1] and the KDO [2], a company
developing software for eGovernment, in particular for municipal administration.
Given the amount and idiosyncratic complexity of German laws and the over-
regulation in any administrative public process of this country, one can easily

Practical Problems of Programming in the Large (PPPL) 15

imagine the complexity of that software. However, as KDO is a market leader in
north-western Germany, KDO successfully solved these particular challenges. As
it is often the case with market-leader in specific application domains, the com-
pany knows the specific domain requirements well. However, as the software had
to be enhanced in functionality and had to be adapted to changing government
regulations for public administration, it became larger and larger. In addition,
technology changes with its own pace. Altogether, the costs for software main-
tenance increased more and more, and the KDO started a cooperation with the
OFFIS research institute to re-engineer the software architecture and to use a
modern middleware platform as a base. The old version of the software used a
4GL to code business logic, database access and GUI logic. The user interface
ran on remote machines via a terminal emulation (i.e., the GUI code was actually
not separated from the parts of the code). However, a standard database system
was already used. The aim was to bring that software to a modern three-tier
architecture with the ”classical” database, business logic and GUI tier where all
layers finally should run in a J2EE environment. A more detailed description of
the project and the applied solution strategy can be found in [3].

However, in the PPPL workshop we were primarily interested in the problem
and in the participants’ approaches to that problem rather than in the actual
”solution” used in the cooperation. (This solution, the Dublo-pattern [3] for
architectural transformation toward s a three tier architecture was presented
later upon request from the participants.)

The participants proposed to tackle the EoPPPL in the following steps:

1. Need to figure out what is there. This means to discover code structures or
the model in the programmers mind. Problems arise if no structure exists
(either right from the beginning or by architectural drift). One approach
for architectural discovery could be the monitoring and filtering techniques
presented in the first paper of the morning session by Abdelwahab Hamou-
Lhadj and Timothy C. Lethbridge.

2. Need to design and describe new structure. Doing so, one should try to avoid
the mistakes of the old system design. Although this is an obvious and simple
to state advice, it is often not such easy to (commercially) realise. This is
because, for a good durable system architecture, one has to design it for
the ”right” non-functional properties. For doing so, one needs to predict the
future. The other contribution of the morning session particularly provide
support for this and the following step.

3. Incremental migration: Get from old to new structure. For doing so incremen-
tally and to support quality assurance during the process, it can be of great
help to re-use the old text cases (or corresponding translations of them into
the new system structure). The stepwise migration can be supported by var-
ious wrapping techniques, ranging from wrapping single classes or modules
to whole subsystems. Wrapping can be done on the code level (by adapters
and interceptors) or data-oriented by filters, including screen-scrapers (i.e.,
by not touching the code itself).

16 R. Reussner and W. Weck

4 Problems of Transferring Research into Practice

In the first afternoon session, Ralf Reussner presented a summary of key prob-
lems when transferring academic research results into industrial software engi-
neering practice. His talk was based on a discussion on this topic that took place
during the FESCA workshop at ETAPS 2004 in Barcelona [4, 5]. Basically eight
obstacles for transferring research results into software engineering practice were
identified:
1. Many Formal Methods Do Not Scale: Developed in an academic world,

formal methods are applied to rather limited toy examples. Opposed to that,
major challenges in industry are originated by handling large and complex
systems. Unfortunately, the costs of applying formal methods to large sys-
tems most often grow super-linearly.

2. Insufficient Constructs to Model the Real World: Increasingly, com-
puter systems use concepts beyond the standard functional model (inputs
are mapped by computations to outputs). Examples are distribution, con-
currency, mobility, dynamic reconfiguration and ubiquity. Some of these con-
cepts are long running topics for research (such as concurrency) while mod-
elling and analysing others are still challenging. However, as between the
practical motivation and the actual research result some assumptions and
simplifications have to be made to make the problem tractable, the research
result not necessarily solves the original real-world example, but inevitably
focuses on specific aspects.

3. No Time for Validation: The development of a formal method is a task
by itself. Given the usual time frame of academic dissertations, for the val-
idation of the method often no time is left. In addition, there is a hen-egg
problem: Without validation, industrial managers are nit inclined to invest
into the application of a novel method. However, without any industrial de-
ployment of the research result, it will remain un-validated (which sometimes
is erroneously takes as ”invalidated”.)

4. Unclear Practical Benefit: Academic research is often motivated by in-
triguing mathematical questions. In principle this is justified, because one
hardly knows what comes out of research, hence one cannot exclude in prin-
ciple the value of such motivated research. However, the outcome of such
research often has no practical benefits and lies much more in a deeper un-
derstanding of the problem. If such research is later for the sake of better
selling motivated by practical questions, one has the impression of ”solution
found, in search for a problem”. Obviously, such methods do not really solve
real world problems with their many different facets.

5. Missing Tool Support: Scientific progress is considered as adding scien-
tific knowledge to a given area of research. The implementation of tools does
not create scientific knowledge, at its best it creates experience how to apply
software development techniques. Due to that, for many scientists no moti-
vation exists to invest time in the demanding task of tool creation. However,
without tool support, the application of most formal methods does not scale
up (see reason 1).

Practical Problems of Programming in the Large (PPPL) 17

6. Lack of Industrial Experience for Academics: Many academics spend
their life-time in universities but have not worked in industry or in industry
cooperation projects. Consequently, researchers provide a deep understand-
ing of mathematical techniques for solving problems, but may have a rather
limited knowledge of ”real” problems. In particular, real problems are multi-
faceted, including non computer science issues. Interestingly, single aspects
are often rather trivial, annoying researchers having solutions to this single
aspect. The complexity of industrial systems often simply stems from their
sheer size while the single algorithms and data-structures are simple.

7. Up-Front Costs in Industrial Processes: Formal methods, like nearly
all software engineering techniques, increase the up-front costs of software
development. Additional effort has to be spend during the specification or
design of the product, while hoping to save costs during implementation,
testing and maintenance. Generally, this is problematic: (a) Even if the over-
all savings effort of a technique is demonstrated several times, (e.g., in case
of software reviews and inspections [6]), managers are often reluctant to
deploy these techniques. This is because, managers often still consider the
implementation step as the most important one and do not see the project’s
progress if effort is spent on steps prior to the implementation. (b) Due to
a lacking validation in industrial contexts, the saving effects of many for-
mal methods is unclear or at least not quantified. This results in a hen-egg
problem: As long a formal method is not deployed, it will not be deployed.

8. Goals of Research Differ from Industrial Needs: Probably the most
fundamental reason beyond all previously mentioned ones is that the moti-
vation and credit one gets for work fundamentally differs between academic
researchers and industrial software developers. Industry projects have to suc-
ceed under tight time and cost constraints. Sometimes, time-to-market is of
higher concern than the quality of the first version shipped. Success is mea-
sured in producing the product with the lowest amount of these constrained
resources. The application of a not-yet validated formal method (having the
only guaranteed property of increasing up-front costs) is not very appealing.
On the academic side, the contribution of research is measured not only in
soundness but also in originality and novelty. This is done for good reasons,
but often has the drawback, that the work on transitioning existing formal
methods into practice (such as tool construction, adapted process models
or case studies) are still considered as less scientific compared to the devel-
opment of new formalisms. As new formalisms have to add something to
the old ones (which are also not yet understood and deployed in industrial
practice), the gap between research and practice will be widened.

We intentionally omitted the training aspect. Of course, the specific knowl-
edge required to deploy a formal method is most often not present at industrial
developers and the awareness of new formal techniques and their benefits are of-
ten low. This was usually considered as a problem to be solved by increasing the
number of software developers having an academic degree in software engineer-
ing or computer science. While this is partially true, the above list of problems

18 R. Reussner and W. Weck

still is valid when having teams with academically trained staff. Although the
internet-boom is over, current industrialised countries have a lack of academ-
ically trained software developers (still or again). As the demand of software
professionals still exceeds the capacities of universities, this situation will not
change in the near future. Consequently, the transition of formal methods in in-
dustrial practice cannot solely depend on trained people (and, as argued above,
even that would not solve the above mentioned list of problems). During the dis-
cussion the importance of the exchange between research and practice was once
more emphasised. However, this exchange has to siple to state pre-conditions:

1. Researchers need to understand the problems of industrial software develop-
ment and try to solve these problems by their methods. However, one has to
be careful: New scientific theories will not occur by simple piecewise research
driven by unrelated open industrial questions.

2. Practitioners need to communicate their problems and should also actively
invest into research and relations to researchers. However, this usually means
to invest in a long-term goal which will most often not pay back for the
current project.

Therefore, a cyclic interaction process is proposed. Researchers try to ap-
ply novel research results to industrial problems. This should be done in close
cooperation. The benefit for the practitioner is (hopefully) support by state of
the art techniques and novel approaches, while the researcher be benefits from
the validation of a new method which will generate new knowledge on the pros
and cons of the research result applied. This will result into the motivation to
develop modified or new methods and techniques in research which then itself
should be applied in the next cooperational project.

This approach can be seen as a mutually driving mixture from empirical
validation and motivation and theoretical or technical work on models, tools,
methods or techniques.

5 Worse-Is-Worse

In his very appreciated and thought-provoking keynote Worse is Worse - Chal-
lenges Building Large Scale Software with Class Libraries and Frameworks, Dave
Thomas of Baderra Research Labs put forward the thesis that the current trend
to use more and more sophisticated general-purpose languages and frameworks
is leading into a dead-end road. Generic programming paradigms, technology,
and tools are becoming more and more a source of problems with programming
in the large.

The ultimate focus in software engineering is on building applications. On top
of the complexity inherent in these applications, the environments to be used
add further complexity. Even the supposedly simple and widespread concepts of
object-orientation are hard for many people and it does not make sense to express
everything with objects at any rate. For some (parts of) applications functional
descriptions, transformation rules, algorithms or other approaches can be much
more appropriate.

Practical Problems of Programming in the Large (PPPL) 19

By putting layers on layers not only the demands for programmers to master
specific abstractions grow but also the performance requirements. More and more
computing power is needed, just to drive that overhead.

To overcome this general trend to use the same generic and standardized
mechanisms all over, regardless of the application, more diversity in computing
should be fostered. Here organizations such as ACM and IEEE are in charge.

With technology becoming more and more complex, mastering it becomes
more and more important and consequently the importance of knowledge shifts
from professionalism (competence) to short-term knowledge (certification). This
trend needs to be reversed.

However, when looking over several decades of computing, there is progress
where domain is understood very well. Anyhow, currently there is a doubtful
tendency to use generic system programming, tools, languages, knowledge to
build domain-specific applications.

6 Teaching

During the course of the workshop it became apparent that the different back-
grounds of the participants could provide an interesting discussion on the specific
requirements from industry for an academic software engineering education. Al-
though we were ready to moderate a controversial discussion, surprisingly the
views of academics and practitioner’s were quite similar (which means, both were
different from that politician’s sometime argue for). The following list is a result
of those discussions, detailed by some after-thoughts of the organisers.

– University courses should teach the fundamentals. Timely and technical de-
tails should be left to industrial training programs (possibly on-the-job train-
ing). There are at least two reasons for that:
1. Knowledge on technology is not only timely, but most often is also highly

specific to the particular tools used in a project. Furthermore, these tools
can be domain-specific. As universities cannot cover this broad range of
tools and knowledge, students should be trained to acquire technology
knowledge fast. For a fast acquisition of knowledge, a thorough under-
standing of fundamental principles shared across different tools is re-
quired.

2. Practical technical knowledge cannot be taught by reading books and
solving text book exercises. Much more, the necessity of specific tools
and processes only becomes clear in large projects. For universities, it is
hard to simulate these environments. However, approaches to simulate
medium-sized industrial software development projects in universities are
certainly beneficial, as they lower the ”shock of practice” of graduates
starting their careers.

– Train students to be different (better)! Make students clear that they increas-
ingly have to compete with graduates from developing countries that are in
many ways cheaper to hire. If they are not superior in their qualifications,
it is easy to be inferior in this global competition.

20 R. Reussner and W. Weck

– Teach non-technical skills, such as communication. Successful teamwork is
the absolute, indispensable pre-requisite of any software engineering project.
It is easy to see that communication skills are needed to communicate with
customers (requirements engineering, etc) and to colleagues.

– Educate to think! Creative solutions to technical problems often use an origi-
nal solution based on a very individual view of the problem. Students should
be able to use different views on the same problem to find an appropriate
solution.

– Teach to deliver! Students should understand that their work in indus-
try is not judged by the originality of the solution or they way they de-
velop products. The most important indicators of success is to finish a
project.

– Try to acquire domain knowledge! In most projects, sheer technology knowl-
edge is not sufficient for a successful completion of the project. A wrong
understanding of domain-specific requirements is one of the most common
reasons for software engineering project failures. Therefore, successful de-
velopers must be able to communicate with customers and ”speak their
language”, i.e., understand the meaning of the terms used in a specific do-
main.

Most of these ideas are shared between academics and practitioners. However,
as many academics have a solid understanding of computer science fundamentals
but not of application domain specific concepts, one obviously has to enhance
computer science or software engineering curricula by courses taught by experts
of application domains.

7 Conclusions

Looking back, the organisers found the workshop most interesting in discussing
the various facets of the complex relationship between research and software de-
velopment practice. Having tackled a wide variety of related topics ranging from
problems of transferring research results into practice to academic education for
software developers made that workshop a success. Besides the lively discussions
of all participants, a vital component of that success certainly was the thought
provoking key-note of Dave Thomas. His identification of the current trend to-
wards general purpose languages in the domain of business software as erroneous
was as surprising as his view on the role of academic software engineering teach-
ing was surprisingly academic.

All documents of the workshop, such as the papers, presentations, descrip-
tions of the EoPPPL, Ralf’s talk on the problems of transferring research into
practice and Dave’s keynote are available from the workshop’s web page at

http://se.informatik.uni-oldenburg.de/pppl

Practical Problems of Programming in the Large (PPPL) 21

List of Participants

Name E-mail Affiliation, Country

Abdelwahab Hamou-Lhadj ahamou@site.uottawa.ca University of Ottawa,
Canada

Tomáš Opluštil oplustil@nenya.ms.mff.cuni.cz Charles University,
Prague,
Czech Republic

Andrzej Krzywda andrzej@64pola.pl University of Wroclaw,
Poland

Guido Poschta guido@poschta.de TU Darmstadt,
Germany

David Cok david.cok@kodak.com Eastman Kodak,
USA

Jean-Guy Schneider jschneider@swin.edu.au Swinburne Univ. of
Technology, Australia

Bernhard Gröne bernhard.groene@hpi.uni Hasso-Plattner-Institute,
-potsdam.de Potsdam, Germany

Kris de Volder kdvolder@cs.ubc.ca Univ. of British Columbia,
Vancouver, Canada

Doug Janzen dsjanzen@cs.ubc.ca Univ. of British Columbia,
Vancouver, Canada

Alexander Prack ap@sernet.de SerNet GmbH,
Germany

Ulf Schreier schreier@fh-furtwangen.de Univ. of Applied Sciences
Furtwangen,
Germany

Jonathan Sillito sillito@cs.ubc.ca Univ. of British Columbia,
Vancouver, Canada

Dave Thomas dave@bedarra.com Bedarra Research Labs,
Canada

Ralf Reussner reussner@informatik.uni University of Oldenburg,
-oldenburg.de Germany

Wolfgang Weck wolfgang.weck@iaeth.ch Independent Software
Architect, Zurich,
Switherland

References

1. Oldenburg research institute for computer science tools and systems,
http://www.offis.de/index e.php.

2. Kommunale Datenverarbeitung Oldenburg, http://www.kdo.de/.
3. W. Hasselbring, R. H. Reussner, H. Jaekel, J. Schlegelmilch, T. Teschke, and

S. Krieghoff, “The dublo architecture pattern for smooth migration of business
information systems,” in Proceedings of the 26rd International Conference on Soft-
ware Engeneering (ICSE-04). Los Alamitos, California: IEEE Computer Society,
May 23–28 2004.

22 R. Reussner and W. Weck

4. J. Küster-Filipe, I. H. Poernomo, R. H. Reussner, and S. Shukla, Eds., Proceedings
of the Workshop Formal Foundations of Embedded and Component-based Software
Architectures (FESCA 2004). Barcelona: Published at ETAPS 2004, March 2004.

5. R. H. Reussner, J. Küster-Filipe, I. H. Poernomo, and S. Shukla, “Report on the
Workshop on Formal Foundations of Embedded Software and Component-based
Software Architectures (FESCA),” Newsletter of the European Association of Soft-
ware Science and Technology (EASST), 2004.

6. R. L. Glass, Facts and Fallacies of Software Engineering. Addison-Wesley, Reading,
MA, USA, 2002.

8th Workshop on Quantitative Approaches in
Object-Oriented Software Engineering

(QAOOSE 2004)�

Coral Calero1, Fernando Brito e Abreu2, Geert Poels3,
and Houari A. Sahraoui4

1 ALARCOS Research Group, Departamento de Informática, Universidad de
Castilla-La Mancha, Ciudad Real, Spain

Coral.Calero@.uclm.es
2 QUASAR Research Group, Departamento de Informática, Faculdade de Ciências e

Tecnologia, Universidade Nova de Lisboa, Monte da Caparica, Portugal
fba@di.fct.unl.pt

3 Faculty of Economics and Business Administration - Ghent University and Centre
for Industrial Management - Katholieke Universiteit Leuven

geert.poels@rug.ac.be
4 Département d’Informatique et Recherche Opérationnelle, Université de Montréal,

Montréal, Quebec, Canada
sahraouh@IRO.UMontreal.CA

1 Summary

The workshop was a direct continuation of seven successful workshops, held at
previous editions of ECOOP in Darmstadt (2003), Malaga (2002), Budapest
(2001), Cannes (2000), Lisbon (1999), Brussels (1998) and Aarhus (1995). This
time, as in previous editions, the workshop attracted participants from both
academia and industry that are involved / interested in the application of quan-
titative methods in object oriented software engineering research and practice.

As a result of the previous edition and in order to open the workshop par-
ticipation to a broader audience, the 2004 edition extended the scope of the
workshop to quantitative approaches to other than object-oriented modelling,
specification and programming methodologies and technologies. In particular
component-based systems (CBS), web-based systems (WBS) and agent-based
systems (ABS) will also fit into this new edition.

Like in previous years, submissions were invited, but not limited, to the areas
of metrics collection, quality assessment, metrics validation, and process man-
agement.

This year we received 15 position papers. 9 authors were invited to present
theirs positions as discussion topics and 3 others to present posters. Informal
proceedings of QAOOSE’2004 were distributed to the participants.

� The title of this report should be referenced as “Report from the ECOOP 2004
8th Workshop on Quantitative Approaches in Object-Oriented Software Engineering
(QAOOSE 2004)”.

J. Malenfant and B.M. Østvold (Eds.): ECOOP 2004, LNCS 3344, pp. 23–35, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

24 C. Calero et al.

The workshop was divided in four sessions, which follow:
– Session A. Metric definition and validation
– Session B. Methodology and application of measurement
– Session C. Functional size and quality
– Session D. Short papers

At the end a ”Discussion and closing session” took place.
The workshop had 17 participants (included de four organizers). Among

them, we had people from several European countries and Canada and also
from industry and from University.

As each year the workshop was very active and new topics and future direc-
tions for the workshop were addressed at the end. Among them, were selected for
be included as a topics on next editions of the workshop the following: metrics
visualization, components and services, aspect oriented software development,
paradigm independent product metrics, metrics and reengineering, process as-
pects vs. product aspects, early phase metrics, relationships between cost and
quality aspects, influence of context on quality.

2 Organizers

This year, the workshop was organized by:

Coral Calero
ALARCOS Research Group
Escuela Superior de Informática,
Universidad de Castilla-La Mancha. Ciudad Real, Spain

Fernando Brito e Abreu
QUASAR Research Group
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa
Monte da Caparica, Portugal

Geert Poels
Faculty of Economics and Business Administration - Ghent University, and
Centre for Industrial Management – Katholieke Universiteit Leuven
Gent, Belgium

Houari A. Sahraoui
Département d’Informatique et Recherche Opérationnelle
Université de Montréal
Montréal, Canada

3 Workshop Attendants

The information about the workshop attendants is shown in this section. Name
and affiliation is shown for each attendant:

– Miguel Goulão. Faculty of Sciences and Technology, Lisbon New Univer-
sity, Portugal

8th Workshop on QAOOSE 2004 25

– Manuel F. Bertoa Dpto. Lenguajes y Ciencias de la Computación. Uni-
versidad de Málaga

– Valerie Paulus. CETIC. Charleroi, Belgium
– Olivier Beaurepaire. SNCF - Délégation aux Systèmes d’Information

Voyageurs. Nantes, France
– Benjamin Lecardeux. SNCF - Délégation aux Systèmes d’Information

Voyageurs. Nantes, France
– Christine Havart. SNCF - Délégation aux Systèmes d’Information Voyageurs.

Nantes, France
– Parastoo Mohagheghi. Department of Computer and Information Sci-

ence, Trondheim, Norway
– Silvia Abrahão. Department of Computer Science and Computation. Va-

lencia University of Technology. Valencia, Spain
– Houari Sahraoui. Département d’Informatique et Recherche Opérationnelle.

Université de Montréal. Montréal, Canada
– Mario Piattini. ALARCOS Research Group. Escuela Superior de Informática,

Universidad de Castilla-La Mancha. Ciudad Real, Spain
– Denis Kozlov. Department of Computer Science and Information Systems,

University of Jyväskylä. Jyväskylä, Finland
– Jean-François Gelinas. Département de Mathématiques et d’Informatique.

Université du Québec à Trois- Rivières Canada
– Sherif Gurguis. Department of Computer Science. The American Univer-

sity in Cairo
– Briand Henderson-Sellers University of Technology, Sydney
– Coral Calero ALARCOS Research Group. Escuela Superior de Informática,

Universidad de Castilla-La Mancha. Ciudad Real, Spain
– Fernando Brito e Abreu Faculty of Sciences and Technology, Lisbon New

University, Portugal
– Geert Poels Faculty of Economics and Business Administration - Ghent

University, and Centre for Industrial Management – Katholieke Universiteit
Leuven. Gent, Belgium

4 The Call for Papers

The call for papers of the workshop was distributed by e-mail basically through
distribution lists (among them the one created during the 7 years of previous
workshops with all the workshop attendants) but also with direct e-mails to the
workshop organizers contacts. The Call for Papers was structured as follows:

4.1 Introduction

A brief introduction of the workshop including an explanation about the number
of editions, the main goal of the workshop, etc.

26 C. Calero et al.

4.2 List of Topics

Topics for the workshop submissions. This year, submissions were invited, but
not limited, to the areas of metrics collection, quality assessment, metrics vali-
dation, and process management.

Area C (Metrics Collection)

– Automatic support for sharing research hypotheses, data and results
– Standards for the collection, comparison and validation of metrics
– Embedding metrics in CASE and application development tools
– Evaluation of metrics collection tools
– Automating collection from formal metrics definition
– Metrics collection in the development process (measurement planning)
– Public repositories for measurement data
– Metrics visualization (*)
– Metrics for component-based systems (*)
– Metrics for web-based systems (*)

Area A (Quality Assessment)

– Measuring non-functional requirements of OO systems
– Quantitative OO and CB design heuristics
– Metric-based design refactoring
– OOD and CBD quality characteristics assessment
– Quantitative impact analysis in OO and CB architectures
– Quantitative assessment of OO analysis/design patterns and frameworks
– Quantitative assessment of behavioral modeling in OO models
– Quantitative assessment of OR and OO database/datawarehouse schemata
– Measurement and quality assessment of components (*)
– Measurement and quality assessment of agent-based systems(*)
– Agent-based Web service architecture as a means of providing QoS(*)
– Quality of Service models(*)
– Instrumentation of Web services for QoS (*)

Area V (Metrics Validation)

– Meta-level metrics
– Formal and empirical validation of metrics
– Metrics and Measurement Theory
– Validation techniques and their limits
– Standard data sets for metrics validation
– Limitations of quality estimation techniques

Area P (Process Management)

– Reliability and rework effort estimates based on design measures
– Reuse evaluation
– Resource estimation models for OO and CB software development

8th Workshop on QAOOSE 2004 27

– Quantitative tracking of OO, web services, and CBS development activities
– Empirical studies on the use of measures for process management
– Measurement support in a CBD life cycle

We explicitly solicited position papers related to topics marked with an aster-
isk (*) as well as papers that document and/or motivate the use of quantitative
methods in industrial software processes. These topics were identified as impor-
tant open research issues in QAOOSE’2003 workshop.

4.3 Important Dates Information

Information about the important dates of the workshop were included on the
call for papers

4.4 Web Page

The web address of the workshop was included on the call for papers. On this
page the people could find all the information related to the workshop. The
address of the workshop is: http://alarcos.inf-cr.uclm.es/qaoose2004.

5 The Workshop Sessions

The day started with the session on Metric definition and validation. In this ses-
sion we had three presentations (one of the presenters failed and another from
the short papers session asked for a change).

Independent Validation of a Component Metrics Suite. Miguel
Goulão, Fernando Brito e Abreu.
The session started with the paper of Miguel Goulão titled ”Independent Val-
idation of a Component Metrics Suite”. The paper describes an independent
validation study for a suite of reusability metrics for component based design.
The authors present a formalization that combines the UML 2.0 metamodel with
OCL. By doing that they provide a formal, portable and executable definition
of the metrics set that can be used by other researchers and practitioners to
perform independent validations of the metrics suite. Also they present a proto-
type working environment to perform such independent validation experiments.
A workshop attendant asked about the formalization of implementation metrics
and Miguel asked that this approach cannot be used for this kind of metrics
because only works with structural metrics. A question about the definition of
one of the metrics (the RCO) used for the technique utilization example was
done. Problems related to the difficulty of filling values in the metamodel and
the validation of the metrics was discussed and the ideas for solving them were
exposed by the presenter. A participant asked if the technique was limitative
because the authors use reverse engineering and Miguel asked that no because it
can be used in forward engineering as well, in fact with less effort since compo-
nent diagrams will be available for obtaining the required information. The only
thing to be in mind is that, sometimes, another meta-model would be needed,

28 C. Calero et al.

for instance, when applying the work to relational database metrics (planned
as future work). Also a question about the accuracy of the experimental re-
sults presented was done and the speaker explained that their objective in this
paper was not to assess the accuracy of the results presented by Washizaki et
al., but rather showing that a better formalization of their metrics allows the
replication of their experiment in a far more reusable (because OCL interpreters
are becoming widespread), efficient (because OCL clauses are executable and
as such can help automate the collection process) and objective way (as long
as the corresponding metamodel is made available). The next question was if
the results mean that the analyzed components are of bad quality and Miguel
said that they didn’t get experts opinion on the components quality to perform
such kind of conclusion. However their aim here was not to discuss the appro-
priateness of the thresholds proposed by Washizaki el al., but rather showing
how independent cross can be easily performed without the typical problems of
metrics definition interpretation, metrics collection (lack of tools), among others.

Usability Metrics for Software Components. Manuel F. Bertoa and
Antonio Vallecillo
The session followed with the paper presented by Manuel F. Bertoa about us-
ability metrics for software components. The work presented on this paper is
justified on the need to select a component among a set of possible candidates
that offer similar functionality and the fact that this selection can be done us-
ing metrics. In the paper they define, in a consistent way, usability metrics for
software components based on the ISO 9126 Quality Model. They also define
the basic concepts on software measurement used in the paper, what they un-
derstand for usability in a CBSD framework, and the component information
available to be measured. One of the attendants asked about how the authors
had considered the fact that, when a component has been used more than one
time, it becomes easier and so, perhaps a more complex component become eas-
ier than other that using the proposed approach is considered as the easier one.
Manuel answered telling that this was a good point to consider for future work
because now they are centring their work only considering that the components
to select are not known by the user. The difference between understandability
and learnability was explained by the author after a question of one of the work-
shop attendees. Also someone asked about the metamodel the authors have used
and Manuel explained that as a result of the research, the metamodel is always
under revision. The importance of the ’point of view’ concept was pointed to
the speaker who answered that they mainly take the user point of view, and
make it explicit. About the relationship between the metrics and the quality
sub-characteristics Manuel said that they investigate this in future work when
they have external metrics for the quality sub-characteristics. This investiga-
tion is done by means of empirical studies. The fact that the usability metrics
cannot have an absolute value was remarked by an attendant and Manuel said
that their point of view is to support the selection of components, meaning the
choice between alternative components and so, absolute values are not needed.

8th Workshop on QAOOSE 2004 29

Finally a question about how to evaluate non-functional aspects like QoS was
raised and the speaker explained that this was not included yet, but they plan
to extend the proposal in this respect.

Classification of Metrics Related to the Software Development Pro-
cess as a Prerequisite for Its Improvement. Denis Kozlov
The session finished with the short paper of Denis Kozlov about Classification
of metrics related to the software development process as a prerequisite for its
improvement in which the author points out that estimation of object-oriented
software quality remains as very urgent because there is a lack of generally ac-
cepted classifications of metrics related to final software and to the software
development process, despite of numerous articles devoted to it. Then, the focus
of the article is the classification of metrics of the software development pro-
cess. The correlations between quality characteristics and metrics of the software
development process have been revealed. An approach for using the presented
classifications for improvement of the software development process was also pro-
posed. At the end of the presentation some attendees remarked to Denis that the
fact of mixing the ISO9126 (which is a product norm) with the process could be
a bit dangerous and he would take this into account. Briand Henderson-Sellers
remarked to Denis that his work links somehow to SPI&A framework and he
suggested him look into the SPICE standard where process enactment is as-
sessed, based upon the metamodel. Another attendant recommended the author
to think about the existing relationship between his work and CMM and SPICE.
A question about how where ”correlations” presented in the paper determined
was done and Denis answered that the ”correlations” were just a personal view of
the strength of. He plans to detail the criteria in a follow-up version of this paper.

After a break, the second session, on Methodology and application of mea-
surement, was held. There were three presentations:

On the Application of Some Metrology Concepts to Internal Software
Measurement. Miguel Lopez, Simon Alexandre, Valerie Paulus, Gre-
gory Seront
This paper was presented by Valerie Paulus. The authors investigate the appli-
cability of classical metrology concepts to software measurement. In particular
they explore the concepts of systematic and random error, repeatability and
reproducibility, uncertainty, calibration, and etalon when measuring internal at-
tributes of software with metric tools. Using a laboratory experiment the un-
certainty of McCabe’s measure of the cyclomatic complexity of a Java class was
examined. Although several factors can impact the measurement method, the
experiment did not show the occurrence of systematic or random errors. Hence
the authors conclude that uncertainty might not be a relevant concept for inter-
nal software measurement. On the other hand, it was shown that calibration is
relevant when different measurement instruments for the same measure are avail-
able. This was shown using three tools that measure the cyclomatic complexity

30 C. Calero et al.

of a Java class. Measurement results obtained with these tools can be different as
they implement some counting rules differently. However, with calibration, the
correctness of the measurement results can be ensured. One workshop partici-
pant questioned the relevancy of the research question as measurement results
are deterministic when a same tool is used (unless there is some software bug).
Valerie replied that this was not sure, and therefore they wished to examine
this. In future work the authors intend to introduce themselves some errors
to further investigate the usefulness of the metrology concepts. It was further
remarked that concepts like calibration are surely relevant when there is ambi-
guity in the measurement methods, such as with functional size measurement.
Valerie responded that new functional size measures such as COSMIC-FFP even
incorporate calibration and other metrology concepts (e.g. conversion) as part
of their method. Another question related to the use of McCabe’s cyclomatic
complexity as the object of study in the experiments, given that it is not an
object-oriented measure. Valerie admitted, but McCabe’s number was only an
example and other measures will be investigated. At the end of the presentation,
Valerie argued for the introduction of a common terminology for reference fields
such as measurement theory and metrology. Currently there is a lot of confu-
sion in software measurement with respect to validation, and the separation of a
measure from its methods and instruments could resolve some of these semantic
problems. As a final comment it was suggested that the application of metrology
is probably very promising for dynamic metrics, where there is uncertainty by
definition.

Industrialisation of Software-Quality-Led Project Management Pro-
cess at the S.N.C.F. (French Railways). Olivier Bearupaire, Benjamin
Lecardeux, Christine Havart.
This ’industrial’ presentation was made by Olivier Beaurepaire. The industry
report of these authors was especially welcomed by the workshop organizers,
as in the past there was a lack of participants from industry in the QAOOSE
workshops. The contribution by Beaurepaire and colleagues demonstrated that
the topic of the QAOOSE workshops is not only of academic interest. In the
presentation, Olivier demonstrated the metrics program at the French Railways
company. The program was established to assist project managers in assuring the
quality of the produced software systems. The core of the program is a decision
support tool (called the Software Quality Portal) that helps both managers and
developers to interpret the measurement results (e.g. occurrence of anti-patterns,
quality over time trend analysis). As a result of the introduction of the metrics
program, an improvement in the level of quality has been observed. Further, the
metrics initiative establishes a contractual framework for sub-contractors, allow-
ing the French Railways to assure the quality of externally developed software.
One of the metrics used is the severity of the software problems that are ob-
served. Workshop participants wondered how this severity could be quantified.
Olivier responded that it was based on the end-user’s point of view. A partici-
pant further remarked that the severity of software problems is not necessarily
directly related to their costs. Another question related to the improvements

8th Workshop on QAOOSE 2004 31

that were observed after the introduction of the metrics program. It was replied
that there were improvements, although it was too soon to quantify them. Some
results are promised for the near future, in a next paper. One of the workshop
organizers further remarked that is could be worthwhile to move to the model
level, and not focus metrics efforts exclusively on the code level. This would,
amongst other benefits, make the metrics program more independent of the lan-
guages used (as for each language other metrics thresholds may apply). Such an
approach, though valuable, might be difficult to implement at French Railways,
because models are rarely used, or not kept up to date. Unfortunately, this is
the rule rather than the exception in software engineering practice.

Exploring Industrial Data Repositories: Where Software Development
Approaches Meet. Parastoo Mohagheghi, Reidar Conradi
The presentation was done by Parastoo Mohagheghi. The paper deals with meth-
ods and problems of exploring large industrial data repositories in empirical soft-
ware engineering research, taking into account that software data are not always
obtained as part of a measurement program. The presentation gave an overview
of recent research results, presented by the authors at other conferences. These
are a study of defect reports, a study of change requests, and a study of ef-
fort spent in some releases of a large-scale telecommunications system. It was
concluded that the integration of the results of such studies with other stud-
ies and with theory is a challenge, especially since measurement programs and
metrics are tied to particular development approaches. As part of a solution for
this problem, the authors present a set of metrics for a combined incremental,
reuse-, and component-based development appoach. One workshop participant
asked about the granularity of the collected effort data. Parastoo answered that
effort data is needed per component and not only per use case, and that this is
currently a problem with the repository that was analyzed. It was commented by
another participant that components might have considerably different sizes, so
the use of ’component’ as a normalizing factor for effort is questionable. Accord-
ing to Parastoo this is true, however, in a well-defined context such as the one
presented, components have similar sizes. Another participant noticed that the
distinction between ’reused’ and ’not reused’ components is too coarse-grained.
There might be a wide range of values between these two extremes with respect
to the extent of software reuse. There was also the question of the validity of the
data in the repository. Parastoo admitted that all data was used, even without
being sure that a validation procedure was used before storing the data. There
was however a configuration management system in use, which provides some
assurance against storing invalid data. Another question related to the analy-
sis techniques that were used. These were hypothesis testing and correlational
analysis, but not multivariate analysis yet.

After lunch we had a session on Functional size and quality where three pa-
pers were presented.

32 C. Calero et al.

Validation Issues in Functional Size Measurement of Object-Oriented
Conceptual Schemas: The Case of OOmFP. Silvia Abrahäo, Geert
Poels, and Oscar Pastor.
The paper, presented by Silvia Abrahao, introduced a framework for evaluat-
ing Functional Size Measurement (FSM) methods, based on a process model for
functional size measurement. The authors also show how to apply this frame-
work to evaluate OO-Method Function Points (OOmFP) focusing on the role of
theoretical validation within the evaluation framework.

Silvia was asked about the metamodel that during the talk she mentioned
that they used for defining the concepts in FP but it cannot be found in the pa-
per. She also was asked about the relationship between Object Points and their
approach and she said that they haven’t yet come across it but they will have
a look. Also an attendant asked about what meta-model was used for the FSM
method? and Silvia asked that they used UML to formalize the IFPUG-FPA
meta-model that was first mapped into the OO-Method meta-model.

A Proposal of a Multidimensional Model for Web-Based Applica-
tions Quality. Ghazwa Malak, Linda Badri, Mourad Badri and H.
Sahraoui.
In this paper, authors propose a three-dimensional model for web-based applica-
tions quality. Houari, who presented the paper, was asked about the correctness
of considering the application domain as a dimension for the web quality model
taking into account that it is a nominal scale and he answered that two dimen-
sions is not enough. Also related to the domain dimension he was asked if there
should not be a different quality model for each domain instead of having the
domain dimension by itself and he said that they looked for orthogonal dimen-
sions and they thought that a dimension, which refers to the profile of the web
application, which has its impact on quality characteristics, was necessary. He
was also asked about how the information content or volume assessment was
considered in their model and he said that they believe assessment is only a
problem if the site is not well structured.

Measuring the Effects of Patterns on Object Oriented Micro Archi-
tectural Design. Javier Garzás and Mario Piattini.
In OO Micro-Architectural Design Knowledge, design patterns are a key and im-
portant technique. “Using design patterns increments design quality” is a famous
sentence, but this is an ambiguous and imprecise sentence: what does “design
quality” mean? Patterns affects on difference way to the quality of the micro
architectural design. In this paper authors propose metrics for answering this
important question. An attendant asked Mario, the presenter of the work, that
the optimal number of patterns seems to be a magic number and Mario answered
that they were conscious of that, especially since there are so many kinds of OO
patterns. He also he was asked about the definition of a metric included on the
paper.

8th Workshop on QAOOSE 2004 33

During the short paper session, we started by a demo on software metrics vi-
sualization using perception and simulation presented by Houari Sahraoui. After
the demo, two participants presented briefly their positions.

Aspect Cohesion Measurement Based on Dependence Analysis. Jean-
François Gélinas, Linda Badri and Mourad Badri
Jean-François argued that Aspect-Oriented Programming is a promising new
paradigm. Although several metrics have been proposed in order to assess object-
oriented software quality attributes, new metrics must be developed to hold
account Aspect’s characteristics. As cohesion is considered as one of the most
important software quality attributes, he proposes a new approach for aspect
cohesion assessment based on dependence analysis. To illustrate his proposal, he
introduced several cohesion criteria and built a new cohesion metric using them.
After this short presentation a discussion took a place. The first topic that was
addressed concerns the alternatives of adapting existing OO cohesion metrics or
developing aspect cohesion metrics from scratch. The position of Jean-François is
that AOP introduced many new concepts which made any adaptation hard and
risky. The second topic addressed the problem of choosing the cohesion rather
than other attributes like coupling. Jean-François explained that cohesion is a
fundamental principle of aspects. An aspect is supposed to implement a cohesive
behavior. The final discussion topic was about the coverage of the proposed met-
ric. Jean-François recognized that more metrics are probably needed to cover all
the different factors that can influence the cohesion.

Towards A Minimal Performance Metrics Suite for Agent-Based Sys-
tems. Amir Zeid and Maha Abdel Kader.
Sherif Gurguis was the last participant who presented the position of his team.
Like the previous position, he claimed that agent-oriented paradigm is gaining
popularity. With this respect, each scientific development that claims to provide
a “new way” for approaching existing problems needs proper (i.e. formal and
quantifiable) evaluation methods and consensus-based criteria for measuring the
validity of its claims. As agents present some unique features that should be
verified and evaluated, it is important to define useful metrics to measure them.
The particularity of this work is that the authors start by defining a large set
of metrics and then reduce this set by evaluating the dependency between the
metrics using correlation techniques.

The workshop finished with a Discussion and closing session. During this
session, the first part was devoted to the identification of important issues that
emerged from the different sessions of the day.

– Participants from industry and academia agreed the fact that it is difficult
to define objective measures for evaluating the ROI of adopting product
measurement and quality programs.

34 C. Calero et al.

– ISO9126 was used during the past years as a starting point for a large part
of software measurement research work. Today it is obvious that this model
is not application to software applications built using emerging technologies
such as component and web-based applications. The adaptation of this model
and/or the definition of technology-specific models are crucial issues.

– The adaptation of structural programming-based metrics to OO paradigm
have reveled many problems. The same problem is occurring today with the
adaptation of OO metrics to emerging technologies (aspects, components,
agents, etc. . .). What are the lessons and how can we make this transition
more successful that the previous one?

– Although many contributions have been made in the study of the relation-
ships between quality attributes and metrics, the area still suffers from rig-
orous and exhaustive results.

– The success of evaluating the majority of software quality factors is deeply
related to the ability of understanding the phenomena behind them such as
software evolution. Even if there is a consensus on this statement, very few
work addressed the theory and model that can represent these phenomena.

During the second part of this session, additional issues were identified as
future challenges for the community and consequently as important topics for
the next year workshop edition. These topics are:

– Quantitative visualization of large sets of software artifacts
– Measurement and quality evaluation of component and service-based appli-

cation
– Measurement and quality evaluation for aspect-oriented software develop-

ment
– Rigorous empirical studies for software quality evaluation
– Paradigm independent product metrics
– Process vs product attributes
– Metric-based reengineering
– Early development phase metrics
– Relationship between cost/effort and quality factors
– Influence of context (product and/or organization) on quality

6 Other Information Related to the Workshop

The links to the web pages of the previous editions of the workshop are:

– QAOOSE’2003:
http://ctp.di.fct.unl.pt/QUASAR/QAOOSE2003

– QAOOSE’2002:
http://alarcos.inf-cr.uclm.es/qaoose2002

– QAOOSE’2001:
http://www.iro.umontreal.ca/~sahraouh/qaoose01

8th Workshop on QAOOSE 2004 35

– QAOOSE’2000:
http://ecoop2000.unice.fr/Program/Technical/Workshops/w10.html

– QAOOSE’99:
http://ecoop99.di.fc.ul.pt/techprogramme/w20.html

– OO Product Metrics for Software Quality Assessment:
http://www.crim.ca/~hsahraou/oopm.html

– Quantitative Methods for OO Systems Development:
http://ctp.di.fct.unl.pt/QUASAR/ECOOP95

Eighth Workshop on Pedagogies and Tools for
the Teaching and Learning of Object Oriented

Concepts�

Jürgen Börstler1, Isabel Michiels2, and Annita Fjuk3

1 Ume̊a University, Sweden
2 Vrije Universiteit Brussel, Belgium

3 University of Oslo, Norway

Abstract. This report summarises the results of the eighth workshop in
a series of workshops on pedagogies and tools for the teaching and learn-
ing of object-oriented concepts. The submissions to this year’s workshop
mainly covered curriculum issues, tool support for teaching, and case
studies. Several contributions dealt with teaching object-orientation to
non-Majors (junior high-school students, non-Science students). This as-
pect permeated most of the discussions at the workshop and is also re-
flected in the conclusions. The workshop gathered 19 participants from
nine different countries.

1 Introduction

Object-orientation has nowadays become the dominant software development
paradigm. In most educational programs object-orientation is the first (and
sometimes the only) paradigm students encounter. Successfully applying object-
oriented methods, languages and tools requires a thorough understanding of the
underlying object-oriented concepts. Despite this importance there is still no
accepted approach to effectively teach or learn basic object-oriented concepts.

Studies show that there is a great mismatch between language used and
paradigm taught. In Australia for example about 82% of the introductory pro-
gramming instructors use an object-oriented language. Only about 37% however
teach their courses using an object-oriented approach [1]. Most educational pub-
lications however suggest to introduce objects early on.

Using traditional programming languages, concepts could be introduced step
by step. Abstract and advanced concepts, like for example modules and ab-
stract data types could be handled as an afterthought. In the object-oriented
paradigm, the basic concepts are tightly interrelated and cannot easily be taught
and learned in isolation, making these tasks much more challenging.

� The title of this report should be referenced as “Report from the ECOOP 2004
Eighth Workshop on Pedagogies and Tools for the Teaching and Learning of Object
Oriented Concepts”.

J. Malenfant and B.M. Østvold (Eds.): ECOOP 2004, LNCS 3344, pp. 36–48, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Eighth Workshop on Pedagogies and Tools for Teaching and Learning 37

Switching to object-oriented development is not just a matter of program-
ming languages. Focusing on the notational details of a certain language prevents
students from grasping the “big picture.” Most students therefore have difficul-
ties taking advantage of object-oriented concepts. Many traditional examples are
furthermore not very suitable for the teaching and learning of object-oriented
concepts. Many popular examples (like for example ’Hello World’) actually con-
tradict the rules, guidelines and styles we want to instill in our students [2].

Educators must therefore be very careful when selecting or developing exam-
ples and metaphors. Rules and misconceptions that students develop based on
doubtful examples will stand in the way of teachers and learners as well.

This was the eighth in a series of workshops on issues in object-oriented
teaching and learning. Reports from most previous workshops in the series are
available [3, 4, 5, 6, 7, 8]. Further information and links to the accepted contribu-
tions of most workshops can be found at the workshop series home page [9].

The objective of the workshop series is to share experiences and discuss ideas,
approaches and hypotheses on how to improve the teaching and learning of
object-oriented concepts. The organisers particularly invited submissions on the
following topics:

– successfully used examples and metaphors;
– approaches and tools for teaching (basic) object-oriented concepts;
– approaches and tools for teaching analysis and design;
– ordering of topics, in particular when to teach analysis and design;
– experiences with innovative CS1 curricula and didactic techniques;
– learning theories and pedagogical approaches / methods;
– representation of learning resources;
– distance education / net-based learning;
– collaborative learning;
– guiding the learners;
– learners’ view(s) on object technology education;
– development of the learner’s competence.

2 Workshop Organisation

Participation at the workshop was by invitation only. The number of participants
was limited to encourage the building of few small interest groups working on
specific topics. Potential attendees were required to submit position papers.

Out of the 11 position papers that were submitted, 9 papers were accepted,
of which 7 were formally presented at the workshop. Two papers were rejected.
All accepted contributions were made available on the workshop’s web site some
weeks before the workshop, in order to give attendees the opportunity to prepare
for the discussions. All formal presentation activities were scheduled for the
morning sessions. The afternoon sessions were dedicated to discussions in small
working groups.

After the formal presentations all attendees had the opportunity to present
their main “message(s)” in a round-robin presentation (materials had to be

38 J. Börstler, I. Michiels, and A. Fjuk

Table 1. Workshop program

TIME TOPIC
9:00 Welcome and Introduction
9:15 Session 1: Curriculum Issues

Why Structural Recursion Should Be Taught Before Arrays in CS 1,
K. Bruce (15 min)
Teaching Object-Oriented Programming–Towards Teaching a System-
atic Programming Process, M.E. Caspersen (15 min)
Object-Orientation by Immersion–Teaching Outside the CS Depart-
ment, M. Lindholm (10 min)
Discussion (10 min)

10:05 Session 2: Tools
OCLE, a Tool Supporting Teaching and Learning UML and OCL, the
Understanding and Using of Metamodeling, Abstraction and Design by
Contract, D. Chiorean (10 min)
Online Assessment of Programming Exercises, G. Fischer (10 min)
Discussion (5 min)

10:30 Coffee Break
11:00 Session 3: Case Studies

Junior High School Students’ Perception of Object-Oriented Concepts,
M. Teif (15 min)
Lego as platform for learning OO thinking in primary and secondary
school, C. Holmboe (15 min)
Discussion (10 min)

11:40 Round-robin Presentations of Attendee Positions (1 overhead
each)

12:10 Split up into Working Groups
11:30 Lunch Break
13:30 Parallel Working Group Sessions
15:00 Coffee Break
15:30 Parallel Working Group Sessions (cont.)
16:15 Working Group Reports, Discussion, Wrap-up
17:00 Closing

submitted in advance). After that three working groups were formed to discuss in
more detail the topics they found most interesting or relevant. The full workshop
program can be found in table 2.

The workshop gathered 19 participants from nine different countries, all of
them from academia. A complete list of participants together with their affilia-
tions and e-mail addresses can be found in table 4.2.

3 Summary of Presentations

This section summarises the main points of the presented papers and the most
important issues raised during the morning discussions. More information on the
presented papers can be obtained from the workshop’s home page [10].

Eighth Workshop on Pedagogies and Tools for Teaching and Learning 39

Table 2. Overview of the presentations

Bruce Caspersen Lindholm Chiorean Fischer Teif Holmboe
Target Group
– CS juniors X X X (X)
– CS seniors X
– Non-CS X (X) X X
– Pre-Univ. X X
Target Area
– OOP X X X (X) (X)
– OO concepts X (X) X (X) X X
– Design X
– Modelling X X (X)
– Formal Spec. X
– Testing (X) (X)
Paper Type
– Exp. report X X X X X
– Case study X X
Main message Teach

struc-
tural
recursion
before
arrays

Teach
sys-
tematic
tech-
niques
and
processes
explicitly

Use suf-
ficiently
complex
examples
from a
familiar
domain

Tool
support
is essen-
tial for
teaching
meta-
modelling

Automatic
assess-
ment is
both fea-
sible and
effective

Miscon-
ceptions
don’t
differ
with age

OO is
more
about a
way of
thinking
as a
way of
program-
ming

3.1 Curriculum Issues

Kim Bruce (Williams College, MA, USA) described how rearranging topics
helped his CS1 students to better understand object-oriented principles, in par-
ticular encapsulation. The first half of the course originally took an objects-first,
event-driven approach using the objectdraw library, developed at Williams Col-
lege. The students caught on very well to object-orientation using this approach.
However, when introducing non-object-oriented structures, like arrays, strings
and files in the second part of the course the students do no longer apply the
object oriented principles they have learned. Students for example resisted to
encapsulate arrays in purposeful objects and returned to directly manipulating
arrays and their elements.

Moving the topic of structural recursion from the end of the course to the
beginning of the second part of the course (i.e. before introducing arrays), proved
to be a major improvement. Kim argued that recursive structures are much eas-
ier to understand than recursive procedures. In their course they use recursive
pictures, where the base cases are realised as Java interfaces. The recursion is
then an implementation of a Picture interface that has an instance variable of the
interface type for the recursive part. Such recursive structures are also very use-
ful to reinforce important object oriented concepts like dynamic method dispatch

40 J. Börstler, I. Michiels, and A. Fjuk

and interfaces. They also provide a smoother transition to arrays. This revised
topic order also helps students to better understand the motives behind explicit
encapsulation of arrays (compared to direct manipulation).

The audience found this approach very promising. However, it was not quite
clear whether this approach could be used with more mediocre student groups.
The concept of structural recursion is not that easy to grasp and even Kim’s well
designed examples would require a thorough understanding of object-oriented
concepts. Kim argued that they hide many language specific details in their
library. This makes it easier for the students to concentrate on the important
things.

Michael E. Caspersen (University of Aarhus, Denmark) claimed that teach-
ing should focus on systematic techniques to develop programs by means of
conceptual modelling and that it is mandatory to train students in the pro-
cess of applying systematic development techniques. He and his colleagues use
a model-driven objects-first approach with a strong focus on systematic tech-
niques and programming processes. In this approach the actual programming
is not just a matter of a certain programming language. Students are gradually
exposed to more complexity by means of conceptual models and not by means
of more complex constructs in a certain programming language.

Systematic (implementation) techniques are taught on different levels. On
method level the students deal with algorithm patterns and loop invariants.
On class level the students deal with class specifications (contracts). On class
structure level the students deal with specification models (class diagrams). This
separation of concern makes it easier for students to choose the appropriate
technique for the problem at hand. Michael also noted the importance of actually
demonstrating how experts use these techniques in practise. The lecturers do a
lot of “live” programming and modelling in class, where they say aloud what
they do and why the do it in a particular way. They also show videos of actual
developers working on real projects.

According to Michael the approach has been very successful. The drop-out
rates have decreased from about 50% five years ago to about 10%.

Morten Lindholm (University of Aarhus, Denmark) described his approach to
teaching object-oriented concepts to students of the Faculty of Arts. The goal
of the two-semester course Programming & Systems Development is to give stu-
dents a basic understanding of computers and software development. A problem
in course development had been to find a suitable textbook for students from
the humanities or social sciences. Current textbooks usually aim at students
with a Science or Engineering background and are therefore full of problems,
examples and exercises that draw on this background. Most solutions (i.e. ex-
ample programs) lack therefore objects rooted in the “real” world, as for example
System.out.

Morten suggested to use language philosophy and logic as the foundation for
object-orientation and a way to reason about ways of describing (a model of)
the world in a machine. To motivate the students examples, assignments, and

Eighth Workshop on Pedagogies and Tools for Teaching and Learning 41

projects should always be taken from a domain familiar to the students. There
should also be a mapping to the real world in order to grasp what an object is.

The students in this course sequence are exposed to a wide range of techniques
to give them a broad view of object-orientation and design (CRC-cards, UML,
Pair Programming, Design Patterns, Unified Process). These techniques are then
trained by means of team projects. This approach seems to work well except for
the actual coding part.

In his talk Morten highlighted the importance of “sufficiently complex” ex-
amples1. The real power of object-oriented modelling cannot be used in trivial
examples. Several attendees choose to disagree here. Micheal Caspersen agreed
that examples should not be trivial and, but not more complex than necessary
to make their point. He would rather vote for “sufficiently simple” examples.
As another important point it was mentioned that every program the students
write, should reflect the programs the students use (i.e. no batch-like processing
for example).

3.2 Tools

Dan Chiorean (Babes-Bolyai University, Romania) presented OCLE (Object
Constraint Language Environment), a tool for the teaching and learning of OCL,
UML, metamodelling, and abstraction. Dan presented several examples how the
tool can be used to view, evaluate and transform example specifications. OCLE
supports modelling on the user model level as well as the metamodel level. By
grouping both kinds of models in one project, the user models can then be
(statically) validated against the corresponding rules defined in the metamodel.

This kind of parallel modelling on two different levels of abstraction helps
the students to appreciate metamodelling and also to better understand the
semantics of OCL and UML. The tool can visualise different views of the same
information at the simultaneously. This enables students to understand how
decisions made at metamodel level affect instances on the user model level.

The tool can even generate (Java) code from OCL specifications. By doing
so one can trace the effects of changes in the metamodel down to the generated
code. It was however not clear whether the code generation would scale up to
more complex examples.

Gregor Fischer (University of Wrzburg, Germany) reported about the usage of
Praktomat (see [8]) to automatically assess programming exercises. All attendees
agreed that multiple-choice tests are not very reliable for assessing programming
skills. However, manually assessing large numbers of exercises in a consistent
manner would be very difficult, if not infeasible.

Praktomat is capable of several types of tests; formal (syntax, compiling,
coding style and required documentation), program structure, specification re-
quirements, and functional tests. Functional testing is done by means of testing
operations written in JUnit. Functional testing against the results of master so-

1 The idea of using sufficiently complex examples was originally propagated by Kristen
Nygaard using his famous Restaurant example.

42 J. Börstler, I. Michiels, and A. Fjuk

lution (working as an oracle) did not work as reliable. This would however put
less restrictions on the structure of the solutions that must be delivered by the
students.

The tool results are very reliable. Less than 2% of the programs passing
all automatic tests were rejected by a human inspector. It was however not
clear whether fundamentally good, but imperfect solutions would be rejected by
the tool. The examination work load decreased by a factor of four. Developing
suitable exercises on the other hand is much more expensive. Gregor did not
have actual data on this part, but claimed that there still is a reasonable pay
off.

Programming is a skill that requires a lot of training. Automatic assessment
can provide the immediate feedback that is necessary to handle large student
groups and/ or large numbers of exercises. In the current setting students can
perform as many tests as they like before finally submitting their programs. The
audience was not sure whether this will teach students bad habits. Nevertheless,
since the tool has been introduced Gregor and his colleagues have observed
considerable quality improvements in students’ solutions. The tool did on the
other hand, not affect the course’s overall passing rate.

Gregor noted further that currently all test are public. This helped many
students appreciate proper testing. For the future it is planned to integrate
testing and test development into the course (but how will the tests be tested).

3.3 Pre-university Case Studies

Mariana Teif (Israel Institute of Technology, Israel) presented results from a
junior high school course (7th-8th grade) on object-oriented concepts. In the
context of a research project, she studied difficulties and misconceptions the
students faced while learning basic object oriented concepts. The students devel-
oped small programs using a Java-based Turtle-graphics environment. Students
did not have to present practical programming skills at the end of the course.
Examination was by means of concept-level questions.

The study identified four types of misconceptions. Students did for example
confuse an object’s attributes with its parts (components) or actions (knowing
how to do certain things). They had also difficulties accepting sets as objects and
considered set-subset (hierarchy) relationships and whole-part relationships as
equal to the class-instance relationship. A follow-up study with undergraduate
students as subjects revealed the same results.

Mariana discussed a range of possible explanations for the found miscon-
ceptions, which might be based on classification theory. Further research and
analysis is planned to explain the underlying reasons for the problems.

Christian Holmboe (University of Oslo, Norway) presented preliminary re-
sults from a case study done in the context of the COOL2 project on teaching
primary and secondary school children general principles of object-orientation
and computer functionality.

2 Comprehensive Object-Oriented Learning

Eighth Workshop on Pedagogies and Tools for Teaching and Learning 43

The study was carried out as an intensive four day course, with two different
age groups (6th and 9th grade respectively) at different schools. The object-
oriented concepts covered were classification, specialisation and aggregation. The
students engaged in various types of classroom activities, like drawing, building
with Lego, or written textual definitions. The “products” of these activities were
discussed with respect to features, attributes and different kinds of relationships
to emphasise the usefulness of different kinds of “specification” mechanisms.

In a group project the students then explored and programmed a Lego vehicle
using a small Robot API based on LeJoS, a Java-based development language
for Lego. The API and an object diagram for the vehicle were carefully explained
and set up on the walls of the classroom. The results of the students’ group work
were discussed in relation to object-oriented principles, but without using strict
object-oriented terminology. After that the students did some exercises using the
Restaurant example.

The students solved quite interesting tasks after only four days. Interviews
after the course (using another example) showed that the students gained quite
some understanding of the covered object-oriented concepts. Teaching (object-
oriented) design and technology in this way might enhance the students confi-
dence about information technology. This might help to get more people inter-
ested in Information Technology and Computer Science. Further studies of the
gathered data are however necessary to draw any safe conclusions.

4 Working Group Discussions

For the afternoon sessions participants formed three working groups to discuss
specific topics in more detail. The following subsections summarise the discus-
sions on the topics discussed in more detail.

4.1 Balancing Focus Between Process and Product

The discussion was initiated by trying to establish a common understanding
of the notions of “process” and “product.” A product is a concrete result of a
(planned) development activity, like for example the final executable program
code, a diagram or a model. A process is the sum of the developers’ actions to
produce these products. To develop a product we also have to take care of the
pragmatics of software development, like for example the usage of tools and the
application of certain guiding principles and rules.

In his analogy with cabinet making, David Gries described nicely how the
teaching about products, processes and pragmatics should (not) be didactically
and pedagogically organised [11]:

Suppose you attend a course in cabinet making. The instructor briefly
shows you a saw, a plane, a hammer, and a few other tools, letting you
use each one for a few minutes. He next shows you a beautifully-finished
cabinet. Finally he tells you to design your own cabinet and bring him
the finished product in a few weeks.

44 J. Börstler, I. Michiels, and A. Fjuk

You would think he was crazy! You would want instructions on designing
the cabinet, his ideas on what kind of wood to use, some individual
attention when you don’t know what to do next, his opinion on whether
you have sanded enough, and so on. (p82)

One way of achieving a balance between product and process in teaching, is to
expose students to how experienced programmers work. Like how a master shows
his or her profession to apprentices. Approaches like projector-programming and
live-programming in the classroom were considered important by all group mem-
bers. However, when a teacher demonstrates the process of programming (with
help of a projector or the like), she must also think aloud and make typical er-
rors. Programming is not a straight forward process. Students must be reassured
that there are no single correct solutions that will unfold automatically when
“doing it right.”

4.2 Student Diversity and Core Computer Science

Teaching Computer Science to different groups of students rises the question
about a thorough definition about the core of our field. What do we need to
teach to students who take only few Computer Science courses? The definition
of a “real” core (see 1) of Computer Science must necessarily be much narrower
for students outside our field compared to the definition as for example proposed
by the CC2001 [12].

Fig. 1 Points of view of the core of Computer Science

The group concluded that object-oriented programming is not a core topic
for students outside our field. However, object-orientation as a way to structure
and model problems should be included in some way.

It was also pointed out that different groups of students would need differ-
ent kinds of “windows” to view the core (see 2). Matlab for example could be a

Eighth Workshop on Pedagogies and Tools for Teaching and Learning 45

Fig. 2 Windows to approach the core of Computer Science

suitable window for Math or Engineering students to approach Computer Sci-
ence. For all windows and groups it would be necessary to provide suitable
examples.

Table 3. List of workshop participants

Name Affiliation E-mail Address
Jrgen Brstler Ume University, Sweden jubo@cs.umu.se
Isabel Michiels Vrije Universiteit Brussels, Bel-

gium
imichiel@vub.ac.be

Annita Fjuk University of Oslo, Norway annita.fjuk@telenor.com
Jens Kaasboll University of Oslo, Norway jensj@ifi.uio.no
Jens Bennedsen IT University West, Denmark jbb@it-vest.dk
Maria Bortes Babes-Bolyai University, Romania maria@lci.cs.ubbcluj.ro
Kim Bruce Williams College, MA, USA kim@cs.williams.edu
Michael E. Caspersen University of Aarhus, Denmark mec@daimi.au.dk
Dan Chiorean Babes-Bolyai University, Romania chiorean@lci.cs.ubbcluj.ro
Dyan Corutiu Babes-Bolyai University, Romania dyan@lci.cs.ubbcluj.ro
Gregor Fischer University of Wrzburg, Germany fischer@informatik.uni-

wuerzburg.de
Roar Granerud University of Oslo, Norway rgraneru@ifi.uio.no
Arne-Kristian Groven Norwegian Computing Centre, Nor-

way
groven@nr.no

Hvard Hegna Norwegian Computing Centre, Nor-
way

hegna@nr.no

Christian Holmboe University of Oslo, Norway christho@ifi.uio.no
Morten Lindholm University of Aarhus, Denmark lindholm@daimi.au.dk
Wilfried Rupflin University of Dortmund, Germany wilfried.rupflin@uni-

dortmund.de
Mariana Teif Israel Institute of Technology, Is-

rael
tmariana@tx.technion.ac.il

Kristina Vuckovic Zagreb University, Croatia kvuckovi@ffzg.hr

46 J. Börstler, I. Michiels, and A. Fjuk

Most importantly examples need to be appealing to students and interesting
in itself, but not necessarily depending on context (not everything needs to
be real world relevant). Besides that examples must fulfill certain criteria to be
meaningful with respect to object-orientation. They should for example comprise
at least two classes, where at least one class has multiple instances. There should
furthermore happen some real object interaction, where different objects need to
(get to) know each other. Examples should also make use of non-static methods
and exchange objects as parameters (instead of built-in types only). In addition
to that custom designed libraries to hide language specific details would help
students to focus on the real problems.

4.3 Student Attitudes

Student attitudes was another topic discussed in this group. The audience agreed
that students are not as good as before in solving problems on their own. They
quickly give up on exercises and they often rely on help from others when they
are stuck with a certain problem. Possible solutions could be (as proposed by
Michael Caspersen) to show students the process of working towards a reliable
solution. However, it was argued that this is not sufficient. Teachers often ask
themselves questions as part of this (implicit) process in specific orders. When
this process is not made explicit to students, they do not know how to proceed
once they are on their own. The group concluded that we definitely need to teach
more programming methodology. This must however be done in a systematic
way to enable the students to choose the “right” tool for the right problem. To
help students build up confidence some kind of peer-based help to help yourself
approach, like Supplemental Instruction, can also be very useful.

5 Conclusions

The objective of the workshop was to share experiences and to discuss ideas,
approaches and hypotheses on how to improve the teaching and learning of
object-oriented concepts.

Ongoing work was presented by a very diverse group of people with very
different backgrounds, which resulted in a broad range of topics, see table 3. The
workshop attendees represented a broad range of experiences, which are often
not easily accessible and transferable. We can definitely conclude that there are
many approaches that can work in certain environments. We can also certainly
conclude that there is no is no one-size-fits-all approach to teaching object-
oriented concepts and principles. The challenge is to find the right approach (or
view on things) for each type of student.

To summarise our discussions we want to suggest the following.

– We must expose students to the real programming process, instead of an ide-
alised linear one. Software development is an inherently incremental process.
Students must be made aware of that there is no single correct solution to

Eighth Workshop on Pedagogies and Tools for Teaching and Learning 47

virtually any programming problem. There is not even a single correct pro-
cess that will “automatically” reveal a correct solution. This is even more
important when students are faced with analysis and design problems.

– Students need “tools” to help them escape when they get stuck on their own,
instead of waiting for someone to help them out. The teaching of systematic
techniques and explicit processes can help a lot. But, especially weaker stu-
dents, also need help to improve their self-confidence, for example by means
of supplemental instruction.

– Carefully developed examples and exercises are very important. They must
be designed with the target group of students in mind. They must also be
valid and meaningful with respect to the object-oriented paradigm.

– Object-oriented programming is not a given core subject for non-Majors in
Computer Science. However, basic object-oriented concepts or principles, like
encapsulation and abstraction, should certainly be taught to any student to
enable them to cope with complexity.

References

1. de Raadt, M., Watson, R., Toleman, M.: Introductory Programming: What’s Hap-
pening Today and Will There Be Any Students to Teach Tomorrow? In: Lister,
R., Young, A.: Proceedings ACE2004, Conferences in Research and Practice in
Information Technology, Vol. 30, Australian Computer Society (2004) 277-282.

2. Westfall, R.: “Hello, World” Considered Harmful. Communications of the ACM
44 (10) (2001) 129-130.

3. Börstler, J. (ed.): OOPSLA’97 Workshop Report: Doing Your First OO Project.
Technical Report UMINF-97.26. Department of Computing Science, Ume̊a Uni-
versity, Sweden (1997).

4. Börstler, J. (chpt. ed.): Learning and Teaching Objects Successfully. In: De-
meyer, S., Bosch, J. (eds.): Object-Oriented Technology, ECOOP’98 Workshop
Reader. Lecture Notes in Computer Science, Vol. 1543. Springer-Verlag (1998)
333-362.

5. Börstler, J., Fernández, A. (eds.): OOPSLA’99 Workshop Report: Quest for Effec-
tive Classroom Examples. Technical Report UMINF-00.03. Department of Com-
puting Science, Ume̊a University, Sweden (2000).

6. Michiels, I., Börstler, J.: Tools and Environments for Understanding Object-
Oriented Concepts. In:Malenfant, J., Moisan, S., Moreira, A. (eds.): Object Ori-
ented Technology, ECOOP 2000 Workshop Reader, Lecture Notes in Computer
Science, Vol. 1964. Springer (2000) 65-77.

7. Michiels, I., Börstler, J., Bruce, K.: Sixth Workshop on Pedagogies and Tools for
Learning Object-Oriented Concepts. In: Hernández, J., Moreira, A. (eds.): Object
Oriented Technology, ECOOP 2002 Workshop Reader, Lecture Notes in Computer
Science, Vol. 2548, Springer (2002) 30-43.

8. Michiels, I., Börstler, J., Bruce, K., Fernndez, A.: Tools and Environments for
Learning Object-Oriented Concepts. In: ECOOP 2003 Workshop Reader, Lecture
Notes in Computer Science, Vol. 3013, Springer (2004) 119-129.

9. Workshop series homepage: Pedagogies and Tools for the Teaching and Learning of
Object Technology. http://www.cs.umu.se/research/education/ooEduWS.html

48 J. Börstler, I. Michiels, and A. Fjuk

10. ECOOP04 workshop homepage. http://www.cs.umu.se/~jubo/Meetings/ECOOP04
11. Gries, D.: What Should We Teach in an Introductory Programmming Course.

Proceedings of the fourth SIGCSE Technical Symposium on Computer Science
Education. ACM SIGCSE Bulletin 6 (1) (1974) 81-89.

12. CC2001 Task Force: Computing Curricula 2001-Computer Science. Final Report
(2001).

2nd Workshop on Object-Oriented Language
Engineering for the Post-Java Era:

Back to Dynamicity�

Sebastián González1, Wolfgang De Meuter2, Pascal Costanza3,
Stéphane Ducasse4, Richard Gabriel5, and Theo D’Hondt2

1 Département d’Ingénierie Informatique, Université catholique de Louvain – Belgium
2 Programming Technology Lab, Vrije Universiteit Brussel – Belgium

3 Institute of Computer Science III, Universität Bonn – Germany
4 Software Composition Group, Universität Bern – Switzerland

5 Sun Microsystems – USA

Abstract. This report covers the activities of the 2nd workshop on
“Object-Oriented Language Engineering for the Post-Java Era”. We de-
scribe the motivation that led to the organisation of a second edition of
the workshop. Relevant organisational aspects are mentioned. The main
part of the report consists of a summary of Dave Thomas’s invited talk,
and a recount of the presentations by the authors of position papers.
Comments given along the way by the participants are included. Finally,
some pointers to related work and events are given.

1 Introduction

As stated in the workshop’s first edition, the advent of Java has always been
perceived as a major breakthrough in the realm of object-oriented languages.
And to some extent it was: it turned academic features like interfaces, garbage-
collection and meta-programming into technologies generally accepted by indus-
try. Nevertheless Java also acted as a brake especially to academic language de-
sign research. Whereas pre-Java ECOOP’s and OOPSLA’s traditionally featured
several tracks with a plethora of research results in language design, more recent
versions of these conferences show far less of these. Those results that do make
it to the proceedings very often are formulated as extensions of Java. Hence,
they necessarily follow the Java doctrine: statically typed, single-inheritance,
class-based languages with interfaces and exception handling.

Recent academic developments seem to indicate that a new generation of
application domains is emerging for whose development the languages adhering
to this doctrine will probably no longer be sufficient. These application domains

� The title of this report should be referenced as “Report from the ECOOP 2004 2nd

Workshop on Object-Oriented Language Engineering for the Post-Java Era: Back to
Dynamicity”.

J. Malenfant and B.M. Østvold (Eds.): ECOOP 2004, LNCS 3344, pp. 49–61, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

50 S. González et al.

have recently been grouped together under the name of Ambient Intelligence
(AmI). The visionary idea of AmI is that in the future, everybody will be sur-
rounded by a dynamically defined processor cloud of which the applications are
expected to cooperate smoothly. AmI was put forward as one of the major strate-
gic research themes by the IST Advisory Group of the European Commission
for the financing structure of the 6th Framework of the European Union [1, 2].
Meanwhile, the first European symposium on AmI has recently been organised
and institutions like the MIT and Phillips have published their visions on the
matter. Currently, AmI seems to group previously “unrelated” fields such as
context dependency, domotics, ubiquitous/pervasive computing, mobility, intel-
ligent buildings and wearable hardware. Early experiments in these fields already
seem to indicate that their full development will need a new generation of pro-
gramming languages that have dedicated provisions to deal with highly dynamic
hardware and software constellations. As such, AmI will open up a new “market”
for a new generation of programming languages which are designed to write soft-
ware that is expected to operate in extremely dynamic hardware and software
configurations.

The big success of the workshop’s first edition at ECOOP 2003 [3] confirmed
the feeling that many researchers in the object-oriented community are still in-
terested in object-oriented language design, and moreover, many are interested
in languages that move away from Java’s main design lines. The goal of this
second edition of the workshop was to address object-oriented languages that
diverge from Java’s doctrine but support a much more dynamic way of con-
structing software. In the near future, this dynamicity will be required in order
to construct software that is highly context-dependent due to the mobility of
both the software itself and its users, as is the case in AmI. There is a new
future for languages based on Lisp, CLOS, Scheme, Self, Smalltalk and loads of
less well-known academic languages. This new generation of programming lan-
guages will exhibit a mix of new and old ideas. Many position papers submitted
to the workshop support this view.

2 Organisation

This section summarises some organisative aspects of the workshop and gives
information about attendance.

The submitted position papers, the invited talk slides, and complementary
information about the workshop can be found at the workshop website:
http://prog.vub.ac.be/∼wdmeuter/PostJava04/

2.1 Call for Contributions

The call for contributions invited researchers to submit a position paper or an es-
say (6 pages maximum) about new language features or about existing ones that
cover solutions to problems that are currently getting relevant in mainstream
languages. Provocative and visionary contributions were especially encouraged.

2nd Workshop on Object-Oriented Language Engineering 51

Dynamicity as required by the AmI vision was selected as the common theme
of the workshop, i.e. a new context in which we can talk about the object-oriented
language features of the future. Hence the “Back to Dynamicity” part in the
workshop’s title. Topics of interest were formulated as follows:

– agent languages,
– distributed languages,
– actors, active objects,
– delegation,
– mixins,
– prototypes,
– multi-paradigm programming,
– meta-programming and reflection,
– mobile languages,
– (distributed/mobile) virtual machines,
– other exotic dynamic features which could be categorised as OO.

2.2 Organisers

Wolfgang De Meuter
wdmeuter@vub.ac.be

Pascal Costanza
costanza@web.de

Stéphane Ducasse
ducasse@iam.unibe.ch

Richard Gabriel
rpg@dreamsongs.com

Theo D’Hondt
tjdhondt@vub.ac.be

The affiliations of the organisers are mentioned in the title of this report.

The organisers asked the first author to write this report (even though he is
not an organiser himself), since he played the role of reporter of the workshop.
The cooperation was natural given that the workshop proposal was actually a
merge of two earlier proposals, one of which was co-submitted by the first author.

2.3 Format

The workshop started with an invited talk by Dave Thomas (see section 3.1).
The presentation of each position paper followed, in 30-minute slots including
questions. The more “technical” papers were first in the lineup. The more “philo-
sophical” papers were presented after lunch. A plenary discussion session was
held afterwards, and the workshop finished with a short wrap-up / evaluation
part.

2.4 Attendance

A total of 9 position papers were received. PDF files can be found at the work-
shop website (see section 4). Of those 9 submissions, 7 authors attended the
workshop. Other 13 attendees were present for a total of 20 people:

1. Christopher Anderson, Imperial College London – UK
2. Marie Beurton-Aimar, University of Bordeaux – France

52 S. González et al.

3. Ilia Bider, Ibisoft – Sweden
4. Alex Buckley, Imperial College London – UK
5. Raphaël Collet, UCL – Belgium
6. Marc Conrad, University of Luton – UK
7. Pascal Costanza, University of Bonn – Germany
8. Wolfgang De Meuter, VUB – Belgium
9. Theo D’Hondt, VUB – Belgium

10. Jean-François Gélinas, UQTR – Canada
11. Sebastián González, UCL – Belgium
12. Christian Heinlein, University of Ulm – Germany
13. Jonne Itkonen, University of Jyväskylä – Finland
14. Erik Meijer, Microsoft – USA
15. Sven-Olof Nyström, Uppsala University – Sweden
16. Maximilian Störzer, University of Passau – Germany
17. Eric Tanter, University of Chile – Chile
18. Dave Thomas, Bedarra Research Labs – Canada
19. Richard Torkar, BTH – Sweden
20. Jianguo Zhou, University of Leicester – UK

3 Presentations

This section accounts for the workshop presentations. Two main lines were ob-
served in the contributions this year: concurrency and dynamic system adaption.
Some position papers were in one extreme (e.g. concurrency in Erlang) or in the
other (e.g. object shadowing), but most of them are influenced by both forces.
An approximate classification of the presentations (including Dave Thomas’s
invited talk) could be:

Concurrency Concurrency in Erlang (section 3.3)
��

��

Laziness and Declarative Concurrency (section 3.2)
First Class Execution (section 3.1)

Who is Agent: Object or Relation? (section 3.8)
APPLE (section 3.4)

Failure of Class-Based Languages (section 3.7)
Dynamic vs. Static Typing (section 3.6)

Dynamic system adaption Object Shadowing (section 3.5)

In the reminder of this section, we hope to give a complementary view of the
position papers by describing the presentations rather than the papers them-
selves. The highlights of the discussions by the participants are marked with a
[Discussion]. label so that they can be easily spotted, although we don’t aim
at covering each and every nit. The presentation order here is the same as in the
workshop.

2nd Workshop on Object-Oriented Language Engineering 53

3.1 Invited Talk: First Class Execution – Messages and Actors
Dave Thomas and Brian Barry, Bedarra Research Labs

In his invited talk, Dave Thomas advocated the reification of messages in object-
based programming languages. Current commercial OO languages lack support
for first class execution (unlike Beta, ABCL etc.). One symptom is that messages
have no meta-messages, while classes do have meta-classes. A second one is
that message dispatch (evaluation) is usually “hidden”, i.e. performed using
internal machinery hidden in the compiler or virtual machine. Ideally, messages
should have first class status. Many applications are considerably simpler if the
viewed from the perspective of the message rather than the object/process. This
message-centric view, baptised Message-Oriented Programming by Dave Thomas
[4], is aligned with the ideas presented by Ilia Bider (see section 3.8).

Method dispatch can be abstractly defined in message-oriented programming
as: eval(message, args, sender, receiver), where the sending and receiving objects
are explicit parameters to the message evaluation in addition to the arguments. A
quick comparison shows the differences with two other fundamental approaches:

– Scheme: given the function (method) find the environment.
– Smalltalk: given the environment, find the function (method).
– Message-oriented programming: given the message determine the function

(method), knowing the message definition and the value of the sender (en-
vironment) and the receiver (environment).

Message-oriented programming is one part of a broader view on how to struc-
ture Service Oriented Architectures (SOAs) [5]. The coordination of services
(nowadays web services) has proved to be difficult using petri nets or state ma-
chines. Dave Thomas turned attention to Carl Hewitt’s actor model [6] to tackle
this problem. Actors are autonomous and concurrent objects that communicate
asynchronously and are intended to be a model of an intelligent person. When an
actor receives a message, it executes according to its script and communicates
with a well-defined and finite set of other known actors. Actors allow one to
model computations as an organisation of communicating active objects and to
apply anthropomorphic roles such as Workers, Coordinators, Managers, Couri-
ers, Notifiers, or more application-specific ones like PulseCourier, RadarTrack,
TrackManager. Hence, workflow in the system mimics real-world workflow. This
Anthropomorphic Programming approach allows business processes to be ex-
pressed using common organisational design principles.

Anthropomorphic programming was used for process structuring in the Har-
mony operating system: tasks are assigned personified roles such as the already
mentioned Servers, Administrators, Workers, Couriers, Notifiers, etc. Each of
these roles has well known pre-defined semantics. Servers must be responsive, so
they delegate most of the work. Processes spend most of their life in a “receive
any” loop, while Workers do most computations. The Administrator helps or-
ganise this. All these tasks are very lightweight (in Harmony, tasks = processes
= threads). Harmony is a message-based operating system, with a simple set
of primitives: Blocking Send, Blocking Receive, Reply, Create, Terminate and
special forms for Non-Blocking Receive and Interrupts.

54 S. González et al.

Harmony was used as a foundation for the Actra project. Actra sought to
show how far Smalltalk could be used in the development of complex embedded
applications. The Actra project combined Smalltalk, actors and multiprocessors.
An actor encapsulates cooperating passive (non-actor) objects. Actors synchro-
nize and communicate by sending messages. Actors execute in pseudo parallel on
a single processor and in parallel on multiple processors. Actors have the gran-
ularity of lightweight processes (threads/tasks). There are uniform semantics
for remote/local processes and these processes have a well defined life cycle. In
Actra, programmers create their own application-specific actors by specialising
the generic ones. The complete taxonomy of known actors, some generic, many
more application specific, creates a vocabulary that populates the programming
model and defines its semantics.

[Discussion]. One participant asked why Smalltalk is not considered to have
first-class messages, given that the doesNotUnderstand: message can be over-
ridden to get an instance of the Message class. This was considered a hack by
Thomas, rather than a true first-class mechanism. Apart from this, the sender
of the message is not available, unless a complex inspection of the runtime stack
is performed.

3.2 Laziness and Declarative Concurrency
Raphaël Collet, Université catholique de Louvain (Belgium),
raph@info.ucl.ac.be

Raphäel Collet presented an extension of the concurrent declarative framework
of the Oz language with by-need synchronisation. Oz has a store consisting of
constraints over logic variables. There are two operations, ask and tell. Telling
a constraint simply adds it to the store. Asking a constraint makes the thread
wait until the store can logically infer it or its negation.

Programming a demand-driven computation in a dataflow concurrent lan-
guage is easy. The computation is put in a thread and is suspended until another
thread manifests its need for the result. The way of manifesting the need is by
telling need(x) to the store, where x is the variable. This constraint does not
restrict the possible value of x. In this way dataflow synchronisation of multiple
threads is achieved.

3.3 Concurrency in Java and Erlang
Sven-Olof Nyström, Uppsala University (Sweden), svenolof@csd.uu.se

Java’s threads are rather nicely integrated with the class system. Unfortunately,
the implementations use the threads of the underlying operating system, which
means that threads are expensive. Many operating systems only allow a very
restricted (a few hundred) number of threads. What is even worse is that the
behavior of threads depends on the operating system, so that a Java program
written for one OS might not work when run on an other OS. The use of OS
threads is discouraged by the Erlang designers.

In contrast, all Erlang processes under a specific node share the same OS-
process. An Erlang process is a data structure, containing a stack, a heap and a

2nd Workshop on Object-Oriented Language Engineering 55

program counter. The stack and the heap are small at creation, and allowed to
grow when necessary, so the minimum size of a process is a few hundred bytes.
Erlang can easily support thousands of threads.

[Discussion]. An operating system based on Erlang could be developed, given
its reliability and concurrent design.

3.4 APPLE: Advanced Procedural Programming Language
Elements
Christian Heinlein, University of Ulm (Germany),
heinlein@informatik.uni-ulm.de

Christian Heinlein started by observing that current programming languages, in
particular aspect-oriented languages such as AspectJ, are considerably complex,
in contrast with traditional procedural languages, such as Pascal or C, which
provided just two basic building blocks: data structures and procedures. The
gain in complexity is not reflected proportionally in the gain of expressive power.

He pointed out that there are many features in aspect-oriented languages
which could be dropped from the kernel of these languages and implemented
in terms of other features. After many conceptual reductions, he argues that
“around advice” (i.e. the possibility to freely override an existing procedure,
either with completely new code or with code that augments the original code)
remains as one of the few essential (i.e. really necessary) mechanisms.

His position was to go back to the starting point of procedural programming
languages and extend them in a different direction, not leading to OO or AOP
programming, but to “advanced procedural languages” which are significantly
simpler than aspect-oriented languages while offering comparable expressiveness
and flexibility.

Three points are the key:

1. Replacing statically bound procedures with dynamically overridable pro-
cedures (roughly comparable to around advice) covers the whole range of
dynamic dispatch strategies usually found in object-oriented languages. Dy-
namic procedures remain a single, well-defined concept, hardly more complex
than traditional procedures.

2. Replacing record types having a fixed set of fields with modularly exten-
sible “open types” and “attributes” (roughly comparable to empty classes
extended by inter-type field declarations) covers a wide range of (practically
all) OO abstractions. Again, open types constitute a single, well-defined con-
cept which is little more complex than traditional record types.

3. Preserving (resp. (re-)introducing) the module concept of modern proce-
dural languages with clearly defined import/export interfaces and a strict
separation of module definitions and implementations, provides support for
encapsulation and information hiding.

Instances of open types differ from instances of classes in object-oriented
languages such as Java or C++ in two ways. First, their set of attributes is
dynamic, again in two ways: because the attributes of a particular type can be

56 S. González et al.

defined in different modules, the set of all attributes is unknown when compiling
a single module. Furthermore, since modules containing attribute definitions
might be loaded dynamically at run time, the set of all attributes belonging to
a type is even unknown at link or program start time. If an attribute is accessed
that is not present yet, a well-defined null value is returned for read accesses,
while a new attribute/value pair is added for write accesses. Second, the dynamic
type of an object, which is equal to its static type immediately after creation,
can be changed at run time.

Because procedures are not directly associated with types or objects, such
manipulations cannot lead to “message not understood” or other run time type
errors, i.e., the system remains statically type-safe.

[Discussion]. If a dynamic procedure is overridden in different modules, the
linear “module order” that is uniquely determined by the modules’ import rela-
tionships, determines the order of the procedure redefinitions.

[Discussion]. Dynamic procedures solve the well-known “expression problem”
(it is hard to add both new types and new operations to an existing type hi-
erarchy) in a simple and straightforward manner – so simple that some of the
participants found it hard to believe.

3.5 Object Shadowing – A Key Concept for a Modern
Programming Language
Marc Conrad, Tim French, and Carsten Maple, University of Luton
(UK), {marc.conrad, tim.french, carsten.maple}@luton.ac.uk

Shadow objects mask one or more methods in a target object (the “shadowed”
object). A shadow is applied at run-time rather than compile-time, in response
to dynamic needs. Every message sent to the shadowed object is processed by
the shadow, if the shadow defines it, or otherwise it is passed to the shadowed
object as if there were no shadow in between. More characteristics of the shadow
mechanism are described in the position paper. The shadow mechanism has for
long been available in LPC (a highly pragmatic language used for text based
computer games, see http://wwwlysator.liu.se/mud/lpc.html) but has not been
evaluated academically so far.

Marc Conrad presented possible application areas for this mechanism:

1. Deprecated Methods: a shadow system could help the developer of a library
to separate an object into two parts. The actual, official version of the ob-
ject where the deprecated methods have been removed and a collection of
shadows that implement deprecated methods. The shadows avoid breaking
existing (legacy) clients.

2. Prototyping: a shadow could be used to adapt the behaviour of objects in
a library, in situations where the objects cannot be directly manipulated
because the library has been bought from an external supplier or because of
copyright issues.

3. Reclassification: reclassification and a special case of it, dynamic inheritance,
is the process of changing the class of an object at run-time. The main goal

2nd Workshop on Object-Oriented Language Engineering 57

in reclassification is to modify the behaviour of an object. This could be
achieved by the application of a shadow to the object. For example a player
having a temporal “frog shadow” might change its nature by replacing it
with a “prince shadow” (but it remains a player).

4. Interclassing: the basic principle in interclassing is the insertion of a new
class in an existing inheritance hierarchy. Suppose an existing hierarchy has
Parallelogram as a parent of Square, and that Rectangle is introduced
as a specialization of Parallelogram. Now, Square should inherit from
Rectangle, and to this end, one could shadow Square with a SquareShadow,
which inherits from Rectangle. All the clients of Square will now see the
behaviour of Rectangle, even if Square itself is not modified.

5. Inheritance and Specialization: A shadow could even be used to emulate
inheritance. In particular, a programming language that has shadows as a
first class feature and derives inheritance as a special application of shadows
can be envisioned. However the presenter expressed fears that this particular
idea may be too wild and not relevant for any practical implementation.

At the end of his talk Marc Conrad raised the (provocative) question, why
such a useful feature is not available in mainstream languages?

[Discussion]. It was pointed out that the last feature, emulation of inheritance
by shadows (the feature that has been considered as too esoteric by the presen-
ter), could be the most useful, as it would allow the implementation of different
roles that an object may have during its lifetime.

[Discussion]. The class java.lang.reflect.Proxy of Java may serve a similar
purpose as a shadow but it was pointed out that this Java class works only for
interfaces and cannot shadow classes or objects.

There was some agreement in the audience that shadows may be a useful
feature and the question why it is not available in mainstream language is valid.

3.6 Dynamic Versus Static Typing – A Pattern-Based Analysis
Pascal Costanza, Universität Bonn (Germany), costanza@web.de

The main point Pascal Costanza made is that statically typed languages some-
times force solutions which in dynamic typed languages could be expressed more
naturally or are even available by default. Furthermore, statically-typed lan-
guages introduce new sources of potential bugs, contrary to conventionally per-
ceived wisdom. He presented three examples of these situations, in the form
of patterns. Java was chosen as a representative example of a statically typed
language. The three examples shown were the following:

Statically Checked Implementation of Interfaces. When implementing an
interface in Java, usually the programmer “fills in” the required methods with
dummy bodies (e.g. which simply return null, 0 or false), so that the program
compiles. Clean compilation is needed for incremental development of the class.
The problem with these dummy implementations is that they are a potential
bug which might be hard to find later on. The solution is to throw dynamically

58 S. González et al.

checked exceptions indicating that the involved methods are currently not im-
plemented, instead of providing a dummy implementation, as in the following
example:

public class FileCharSequence implements CharSequence {
public FileCharSequence() {...}
public char charAt(int index) {...}
public int length() {...}
public CharSequence subSequence(int start, int end) {

throw new UnsupportedOperationException
("FileCharSequence.subSequence not implemented yet.");

}
}

But the main point is, dynamically typed languages do exactly this by default:
the sending of a message which is not implemented will raise an exception, à la
Smalltalk’s “message not understood”.

[Discussion]. The problem could be seen as an IDE support issue rather than
a programming language flaw: for example in Eclipse, one can configure the IDE
so that code similar to the above is generated automatically. But by default,
Eclipse generates dummy code.

Statically Checked Exceptions. This issue is better explained with an exam-
ple. Assume that a class performs some heavy computations based on statistical
data. It should be possible to deploy this class by itself, in which case the data
is read from a local file, or else it will fetch the data from a remote file via
an RMI service. In the latter case, this class needs to deal with the statically
checked RMI exceptions. The problem is that declaring RMI exceptions is not
appropriate to the abstraction provided by the statistical class.

The solution is to use dynamically checked exceptions. They are passed on
by any code without the need to even mention the exceptions. A class only needs
to explicitly deal with exceptions it is concerned with. The point in favour of
dynamically typed languages with exception handling mechanisms, is that they
have this functionality by default.

[Discussion]. In the case of Java, the RMI exception can be wrapped with a
RuntimeException so that the exception declaration can be omitted.

Checking Feature Availability. Checking if a resource provides a specific
feature and actually using that feature should be an atomic step in the face of
multiple access paths to that resource. Otherwise, that feature might get lost in
between the check and the actual use. Example:

System.out.println("Name: " + person.getName());
if (person instanceof Employee) {

System.out.println("Employer: " +
((Employee)person).getEmployer().getName();

}

2nd Workshop on Object-Oriented Language Engineering 59

If the value of persons is changed by another thread between the type check
and the type cast, an exception will be raised. Static typing promotes the notion
that the availability of a particular feature should be checked before it is actually
used. For example, fields and methods can be regarded as features of classes.

The solution is to make the check and the use an atomic step:

System.out.println("Name: " + dilbert.getName());
try {

System.out.println("Employer: " +
((Employee)dilbert).getEmployer().getName();

} catch (ClassCastException e) {
// do nothing

}

The point in this example is, dynamically typed languages throw “message
not understood” errors by default. One only has to catch them instead of Class-
CastException. Apart from that difference, the resulting behavior is the same.

[Discussion]. Some found that this problem is related to concurrent execution
and is not inherent to static typing.

3.7 The Unavoidable Failure of Class-Based Languages in the
Processor Cloud Era
Sebastián González, Wolfgang De Meuter, Kim Mens, Theo D’Hondt,
Université catholique de Louvain (Belgium) and Vrije Universiteit
Brussel (Belgium), {sgm, kim.mens}@info.ucl.ac.be, {wdmeuter,
tjdhondt}@vub.ac.be

The point made by this presentation was that class-based languages are not
adequate for the programming of the so-called “processor clouds”, i.e. ad-hoc
mobile networks of wirelessly interconnected computers where nodes can enter
and leave the network at any moment, for instance if a user enters or leaves
a certain building. The use of object-based languages without the concept of
class are advocated as a good alternative. The main problem with classes is that
they are a universal, stateful resource sharing mechanism, which is a bad com-
bination of ingredients for open distribution (processor clouds). For example, a
node containing the same class as another node may appear in the network, but
with a different value for a class variable or a different method implementation;
this is an unsolvable conflict since none of the two versions is the “right” one.
Other problems with classes mentioned were the fact that classes grow monotoni-
cally, getting deprecated methods, which waste resources (storage space, network
bandwidth) in a context where resources are scarce: mobile computing. Another
problem is that idiosyncratic behaviour is even more important in mobile com-
puting, which is harmed by the usage of classes. A last problem was mentioned:
upon sending a message to a node, a class and its superclass(es) need to be sent
along, and if the language is statically typed, argument-type, result-type and
exception-type classes need to be sent also.

60 S. González et al.

3.8 Who Is Agent: Object or Relation?
By Ilia Bider, IbisSoft (Sweden), ilia@ibissoft.se

Starting from the observation that any object-oriented system can be consid-
ered as consisting of objects and relations between them, Ilia Bider proposed a
rather different perspective for the role these objects and relations play. In his
programming model, the centre of attention is on the relations. This contrasts
with traditional OO programming where attention is mainly put on objects, and
relations are usually simple pointers. In the new perspective, while objects are
passive, relations are active. The relations or connectors represent laws which
are to be maintained throughout the system. Whenever the state of an object
changes (e.g. because of an external user action), the relations connected to that
object are verified. If necessary, these relations change the state of other con-
nected objects in order to bring the system back to an acceptable state. Changes
are propagated in this way through object networks. The relations are perceived
as the “agents” in the system: the active elements which perform computation
and evolve its state. This motivates the title of his position paper.

The described object-connector model is proposed as a method of distributed
programming. The whole system is expressed in terms of local laws, with commu-
nication and execution control being automatically provided by the environment.

[Discussion]. The workshop participants found the programming model quite
different from what they are used to in standard OO programming. No flaws or
problems were pointed out.

4 Related Work

The submitted position papers, Dave Thomas’s slides, and complementary in-
formation about the workshop can be found at the workshop website:
http://prog.vub.ac.be/∼wdmeuter/PostJava04/
The website for the previous edition of the workshop is located at:
http://prog.vub.ac.be/∼wdmeuter/PostJava/
And there is already a followup event planned at OOPSLA 2004, the 1st Work-
shop on the Revival of Dynamic Languages:
http://pico.vub.ac.be/∼wdmeuter/RDL04/index.html

This workshop was inspired by Richard Gabriel’s Feyerabend events at past
OOPSLAs and ECOOPs. The home page of the Feyerabend Project is located at:
http://www.dreamsongs.com/Feyerabend/Feyerabend.html

References

1. Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J.C.: Sce-
narios for ambient intelligence in 2010. Technical report, EC Information Sco-
ciety Technologies Advisory Group (ISTAG) (2001) Available [2004-07-12] at
http://www.cordis.lu/ist/istag-reports.htm.

2nd Workshop on Object-Oriented Language Engineering 61

2. Shadbolt, N.: Ambient intelligence. IEEE Intelligent Systems 18 (2003) 2–3
3. De Meuter, W., Ducasse, S., D’Hondt, T., Madsen, O.L.: Object-oriented language

engineering for the post-java era. In Buschmann, F., Buchmann, A.P., Cilia, M.,
eds.: Object-Oriented Technology: ECOOP 2003 Workshop Reader. Volume 3013.,
Springer-Verlag (2004)

4. Thomas, D.: Message oriented programming. Journal of Object Technology 3 (2004)
7–12 Available [2004-07-12] at http://www.jot.fm/issues/issue 2004 05/column1.

5. Thomas, D., Barry, B.: Using active objects for structuring service oriented ar-
chitectures. Journal of Object Technology 3 (2004) 7–14 Available [2004-07-12] at
http://www.jot.fm/issues/issue 2004 07/column1.

6. Hewitt, C.E.: Viewing control structures as patterns of passing messages. Journal
of Artificial Intelligence 8 (1977) 323–364

Philosophy, Ontology, and Information Systems�

Petra Becker-Pechau1, Pierre Grenon2, Mark Lycett3, Chris Partridge3,
Jörg Pechau4, and Dirk Siebert2

1 Hamburg University, Fachbereich Informatik, Software Engineering Group,
Vogt-Kölln-Straße 30, 22527 Hamburg, Germany,

becker@informatik.uni-hamburg.de
2 IFOMIS, University of Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany,

{pierre.grenon|dirk.siebert}@ifomis.uni-leipzig.de
3 Department of Information Systems and Computing, Brunel University, Uxbridge,

Middlesex, UB8 3PH, United Kingdom,
{mark.lycett|chris.partridge}@brunel.ac.uk

4 CoreMedia AG, Ludwig-Erhard-Straße 18, 20459 Hamburg, Germany
joerg.pechau@coremedia.com

Abstract. The workshop aimed at providing a forum to discuss the use
of philosophical ontology in object-oriented information systems. Whilst
ontology is now more widely used in computing circles - knowledge rep-
resentation, system integration, legacy transformation, and the semantic
web for example - initial attempts have been modest in their outcomes.
This is because computing ontology to-date has been used primarily for
(often competing) concept definitions: Pragmatically, ontologies have ei-
ther been developed in an abstract sense (based on some authorative
perspective), or people have taken materials at hand (data models and
the like) and tried to glue them together. A sound basis on which to
properly align different views on aspects of the world in order to work
towards a consistent whole is missing. With this in mind, the workshop
aimed to secure a measure of agreement on:
– What philosophical ontology is,
– How ontology can assist in software development,
– Key obstacles to the deployment of ontology, and
– Possible collaborative efforts among the participants.
Selection of participants was based on short position papers and/or

previously demonstrated interest in related areas of activity.

Participants

The workshop was attended by:

– Naci Akkøk, Department of Informatics, University of Oslo, nacia@ifi.uio.no,
– Petra Becker-Pechau, Fachbereich Informatik, Software Engineering Group,

University of Hamburg, becker@informatik.uni-hamburg.de,

� The title of this report should be referenced as “Report from the ECOOP 2004
Workshop on Philosophy, Ontology, and Information Systems”.

J. Malenfant and B.M. Østvold (Eds.): ECOOP 2004, LNCS 3344, pp. 62–66, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Philosophy, Ontology, and Information Systems 63

– José Maŕia Cavero, Rey Juan Carlos University, jmcavero@escet.urjc.es,
– Yannis Charalabidis, Singular Software SA, yannisx@singular.gr
– Jim Coakes, School of Business, University of Westminster,

j m.coakes@which.net,
– Martin Gladwell, IBM, martin gladwell@uk.ibm.com,
– Mass Soldal Lund, Department of Informatics, University of Oslo,

Mass.S.Lund@sintef.no,
– Mark Lycett, Brunel University, Mark.Lycett@brunel.ac.uk,
– Esperanza Marcos, Rey Juan Carlos University, emarcos@escet.urjc.es,
– Palle Nowack, Maersk Institute, University of Southern Denmark,

nowack@mip.sdu.dk,
– Chris Partridge, Brunel University Chris.Partridge@42objects.com,
– Jörg Pechau, CoreMedia AG, joerg.pechau@coremedia.com,
– Jan Pettersen Nytun, Faculty of Engineering, Agder University College,

Jan.P.Nytun@hia.no,
– Andreas Prinz, Department of Informatics, University of Oslo,

Andreas.Prinz@hia.no,
– Dirk Siebert, Institute for Formal Ontology and Medical Information Science,

University of Leipzig, Dirk.Siebert@ifomis.uni-leipzig.de,
– Mircea Trofin, School of Electronic Engineering, Dublin City University,

Mircea.Trofin@eeng.dcu.ie

Summary

Chris Partridge set the scene for the workshop. A sequence of individual presen-
tations and ensuing discussions consumed most of the workshop’s time. In the
wrap-up we noted:

– Agreement
• Philosophical ontology is applicable to information systems. Therefore

more than 2000 years’ worth of ontological research in philosophy should
actually be leveraged.

• There are different views on philosophical ontology, though. But given
the state of the art - the differences are of minor importance right now.

• Metaphysical choices
∗ Explicitly to be made
∗ Consequenses and implications can and should be made clear.

• What is (an) O/ontology?
• Deployability needs to be solved.
• Sophistication is important to manage quality and complexity.
• Different views / concerns / aspects can in general be handled in a single

ontology - there might be exceptions.
– Disagreement

• Realism / anti-realism resp. discovery / design.

64 P. Becker-Pechau et al.

– Open issues
• Is there only one ontology?

∗ Depends on metaphysical choices (to be) made.
∗ Design choices (short term gains)

• How to reap the benefits?
• People issues:

∗ How to bring people up to speed?
– Query-ability of ontologies
– What is the role of representation in the discussion of ontology? How formal

does philosophical ontology need to be?

Literature

– Partridge, Chris: Introduction to the Workshop,
http://www.ifomis.uni-leipzig.de/Events/ECOOP/2004/
WS PhilosophyOntologyInformationSystems/papers/Partridge.pdf

– Accepted papers:
• Cavero, Jos Mara , Esperanza Marcos: A Schematical View of the On-

tologies Concept,
http://www.ifomis.uni-leipzig.de/Events/ECOOP/2004/
WS PhilosophyOntologyInformationSystems/papers/CaveroMarcos.pdf

• Coakes, J. M., D. Rosenberg: Bringing IS Ontologies Closer to the Real
World,
http://www.ifomis.uni-leipzig.de/Events/ECOOP/2004/
WS PhilosophyOntologyInformationSystems/papers/
CoakesRosenberg.pdf

• Martin N. Gladwell: Position Paper on Philosophy, Ontology and Infor-
mation Systems,
http://www.ifomis.uni-leipzig.de/Events/ECOOP/2004/
WS PhilosophyOntologyInformationSystems/papers/Gladwell.pdf

• Nowack, Palle: Conceptual Modeling for Ubiquitous Systems,
http://www.ifomis.uni-leipzig.de/Events/ECOOP/2004/
WS PhilosophyOntologyInformationSystems/papers/Nowack.pdf

• Nytun, Jan Pettersen, Andreas Prinz: Metalevel Representation and
Philosophical Ontology,
http://www.ifomis.uni-leipzig.de/Events/ECOOP/2004/
WS PhilosophyOntologyInformationSystems/papers/NytunPrinz.pdf

• Schneider, Luc: Foundational Ontologies and the Realist Bias, http://ceur-
ws.org/Vol-94/ki03rao schneider.pdf

– Late submission:
• Akkøk, Naci: Proliferation of Ontology in Software Engineering and its

Consequences
http://www.ifomis.uni-leipzig.de/Events/ECOOP/2004/
WS PhilosophyOntologyInformationSystems/papers/Akkok.pdf

Philosophy, Ontology, and Information Systems 65

– Suggested reading:
• The following papers shed light on different aspects of workshop topics:

∗ Smith, Barry, Werner Ceusters: Towards Industrial-Strength Philos-
ophy. [Introduces ontology in philosophy and medical information
science.]
http://ontology.buffalo.edu/medo/tisp.pdf

∗ Partridge, Chris: Note: A Couple of Meta-Ontological Choices for
Ontological Architectures. Padova, The BORO Program, LADSEB
CNR, Italy: 2002. LADSEB-CNR - Technical report 06/02. [Key as-
pects of a philosophical ontology.]
http://www.boroprogram.dsl.pipex.com/ladsebreports/ladseb t r 06-
02.pdf

∗ Partridge, Chris: The Role of Ontology in Integrating Semantically
Heterogeneous Databases. Padova, The BORO Program, LADSEB
CNR, Italy: (2002). LADSEB-CNR - Technical report 05/02. [The
link between inter-operability and philosophical ontology.]
http://www.loa-cnr.it/Papers/ladseb tr05-02.pdf

∗ Daga, Aseem, Sergio de Cesare, Mark Lycett, and Chris Partridge:
An Ontological Approach to Sophisticating Legacy Business Con-
tent. [The importance of sophistication for a philosopical ontology.]
http://www.ifomis.uni-leipzig.de/Events/ECOOP/2004/
WS PhilosophyOntologyInformationSystems/sr/
DagaDeCesareLycettPartridge
AnOntologicalApproachToSophisticatingLegacyBusinessContent.pdf

• These provide deeper insight/background:
∗ Mealy, G. H.: Another Look at Data. Proceeding of AFIPS 1967 Fall

Joint Computer Conference Vol. 31: 1967. [Showing that an interest
in ontology manifested itself at a very early stage.]

∗ Kent, W.: Data and Reality: Basic Assumptions in Data Processing
Reconsidered. North-Holland, Amsterdam, New York: 1978. [Show-
ing that an interest in philosophical questions was also present at an
early stage.]

∗ Grenon, Pierre: Knowledge Management From the Ontological Stand-
point.
http://www.uni-leipzig.de/ pgrenon/Downloads/grenon-wm2003.pdf

∗ Daga, Aseem, Sergio de Cesare, Mark Lycett, and Chris Partridge:
Software Stability: Recovering General Patterns of Business Content.
[Making the connection between software stability and ontology.]
http://www.ifomis.uni-leipzig.de/Events/ECOOP/2004/
WS PhilosophyOntologyInformationSystems/sr/
DagaDeCesareLycettPartridge SoftwareStability.pdf

∗ Partridge, Chris: Business Objects: Re-Engineering for Re-use. But-
terworth Heinemann, Oxford: 1996. [Tying in O-O implementation
with philosophy/ontology.]

66 P. Becker-Pechau et al.

∗ Partridge, Chris: What is Pump Facility PF101? Padova, The BORO
Program, LADSEB CNR, Italy: 2002. LADSEB-CNR - Technical
report 04/02. [An example of the use of philosophical ontology in
the offshore process industry.]
http://www.loa-cnr.it/Papers/ladseb tr04-02.pdf

∗ Smith, Barry: Ontology. [For a more general and much more thor-
ough account than the one provided in ”Towards Industrial-Strength
Philosophy”.]
http://www.ifomis.uni-leipzig.de/Events/ECOOP/2004/
WS PhilosophyOntologyInformationSystems/sr/SmithOntology.pdf

Communication Abstractions for Distributed
Systems�

Antoine Beugnard1, Ludger Fiege2, Robert Filman3, Eric Jul4, Salah Sadou5,
and Eiko Yoneki6

1 ENST-Bretagne, Brest, France
antoine.beugnard@enst-bretagne.fr

2 University of Technology, Darmstadt, Germany
fiege@gkec.tu-darmstadt.de

3 RIACS/NASA Ames Research Center, USA
rfilman@mail.arc.nasa.gov

4 University of Copenhagen, Copenhagen, Denmark
eric@diku.dk

5 Université de Bretagne Sud, Vannes, France
sadou@iu-vannes.fr

6 University of Cambridge, UK
eiko.yoneki@cl.cam.ac.uk

Abstract. Communication is the foundation of many systems. Under-
standing communication is a key to building a better understanding of
the interaction of software entities such as objects, components, and as-
pects. This workshop was an opportunity to exchange points of view
on many facets of communication and interaction. The workshop was
divided in two parts: the first dedicated to the presentation of eight po-
sition papers, and the second to the selection and discussion of three
critical topics in the communication abstraction domain.

1 Introduction

Applications have become increasingly distributed. Distribution complicates sys-
tems building and exacerbates problems such as dealing with failure, and pro-
viding security, quality of service, reliability, and manageability.

System development is eased by abstraction and modeling. How should we
model distributed systems? Distributed systems can be understood as communi-
cating objects. To tackle the problems of building distributed systems, it is useful
to focus on the abstract issues of inter-component communication. Examples of
distributed communication mechanisms include messaging systems, remote pro-
cedure calls, distributed objects, peer-to-peer and publish-and-subscribe. Within
any such paradigm, there are many opportunities for specialized and detailed en-
gineering decisions. While mechanisms such as these are a good foundation for

� The title of this report should be referenced as “Report from the ECOOP 2004
Workshop on Communication Abstractions for Distributed Systems”.

J. Malenfant and B.M. Østvold (Eds.): ECOOP 2004, LNCS 3344, pp. 67–75, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

68 A. Beugnard et al.

dealing with the problems of distribution, there remain many issues about how
to mold these ideas to deal with the problems of real systems.

At the previous ECOOP workshops, we identified some problems (security,
privacy, partial failure, guaranteeing quality of service, run-time evolution, meta-
object protocols, and ordering of events) that are important concerns of any com-
munication abstraction. The goal of this workshop was to contrast and compare
communication abstractions for distributed systems. Participants were asked
to submit a position paper on some aspect of communication abstractions for
distributed systems. To focus the groups discussion, this year we considered
the distributed aerospace information problem, described in the call-for-papers.
Prospective participants were requested to relate their contribution to some facet
of that that problem. The workshop itself consisted of short presentations, dis-
cussion of those presentations, and division into smaller topic study groups.

We received 8 positions papers. All were reviewed by at least two members
of the program committee and 6 were considered bringing an interesting point
of view and deserving a chance to be discussed. We organized the workshop as
follows:

– The morning was dedicated to short, 15 minute presentations of selected pa-
pers. The paper authors entertained questions from the workshop attendees
and provided clarifying responses.

– In the afternoon, we formed two working groups for deeper discussion of
particular issues in communication abstractions. The group reported their
conclusions to the collected workshop at the end of the day. This year, the
chosen topics were “Events” and “Dealing with Errors”

2 Position Papers Abstracts and Discussions

2.1 Communication Abstraction and Verification in Distributed
Scenario Integration [1]

Paper written by Aziz Salah, Rabeb Mizouni and Rachida Dssouli and presented
by A. Salah from the department of C.S. University of Quebec, Montreal (Email:
salah.aziz@uqam.ca)

Successfully modeling and analysing requirements are among the main chal-
lenges to face up when it is time to produce a formal specification for distributed
systems. Scenario approaches are proposed as an alternative to make this pro-
cess easier. They are based on the decomposition of the system behaviour into
intuitive pieces that are distributed scenarios. In this paper, we propose an ap-
proach to detect the unspecified reception errors by the integration of scenarios.
The decision about such property is made possible according to an architectural
communication model, which states the communication abstraction level we are
considering. We synthesize from message sequence char a set of automata, one
per object. Then, we give decision procedure for unspecified reception faults.

Communication Abstractions for Distributed Systems 69

2.2 Realizing Large Scale Distributed Event Style Interactions [2]

Paper written by A Vijay Srinivas, Raghavendra Koti, A Uday Kumar and D
Janakiram and presented by D Janakiram from the Distributed & Object Sys-
tems Lab, Dept. of Computer Science & Engg., Indian Institute of Technology,
Madras, India (Email: fdjram@cs.iitm.ernet.in).

Interactions in distributed object middleware that are based on Remote Pro-
cedure Call (RPC) or Remote Method Invocation (RMI) are fundamentally syn-
chronous in nature. However, asynchronous interactions are better suited for
large scale distributed systems. This paper presents the design and implemen-
tation of an asynchronous event based communication paradigm. Typed events,
fully distributed hierarchical event dispatching as well as causal delivery of events
are the key features that are supported. The paradigm has been realized over
Virat, a wide area shared object space that we have built. Virat uses replica-
tion, caching and distributed services as the main concepts and provides a well
published interface, as well as various relaxed consistency models. This commu-
nication abstraction is especially beneficial to applications such as modernizing
Airspace Systems, where scalable asynchronous event notification is a critical
issue.

2.3 Event Brokering Over Distributed Peer-to-Peer
Environments [3]

Paper written and presented by Eiko Yoneki from University of Cambridge Com-
puterLaboratoryCambridge,UnitedKingdom(Email:eiko.yonekig@cl.cam.ac.uk).

R C C

Sensor Network

R

Internet

Wireless Ad Hoc

MP2P

P2P

R

Fig. 1. Event Broker Grids over P2P and MP2P Networks

Peer-to-peer (P2P) networks offer a promising paradigm for developing effi-
cient distributed systems. Event-based middleware (EBM) is becoming a core
architectural element in such systems. EBM is based on publish/subscribe com-
munication paradigms that became popular providing asynchronous and multi-
point communication. Most distributed EBM contains three main elements: a
producer who publishes events, a consumer who subscribes his interests to the
system, and an event broker with responsibility to deliver the matching events
to the corresponding consumers. The first event-based middleware systems were

70 A. Beugnard et al.

based on the concept of channel or topic communication. In an attempt to over-
come the limitation on subscription declarations, the content-based model has
been introduced, which allows subscribers to use flexible querying languages to
declare their interests with respect to event contents.

There are diverse network environments from Internet-scale P2P systems
to sensor networks. Event broker grids need to communicate over wired P2P
networks, wireless ad hoc networks (WAHN) or even Web services. In WAHN,
the combination of mobile devices and ad-hoc networks are best managed by
the creation of highly dynamic, self-organizing, mobile P2P systems (MP2P).
Mobile hosts continuously change their physical location and establish peering
relationships with each other based on proximity. Asynchronous communication
is essential to support anonymous coordination of communication in such ubiq-
uitous environments. We previously introduced publish/subscribe semantics in
WAHN [4]. Note that when publish/subscribe becomes powerful in WAHN en-
vironments, all the nodes may not be in pure ad hoc topology, and some nodes
must be connected to the Internet backbone or relay nodes from different net-
work environments. For example, a broker node can act as a gateway from sensor
networks operating data aggregation and distributes them to the other mobile
networks based on its contents (see Fig. 1). Broker nodes that offer event correla-
tion services can coordinate data flow efficiently. Thus, the way publish/subscribe
systems can be constructed based on the data contents, which triggers related
chained actions. Unusual events will be detected by the embedded sensors trig-
gering distribution of subsequent events to the entire system.

This paper presents a vision of an event brokering system over mixed P2P
networks in a multi event broker model. In addition, an event condition action
engine will be integrated that is required to perform event correlation services
within brokers. Event correlation service combines the information collected by
individual resources into higher level information or knowledge. Events reflect
the movement and flow of information. Combining event-condition-action-rules,
complex event composition, data aggregation, and detection with event-based
systems will provide a way to construct large distributed systems providing ab-
straction of communication over mixed network environments.

2.4 Homogenization: A Mechanism for Distributed Processing
Across a Local Area Network [5]

Paper written by Mahmud Shahriar Hossain, M. Muztaba Fuad, Debzani Deb,
Kazi Muhammad Najmul Hasan Khan, and Dr. Md. Mahbubul Alam Joarder.
(Email: shahriar-cse@sust.edu)

Distributed processing across a networked environment suffers from unpre-
dictable behavior of speedup due to heterogeneous nature of the hardware and
software in the remote machines. It is challenging to get a better performance
from a distributed system by distributing task in an intelligent manner such that
the heterogeneous nature of the system do not have any effect on the speedup
ratio. This paper introduces homogenization, a technique that distributes and
balances the workload in such a manner that the user gets the highest speedup

Communication Abstractions for Distributed Systems 71

possible from a distributed environment. Along with providing better perfor-
mance, homogenization is totally transparent to the user and requires no inter-
action with the system.

2.5 Modelling a Distributed Network Security Systems Using
Multi-agents Systems Engineering [6]

Paper written by Gustavo A. Santana Torrellas from Instituto Mexicano del
Petrleo Mantenimiento y Perforacin de Pozos (Email: gasantan@imp.mx)

Recent developments have made it possible to interoperate complex business
applications at much lower costs. Application interoperation, along with busi-
ness process reengineering can result in significant savings by eliminating work
created by disconnected business processes due to isolated business applications.
However, we believe much greater productivity benefits can be achieved by fa-
cilitating timely decision-making, utilizing information from multiple entreprise
perspectives. To stay competitive in this current scenario, it is crucial for organi-
zations to react quickly to changing security factors, such as virus attack, active
intrusion, new technologies, and cost of disaster recovery. Such information se-
curity changes often encourage the creation of new security schemas or security
improvements. Accommodating frequent systems information changes requires
a network security system be more flexible than currently prevalent systems.
Consequently, there has recently been an increasing interest in flexible network
security and disaster recovery systems.

2.6 But What If Things Go Wrong? [7]

Paper written and presented by Johan Fabry from Vrije Universiteit Brussel
(Email: Johan.Fabry@vub.ac.be)

Nowadays, building distributed systems is said to be easy: just use one of the
many distribution frameworks out there, and all the hard stuff will be taken care
of for you. However, when we focus on what to do when things go wrong, i.e.
consider partial failure, we see that examples in the literature will either ignore
these kinds of exceptions, or stop the program, which is clearly inadequate.

A generic and useful failure-handling mechanism for distributed systems ex-
ists in the from of transactions, however a significant issue with transactions is
that they may be rolled back by the transaction manager to break deadlocks.
Again, looking at the literature, we see no thorough treatment of this extra
kind of failure, except for the proposal of a number of Advanced Transaction
Mechanisms (ATM) that handle this. A large number of ATMS can be found in
the literature, and two books have been published about the subject. So, while
ATMS exist to solve these problem, we still see no use of them in commercial
systems, even although this is research from the 80s and 90s. Indeed, we cannot
even find the most well-known model: nested transactions, commercially.

It is our position that the problem with ATMS lies in the difficulty for the
application programmer to specify how to use these mechanisms. Given their
nature, an ATMS needs more information about the transaction than a classical

72 A. Beugnard et al.

system. We think that, since letting the developer specify error-handling code is
already troublesome, going the extra mile to use a ATMS is nigh-on impossible.

Therefore, we should support the application programmer when specifying
these advanced transactions. The programmer should reason about this extra
information at a higher level of abstraction, and can specify the required trans-
actional properties at this higher level, e.g. by using a Domain Specific Language.

We have implemented a first prototype tool, outlined at the workshop, as a
first step toward this goal. Notable functionality is the ability to provide generic
deadlock- or exception-handling strategies for a transaction such as simply retry-
ing the transaction. The question to attendees was what generic deadlock- or
exception-handling strategies that are worthwhile to offer the programmer.

Questions and Answers. A first question was how our generic error-handling
strategies interact with possible recovery work already done by the transaction
monitor. The answer is that we do not really see any interaction, we consider
our work more as a ’second line of defense’ for when the transaction monitor
fails to recover.

The remainder of the discussion was more related to the depth of general-
ized error-handling strategies: we can go very deep, e.g. do investigations of the
program history, and apply AI techniques, which is done by NASA. We do not
aim to cover such complex situations, and imagine everything that can possibly
go wrong. Instead we are looking for general and simple ways in which things
get fixed when something goes wrong, and providing programmer abstractions
for these fixes.

3 Discussions

The second part of the workshop was dedicated to discussions and working
groups. After a brainstorming session where attendees suggested several subjects
of discussion, we selected two of them for further exploration: dealing with errors
and event based communication in distributed systems.

3.1 Dealing with Errors

We started with the point that usually, specifications focus on what should hap-
pen and forget, sometimes voluntarily, the description of what to do when things
go wrong! May be because the former is a single description (that obviously can
be complex in itself) while the latter is very, very open.

In an attempt of modelling what is needed to deal with errors we identified
four tasks:

1. Monitoring. It is essential to be able to observe what happens in the system.
Where is this code? Complex architectures are layered, and monitoring code
is probably scattered. Error management has to be taken into account from
the lowest levels to the application level.

Communication Abstractions for Distributed Systems 73

2. Detecting. From the low-level monitoring data, the system must infer bad
risky situations. Perhaps a dedicated language is needed to define theses
unexpected events. A more elaborate error mechanism may also be able
to express the level of risk and urgency of reaction required for particular
situations.

3. Repairing actions. A set of “atomic” corrective actions is needed. For in-
stance: restart, do something & restart, do something & continue, abort, do
something & abort, abort & do something. Any real system will have to deal
with the problem that these actions are themselves subject to errors.

4. Managing. It’s easy to imagine situations where not just a single alarm is
sounded. Overall, alarms and repairs may occur simultaneously, and rules
and mechanisms are needed to arbitrate among them. Rules are required to
set up a hierarchy of decisions when things go worst and worst . . .

This view of the world relies on the existence of stable system states (recovery
checkpoints) that need to be defined and implemented. However, many errors are
not recoverable. This is especially the case for error situations after interactions
with the external world — one can not unprint something from the printer or
convince the user that he or she didn’t really see something on the screen. The
procedure to correct or undo wrong or bad real-world side-effects is often out
of the scope of the software system. It may require legal or social actions when
possible, and sometimes, is completely impossible — all the kings horses and
men can reassemble neither Humpty Dumpty nor an Ariane V rocket.

3.2 Event-Based Communication in Distributed Systems

This workshop has always included papers whose communication abstract was
based on “events.”

Distributed applications usually exist in heterogeneous environments (sys-
tems and/or languages). Middleware serves to mediate communications. Its goal
is to allow various systems and/or languages to share the same communication
protocol. The complexity of the implementation and the use of this common pro-
tocol depend on the choice of the communication mode. In this working group,
we made a comparison between two modes of communication: event-based and
method-based. In object oriented systems, the communication may require the
following element:

Interface: the type of the recipient of the message;
Data Type: the signature of the called method or the type of forwarded infor-

mation;
Identity: recipient’s address.

The following table shows the needs for each of the two selected modes:

Comm. mode Interface Data type Identity
Event-based No Yes No

Method-Based Yes Yes Yes

74 A. Beugnard et al.

We notice that the communication based on event is less demanding. This
implies less dependency between sender and receiver and thus minimizes the
role of the common communication protocol in a heterogeneous environment.
Indeed, whereas a method-based middleware requires common modes of iden-
tification and data representation, an event-based middleware requires only a
common mode of data representation. We think that in the future the event-
based middleware should be generalized.

How Should We Construct Different Communication Types Using
Events? In this section we visit the various types of communication to imagine
their implementation in an event-based system:

Asynchronism: In contrary to method-based communication, event-based com-
munication is naturally asynchronous. Objects send events and react to others.
No bond is necessary between the sent events and the those received.

Synchronism: On the other hand, the event-based communication requires
a mechanism to carry out an equivalent to synchronous calls. An example of
such mechanism would be the acknowledgement of receipt, which is sent by the
receiver at the end of its task. This defines the termination of the event sender’s
waiting . The acknowledgement of receipt is an event which contains an identifier
provided first by the event sender.

Transaction: In this mode of communication, the receiver must deal with a
complete succession of calls and respect its order. This mechanism may be pro-
duced by the concept of composite events. A composite event is a structured set
of events (a list for example). The structure defines the transaction’s order.

Call with Return: As in the case of synchronous calls, to carry out calls with
return, it will be necessary to add an identifier to the event in order to associate
it with the event representing its result.

Broadcast: Broadcast corresponds to the sending of public events. Any object
interested by those events can react.

Multicast/Unicast: This mechanism requires the concept of private event. In
the case of method-based calls, it is often the sender object which determines the
subset of the concerned objects by its call. To approach this mechanism, we can
imagine to add, to the event management system, the concept of filters. On one
side the sender gives a filter with its event and on the other side, the receivers
can choose filters during the subscribe to a type of events.

How Does This Help? The principal characteristic of the event-based systems
is the decoupling between the objects participating in the communication. This
characteristic facilitates the implementation of mobile computing and the peer-
to-peer network environments. There is a series of workshops on the topic of
distributed event-based systems and the last one is co-localized with ICSE’04
(http://serl.cs.colorado.edu/ carzanig/debs04/).

Communication Abstractions for Distributed Systems 75

4 Workshop Conclusions

A primary goal of this workshop is to enable the sharing of concepts and tech-
nologies among various communities. It is clear to us that a critical element for
this goal is creating a shared understanding and categorization of communication
mechanisms. This is a long-term goal. In this year’s workshop, we have made
progress on clarifying the nature of event-based communication, and, more inno-
vatively for this workshop series, began to address the issue of dealing with errors
in communications. This latter issue is clearly critical to the development of real
systems and argues for the development of the right abstractions to support that
real system development.

All previous workshop position papers are available via the CADS wiki site
http://wiki.enstb.org/cads/.

References

[1] Aziz Salah, Rabeb Mizouni, and Rachida Dssouli: Communication abstraction and
verification in distributed scenario integration.
http://bscw.enst-bretagne.fr/pub/bscw.cgi/0/2237034, July 2004.

[2] A. Vijay Srinivas, Raghavendra Koti, A. Uday Kumar, and D. Janakiram: Realizing
large scale distributed event style interactions.
http://bscw.enst-bretagne.fr/pub/bscw.cgi/0/2237034, July 2004.

[3] Eiko Yoneki: Event brokering over distributed peer-to-peer environments.
http://bscw.enst-bretagne.fr/pub/bscw.cgi/0/2237034, July 2004.

[4] E. Yoneki and J. Bacon: Content-based routing with on-demand multicast. In:
Proc. 23rd ICDCS Workshop - WWAN, March 2004.

[5] Mahmud Shahriar Hossain, M. Muztaba Fuad, Debzani Deb, Kazi Muhammad
Najmul Hasan Khan, and Dr. Md. Mahbubul Alam Joarder: Homogenization: A
mechanism for distributed processing across a local area network.
http://bscw.enst-bretagne.fr/pub/bscw.cgi/0/2237034, July 2004.

[6] Gustavo A. Santana Torrellas: Modelling a distributed network security systems
using multi-agents systems engineering.
http://bscw.enst-bretagne.fr/pub/bscw.cgi/0/2237034, July 2004.

[7] Johan Fabry: But what if things go wrong?
http://bscw.enst-bretagne.fr/pub/bscw.cgi/0/2237034, July 2004.

Formal Techniques for Java-Like Programs
(FTfJP)�

Alessandro Coglio1, Marieke Huisman2,
Joseph R. Kiniry3, Peter Müller4, and Erik Poll3

1 Kestrel Institute, USA
2 INRIA Sophia-Antipolis, France

3 Radboud University Nijmegen, The Netherlands
4 ETH Zürich, Switzerland

Abstract. This report gives an overview of the sixth Workshop on For-
mal Techniques for Java-like Programs at ECOOP 2004. It explains the
motivation for the a workshop and summarises the presentations and
discussions.

1 Introduction

Formal techniques can help one analyse programming languages or individual
programs and precisely describe and verify their properties. Languages such as
Java and C# are interesting targets for the application of formal techniques,
for a variety of reasons: their reasonably clear and standardised semantics, their
type systems play a crucial role in guaranteeing security through type safety,
and their novel paradigm for program deployment, which improves interactivity,
portability and manageability, but also opens new possibilities for abuse and
raises concern about security.

Work on formal techniques and tools for programming and on the formal un-
derpinnings of the programming languages themselves complement each other.
This workshop aims to bring together those people working on the formal under-
pinnings of, and those working on the formal techniques and tools for, program-
ming Java-like languages. The topics covered thus include: language semantics,
type systems, dynamic linking and loading, and specification and verification
techniques.

The workshop was organized by Sophia Drossopoulou (Imperial College)
Gary T. Leavens (Iowa State University), Peter Müller (ETH Zürich), Arnd
Poetzsch-Heffter (Universität Kaiserslautern) and Erik Poll (Radboud Univer-
sity Nijmegen).

The selection of papers was done by a larger program committee, consisting
of Armin Biere (ETH Zürich), John Boyland (University of Wisconsin), Alessan-
dro Coglio (Kestrel Institute), Matthew Dwyer (Kansas State University), Susan

� The title of this report should be referenced as “Report from the ECOOP 2004
Workshop on Formal Techniques for Java-like Programs (FTfJP)”.

J. Malenfant and B.M. Østvold (Eds.): ECOOP 2004, LNCS 3344, pp. 76–83, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Formal Techniques for Java-Like Programs (FTfJP) 77

Eisenbach (Imperial College), Michael Ernst (MIT), Marieke Huisman (INRIA
Sophia-Antipolis), Joe Kiniry (Radboud University Nijmegen), Doug Lea (State
University of New York at Oswego), Peter Müller (ETH Zürich), David Nau-
mann (Stevens Institute of Technology), James Noble (Victoria University of
Wellington), Erik Poll (Radboud University Nijmegen), and Wolfram Schulte
(Microsoft Research).

Twenty-three persons attended this full-day workshop, 18 representing uni-
versities and academic research institutes, and 5 from industry. A complete list
of participants is given at the end of this report. A number of other participants
dropped by for specific presentations, to chat with particular speakers, etc.

2 Overview of the Presented Papers

Twenty position papers were submitted, of which eleven were accepted for pre-
sentation at the workshop. In a way it was disappointing to have such a high
rejection rate for a workshop, but we deliberately chose for accepting fewer pa-
pers to make for a relaxed presentation schedule and allow plenty of time for
discussion.

The position papers submitted were collected in an informal proceedings that
appears as technical report, nr. NIII-R0426, Radboud University Nijmegen1,
2004. This technical report, and the individual position papers, are available on
the web via the FTfJP home page (http://www.cs.ru.nl/~erikpoll/ftfjp).

The topics addressed by the presented papers were:

– type systems for Java-like languages,
– Java implementation and compilation,
– program specification and verification,
– invariants, and
– ownership types.

There are connections between these topics, of course. The papers about type
systems and Java implementation and compilation in a sense all revolve about
the flexibility of Java-like languages, providing subtyping and dynamic class
loading. There are connection between the last three topics. Invariants play a
crucial role in specification and verification for OO languages, and ownership
types are about ensuring encapsulation, which is clearly relevant in specification
and verification, and is of particular importance in dealing with invariants.

3 Typing

The first session of the workshop was about to type systems, either for more
flexible approaches for type checking, separate compilation and linking, or to
provide more expressive type system that allow more code reuse.

1 The University of Nijmegen was renamed Radboud University Nijmegen as of
1 September 2004.

78 A. Coglio et al.

Davide Ancona talked about joint research with Ferruccio Damiani, Sophia
Drossopoulou, and Elena Zucca into maximising the possibilities for separate
compilation. He presented a type system which allows compilation of an individ-
ual class in isolation, i.e. without any information available about other classes.
The (polymorphic) type system infers the minimal assumptions on other classes
needed to guarantee type correct of a class, as a set of constraints on type
variables, allowing separately type-checked classes can be safely linked provided
these assumptions are met. As discussed, this opens up several possibilities for
compilation schemes that support stronger forms of separate compilation and
allow a more selective and lightweight approach to recompilation.

Alex Buckley talked about joint work with Sophia Drossopoulou which took a
further step in the line of research presented in Davide’s talk, namely using type
systems like the one discussed by Davide to allow a more flexible approach to
dynamic linking. Rather than hard-coding type names in bytecode, as in current
dynamic linking schemes for Java or C#, he considered the possibility of leaving
type variables in bytecode, which can then lazily be instantiated to concrete
types only at run time.

Christopher Anderson presented a different strain of work on type systems
than the previous speakers: he was interested in more expressive type systems
that provide programmers with more flexible patterns of code reuse. He presented
The type system of the language Concord, which was joint work with Paul Jolly,
Sophia Drossopoulou, and Klaus Ostermann. This work used a simple form of
dependent types to express relationships between collections of classes called
groups. This resulted in quite some discussion about the relation with other
approaches, notably the use of virtual types in Beta. The main advantage of
Concord over other attempts to use dependent types for similar purposes, notably
Scala (http://scala.epfl.ch/) appears the simplicity of the language, with
allowed of decidability of the type system and soundness to be proved.

4 Java Implementation and Compilation

The work presented by Alessandro Coglio and Neal Glew concerned the use of
formal techniques to improve JVM implementation and Java compilation.

Alessandro Coglio talked about checking access to protected members in
Java, one of the trickiest aspects of enforcing visibility (or access control) in
Java. Indeed, as he had discovered, there are existing JVM implementations
which accept incorrect programs and reject correct ones. He gave a very clear
explanation of the rules involved, and presented an optimal strategy for checking
protected access that demanded the minimal amount of rechecking when new
classes are dynamically loaded. There was quite some discussion about why
checking access to protected members is so tricky in the first place, which could
be traced by to the possibility of subclasses being in different packages.

Neal Glew talked about joint work with Jens Palsberg about method inlining.
Method inlining is a standard optimisation performed by compilers, but it can be
invalidated by later class loading. He presented a framework for reasoning about

Formal Techniques for Java-Like Programs (FTfJP) 79

this, and presented a technique for inlining method invocations that could be
proved sound using this framework. The idea of the technique is that at the
moment of dynamically loading a class, a whole program analysis is done to
inline methods calls in the loaded code if possible (devirtualisation), and to
patch invalidated inlinings in all previously loaded code (revirtualisation).

There was some discussion about the way in which the dynamic class loading,
which caused much of the complications in the topics discussed by Coglio and
Glew, were also the inspiration for much of the work presented in the first session.

5 Invariants

Class invariants play a crucial role in any approach to specification and verifica-
tion for object oriented code.

Cees Pierik talked about joint work with Dave Clark and Frank de Boer,
about a special kind of invariant that seems to play an important role in some
“creational” design patterns for OO programming. In particular, he was inter-
ested in design patterns that control the way in which objects of a certain class
are created, such as the singleton or factory patterns. These invariants belong to
a class rather than an individual object, and could thus be called static rather
than instance invariants thereby quantifying over all objects of a given class.

Andreas Roth talked about joint work with Peter Schmitt in the KeY project
into the possibility of verifying that Java programs satisfy invariants in a mod-
ular way. He began by demonstrating that in the presence of subtyping and
aliasing, “local” verifications that each class satisfies its invariants do not suffice
to guarantee that invariants are never broken. Andreas proposed a notion of
module that would allow sound modular verification of invariants. His solution
involved a notion of ownership, a topic which was further discussed in the last
session of the workshop.

There was some discussion about the surprising fact that, although class
invariants play such a central role in any approach to program specification and
verification for OO languages, the precise meaning of the notion is so tricky. It
clearly remains a very interesting topic for further research. Cees Pierik raised the
possibility of using techniques developed in the concurrency community, more
specifically the rely-guarantee approach, to tackle the problem of reasoning about
invariants dealing with shared state.

6 Specification and Verification

There were two talks involving the specification languages Spec# (for C#) and
JML (for Java) which are related in many ways. Both of these talks were about
the use of method calls in specification, e.g. in pre- and post-conditions, as a
natural and convenient abbreviation mechanism.

Typically, one insists that such methods are pure, meaning they should not
have any side-effects. However, this is a very strong requirements that rules out
many obviously harmless method calls from being used in specifications. Mike

80 A. Coglio et al.

Barnett talked about joint work with David A. Naumann, Wolfram Schulte,
and Qi Sun, about extending the category of methods than can be used in
specifications. He discussed a weaker notion of observationally pure and argued
that methods used in specifications need only be observationally pure rather than
pure. Mike gave some typical examples to show that many non-pure methods
that one would like to use in specifications are indeed observationally pure, so
that this is a very useful notion.

In the subsequent discussion Erik Poll noted that one would like to extend
the category of methods that could be used in specifications even further, in
particular to include the method that came up in the Singleton pattern in Cees
Pierik’s talk earlier, which does have a (clearly harmless) side effect the very
first time it is called.

David Cok talked about his work on extending the program verification tool
ESC/Java2 to support reasoning with specification that contained method calls.
David considered some of the design decisions involved and raised some more
fundamental design decisions about how to reason about the heap in verifying
object oriented languages. This led to some discussion with Rustan Leino about
how this is done in the new Boogie prover. David also expressed some dissatisfac-
tion with the current notion of “purity” in JML, in line with the previous talks.
However, he also noted that the possibility that pure methods can throw excep-
tions causes complications in reasoning about specifications containing method
calls, and suggested that maybe the notion of (observationally) pure should be
strengthened to disallow this.

7 Ownership Types

The last session of the workshop was devoted to ownership type systems, which
continues to be a hot topic both at FTfJP and the main ECOOP conference.

Alex Potanin presented joint work with James Noble, Dave Clarke, and
Robert Biddle. They developed a new type system, OGJ, which combines generic
types and ownership [5]. Their type system supports the full type genericity of
Generic Java as well as parametric ownership. The talk by Potanin focused on
defaulting, a lightweight alternative to type inference. Defaulting allows one to
integrate code that does not have ownership annotations. This approach is cer-
tainly relevant to all researchers in the area of ownership types, in particular,
since type inference for ownership type systems does not yet produce practi-
cally useful results, as remarked by Jonathan Aldrich who was one of the several
special visitors for this session.

Werner Dietl discussed joint work with Peter Müller on how exceptions can be
supported on ownership type systems. He analysed four viable designs (1) cloning
exception objects during propagation; (2) using unique references to transfer ex-
ceptions between contexts during propagation; (3) treating exceptions as global
data; (4) handling exceptions by read-only references that may cross context
boundaries. His presentation lead to an interesting discussion among the partic-
ipants about the design principles of different ownership type systems, contrast-

Formal Techniques for Java-Like Programs (FTfJP) 81

ing parameterised type systems in the tradition of Clarke, Potter, and Noble’s
work [1] and Müller’s more lightweight Universe type system [4].

This session on ownership type systems was effectively continued the next
morning at the main ECOOP conference, where the papers presented in the
first session after the invited talk were also about notions of ownership.

8 Discussion

At the end of the workshop there was some more general discussion about topics
people wanted to raise then and there. The discussion quickly focused about the
pros and cons of typing versus annotations as means of allowing more informa-
tion to be expressed in programs, and possibilities of moving more annotations
into type systems, the latter having the advantage of easier acceptance by pro-
grammers and offering more automation. Rustan Leino talked about efforts of
moving ‘non null’-ness, one of the most fundamental properties that crops up
in any attempt to support code analysis or verification, into the type system
of Spec#. Joe Kiniry raised the issue of overcoming programmer resistance to
new type or annotation system and that a considerable amount of preparatory
work, such as annotating APIs, was needed before one could begin to convince
programmers of the usefulness. David Cok remarked that for this he would like
to see a tool in the style of Daikon [2], which infers likely annotations by observ-
ing runtime behaviour of programs, that uses static checking instead of runtime
verification; others observed that this is essentially what has been pursued in
the Houdini work [3].

9 Conclusions

We were pleased to be able to announce at the workshop that two special jour-
nal issues dedicated to previous editions of the workshop had appeared in the
month preceding this year’s ECOOP. A special issue of the journal Concurrency
and Computation: Practice and Experience (CCPE) appeared about FTfJP’2002
(CCPE, Volume 16, Issue 7, 2004), and a special issue of the online Journal of Ob-
ject Technology (JOT), appeared about FTfJP’03 (JOT (http://www.jot.fm),
Volume 3, Number 6, 2004). The fact that these issues appeared almost simul-
taneously proves one clear advantage of online only journals! There are plans
for a special issue of JOT about FTfJP’2004, for which Joe Kiniry and Susan
Eisenbach have volunteered to serve as editors.

Even though this is now the sixth workshop in the series, the workshop is
still going strong. The focus of the workshop has shifted somewhat over time, as
different topics become more or less popular, or essentially resolved. For instance,
it was interesting to note that there was not a single presentation about bytecode
verification this year. It is nice to observe that the workshop has helped in raising
some interesting topics for research, with some papers addressing issues raised
at earlier editions of the workshop, and to observe the way it has contributed

82 A. Coglio et al.

to fostering collaborations, all of which has resulted in good work presented not
just at this workshop but also at the main ECOOP conference.

The workshop has somewhat outgrown the standard workshop format, given
the number and quality of submissions it typically received, and the number of
people that want to participate. But the interest it generates and the audience
it attracts proves that it clearly serves a useful purpose and we look forward to
organising another FTfJP workshop at next year’s ECOOP.

List of Participants

– Davide Ancona (University of Genua, Italy)
– Christopher Anderson (Imperial College, UK)
– Mike Barnett (Microsoft Research, USA)
– Alex Buckley (Imperial College, UK)
– Alessandro Coglio (Kestrel Institute, USA)
– David Cok (Kodak Eastman, USA)
– Adam Darvas (ETH Zürich, Switzerland)
– Werner Dietl (ETH Zürich, Switzerland)
– John Field (IBM’s T. J. Watson Research Center, USA)
– Neal Glew (Intel, USA)
– Johan Glimming (KTH, Sweden)
– Marieke Huisman (INRIA Sophia-Antipolis, France)
– Bart Jacobs (K.U. Leuven, Belgium)
– Joe Kiniry (Radboud University Nijmegen, Netherlands)
– Peter Müller (ETH Zürich, Switzerland)
– Rustan Leino (Microsoft Research, USA)
– Cees Pierik (University of Utrecht, Netherlands)
– Frank Piessens (K.U. Leuven, Belgium)
– Alex Potanin (Victoria University of Wellington, New Zealand)
– Erik Poll (Radboud University Nijmegen, Netherlands)
– Andreas Roth (University of Karlsruhe, Germany)
– Mirko Viroli (University of Bologna, Italy)
– Joe Zhou (University of Leicester, UK)

References

1. D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias pro-
tection. In Proceedings of Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), volume 33(10) of ACM SIGPLAN Notices, October 1998.

2. Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynam-
ically discovering likely program invariants to support program evolution. IEEE
Transactions on Software Engineering, 27(2):1–25, 2001.

3. Cormac Flanagan and K. Rustan M. Leino. Houdini, an annotation assistant for
ESC/Java. In J. N. Oliveira and P. Zave, editors, FME 2001, volume LNCS 2021,
pages 500–517. Springer, 2001.

Formal Techniques for Java-Like Programs (FTfJP) 83

4. P. Müller. Modular Specification and Verification of Object-Oriented Programs, vol-
ume 2262 of Lecture Notes in Computer Science. Springer-Verlag, 2002.

5. A. Potanin, J. Noble, D. Clarke, and R. Biddle. Generic ownership. Technical
Report CS-TR-03-16, Victoria University of Wellington, 2003.

Component-Oriented Approaches to
Context-Aware Computing�

Simon Dobson

Department of Computer Science, Trinity College, Dublin IE
simon.dobson@cs.tcd.ie

1 Motivation and Goals

Context-awareness is emerging as an essential component of many user-focused
software domains. It is especially integral to pervasive or ambient computing,
but can be used to control the behaviour of any system that adapts to the
circumstances in which it is used.

Like most new software projects, many existing context-aware systems have
been constructed using object- or component-oriented programming techniques.
Experience has shown that objects have difficulty in addressing some of the
facets of highly adaptive and highly contextualised systems. These include:

– the need to create object views over information with significant ontological
structure;

– consistently supporting multiple views of the same information at different
levels of abstraction;

– the complexity of selecting and matching components and interfaces; and
– the mixing of concerns across different levels of the design space.

Many of the techniques being used ad hoc in context-aware applications might
be better captured in tools, languages or methods; conversely new developments
in infrastructure might be helpful – or not! – to the developers of context-aware
systems.

Goals and Organisation

The workshop was organised to address these issues. We requested short contri-
butions in two strands:

1. Research and practitioner contributions on topics highlighting both the con-
tributions object and component technology makes to context-aware dis-
tributed computing and the issues and shortcomings of current approaches

2. “What if we could” systems that can be used as a basis for case studies to
be expanded during the workshop to drive discussion

� The title of this report sould be referenced as “Report from the ECOOP 2004 Work-
shop on Component-oriented approaches to context-aware computing”.

J. Malenfant and B.M. Østvold (Eds.): ECOOP 2004, LNCS 3344, pp. 84–93, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Component-Oriented Approaches to Context-Aware Computing 85

We received a wide range of contributions covering middleware issues, in-
terface adaptation, navigating large information spaces and embedded systems,
each highlighting some particular aspect of constructing context-aware adaptive
systems from components.

The workshop was divided into three parts: short presentations and two dis-
cussion groups exploring a different issue in more detail. The rest of this report
summarises the contributions (section 2), explore two discussion topics (sec-
tion 3), and offers some conclusions (section 4). Appendix A contains the names
and contact details of the participants.

2 Summary of Contributions

Three major themes were identifiable in the contributions:

– contributions focusing on the extension of object models to provide context-
awareness within a largely standard programming infrastructure;

– work on component selection and discovery, and the problems inherent in
performing these tasks in an open environment; and

– systems integrating software closely with real-world artefacts which need to
provide virtual analogues of physical capabilities.

In introducing the workshop, Simon Dobson posed four questions for context-
aware systems:

1. How do we engineer systems that are stable under minor perturbations?
2. How can we compose components into larger functions in a way that users

can grasp clearly?
3. How do we balance information collected to inform adaptability against the

privacy and security concerns arising from its abuse?
4. What does it mean for an adaptive system to be “correct”, when some of its

function derives from the changing environment?

Most of these questions occur in “ordinary” systems engineering with compo-
nents and distributed objects[1], but are thrown into high relief by the introduc-
tion of context and adaptability. The use of components can be used to address
issues of composition and correctness, but it is not sufficient for a context-aware
system to behave correctly in any given context: it must also behave correctly
dynamically, retaining continuity and stability for users even in the presence of
adaptation.

Extending object models involves allowing objects to sense and adapt to
context, without compromising the encapsulation properties of the underlying
object model. Aline Senart gave an overview of the “sentient objects” model
for pervasive systems. A sentient objects system is composed of a number of
entities encapsulating a local view of the system’s context and communicating

86 S. Dobson

via events. The event system is built around a scalable core that provides
location-awareness, robust group management, and a predictive routing infras-
tructure for managing the sporadic disconnections of devices from the network.

From a programming perspective, sentient objects provide a local context
model in which contexts are arranged into a hierarchy. An inferencing system
determines which context the system is in, and triggers actions based on this.
The view of context is strictly local, making sentient objects behave externally
like “normal” objects hiding their context-sensitivity.

The “contextors” system described by Joëlle Coutaz and Gaëtan Rey provides
a well-developed approach to “plastic” user interfaces that can be re-modelled
and re-presented on a range of devices without compromising the intention or
usability of the interface. The system is based around the description of abstract
meta-interfaces and associated meta-data, together with a family of possible
implementations. As the context of the user and the task being pursued evolve,
the implementation can select a different implementation of the interface that
is best able to satisfy the environmental and task constraints, and re-map the
interface without losing application continuity.

Contextors can both produce and consume context and communicate via
events. They are best regarded as context transformers – closer to actors than
fully stateful objects.

The problem of component discovery is made even more complex by popu-
lations of adaptive components whose matching requirements follower a richer
model. Peter Rigole presented a model of resource-aware components in which
each component declares the external resources it needs in its interface. The in-
terface then forms a contract which is satisfied and settled when the component
is instanciated. The supporting middleware signs the contract to confirm that
its requested resources are available, allowing better run-time confidence in and
analysis of the component system. Component requirements may be parame-
terised by the context, allowing run-time adaptation through the re-negotiation
of the components satisfying the contract or altering the contract as the task
evolves.

Maomao Wu presented a version of the standard Microsoft COM compo-
nent framework extended with interface meta-data and rules for composition,
using the CLIPS engine for inference and matching. A number of factors make
component composition harder in context-aware systems including the increased
intelligence and adaptability of the individual components, their increased au-
tonomy, and the time- and safety-criticality of some applications.

Otso Virtanen addressed the problem of terminal integrity, ensuring that an
adaptive end-point device retains the capabilities and assurances necessary to
remain integrated into a full network. Components are downloaded onto the
device using a secure protocol from a component broker, which manages the
dependencies of the various components sets.

In an extensible and dynamic environment, however, it is impossible to guar-
antee the correct functioning of every combination of components. Incompatible

Component-Oriented Approaches to Context-Aware Computing 87

combinations are recognised at the device, flagged and reported to the com-
ponent broker to prevent the propagation of clashes across the system. This
improves the integrity of users’ devices, since faulty compositions are less likely
to propagate once a problem has been detected. It also allows “roll-back” of
devices to component populations known to be stable.

Dhouha Ayed described an extension of the CORBA component model to
express assembly descriptions of components. An assembly descriptor includes
information allowing the choice of components to be constrained by location,
structure, type and so forth, and may be linked to a discovery service to facilitate
more adaptive component location. A rule-based selection system and adapter-
filter architecture allows components to be connected in the presence of minor
inconsistencies in their interfaces.

Many context-aware systems include a close correspondence between physical
objects and informational activities, means that the underlying context model
is more closely aligned to individual objects rather than to situations. Trung
Dung Ngo reported on embedding sensing and processing into Lego bricks.
Connecting bricks together provided automatic composition, to (for example)
use a sensor to directly control a motor. While limited in the complexity of
possible compositions, the system is easy enough for children to build with – and
indeed the children can work out how the bricks work together themselves, with
only a minimal explanation. Other applications include cognitive rehabilitation
and other sensory integration therapies.

Micael Sjölund described SensAid, a tablet PC platform for experimenting
with mixed physical and virtual entities. A room containing artefacts augmented
with RFID tags allows physical objects to have a corresponding virtual presence
carrying their meta-data and allowing interaction through the SensAid desktop
(or tablet-top) application.

3 Discussions

As seeds for discussion, the workshop addressed two issues arising from the
submissions:

1. How is adaptability best represented, presented and understood, both by
users and developers?

2. How can designers of middleware and platforms help support the continuity
of user experience in the face of adaptation while keeping the complexity of
applications development under control?

3.1 Adaptation

Adaptability means changing some aspect of a system’s detailed behaviour while
keeping the gross behaviour of the system consistent. From a contextual systems

88 S. Dobson

perspective, adaptability means matching behaviour to changes in environment,
task, user population, preferences or some other factor; from a component sys-
tems perspective, it means selecting and/or configuring the component set to
provide the optimum behaviour. There are any number of design solutions that
can be applied to this process, with the design space being governed by the issues
(among others) discussed below.

Context as Process Versus Context as Data. Many systems use a context
model based around context-as-data: the model stores a representation of the
state of the world as seen by the application and its sensors, which is then used
to inform the behaviour of applications. Adaptability comes from the way in
which components respond to changes in the context model, or from how they
are selected and interconnected based on it. This approach tends to lay stress
on responses to the changing environment.

An alternative view is to adopt a model of context-as-process, where the
context is the task the user is involved with – a task inferred from the sensor
(and other) data. This can be used to provide a stronger sense of continuity, in
that the task (and hence the users’ goals) are more clearly articulated, and can
therefore lay stress on the responding to the changing task priorities[2].

There does not seem to be a clear-cut case for either view as being more
powerful or natural. While using the context-as-process model potentially offers
a more holistic an continuous view around which to structure adaptation, such
models are often more error-prone trough having to infer the task from sensor
data. Conversely the context-as-data view can fragment adaptations by not re-
taining the “flow” of a task-level interaction. Integrating both views in the same
model may lead to conflicts between different levels.

Are the Components Context-Aware? Another dimension in systems de-
sign is where in the design the adaptability resides. The design space lies between
two extremes:

1. A static collection of components is constructed to handle the task, with
each component adapting itself to the changing context

2. Each component presents a fixed behaviour, and the collection of components
is changed according to the environment by some external agent

The systems described in the presentations fell into both categories, but with
an emphasis on the former.

An important notion in this area is that of open- versus closed-adaptive
systems, deriving from the work of Rick Taylor and others (e.g. [3]). A closed-
adaptive component provides a set of adaptive behaviours itself that can be
selected; an open-adaptive component accepts new behaviours from outside.
Closed-adaptive systems are less flexible over the long term but possibly more
reliable, stable and secure than open-adaptive components.

Component-Oriented Approaches to Context-Aware Computing 89

Open-adaptive components offer a better long-term solution for choreography
and re-purposing, but would accentuate the need to pay careful attention to
fallback and roll-back behaviours if an adaptation proved unsuitable.

Choosing the “Right” Components. In either of the above cases there is
an issue in choosing the correct components for a given situation – a decision
that may be repeated over the application’s lifetime.

Many of the participants work in this area. The main approaches involve
adding meta-data to component interfaces – something that should probably be
emphasised and standardised as part of the evolution of component frameworks.

The decision process itself is very subtle, since most systems will not have
access to all the information that they could potentially use. Several systems are
rule-based, although it was recognised that “crisp” logic may not be the ideal
way to deal with the inherent uncertainties.

An uncertain process must face the possibility that a decision is made in-
correctly. The impact of wrong decisions can vary, from preventing the sys-
tem working (with possible loss of data) to generating a system that works
sub-optimally. Systems that select component populations dynamically are able
to recover from non-fatal compositions by re-selecting as soon as the prob-
lem arises. More static composition systems require more explicit recovery
strategies.

Semantic Compatibility. Component selection depends on a degree of seman-
tic compatibility between the various components, either inherent or introduced
through adapters.

Again, one may take a static on dynamic position on the issue. The extreme
static position is to assume that interface meta-data is an infallible guide; the
extreme dynamic position is that consistency checks are continuously required to
ensure that the components are working together. What is important, however,
is to embrace the fact that compatibility is an issue in the on-going evolution of
systems and to address it in the basic structure of the design.

Complex Components Versus Choreography. Another aspect of compo-
nent selection involves the relative “weight” or “intelligence” of components.
Components may perform a single, simple function, or they may perform a larger
set of functions. A good example is two ways of building a messaging system:
using components that each support a single messaging protocol (e-mail, SMS,
IM), or as a single messaging component offering all protocols. Both are valid de-
cision decisions, and both are orthogonal to the issue of whether the components
offer adaptive interfaces to their services.

Using large populations of small components involves quite complex co-
ordination (sometimes referred to as “choreography”), but allows very fine-
grained adaptation. Larger components allow simpler plumbing but force the
system developer to take larger “chunks” of functionality.

90 S. Dobson

This argument is common in all component- or object-based systems. It has
a particular impact for contextual systems in which the component composition
decisions are uncertain and may be hard to undo.

One part of the design space that is definitely concerning is large components
offering adaptive interfaces internally. There is a real risk that the component
will be selected for functional reasons (i.e. it offers messaging functions), but will
not offer the best adaptive interface functions. Separating these two concerns is
therefore an important goal for populating a component framework.

Autonomous Versus Human-in-the-Loop. One of the goals of pervasive
computing is to be able to offer some services autonomously, matched to context.
This includes adapting the user interface. The question is whether, and to what
extent, services can or should be provided without user intervention, and how
to integrate the human into the loop in a natural fashion.

This question divides into two parts. At an interface level it may be possible
(and indeed preferable) to provide for user “guidance” of adaptations where
possible. At the system level, imprecise reasoning may require disambiguation
by the user. In effect this is a “whole system” issue rather than being tied to
components per se.

Observability of Relevant State in the Interface. Closely related to the
above is the inclusion of relevant state in the interface. It is evident that human
decision-making relies on presenting the information needed for the decision;
it also seems to be the case that autonomous or semi-autonomous adaptations
should be indicated in the interface, either before (“this change may happen”)
or after (“this is what just happened”).

3.2 Continuity and Complexity

If the “software crisis” challenges our ability to build correct software for desktop
and server-based systems, then context-aware systems raise the bar even higher.
Engineering such systems means that we need to identify the areas of context-
awareness that generate additional complexity, and develop ways to keep it under
control.

Complexity has a user dimension as well as a programmer one. A system that
adapts too often may appear to “flicker” and prevent users forming a coherent
mental model of its behaviour and services. This is why it is important to mirror
the users’ notions of the continuity of an interaction across modifications in
detailed behaviour.

A number of major issues affecting complexity are discussed below.

Retain Task Models at Run-Time. Maintaining continuity of interaction
across adaptation relies either on knowing that adaptations inherently preserve
continuity or on being able to intervene to preserve the experience. The former

Component-Oriented Approaches to Context-Aware Computing 91

is difficult to conceive of in an open system; the latter is considerably simplified
by keeping task models available at run-time.

“Introspective” systems architectures are moderately common, occurring on
a small scale in reflective programming languages and on a large scale in fa-
cilities management systems such as Tivoli. It is far less common to encounter
run-time descriptions of the use cases or tasks the system addresses. However,
having an abstract, machine-readable description of the task being supported by
a system makes it far easier to ensure that adaptations “maintain the place” in
the workflow.

Separate Functions from Interface. Interface adaptations form a large part
of the adaptations a system makes to changes in context – although by no means
all the possible adaptations involve interface changes.

The separation of function from interface is a common one in many systems,
being the basis for the Model-View-Controller (MVC) design pattern. Maintain-
ing this separation into adaptive and multi-modal interfaces – although chal-
lenging – is essential to allow tested functionality to be re-used under different
usage models.

This design constraint lends itself well to open-adaptive and choreography-
based component strategies, since one may select base behaviour and then pro-
vide multiple changing interfaces without modifying it.

Make “Seams” Observable. A lot of pervasive computing is characterised
as “seamless” interaction, characterised as meeting Mark Weiser’s vision of pre-
sented the right service at the right time in the right way with minimal cognitive
load[4].

However, there are many ways in which the world is inherently “seamed”,
and these seams should be reflected in the behaviour of a context-aware system.
The key observation is that discontinuous behavioural change should occur in
response to clear changes in the environment. A system may change interface
mode better to match the task or environment: but if this change introduces a
cognitive disruption then there should be a clear rationale for the change that
the user can relate to. There are strong arguments for elevating this notion to
being a fundamental design driver for tools and languages (see for example [5]).

Externalise Strategies. Any function that is embodied solely as code is es-
sentially a black box that can only be manipulated according to its meta-data.
While essential for core low-level tasks, higher-level co-ordination tasks can of-
ten be externalised as process descriptions. A number of emerging standards
exist in this domain, often targeted at web services. While perhaps not com-
pletely applicable to pervasive computing as they stand, they offer a promising
direction.

As well as task descriptions of this kind, adaptation also requires adapta-
tion strategies that are followed to determine component configurations or re-
configurations. Again, if these strategies are articulated as descriptions rather

92 S. Dobson

than code, they can be analysed and manipulated by other strategies to solve
conflicts or introduce additional concerns. A good example might be delaying
an adaptation that will radically change the system’s interaction mode until the
user reaches a natural “break” in the task.

4 Conclusions and Recommendations

If one had to distill three recommendations for systems design from the presen-
tations and discussions, they would be the following:

Keep Components Simple. Simple components allow greater flexibility in
composition. The separation of user interface from function – a “contextualised
MVC” – provides better adaptability than larger-grained components with hard-
wired adaptation.

Externalise Adaptations. A systems’ reaction to contextual changes is itself
a subject for analysis. The strategies and decision processes used should be
represented explicitly and in machine-readable form to allow second-order effects
to be generated.

Retain a Global View. Contextual systems have an unavoidable holism, which
implies taking a global view on the system and its behaviour as well as a local
view per-component. This includes a view of the tasks the system is supporting
and the way it is supporting them. The global view should be clearly expressed
rather than being implied.

In conclusion, a wide range of techniques from object- and component-oriented
software engineering are contributing strongly to the development of context-
aware systems. Several extensions are needed, especially in handling dynamic
component composition in the face of imperfect information, and in maintaining
a continuous user experience with adaptive interfaces. Some of these extensions
can be provided conservatively by adding meta-data and processing to com-
ponent interfaces within largely standard frameworks; others require a hange
in the way we think about, design and analyse component systems and their
relationship to their operating environment.

References

1. Enmerich, W.: Engineering distributed objects. Wiley (2000)
2. Dobson, S.: Applications considered harmful for ambient systems. In: Proceedings

of the International Symposium on Information and Communications Technologies,
ACM Press (2003) 171–176

3. Oreizy, P., Gorlick, M., Taylor, R., Heimbigner, D., Johnson, G., Medvidovic, N.,
Quilliei, A., Rosenblum, D., Wolf, A.: An architecture-based approach to self-
adaptive software. IEEE Intelligent Systems 14 (1999) 54–62

4. Weiser, M.: The computer for the 21st century. Scientific American (1991)

Component-Oriented Approaches to Context-Aware Computing 93

5. Dobson, S., Nixon, P.: More principled design of pervasive computing systems. In:
Proceedings of Engineering for Human-Computer Interaction and Design, Specifi-
cation and Verification of Interactive Systems (EHCI-DSVIS’04). LNCS, Springer-
Verlag (2004) To appear.

A Participants

Name Affiliation

Dhouha Ayed CNRS INT-Evry, FR
dhouha.ayed@int-evry.fr

Joëlle Coutaz CLIPS-IMAG, FR
joelle.coutaz@imag.fr

Simon Dobson Trinity College, Dublin IE
simon.dobson@cs.tcd.ie

Jasminka Matevska-Meyer University of Oldenburg, DE
matevska-meyer@informatik.uni-oldenburg.de

Trung Dung Ngo University of Southern Denmark, DK
dungnt@mip.sdu.dk

Gaëtan Rey CLIPS-IMAG, FR
gaetan.rey@imag.fr

Peter Rigole KU Leuven, BE
peter.rigole@cs.kuleuven.ac.be

Aline Senart Trinity College Dublin, IE
aline.senart@cs.tcd.ie

Micael Sjölund Linköping University, SE
x03micsj@ida.liu.se

Otso Virtanen Helsinki Institute for Information Technology, FI
otso.virtanen@cs.helsinki.fi

Maomao Wu University of Lancaster, UK
maomao@comp.lancs.ac.uk

Copies of all the submitted papers and presentations may be found on the
workshop web site, http://www.cs.tcd.ie/COA-CAC-04/.

B Programme Committee

Simon Dobson Trinity College Dublin, IE
Paddy Nixon University of Strathclyde, UK
Siobhán Clarke Trinity College Dublin, IE
Achilles Kameas University of Patras, GR
Dominic Duggan Stevens Institute of Technology, US
Gaetano Borriello University of Washington, US

The Combined 14th Workshop for PhD Students
in Object-Oriented Systems and

Doctoral Symposium�

Susanne Jucknath1, Jan Wloka2, Eric Jul3,
Sari R. Eldadah4, and Ademar Aguiar5

1 Technical University of Berlin, Germany
2 Fraunhofer Institute FIRST, Berlin, Germany
3 DIKU, University of Copenhagen, Denmark

4 Method Building Capacity Cooperation, Jordan
5 University of Porto (FEUP), Portugal
http://swt.cs.tu-berlin.de/ecoop04

Abstract. The PhDOOS workshop differs from other workshops be-
cause the range of participants is much smaller (only PhD students)
but has a wide scope of topics. Even with the limitation to PhD stu-
dents in Object Oriented Systems, the presentations covered topics such
as Generic Ownership, Generic Algorithms, Model Driven Architecture,
Prediction of Size, QoS assessment, Frameworks, Teaching of Frame-
works and Object Calculus.

Several topics of shared interest were identified and targeted in sepa-
rate discussion groups on a general theme on the future of object oriented
programming. As the participants had various research interests covering
very different parts of the OO spectrum, we can confidently state that
these topics reflect actual concerns and needs of the OO community, and
emerge from its concrete needs.

This document is to be complemented by a workshop proceedings
online document which will contain the full versions of the presented
papers.

1 Introduction

The 14th workshop for PhD Students in Object Oriented Systems (PhDOOS’04)
was for the first time combined with a Doctoral Symposium. The combined
event was held on June 14-15 2004 in Oslo, Norway in association with the
18th European Conference on Object Oriented Programming (ECOOP). The
workshop was part of the series of PhDOOS workshops held in conjunction with
ECOOP each year, same as the Doctoral Symposium. The decision to unite

� The title of this report sould be referenced as “Report from the ECOOP 2004 com-
bined 14th Workshop for PhD Students in Object-Oriented Systems and Doctoral
Symposium”.

J. Malenfant and B.M. Østvold (Eds.): ECOOP 2004, LNCS 3344, pp. 94–100, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

The Combined 14th Workshop for PhD Students in OOS 95

these events was made due to the similar group of participants. Students at
the beginning of their research should attend the PhD workshop, where they
can discuss their ideas with researchers at a similar stage of work and similar
difficulties. Students near the finishing of their dissertation should attend the
Doctoral Symposium, where they present their work in front of a group of senior
researchers who will evaluate their work from a different point of view. Both –
participants of the PhD workshop and the Doctoral Symposium – were free to
enter the other event. The invited talk and the workshop discussion were relevant
for both groups.

The participation was by invitation only, selected after a review process that
included at least two reviews for each submission. Each aspirant for the Doc-
toral Symposium had to sent a package containing general information (name
of student, name of advisor, full address, university or department), a research
abstract (title of the dissertation, research area, problem to be solved, research
hypothesis, approach to solve the problem) and a letter of recommendation from
the students advisor. Two students have been selected to join the Doctoral Sym-
posium (Alex Potanin and Sameh Elnikatney) and were supervised during the
session by Professor Eric Jul and Professor Markku Sakkinen. The students had
to give a 45 minute talk in front of them and later answer their questions for
another 45 minutes.

Students, who were interested in joining the PhD-Workshop, had send a pack-
age containing general information about the authors and a paper which was
limited up to 10 pages. Eight submissions were selected after the review pro-
cess, so that eight students actually presented at the workshop (Po-Hao Chang,
Jerome Darbon, Gregory de Fombelle, Johan Glimming, Guillermo Jimenez-
Diaz, Raquel Hervas, Gabor Stikkel and Istvan Zolyomi). Each of these partici-
pants had to give a talk about her paper including a discussion part, altogether
strictly limited to 45 minutes.

2 Workshop Structure

A large diversity of topics was presented, the submissions might be divided into
three general groups: General Problems in Object Oriented Programming, Model
Driven Architecture and Frameworks. There has also been two other works,
which don’t fit into this scheme. The individual topics were the following:

1. General Problems in Object Oriented Programming
(a) Generic Ownership
(b) C++ template Introspection Library
(c) Generic Algorithmic Blocks dedicated to Image Processing
(d) Design Pattern

2. Model Driven Architecture
(a) Prediction of Size in Executable Model Driven Architecture
(b) QoS assessment

3. Frameworks
(a) Adaptive Distributed Object Framework for the Web
(b) Case-Based Approach for Teaching Frameworks

96 S. Jucknath et al.

4. Others
(a) Object Calculus
(b) Dynamic Content Delivery Network

Besides discussions of these topics Professor Eric Jul gave a talk about how
to do PhD studies and how to work toward actually completing the studies with
a readable PhD dissertation as a result.

The following sections summarize the contributions and discussions that took
place in the various sessions.

2.1 General Problems in Object Oriented Programming

Alex Potanin presented Practical Ownership Control in Programming Languages,
where he outlines a general problem in object-oriented languages and one solu-
tion in Java. An object is aliased whenever there is more than one pointer to that
object. Aliasing can cause a range of difficult problems within object-oriented
programs, because one referring object can change the state of the aliased object,
implicitly affecting all the other referring objects. To deal with such problems,
object instance encapsulation has been widely studied in literature. But most of
the former approaches do not take the introduction of generic in modern pro-
gramming languages into account. The approach here is to combine ownership
and generic types and developed a compiler extension, called Ownership Generic
Java (OGJ)

Istvan Zolyomi presented A general C++ template introspection library, men-
tioning Zoltan Porkolab as his advisor. Generic programming is heavily based on
parametric polymorphism, what is provided by templates in C++. To ensure the
correctness of template based constructions, constraints on template parameters
are especially useful. Unlike other languages (Ada, Eiffel, etc), C++ does not
directly support checking requirements on template parameters (concept check-
ing), but many authors mentions ad hoc solutions based on special language
features. The here presented solution is a template meta-programming library
which supports an easy expression of basic concepts, providing the possibility
to avoid re-implementation of simple checks for every single concept. Based on
this library there is also a checking method that takes the advantages of both
traditional concepts and static interfaces.

Jerome Darbon presented Generic Algorithmic Blocks dedicated to Image
Processing, mentioning Thierry Geraud and Patrick Bellot as his advisors. The
focus is here on the implementation of algorithms in the specific domain of
image processing. Although many image processing libraries are available, they
generally lack genericity and flexibility. Many image processing algorithms can
be expressed as compositions of elementary algorithmic operations referred to as
blocks. Implementing these compositions is achieved using generic programming.
As a conclusion this solution is compared to previous ones and demonstrated on
a class image processing algorithm.

Raquel Hervas presented Using Design Patterns to Abstract a Software Archi-
tecture for Natural Language Generation, joint work with Pablo Gervas. There
are several problems of Natural Language Generation (NLG), including the fact

The Combined 14th Workshop for PhD Students in OOS 97

that there is no consensus about the architecture a NLG must follow. The ap-
proach here is a reusable software architecture for a NLG systems by applying
design patterns to abstract the main design decisions involved in the construc-
tion of a system of this kind. Its applicability had been tested through the
development of a particular instantiation of a simple NLG application.

2.2 Model Driven Architecture

Gabor Stikkel presented Prediction of Size in Executable Model Driven Archi-
tectures, joint work with Zoltan Theisz. Most of the project planning approaches
are based on the prediction of the software size. Size is often measured in lines
of code. Lines of code as a size measure must be reviewed in the context of
Executable Model Driven Architecture as some part of the code is generated
automatically. Moreover models which are based on object-orientation are ex-
tended with code written in an action semantic language. The outcome of their
investigations shows how the amount of action semantic language code can be
predicted by using object-oriented design metrics. As one result the number of
operations seems to be a good predictor of the lines of code written in the action
semantic language.

Gregory de Fombelle presented A model driven engineering chain for early
QoS assessment in dynamic federation of systems. Dynamic federation of sys-
tems raise the problem’s quality of service properties assessment early in the de-
velopment process. At the moment it is not conceivable to perform cross cutting
properties evaluation on operational systems because of combinatory explosion.
One should assess those properties with QoS tagged models of systems and QoS
tagged models of platforms on which systems will deploy.

2.3 Frameworks

Po-Hao Chang presented An Adaptive Distributed Object Framework for the
Web. Currently, coding Web applications is location and platform dependent:
programmers entangle code for client and server together with different tech-
nologies. Due to the diversity and dynamicity of the Internet, it is hardly be-
lieved such inflexible code could deliver good performance in all the cases. The
goal is to develop a framework which provide programming abstraction over
the heterogeneous Internet, and the mechanism to realize the abstraction. This
is composed of two tasks: a scripting language with concurrent object support
and the associate retargetable compiler to provide a uniform abstraction over
the Internet, and a framework management system for adaptive application de-
ployment and resource management. The main contribution of this work is to
extend the control and management of the Web out of the servers without special
protocols and software.

Guillermo Jimenez-Diaz presented A Case-Based Approach for Teaching
Frameworks, joint work with Mercedes Gomez-Allbarran. There are several
learning techniques for computer skills and learning to use an object-oriented
framework is a hard task. There has been little work done to develop effective
techniques to reduce the effort and time taken to teach how to use a framework.

98 S. Jucknath et al.

The solution here is a Case-Based Teaching approach following an active learning
process where the learner is involved in resolving exercises based on framework
instantiation examples.

2.4 Others

Johan Glimming presented Difunctorial Semantics of Object Calculus, where
he gives a new denotational semantics for Abadi and Cardelli s object calculus
(without sub-typing). The model is a Cartesian closed category which gives a self-
application semantics of objects and model object types as fixed points of mixed
variance functors. A prove is also presented that the denotational semantics
agrees with Abadi and Cardelli s operational semantics. As a conclusion there
are some further research directions for the denotational model explained.

Sameh Elnikety presented DynaServer:Dynamic Content Delivery Network
for E-commerce. Traditionally a website generates dynamic web content by run-
ning a web server, application server and database server, all located in one place.
The approach here is to use a network of proxies to generate and deliver dynamic
web content to users. These proxies should be located at strategic points in the
Internet to be close to users, achieving both low latency and high availability as
perceived by uses. Each proxy maintains a complete replica of the database and
should have a web server and application server that execute application code
locally. To maintain data consistency among the databases replicas, the system
provides generalized snapshot isolation to database transactions.

3 Workshop Discussions

A large variety of approaches were presented, spanning from foundations of ob-
ject orientation over language improvements and several domain specific prob-
lems to the teaching of object oriented frameworks. In contrast to preceding Ph-
DOOS workshops this workshop wasn’t dominated by a certain new ”wonder”
technique, like extreme programming, refactoring or aspect-oriented program-
ming. Single sharp bordered problems and their solutions using well known OO
techniques and their improvements were in the focus of this years’ PhD work.
For example, problems of domains like image processing, natural language gen-
eration and web application development were presented to motivate interesting
drawbacks of object oriented means.

In several discussions many different OO techniques were individually de-
picted and their problems and applications discussed in small groups. Some
features of C++, framework based solutions and generative programming built
the core of presented PhD work. The improvement of OO programming language
or the creation of a specific framework seems to help usual developers to keep
focussed to their actual problem solution.

Concluding Discussion Participants: Jerome Darbon, Jan Wloka, Susanne
Jucknath, Po-Hao Chang, Raquel Hervas, Guillermo Jimenez-Diaz, Sameh
Elnikety

The Combined 14th Workshop for PhD Students in OOS 99

In a concluding discussion we tried to identify next hot topics in object ori-
entated research. To start with a tangible base, requirements for descriptions
of certain computation in different domains were identified. For example, the
composition of functional units seems to be an important capability in image
processing whereas a transparent distribution of objects is essentially needed for
the development of web applications. Developers struggle in every domain with
different abstractions. At first most participants agreed in the need for more flex-
ibility in programming languages. However, a small excursion to the obstacles in
teaching frameworks gave enough suitable examples for difficulties in handling
flexibility. Recognizing the fact that the lost of comprehension and control is the
effect caused by to much flexibility, the wish of bit more ”on demand” adaptation
was generated. A kind of adaptation mechanism that could be easily configured
to the specific needs of a certain domain.

After many and also partially turbulent discussions a lot of different views,
ideas and techniques have been exchanged. As a common agreement could be
seen that developers need to describe their application at various abstraction
levels. On the one hand there are non-computer scientists, like mathematicians
or engineers, writing programs focussed on algorithms that solve abstract com-
putation problems. There is usually no specific need to describe the underly-
ing implementation details. On the other hand in high-constraint environments,
where a certain performance in terms of response time or physical data cache is
important, one can be interested in very low level implementation details. Hence,
developers are still eager for a mean that combines simplified abstraction and
”on-demand” flexibility in descriptions of computation.

Acknowledgments

We would like to thank AITO for financial support, which was important for
many students. AITO provided support to partially cover student travel ex-
penses. As we had participants from Sweden, France, Spain, Germany, Hungary,
USA, and New Zealand—and most of them were not financially provided for as
they are students—we were most grateful for support.

Participants List

1. Ademar Aguiar, University of Porto, Portugal
ademar.aguiar@fe.up.pt

2. Patrick Bellot, ENST - INFRES, France
bellot@enst.fr

3. Po-Hao Chang, University of Illinois at Urbana-Champaign, USA
pchang2@uiuc.edu

4. Jerome Darbon, EPITA - LRDE, France
darbon@lrde.epita.fr, darbon@enst.fr

5. Sari R. Eldadah, Method Building Capacity Cooperation, Jordan
Sdadah@MethodCorp.com

100 S. Jucknath et al.

6. Sameh Elnikety, School of Computer and Communication Sciences, Swiss
Federal Institute of Technology (EPFL), Lausanne, Switzerland
sameh.elnikety@epfl.ch

7. Gregory de Fombelle, Thales Research and Technology, France
gregory.defombelle@thalesgroup.com

8. Thierry Geraud, EPITA - LRDE, France
geraud@lrde.epita.fr

9. Pablo Gervas, Universidad Complutense de Madrid, Spain
pgervas@sip.ucm.es

10. Johan Glimming, Stockholm University, Sweden
glimming@kth.se

11. Mercedes Gomez-Albarran, Universidad Complutense de Madrid, Spain
albarran@sip.ucii.es

12. Raquel Hervas, Universidad Complutense de Madrid, Spain
pgervas@sip.ucm.es

13. Guillermo Jimenez-Diaz, Universidad Complutense de Madrid, Spain
gjimenez@sip.ucii.es

14. Susanne Jucknath, Technical University of Berlin, Germany
susannej@cs.tu-berlin.de

15. Eric Jul, DIKU, University of Copenhagen, Denmark
eric@diku.dk

16. Zoltan Porkolab, Eoetvoes Lorand University, Hungary
17. Alex Potanin, Victoria University of Wellington, New Zealand

alex@mcs.vuw.ac.nz
18. Gabor Stikkel, Lorand Eoetvoes University, Hungary

stiko@compalg.inf.elte.hu
19. Zoltan Theisz, Ericsson Telecommunications Hungary

gmd@alta.hu
20. Jan Wloka, Fraunhofer Institute FIRST, Germany

Jan.Wloka@first.fraunhofer.de
21. Istvan Zolyomi, Eoetvoes Lorand University, Hungary

scamel@alta.hu

MASPEGHI 2004

Mechanisms for Specialization, Generalization
and Inheritance�

Ph. Lahire1, G. Arévalo2, H. Astudillo3, A.P. Black4, E. Ernst5,
M. Huchard6, T. Opluštil, M. Sakkinen7, and P. Valtchev8

1 Laboratoire d’Informatique Signaux et Systèmes de Sophia Antipolis (I3S),
Université de Nice Sophia antipolis, France

Philippe.Lahire@unice.fr
2 Software Composition Group, Institut für Informatik und angewandte Mathematik,

Bern, Switzerland
arevalo@iam.unibe.ch

3 Departamento de Informática, Universidad Técnica Federico Santa Maŕıa
Valparáıso, Chile
hernan@acm.org

4 Dept. of Computer Science & Engineering, OGI School of Science & Engineering,
Oregon Health & Science University (OGI/OHSU), Beaverton, USA

black@cse.ogi.edu
5 Department of Computer Science, University of Aarhus, Denmark

eernst@daimi.au.dk
6 Laboratoire d’Informatique, de Robotique et Micro-électronique de Montpellier

(LIRMM), CNRS and Université de Montpellier 2, France
huchard@lirmm.fr

7 Department of Computer Science and Information Systems, University of
Jyväskylä, Finland
sakkinen@cs.jyu.fi

8 Dépt. d’Informatique et recherche opérationnelle (DIRO), Université de Montréal,
Québec, Canada

petko.valtchev@umontreal.ca

Abstract. MASPEGHI 2004 is the third edition of the MASPEGHI
workshop. This year the organizers of both the ECOOP 2002 Inheritance
Workshop and MASPEGHI 2003 came together to enlarge the scope of
the workshop and to address new challenges. We succeeded in gathering
a diverse group of researchers and practitioners interested in mechanisms
for managing specialization and generalization of programming language
components. The workshop contained a series of presentations with dis-
cussions as well as group work, and the interplay between the more than
22 highly skilled and inspiring people from many different communities
gave rise to fruitful discussions and the potential for continued collabo-
ration.

� The title of this report sould be referenced as “Report from the ECOOP 2004 Work-
shop on Mechanisms for Specialization, Generalization and Inheritance (MASPEGHI
2004)”.

J. Malenfant and B.M. Østvold (Eds.): ECOOP 2004, LNCS 3344, pp. 101–117, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

102 Ph. Lahire et al.

1 Introduction and Summary of the CFP

The MASPEGHI workshop took place on Tuesday, June 15th, at ECOOP 2004
in Oslo. It was the third edition of MASPEGHI (after OOIS 2002 and ASE
2003), but it was at the same time a follow-on to the Inheritance Workshop at
ECOOP 2002 in Málaga (see Section 6) — a case of multiple inheritance. The
meaning of the acronym MASPEGHI was modified from MAnaging SPEcializa-
tion/Generalization HIerarchies to MechAnisms for SPEcialization, Generaliza-
tion and inHerItance, thus broadening the scope of the workshop.

MASPEGHI 2004 continued the discussion about mechanisms for manag-
ing specialization and generalization of programming language components. The
workshop was organized around concepts such as inheritance and reverse inher-
itance, subclassing, and subtyping, and specialized into variants such as single
or multiple inheritance, mixins, and traits.

The workshop was concerned with (i) the various uses of inheritance, and (ii)
the difficulties of implementation and control of inheritance in practical applica-
tions. Several communities were represented, including those dealing with design
methods, databases, knowledge representation, data mining, object-oriented pro-
gramming languages, and modeling: each community addresses these concerns in
different ways. Thus, one important goal of this workshop was to bring together
a diverse group of participants to compare and contrast the use, implementation
and control of inheritance as practiced in their communities.

This report summarizes the workshop. Section 2 lists the organizers, the
participants and the written contributions. Section 3 provides an overview of
the contributions and debates. Section 4 summarizes the outcome of the three
work groups. We end this overview of the workshop with a conclusion and a list
of pointers (Sections 5 and 6).

2 People and Contributions

2.1 Organizers

The organizers of this workshop were (in alphabetical order):

– Gabriela Arévalo: Software Composition Group, Institut für Informatik
und angewandte Mathematik, Bern, Switzerland. (arevalo@iam.unibe.ch)

– Hernán Astudillo: Departamento de Informática, Universidad Técnica
Federico Santa Maŕıa Valparáıso, Chile. (hernan@acm.org)

– Andrew P. Black: Dept. of Computer Science & Engineering, OGI School
of Science & Engineering, Oregon Health & Science University (OGI/OHSU),
Beaverton, USA. (black@cse.ogi.edu)

– Erik Ernst: Department of Computer Science, University of Aarhus, Den-
mark. (eernst@daimi.au.dk)

– Marianne Huchard: Laboratoire d’Informatique, de Robotique et Micro-
électronique de Montpellier (LIRMM), CNRS and Université de Montpellier
2, France. (huchard@lirmm.fr)

MASPEGHI 2004 103

– Philippe Lahire: Laboratoire d’Informatique Signaux et Systèmes de
Sophia Antipolis (I3S), Université de Nice Sophia antipolis, France.
(Philippe.Lahire@unice.fr)

– Markku Sakkinen: Department of Computer Science and Information Sys-
tems, University of Jyväskylä, Finland. (sakkinen@cs.jyu.fi)

– Petko Valtchev: Dépt. d’Informatique et recherche opérationnelle (DIRO),
Université de Montréal, Québec, Canada. (petko.valtchev@umontreal.ca)

2.2 Participants and Position Papers

A total of 22 persons participated in the workshop, although some of them only
for part of the day. The attendees came from 13 different countries, the largest
attendance (4) coming from France. Among them 15 were paper authors (see the
table below) and/or members of the organizing committee. Five of the organizers
were able to come: A. Black, E. Ernst, M. Huchard, Ph. Lahire and M. Sakkinen.
All the papers in the following table are in the proceedings of the workshop [1],
which is accessible from the website.

Contribution Presenter / Other Authors

Object Identity Typing: Bringing
Distinction between Object Be-
havioural Extension and Specializa-
tion

D. Janakiram, Indian Institute of
Technology Madras, India (djram@

lotus.iitm.ernet.in) / C. Babu

(1)

A Reverse Inheritance Relationship
for Improving Reusability and Evo-
lution: the Point of View of Feature
Factorization

Philippe Lahire (see above) / C.-B.
Chirila and P. Crescenzo

(2)

Mathematical Use Cases lead nat-
urally to non-standard Inheritance
Relationships: How to make them
accessible in a mainstream language

Marc Conrad, University of Luton,
UK (marc.conrad@luton.ac.uk) /
T. French, C. Maple, and S. Pott

(3)

Proposals for Multiple to Single In-
heritance Transformation

Michel Dao, France Télécom R&D,
France (michel.dao@francetelecom.

com) / M. Huchard, T. Libourel, A.
Pons and J. Villerd

(4)

The Expression Problem, Scandina-
vian Style

Erik Ernst (see above)(5)

The Logic of Inheritance DeLesley Hutchins, University of Ed-
inburgh, UK (D.S.Hutchins@sms.ed.

ac.uk)

(6)

104 Ph. Lahire et al.

An anomaly of subtype relations at
component refinement and a gener-
ative solution in C++

Zoltán Porkoláb, Eötvös Loránd Uni-
versity, Hungary (gsd@elte.hu) / I.
Zólyomi

(7)

Java with Traits— Improving Op-
portunities for Reuse

Philip J. Quitslund, Oregon Health
and Science University, USA
(philipq@cse.ogi.edu) / A. P.
Black

(8)

Merging conceptual hierarchies us-
ing concept lattices

Marianne Huchard (see above) / M.
H. Rouane, P. Valtchev, P. and H.
Sahraoui

(9)

Behaviour consistent Inheritance
with UML Statecharts

Markus Stumptner, University of
South Australia, Australia (mst@cs.

unisa.edu.au) / M. Schrefl

(10)

Domain Modeling in Self Yields
Warped Hierarchies

Ellen Van Paesschen, Vrije Univer-
siteit Brussel, Belgium (evpaessc@

vub.ac.be / W. De Meuter and T.
D’Hondt

(11)

Inheritance Decoupled: It’s More
Than Just Specialization

L. Robert Varney, University of Cali-
fornia at Los Angeles, USA (varney@

cs.ucla.edu) / D. S. Parker

(12)

Among the other participants were the following (alphabetically):

– Antoine Beugnard, Ecole Nationale Supérieure de Télécommunication,
France (Antoine.Beugnard@enst-bretagne.fr)

– Kim Bruce, Williams College, Massachusetts, USA (kim@cs.williams.edu)
– Sebastián González, Université catholique de Louvain, Belgium

(sgm@acm.org)
– H̊avard Hegna, Norwegian Computing Center, Norway (hegna@nr.no)
– Tomáš Opluštil, Charles University in Prague, Czech Republic

(oplustil@nenya.ms.mff.cuni.cz)
– Wilfried Rupflin, University of Dortmund, Germany

(Wilfried.Rupflin@uni-dortmund.de).

3 Workshop and Contribution Overview

3.1 Workshop Organization

The organizers prepared for the workshop by a quite lengthy process of charac-
terizing and classifying the papers, based on their main topics. In this process
it turned out to be useful to apply techniques from concept analysis, which is

MASPEGHI 2004 105

a core research area for some of the organizers. Here is an early version of the
classification1; note that some papers match several topics.

– Contradiction between a desired subtyping or specialization relation and
available language mechanisms. What should designers and developers do
when a desired subtyping relation cannot be expressed in the particular
technology (e.g., programming language) employed to create the software?
Papers P6, P7, P3, P1, P11, P8, P12, P5, P9, P2 deal with this topic. They
propose, roughly, to rearrange the desired hierarchy to fit the language, or
to design a new language.

– Is class composition worthwhile? One example of a class composition mech-
anism is multiple inheritance, and it is well-known that multiple inheritance
is hard to do well. People who think class composition is worthwhile empha-
size that it is powerful, and the more sceptical people emphasize that the
resulting software is complex and hard to maintain. Papers P11, P8, P12,
P5, P4 are related to this topic.

– Different kinds of subclassing relationships. How many kinds of inheritance
relationships are needed? How many kinds does your technology have? Pa-
pers P10, P12, P4, P2 deal with this topic.

– Form and Transform, Dealing with evolution. How can methodologies, lan-
guages and tools help us to deal with classification, construction and evolu-
tion? Papers P3, P4, P9, P2 deal with this topic.

This process of establishing an overview of the issues and positions repre-
sented by the papers continued, and at the workshop we ended up with three
sessions:

1. Form and Transform: Dealing with Evolution (papers P3, P2, P4, P10).
2. Class composition (papers P11, P8, P5).
3. Contradiction between a desired subtyping or specialization relation and

available language mechanisms (papers P6, P7, P1, P12).

The workshop started with a brief welcome and the introduction of the partic-
ipants. The three sessions were organized as presentations of the position papers
followed by discussion, applying a flexible attitude to timekeeping that priori-
tized the contents of the discussions rather than adhering rigidly to a schedule.
Each presentation lasted about 10 minutes; following that, an opponent—who
prepared by carefully studying the paper and other related material—initiated
the discussion by asking questions, making comments or proposing an alternate
point of view. Gradually, the other participants would also ask questions or make
comments. Some ingenuity was needed to schedule this activity around lunch and
coffee breaks, but the flexible approach to timing worked quite well.

We now turn to the conduct of the three sessions listed above.

1 In this report, papers presented at the workshop are referred to as Pn where n is
the number of the paper in the table in Section 2.2

106 Ph. Lahire et al.

3.2 Session 1: Form and Transform: Dealing with Software
Evolution

This session dealt with the evolution of designs and of software; papers P4 and
P10 addressed the design level with UML whereas P2 and P3 addressed the pro-
gramming level. Paper P4 focused on the use of meta-information, categorizing
applications of multiple inheritance according their semantics, and then using
this categorization to select a suitable transformation to single inheritance.

Paper P10 deals with object life-cycles represented with UML statechart
diagrams. Inheritance is used to specialize life-cycles, that is, to extend and re-
fine them. The semantics of this kind of inheritance relationship relies on two
properties: observation consistency and invocation consistency [2]. Paper P3 in-
vestigates how method renaming, dynamic inheritance and interclassing can be
used to strengthen the relationships between mathematical reasoning (algebric
structuring) and object-oriented techniques [3]. This led to a discussion about
benefits and advantages of introducing these ideas within OO languages. The
last paper of the session, P2, deals with the introduction of a reverse inheri-
tance relationship to better address the reuse and evolution of hierarchies of
classes. This implies the existence of a language that provides both specializa-
tion and generalization relationships [4]. The paper introduces a factorization
mechanism that enables a programmer to move features up the hierarchy. A
discussion ensued about the semantics that should be attached to generalization
relationships.

3.3 Session 2: Class Composition

The second session included presentations of three papers that addressed this
topic, but based in the culture of three different languages — Self [5, 6], Java and
gbeta [7].

In P11 the authors demonstrate that the hierarchies required for proper do-
main modeling are the reverse of the hierarchies required by the Self program-
ming language for the proper execution of the corresponding code. Self uses a
particular kind of prototype object, called a trait object, as a way of sharing
behavior. A variation of this idea is explored in paper P8, which led to some
discussion on this topic. The paper deals with a mechanism for reusing code
in Java, based on previous work on traits in Smalltalk [8]. One of the common
ideas is that the class is not the best unit of reuse; the authors demonstrate this
through a detailed study of code duplication in the Java Swing library.

The third paper, P5, is influenced by the expressiveness of the gbeta language
and explains how higher-order hierarchies [9] can be used to solve the expression
problem [10]. One of the main advantages of gbeta is that it makes it possible
to adapt and evolve whole hierarchies of classes rather than individual classes.
A discussion dealing with other possible solutions to the expression problem,
especially reverse inheritance, followed the presentation of the paper.

MASPEGHI 2004 107

3.4 Session 3: Subtyping and Specialization

The third session dealt with incompatibilities between the subtyping and spe-
cialization relations and the available mechanisms, and involved four papers. In
P6 the author argues that inheritance is fundamentally concerned with the cate-
gorization of objects, and that OO languages should thus be founded upon a for-
malism that supports categorical reasoning. He proposes a formal language called
SYM, which is aimed at representing class/object types in a way that avoids clas-
sical inheritance problems such as conflict resolution and the dichotomy between
subtyping and implementation inheritance. During the discussion we noted that
classes in SYM are like traits or mixins [11, 12] and that SYM enables the han-
dling of both virtual methods and Beta-style virtual classes.

Paper P7 describes a limitation of inheritance that the authors call the
chevron shape anomaly. It is based on the fact that (i) classes in a hierarchy may
be extended by inheritance in order to add new functionality and (ii) an appli-
cation may use several hierarchies and use them at different levels. The authors
explain that it implies an increase of complexity and propose a solution based on
generative programming [13]. Paper P1 is concerned with the expressiveness of
inheritance in conventional OO languages, which do not make a clear distinction
between object behavioral extension (which needs to preserve object identity)
and behavioral specialization (where a new object is created). The authors pro-
pose to capture this distinction by representing object identity as a type. The
paper P12 pointed out another deficiency of object-oriented languages: that they
do not provide sufficient support for interface abstraction and implementation
inheritance, thus spreading implementation bias and impairing evolution. To
address these issues, the authors propose interface-oriented programming (IOP)
[14], which decouples the client of an abstraction from the code that binds it to
a specific implementation and provides an interface-oriented form of inheritance
that keeps implementation bias in check and is useful for both specialization and
adaptation.

3.5 Group Discussions

An important part of the workshop was the group discussions held in the after-
noon. Three work groups were formed; the topics of the workgroups reflect the
interests of participants. They were largely derived from the session topics: two
of them came directly from session topics, whereas the third was formed during
the earlier discussions. The topics were as follows:

– Composition of classes
– Subtyping and subclassing
– Inheritance relations applied to components

After one hour of discussion, one representative from each group (Erik Ernst,
Andrew Black and Marianne Huchard, respectively) explained to the other par-
ticipants the perspectives of their groups and the result of the discussion. The
next section summarizes these discussions; the summary from each work group
is written by its participants, and organized by the group representatives above.

108 Ph. Lahire et al.

4 Summary of Group Discussions

In the following subsections we describe the working groups held during the
afternoon.

4.1 Composition of Classes

The members of this group were Marc Conrad, Erik Ernst, Philippe Lahire,
Philip Quitslund, and Markku Sakkinen. It quickly became clear that nobody in
the group was vehemently against class composition, even though they acknowl-
edged what Alan Snyder said many years ago: “multiple inheritance is good but
there is no good way to do it” (reported by Steve Cook [15]).

Consequently, we implicitly responded to the question of whether class com-
position is worthwhile with a ‘Yes!’, qualified by the realization that there will
probably always be wrinkles in the design of each concrete class composition
mechanism, and then continued to explore the similarities and differences be-
tween our approaches to it.

One line of exploration was to find features of each approach that other ap-
proaches could not readily match. For traits, represented by Philip, the feature
we selected was the symmetry of trait composition: two traits may both import
and export from each other, thus satisfying the requirements of both of them.
In contrast, with mixins the dependency is strictly unidirectional. Symmetric
dependencies enable the creation of composite entities, e.g., classes created by
composing traits, in a more flexible manner than is possible with strict unidi-
rectional dependencies.

The selected feature of gbeta, represented by Erik, was that of composing
nested entities, e.g., families of classes or even families of families of classes, and
having the composition propagate recursively into the structure. This enables
disciplined and well-defined composition of many classes in parallel with a very
concise syntax. In contrast, a single class composition mechanism is generally
more error-prone and typically lacks the ability to ensure compatibility among
many classes.

Reverse inheritance, which is a main topic in the paper by Philippe and also
the subject of earlier work by Markku under the name exheritance, is unique
in that it allows for non-intrusive modification of existing classes (i.e., changing
their meaning without editing them). The precise scope of this kind of modifica-
tion depends very much on the details of the mechanism, but generally it enables
addition of new supertypes to existing classes even in a type system based on
name equivalence, and some kinds of inverse inheritance or exheritance allows
for semantically significant changes, too, such as overriding an inherited method
or even adding state to the specified subclasses. Non-intrusive modification im-
proves on the flexibility in system development, especially where large amounts
of existing source code must be modified, but cannot be edited.

It is difficult to evaluate the quality of programming language mechanisms
because this would ideally require that we look at all programs that could ever
be written using the mechanism and evaluate whether those programs would
be of higher quality without the use of the mechanism, or using an alternative

MASPEGHI 2004 109

version of it. Obviously, no such thing could ever be done or even approximated.
Hence, evaluation of language mechanisms tends to be informal. However, as
Marc pointed out, one might use things like design patterns [16] in an evaluation,
because patterns represent well-known and hard problems in software design at
the level of a few classes—which is often the level where language mechanisms
for class composition are most relevant.

Finally, we discussed an inversion scenario for the unfolding of software as
a vehicle to gain insight into the real nature of class composition and other
abstraction mechanisms. Software is unfolded in the following sense: designers
and developers create abstractions such as classes, subclasses, type parameter-
ized classes or methods, etc. We may consider inheritance as a short-hand for
repeating the declarations inherited from superclasses, and similarly for type pa-
rameterization, so the most sophisticated abstractions could be ‘unfolded away’,
leaving us with a simple, flat universe of classes with no inheritance or type
parameters, etc. In fact, this would typically yield a correct description of actual
objects at run-time and their behavior.

Now imagine that we start from the other end, with a running system of
objects and behavior (with no classes or other abstractions defined a priori, as
in Self [5]). We could then examine which objects and behaviors are similar,
and construct classes and methods to describe them; next we could explore
similarities between classes and use them to build inheritance hierarchies, etc.—
which is one of the things that Marianne Huchard and others are doing with
concept analysis. We would then reconstruct the abstractions from the run-
time environment, as opposed to constructing the run-time entities from the
abstractions. The latter is an unfolding process, whereas the former is a folding
or ‘compression’ process.

The intriguing insight is that the run-time world can be considered as the
primary artifact, with the abstractions as derived entities—just the opposite of
typical thinking for class based languages, especially statically typed ones. The
very thought that abstractions may be constructed automatically may help to
make class composition and other mechanisms more lightweight and less intim-
idating, and similarly refreshing is the idea that manipulations of a “program”
could sometimes take place at the concrete level, with new abstractions arising
by subsequent (more or less automatic) analysis of the concrete level.

Of course, this thesis about the wonders of concreteness is immediately fol-
lowed by an antithesis: abstraction is one of our most powerful tools and hence
abstractions should not be reduced to mere implementation details produced by
a programming tool. However, abstractions might be more manageable if the
top-down unfolding point of view is supplemented with the bottom-up folding
point of view.

4.2 Subtyping and Subclassing

The members of this working group were Andrew P. Black, Kim Bruce, DeLesley
Hutchins, D. Janakiram, Zoltán Porkoláb, Markus Stumptner and L. Robert Var-
ney. The group focused on the problem of what to do when a programmer finds

110 Ph. Lahire et al.

that it is convenient to subclass an existing class, not to capture a specialization
relationship in the domain being modeled, but just to share implementation. It
can be argued that this is a bad programming practice, but often the only prac-
tical alternative is the wholesale use of copy and paste, which is surely a worse
programming practice. William Cook’s examination of the Smalltalk Collection
Classes [17] shows that the practice is common.

However, this activity can lead to problems. The subtyping relation that does
capture the specialization relationship of the domain is at best obscured, and at
worst destroyed. For example, in Smalltalk it is obscured: two classes A and B
that happen to be defined in completely different parts of the subclass hierarchy,
but with sets of methods such that B is a subtype of A, have the property that
aB can be substituted for anA. But this property is obscure: it is not expressed
explicitly in the program. In Java, the interface construct and the implements
keyword let the programmer say explicitly that A and B both implement a
common interface, let us call it the “I” interface: this makes the programmer’s
intention explicit. But Java has its shortcomings too, because Java insists that
any subclass is a subtype of its superclass, whether or not this makes sense in
the context of the application domain. Moreover, if A was defined by someone
else, perhaps someone working for another company, without also stating that
it implements the I interface, then when another programmer comes along and
tries to define and use aB in place of anA, the program won’t compile. In order to
substitute aB, not only must A implement I, but all declarations of parameters
and variables must use I rather than A.

The goal of the group was to consider this problem and possible solutions.
There was agreement that this is fundamentally a problem of language design: a
single mechanism (inheritance) is made to play too many roles, with the result
that programs are harder to understand. That is, the reason for the use of an
inheritance relationship is not explicit in the program text, and the reader must
try to infer it.

The problem (outlined above) with Java programs that do not use interfaces
could be solved in a backwards-compatible way by a small modification to the
language semantics. The idea is to create for each class C an interface with the
same name, and to interpret variable and parameter declarations involving C as
referring to the interface name rather than to the class name. It would then be
possible for a maintenance programmer to define a new class that implements
C, and instances of this new class could then be used in places that require a
C. However, interfaces do have a run-time cost in Java, and this patch would
impose that cost on every program. A non-compatible change to Java would
involve separating the subtyping (interface) and subclassing hierarchies entirely;
this would also make it possible to allow non-subtype-compatible changes in a
subclass, such as canceling methods.

An alternative approach is to find another mechanism for code reuse, thus
freeing inheritance to be used solely for domain modeling, which several of the
participants at the workshop had argued is the primary role of inheritance (see
for example papers P3 and P6). The trait concept described in P8 is one can-

MASPEGHI 2004 111

didate for such a mechanism. As currently implemented, traits do not subsume
inheritance because they do not allow the declaration of instance variables. How-
ever, it seems that an extended trait mechanism without this restriction would
provide all of the reuse opportunities offered today by inheritance, as well as
others, but without implying any conceptual classification that might not be
intended. An implicit or explicit subtyping system could then be used for clas-
sification.

4.3 Inheritance Relations Applied to Components

This group consisted of Michel Dao, Marianne Huchard, Ellen Van Paesschen,
Antoine Beugnard, Sebastián González, and Tomáš Opluštil. It was established
because, although the (mainly academic) research in the field of software ar-
chitecture and component systems has become mature, not much attention has
been devoted to the study of emerged high-level abstractions from the point of
view of inheritance relations. This becomes even more important in the context
of model transformations (see, e.g., OMG MDA [18]). Therefore the long-term
goal of this group is to set up a basis for research on inheritance in architecture
description languages (ADLs) and component systems.

The discussion was initiated by Tomáš Opluštil who presented some ongoing
research aimed at introducing inheritance in SOFA CDL [19, 20]. This initial
discussion resulted in the following list of key long-term goals (of which only the
first two were discussed because of time limitations).

– Selecting/defining abstractions in component models and ADLs to which
inheritance or specialization can be applied.

– Defining the terms subtyping, specialization and inheritance in the context
of components and other higher-level abstractions.

– Proposing purposes for which inheritance should be used in component mod-
els and ADLs.

– Proposing corresponding relations in implementation languages (into which
inheritance in higher-level abstractions should be mapped).

The main abstractions in component models, which are thus a priori poten-
tial candidates for specialization, reuse inheritance or subtyping, are the follow-
ing: a component is a unit of computation (often both a design-time and run-
time entity); an interface is roughly a set of operations; a component type is a
set of component interfaces; a connector manages communication between com-
ponents; an architectural configuration is a set of components and connections.
Components have ports or component interfaces, which usually characterize the
type of the component. A principle distinction is between client and provided
component interfaces which draw required and provided services; additional clas-
sifications can be by contingency (optional/mandatory) and cardinality (single-
ton/collection) as in Fractal [21].

We started with common definitions and uses of subtyping, inheritance and
specialization in object-oriented programming and modeling languages, and ini-
tiated a discussion about their interpretation in the case of component models.

112 Ph. Lahire et al.

Subtyping. Static type systems are a way to limit runtime errors in programming
languages, mainly preventing inappropriate operations to be called on entities.
Subtyping is usually based on the substitutability notion [22]: “a type t2 con-
forms to a type t1 iff any expression of type t2 can be substituted for (bound to)
any variable of type t1 without any runtime error”. Substitutability on classes is
ensured by invariant redefinition of attributes and redefinition of methods with
covariant (more specific in the subtype) return type and contravariant (more
general in the subtype) parameter types. Most of the abstractions listed above
that are involved in component systems can be also handled as types, and thus
candidates for subtyping. Our attention was primarily focused on interfaces and
components. With interfaces, which are usually sets of operation signatures, the
same policy that applies to subtyping for classes in class-based OOPLs can ap-
ply to interfaces in component systems. For component types (in the Fractal
terminology: sets of provided and client component interfaces), substitutability
can be understood as the possibility of replacing a component by another with-
out changing the environment (components and bindings) [21]. Errors that we
would like to avoid during this substitution may include plugging-binding errors
(when a component interface is missing), or invocation of non-existent services
and services with bad signatures. Subtyping is usually guided by the idea of
providing more services and requiring less services; covariant policy should ap-
ply to provided services and a contravariant policy to required services [21, 23].
However, some researchers argue (in as yet unpublished papers) that this notion
of subtyping may fail in some special cases, in which a substitution may lead
to halting communication in the component system. Therefore alternative ap-
proaches to the definitions of subtyping are being introduced; a promising one
is based on behavior protocols [24].

Specialization. In object-oriented modeling, class specialization is defined by in-
clusion of the instance sets (or extensions). Specialization hierarchies should
reflect usual domain classifications. When a class C2 specializes another class
C1, a consequence is that properties of C1 are inherited by C2, with possible
refinements [22]. The fact that components are intrinsically generalizable ele-
ments can be demonstrated by the case of the UML meta-model [25]: metaclass
Component is a subclass of Class in UML 2.0 meta-model.

Inheritance. In the object-oriented context, inheritance is a mechanism that al-
lows a class to own (inherit) properties (mainly methods and attributes) of an-
other class. The subclass can specialize, redefine and even cancel the inherited
properties. Unlike OOPLs, current proposals for components do not provide
much room for inheritance in their design, e.g., in ComponentJ [23] the lan-
guage designers argue that in the presence of inheritance the result of method
invocation (with dynamic binding) is dependent on the class hierarchy, making
it difficult to define well-encapsulated pieces of software (which should be in-
dependent deployment units). As a result, emphasis is put on aggregation and
component sharing rather than on inheritance. However, inheritance is in fact

MASPEGHI 2004 113

really useful for creating new component definitions by extending or merging
existing ones as proposed in Fractal [26] and SOFA [20].

In the case of object-oriented programming and modeling languages, sub-
typing, inheritance and specialization are unfortunately mixed: inheritance is
used to reflect domain specialization for clarity’s sake in programs; types are
often identified with classes; and subclassing is constrained by type safety [22].
Invariance policy in property redefinition, although too restrictive, is still the
usual rule. We can hope that component models will be more careful in their
interpretation of such notions: the best choice would be to define these relations
independently avoiding all confusion.

We concluded that the adaptation of relations and techniques used in object-
oriented languages to the context of component systems provides a lot of room for
further research — new, higher-level abstractions, introduced in these systems,
can bring on new uses for and give new meanings to the “old” well-explored
relations of the object-oriented world.

5 Conclusion

The contents of both the written contributions and the debates described in this
document showed that during this workshop we addressed number of interesting
topics. Of course we were not able to go into the details of all of them here,
but nevertheless feel that this report captures the atmosphere and scope of the
workshop. Both modeling and language levels were covered, and the issues of
evolution, adaptation and transformation, as well as reusability and type-safety,
were given especial emphasis.

The contributions of the participants, and in particular the lively discus-
sion that pervaded the workshop, convince us that workshops where the paper
is only the starting point for the exchange of ideas are more profitable than
mini-conferences that emphasize presentations of papers. Participants have now
enough knowledge on the work of others to think about some collaboration. The
working groups which had been set after the three sessions (even though only
the subject had been set at this time) already provide some early information
on the kind of collaboration that is starting.

A mailing list and a website will be maintained to ensure continuous discus-
sion and visibility even after the end of the workshop.

– Mailing List: maspeghi-ecoop2004@i3s.unice.fr
– Website: http://www.i3s.unice.fr/maspeghi2004

6 Pointers to Related Work

The reader wishing to delve more deeply into the topic of this workshop might
do well to start with the proceedings of the previous workshops dedicated to
inheritance [27, 28, 29], to specialization or generalization [30, 31] and to object
classification [32, 33]. Several Ph.D theses have also been written on these topics,

114 Ph. Lahire et al.

including references [34, 35, 7, 36, 37]; the books by Gamma [16] and Meyer [38]
are also a useful starting point. Papers of particular interest include references
[39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50].

Related Workshops
(workshop name, associated conference, number of participants and Web site):

– Maspeghi 2002 - OOIS 2002 - 15 persons.
http://www.lirmm.fr/~huchard/MASPEGHI/

– Maspeghi 2003 - ASE 2003 - 14 persons.
http://www.iro.umontreal.ca/~maspeghi/

– Inheritance 2002 - ECOOP 2002 - 27 persons from ten countries (15 were
authors or coauthors of an accepted paper).
http://www.cs.auc.dk/~eernst/inhws/

References

1. Arévalo, G., Astudillo, H., Black, A.P., Ernst, E., Huchard, M., Lahire, P., Sakki-
nen, M., Valtchev, P., eds.: Proceedings of the 3rd International Workshop on
”Mechanisms for Specialization, Generalization and Inheritance” (MASPEGHI’04)
at ECOOP’04. University of Nice - Sophia Antipolis, Oslo, Norway (2004)

2. Schrefl, M., Stumptner, M.: Behavior consistent specialization of object life cycles.
ACM Transactions on Software Engineering and Methodology 11 (2002) 92–148

3. Conrad, M., French, T.: Exploring the synergies between the object-oriented
paradigm and mathematics: a Java led approach. International Journal on Ed-
ucation Sciences and Technology (2004) to appear.

4. Crescenzo, P., Lahire, P.: Using both specialisation and generalisation in a pro-
gramming language: Why and how? [30] 64–73

5. Ungar, D., Smith, R.B.: Self: The power of simplicity. In: Proceedings of OOP-
SLA’87. Volume 22(12) of ACM SIGPLAN Notices., Orlando, FL, USA, ACM
press (1987) 227–242

6. Agesen, O., Bak, L., Chambers, C., , Chang, B.W., Hölzle, U., Maloney, J., Smith,
R.B., Ungar, D., Wolczko, M.: The Self 4.0 Programmer’s Reference Manual. Sun
Microsystems, Inc., Mountain View, CA (1995)

7. Ernst, E.: gbeta – A Language with Virtual Attributes, Block Structure, and
Propagating, Dynamic Inheritance. PhD thesis, Devise, Department of Computer
Science, University of Aarhus, Aarhus, Denmark (1999)

8. Schaerli, N., Ducasse, S., Niestrasz, O., Black, A.P.: Traits: composable units
of behaviour. In: Proceedings of ECOOP’03. LNCS(2743), Darmstadt, Germany,
Springer-Verlag (2003) 248–274

9. Ernst, E.: Higher-order hierarchies. In Cardelli, L., ed.: Proceedings of ECOOP’03.
LNCS(2743), Darmstadt, Germany, Springer-Verlag (2003) 303–329

10. Torgersen, M.: The expression problem revisited. In Odersky, M., ed.: Proceedings
of ECOOP’04. LNCS(3086), Oslo, Norway, Springer-Verlag (2004) 123–143

11. Bracha, G., Cook, W.: Mixin-based inheritance. In: Proceedings of OOP-
SLA/ECOOP’90. Volume 25(10) of ACM SIGPLAN Notices., Ottawa, Canada,
ACM press (1990) 303–311

MASPEGHI 2004 115

12. Flatt, M., Krishnamurthi, S., Felleisen, M.: Classes and mixins. In: Conference
Record of POPL ’98: The 25th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, San Diego, California (1998) 171–183

13. Zólyomi, I., Pórkoláb, Z., Kozsik, T.: An extension to the subtype relationship
in C++. In: Proceedings of GPCE’03. LNCS(2830), Erfurt, Germany, Springer-
Verlag (2003) 209–227

14. Varney, L.R.: Interface-oriented programming. Technical Report TR-040016,
UCLA, Department of computer science (2004)

15. Cook, S.: OOPSLA ’87 Panel P2: Varieties of inheritance. In: OOPSLA ’87 Ad-
dendum To The Proceedings. Volume 23(5) of ACM SIGPLAN Notices., Orlando,
FL, USA, ACM Press (1987) 35–40

16. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns – Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, USA (1995)

17. Cook, W.R.: Interfaces and specifications for the Smalltalk-80 collection classes.
In: Proceedings of OOPSLA’92. Volume 27(10) of ACM SIGPLAN Notices., Van-
couver, Canada, ACM Press (1992) 1–15

18. Architecture Board ORMSC1: Model Driven Architecture (MDA), document num-
ber ormsc/01-07-01. Object Management Group. (2001) http://www.omg.org/
docs/ormsc/01-07-01.pdf.

19. Opluštil, T.: Inheritance in SOFA components. Master thesis, Faculty of Infor-
matics, Masaryk University, Brno, Czech Republic (2002)

20. Opluštil, T.: Inheritance in architecture description languages. In J.Šafránková,
ed.: Proceedings of the Week of Doctoral Students conference (WDS 2003), Prague,
Czech Republic, Charles University, Matfyzpress (2003) 118–123

21. Bruneton, E., Coupaye, T., Stefani, J.B.: The Fractal component model. Specifi-
cation. Draft, France Telecom R&D (2004) http://fractal.objectweb.org.

22. Ducournau, R.: “Real World” as an argument for covariant specialization in pro-
gramming and modeling. [30] 3–12

23. Costa Seco, J., Caires, L.: A basic model of typed components. In Bertino, E.,
ed.: Proceedings of ECOOP’00. LNCS(1850), Cannes - Sophia Antipolis, France,
Springer Verlag (2000) 108–128

24. Plášil, F., Vǐsňovský, S.: Behavior protocols for software components. IEEE Trans-
actions on Software Engineering 28 (2002)

25. OMG: Unified Modeling Language (UML) Superstructure - Final Adopted speci-
fication. Object Management Group. (2003) Version 2.0.

26. Bruneton, E.: Fractal ADL tutorial 1.2. France Telecom R&D. (2004)
http://fractal.objectweb.org.

27. Palsberg, J., Schwartzbach, M.I., eds.: Proceedings of the Workshop ”Types, In-
heritance and Assignments” at ECOOP’91. DAIMI PB-357, Geneva, Switzerland,
Computer Science Department, Aarhus University (1991)

28. Sakkinen, M., ed.: Proceedings of the Workshop ”Multiple Inheritance and Mul-
tiple Subtyping” at ECOOP’92. Working Paper WP-23, Utrecht, the Nether-
lands, Department of Computer Science and Information Systems, University of
Jyväskylä (1992)

29. Black, A.P., Ernst, E., Grogono, P., Sakkinen, M., eds.: Proceedings of the Work-
shop ”Inheritance” at ECOOP’02. Number 12 in Publications of Information Tech-
nology Research Institute. University of Jyväskylä, Málaga, Spain (2002)

116 Ph. Lahire et al.

30. Bruel, J.M., Bellahsène, Z., eds.: Advances in Object-Oriented Information Sys-
tems: OOIS 2002 Workshops. LNCS(2426). Springer Verlag, Montpellier, France
(2002)

31. Valtchev, P., Astudillo, H., Huchard, M., eds.: Proceedings of the workshop ”Man-
aging Specialization/Generalization Hierarchies” at ASE 2003. DIRO, University
of Montreal, Montreal, Quebec, Canada (2003)

32. Huchard, M., Godin, R., Napoli, A., eds.: Proceedings of the workshop ”Objects
and Classification: a Natural Convergence” at ECOOP’00. Loria, University of
Nancy, Sophia-Antipolis, France (2000)

33. Huchard, M., Godin, R., Napoli, A.: Objects and classification. In Malenfant, J.,
Moisan, S., Moreira, A., eds.: ECOOP’00 Workshop reader. LNCS(1964), Cannes
- Sophia Antipolis, France, Springer-Verlag (2000) 123–137

34. Bracha, G.: The Programming Language Jigsaw: Mixins, Modularity and Multiple
Inheritance. Ph.D. thesis, Dept. of Computer Science, University of Utah (1992)

35. Cook, W.R.: A Denotational Semantics of Inheritance. PhD thesis, Brown Uni-
versity (1989)

36. Kniesel, G.: Dynamic Object-Based Inheritance with Subtyping. PhD thesis,
Computer Science Department III, University of Bonn (2000)

37. Taivalsaari, A.: A Critical View of Inheritance and Reusability in Object-Oriented
Programming. PhD thesis, University of Jyväskylä (1993)

38. Meyer, B.: Object-oriented Software Construction. second edn. Prentice Hall, New
York, N.Y. (1997)

39. Tip, F., Sweeney, P.F.: Class hierarchy specialization. In: Proceedings of OOP-
SLA’97. Volume 32(10) of ACM SIGPLAN Notices., Atlanta, Georgia, USA, ACM
press (1997) 271–285

40. Ducournau, R., Habib, M., Huchard, M., Mugnier, M.L.: Proposal for a monotonic
multiple inheritance linearization. In: Proceedings of OOPSLA’94. Volume 29(10)
of ACM SIGPLAN Notices., Portland, Oregon, USA, ACM press (1994) 164–175

41. Godin, R., Mili, H.: Building and maintaining analysis-level class hierarchies using
Galois lattices. In: Proceedings OOPSLA’93. Volume 28(10) of ACM SIGPLAN
Notices., Washington, DC, USA, ACM press (1993) 394–410

42. Hauck, F.J.: Inheritance modeled with explicit bindings: An approach to typed
inheritance. ACM SIGPLAN Notices 28 (1993) 231–239

43. Agesen, O., Palsberg, J., Schwartzbach, M.I.: Type inference of SELF: Analysis of
objects with dynamic and multiple inheritance. In Nierstrasz, O., ed.: Proceedings
of ECOOP’93. LNCS(707), Kaiserslautern, Germany, Springer-Verlag (1993) 247–
267

44. Sakkinen, M.: A critique of the inheritance principles of C++. Computing Systems
5 (1992) 69 – 110

45. Ducournau, R., Habib, M., Huchard, M., Mugnier, M.L.: Monotonic conflict reso-
lution mechanisms for inheritance. In: Proceedings of OOPSLA’92. Volume 27(10)
of ACM SIGPLAN Notices., Vancouver, Canada, ACM press (1992) 16–24

46. Szyperski, C.A.: Import is not inheritance - why we need both: Modules and
classes. In Madsen, O.L., ed.: Proceedings of ECOOP’92. LNCS(615), Utrecht,
The Netherlands, Springer Verlag (1992) 19–32

47. Bracha, G., Lindstrom, G.: Modularity meets inheritance. In: Proceedings of
the IEEE Computer Society International Conference on Computer Languages,
Washington, DC, IEEE Computer Society (1992) 282–290

MASPEGHI 2004 117

48. Cardelli, L.: Structural subtyping and the notion of power type. In: POPL ’88.
Proceedings of the conference on Principles of programming languages, San Diego,
CA, USA, ACM Press (1988) 70–79

49. Cardelli, L., Wegner, P.: On understanding types, data abstraction and polymor-
phism. ACM Computing Surveys 17 (1985) 480–521

50. Cardelli, L.: A semantics of multiple inheritance. In: Semantics of Data Types,
International Symposium Sophia-Antipolis Proceedings. LNCS(173). Springer-
Verlag (1984) 51–67

Software Evolution:
A Trip Through Reflective, Aspect,

and Meta-data Oriented Techniques

Walter Cazzola1, Shigeru Chiba2, and Gunter Saake3

1 DICo - Department of Informatics and Communication,
Università degli Studi di Milano,

Milano, Italy
cazzola@dico.unimi.it

2 Department of Mathematical and Computing Sciences,
Tokyo Institute of Technology,

Tokyo, Japan
chiba@is.titech.ac.jp

3 Institute für Technische und Betriebliche Informationssysteme,
Otto-von-Guericke-Universität Magdeburg,

Magdeburg, Germany
saake@iti.cs.uni-magdeburg.de

Abstract. Previous workshops related to aspect oriented software development,
reflection organized at previous ECOOP conferences (e.g., RMA’001.and AOM-
MeT’012.) and conferences on the same topics (Reflection’01 and AOSD since
2002) have pointed out the growing interest on these topics and their relevance in
the software evolution as techniques for code instrumentation. Very similar con-
clusions can be drawn by reading the contributions to the workshops on unantic-
ipated software evolution (USE 2002 and USE 20033.).

Following the example provided by these venues, the RAM-SE (Reflection,
AOP and Meta-Data for Software Evolution) workshop has provided an oppor-
tunity for researchers with a broad range of interests in reflective techniques and
aspect-oriented software development to discuss recent developments of such a
techniques in application to the software evolution.

The workshop main goal was to encourage people to present works in progress.
These works could cover all the spectrum from theory to practice. To ensure cre-
ativity, originality, and audience interests, participants have been selected by the
workshop organizers on the basis of 5-page position paper. We hope that the
workshop will help them to mature their ideas and to improve the quality of their
future publications based on the presented work.

The workshop proceedings are available as research report C-186 of the De-
partment of Mathematical and Computing Sciences of the Tokyo Institute of
Technology and freely downlodable from the workshop web site4.

1 Details at http://www.disi.unige.it/RMA2000.html
2 Details at http://ecoop2001.inf.elte.hu/workshop/AOMMeT-ws.html
3 Details at http://www.joint.org/use/
4 RAM-SE04 Web Site: http://homes.dico.unimi.it/RAM-SE04.html

J. Malenfant and B.M. Østvold (Eds.): ECOOP 2004, LNCS 3344, pp. 118–132, 2004.
c©Springer-Verlag Berlin Heidelberg 2004

Software Evolution 119

Workshop Description and Objectives

Software evolution and adaptation is a research area, as also the name states, in con-
tinuous evolution, that offers stimulating challenges for both academic and industrial
researchers. The evolution of software systems, to face unexpected situations or just
for improving their features, relies on software engineering techniques and methodolo-
gies. Nowadays a similar approach is not applicable in all situations e.g., for evolving
nonstopping systems or systems whose code is not available.

The evolution of software systems, to face unexpected situations or just for improv-
ing their features, relies on software engineering techniques and methodologies. Nowa-
days a similar approach is not applicable in all situations e.g., for evolving nonstopping
systems or systems whose code is not available.

Features of reflection such as transparency, separation of concerns, and extensibil-
ity seem to be perfect tools to aid the dynamic evolution of running systems. Aspect-
oriented programming (AOP in the next) can simplify code instrumentation whereas
techniques that rely on meta-data can be used to inspect the system and to extract the
necessary data for designing the heuristic that the reflective and aspect-oriented mech-
anism use for managing the evolution.

We feel the necessity to investigate the benefits brought by the use of these tech-
niques on the evolution of object-oriented software systems. In particular we would
determine how these techniques can be integrated together with more traditional ap-
proaches to evolve a system and the benefits we get from their use.

The overall goal of this workshop was that of supporting circulation of ideas be-
tween these disciplines. Several interactions were expected to take place between re-
flection, aspect-oriented programming and meta-data for the software evolution, some
of which we cannot even foresee. Both the application of reflective or aspect-oriented
techniques and concepts to software evolution are likely to support improvement and
deeper understanding of these areas. This workshop has represented a good meeting-
point for people working in the software evolution area, and an occasion to present re-
flective, aspect-oriented, and meta-data based solutions to evolutionary problems, and
new ideas straddling these areas, to provide a discussion forum, and to allow new col-
laboration projects to be established. The workshop was a full day meeting. One part of
the workshop was devoted to presentation of papers, and another to panels and to the
exchange of ideas among participants.

Workshop Topics and Structure

Every contribution that exploits reflective techniques, aspect-oriented programming
and/or meta-data to evolve software systems were welcome. Specific topics of inter-
est for the workshop have included, but were not limited to:

– reflective middleware and environments for software evolution;
– adaptative software components;
– feature-oriented adaptation;
– aspect interference and composition for software evolution;
– evolution and adaptability;

120 W. Cazzola, S. Chiba, and G. Saake

– MOF, code annotations and other meta-data facilities for software evolution;
– intercession and introspection;
– software evolution tangling concerns.

To ensure lively discussion at the workshop, the organizing committee has chosen
the contributions on the basis of topic similarity that will permit the beginning of new
collaborations. To grant an easy dissemination of the proposed ideas and to favorite an
ideas interchange among the participants, accepted contributions are freely download-
able from the workshop web page:

http://homes.dico.unimi.it/RAM-SE04.html.

The proceedings of the event is also available as research report C-186 of the Dept.
of Mathematical and Computing Sciences of the Tokyo Institute of Technology.

The workshop was a full day meeting organized in four sessions. Each session has
been characterized by a dominant topic that perfectly describes the presented papers
and the related discussions. The four dominant topics were: reflective middleware for
software evolution, software evolution and refactoring, join points and crosscutting
concerns for software evolution, and parametric aspects and generic aspect languages.
During each session, half time has been devoted to papers presentation, and the rest
of the time has been devoted to debate about the on-going works in the area, about
relevance of the approaches in the software evolution area and the achieved benefits.
The discussion related to each session has been brilliantly lead respectively by Yvonne
Coady, Joseph W. Yoder, Günter Kniesel and Hidehiko Masuhara.

The workshop has been very lively, the debates very stimulating, and the high num-
ber of participants (see appendix A) testifies the growing interest in the application of
reflective, aspect- and meta-data oriented techniques to software evolution.

Important References

To an occasional reader who would like to deepen his(her) knowledge about the topics
of this workshop (that is, to learn more about reflection, aspect-oriented programming
and software evolution), we suggest to read the following basic contributions:

– Pattie Maes. Concepts and Experiments in Computational Reflection. In Proceed-
ings of the 2nd Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA’87), pages 147–156, Orlando, Florida, USA, October
1987. ACM.

– Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In
11th European Conference on Object Oriented Programming (ECOOP’97), LNCS
1241, pages 220–242, Helsinki, Finland, June 1997. Springer-Verlag.

– Keith H. Bennett and Václav T. Rajlich. Software Maintenance And Evolution:
A Roadmap. In Anthony Finkelstein, editor, The Future of Software Engineering,
pages 75–87. ACM Press, 2000.

Whereas, to learn more about the use of reflective or aspect-oriented techniques in
the software evolution and maintenance we suggest to look at the following proceedings
and books:

Software Evolution 121

– Walter Cazzola, Robert J. Stroud, and Francesco Tisato, editors, Reflection and
Software Engineering, LNCS 1826. Springer, Heidelberg, Germany, June 2000.

– Akinori Yonezawa and Satoshi Matsuoka, editors. Proceedings of 3rd International
Conference on Metalevel Architectures and Separation of Crosscutting Concerns
(Reflection’2001), LNCS 2192. Kyoto, Japan, September 2001. Springer.

– The Proceedings of the AOSD Conferences from 2002 to 2004. Available from
http://aosd.net/archive/index.php.

Besides, to keep up to date with the evolution of the software evolution research
area we suggest to consult the following page:

– Program-Transformation.org:

http://www.program-
transformation.org/twiki/bin/view/Transform/SoftwareEvolution

which collects a lot of useful links related to software evolution (in a general sense).

1 Workshop Overview: Session by Session

In this session of the report we gather together the opinions of the session chairmen (and
woman) relatively to the session and the panel they have lead, and their considerations
about the future trends.

Session on Reflective Middleware for Software Evolution
Summary by Yvonne Coady (Session Chair, University of Victoria, Canada)

There were three papers in the session, all related to reflective middleware for the
software evolution.

[2] Reflections on Programming with Grid Toolkits. Emiliano Tramontana (Università
di Catania, Italy) and Ian Welch (Victoria University of Wellington, New Zealand).

Emiliano Tramontana gave the talk.
This paper presents an approach for developing Grid applications. In this approach,

developers need not include any code handling toolkit specific concerns nor adapta-
tion for changing conditions of the environment. This proposed solution consists of
two aspects. Firstly, applications are developed in a centralised manner and automat-
ically transformed to be distributed into the Grid, where they use a suitable commu-
nication primitive. Secondly, an open implementation of Globus is used to enable dy-
namic changes at run-time of the communication infrastructure and the service con-
tainer.

Panel session: During the panel session Emiliano was asked if the development of
the client and the server side of a Grid system took place all at once or in a coordinated
way. His answer was that they are developed separately and the approach proposes
to have only a coordinated way to add/remove nonfunctional concerns to/from both
sides.

122 W. Cazzola, S. Chiba, and G. Saake

Follow-up questioning then asked whether just the proposed reflective Grid, alone,
could satisfy both the need for adapting the application and the middleware. Emiliano’s
answer was that distribution would still need to be added into the application before
its execution could be affected/adapted by the reflective Grid, especially when the ap-
plication is initially sent for execution to a host that does not provide all the reflective
middleware.

[3] Using Aspects to Make Adaptive Object-Models Adaptable. Ayla Dantas, Paulo
Borba (Federal University of Pernambuco, Brazil) and Joe Yoder and Ralph Johnson
(University of Illinois at Urbana-Champaign, USA).

Paulo Borba gave the talk.
This paper argues that AOP and adaptive object-models (AOM) play complemen-

tary roles for structuring adaptive applications. Whereas AOM support flexible dynamic
adaptations by representing business rules and entities as data, AOP modularizes the
crosscutting adaptation code. In addition to the results presented in the paper, further
metrics were presented to quantifiably compare the approaches.

Panel session: The first part of the discussion was about the importance of metrics
to provide a meaningful comparison, and the particularly nice job the authors did in the
presentation. Follow-up discussion included issues such as the use of generic aspects
for implementing adaptation concerns. The general consensus at the end of the discus-
sion was that people thought they would be indeed useful to have reusable adaptation
aspects.

[4] RAMSES: a Reflective Middleware for Software Evolution. Walter Cazzola (Uni-
versità di Milano, Italy) and Ahmed Ghoneim and Gunter Saake (University of
Magdeburg, Germany).

Ahmed Ghoneim gave the talk.
This paper presents a middleware for dynamically evolving and validating consis-

tency of software systems against run-time changes. This middleware is based on a
reflective architecture that provides objects with the ability to dynamically change their
behavior by using design information. The evolution takes place in two steps: first a
meta-object (the evolutionary meta-object) plans a possible evolution against the de-
tected external events then another meta-object (the consistency checker meta-object)
validates the feasibility of the proposed plan before really evolving the system.

Panel session: The first question involved the use of XMI schemas and their use.
XMI is XML Meta Interchange, and this approach extracts XMI schemes from the UML
models, and then uses this data at run-time. A second question involved the ability to
drive both evolution and consistency. Both the meta-objects in this approach (evolution-
ary and consistency checker) inherit engine, which includes a set of rules. Script rules
are used for modifying the reified XMI for run-time events and check the modified XMI.

Session on Software Evolution and Refactoring
Summary by Joe Yoder (Session Chair, The Refactory Inc.)

This session presented four talks on how to handle dynamic aspects and adaptability
with AOP. These papers outlined some interesting approaches to adapt to changing

Software Evolution 123

requirements which include frameworks for dynamically refactoring separation of con-
cerns and dynamic ways to deal with runtime adaptability.

The outlines of the talks are as follows:

[5] Ruzanna Chitchyan (Lancaster University, UK) presented the work on “AOP and
Reflection for Dynamic Hyperslices”. This paper described a model for dynamic
hyperslices which uses a particular aspect-oriented approach - Hyperspaces - for
decomposition and reflection as a means for composition of software modules.
This model allows for structured, dynamic, incremental change introduction and
rollback, thus, supporting run-time evolution yet preserving component modularity.
The applicability of the model is illustrated through a schema adaptation scenario.

[6] Peter Ebraert (Vrij Universiteit Brussel) presented the work on “A Reflective Ap-
proach to Dynamic Software Evolution”. The paper outlines a solution that allows
systems to remain active while they are evolving. The approach goes out from the
principle of separated concerns and has two steps. In the first step, they make sure
that the system’s evolvable concerns are cleanly separated by proposing aspect min-
ing and static refactorings for separating those concerns. In the second step, they
allow every concern to evolve separately. A preliminary reflective framework that
allows dynamic evolution of separate concerns is outlined.

[7] Yvonne Coady (University of Victoria) presented the work on “OASIS: Organic As-
pects for System Infrastructure Software Easing Evolution and Adaptation through
Natural Decomposition”. The OASIS project explores the potential of aspects to
naturally shape crosscutting system concerns as they grow and change. This paper
describes ongoing work to modularize evolving concerns within high-performance
state-of-the-art systems software, and outlines some of the major challenges that lie
ahead within this domain.

[8] Yoshiki Sato (Tokyo Institute of Technology) presented the work on “Negligent
Class Loaders for Software Evolution”. This paper presents a negligent class loader,
which can relax the version barrier between class loaders for software evolution.
The version barrier is a mechanism that prevents an object of a version of a class
from being assigned to a variable of another version of that class. In Java, if a class
definition (i.e. class file) is loaded by different class loaders, different versions of
the class are created and regarded as distinct types. If two class definitions with
the same class name are loaded by different loaders, two versions of the class are
created and they can coexist while they are regarded as distinct types.

The following highlight the main questions the presenters and the audience dis-
cussed after the presentations:

– How do you ensure consistency when making changes at run-time? Sometimes the
model needs to clearly define the adaptability parameters up front, thus managing
consistency.

– How do you deal with performance issues while dynamically loading new versions
with the class loader? Some well known techniques were discussed such as static
code translation, just-in-time hook insertion and modified JVM.

In summary, providing dynamic ways to adapt to changing requirements has some
great potential benefits for software developers. Using some well-known reflection tech-
niques in conjunction with AOP can really assist with this by separating what changes

124 W. Cazzola, S. Chiba, and G. Saake

from what doesn’t and by allowing ways to refactor your systems by dynamically ap-
plying new weavings for the evolving separation of concerns during run-time. Also, by
using AOP to separate adaptable concerns shows promise for assisting with run-time
adaptations.

Session on Join Points and Crosscutting Concerns for SW Evolution
Summary by Günter Kniesel (Session Chair, University of Bonn, Germany)

This and next session were dedicated to the relation between software evolution and
aspect oriented software development (AOSD). This session focused on the influence
of join point models, a central concept of AOSD, on evolution and evolvability. The
three papers in this session addressed this issue from different perspectives:

[9] Nicolas Pessemier (INRIA, France) presented the paper “Components, ADL &
AOP: Towards a Common Approach”. In his talk he motivated the need for uni-
fication and explained the approach taken in the FRACTAL project. FRACTAL
integrates the notion of components with ports and port binding from the domain
of architecture description languages with the AOSD specific notion of join points.

[10] Naoyasu Ubayashi (Kyushu Institute of Technology, Japan) presented the paper
“An AOP Implementation Framework for Extending Join Point Models”. He argued
that current join point models are too rigid and extensible join point models are
needed instead to foster unanticipated evolution. Then he introduced a reflective
API for defining join points, which gives programmers complete control over join
points and the kind of weaving actions to be performed at a specific join point.

[11] Sonia Pini (University of Genova, Italy) presented the paper “Evolving Pointcut
Definition to Get Software Evolution”. She explained the need for a formal model
of join points and showed that no satisfactory one is available so far for dynamic
join points. Then she introduced the use of UML statechart diagrams as a precise
specification of dynamic join points. She showed that evolving the diagram con-
cisely captures evolution scenarios that are hard to express otherwise (in AspectJ,
for instance).

In the subsequent discussion the first paper attracted no critical remarks regarding
the chosen approach or its utility. The asked questions only requested clarification of
technical details of the used join point model.

For the second paper its reliance on a reflective API within an AOP approach trig-
gered a lively discussion. Some attendants argued that such a combination should be
avoided since AOP had been motivated in the first place by the desire to provide a sim-
pler abstraction than full reflection. Others pointed out that it may be worthwhile to go
“back to the roots” and review “old” design decisions in the light of new experience.

The third paper was received with a mix of positive surprise about the simplic-
ity and elegance of the statechart based join point specification and some skepticism
about the compositionality of different specifications and the scalability of the ap-
proach.

Software Evolution 125

Session on Parametric Aspects and Generic Aspect Languages
Summary by Hidehiko Masuhara (Session Chair, University of Tokyo, Japan)

This session had three talks on AOP languages and frameworks to develop software
systems that are more robust to software evolution.

By supporting separation of crosscutting concerns, aspect-oriented programming
languages, AspectJ in particular, are known to be useful to develop more reusable pro-
grams. For example, Hannemann and Kiczales presented that some of the GoF design
patterns can be provided as reusable aspects in AspectJ [12]. However, the experiences
also revealed that current AOP languages are not sufficient for providing certain kinds of
reusable aspects. The three talks in this session addressed the problem by introducing
aspects whose pointcuts, introductions and advices are parameterized. These generic
definitions can be tailored to different applications by instantiating some of their pa-
rameters. The outlines of the talks are as follows (in the order presented):

[13] Jordi Alvarez Canal (Universitat Oberta de Catalunya, Spain) presented the work
on “Parametric Aspects: A Proposal”, in which parametric aspects can take type pa-
rameters, and are useful to define abstract factory patterns in a domain-independent
way and simple Enterprise Java Beans.

[14] Philip Greenwood (Lancaster University, UK) presented the work on “Dynamic
Framed Aspects for Dynamic Software Evolution”, in which aspects support dy-
namic changes in software systems. The approach is based on the Framed Aspects
to parameterize the aspects for a specific use.

[15] Tobias Rho (University of Bonn, Germany) presented the work on “Evolvable Pat-
tern Implementations need Generic Aspects”, which points out that the evolution
of design patterns is rarely supported in existing AOP languages. He also intro-
duced the language LogicAJ, an extension of AspectJ in which homogeneously
generic aspects are supported. LogicAJ is based on the use of logic meta variables
as placeholders for arbitrary program elements, a concept borrowed from logic pro-
gramming languages.

After the talks, the presenters and the audience discussed the following questions:

– How those proposals are different from each other? While all three talks proposed
some form of generic aspects they differ in terms of their primary target, syntax,
generality, and so forth. LogicAJ is an attempt to provide general framework to
cover various kinds of generic aspects; Parametric Aspects offer simpler syntax;
and Framed Aspects are more interested in supporting product lines, rather than
supporting reusable design patterns.

– How those proposals support for software evolution? Generally, they all improve
modularity of software systems so that independently evolving parts can be sepa-
rated from others.

– How those proposals ensure the correctness of the generated aspects? Since all
those proposals generate base code from generic definitions, it might be possible
to generate incorrect code. It would be better if the system could check the safety
of a generic aspect and the code that instantiates the aspect into specific context

126 W. Cazzola, S. Chiba, and G. Saake

so that incorrect code is never generated5. All of the proposals currently check the
correctness after they generated base code for specific contexts. LogicAJ aims at
checking the correctness before generating aspects by extending its logical frame-
work to static types. Both parametric aspects and framed aspects are willing to offer
some means to check before generation as well.

To summarize the session, generic or parametric AOP languages and frameworks are
promising means to develop more evolvable and better modularized software systems.
At the same time there are also interesting challenges such as supporting rich kind of
evolution and statically ensuring correctness.

2 Software Evolution Trends: The Organizers’ Opinion

The authors, with this report, would like to go beyond the mere presentation of statistical
and generic information related to the workshop and to its course. They try to speculate
about the current state of art of the research in the field and to evaluate the role of
reflection, AOSD and meta-data in the software evolution.

The Role of Reflection in Software Evolution
Comment by Walter Cazzola (Università di Milano)

In [16], software evolution is defined as a kind of software maintenance that takes place
only when the initial development was successful. The goal consists of adapting the
application to the ever-changing, and often in an unexpected way, user requirements
and operating environment.

Software evolution, as well as software maintenance, is characterized by its huge
cost and slow speed of implementation. Often, software evolution implies a redesign of
the whole system, the development of new features and their integration in the existing
and/or running systems (this last step often implies a reboot of the system). The redesign
and develop steps correspond to an economic effort from the software producer that
often does not have an immediate benefit from this extra work whereas the integration
step involves also the user of the system.

The chimera of the current and future trends in this discipline is to beat down the cost
of evolving a system. The most recognized approach consists of minimizing the impact
of the software evolution on the activity of the user and of improving the software adapt-
ability. This statement brings forth the need for a system to manage itself to some ex-
tent, to inspect components’ interfaces dynamically, to augment its application-specific
functionality with additional properties, and so on. To deal with these issues many re-
searchers are developing middleware for supporting the software evolution without af-
fecting the activity or the property of the system that has to be evolved. Few examples of
this kind of middleware have been presented also to our workshop, see [3], [7] and [4].

5 Note that it can be checked in some situations as we see in the programming languages with
polymorphic types, such as ML.

Software Evolution 127

Reflection is a discipline that is steadily attracting attention within the community of
object-oriented researchers and practitioners. From a pragmatic point of view, several
reflective techniques and technologies lend themselves to be employed in addressing
the software evolution issue. On a more conceptual level, several key reflective princi-
ples could play an interesting role as general software design and evolution principles.
Even more fundamentally, reflection may provide a cleaner conceptual framework than
that underlying the rather ‘ad-hoc’ solutions embedded in most commercial platforms
and technologies, and so on. The transparent nature of reflection makes it well suited to
address problems such as evolution of legacy systems, customizable software, product
families, and more. The properties of transparency, separation of concerns, and extensi-
bility supported by reflection have largely been recognized as useful for software devel-
opment and design. These features seem perfect tools to aid the dynamic evolution of
running systems providing the basic mechanisms for adapting (i.e., evolving) a system
without directly altering or stopping the existing system.

A reflective architecture represents the perfect structure that allows running systems
to adapt themselves to unexpected external events, i.e., to consistently evolve. In this
kind of reflective architecture, the system running in the base-level should be the one
prone to be adapted, whereas software evolution should be the nonfunctional feature
realized by the meta-level system. Reflection plays a fundamental role allowing the
meta-level system of inspecting and instrumenting the code of the base-level system in
a transparent way and independently of the knowledge of such code. This approach,
therefore, permits of developing the software evolution as a separate and independent
system that could be connected at any time to the system to be adapted without any
specific requirement.

In theory, this kind of middleware can provide many benefits (e.g., dynamic patching
to critical failures without stopping the system and the consequently the postponement
of the system redesigning) but it is not to simple and immediate to realize. To evolve the
base-level system and maintain it consistent and stable, the meta-level system must face
many problems. The most important are: (1) to determine which events cause the need
for evolving the base-level system (2) how to react on events and the related evolutionary
actions (3) how to validate the consistency and the stability of the evolved system and
eventually how to undo the evolution, (4) to determine which information are need to the
evolution and/or are involved by the evolution. Therefore, the future research in reflective
middleware for software evolution should face these open issues and many others.

The Role of AOP in Software Evolution
Comment by Shigeru Chiba (Tokyo Institute of Technology)

AOP (Aspect Oriented Programming) gives us a new concept called aspects, which im-
prove our ability for modeling and designing software. In traditional OOP (Object Ori-
ented Programming), we must decompose software into a number of objects. A group
of objects that have similar functionality is categorized as a class. We have been devel-
oping and maintaining software by using a class as a minimum unit of maintenance.
However, in practice, there are usually several different means of decomposing soft-
ware into objects. Developers could take multiple viewpoints for decomposition; every
viewpoint would cause different decomposition. A problem is that there is no single

128 W. Cazzola, S. Chiba, and G. Saake

best viewpoint for decomposition. Some viewpoints would be good for developing or
maintaining some parts of software and others would be good for doing other parts.

AOP enables us to decompose software from various viewpoints – aspects – as
well as the dominant viewpoint represented by classes. For example, in the AspectJ
language, some functionality that must be spread over several classes in a traditional
OOP language can be separated into an independent module called an aspect. In AOP,
such functionality is called a crosscutting concern.

Since AOP enables better modeling and designing of software, it is absolutely use-
ful technology for software evolution. Well modeled and designed software is easy to
maintain for evolution. If a crosscutting concern is separated as an independent module,
that concern can be maintained without touching other modules. This fact will reduce
maintenance costs of software evolution.

An issue actively discussed during the workshop was the maintainability of aspects
themselves. Speakers pointed out that the implementation of some aspects heavily de-
pends on other class-based modules and hence those aspects cannot be maintained in-
dependently of the other modules. In other words, aspects are in separate files but they
must be edited when the classes that the aspects depend on are edited. Such aspects
cannot be regarded as a truly separated module. This problem can be avoided by using
abstract aspects to a certain degree, but the use of abstract aspects is a limited solution.

A better solution of this problem is to introduce parametric aspects. In fact, one
session of this workshop was allocated for discussing this topic. Roughly to say, para-
metric aspects are generic templates that are used to generate concrete aspects in the
given contexts. For example, Rho presented their language called LogicAJ, in which
developers can write generic aspects using logic variables. He showed that some design
patterns can be implemented as aspects in LogicAJ but the definitions of these aspects
can be independent of the definitions of the classes that are woven with the aspects.

Although parametric aspects are powerful language constructs, there is still a ques-
tion; are there any unique issues or techniques for parametric aspects against parametric
classes? For example, the C++ template system is powerful and well-studied. The Java
generics system is also. Are parametric aspect systems just straightforward variations
of such parametric class systems? If not, what are design issues unique to generics for
AOP? In OOP, classes can be regarded as types. Parametric classes have been studied
by the researchers of type theory. Is it possible that we apply the results of such study to
parametric aspects? If not, is there any theoretical background of parametric aspects?

The Role of Meta-data in Software Evolution
Comment by Gunter Saake (University of Magdeburg)

Future software systems should be robust and adaptive to a changing environment and
to evolving requirements. This adaptiveness requires a kind of self-awareness — a soft-
ware system has to reason about itself to be able to react on external stimuli requiring a
modification.

Current software technology does not allow to build general systems reacting on ar-
bitrary, unforeseen changes which require unanticipated modifications of system

Software Evolution 129

structure and behavior. However, for restricted scenarios we can use for example reflec-
tion to react on explicit events of the environments with a modified behavior.

A key concept of such software systems are explicit meta-data. Meta-data are used
to describe (relevant parts of) system architecture, system objects and behavior in a
form which can be processed by a software system. Self-awareness of a system is only
possible if the system has a kind of system model of itself and such a system model can
be described as meta-data of that system.

This use of meta-data opens some research problems:

– How to represent meta-data? A promising approach is to use standards where ap-
propriate, for example UML notation and XML coding. Are domain-specific lan-
guages more appropriate than general frameworks?

– What is the best abstraction level for the system model? It should be detailed
enough to represent the implemented system correctly, but abstract enough to have
manageable reasoning rules. One solution is to use a design model for reasoning
instead of the implementation model. In this case, one has to propagate changes
from the design to the implementation each time an adaptation is performed.

– Can meta-data be automatically extracted from source code and documentation?
When should the extraction be done? What about continuous extraction versus in-
cremental update of meta-data? How to filter the extracted meta-data? Can all this
be done with reasonable performance? Is it possible to performing a kind of meta-
data mining process on the running system itself?

– What kind of reasoning is necessary to compute a modification at run-time? A
modification has to react on the changed requirements, but system functionality
has to be preserved. The reasoning process therefore is driven by a certain goal
with some strong constraints on the resulting solution.

– Using extracted meta-data, can we be sure about the consistency of the meta-data
w.r.t. the actual system? How to detect discrepancies? How to minimize the amount
of extracted information?

– Can we find a general meta-data presentation for different kinds of software sys-
tems, or do we need application specific frameworks?

– Is meta-data management done by the system itself, or does the system use services
of a meta-data repository? If so, which services are core services for self-adaptive
systems?

– Besides the dynamic evolution using reflection, we still have a more static kind
of evolution through new releases of the software and so on. These two kinds of
evolution have to be synchronized. That is, we need a backpropagation of evolution
steps through reflection onto design documents, source code and documentation.

Meta-data for software evolution was not a core topic of the workshop but appears
in several presentations notwithstanding that I confide that in the future, meta-data will
become more and more important in the software evolution research area. Two pre-
sentations make explicit use of meta-data and reflection in their approaches. Cazzola,
Ghoneim and Saake [4] propose a reflective middleware, where meta-data based on de-
sign models in UML are used for evolution. This meta-data is represented in XMI format.
For reflection, two meta-objects play together: the evolutionary object plans evolution
steps, and the consistency checker object proves correctness of evolution plans. Ebraert

130 W. Cazzola, S. Chiba, and G. Saake

and Tourwé [6] represent the object structure of the system explicit on the meta-level.
For evolution, the meta-level evolves and the changes are propagated to the base level.

3 Final Remarks

This workshop main goal was to encourage people to present works in progress in the
area of the application of reflective and aspect-oriented techniques applied to software
evolution. The workshop was lively and the debates were very stimulating. We hope
that the workshop has helped researchers to mature their idea and we encourage the
accepted papers to be submitted to the attention of more important venues.

Acknowledgements. We wish to thank Yvonne Coady, Günter Kniesel, Hidehiko Ma-
suhara, and Joseph Yoder both for their interest in the workshop, and for their help
during the workshop and in writing part of this report. We wish also to thank all the
researchers that have participated to the workshop.

We have also to thank the Department of Informatics and Communication of the
University of Milan, the Department of Mathematical and Computing Sciences of the
Tokyo institute of Technology and the Institute für Technische und Betriebliche Infor-
mationssysteme, Otto-von-Guericke-Universität Magdeburg for their various supports.

A Workshop Attendee

The success of the workshop is mainly due to the people that have attended it and to
their effort to participate to the discussions. The following is the list of the attendees in
alphabetical order.

Name Affiliation Country e-mail
Alvarez Canal, Jordi Universitat Oberta de Catalunya Spain jalvarezc@uoc.edu
Borba, Paulo Federal University of Pernambuco Brazil phmb@cin.ufpe.br
Cazzola, Walter Università degli Studi di Milano Italy cazzola@dico.unimi.it
Chiba, Shigeru Tokyo Institute of Technology Japan chiba@is.titech.ac.jp
Chitchyan, Ruzanna Lancaster University United Kingdom r.chitchyan@lancaster.ac.uk
Coady, Yvonne University of Victoria Canada ycoady@cs.uvic.ca
Ebraert, Peter Vrij Universiteit Brussel Belgium pebraert@vub.ac.be
Ghoneim, Ahmed University of Magdeburg Germany ghoneim@iti.cs.uni-magdeburg.de
Greenwood, Phil Lancaster University United Kingdom greenwop@comp.lancs.ac.uk
Kniesel, Günter University of Bonn Germany gk@cs.uni-bonn.de
Masuhara, Hidehiko University of Tokyo Japan masuhara@graco.c.u-tokyo.ac.jp
Monfort, Valérie MDTVision France v-monfort@mdtvision.com
Nyström, Sven-Olof Uppsala University Sweden svenolof@user.it.uu.se
Pessemier, Nicolas INRIA France nicolas.pessemier@lifl.fr
Pini, Sonia Università degli Studi di Genova Italy pini@disi.unige.it
Rho, Tobias University of Bonn Germany rho@cs.uni-bonn.de
Saake, Gunter University of Magdeburg Germany saake@iti.cs.uni-magdeburg.de
Sato, Yoshiki Tokyo Institute of Technology Japan yoshiki@csg.is.titech.ac.jp
Seinturier, Lionel INRIA France lionel.seinturier@lifl.fr
Störzer, Maximilian Universität Passau Germany stoerzer@fmi.uni-passau.de
Tanter, Eric University of Chile Chile etanter@dcc.uchile.cl
Tramontana, Emiliano Università di Catania Italy tramonta@dmi.unict.it
Ubayashi, Naoyasu Kyushu Institute of Technology Japan ubayashi@ai.kyutech.ac.jp
Yahiaoui, Nesrine Université de Versailles France nesrine.yahiaoui@edf.fr
Yoder, Joseph W. The Refactory Inc. U.S.A. joeyoder@joeyoder.com
Yonezawa, Akinori University of Tokyo Japan yonezawa@yl.is.s.u-tokyo.ac.jp

Software Evolution 131

References

1. Cazzola, W., Chiba, S., Saake, G., eds.: Proceedings of the 1st ECOOP Workshop on Reflec-
tion, AOP and Meta-Data for Software Evolution (RAM-SE’04). Research Report C-196 of
the Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology. Preprint
No. 10/2004 of Fakultät für Informatik, Otto-von-Guericke-Universität Magdeburg (2004)

2. Tramontana, E., Welch, I.: Reflections on Programming with Grid Toolkits. In Cazzola, W.,
Chiba, S., Saake, G., eds.: Proceedings of ECOOP’2004 Workshop on Reflection, AOP and
Meta-Data for Software Evolution (RAM-SE’04), Oslo, Norway (2004) 3–8

3. Dantas, A., Yoder, J.W., Borba, P., Johnson, R.: Using Aspects to Make Adaptive Object-
Models Adaptable. In Cazzola, W., Chiba, S., Saake, G., eds.: Proceedings of ECOOP’2004
Workshop on Reflection, AOP and Meta-Data for Software Evolution (RAM-SE’04), Oslo,
Norway (2004) 9–19

4. Cazzola, W., Ghoneim, A., Saake, G.: RAMSES: a Reflective Middleware for Software Evo-
lution. In Cazzola, W., Chiba, S., Saake, G., eds.: Proceedings of ECOOP’2004 Workshop
on Reflection, AOP and Meta-Data for Software Evolution (RAM-SE’04), Oslo, Norway
(2004) 21–26

5. Chitchyan, R., Sommerville, I.: AOP and Reflection for Dynamic Hyperslices. In Cazzola,
W., Chiba, S., Saake, G., eds.: Proceedings of ECOOP’2004 Workshop on Reflection, AOP
and Meta-Data for Software Evolution (RAM-SE’04), Oslo, Norway (2004) 29–35

6. Ebraert, P., Tourwé, T.: A Reflective Approach to Dynamic Software Evolution. In Cazzola,
W., Chiba, S., Saake, G., eds.: Proceedings of ECOOP’2004 Workshop on Reflection, AOP
and Meta-Data for Software Evolution (RAM-SE’04), Oslo, Norway (2004) 37–43

7. Gibbs, C., Coady, Y.: OASIS: Organic Aspects for System Infrastructure Software Easing
Evolution and Adaptation through Natural Decomposition. In Cazzola, W., Chiba, S., Saake,
G., eds.: Proceedings of ECOOP’2004 Workshop on Reflection, AOP and Meta-Data for
Software Evolution (RAM-SE’04), Oslo, Norway (2004) 45–52

8. Sato, Y., Chiba, S.: Negligent Class Loaders for Software Evolution. In Cazzola, W., Chiba,
S., Saake, G., eds.: Proceedings of ECOOP’2004 Workshop on Reflection, AOP and Meta-
Data for Software Evolution (RAM-SE’04), Oslo, Norway (2004) 53–58

9. Pessemier, N., Seinturier, L., Duchien, L.: Components, ADL & AOP: Towards a Com-
mon Approach. In Cazzola, W., Chiba, S., Saake, G., eds.: Proceedings of ECOOP’2004
Workshop on Reflection, AOP and Meta-Data for Software Evolution (RAM-SE’04), Oslo,
Norway (2004) 61–69

10. Ubayashi, N., Masuhara, H., Tamai, T.: An AOP Implementation Framework for Extending
Join Point Models. In Cazzola, W., Chiba, S., Saake, G., eds.: Proceedings of ECOOP’2004
Workshop on Reflection, AOP and Meta-Data for Software Evolution (RAM-SE’04), Oslo,
Norway (2004) 71–81

11. Cazzola, W., Pini, S., Ancona, M.: Evolving Pointcut Definition to Get Software Evolution.
In Cazzola, W., Chiba, S., Saake, G., eds.: Proceedings of ECOOP’2004 Workshop on Re-
flection, AOP and Meta-Data for Software Evolution (RAM-SE’04), Oslo, Norway (2004)
83–88

12. Hannemann, J., Kiczales, G.: Design pattern implementation in Java and AspectJ. In:
Proceedings of the 17th Annual ACM Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA’02), ACM Press (2002) 161–173

13. Alvarez Canal, J.: Parametric Aspects: A Proposal. In Cazzola, W., Chiba, S., Saake, G., eds.:
Proceedings of ECOOP’2004 Workshop on Reflection, AOP and Meta-Data for Software
Evolution (RAM-SE’04), Oslo, Norway (2004) 91–99

132 W. Cazzola, S. Chiba, and G. Saake

14. Greenwood, P., Loughran, N., Blair, L., Rashid, A.: Dynamic Framed Aspects for Dynamic
Software Evolution. In Cazzola, W., Chiba, S., Saake, G., eds.: Proceedings of ECOOP’2004
Workshop on Reflection, AOP and Meta-Data for Software Evolution (RAM-SE’04), Oslo,
Norway (2004) 101–110

15. Kniesel, G., Rho, T., Hanenberg, S.: Evolvable Pattern Implementations Need Generic As-
pects. In Cazzola, W., Chiba, S., Saake, G., eds.: Proceedings of ECOOP’2004 Workshop
on Reflection, AOP and Meta-Data for Software Evolution (RAM-SE’04), Oslo, Norway
(2004) 111–126

16. Bennett, K.H., Rajlich, V.T.: Software Maintenance and Evolution: a Roadmap. In Finkel-
stein, A., ed.: The Future of Software Engineering. ACM Press (2000) 75–87

Coordination and Adaptation Techniques for
Software Entities�

Carlos Canal1, Juan Manuel Murillo2,��, and Pascal Poizat3

1 Universidad de Málaga, ETSI Informática,
Campus de Teatinos, 29071 Málaga, Spain

canal@lcc.uma.es
2 Universidad de Extremadura, Escuela Politécnica,
Avda. de la Universidad, s/n., 10071 Cáceres, Spain

juanmamu@unex.es
3 Université d’Évry Val d’Essonne, LaMI,

Tour Évry 2, 523 place des terrasses, 91000 Évry, France
poizat@lami.univ-evry.fr

Abstract. The ability of reusing existing software has always been a
major concern of Software Engineering. The reuse and integration of
heterogeneous software parts is an issue for current paradigms such as
Component-Based Software Development, or Coordination Models and
Languages. However, a serious limitation of current approaches is that
while they provide convenient ways to describe the typed signatures of
software entities, they offer a quite limited support to describe their
concurrent behaviour. As a consequence, when a component is going to
be reused, one can only be sure that it provides the required interface,
but nothing else can be inferred about the behaviour of the component
with regard to the interaction protocol required by its environment. To
deal with this problem, a new discipline, Software Adaptation, is emerg-
ing. Software Adaptation promotes the use of adaptors-specific compu-
tational entities guaranteeing that software components will interact in
the right way not only at the signature level, but also at the protocol
and semantic levels. This paper summarizes the results and conclusions
of the First Workshop on Coordination and Adaptation Techniques for
Software Entities (WCAT’04).

1 Introduction

In the recent years, the need for more and more complex pieces of software, sup-
porting new services, and for wider application domains, together with advances
in the net technology, have promoted the development of distributed systems.

� The title of this report should be referenced as “Report from the ECOOP 2004
Workshop on Coordination and Adaptation Techniques for Software Entities”.

�� This work has been partially supported by CICYT under contract TIC 02-04309-
C02-01.

J. Malenfant and B.M. Østvold (Eds.): ECOOP 2004, LNCS 3344, pp. 133–147, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

134 C. Canal, J.M. Murillo, and P. Poizat

These applications are made up of a collection of interacting entities (either con-
sidered as subsystems, objects, components, or —more recently— Web services)
that collaborate to provide some functionality.

One of the most complex tasks when designing such applications is to spec-
ify the coordinated interaction that occurs among the computational entities.
This fact has favored the development of a specific field in Software Engineering
devoted to the Coordination of software. Some of the issues addressed by such
discipline are:

1. To provide the highest expressive power to specify any coordination pattern.
These patterns detail the order in which the tasks developed by each com-
ponent of the distributed application have to be executed. The state of the
global computation determines the set of tasks that can be performed at
each instant.

2. To promote reusability, both of the coordinated entities and of the coordina-
tion patterns. The coordinated entities could be used in any other application
in which their functionality is required, apart from the coordination pattern
that directs them. The same holds for the coordination patterns; they could
be used in a different application, managing a different collection of entities
with different behaviour and different interfaces, but with the same coordi-
nation needs.

In fact, the ability of reusing existing pieces of software has always been a
major concern of Software Engineering. In particular, the need for the reuse and
integration of heterogeneous software parts is at the core of Component-Based
Software Development. The paradigm ”write once, run forever” is currently sup-
ported by several component platforms.

However, a serious limitation of available component platforms (with regard
to reusability) is that they do not provide suitable means to describe and reason
on the interacting behaviour of component-based systems. Indeed, while these
platforms provide convenient ways to describe the typed signatures of software
entities via Interface Description Languages (IDLs), they offer a quite limited
and low-level support to describe their concurrent behaviour. As a consequence,
when a component is going to be reused, one can only be sure that it provides the
required interface, but nothing else can be inferred about the behaviour of the
component with regard to the interaction protocol required by its environment.

To deal with this problem, a new discipline, Software Adaptation, is emerging.
Software Adaptation focuses on the problems related to reusing existing software
entities when constructing a new application, and promotes the use of adaptors
—specific computational entities for solving these problems. The main goal of
software adaptors is to guarantee that software components will interact in the
right way not only at the signature level, but also at the protocol and semantic
levels. In this sense, Software Adaptation can be considered as a new generation
of Coordination Models.

However, Software Adaptation is not restricted to the adaptation of the inter-
action through coordination models. Other functional and non-functional prop-
erties of software systems can be adapted as well, while other topics such as

Coordination and Adaptation Techniques for Software Entities 135

automatic generation of adaptors are under study. With the aim of stating the
boundaries and interests of Software Adaptation, the First Workshop on Coordi-
nation and Adaptation Techniques for Software Entities (WCAT’04) was held in
conjunction with the 18th European Conference on Object-Oriented Program-
ming (Oslo, Norway, 14-18 June, 2004). The topics of interest of the workshop
were:

– New coordination models separating the interaction concern;
– Aspect-oriented approaches to software adaptation;
– Coordination and adaptation in concurrent and distributed object-oriented

systems;
– Interface and choreography description of Web services;
– Coordination and adaptation middleware;
– Rigorous approaches to software adaptation;
– Identification and specification of interaction requirements;
– Patterns and frameworks for component look-up and adaptation;
– Automatic generation of adaptors;
– Documenting components to enable software composition and adaptation;
– Metrics and prediction models for software adaptation;
– Extra-functional properties in their relation to coordination and adaptation;
– Tools and environments;
– Industrial and experience reports.

The main conclusion of the workshop is that Software Adaptation is an emerg-
ing and well-differentiated discipline motivated by the new challenges of Software
Engineering on building complex software systems in an efficient way. This paper
summarizes the discussions and conclusions from the workshop.

The rest of this paper is organized as follows: Section 2 presents an outline
of the contributions submitted, Section 3 summarizes the results of the three
discussion groups that worked during the workshop, and Section 4 presents the
conclusions of the workshop. Finally, we provide some references to the work on
coordination and adaptation being developed by workshop attendants.

2 Summary of the Contributions

According to ECOOP’2004 Workshop Guidelines, we tried to put up a working
meeting in which participants not merely presented the technical details of their
work, but could instead discuss their points of view, trying to identify which are
the main issues, challenges, and their possible solutions in the field of Software
Coordination and Adaptation.

For these reasons, in the CfP we asked for short (about five pages long)
position papers. We also recommended that papers should contain a section on
Open Issues, in which authors indicated the relevant issues that they would like
to address during the workshop.

We received twelve submissions, covering a wide range of aspects of coordina-
tion and adaptation. In particular, many of them dealt specifically with software

136 C. Canal, J.M. Murillo, and P. Poizat

adaptation, which was rather encouraging, taking into account that this is the
first event specifically addressing this field. As workshop organizers, and acting
also as program committee, we reviewed the position papers, and replied to the
authors with our impressions, suggesting them to deepen in those aspects that
we considered more interesting for the workshop. Due to their quality and inter-
est, we decided to accept all the papers submitted, as a way of ensuring different
points of view that would produce more lively discussions. Both the Call for
Papers and the final versions of the position papers can be found at the Web
page of the workshop:

http://wcat04.unex.es

Fifteen participants, coming from seven different countries, attended the
workshop, which started with a short presentation (a five-minutes talk followed
by five minutes for questions and comments) of ten of the position papers submit-
ted. Once again, the idea was not to give out academic speeches but to present
succinctly the positions, saving time for discussions during the workshop.

The list of participants, together with their affiliation, and the title of the
position papers they presented is as follows:

– Marco Autili, marco.autili@di.univaq.it
University of L’Aquila (Italy)
Automatic Adaptor Synthesis for Protocol Transformation

– Steffen Becker, becker@informatik.uni-oldenburg.de
University of Oldenburg (Germany)
The Impact of Software Component Adaptors on QoS Properties

– Carlos Canal, Workshop Organizer, canal@lcc.uma.es
University of Málaga (Spain)
On the Dynamic Adaptation of Component Behaviour

– Antinisca Di Marco, adimarco@di.univaq.it
University of L’Aquila (Italy)

– Viktoria Firus, firus@informatik.uni-oldenburg.de
University of Oldenburg (Germany)

– Thomas Heistracher, thomas.heistracher@fh-sbg.ac.at
Salzburg University of Applied Sciences (Austria)
Pervasive Service Architecture for a Digital Business Ecosystem

– Tobias Ludwig, toby@gmx.de
ECOOP’2004 Student Volunteer (Germany)

– Claudius Masuch, claudius.masuch@fh-sbg.ac.at
Salzburg University of Applied Sciences (Austria)
Pervasive Service Architecture for a Digital Business Ecosystem

– Juan Manuel Murillo, Workshop Organizer, juanmamu@unex.es
University of Extremadura (Spain)
Managing Components Adaptation Using Aspect-Oriented Techniques

Coordination and Adaptation Techniques for Software Entities 137

– José Luis Pastrana, pastrana@lcc.uma.es
University of Málaga (Spain)
Client Oriented Software Developing

– Pascal Poizat, Workshop Organizer, poizat@lami.univ-evry.fr
Université d’Évry Val d’Essonne (France)
Formal Methods for Component Description, Coordination and Adaptation

– Sibylle Schupp, schupp@cs.chalmers.se
Chalmers University of Technology (Sweden)
How to Use a Library

– Björn Törnqvist, bjorn.tornqvist@bth.se
Blekinge Institute of Technology (Sweden)
On Adaptative Aspect-Oriented Coordination for Critical Infrastructures

– Nesrine Yahiaoui, nesrine.yahiaoui@prism.uvsq.fr
UVSQ Prism (France)
Classification and Comparison of Dynamic Adaptable Software Platforms

– Jie Yang, jie@cs.uit.no
University of Tromsø (Norway)

The papers submitted to the workshop may be classified into three categories.
The first one corresponds to papers related with Coordination and Adaptation
Models. This category includes the works presented by Autili [1], Canal [2], and
Heistracher and Masuch [3]. In [1], the authors propose the automatic genera-
tion of adaptors to manage the difficulties of building systems from components,
in particular when some changes (improvements, evolution, etc.) must be in-
troduced in the composite system. Their approach is based on formal methods.
In [2], an approach to deal with component adaptation at runtime is presented.
Once again, his proposal is supported by formal methods. Finally, [3] presents an
architecture to support the expression of business models addressing the compo-
sition of service chains, and its optimization through automatic self-organizing
and evolutionary (genetic) algorithms.

The second category is constituted by works focused on Adaptation and
Aspect-Oriented Techniques, including the works presented by Murillo [4], Pas-
trana [5], and Törnqvist [6]. [4] is focused on how adaptation can be considered
a crosscutting concern and, consequently, managed with aspect-oriented tech-
niques. In [5], applying the contract metaphor the authors propose the specifi-
cation of some non-functional requirements aimed over components by means
of connectors (adaptors). The work described in [6] presents the future EU in-
tegrated power grid as a real case study of coordination and adaptation. The
authors propose the use of coordination, aspect-oriented and adaptation tech-
niques to deal with that system.

Finally, the third category corresponds to papers presenting general stud-
ies about Coordination and Adaptation, and includes the works presented by
Becker [7], Poizat [8], Schupp [9], and Yahiaoui [10]. [7] presents an analysis on
the impact that adaptors may have on the Quality of Service (QoS) of adapted
components, showing the interdependencies that exist between QoS attributes,

138 C. Canal, J.M. Murillo, and P. Poizat

and how adaptors can affect such attributes. [8] contains an interesting study
about how formal methods can help on designing and composing/adapting CBSE
systems. The authors argue for the pragmatic use of formal methods. In [9] the
problems of building and using software libraries are highlighted. These prob-
lems are similar to those of searching, retrieving, and adapting components from
repositories. Finally, [10] analyzes the features shown by platforms allowing dy-
namic adaptation, and classifies these features in several dimensions.

From the presentation session, a list of open issues that we would like to
address was identified and grouped. This helped to make clear which were the
participants’ interests, and served also to establish some goals for the workshop.
Then, participants were divided into three groups (about 4-6 persons each),
attending to their interests, each one related to a topic on software coordination
and adaptation. The task of each group was to discuss about the assigned topic,
to detect problems and its real causes, and to point out solutions. Finally, a
plenary session was held, in which each group presented their conclusions to the
rest of the participants, followed by some discussion.

3 Summary of the Discussions

As indicated above, after the short presentations a small brainstorming was
performed, trying to determine the most common remarks and questions. These
issues were classified into three groups of topics:

Problems. This group dealt with which are the different problems that can be
solved by adaptation, and how. The main issues were: what does adaptation
mean? (i.e. what is to be adapted: functional, or non-functional properties?);
static versus dynamic adaptation (i.e. when to adapt/not to adapt?); and what
are the relations between adaptation and coordination, maintenance, and aspect-
oriented techniques? (the latter related to the adaptation of non-functional prop-
erties).

Languages and Processes. This group dealt with the languages and processes
that can be used to support coordination and adaptation. The main issues
addressed were: which aspects of components to take into account? (either
functional, behavioural/protocol, or non-functional properties, such as perfor-
mance or reliability); how to do it? (e.g. formal methods, contracts, biological
metaphors...); what level of detail is needed for describing component interfaces?
what are the requirements for connector/adaptor languages? what kind of for-
malism is required? (and its relation with implementation); is more than one
language needed? (for example, using several coordination models, or protocols
with value-passing).

Benefits. This group dealt with the benefits that can be expected from the use
of coordination and adaptation techniques (apart from solving the adaptation
problems). The main issues were: what is the relation between adaptation and

Coordination and Adaptation Techniques for Software Entities 139

quality of service? do adaptation increases the reliability or reusability of com-
ponents? which measure/assessment mechanisms to use? what about scaling up?
and which is the role of tools.

The classification above induced to divide the participants into three different
discussion groups. The first group would start by finding out which are the
system properties that can be adapted (the what). Then, the means to achieve
their adaptation (the how) must be identified, too. Both (what+how) would lead
to a definition of adaptation. Finally, this group would compare the concerns of
adaptation with those of other related fields, such as aspect-orientation and
maintenance. The second group would find out requirements for coordination
and adaptation languages in terms of description expressiveness, methods and
processes. The third group would discuss on what could be the by-products of
coordination and adaptation processes.

3.1 Interest of Adaptation and Coordination

The discussion group was integrated by Steffen Becker, Viktoria Firus, Juan M.
Murillo, Nesrine Yahiaoui, and Jie Yang. The aim of the group was to discuss
about what adaptation is, the different kinds of adaptation that can be demanded
by a system, and the relationships, differences and similarities between adapta-
tion and other fields such as coordination, maintenance and aspect-orientation.
The next paragraphs depict the conclusions reached.

The group started discussing about what is software adaptation in a broad
sense (and not restricted to the meaning of adaptation underlying in the works
being developed by the people in the group). Thus, thinking about what adap-
tation is, the first emerging question was what kind of properties can be adapted
in a software system. The immediate answer was that, of course, several non-
functional properties of the system can be adapted. For instance, the interaction
constraints of a system can be adapted using coordination models and languages.
Indeed, when a coordination model is used for tuning the interaction protocol
between two components, these components are being adapted to work alto-
gether. However, adaptation is not restricted to non-functional properties. The
functionality of the system can be adapted as well. A system can be adapted to
provide new services, or the functionality provided by a piece of software can be
adapted for using it in a different system. For example, a component providing
the functionality of a list of elements could be adapted for reusing it in a partic-
ular system where the functionality of a queue is required. Thus, thinking about
adaptation, both functional and non-functional adaptation must be taken into
account.

After that, we tried to classify the different ways to proceed with software
adaptation (extending the classification presented by Yahiaoui in [10]). The
group agreed that a good criteria to classify adaptation is attending to the mo-
ment in which the need of adaptation is detected. Thus, three different moments
requiring different procedures for adaptation were catalogued:

1. Requirements Adaptation. This kind of adaptation is made when the re-
quirements of a system are extended to meet new properties, or when we

140 C. Canal, J.M. Murillo, and P. Poizat

want to reuse a system specification, but it must be adapted to meet the
requirements of the new system. Examples of this kind of adaptation are
adding a security property to a bank account, or adding an attribute to
a table in a database. It could require both functional and non-functional
adaptation.

2. Static Adaptation. This is the case in which we want to adapt pieces of soft-
ware developed independently in order to make them work together. Suppose
a Bank account component providing a get money service and a Client com-
ponent requiring a decrement balance service. As a general characteristic of
this kind of adaptation, it can be said that the steps to proceed with the
adaptation are known —and have been planned— in advance with respect
to the moment in which the adaptation takes place. Although some kind of
functional adaptation could be required, usually, static adaptation involves
non-functional adaptation.

3. Dynamic Adaptation. Running pieces of software need to be adapted in order
to provide some particular service. For example, suppose a mobile phone
adapting to the local phone provider of a different company. In comparison
with static adaptation, now the components to be adapted are unknown until
the moment of the adaptation. Hence, the steps to manage the adaptation are
unknown as well. Dynamic adaptation should be limited to non-functional
adaptation, if possible1.

The group also discussed about the procedures to manage adaptation. We
agreed that two different procedures can be distinguished:

1. Manual Adaptation. The adaptation steps as well as the adaptors are spec-
ified and developed by the people intervening in the software process (de-
signers, architects, programmers, etc). However, the adaptation task may be
assisted by software tools. Nevertheless, adaptation must be non-intrusive,
that is, it must not require a modification of the component adapted (mod-
ifying the adapted component would be more related to maintenance than
to adaptation).

2. Automatic Adaptation. All the adaptation steps and the adaptors them-
selves are automatically generated by a tool. This kind of tool must be able
to detect the need for adaptation and whether the required adaptation is
possible or not, and will have to determine the steps to manage adaptation,
and finally, generate the adaptors.

Anyway, regardless of the adaptation procedure used, the work presented by
Becker [7] —focused on how adaptation can affect the QoS attributes— led us

1 Here, it must be understood that the aim of this kind of dynamic adaptation is
not to provide new unexpected functionality to a running component. Thus, in the
mobile phone example it is considered that, although the operation of contacting a
network provider is a functional property, the way in which the provider is contacted
is not a part of the functionality (but the way in which the functionality is provided,
instead).

Coordination and Adaptation Techniques for Software Entities 141

to think that it would be good to have procedures to determine whether the
adaptation of a component is convenient (instead of building a new component
providing the desired functionality).

Having all the above in mind, it is easy to conclude that there exist some
relationships between adaptation and other disciplines such us coordination,
maintenance and aspect-orientation. However, although such relationships do
actually exist, adaptation have connotations that provide it with an own identity.

Coordination models and languages can be used to manage the adaptation
of the interaction protocols among components. In particular, exogenous coordi-
nation models provide entities —commonly called coordinators— with the aim
of forcing the interaction protocols among components. Such coordinators can
be considered as adaptors. However, Coordination is not concerned with top-
ics such us how the need of adaptation can be detected, how coordinators can
be generated automatically and which is the information needed to achieve it,
and, of course, with the adaptation of non-functional properties different from
interaction.

Adaptation is close to maintenance as well. Maintenance is concerned with
how to deal with system evolution in an easy and efficient way. In particular,
adaptation can help maintenance by providing the technical means to deal with
changes in the requirements. In some sense, the work by Becker [7] analyzing
how adaptation can affect the QoS attributes can be related with maintenance.
Nevertheless, maintenance is focused on how software methodologies can face
system evolution, and on the methods needed to give support to evolution in
the software process, more than on the technical means to adapt an existing
system.

Finally, aspect-oriented techniques can be used to adapt non-functional prop-
erties of a system. As Murillo presented [4], adding new aspects to an existing
software system can have the effect of adapting the system to satisfy new prop-
erties. However, apart of this co-lateral effect, Aspect-Oriented Software De-
velopment is concerned with how crosscutting concerns can be identified and
separated at the different stages of the software life cycle getting out of its scope
topics such as automatic adaptation or adaptation of functional properties.

The final conclusion of the group was that adaptation is concerned with
how the functional and non-functional properties of an existing software entity
(class, object, component, etc.) can be adapted to be used in a software system
observing that:

– Adaptation must be non-intrusive.
– The need for adaptation can appear at any stage of the software life-cycle,

from requirements specification to system operation stages.
– Software adaptation requires automatic or at least semi-automatic (compu-

tationally assisted) procedures.

In practice, some kind of adaptation is being done using tools such as ex-
ogenous coordination models or aspect-oriented techniques. However, the new
challenges in Software Engineering for building complex software systems in an
efficient way do require new techniques, dealing with the detection of adaptation

142 C. Canal, J.M. Murillo, and P. Poizat

needs, automatic adaptation, functional adaptation, formal methods allowing to
reason about adaptation, dynamic adaptation, and automatic adaptation. All
these topics are the interest of the emerging discipline of Software Adaptation.

3.2 Languages for Coordination and Adaptation

The discussion group was integrated by Marco Autili, Claudius Masuch, Pascal
Poizat, and Björn Törnqvist. The goals of this group was to discuss on the
requirements of languages and processes to support adaptation.

The first issue to be discussed was if formal languages were needed. The group
recognized then that formal methods have great benefits in any component-based
framework (tools for subtyping detection, protocol compliance, ...). The most in-
teresting works on component coordination are now based on formal languages of
some form (automata, transition systems, process algebras or MSC). Formal lan-
guages are emerging in the more challenging (up to now) challenging application
domain for coordination and adaptation techniques, Web services. [8] gives some
details on these two points. On adaptation, Autili [1] has very interesting results
with MSC. Moreover, the seminal paper on adaptation [11] deals with transition
systems. Hence the group accepted that the language should be formal. However,
it was also said that the specifications should be executable (which is possible if
the language has an operational semantics). This is a mandatory requirement for
example to be able to relate component and adaptors specifications with their
implementations. This is also needed to be able to have automatic or dynamic
adaptation.

Then, the group interested himself on what kind of components are to be
adapted. Usually components are black boxes with type-only require/provide
interfaces given in an Interface Description Language. It has been recognized
both in the ADL and Coordination communities that such interfaces are not
sufficient: for example two components may have compatible provide/require
interfaces but may fail to interact due to incompatible protocols. Therefore, the
group advocated for a Behavioural IDL (BIDL) to describe the components, thus
yielding a grey box description of them.

The group rejected the possibility to use white box descriptions of compo-
nents (i.e. having the whole description of the component in some language, not
only its abstract protocol). This would increase the complexity of the adaptation
process, which is an important issue in case of dynamic adaptation. Moreover,
such interfaces are to be exchanged between components in such adaptation (see
for example the Pastrana proposal [5]). Hence they have to be quite small and
abstract.

Adaptation has been recognized by the group as composing in some way
(depending on the language structuring means) components and adaptors. But
this should yield (semantically) a component in order for the adapted component
to be reused in place of the first one. Hence adaptation should yield components.
Then a question arose: is the adaptation language the same than the components
protocol one? Here there are two possibilities.

The first one is to use the same one (a process algebra or any state transition
language is the solution). Hence the basic structuring means of the language can

Coordination and Adaptation Techniques for Software Entities 143

be reused (for example parallel composition in process algebras). This is more
simple, adaptors can be components too (to be used and reused as components
are). This expresses the need for languages in which compositions are compo-
nents. Moreover, the language could benefit from being compositional. Hence
any formal process (verification but also adaptation) could be done on a com-
position by doing it on its subcomponents (adapting a composed component
could be defined as adapting each of its subcomponents). Note that once again
abstraction was noted as an important issued here (compositional languages are
often the ones with abstraction features).

A second solution is to use a specific language for adaptation (as it can be
for coordination using a temporal logic [8] or on adaptation with MSC [1]).
This is more expressive as the language has only to have specific hooks on the
components protocols but can then extend this. This second solution is much
more related to Aspect-Oriented weaving techniques (the adaptation language
being used as a description of the joint point).

Then the discussion opened on extensions of the components and/or adap-
tation language.

A first aspect was some form of state description. The group rejected this
for components, or only in a very abstract form (components should be proto-
col oriented). This is to keep a grey box description of components. However,
the interest of states was recognized for adaptors (denoting states of the whole
system). In effect, adaptation can depend on a state of the system (Törqvist ex-
pressed this on the EU power grid system requirements [6]: different adaptation
schemes depending on the power level, etc).

A second aspect was on more expressive communication semantics, mainly
queues.

The problem here is that more expressive communication schemes (asyn-
chronous with queues) yield undecidability results. Different queue protocols
can be used (for example FIFFO in place of FIFO). However, this question is
not so important and adaptation can be more simple at an abstract level (ba-
sic synchronous communication) as then lots of tools (such as process algebraic
ones) can be used.

Other aspects were then quickly reviewed: non-functional ones. It has been
recognized that they are more difficult to be taken into account still keeping in
the preceding requirements (formality, abstraction, decidability, tools,...). How-
ever, several are interesting such as real time to give boundaries for services or
timeouts, probabilities as an information on components for adaptors (again,
on the EU power grid case study, possibility for a subsystem of going down),
localities. Here a single very expressive language can be used but its verifica-
tion/adaptation should be difficult. Several languages can also be used (one for
each aspect), but then some form of Aspect-Oriented weaving would be needed.

To end the group discussed the use of data. Components may exchange data
and may have to be adapted on this. The group decided that data are useful
but should be given in a very abstract form in order to make the adaptation
possible.

144 C. Canal, J.M. Murillo, and P. Poizat

As a conclusion, good candidate languages for adaptation seem to be process
algebras (which can be extended for lots of aspects, adaptation in a single for-
malism) and MSC (should be extended if different aspects, adaptation in MSC
and protocols in any state transition language).

3.3 Benefits of Coordination and Adaptation

The discussion group was integrated by Carlos Canal, Thomas Heistracher, José
Luis Pastrana, and Sibylle Schupp. Its main goal was to find out which are
the benefits that coordination and adaptation techniques may have in software
development.

However, it is worth saying that the group also discussed more general ques-
tions (e.g. the meaning of coordination and adaptation, their boundaries, etc.)
that partly overlapped the goals of the other two groups. Anyway, the group
tried to give its particular point of view about these issues, which is with no
doubt closely related to each participant’s position and experience in the field.

The discussions started considering the value of software adaptation and the
need of a discipline devoted to it. The participants agreed that since there are
lots of examples of adaptation in our daily life, we have to put it in software,
too. Where and when? The group discussed if adaptation could be proactive,
or if one must wait till designers find a particular solution for adapting a given
component to a given context. The conclusion -however, more a wish list than
a state-of-the-art description-, was that it should be proactive, in the dynamic,
automatic and self-initiated sense. The group also concluded that this may be
better achieved by means of some kind of middleware infrastructure, containing
built-in adaptation functions, which could decide when and how to adapt. More
precisely, adaptation should be performed at binding time, when a component
joins a context, rather than being static (i.e. performed at design time). It should
be also as much automated as possible.

The work of Schupp [9] deals with the development of large libraries con-
taining different versions of components performing a single well-defined task
(e.g. the Fast Fourier Transform). These libraries are implemented in an object-
oriented language, and can be instantiated by parameterization, not only of
generic types, but also of higher-order functions. Hence, the technology involved
is object-oriented and could be described as pre-component-based. The group
took this as a sort of case study, a starting point for discussions, and tried to
analyse how the techniques and methods related to the scope of the workshop
could help.

First, the group considered if this kind of parameterization could be taken as
a form of adaptation. The conclusion was it was not. The use of generics -and
also polymorphism- in OO languages provide degrees of freedom to the compo-
nents developed, which can be customized afterwards. However, these degrees of
freedom must be foreseen and carefully defined during design, while adaptation
should allow forms of reuse and changes in software characteristics that were
not thought of by the original developers of a component. Thus, adaptation is
more related to the black-box reuse style of CBSD, than to the white-box reuse
typical of the OO paradigm.

Coordination and Adaptation Techniques for Software Entities 145

One of the problems when using these libraries of components is how to choose
the right version. Different users may have different criteria. Hence, the problem
of how to describe components characteristics is crucial. The clear benefits are
that the components would be more accessible, helping in the scalability of the
libraries, and also in the predictability of their behaviour.

Consequently, extended interfaces (containing not only signature specifica-
tions, describing not only functional properties) are a strong need, as the only
way of scientifically evaluate the software, and take decisions. Anyway, an open
issue here is that once we inspect the interfaces and decide which component to
use, how could we trust it? That is, how could we ensure it behaves as described?
Once again, putting this functionality into the middleware could be a solution.

In particular, the work of Pastrana [5] addresses the specification of extended
interfaces for components, following the design by contract metaphor. He made
the group reflect on the fact that while the description of functionality has been
extensively studied, and one has a sound mathematical background for it (for
instance, the use of pre- and post-conditions), much less has been done with
non-functional (no-fun!) properties; each of them must be defined individually,
and described separately using a specific notation for which a similarly sound
foundation should be established. If not, the possibilities for automatic dynamic
adaptation, and its benefits will always be very limited.

The group discussed also whether one needs to find the best choice or solu-
tion, or just one ”good enough”. Here, the biological simile present in the work
of Heistracher [3] helped the group in considering some kind of dynamic natural
selection of components, where different solutions may compete for their exis-
tence, and even extinguish. This would help by reducing the number of choices
in the future.

Finally, the formal background of the work of Canal [2], related to process
algebras for behavioural descriptions, made the group also discuss the role and
benefits of formal methods. One of the benefits is that abstraction, hiding the
irrelevant details, would help in the selection process, and in component trading
in general. However, one has to decide which details are important and which are
not, and this decision determines the notation used and also the properties that
can be analyzed. Once again, the group arrived to the importance of describing
non-functional properties (which notations, and which ”algebras” to use here?).

Anyway, we agreed that the benefits of formal methods should be really
operational, not only descriptive, which is a lack of many proposals in the field.
The importance of tools was also discussed: real solutions should provide real
tools!

Other envisioned benefits were reduction of complexity: adaptation tech-
niques try to cope with the complexity of giving a solution; increasing reuse:
using more technologies with less time spent in integration; and last, but not at
all less important, the value added by these techniques to the software process:
allowing more technically advanced developers to compete with solutions based
only in man-power.

146 C. Canal, J.M. Murillo, and P. Poizat

3.4 Conclusions of the Discussions

After the group discussions, the report from each group was presented and the
conclusions were discussed to reach agreement. Summarizing the conclusions of
the three groups it can be said that Software Adaptation can be identified as
a new discipline with its own topics of interest concerned with how the func-
tional and non-functional properties of an existing software entity (class, object,
component, etc.) can be adapted to be used in a software system. The need
of adapting a software entity can appear at any stage of the software life-cycle
and adaptation techniques for all the stages must be provided. Anyway such
techniques must be non-intrusive and based on Behavioural IDLs and formal ex-
ecutable specification languages. Such languages and techniques should support
automatic and dynamic adaptation, that is, the adaptation of a component just
in the moment in which the component joins the context supported by automatic
and transparent procedures.

4 Conclusion of the Workshop

After the presentation of the conclusions of the discussion groups the Closing
Session was held. During this session attendants were asked for their general
impression about WCAT. We all agreed that the workshop was very interesting
and productive. We also discussed about the possibility of having a new edition
of WCAT in 2005. Again, all the attendants agreed that it would be good to have
a new meeting in one year to mature the discussions about Software Adaptation.

The high quality of the papers submitted to the workshop encouraged us as
workshop organizers to put up a special issue where selected technical papers
about the works of the groups intervening in the workshop could be presented at
length. Currently we are in conversations with an international journal interested
in the publication of the special issue.

References

1. Autili, M., Inverardi, P., Tivoli, M.: Automatic adaptor synthesis for protocol
transformations. [12] 39–46 Available online at http://wcat04.unex.es.

2. Canal, C.: On the dynamic adaptation of component behaviour. [12] 81–88 Avail-
able online at http://wcat04.unex.es.

3. Heistracher, T., Kurz, T., Masuch, C., Ferronato, P., Vidal, M., Corallo, A.,
Briscoe, G., Dini, P.: Pervasive service architecture for a digital business ecosystem.
[12] 71–80 Available online at http://wcat04.unex.es.

4. Eterovic, Y., Murillo, J.M., Palma, K.: Managing component adaptation using as-
pect oriented techniques. [12] 101–108 Available online at http://wcat04.unex.es.

5. Katrib, M., Pastrana, J.L., Pimentel, E.: Client oriented software developing. [12]
9–16 Available online at http://wcat04.unex.es.

6. Törnqvist, B., Gustavsson, R.: On adaptative aspect-oriented coordination for
critical infrastructures. [12] 63–69 Available online at http://wcat04.unex.es.

7. Becker, S., Reussner, R.H.: The impact of software component adaptors on quality
of service properties. [12] 25–30 Available online at http://wcat04.unex.es.

Coordination and Adaptation Techniques for Software Entities 147

8. Poizat, P., Royer, J.C., Salaün, G.: Formal methods for component de-
scription, coordination and adaptation. [12] 89–100 Available online at
http://wcat04.unex.es.

9. Schupp, S.: How to use a library? [12] 47–53 Available online at
http://wcat04.unex.es.

10. Yahiaoui, N., Traverson, B., Levy, N.: Classification and comparison of adaptable
platforms. [12] 55–61 Available online at http://wcat04.unex.es.

11. Yellin, D., Strom, R.: Protocol specifications and component adaptors. ACM
Transactions on Programming Languages and Systems 19 (1997) 292–333

12. Canal, C., Murillo, J.M., Poizat, P., eds.: First Workshop on Coordination and
Adaptation Techniques for Software Entities (WCAT’04). Held in conjunction with
the 18th European Conference on Object-Oriented Programming (ECOOP). Pub-
lished as a Technical Report of the Universities of Málaga (Spain), Extremadura
(Spain) and Évry (France). ISBN 84-688-6782-9. In Canal, C., Murillo, J.M.,
Poizat, P., eds.: First Workshop on Coordination and Adaptation Techniques for
Software Entities (WCAT’04). (2004) Available online at http://wcat04.unex.es.

Model-Driven Development (WMDD 2004)�

Jan Øyvind Aagedal1,2, Jean Bézivin3, and Peter F. Linington4

1 SINTEF ICT, Forskningsveien 1, P.O.Box 124 Blindern,
N-0314 Oslo, Norway

2 Simula Research Laboratory, Martin Linges v 17, Fornebu
P.O.Box 134, N-1325 Lysaker, Norway

jan.aagedal@sintef.no
3 Atlas Group, INRIA and LINA, University of Nantes,

2, rue de la Houssinière - BP 92208, 44322 Nantes Cedex 3, France
Jean.Bezivin@lina.univ-nantes.fr

4 University of Kent, Computing Laboratory, Canterbury, Kent CT2 7NF, UK
P.F.Linington@kent.ac.uk

Abstract. The objective of the workshop on model-driven development
(WMDD 2004) was to identify and discuss issues related to system mod-
elling and how to transform these models to a level suitable for execution
and/or simulation. The workshop contained three sessions for presenta-
tion of position papers, and a final session for discussion and drawing
conclusions. The topics of the three sessions were transformations, model-
driven development aspects, and PIMs for distributed systems, web and
B2B.

1 Introduction

Model-driven development is of increasing importance in the object-oriented
community. Object technology started out with the simulation and modelling of
the real world in the Simula programming language. It is now time to look at
which higher level abstraction mechanism is most useful for domain and system
modelling, and how to transform these to a level suitable for execution and/or
simulation. The goal of this workshop was to attract the community interested
in evolving and applying model-driven development, by addressing important is-
sues and solution approaches based on recent experience with the OMG MDA r©
(Model Driven Architecture) approach, or from other relevant activities. In this
context there are a number of interesting issues to be discussed and resolved,
in particular around formal models and languages related to model transforma-
tions and generative techniques, and in tools and environments related to model
simulation, testing and execution. The workshop solicited input from people ac-
tive in this field, either from researchers, tool developers or from those with

� The title of this report should be referenced as “Report from the ECOOP 2004
Workshop on Model-Driven Development (WMDD 2004)”.

J. Malenfant and B.M. Østvold (Eds.): ECOOP 2004, LNCS 3344, pp. 148–157, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Model-Driven Development (WMDD 2004) 149

practical experience of the model-driven approach. The call for participation
contained a detailed list of topics, and is available at the workshop homepage
at http://heim.ifi.uio.no/~janoa/wmdd2004. The accepted position papers
are also available there.

There were approximately 20 participants at the workshop. There were eight
position papers accepted, and one tool demonstration. We organized this work-
shop into four sessions focusing on different aspects of model-driven development.
In the remainder of this paper, we report highlights from each session.

2 Transformations

The first session brought together three position papers that all discussed various
aspects of model transformation. The session was chaired by Peter F. Linington.

2.1 Transformations Based on Relations

The first presentation was by David H. Akehurst from the University of Kent,
UK. The abstract of his talk is:

“The Model Driven Architecture (MDA) is an approach to IT sys-
tems development fostered by the Object Management Group (OMG).
It is based on forming a separation between the specification of a sys-
tem’s essential functionality as a platform independent model (PIM)
and the realization of the system using more detailed and specific plat-
form specification (PSM). It is recognized that specifying the mappings
or transformations from PIM to PSM is a key enabling aspect of the
MDA approach. Currently the OMG’s Request for Proposals (RFP) on
techniques and facilities to enable transformations is in progress. In this
position paper we discuss a technique for specifying transformations that
is based on the mathematical foundation of relations. Using these rela-
tion specifications we show how the additional definition of some “build”
expressions enables the generation of a transformation engine that will
map model instances from either side of the specification to the other.
This approach has been proved to work on a number of small case stud-
ies, using the KMF code generation tools to build transformation engines
from specifications.”

An issue that was raised during this presentation was how MDA transforma-
tions compare with other transformation systems, such as parsers. Akehurst had,
without success, tried to model a grammar using the transformation approach.
It was argued that some transformations are not suited for the MDA-style of
transformation; perhaps we need to classify transformations in a similar way to
grammars (LL, LR, LALR, etc.).

150 J.Ø. Aagedal, J. Bézivin, and P.F. Linington

2.2 Basic Model Transformation Language MOLA

The next talk was by Audris Kalnins from the University of Latvia in Riga,
Latvia. He presented a position paper written by himself and his colleagues
Janis Barzdins and Edgars Celms. The abstract of his talk is:

“The paper offers basic elements of a new graphical model transfor-
mation language MOLA. The language combines the traditional struc-
tured programming with pattern-based transformation rules, the key
element being a natural loop construct. The prime goal of MOLA is to
provide a natural and highly readable representation of model transfor-
mation algorithms.”

According to Audris Kalnins, transformation languages should be executable
and readable, and the authors believe MOLA, with its graphical syntax, satis-
fies this. MOLA is based on graph rewriting rules and uses control structures
from traditional programming. A question was raised about how to evaluate the
usability of such a language. MOLA has been used by several students, but in
general it was agreed that we need benchmarks and standard evaluation tech-
niques to be able to determine the usability of a language.

2.3 Transformations in Eclipse

The final presentation in this session was by Catherine Griffin from IBM UK
Laboratories, Hursley Park, UK. Her position paper has the following abstract:

“Eclipse is an open platform for tool integration built by an open
community of tool providers. The OMG is a member of the eclipse.org
consortium, as are IBM, Borland, and other MDA tools vendors. Model
transformation is a key technology for MDA. This paper describes the
role of transformations in the Eclipse platform and considers the impli-
cations of the emerging OMG MOF Queries, Views and Transformations
standard (MOF Q/V/T) in this environment.”

A point that was noted during this talk was that transformations in Eclipse
are regular Java programs, and that QVT must have an option to link to such
transformations.

3 Model-Driven Development Aspects

The next session grouped three position papers on different aspects of model-
driven development. The session was chaired by Jean Bézivin.

3.1 Model-Driven Development and Non-functional Aspects

The first talk in this session was given by Peter F. Linington from the University
of Kent, UK. The initial statements in his position paper are:

Model-Driven Development (WMDD 2004) 151

“Most of the practical work so far on Model Driven Development has
focused on the generation of implementations that manipulate or navi-
gate some form of business model directly. However, the author believes
that there are major benefits from the application of these development
techniques to the creation of systems with guarantees of less tangible
properties than expressed in the explicit steps of the business process.

The assumption here is that main inputs to the construction of a
system are in the form of a set of models. The business model is one of
these, but others represent supporting policies in areas like security; these
policies are likely to be maintained by separate groups of developers from
the business processes, and these may operate on a different development
cycle, needing to affect significant numbers of business processes.”

The importance of considering non-functional aspects in model-driven devel-
opment was agreed upon, but challenges remain to identify the relevant non-
functional properties and how they influence model-driven development. Specif-
ically, one can foresee the generation of performance models alongside regular
code-generating transformations, but it is not clear what sort of linkage between
the models is needed; in general, non-functional aspects may need many-to-many
transformations.

3.2 Model Driven Testing and MDA

The next talk was given by Sergey Olvovsky from IBM Haifa Research Labora-
tory, Israel. He presented a position paper written by Alan Hartman, Kenneth
Nagin and himself. The abstract of the position paper is:

“We describe the AGEDIS project, a European Commission spon-
sored project for the creation of a methodology and tools for auto-
mated model driven test generation and execution for distributed sys-
tems. Our emphasis is on the description of the application of model
centric methodology to testing, lessons learned over the three year life of
the project and the impact of MDA on the future of software testing.”

The AGEDIS project has learned many valuable lessons reported in the po-
sition paper, and this will be built upon in forthcoming projects such as the new
EU-funded Integrated Project MODELWARE, which is to start this autumn.
One major issue to explore is the relationship between the design models and
the behavioural model built for test purposes. One should expect that these need
to be consistent, but research is still necessary to clarify the exact relationships
between these two kinds of model.

3.3 UMT - Tool Demonstration

The final talk in this session was given by Jon Oldevik from SINTEF, Norway.
He gave a short introduction to the UMT (UML Model Transformation) tool
before he gave a demonstration of some of the facilities provided by UMT. UMT
is an open source tool available at http://umt-qvt.sourceforge.net/. The
tool presentation states:

152 J.Ø. Aagedal, J. Bézivin, and P.F. Linington

“UMT-QVT is a tool for model transformation and code generation
of UML/XMI models. UMT-QVT provides an environment in which new
generators can be plugged in. The tool environment is implemented in
Java. Generators are implemented in either XSLT or Java.”

The difficulty of exploiting the great variety of features in the many different
platforms used was discussed. For instance, the knowledge that one can use the
construct “connected by” in Oracle 9i instead of writing your own recursive
queries is something that should be incorporated into code generation, but this
means that one needs distinct code generators for each combination, considering
every version of the platforms.

4 PIMs for Distributed Applications, Web and B2B

This first session after lunch was also the final position paper session. This session
was devoted to PIMs for different purposes, namely distributed applications, web
and B2B. The session chair was Catherine Griffin. Only two papers were actually
presented due to technical reasons.

4.1 Modeled Object’s Property-Based Support for Distributed
Applications

The first talk in this session was given by Yun Lin from the Norwegian University
of Science and Technology, Trondheim, Norway. She presented a position paper
written by herself and Darijus Strasunskas. The abstract of this paper is:

“This position paper discusses a vision for methodological support in
distributed modeling. The framework has two layers: an ontology layer
for representation of basic knowledge about a domain; and a model layer,
where models concerning a certain problem within the domain are stored
and interchanged. The ontology serves as a knowledge reference point to
define various properties of entities and represent dependency between
the objects. Ontology and model fragments associated with the concepts
from the ontology by sub-class relationship allow the interrelation of
different model fragments and assessment of change impact.”

The presentation focused on the need for an ontological layer to support trace-
ability between models, and the importance of this layer for model integration.

4.2 Towards a PIM for the Model-Driven Development of
Web-Based Systems

The next talk was given by Robert Smith from the University of Kent, UK. He
presented a position paper by himself and David H. Shrimpton. Some statements
from the position paper are:

Model-Driven Development (WMDD 2004) 153

“Model driven approaches to the design and realization of software
systems are gaining ground. However, some key issues still need to be ad-
dressed. Firstly, the MDA specification provides little about the mecha-
nisms for implementing model driven transformations between Platform
Independent and Platform Specific Models (PIMs and PSMs). These
omissions include: 1) Expressing and implementing transformations be-
tween models, including mappings from PIMs to PSMs. 2) Implement-
ing transformations in the form of tool support. To formulate answers
to these omissions, the structure and content of any PIMs and PSMs
that are used as test cases are very important, since transitional map-
pings between a single PIM and PSM only provides information on the
particular modelling strategy and implementation framework involved.
The second issue stems from this problem. The time and effort required
to develop a suitable model-driven environment for a specific PIM and
PSM pairing may in many cases outweigh the advantages that adopting
the approach brings.”

The presenter wanted to propose a solution to refute the common assumption
that the effort to specify a transformation often outweighs the effort to do the
transformation directly. He aimed to do this by introducing patterns of mappings
between abstract and concrete specifications. The fact that the introduction
of an extra level of indirection solves many problems in computer science was
acknowledged in the discussions, but it was still argued that mapping between
all possible pairs was not a practical problems since all current tools already deal
with this, for instance by having an intermediate layer to bridge to the pairs.

4.3 Applying MDA Approach to B2B Applications: A Road Map

This presentation was not actually given for technical reasons, but some of
the ideas were nevertheless discussed at the workshop and are presented on
the ATL (ATLAS Transformation Language) web site at www.sciences.univ-
nantes.fr/lina/atl. The authors of the position paper are Jean Bézivin, Slimane
Hammoudi, Denivaldo Lopes and Frédéric Jouault from France. The abstract of
the paper is:

“B2B applications are systems that evolve quickly and they are often
developed using different technologies, such as XML/EDI, Distributed
Components and Web Services. Many technologies supporting B2B ap-
plications exist and others will appear. Recently, the Model-Driven Ar-
chitecture (MDA) approach has been introduced to support the evolution
of systems and the harmonization between different technologies. How-
ever, before this becomes a reality, some issues need solutions, such as
the creation of mappings between meta-models. In this paper, we pro-
vide some insights into the definition of mappings and transformation
rules.”

154 J.Ø. Aagedal, J. Bézivin, and P.F. Linington

5 Discussion Session

Following the three position paper sessions, the final session was a discussion on
the workshop topics. This session was chaired by Jan Aagedal.

Although it was late in the day, the debate soon became lively. The dis-
cussion was sparked by some rather provocative statements on whether we are
reinventing the wheel and just wrapping it in new acronyms and flashy terms to
make the old concepts unrecognizable. Given that most of the participants are
actively working on advancing the field of MDD, many of the participants felt
inclined to defend MDD. For instance, the claim that MDD was merely 4GLs all
over again was fiercely refuted by characterizing 4GLs as black-box generators,
whereas MDD is more of a white-box approach where the models, meta-models,
transformations and transformation specifications are all available to the devel-
opers, and they can all be customized to fit a particular domain or business.
The 4GLs failed because they soon became tool-specific, and all the investments
made in use of one 4GL-tool were hard to build upon when one decided to use
another tool or to integrate 4GL-generated applications with new applications
made with other tools.

MDD is sometimes also met by arguments that it is not new, because there
are already working and well-proven open approaches, for instance SDL in the
telecom domain. This position was argued against by characterizing such ap-
proaches as domain-specific, being well-suited to some problems, but unsuited
to others. For instance, SDL is well-suited to protocol design and state-based
systems, but not suited for traditional information systems. In addition, it was
claimed that SDL is not widely used due to its complexity and the level of detail
needed in the specifications, so SDL should not be mentioned as an undisputed
success.

Moreover, it was pointed out that, even if MDD has still not demonstrated
its full potential, it is indeed promising and with the continuous increase in com-
plexity and rate of change, one must always be moving towards better tools and
techniques just to avoid a decrease in productivity, or, as put by one workshop
participant: “one has to keep running to be at the same place”.

After this existential start, the debate shifted into a more focussed discussion
on various topics taking it as agreed that MDD is indeed a serious research area
and is not the emperor’s new clothes. Below we summarize the discussions for
each of the topics that were touched upon.

5.1 Standardized Abstractions

It is common to mention the analogy with traditional programming languages,
compilers and assembly instructions when explaining PIMs, transformations and
PSMs. Having this in mind, the question was raised as to whether we should
strive to identify and standardize higher level abstractions with standard trans-
formations onto 3GLs, in the same manner as a single construct in a 3GL rep-
resents many assembly instructions for each supported instruction set.

Model-Driven Development (WMDD 2004) 155

Most participants acknowledged that it is not possible to find many abstrac-
tions that are both general purpose and on a higher abstraction level, and that
can also be mapped unambiguously onto several PSMs. However, it is possible to
identify and standardize domain-specific abstractions that can have meaningful
transformations. Indeed, much future work is needed to identify and standardize
domain-specific concepts organized into distinct conceptual models (domain-
specific, best-practise meta-models), together with well-defined transformations
into more general-purpose conceptual models.

5.2 Traceability

MDD will not be a reality until models, not code, become the primary artifacts
in software development. However, models will become first-class citizens in soft-
ware development only when there are suitable tools to ensure consistency and
traceability between models on different levels of abstraction and from differ-
ent viewpoints. Nowadays, models in mainstream software development are, at
best, used to elaborate design decisions, sort out different concepts, and share
ideas. The models are then typically put in the archive when the real system
development (by which people generally mean coding) starts.

In MDD, model transformations should preserve information to support bi-
directional traceability. The links between model elements in the source and the
target models should be established during transformation. If one uses an ap-
proach based on relations, this is inherent. To some degree, traceability support
is already included in a number of tools, but the majority of general modelling
tools do not provide it. We expect, however, that as soon as the QVT stan-
dard is in place and supported by tool vendors, bidirectional traceability will be
supported.

Consistency is different from, but related to, traceability. Whereas traceabil-
ity typically relates modelling elements in the source and target models of a
transformation, consistency relates modelling elements across viewpoints that
make up the set of source models. To check consistency between two modelling
elements defined in two different modelling languages requires it to be possible
to relate modelling elements across languages and perhaps even across meta-
languages. How to represent this is an issue that needs further investigation.

5.3 Domain-Specific Languages

The ability to create and relate domain-specific languages (DSLs) is at the core of
MDD. If one follows OMG standards, DSLs should be defined as MOF-compliant
meta-models, and they should then be supported by domain-customized mod-
elling tools where both the DSL and its accompanying standardized transforma-
tions are available. This means that there is a need for domain experts who are
able to identify and specify the crucial concepts that are needed in a domain.
These people must be experts both in the domain and in abstraction so that
they can do language engineering to create DSLs.

156 J.Ø. Aagedal, J. Bézivin, and P.F. Linington

When creating a DSL, some standard language definition concepts are needed.
In OMG, one uses MOF. IBM has defined a similar approach in Eclipse termed
Ecore, and Microsoft has its own solution, sometimes known as the Microsoft
Repository. This means that at least three contenders are available as a basis for
the standard mechanism to define DSLs, but they are all evolving, so that there
will be new versions; as a result, there may be a problem of diversity. However,
most of these approaches are quite similar (in fact, Ecore and MOF 2.0 EMOF
are very close, and IBM has indicated that these will be aligned), so even if
one chooses a single meta-meta-language initially one participant claimed that,
based on practical experience, to shift from one meta-meta-language to another
is not a major hurdle. The important fact is not that there are competing meta-
meta-languages available, but that all the large players (OMG, IBM, Microsoft
and others) share the same basic principles of DSL engineering in software de-
velopment.

However, it is much more difficult to shift from one DSL to another than to
shift meta-meta-language, since many models will have been created with the
DSL. But this can also be an advantage. With a plethora of DSLs, organizations
may become dependent on just a few DSLs. This may, in fact, be used by large
enterprises to freeze their investments. If significant investments are made using
a proprietary DSL, it may be that the enterprise can secure its investments by
ensuring that they can not easily be made available to others because they are
defined in the proprietary DSL.

The final issue that was discussed for DSLs was the fact that some domains
have the end users using the DSLs, not programmers or software designers. This
is only possible if the DSL is supported by a framework that can interpret or
execute DSL statements directly. Such a framework needs to have a great deal of
predefined behaviour that the DSL interpreter can use. This means that end user
DSLs can only be defined in domains that have much standardized behaviour
that the end users can relate to.

5.4 Transformation Specification

Even if the QVT standardization seems to be converging, how to specify trans-
formations is still an issue that needs further investigation. Many of the proposed
transformation specification approaches are quite detailed and appeal primar-
ily to transformation experts. Indeed, it was claimed that this is a good thing,
because transformation specification should be for experts, just as compiler en-
gineering is for the few compiler engineers. On the other hand, it was claimed by
others that this is not always true, and that simple transformations should be
simple to specify. Indeed, sometimes transformation specifications are useful to
read as documentation; it should thus be possible for more than the few experts
to read them.

There was also discussion as to whether one transformation language is suf-
ficient, or whether there is a need for different languages for different types of
transformation. No conclusions were reached on this, but some scepticism was
expressed as to whether an all-purpose transformation language would meet the
requirements in all the different domains.

Model-Driven Development (WMDD 2004) 157

5.5 Success Criteria for QVT and for MDD

The overall success criterion for MDD is that success will have been achieved
when the large vendors supply their tool suites with specialized transformers
from PIMs to their tools. For instance, detailed knowledge about Oracle 9i is
needed to know that hand-written recursive queries can be replaced by “con-
nect by”, and this knowledge could be encoded into a tailored transformation
targeting an Oracle PSM.

QVT, as an important piece in MDD, should support reuse of transforma-
tions. Moreover, QVT must be ready to compete with Java, since most of the
transformations today are written in imperative languages such as Java. It was
also claimed that QVT should be like XSLT, but better, meaning that it should
be easier to use. Finally, QVT should support traceability, for instance by using
relations and specific traceability models.

5.6 Executable Models

One approach to executable models is to create a virtual machine, e.g., a UML
virtual machine. If this approach is chosen, one must make sure not to be locked
to one version of UML, but instead to support an extensible meta-model.

The final topic for discussion was how executable models fit with MDD. It
was argued that executable UML contradicts the basic idea of MDA. Indeed, the
basic idea of MDA is to abstract away the differences in middleware technologies
and we cannot throw this away by creating a new layer that everyone becomes
dependent of. Against this, it was argued that model simulation may be useful,
especially simulation of partial models, and for this we need executable models
of some kind.

6 Conclusions

The workshop, and in particular the discussion session, showed that there are
still many unresolved issues to address before the vision of model-driven devel-
opment becomes a reality. Before models can be the primary artifacts of system
development, both practical issues, such as appropriate tooling, and more fun-
damental issues, such as the theory of transformation composition, need to have
acceptable solutions. However, many researchers are focusing on such topics and
they all share the common vision of MDD, and together with continued stan-
dardization, the MDD reality seems certain to emerge.

Component-Oriented Programming
(WCOP 2004)�

Jan Bosch1, Clemens Szyperski2, and Wolfgang Weck3

1 University of Groningen, Department of Computing Science, P.O. Box 800,
9700 AV Groningen, The Netherlands

Jan.Bosch@cs.rug.nl
http://segroup.cs.rug.nl

2 Microsoft, USA
CSzypers@microsoft.com

http://research.microsoft.com/~cszypers/
3 Independent Consultant, Switzerland

Abstract. This report covers the ninth Workshop on Component-
Oriented Programming (WCOP). WCOP has been affiliated with ECOOP
since its inception in 1996. The report summarizes the contributions
made by authors of accepted position papers as well as those made by
all attendees of the workshop sessions.

1 Introduction

WCOP 2004, held in conjunction with ECOOP 2003 in Darmstadt, Germany,
was the ninth workshop in the successful series of workshops on component-
oriented programming. The previous workshops were held in conjunction with
earlier ECOOP conferences in Linz, Austria; Jyväskylä, Finland; Brussels, Bel-
gium; Lisbon, Portugal; Sophia Antipolis, France; Budapest, Hungary; Malaga,
Spain and Darmstadt, Germany The first workshop, in 1996, focused on the
principal idea of software components and worked towards definitions of terms.
In particular, a high-level definition of what a software component is was formu-
lated. WCOP97 concentrated on compositional aspects, architecture and gluing,
substitutability, interface evolution and non-functional requirements. In 1998,
the workshop addressed industrial practice and developed a major focus on the
issues of adaptation. The next year, the workshop moved on to address issues
of structured software architecture and component frameworks, especially in the
context of large systems. WCOP 2000 focused on component composition, val-
idation and refinement and the use of component technology in the software
industry. The year after, containers, dynamic reconfiguration, conformance and

� The title of this report should be referenced as “Report from the ECOOP 2004
Eighth International Workshop on Component-Oriented Programming (WCOP
2004)”.

J. Malenfant and B.M. Østvold (Eds.): ECOOP 2004, LNCS 3344, pp. 158–168, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Component-Oriented Programming (WCOP 2004) 159

quality attributes were the main focus. WCOP 2002 has an explicit focus on dy-
namic reconfiguration of component systems, that is, the overlap between COP
and dynamic architectures. Last year, the workshop addressed predictable as-
sembly, model-driven architecture and separation of concerns. The 2004 instance
of the workshop had a technical and an industrialisation focus. In the technical
focus, predicting performance, testing and aspect-oriented software development
in the context of component-based software engineering were discussed. In the
second focus, issues including the application of CBSE in the context of embed-
ded systems, an analysis of the past, present and future of components and the
results of a large, European initiative, CBSENet, were discussed. WCOP 2004
had been announced as follows:

WCOP 2004 seeks position papers on the important field of component-
oriented programming (COP). WCOP 2004 is the ninth event in a series of
highly successful workshops, which took place in conjunction with every ECOOP
since 1996. COP is the natural extension of object-oriented programming to
the realm of independently extensible systems. COP aims at producing soft-
ware components for a component market and for late composition. Composers
are third parties, possibly the end users, who are not able or willing to change
components. Several component technologies emerged, including CORBA/CCM,
COM/COM+, J2EE/EJB, and .NET. There is an increasing appreciation of
software architecture for component-based systems and the consequent effects
on organizational processes and structures, as well as the software industry in
large. WCOP 2004 emphasizes the dynamic composition of component-based
systems and component-oriented development processes. Dynamically compos-
able software needs clearly specified and documented contracts, standardized
architectures, specifications of functional properties and quality attributes, and
mechanisms for dynamic discovery and binding. A typical example is web ser-
vices. A service is a running instance that has specific quality attributes, while
a component needs to be first deployed, installed, loaded, and instantiated.
Comparing service and component composition models is interesting and a pro-
posed workshop focus. Flexible development processes (such as agile ones) and
component-based development support each other in that the use of existing
components can reduce the development effort. Positions on development pro-
cesses relating to the use of components are welcome. Finally, we also solicit
reports on practical experience with component-oriented software, where the
emphasis is on interesting lessons learned.

COP aims at producing software components for a component market and for
late composition. Composers are third parties, possibly the end users, who are
not able or willing to change components. This requires standards to allow inde-
pendently created components to interoperate, and specifications that put the
composer into the position to decide what can be composed under which condi-
tions. On these grounds, WCOP’96 led to the following definition: A component
is a unit of composition with contractually specified interfaces and explicit con-
text dependencies only. Components can be deployed independently and are
subject to composition by third parties.

160 J. Bosch, C. Szyperski, and W. Weck

Often discussed in the context of COP are quality attributes (a.k.a. system
qualities). A key problem that results from the dual nature of components be-
tween technology and markets are the non-technical aspects of components, in-
cluding marketing, distribution, selection, licensing, and so on. While it is already
hard to establish functional properties under free composition of components,
non-functional and non-technical aspects tend to emerge from composition and
are thus even harder to control. In the context of specific architectures, it remains
an open question what can be said about the quality attributes of systems com-
posed according to the architecture’s constraints. As in previous years, we could
identify a trend away from the specifics of individual components and towards
the issues associated with composition and integration of components in systems.
While the call asked for position papers on the relationship to web-services and
services in general, we did not receive papers on that subject. An emphasis on
anchoring methods in specifications and architecture was noticeable, going be-
yond the focus on run-time mechanisms in the previous year. Ten papers by
authors were accepted for presentation at the workshop and publication in the
workshop proceedings; for one paper the authors withdrew the paper from the
workshop; for one paper no presenter showed up at the workshop. About 25 par-
ticipants from around the world participated in the workshop. The workshop was
organized into four morning sessions with presentations, one afternoon breakout
session with three focus groups, and one final afternoon session gathering reports
from the breakout session and discussing future direction.

2 Presentations

This section summarizes briefly the contributions of the nine presenters, as
grouped into four sessions, i.e. analysis, performance, direction of CBSE and
application of CBSE.

2.1 Analysis

The first paper, presented by Thomas Cottenier, discusses the use of aspect-
oriented programming (AOP) techniques for non-invasive component adaptation
at load-time, compose-time and runtime. The paper starts from the observation
that existing approaches to AOP operate at the code level, rather than at the
component level, destroy the locality of runtime control flow and break compo-
nent encapsulation. These issues complicate the predictability and certification
of component-based systems exploiting aspects. The paper proceeds with identi-
fying that different types of aspects are used in different phases of the lifecycle,
e.g. resource management aspects at deployment time, adapter aspects at com-
position time and dynamic adaptation aspects at run-time. The authors propose
the use of an aspect-sensitive component profile that provides expressiveness for
semantic contracts, temporal properties, quality attributes and access control
contracts. This component profile is than used in an MDA-style form of aspect
weaving to obtain the desired component and system behaviour. Judith Stafford
presented the second paper. This paper starts with the observation that software

Component-Oriented Programming (WCOP 2004) 161

development is compositional in nature, but that most analysis approaches as-
sume complete system. Consequently, the system needs to be flattened, which is
expensive and may be infeasible if external, e.g. COTS, components are present
do not allow access to their internals. To achieve compositional analysis, each
component in a system should be accompanied with an analytic asset. Once
these assets are available, compositional analysis can be performed by analyzing
input-output pathways and the specific configuration of the components in the
system. The paper raises, as open issues, the selection of analysis algorithms,
the representation of analytical assets and packaging of these assets.

2.2 Performance

Viktoria Firus presented the first paper in the performance session. This paper
discusses the notion of parametric performance contracts for components and the
compositionality of these contracts. The initial observation in the paper is that
early evaluation of software architectures is important as the design decisions
taken during the architecture design phase have a large impact on performance.
The evaluation can be used to select the best design decision. The authors iden-
tify three dimensions that are of importance for quality predicting models, i.e.
validity, compositionality and parametricity. Parametricity refers to the need for
prediction models to reflect the context dependencies of a component. The au-
thors then proceed to define parametric performance contracts. The approach
taken models the performance of a component service by a distribution which
itself depends on the performance distribution of the external services called.
Then an overview of existing work was given. The discussion following the paper
presentation focused on the difficulty of providing accurate performance predic-
tions, especially since many performance issues result from resource contention
rather than execution. An alternative approach was presented by Trevor Par-
sons. The authors present a framework for automatically detecting and assessing
performance anti-patterns in component-based systems using run-time analysis.
The authors start by highlighting the importance of performance in the context
of component-based systems. Problems of performance analysis in these systems
results from the large amounts of data, the lack of support for achieving solu-
tions and the lack of bottleneck identification. The authors attack the problem
by identifying performance anti-patterns. These patterns are identified by pro-
posed framework. The framework consists of three main parts, i.e. monitoring,
detection and assessment and visualization. The authors employ data mining
algorithms to deal with the large amounts of data generated during monitoring.
During the discussion, the main topic was that the approach seems promising,
but needs to be employed in practice before its applicability can be determined.

2.3 Direction of CBSE

Different from the first two sessions that were very technical, the third session was
of a more conceptual nature, evaluating the notion of component-based software
engineering (CBSE). The first paper, presented by Jean-Guy Schneider, discusses
an assessment of the past, present and future of CBSE. The authors analyze the

162 J. Bosch, C. Szyperski, and W. Weck

achievements of the CBSE community using six factors, i.e. functionality (what
is/does a software component?), interaction (how do we compose components?),
quality (what results in a composition of components?), management (how to
publish and retrieve existing components?), evolution and tools (what support is
needed for application development?) and methodology (how to use CBSE, e.g.
process and development models). The conclusion of the authors is that much
has been achieved, but that especially the methodology, quality and manage-
ment factors require more research before these can be considered solved. The
discussion around the paper centred on the question whether progress actually
had been made in the CBSE community or not! The second paper is this session,
presented by Stefano de Panfilis, discusses the results of the CBSEnet network
of excellence and open issues and concerns of CBSE. CBSEnet, as a project,
has resulted in several valuable outcomes, including a classification model, a
landscape document and a portal. The landscape document presents concepts
and process issues, business concerns, product related topics, issues surrounding
COTS components, domain specific concerns of component systems, e.g. business
information systems, geographical information systems and embedded systems,
and related paradigms, such as service-oriented computing and model driven en-
gineering. The presenter stresses the importance of realizing that CBSE is not a
goal in itself, but a means to improve productivity, quality and time-to-market.

2.4 Application of CBSE

The first paper in the final session, presented by Jasminka Matevska-Meyer,
addressed the description of software architectures for supporting component
deployment and dynamic reconfiguration. The authors define the requirements
that an architecture description language (ADL) should satisfy, i.e. expressive-
ness for supporting dynamic configuration, runtime component behaviour de-
scription, timing constraints, runtime dependencies and composition features
for describing subsystems. Subsequently, existing ADLs were evaluated against
these requirements, leading to the conclusion that no ADL supported all require-
ments sufficiently. As an initial step towards a solution, the authors presented a
meta-model and a reconfiguration manager. The authors identified a number of
open issues, including a concrete ADL syntax for their approach, the need for
a resource mapping view and a prototype implementation. The final paper was
presented by Ivica Crnkovic and addressed the use of software components in
the context of embedded systems. The presenter started by explaining the de-
velopments in the embedded industry, especially the automotive industry, where
the demands on software have changed from basic to complex functions, causing
multiple functions to share sensors, networks, processing nodes and actuators.
The challenge is to offer an open but dependable platform for automotive appli-
cations, i.e. to balance flexibility and predictability. The presenter proceeded to
distinguish between large and small embedded systems, focusing on the latter
type. The main conclusion from the presentation was that component technology
for embedded systems needs to focus on pre-deployment composition, the partic-
ularities of the run-time environment, fine-grained components, white-box reuse

Component-Oriented Programming (WCOP 2004) 163

and source-code level component exchange. Concluding, component-technologies
are becoming feasible for embedded systems, but require adaptation to the con-
text of embedded systems.

3 Break-Out Sessions

In the afternoon the workshop participants were organized in break-out ses-
sions addressing three specific topics, i.e. compositional reasoning on quality at-
tributes, runtime re-configuration and re-deployment and, metaphorically, ”The
Big Picture”. Each group had a nominated scribe who, as named in the subsec-
tion titles below, contributed the session summaries.

Compositional Reasoning on Quality Attributes by Ralf Reussner
This break-out group was concerned with the question how to predict or guaran-
tee quality attributes of a component based system given the quality attributes
of inner components and the architecture of their interconnection. This discus-
sion started by listing and classifying the quality attributes the participants were
interested in. A classification and a comprehensive overview on quality attributes
is given in the ISO 9126 standard. Quality attributes of particular interest were:
availability / reliability, performance (throughput, reaction time, response time)
and resource consumption (memory, cache, etc.). We agreed to consider ”scala-
bility” a meta-quality attribute, as it describes changes of a quality attribute by
varying resources, such as the response time of a clustered database application
depending on a changing number of processors. Quality attributes can be clas-
sified according to the kind of statements one wants to derive from them. (a)
predictions are of concern for quantitatively measured quality attributes, such
as reliability or performance. (b) Guarantees are made by non-quantitative at-
tributes, such as correctness, safety or security. (c) Monotonic or preservation
statements are of concern if quality attributes can be measured in a discrete
ordered scale (such as ”low, medium, good”). As a special case, this scale in-
cludes all quantitatively measured attributes. Generally, quality attributes can
be classified according their kind of metric: stochastic / deterministic and dis-
crete / continuous. That is, the correlation among attributes depends at least
also on the system’s architecture (in the example, determining the presence or
absence of redundancy). One factor of the complexity of reasoning on quality
attributes are their interdependencies. A change of a system usually affects more
than one quality attribute. For example, improving security by adding encrypted
communication channels will most likely affect performance due to the compu-
tation costs for encryption and decryption. Remarkably, a pair of attributes is
not always positively or negatively correlated. For example, adding replicated
computing resources to increase performance may also increase reliability due to
an increased fault-tolerance. However, exactly the inverse relationship also ex-
ists: by adding on a load-balancer and increasing network-traffic the replication
of computing resources improves performance but lowers the reliability of the
overall system. An important issue is to understand, that basically all quality at-
tributes of a component are not constant properties of the component itself, but

164 J. Bosch, C. Szyperski, and W. Weck

are highly dependent on the component context. Basically, the quality attributes
depend on three groups of influence factors:
– The usage profile of the component: The way a component’s services are

used (the frequency, the parameters, etc) depend on the component’s con-
text. However, it is clear that the quality exhibited depend on this usage
profile. For reliability, this is true by definition, as software reliability is de-
fined as a function of the profile. However, the performance of a component
service will also frequently depend significantly on the arguments provided
for service parameters. (A download of 10 KB will be considerably faster
than a download of 20 MB.)

– The use-relationship to other components: A component service most often
makes use of several other external services. As a consequence, the quality of a
service also depends on the qualities of external services. An highly unreliable
external service will also influence the reliability of services building upon it.

– The deployed-on-relationship: Each component is deployed on resources, such
as processing nodes, network connections or other resources. Obviously, the
performance of the deployment hardware, the middleware, virtual machines,
and the like influences reliability and performance of a component heavily.

Resource contention, leading to discontinuous quality behaviour, can happen
via the use-relationship and the deployed-on-relationship. Any compositional
reasoning has to take both relationships into account. The composition of quality
attribute values can be either symmetric or asymmetric. Asymmetric composi-
tion of quality attribute values happens, if a component ”inherits” the quality of
another component. For example, an insecure component used within a secured
environment (such as a sandbox) will become ”secure”. Symmetric composition
of quality attribute occurs when the quality of an outer component can be com-
puted by a commutative function of the inner components. The composition
itself can be performed by many composition-operators. In principle, each ar-
chitectural pattern or style defines a composition operator. However, one could
ask for the minimal set of basic composition operators. Any composition opera-
tor should be expressible as a finite combination of basic composition operators.
Some candidates for such basic composition operators can be (motivated by oper-
ators of process algebras): parallel, sequential, alternative, refinement, extension.
Finally, we listed different calculi and their use for prediction models: Queuing
Models (performance), Petri-Nets (concurrency), Finite State Machines (proto-
cols), Markov-Models (reliability), Process Algebras (protocol), symbolic (logic)
representations (memory, performance), timed-logics (time, liveness). The fol-
lowing participants participated in the break-out group: Steffen Becker, Thomas
Cottenier, Viktoria Firius, Trevor Parsons, Ralf Reussner, Sibylle Schupp and
Richard Torkar.

Runtime Re-configuration and Re-deployment by Jasminka Matevska-
Meyer
The main concern of this break-out group was the definition of the scope of
runtime re-configuration and re-deployment and the main issues to enable them.

Component-Oriented Programming (WCOP 2004) 165

First we compared the common goals of our projects and thus identified the top-
ics of interest. This helped us to distinguish re-configuration from re-engineering
approaches. Re-configuration is the process of (a) changing, (b) re-building and
(c) re-deploying a system. It is thus a subset of re-engineering processes, includ-
ing techniques to perform the necessary changes to the system while maintaining
its consistency. The process of reconfiguration can include the identification of
change requests (e.g. context dependencies), but it mainly focuses on processing
those change requests. Hence, it only ensures the technical consistency of the sys-
tem. Questions concerning the sense of the reconfiguration are to be answered by
re-engineering approaches. Runtime re-configuration takes place at system run-
time. The affected sub-system should be changed, re-build and re-deployed at
system runtime. Runtime re-deployment should also include consistency checks
of the system. It can be seen as an extension of hot deployment and dynamic
reloading including consistency checks. We consider ”rich” components (with
information on services, connections, composition properties, hence more than
mere executable code). The main problem here is the application at runtime.
To successfully perform a runtime re-configuration we need much more infor-
mation about the running system than its structural dependencies. We need an
appropriate architecture description including (1) structural view (describing the
hierarchical system structure and enabling its composition), (2) dynamic view
(description of the system’s runtime behaviour, particularly concerning the use
dependencies among instances of components) and (3) resource mapping view. A
well defined mapping between the views including relationships between descrip-
tion and implementation (reflection) is essential to identify and isolate the af-
fected sub-system. Furthermore, we need techniques for checking consistency like
monitoring, simulation, model checking etc. For identifying necessary changes
we need an additional definition of environmental (contextual) dependencies. It
becomes clear that enabling runtime re-configuration while maintaining the con-
sistency of the system is a very complex problem. So, a legitimate question about
the sense of those approaches arises. There are a variety of systems which are
characterised through high availability (e.g. mission critical systems) and have to
be changed at runtime. Performance aspects, like load balancing (horizontal and
vertical) or resource driven adaptation (foraging) could also trigger a runtime
reconfiguration. Finally, our group briefly proposed our concrete approaches con-
cerning runtime re-configuration of component-based systems: (1) architecture-
based (PIRMA) considering runtime dependency graphs, (2) resource-contract
driven (CoDAMoS) as a context driven adaptation of mobile services and (3)
Programming driven (XParts) treating dynamic distributable Java components.
The following participants participated in the break-out group: Anders Gravdal,
Jasminka Matevska-Meyer, Peter Rigole, Ulf Schreier and Bart de Win.

The Big Picture by Jean-Guy Schneider
In the following, we will summarize the results of the discussion of the breakout
group on ”the Big Picture”. The main motivation of this breakout group was to
step back from current trends and set component-based Software Engineering

166 J. Bosch, C. Szyperski, and W. Weck

(CBSE) into a bigger picture. In this context, we discussed various issues related
to CBSE from a broader perspective and tried to come up with some directions
towards which the discipline might be heading. As a starting point, we discussed
the question where we could apply a component-based approach for software
development. It was argued by one group member that CBSE is very time con-
suming, requires dual application development, and considerable knowledge in
the respective application domain is essential. Furthermore, a group of experts
is needed to apply CBSE successfully (”For most normal people CBSE is way
too hard!”). In this context it was also mentioned that the existence of reusable
components is not only a precondition for CBSE, but also a sign of a matur-
ing domain. Hence, we concluded that CBSE can only be applied in mature
domains where reusable components already exist. But what are the problems
of finding reusable components and composing them in such a domain? It was
stated that component repositories are not the issue, but skills in social dialogs
are: talking to people to find out whether a component you need is available
seems to be a much more promising approach than searching in a repository.
Dedicated component repositories are not easy to set up and use as it is difficult
to come up with suitable ontologies to classify components. Furthermore, ad-hoc
search strategies are often more successful (”Why worry about UDDI, one can
use Google”). What about composing components? It was argued that the real
complexity is not in interfacing with existing components, but the real problem
lies in the semantics of the data. Hence, we concluded that component models
should focus (more) on standardizing component connections (”Standards are
the key to setting up a component market at all”). So what is the situation with
web services? One group member pointed out that web services are basically
a trick by commercial vendors to make both developers and end users select
their respective platforms, but, as such, are nothing else than components of-
fering their services on the web. Hence, we came to the agreement that ”web
service” is probably not such a good term and should be replaced by something
like ”e-Service”. There was also some consensus that the people in the discipline
are working too much on the solution domain (components, component models,
composition environments etc.), but not enough in the problem domain (what
kind of problems are suitable for CBSE). However, we acknowledged that CBSE
has solved many technical issues - other areas have been addressed, but not yet
solved. Does CBSE cover all aspects of Software Engineering? This turned out
to be quite a difficult question to answer. After some discussion it was suggested
that CBSE covers some of the traditional SE life-cycle activities, but it does a
rather poor job when it comes down to requirements engineering. However, we
failed to clearly identify which aspects are covered well and which ones poorly
(or not at all). Hence, this is a topic where further investigations are needed.
Finally, we addressed the question whether CBSE is just hype and will disap-
pear in five years or is it here to stay. Not surprisingly (and probably due to
a certain bias within the group), we agreed that CBSE is here to say and will
not disappear in the near future. Unfortunately, we did not have the time to talk

Component-Oriented Programming (WCOP 2004) 167

about many more issues that were raised during the lively discussion. Summing
up what we were able to talk about, we came to the conclusions that

– it is the market, legal issues, and standardization, but not technology which
will govern the success of CBSE,

– CBSE works well for product lines and in-house development, but not on
the open market, and

– specialized people are needed to cope with the technology/complexity to de-
velop applications using component-based Software Engineering approaches.

The following people participated in this breakout group (in alphabetical or-
der): Ivica Crnkovic, Bernhard Groene, Stefano De Panfilis, Jean-Guy Schneider,
David Thomas, and Hoang Truong.

4 Final Words

As organizers, we look back on yet another highly successful workshop on
component-oriented programming. We are especially pleased with the constantly
evolving range of topics addressed in the workshops, the enthusiasm of the atten-
dees, the quality of the contributions and the continuing large attendance of more
than 25 and often as many as 40 persons. We would like to thank all participants
of and contributors to the ninth international workshop on component-oriented
programming. In particular, we would like to thank the scribes of the break-out
groups.

5 Accepted Papers

The full papers and additional information and material can be found on the
workshop’s Web site (http://research.microsoft.com/cszypers/events/
WCOP2004/). This site also has the details for the Microsoft Research techni-
cal report that gathers the papers and this report. The following list of accepted
papers is sorted by the name of the presenting author.

1. Ivica Crnkovic (Mlardalen University, Sweden). ”Component-based approach
for embedded systems”

2. Thomas Cottenier, Tzilla Elrad (Illinois IT, USA). ”Validation of context-
dependent aspect-oriented adaptations to components”

3. Jasminka Matevska-Meyer, Wilhelm Hasselbring and Ralf H. Reussner (Uni-
versity of Oldenburg, Germany). ”Software architecture description support-
ing component deployment and system runtime reconfiguration”

4. Stefano De Panfilis (Engineering Ingegneria Informatica S.p.A., Italy) and
Arne J. Berre (SINTEF, Norway). ”Open issues and concerns on component-
based software engineering”

5. Trevor Parsons (Dublin City U, Ireland) and John Murphy (University Col-
lege Dublin, Ireland). ”A framework for automatically detecting and assess-
ing performance antipatterns in component based systems using run-time
analysis”

168 J. Bosch, C. Szyperski, and W. Weck

6. Ralf H. Reussner, Viktoria Firus and Steffen Becker (University of Olden-
burg, Germany). ”Parametric performance contracts for software compo-
nents and their compositionality”

7. Jean-Guy Schneider and Jun Han (Swinburne University of Technology, Aus-
tralia). ”Components - the past, the present, and the future”

8. Judith A. Stafford (Tufts University, USA) and John D. McGregor Clemson
University, USA). ”Top-down analysis for bottom-up development”

9. Amir Zeid, Michael Messiha and Sami Youssef (American University Cairo,
Egypt). ”Applicability of component-based development in high-performance
systems”

10th Workshop on Mobile Object Systems�

Ciarán Bryce1 and Crzegorz Czajkowski2

1 Object Systems Group,
University of Geneva, Switzerland

Ciaran.Bryce@unige.ch
2 Sun Microsystem Laboratories,
Mountain View, California, USA
Grzegorz.Czajkowski@sun.com

Introduction

The ECOOP Workshop on Mobile Object Systems is now in its 10th year.
Over the years, the workshop has dealt with topics related to the movement
of code and data between application platforms, security, operating system sup-
port, application quality of service, and programming language paradigms. In
many cases, the workshop has been a forum to discuss traditional object-oriented
issues, since mobility influences such a broad spectrum of topics.

To celebrate the 10th anniversary of the workshop, we decided to accept
papers dealing with all aspects of mobility. Eight presentations in total were
made at the workshop, and some time was allocated to discussion of each. The
tone of the discussions was informal. The workshop took place on Monday, June
14th, 2004, in Oslo University, just prior to the main ECOOP conference.

The Talks

The presentations made at the workshop were the following:

– Portable CPU Accounting in Java by Jarle Hulaas and Walter Binder.
– Reducing the Overhead of Portable CPU Accounting in Java by Jarle Hulaas

and Walter Binder.
– An Environment for Decentralized Adapted Services: A Blueprint by Rüdiger

Kapitza, Franz J. Hauck and Hans Reiser.
– An Extensible Directory Service for Efficient Service Integration by Walter

Binder, Ion Constantinescu and Boi Faltings.
– Mobile Code, Systems Biology and Metamorphic Programming by Christian

Tschudin.
– Perspectives on Mobile Code by Eric Jul.

� The title of this report should be referenced as “Report from the ECOOP 2004 10th
Workshop on Mobile Object Systems”.

J. Malenfant and B.M. Østvold (Eds.): ECOOP 2004, LNCS 3344, pp. 169–176, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

170 C. Bryce and C. Czajkowski

– Proactive Resource Manipulation for Agile Computing by Niranjan Suri,
Marco Carvalho and Jeffrey M. Bradshaw.

– A Security Model for Autonomous Computing Systems by Ciarán Bryce.

Jarle Hulaas from EPFL in Switzerland kicked-off the workshop by present-
ing joint work with Walter Binder entitled Portable CPU Accounting in Java for
the first part of the talk, and Reducing the Overhead of Portable CPU Accounting
in Java for the second part. Following an approach entirely based on portable
bytecode transformation schemes, in order to allow ubiquitous support for CPU
accounting, the presented research has yielded several significant improvements
to J-RAF, a previous effort on portable CPU accounting in Java.

Accounting and controlling the resource consumption of applications and
individual software components is crucial in server environments that host com-
ponents on behalf of various clients, in order to protect the host from malicious
or badly programmed code. Java and the Java Virtual Machine (JVM) are be-
ing increasingly used as the programming language and deployment platform for
such servers (Java 2 Enterprise Edition, Servlets, Java Server Pages, Enterprise
Java Beans). Moreover, accounting and limiting the resource consumption of
applications is a prerequisite to prevent denial-of-service (DoS) attacks in mo-
bile object systems, for which Java is the predominant programming language.
However, currently the Java language and standard Java runtime systems lack
mechanisms for resource management that could be used to limit the resource
consumption of hosted components or to charge the clients for the resource con-
sumption of their deployed components.

Prevailing approaches to providing resource control in Java-based platforms
rely on a modified JVM, on native code libraries, or on program transforma-
tions. Resource control based on program transformations at the bytecode level
offers an important advantage over the other approaches, because it is inde-
pendent of a particular JVM and underlying operating system. It works with
standard Java runtime systems and may be integrated into existing server and
mobile object environments. Furthermore, this approach enables resource con-
trol within embedded systems based on modern Java processors, which provide
a JVM implemented in hardware that cannot be easily modified.

CPU accounting in the initial version of J-RAF relied on a high-priority
scheduling thread that executed periodically in order to aggregate the CPU
consumption of individual threads and to adjust the running threads’ priori-
ties according to given scheduling policies. This approach hampered the claim
that J-RAF enabled fully portable resource management in Java, because the
scheduling of threads within the JVM is not well specified and the semantics of
thread priorities in Java is not precisely defined. Hence, while some JVMs seem
to provide preemptive scheduling ensuring that a thread with high-priority will
execute whenever it is ready to run, other JVMs do not respect thread priorities
at all. Therefore, scheduling code written for environments using J-RAF may not
exhibit the same behaviour when executed on different JVM implementations.

To overcome this limitation, the new version J-RAF2 (the Java Resource
Accounting Framework, Second Edition) comes with a new scheme for CPU

10th Workshop on Mobile Object Systems 171

accounting. In J-RAF2 each thread accounts for its own CPU consumption, tak-
ing the number of executed JVM bytecode instructions as platform-independent
measurement unit. Periodically, each thread aggregates the collected information
concerning its CPU consumption within an account that is shared by all threads
of a software component and executes scheduling code that may take actions in
order to prevent the threads of a component from exceeding their granted CPU
quota. In this way, the CPU accounting scheme of J-RAF2 does not rely on a
dedicated scheduling thread, but the scheduling task is distributed among all
threads in the system. Hence, the new approach does not rely on the underlying
scheduling of the JVM.

During the second part of his presentation, Jarle Hulaas covered different op-
timization schemes, the goal of which is to lower the additional execution time
needed by code transformed by the J-RAF2 tool. Such optimization techniques
essentially consist in trying to minimize the number of inserted bytecode in-
structions, or adding the CPU account as last argument in all method profiles,
including the JDK. In the end, the measurements showed an overhead dropping
from 300% (for older JVMs) or 40% (for the most recent JVMs from Sun and
IBM) down to around 27%. With certain approximation schemes designed to fur-
ther reduce the amount of inserted accounting instructions, but at the expense
of a loss of precision, the overhead would even be as low as 20%.

Rüdiger Kapitza then presented joint work with Franz J. Hauck and Hans
Reiser from the Universities of Ulm and Erlangen, entitled An Environment for
Decentralized Adapted Services: A Blueprint.

This talk described the design and implementation of an infrastructure for
service provision that ranges from the traditional client-server to a peer-to-peer
approach. This infrastructure is based on the Fragmented Object model. In
effect, nodes can negotiate their entry into a service group. The aim of the
system is to combine the advantages of both client-server and peer-to-peer.

In the last few years peer-to-peer systems have been one of the most evolving
research areas. Apart form the great public demand, the use of peer resources
is a major reason for this. In pure peer-to-peer systems, every peer has almost
equal responsibilities and provides resources for the whole system. This concept
has certain drawbacks in the context of a high number of nodes participating
only for short periods of time or peers which try to attack the system. In these
cases the overall system performance and service quality degrades or the system
may even collapse. In contrast, traditional client-server applications can cope
with these problems quite smoothly but offer no possibility to exploit client-side
resources.

To fill the gap between the traditional client-sever model and a peer-to-peer
based approach, the authors propose a model entitled Decentralised Adaptive
Services. This concept enables the usage of client-side resources in a controlled,
secure fashion and provides services in a scalable, fault-tolerant manner. Decen-
tralised adaptive services consist of a fragmented object which is spread over a
dynamic set of peers. Each part of the object might be replicated in the scope
of the peer set for fault tolerance or load balancing reasons. Furthermore each

172 C. Bryce and C. Czajkowski

part of the service is mobile and can migrate on demand of the service within
the scope of the peer set. Thus a decentralised, adaptive service can be seen as a
distributed mobile agent. The peer set dynamically expands or shrinks depend-
ing on the participating peers. In this way, decentralised adaptive services are
comparable to peer-to-peer systems. In contrast to peer-to-peer systems, where
each new peer does not have to support the system. First a peer has to signal
the willingness to support the service and provide information about the offered
resources. Second the decentralised adaptive service has to decide if the offering
is accepted and in what way the provided resources can be used in the context of
the service. In fact a decentralised adaptive service can dynamically change the
internal service model from a client-sever scenario where client-side resources are
simply not used to a peer-to-peer based approach by accepting only peers which
offer resources and give each peer the same responsibilities for service provision.

The aim of the Environment for Decentralised Adaptive Services (EDAS)
is to provide the basic concepts and mechanisms for the development and the
operation of decentralised adaptive services. This includes mechanisms for group
membership, resource monitoring and management, mobility, and mechanisms
for the use of resources of partially trusted or untrustworthy peers.

Walter Binder presented joint work with Ion Constantinescu and Boi Falt-
ings from EPFL, Switzerland entitled An Extensible Directory Service for Effi-
cient Service Integration. The talk presented two techniques for improving the
quality of service of an Internet directory service. The first is the addition of
sessions, the goal of which is to ensure that an interacting client sees the same
view of the directory despite changes that might occur in the services registered.
The second modification is a framework for the deployment of ranking functions
in the form of mobile code. The code is verified on deployment to ensure safety.
An API for these extensions was also presented.

In a future service-oriented Internet, service discovery, integration, and or-
chestration will be major building blocks. One particularly important issue is the
efficient interaction between directory services and service composition engines.
In previous work, the authors designed special index structures for the efficient
discovery of services based on their input/output behaviour. Each service is char-
acterized by the set of its required input parameters (name and type) and the
set of the output parameters provided by the service. The indexing technique is
based on the Generalised Search Tree (GiST), proposed as a unifying framework
by Hellerstein. Moreover, the authors have also developed service composition
algorithms that incrementally retrieve service descriptions from a directory ser-
vice during the service integration process. The composition problem is specified
by a set of available inputs and a set of required outputs. The service integration
algorithm creates a workflow that describes the sequence of service invocation
and the passing of parameters in order to obtain the required results.

The authors present two recent extensions to their directory, service integra-
tion sessions and user-defined ranking functions. The session concept provides
a consistent long-term view of the directory data which is necessary to solve
complex service integration problems. It is implemented in a way to support a

10th Workshop on Mobile Object Systems 173

large number of concurrent sessions. Custom ranking-functions allow to execute
user-defined application-specific heuristics directly within the directory, close to
the data, in order to transfer the best results for a query first. As a consequence,
the tranfer of a large number of unnecessary results can be avoided, thus saving
network bandwidth. As different service integration algorithms require different
ranking heuristics (e.g., forward chaining, backward chaining, etc.) it is impor-
tant to have a flexible way to dynamically install new ranking functions inside the
directory. As custom ranking functions may be abused for attacks, the directory
imposes severe restrictions on the code of these functions.

Christian Tschudin from the University of Basel in Switzerland presented
Mobile Code, Systems Biology and Metamorphic Programming. The talk dis-
cussed some commonalities between computer science and life sciences. Chris-
tian Tschudin argued that the lack of acceptance of mobile code is mainly due
to the poor general understanding we have of large systems, and that this weak-
ness also is hampering advances in life sciences. Suggestions are made to build
methodologies that might benefit both sciences.

The interpretation offered is that mobile code, if one wants to focus on its
failure so far, hit the systems wall right from the beginning. Only its very re-
stricted forms (Applets, update deployment) have been successful, while the fully
autonomous versions of mobile code were rejected, not so much because of the
psychological problem of losing control, but because of the inablity of its propo-
nents to predict the resulting behavior at the system level. Both sides, computer
science and system biology, lack engineering know-how about the assembly of
mobile code fragments and molecular pathways.

A first avenue presented by the speaker is to cut a slice through the design
space such that at least some form of processing can be engineered and tailored
for specific requirements. Taking the hypothetical task of creating an artificial
cell from scratch, this would mean to first come up with basic building blocks,
transistor like, and to build a hierarchy of complexity abstractions up to the point
where one can program such a cell. The analogy in the networking area would
be the GRID where the next service level is achieved by adding a coordination
layer to an existing infrastructure. A basic belief and hope of this approach is
that all additional levels of complexity can still be mastered, even for molecular
or for otherwise massive computing systems.

The other approach is basically bottom up and is a propagation of the meth-
ods found in molecular biology: It consists in turning the basic exploratory in-
struments into a generative tool by combinatorial means and blind mutation.
Translated into computer science this means that one explores the design space
in a methodological way instead of cutting out a slice. By generating and eval-
uating a huge number of program candidates, new solutions can be extracted
from the program space that an engineer would never dream of. This second
approach is specifically promising for mobile code.

The Fraglet system starts with a simple and executable model that blends
code and data: Whether some mobile item is named a data packet or a mobile
code fragment becomes a (human) interpretation which is irrelevant. Writing

174 C. Bryce and C. Czajkowski

Fraglet code resembles very much the programming with monadified functions
a la metamorphic computing and is tedious at best (for humans). Although it
is conceivable to use Fraglets as a target for a BioAmbient compiler, one sees a
more attractive use in exploring algorithmic solutions outside the range induced
or imposed by a modeling environment. The belief in this case is that search
strategies for exploring program space can remain simple while producing high
quality results in reasonable time.

In conclusion, complex (man made) systems are a recent challenge both in
computer science and biology. The author argues that advances in mobile code
research will be linked to progress in this area. There is a natural affinity be-
tween mobile code and the corresponding level of autonomous molecules that
has become visible in the research literature and that was anticipated in the
metaphorical speech of early mobile code research. In another ten years we will
better understand their relationship.

Eric Jul from the University of Copenhagen then gave an invited talk on
object mobility. The talk compared issues and challenges facing mobile object
system designers today, with those faced by the Emerald system designers over 20
years ago. Interestingly, there are close similarities, despite the fact that Emerald
was initially designed for a local area network of machines and current object
systems aim for the Internet or pervasive computing environments.

One of the issues that all application designers face is when to migrate an
object. Moving an object A can also require moving objects that closely com-
municate with A, since otherwise, the advantage of migrating A is offset by the
overheads of the resulting communication between A and these objects. The
Emerald system dealt with this issue using the attach command, which allowed
the application to specify the set of objects to move with an object. Another
mobility issue that designers still face is to locate objects. In Emerald, the fix
command allowed an application to bind an object to a specific machine, so that
mobility can be controlled to a certain extent.

So what are the new challenges for object mobility today? Perhaps the answer
lies in how mobility will be exploited in emerging applications, notably in the
pervasive computing domain.

Afterwards, Niranjan Suri and Marco Carvalho from the Institute for
Human and Machine Cognition (USA) and Lancaster University (UK) presented
joint work with Jeffrey M. Bradshaw entitled Proactive Resource Manipulation
for Agile Computing.

This talk’s subject deals with the exploitation and active manipulation of any
available computing resources in order to get a job done. Resource manipulation
may even include physical displacement of the computer. The approach also
generalizes a number of domains, including peer-to-peer, active networking and
mobile agents.

Exploitation of a resource discovery involves assigning a task to the node
that contains the resource. The request to use the resource is handled by the
middleware operating on the node. One of the key concepts in the approach is
the use of mobile code in order to provide complete flexibility in how the resource

10th Workshop on Mobile Object Systems 175

is used. For example, suppose node A contains spare CPU capacity that the agile
computing middleware plans to exploit in order to carry out a computation. In
order to use that capacity, the middleware will dispatch code that embeds the
computation to node A, which in turn will instantiate and execute the code.
Similarly, in order to use a node’s excess storage capacity, code that is capable
of receiving, holding, and serving data would be dispatched. In the same way,
in order to use network bandwidth, code that is responsible for relaying data
would be dispatched. Mobile code plays a key enabling role in the realization of
agile computing without which the system could not be opportunistic. If a new,
previously unexpected node with resources is discovered in the military settings
we have been investigating, the probability that this node already contains the
code necessary to service the request at hand is minimal. Dynamically pushing
code allows any resource that is discovered to be put to use as needed.

Policies play an important role in regulating the autonomous behavior of
agile computing middleware. If we look at agile computings role as ”exploiting
the wiggle room” through taking advantage of underutilized system resources,
the role of policy is to define and bound the wiggle room so that people are
comfortable with allowing their resources to be manipulated and used by the
agile computing middleware. The middleware relies on the existence of policies
previously defined by humans that constrain the manipulation of resources. For
example, policies may be used to govern the movement of the robotic platforms.
Policies are defined in the KAoS framework and may range from basic constraints
(a ground robot may not venture into water) to safety constraints (a robot must
stay a minimum of three feet away from a human) to operational constraints
(a robot must not be positioned in the middle of a road and thereby blocking
traffic). Policies may also govern various aspects of information feeds (e.g., la-
tency, resolution, access control) from sensor resources. At a more abstract level
of consideration, policies may also constrain the adjustment of autonomy itself
in an agile computing context.

The FlexFeed middleware realizes the goal of agile computing for distributed
sensor networks. FlexFeed addresses several challenges including providing effi-
cient sensor data feeds, hierarchical distribution of data, and policy enforcement.
FlexFeed relies on a coordinator that computes resource utilization costs in order
to determine the best possible data distribution approach.

Ciarán Bryce from the University of Geneva then presented A Security
Model for Autonomous Systems. This talk described results from the European
project entitled SECURE (IST-2001-32486), a collaboration between the Trinity
College Dublin, the University of Cambridge (U.K.), the University of Strath-
cylde (U.K.), the University of Aarhus (Denmark) and the University of Geneva
(Switzerland).

The goal of the SECURE project is to develop a trust-based security model
for autonomous systems. Given the very large number of entities in these sys-
tems, a model of security was designed that is closer to the way that humans
establish trust than to traditional computer models. The heart of the SECURE
project is the development of a computational model of trust that provides the

176 C. Bryce and C. Czajkowski

formal basis for reasoning about trust and for the deployment of verifiable se-
curity policies. The trust model alone is not sufficient to allow us to deliver a
feasible security mechanism for the global computing infrastructure. It is equally
important that we understand how trust is formed, evolves and is exploited in
a system, i.e., the trust lifecycle; how security policy can be expressed in terms
of trust and access control implemented to reflect policy; and how algorithms
for trust management can be implemented feasibly for a range of different ap-
plications. Further activities address these issues based on an understanding of
trust derived from the formal model but also contributing to the understanding
of trust as a feasible basis for making security decisions to be embodied in the
model.

The result has been the development of a software framework encompassing
algorithms for trust management including algorithms to handle trust formation,
trust evolution and trust propagation. The framework was used in the develop-
ment of a SPAM filter application that classifies mail messages as SPAM based
on the trust established in the message sender, either via observation of his be-
haviour or from recommendations received for him. This application is being
used to help us to evaluate the SECURE approach. More information about
SECURE can be found at the web site:

http://secure.dsg.cs.tcd.ie.

Conclusions

The consensus at the end of the workshop was that the workshop was a success,
and that the theme of object mobility is present in applications, in some form
or another.

One of the issues discussed at the end of the day was whether the workshop
series should continue to be held in the context of the ECOOP conference. On the
one hand, the number of attendees has been falling over the years as the vision of
objects roaming the Internet becomes less attractive. Research into mobility has
shown that security is still a major challenge and that programming abstractions
for building mobile object applications are missing.

It was suggested that the pervasive computing field might be closer to the
mobile object domain today than is standard object-orientation. Many of the
issues that are treated in mobile objects occur in pervasive computing. In the
former, mobility occurs through objects and threads changing their site of exe-
cution. In the later, mobility occurs by physically carrying the device – and its
objects and threads – from one network environment to another. A key sugges-
tion in the future is to involve people from the pervasive computing domain in
the workshop series.

All papers and presentations of this year’s workshop and of all previous edi-
tions are available at our website:

http://cui.unige.ch/~ecoopws

Fifth International Workshop on
Object-Oriented Reengineering�

Roel Wuyts1, Stéphane Ducasse2, Serge Demeyer3, and Kim Mens4

1 Université Libre de Bruxelles, Brussels, Belgium
roel.wuyts@ulb.ac.be,

http://homepages.ulb.ac.be/~rowuyts/
2 University of Bern, Bern, Switzerland

ducasse@iam.unibe.ch,
http://www.iam.unibe.ch/~ducasse/

3 University of Antwerp, Antwerp, Belgium
http://win-www.uia.ac.be/u/sdemey/

4 Université catholique de Louvain, Louvain-la-Neuve, Belgium
kim.mens@info.ucl.ac.be,

http://www.info.ucl.ac.be/ingidocs/people/km/research/KimResearch.html

Abstract. This paper reports on the results of the Fifth International
Workshop on Object-Oriented Reengineering in Oslo on June 15, 2004.
It enumerates the presentations made, classifies the contributions and
lists the main results of the discussions held at the workshop. As such it
provides the context for future workshops around this topic.

1 Objectives of the Workshop

The workshop on Object-Oriented Reengineering was co-located with the 18th
European Conference on Object-Oriented Programming, and took place at Oslo
(Norway) on June 15, 2004. There were 13 participants, most of which con-
tributed with a position paper that was reviewed and revised before the work-
shop.

The workshop gathered people working on solutions to reengineer object-
oriented legacy systems, a vital matter in today’s software industry. We claim
that software evolution and reengineering is a key issue of software engineering,
be it object-oriented or not. This shift of importance is starting to be noticed in
research and industrial efforts.

The workshop builds upon the following important related achievements:

1. a series of workshops on Object-Oriented Software Evolution and on
2. Object-Oriented Software Re-engineering held at OOPSLA’96, ECOOP’97,

ESEC’97 [1], ECOOP’98 [2], ECOOP’99 [3], WSR1999, WSR2000, WSR2001,
ECOOP’2003 [4] and ETAPS2003.

� The title of this report should be referenced as “Report from the ECOOP 2004 Fifth
International Workshop on Object-Oriented Reengineering”.

J. Malenfant and B.M. Østvold (Eds.): ECOOP 2004, LNCS 3344, pp. 177–186, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

178 R. Wuyts et al.

3. The work done in the FAMOOS project (Framework-based Approach for
Mastering Object-Oriented Software Evolution), carried out within the ES-
PRIT IV framework.

4. The Scientific Research Network on Foundations of Software Evolution funded
by the Fund for Scientific Research — Flanders, Belgium1 and the related
Scientific Network “Research Links to Explore and Advance Software Evo-
lution (RELEASE)” funded by the European Science Foundation Scientific
Network2.

2 Contributions

Eight papers were accepted in the workshop. This section gives an overview of
the contributions (in no particular order)3.

Opportunities and Challenges in Deriving Metric Impacts from Refac-
toring Postconditions by Bart DuBois (bart.dubois@ua.ac.be).

Refactoring transforming the source-code of an object-oriented program
without changing its external observable behaviour is a restructuring process
aimed at resolving evolution obstacles. Currently however, the efficiency of the
refactor process in terms of quality improvements remains unclear. Such quality
improvement can be expressed in terms of an impact on Object-Oriented metrics.
The formalization of these metrics is based on the same constructs as refactoring
postconditions. Therefore, using a uniform formalism, we can analytically derive
how refactorings affect OO metrics. The result of these derivations are condi-
tional impact descriptions, which specify under which conditions a refactoring
improves or degrades a specific OO metric.

Based on these conditional impact descriptions, refactoring guidelines can be
composed which focus time-investment only in those refactoring opportunities
that will improve known indicators for specific quality indicators. Such qualita-
tive feedback helps to steer the refactoring process, which is essential to make
refactoring a technique for supporting maintenance. More empirical research
will verify the practical usefulness of these guidelines from an external quality
perspective.

Logic and Trace-Based Object-Oriented Application Testing by Stéphane
Ducasse (ducasse@iam.unibe.ch), Michael Freidig and Roel Wuyts (homepa-
ges.ulb.ac.be/˜rowuyts/).)

Due to the size and the extreme complexity of legacy systems, it is nearly
impossible to write from scratch tests before refactoring them. In addition object-
oriented legacy systems present specific requirements to test them. Indeed late-

1 http://prog.vub.ac.be/FFSE/network.html
2 http://labmol.di.fc.ul.pt/projects/
release/

3 The full papers can be found on the workshop’s website:
http://kilana.unibe.ch:9090/WOOR

Fifth International Workshop on Object-Oriented Reengineering 179

binding allow subclasses to change fundamental aspects of the superclass code
and in particular call flows. Moreover Object-oriented programming promotes a
distribution of the responsibilities to multiple entities leading to complex scenario
to be tested. In such a context one of the few trustable source of information is the
execution of the application itself. Traditional forward engineering approaches
such as unit testing do not really provide adequate solution to this problem.
Therefore there is a need for a more expressive way of testing the execution of
object-oriented applications. We propose to represent the trace of object-oriented
applications as logic facts and express tests over the trace. This way complex
sequences of message exchanges, sequence matching, or expression of negative
information are expressed in compact form. We validated our approach by im-
plementing the prototype tool TestLog, which uses MethodWrappers [5] to reify
an execution trace, and reasons on this using Soul [6], a logic programming lan-
guage that can directly reason over Smalltalk objects, and can execute Smalltalk
code. We used TestLog to test the Moose reengineering environment [7] and a
meta-interpreter.

Visualizing and Characterizing the Evolution of Class Hierarchies by
Tudor Girba (girba@iam.unibe.ch) and Michele Lanza (lanza@iam.unibe.ch).

Analyzing historical information can show how a software system evolved
into its current state, but it can also show which parts of the system are more
evolution prone. Yet, historical analysis implies processing a vast amount of
information which makes the interpretation difficult. To address this issue, we
introduce the notion of history of source code artifacts as a first class entity and
define measurements which summarize the evolution of such entities. We then
use these measurements to define polymetric views [8] for visualizing the effect
of time on class hierarchies [9]. We show the application of our approach on one
large open source case study and show how we can classify the class hierarchies
based on their history.

Analyzing Large Event Traces with the Help of a Coupling Metrics
by Andy Zaidman (Andy.Zaidman@ua.ac.be) and Serge Demeyer.

Gaining understanding of a large-scale industrial program is often a daunt-
ing task. In this context dynamic analysis has proven it’s usefulness for gaining
insight in object-oriented software. However, collecting and analyzing the event
trace of large-scale industrial applications remains a difficult task. In this pa-
per we present a heuristic that identifies interesting starting points for further
exploratory program understanding. The technique we propose is based on a
dynamic coupling metric, that measures interaction between runtime objects.

Reverse Engineering Aspectual Views Using Formal Concept Analysis
by Kim Mens (kim.mens@info.ucl.ac.be) and Tom Tourwé (Tom.Tourwe@cwi.nl).

In this position paper, we report on an initial experiment using the technique
of formal concept analysis for reverse engineering aspectual views from object-
oriented source code. An aspectual view is a set of source code entities, such as
class hierarchies, classes and methods, that are structurally related in some way,

180 R. Wuyts et al.

and often crosscut a particular application. Initially, we follow a lightweight ap-
proach, where we only consider the names of classes and methods. This simplistic
technique already results in the discovery of interesting and meaningful aspec-
tual views, leaving us con- fident that more complex approaches will perform
even better, and should be studied in the future.

Automatic Renovation of Java Programs Using ReRAGs — Exam-
ples and Ideas by Torbjörn Ekman (torbjorn@cs.lth.se) and Görel Hedin
(gorel@cs.lth.se).

When a language evolves and new features are added, it is usually desirable to
renovate existing programs to make use of the new features. Some new features
could make old programs illegal, and make renovation necessary. Other new
features may allow old idioms to be replaced by clearer code. The evolution need
not always concern the language as such. It could as well concern the evolution
of standard frameworks, for example by adding new operations that should be
used in favor over others that are deprecated.

This paper outlines how these kinds of problems can be handled using
Rewritable Reference Attributed Grammars (ReRAGs), an object-oriented trans-
lation technique that we have recently developed [10]. In ReRAGs, a program is
represented as an object-oriented abstract syntax tree (AST). Computations on
the AST, e.g., to support name analysis, type checking, etc., are easy to express
in ReRAGs, and can be used by conditional rewrite rules that can transfrom the
AST to a suitable new form.

In the evolution of the Java programming language from 1.4 to 1.5, a number
of new language constructs are added, allowing many programs to be simplified.
This paper uses the new for-loop construct, that allows many iterations to be
expressed in a simpler way, as a running example illustrate a renovation technique
based on ReRAGs.

Constructing a Project Model and a Metadata Model for Experience
Extraction by Hei-Chia Wang (hcwang@mail.ncku.edu.tw).

This paper proposes a project model and an experience metadata model
to remember project experiences for software re-engineering. The experiences
could be any product in the process of a project, such as plan documents, UML
diagrams, and source code. In a software project, many phases and activities
will be gone through and many artefacts will be generated. Properly organizing
these resources for reuse can facilitate software re-engineering. However, in the
past, the metadata schema for describing experience has not been defined and
this made the resources difficult to store in a unified format for public searching
and reusing.

The paper proposes a way of keeping all related project experiences in an
experience web to solve this problem. The experience stored in this repository
can then be retrieved and reused. Once an experience is reused, a feedback will
be given as a new experience and the relation will be linked. Consequently, an

Fifth International Workshop on Object-Oriented Reengineering 181

experience web can be established for later users. The user can therefore get
different views from previous works.

Towards an Aspectual Analysis of Legacy Systems by Bedir Tekinerdogan
(B.Tekinerdogan@ewi.utwente.nl).

Aspect-Oriented software development provides explicit mechanisms for cop-
ing with concerns that crosscut many components and are tangled within indi-
vidual components. Current AOSD approaches have primarily focused on coping
with crosscutting concerns in software systems that are developed from scratch.
In this paper we will investigate the applicability of AOSD to the evolution of
legacy information systems. Various approaches have been already proposed to
enhance LIS, however, these approaches have not explicitly considered cross-
cutting concerns and/or AOP techniques. We provide a categorization of legacy
systems and give some early results in identifying and specifying aspects in legacy
systems.

We also had two researchers that provided us with a position statement
instead of a full paper:

1. Jonne Itkonen’s Position Statement. Jonne’s interest in object-oriented reengi-
neering comes from the software evolution side. It is interesting to see how
the software develops over time, what kind of structures, patterns and anti-
patterns emerge, when and why. Not only should this data and knowledge be
used as input for reengineering practices, but to validate the choices made
on forward engineering. He would like to see this to help to design better
tools for software developers. Tools, that can be used in a way that Charles
Rich and Richard C. Waters explained in their article ”Programmer’s Ap-
prentice”. That is, tools, that report gently to the developer the suspicious
structures that have have lurked into the code, possibly suggesting alterna-
tive designs, possibly even learning from the choices made.

We are confirming the discovered methods and metrics, and tools written,
by applying them to an in-house developed study enrolment and manage-
ment system called Korppi. It is a web-based system written mostly in Java,
and it has been in development since 2001. As many different projects have
written, developed and changed it over the years, it’s code has started to
show some unwanted features. This is why it gives as a pretty good example
of the so called ”real world code” to reengineer. The Korppi development
team has also been a valuable asset when evaluating the design of the tools,
and the applicability of the tools to real world software development situa-
tions.

2. Isabel Michiels’s Position Statement. In the context of the ARRIBA research
project, we are exploring techniques and tools that can support the integra-
tion of large-scale software entities that have not necessarily been designed
to coexist. As a basis for these techniques, we are doing research about code
mining, i.e. the extraction of knowledge out of large-scale, poorly or non
documented software applications. Therefore we create abstract representa-
tions of these systems, and then use a logical engine for reasoning about
and extracting knowledge out of the systems .Recently, we started exploring

182 R. Wuyts et al.

the use of aspect technology as instrumentation mechanism to explore and
register the behavior of legacy systems in order to understand what these
systems do and how their components relate to one another. By now we
established a mapping of COBOL code to an XML representation of that
code, and we are able to go back from that XML representation to COBOL.
And we are using a declarative language as a medium to express aspects and
pointcuts to instrument the XML representation of the COBOL code.

All this material was available to the participants of the workshop, and they
were asked to familiarize themselves with each others’ positions and research
before the start of the workshop. This eased the discussions.

3 Presentations

The morning session was devoted to selected presentations, subdivided in groups.
The presentations were chosen by the organisers because they had a higher
potential for generating issues that would stimulate the discussions.

To structure the morning presentations we decided to group the submitted
papers in three topics. Note that other groups could have been chosen, but these
choices distributed the presentations quite evenly.

– Topic 1: Metrics. Several papers used metrics to attempt to characterize
evolution or aid with refactoring.
• Visualizing and Characterizing the Evolution of Class Hierarchies uses

metrics obtained from the version information of a system to visualize
evolution of a system.

• Analyzing large event traces with the help of a coupling metrics intro-
duces a metric that is useful to quickly get evolution information on
large event traces.

• Opportunities and challenges in deriving metric impacts from refactoring
postconditions wants to derive the impact from a refactoring on source
code by studying its pre- and postconditions, and as such determining
whether it is useful to apply it.

– Topic 2: Program understanding. Since systems to be reengineering are typ-
ically unknown, some submissions discussed techniques to aid with program
understanding.
• Reverse Engineering Aspectual Views using Formal Concept Analysis

discusses how the mathematical technique of formal concept analysis
could be used to understand an existing system.

• Logic and Trace-based Object-Oriented Application Testing uses logic
queries on the execution trace to help express and test on patterns found
in the execution of the software.

– Topic 3: Various. Last but not least we were left with two papers that we
could not fit into meaningful groups because they differed from the other
submissions and each other.

Fifth International Workshop on Object-Oriented Reengineering 183

• Automatic renovation of Java programs using ReRAGs shows how a
rewriting system can be used to help code evolve, for example from one
version of a language to another one.

• Constructing a Project Model and a Metadata Model for Experience Ex-
traction proposed a meta model to capture and use experience.

4 Discussion

The afternoon session was entirely devoted to discussions. A common decision
was made to discuss about the following 5 topics in a single group:

Transformations. The participants identified that there clearly is a need for a
more structured approach to transforming code. A lot of the participants were
interested in refactorings in this context, and identified the need for pre- and
postconditions of refactorings to become explicit. If this were the case, refactor-
ings could be compared across tools (or even across languages, up to a certain
extent), and they could be kept track of as semantic entities (which would help
the analysis of evolution histories). The participants doubted that is was realis-
tic to formalize the transformations themselves. As a result from a comparison
between the ReRag rewrite system presented in the morning session, and Soul
(a logic meta-programming language that allows one to reason on Smalltalk and
Java code) an overview of Soul was presented by R. Wuyts. Soul has, both as
advantage and disadvantage, that it is a logic programming language, mean-
ing that users need to be able to write logic programs, while ReRags uses Java
(which results in slightly larger programs, but in the same language). Both ap-
proaches stress the fact that they are declarative as a key asset. When discussing
unit tests, and their relation to code, the participants decided that it would be
beneficial toco-evolve unit tests and code.

Dynamic Analysis. Several techniques exploit dynamic information (typically
gathered from code instrumentation) to analyse systems. The lack of a common
interchange format was perceived as problematic by some participants, since it
meant that different existing tools were not interoperable.

Abdelwahab Hamou-lhadj mentioned that he was working on CTF, a com-
mon dynamic information common exchange trace format, which resulted in a
lot of discussion, especially regarding the meta information used to represent the
dynamic information and the comparisons with other models. Important is that
the model allows annotations of events (and hence that it is open), that it has
built-in compression by representing the trace as an acyclic graph, and that it
is streaming. As a result, participants agreed that CTF could be very interesting,
but that more work needs to be invested to determine to see whether their cur-
rent approaches could be expressable in the format. For example one participant
needs to explictly keep the state of objects, which is currently not supported by
CTF (it reifies objects by their identifier only).

Visualization. Since in a lot of cases large data sets needs to be represented
somehow, visualizing is an important topic that needed to be discussed. A first

184 R. Wuyts et al.

question raised was why not many approaches use 3D visualization approaches,
add sound (some research plays back programs, allowing a trained developer
to recognize bugs audibly), or employ multiple monitors. The general feeling
was that more research in human-computer interaction is necessary to meaning-
fully use such advanced visualization techniques. In the absence of this research,
current tools that use such techniques should take care to stay functional. A
second question raised was why even simple visualization technology is not used
more often in the context of reengineering. The participants indicated that vi-
sual overload (resulting in too much scrolling) and the lack of properly integrated
tools hampered the broader usage of visualization.

Meta Modeling. A fourth topic that was discussed extensively focussed on
meta modeling, and first of all on the requirements for a meta model for reengi-
neering. First of all it is important to note that for space reasons alone a meta
model representation is preferred over an abstract syntax tree (AST)-based
model. Experience by several independent partners also agreed on the fact that
a common language independent AST representation is extremely complicated to
obtain. Next a number of advantages and disadvantages of three existing meta-
models were discussed: DMM, GXL and TA.

– DMM: is a model for representing the static part for different system and
program artefacts. It does not capture the history. But, as mentioned by
Ducasse, this is an orthogonal issue. While DMM is used widely, the absence
of an API means that tool support is lacking.

– GXL: an XML-based model for storing source code as a graph. It has the
disadvantage that it is extremely verbose and not very readable, but the
advantage that it is standardized. But it also lacks support by tools (as put
by one participant: there is a difference between talking and doing).

– TA (tupple attributes): a nicer model, but not used a lot.

Last but not least S. Ducasse noted that languages that languages that sup-
port introspection make it easier to write tools to extract meta models. However
most of them (with Smalltalk and CLOS as notable exception) forget to add
access and invocations of fields and methods. As a result one cannot ask ’who
references this particular item’, and these rules have to be coded by individual
rules (which, depending on the scoping rules of the language, can become very
difficult and error-prone).

Tools and Techniques. This topic was concerned with what experience do
people have with tools and techniques useful to support object-oriented software
engineering. A decision was made to add a webpage to the website for the work-
shop to let people list the tools they make or use. Following tools will certainly
be listed: MOOSE (a language-independent reengineering environment that sup-
ports program visualization and has support for evolution analysis), SourceNav-
igator (a stable tool to parse C++ and Java, and was recommended by some
participants), RERags (a rewrite tool for Java), Soul (a logic meta-programming
language that supports Smalltalk and Java).

Fifth International Workshop on Object-Oriented Reengineering 185

5 Conclusion

The workshop brought together researchers working on object-oriented reengi-
neering. Apart from lots of experiences and information that was exchanged on
the workshop, the following bigger questions were raised:

– pre- and postconditions of refactorings need to become explicit.
– support is need to co-evolve unit tests and code.
– the CTF (Common Trace Format) model to interchange execution traces is

interesting but needs more work.
– more research in human-computer interaction is necessary to meaningfully

use all kinds of advanced visualization techniques.
– visual overload (resulting in too much scrolling) and the lack of properly

integrated tools hamper the acceptance of visualization techniques.
– a common language independent AST representation is extremely compli-

cated to obtain.

Tackling these problems will certainly result in interesting discussions to be
held at the following workshop that is being planned.

About the Organizers

Prof. Stéphane Ducasse, from the University of Berne, is a member of the
Software Composition Group headed by Prof. Oscar Nierstrasz.

Prof. Serge Demeyer is leading a research group investigating the theme
of ”Software Reengineering” (LORE - Lab On REengineering). They are the
authors of the book “Object-Oriented Reengineering Patterns” published by
Morgan Kaufman [11].

Prof. Kim Mens is one of the originators of the “reuse contract” technique
for automatically detecting conflicts in evolving software [12] and is currently
interested in the problem of “co-evolution” between source code and earlier life-
cycle software artifacts [13].

Prof. Roel Wuyts bootstrapped research in co-evolution of design and im-
plementation with the declarative meta-programming language Soul [14]. He
focusses now on language symbiosis, program composition and programming
language support for unanticipated evolution.

References

1. Demeyer, S., Gall, H., eds.: Proceedings of the ESEC/FSE Workshop on Object-
Oriented Re-engineering. TUV-1841-97-10. Technical University of Vienna — In-
formation Systems Institute — Distributed Systems Group (1997)

186 R. Wuyts et al.

2. Stéphane, D., Weisbrod, J.: Report of the ecoop’98 workshop on experiences in
object-oriented re-engineering (1998)

3. Ducasse, S., Ciupke, O., eds.: Proceedings of the ECOOP’99 Workshop on Expe-
riences in Object-Oriented Re-Engineering, Forschungszentrum Informatik, Karl-
sruhe, Germany (1999) FZI 2-6-6/99.

4. Demeyer, S., Ducasse, S., Mens, K., Trifu, A., Vasa, R.: Report of the ecoop’03
workshop on object-oriented reengineering (2003)

5. Brant, J., Foote, B., Johnson, R., Roberts, D.: Wrappers to the Rescue. In:
Proceedings ECOOP ’98. Volume 1445 of LNCS., Springer-Verlag (1998) 396–417

6. Wuyts, R.: Declarative reasoning about the structure object-oriented systems. In:
Proceedings of the TOOLS USA ’98 Conference, IEEE Computer Society Press
(1998) 112–124

7. Ducasse, S., Gîrba, T., Lanza, M.: Moose: a collaborative and extensible reengi-
neering environment. In: Reengineering Environments. to be filled (2004)

8. Lanza, M., Ducasse, S.: Polymetric views — a lightweight visual approach to
reverse engineering. IEEE Transactions on Software Engineering 29 (2003) 782–
795

9. Gîrba, T., Ducasse, S., Lanza, M.: Yesterday’s weather: Guiding early reverse
engineering efforts by summarizing the evolution of changes. In: Proceedings of
ICSM 2004 (International Conference on Software Maintenance). (2004)

10. Ekman, T., Hedin, G.: Rewritable Reference Attributed Grammars. In: Pro-
ceedings of ECOOP 2004. Volume 3086 of Lecture Notes in Computer Science.,
Springer-Verlag (2004)

11. Demeyer, S., Ducasse, S., Nierstrasz, O.: Object-Oriented Reengineering Patterns.
Morgan Kaufmann (2002)

12. Lucas, C.: Documenting Reuse and Evolution with Reuse Contracts. PhD thesis,
Programming Technology Lab, Vrije Universiteit Brussel, Brussels, Belgium (1997)

13. D’Hondt, T., De Volder, K., Mens, K., Wuyts, R.: Co-evolution of object-oriented
software design and implementation. In: Proceedings of the international sympo-
sium on Software Architectures and Component Technology 2000. (2000)

14. Wuyts, R.: A Logic Meta-Programming Approach to Support the Co-Evolution
of Object-Oriented Design and Implementation. PhD thesis, Vrije Universiteit
Brussel (2001)

Evolution and Reuse of Language
Specifications for DSLs (ERLS)�

Thomas Cleenewerck1,∗∗, Krzysztof Czarnecki2,
Jörg Striegnitz3, and Markus Völter

1 PROG, Vrije Universiteit Brussel, Belgium
2 University of Waterloo, Canada

3 Research Centre Juelich, Germany

Abstract. This report summarizes the results of the workshop on evo-
lution and reuse for language specifications for DSLs. The focus of the
workshop was twofold: exploration of the current research activities con-
cerning reuse and evolution of language specifications and discussion
of the identification, extraction, and composition of reusable parts of
DSL specifications. The workshop combined presentations with focused
discussions on these emergent topics: reusable assets, role of object-
orientation, conflicts among reused assets, and the quest for a DSL test-
case example to facilitate and guide future discussions.

1 Introduction

With the advent of rewrite rule systems, template transformation languages and
attribute grammars, the development of compilers for domain-specific languages
has been greatly facilitated. Despite these technologies compiler development is
usually started from scratch, i.e. the grammar and the semantic specifications
are completely written starting from nothing. Unfortunately the cost of adapting
an existing DSL implementation or the implementation of another similar DSL
often boils down to the same amount of work. Naturally, given the already
existing implementation of a DSL, this cost is too high.

The aim of this workshop was to bring researchers together and provide a fo-
rum to discuss the issues in DSL development and evolution with the particular
focus on identifying, extracting, and composing reusable parts of DSL specifi-
cations. We specially concentrated on, but not limited the workshop to the use
of object oriented techniques and concepts like encapsulation and inheritance to
make DSLs more reusable.

Since this was the first workshop of its kind, the focus of the workshop in-
cluded a wide range of topics concerning evolution and reusability to explore

� The title of this report should be referenced as “Report from the ECOOP 2004
Workshop on Evolution and Reuse of Language Specifications for DSLs (ERLS)”.

�� Edited by.

J. Malenfant and B.M. Østvold (Eds.): ECOOP 2004, LNCS 3344, pp. 187–201, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

188 T. Cleenewerck et al.

current research activities. The topics of interest include but were not limited
to:

– Implementation technologies and paradigms: transformation systems, meta-
programming, interpreters

– Reusable assets ranging from individual transformations to patterns
– Reusability techniques: customization, configuration, adaptation, encapsula-

tion, compositions and inheritance

Of course not all of the above suggested topics could be discussed. The fol-
lowing discussion topics are the topics that emerged during the workshop in the
afternoon: reusable assets, role of object-orientation, conflicts among reused as-
sets, and the quest for a DSL test-case example to facilitate and guide future
discussions.

The workshop report consists of summaries of the contributions in section 2
and reports of the discussions and the results of the topics 3. Table 1 lists all
the participants and their affiliation. The position papers are available at the
workshop website (http://prog.vub.ac.be/∼thomas/ERLS/).

Table 1. List of workshop participants

Name Affiliation E-mail Address
Thomas Cleenewerck Vrije Universiteit Brussels, Bel-

gium
tcleenew@vub.ac.be

Krzysztof Czarnecki University of Waterloo, Canada czarnecki@acm.org
Jörg Striegnitz Research Centre Juelich, Germany J.Striegnitz@fz-juelich.de
Markus Völter none voelter@acm.org
DeLesley Hutchins University of Edinburgh, UK d.s.hutchins@sms.ed.ac.uk
Barrett R. Bryant University of Alabama at Birming-

ham, USA
bryant@cis.uab.edu

Pieter Van Gorp Universiteit Antwerpen, Belgium Pieter.VanGorp@ua.ac.be
Simon Dobson Trinity College, Dublin IE simon.dobson@cs.tcd.ie
Sofie Goderis Vrije Universiteit Brussels, Bel-

gium
sgoderis@vub.ac.be

Torbjörn Ekman Lund University, Sweden torbjorn.ekman@cs.lth.se
Görel Hedin Lund University, Sweden gorel@cs.lth.se

2 Contributions

The contributions are ordered as follows: two cases, a formalization and two im-
plementations. We start off with two contributions where a domain is presented
and for DSLs where there is a great potential for reuse and evolution and the
conflicts that may arise during reuse. The two domains are respectively user
interfaces and middleware patterns. The implementation of the former is based
on logic rules and the implementation of the latter by a transformation sys-
tem with various extensions. The next contribution investigates and attempts

Evolution and Reuse of Language Specifications for DSLs (ERLS) 189

to formalize object oriented approaches using descriptive logics for capturing
transformational knowledge. The following two contributions each incorporated
reuse in their transformation system, respectively ReRags and TLG.

2.1 The Write Once, Deploy N MDA Case Study Combining
Performance Tuning with Vendor Independence
(Pieter Van Gorp)

Summary. In this paper, we presented a complex middleware pattern as a real-
istic case study for model-driven development. From this case study we derived
concepts of a transformation language that would allow us to generate such
patterns towards different application servers. The language supports the spe-
cialization of common transformations, the separation of concerns, and evolution
conflict resolution. For the latter feature we applied the familiar concept of de-
sign by contract. Following this principle, code generation can be integrated with
architectural consistency rule checking: consistency constraints can be consid-
ered as the postconditions of transformation rules. Failed postconditions trigger
a reconciliation unit that can be considered as the body of a transformation
rule. Reconciliation units can often be generated from declarative OCL postcon-
ditions. For new components, reconciliation will result in code generation. Evo-
lution conflicts in existing software require reconciliation units that correct the
inconsistencies without regenerating other items. For this purpose, such units
can analyze source and target models by navigating traceability models that
maintain a persistent link between these two. Since conflict resolution logic can-
not always be generated by the transformation engine, transformation specifiers
need language support to implement it manually. By carefully inheriting from
common superclasses in the design of metamodels for PIMs and PSMs, one can
specify consistency constraints across abstraction layers in a very concise man-
ner. At a low level of abstraction, imperative code templates can be integrated
with the model (to model) refinement process.

2.2 A Declarative DSL Approach to UI Specification - Making
UI’s Programming Language Independent
(S. Goderis, D. Deridder)

Summary. A large number of researchers are trying to find innovative ways to
tackle the problem of separation of concerns. In our research we focus on the
concern of User Interfaces and application interactions because these are seldom
separated from each other. A clean separation would nevertheless facilitate UI
development and evolution. Figure 1 depicts this idea of separating the UI from
its underlying application. One should keep in mind that both interact externally
with each other and internally with themselves. When separating concerns it
will therefore be important to focus on factoring out these interactions since
they are the main cause for the code entanglement. In our work we focus on the
interactions between the UI and the application (figure 1 number 3), and within
the UI itself (figure 1 number 2), as well on the different layers of abstraction
within the GUI box (figure 1 number 1).

190 T. Cleenewerck et al.

Fig. 1. Separating GUI and Application Interactions

Once the separation between UI and application is achieved, different exam-
ples can be thought of where separation is beneficial. For instance, deploying the
UI to another platform without having to rebuild completely, or adapting the
interface to different kinds of users.

In order to solve this problem we will express high level UI components
(i.e. the GUI components in figure 1 (1 and 2)) by means of declarative meta-
programming. This denotes that a user interface is described declaratively by
means of rules and facts and later on is composed through a problem solver.
Different concerns, as well as different UI abstraction layers, will lead to different
sets of rules. The problem solver will combine all of these in order to get to the
user interface that is wished for. Consequently we provide a declarative user
interface framework as a domain specific language to program user interface
concerns and their interactions with the application code.

As shown in figure 1 we can consider the declarative specifications for the
User Interface and the interactions as being a DSL, namely for the domain of
User Interfaces.

Relation to the Workshop. We have encountered several issues related with
DSL’s for which the workshop could provide us with new insights.

Inheritance. Reusing existing rule-bases can be done by parameterizing one rule-
base by another one. We need to investigate how to ensure inheritance between
different UI sets, or how to make them dependent on each other. This is also
related to evolution issues.

Customization and Configuration. We want to generate the UI based on the
declarative rules and facts. Nevertheless we should not restrict ourselves to static
User Interfaces since a lot of the UI power is currently left unattended because of
this staticness. It should be possible to customize a User Interface dynamically.
For instance, when someone resizes a window, another layout strategy might
have to be applied. These layout strategies should be applied to the user interface
dynamically, without need for recompiling the static UI.

Another issue related to this topic is putting constraints between the different
UI building blocks [1, 2]. For instance, how to specify that a certain component
should be placed above another one (and what to do if conflicts arise)?

Evolution and Reuse of Language Specifications for DSLs (ERLS) 191

Evolving and Adapting. It is not clear which abstractions will be needed. It is not
possible to anticipate all possible abstract UI components, as this will depend on
the developers’ point of view as well. Furthermore a certain abstraction might
play a role in different UI framework parts, and it is not always clear where
to draw the line. We acknowledge that it will never be possible to completely
separate the UI from the application (since they have to interact at some point
in time). But also on the level of the application interactivity layer it is not clear
where to stop making abstractions.

Once the basic entities are defined, they are composed into more complex
and abstract entities. A user will want to use these higher level entities without
having to care about lower level entity descriptions. This implies that users will
consider the high level entities as black boxes without knowing what the low
level entities actually look like. Therefore two high level entities may contradict
each other without the user knowing it.

2.3 Knowledge Representation in Domain Specific Languages
(D. Hutchins)

Summary. Most domain-specific languages are layered on top of an existing
general-purpose language, such as C or Java. As a result, it is convenient to think
of individual DSLs (or DSL fragments) as program transformation systems; they
translate domain-specific constructs into a base language.

Transformation systems can be difficult to use because they operate on ab-
stract syntax trees, and do not have any real understanding of the meaning of
the code they modify. Two different transformations may conflict if they al-
ter the code base in incompatible ways. I argue that capturing the semantic
meaning of domain-specific concepts is the real challenge of developing reusable
DSLs.

A domain-specific language encodes knowledge about the problem domain.
Instead of encoding knowledge by translating domain-specific concepts into C or
Java, I propose to define such concepts directly, using a dedicated knowledge-
representation language. Under this model, a DSL or DSL fragment is repre-
sented as an ontology of concepts and relations between concepts. Combining
two different DSLs together is a matter of merging the two ontologies.

Description logics (DLs) are a knowledge representation system that is cur-
rently used by the artificial intelligence community. DLs as they are ordinarily
defined are essentially a type system – they can describe the interface of objects,
but they cannot be used to implement the behavior of objects. This limitation
prevents them from being used to implement DSLs.

In this paper, I introduce the Sym calculus, which is a formal object calculus
that extends descriptions logics into a full-fledged programming language. This
language not only supports standard functions, classes, and generics, but it can
be used to implement virtual types, mixins, features, components, and aspects.
Sym achieves this flexibility because it is based on a knowledge representation
system, and can thus handle the semantics of terms at a much more abstract
level than mainstream OO languages.

192 T. Cleenewerck et al.

Relation to the Workshop. The focus of this workshop was using object-
oriented techniques to make DSLs more reusable. Most proposals discussed ways
of using OO constructs to implement program transformation systems.

It is well known that one way to implement a grammar is to define each non-
terminal as a class. If a non-terminal has more than one definition then it can
be defined as an abstract base class, with each variation as a concrete subclass.
The grammar thus becomes a class hierarchy. This is a particularly attractive
mechanism for implementing more advanced systems, such as attribute gram-
mars, because the class hierarchy can be used to annotate the abstract syntax
tree with additional information beyond that what’s present in the raw syntax.

The advantage of using classes to represent non-terminals is that each node
in the abstract syntax tree has a type and a well-defined interface. This means
that the AST can be queried and manipulated via method calls, just like any
other OO data structure.

This is essentially the philosophy that I have taken with the Sym calculus. My
approach is to ignore the question of syntax altogether, and focus on developing
more flexible ways of defining and manipulating complex object structures.

Concepts in Sym are defined much like OO classes, but they may be related
to other classes via type equations. Type equations are evaluated at compile-
time. This means that Sym can be used as an “extensible compiler” architecture
for implementing DSLs. If an abstract syntax tree is constructed at compile
time (via an external parser), then information will propagate through the tree
at compile-time. Unlike the OO method-call mechanism, there is no run-time
penalty to using domain-specific constructs.

2.4 Reusable Language Specification Modules in JastAdd II
(T. Ekman, G. Hedin)

Summary. This paper discusses how to build domain specific languages (DSL)
on top of a general purpose language (GPL) using our language implementation
tool JastAdd II. The specification formalism in JastAdd II is based on Rewritable
Reference Attributed Grammars (ReRAGs) [3], that combines object-oriented
abstract grammars, static aspect-oriented programming, reference attributed
grammars, and conditional rewriting.

The technique is illustrated by evolving a matrix framework into new lan-
guage constructs that are added on top of Java. The GPL, in this case Java, is
extended at both the syntactic level and the semantic level. The semantic exten-
sions affect name analysis as well as type analysis. The code generation finally
transforms the extensions into the base language by using a matrix computa-
tions framework. The extension is done in a modular way and re-uses large part
of the static semantic analysis from the base grammar.

Relation to the Workshop. The DSL approach used in the paper is based on
the JastAdd II tool, a combined attribute grammar and transformation system.
The paper focuses on how to express DSL extensions and GPLs in a modular
fashion and how to compose new languages from these individual parts. The
same technique can be used to customize an exisiting language.

Evolution and Reuse of Language Specifications for DSLs (ERLS) 193

The specification formalism in JastAdd II allows modular specification and
provides several synergistic mechanisms for separation of concerns, e.g. inheri-
tance for model modularisation, static AOP for cross-cutting concerns, rewrites
that allow computations to be expressed on the most suitable model, and declar-
ative formalism to allow transparent composition of attributes and rewrites. This
enables the DSL and GPL specifications to be expressed separately in modular
fashion and combined in a transparent way.

2.5 Object-Oriented Language Specifications: Current Status and
Future Trends (M. Mernik, X. Wu, B. R. Bryant)

Summary. The challenge in domain-specific language definition is to support
modularity and abstraction in a manner that supports reusability and exten-
sibility [4]. The language designer wants to include new language features in-
crementally as the programming language evolves. Ideally, a language designer
would like to build a language simply by reusing different language definition
modules (language components), such as modules for expressions, declarations,
etc. These reusable components should be straightforwardly extendible to reflect
language design changes.

Our position statement is that the use of object-oriented techniques and
concepts, like encapsulation and inheritance, improves language specification
languages to a much greater extent towards their modularity, reusability and
extensibility than any other technique. In this paper two of our latest approaches
are briefly described. In the LISA approach the attribute grammar as a whole
is subject to inheritance employing ”Attribute grammar = Class” paradigm.
We call this multiple attribute grammar inheritance. With our approach, the
language designer is able to add new features (syntax constructs and/or se-
mantics) to the language in a simple manner by extending lexical, syntax and
semantic specifications. In the second approach, we combine Object-Oriented
Two-Level Grammar [5] specifications with Java to implement domain-specific
languages. We specify the lexical, syntax and abstract (domain-independent)
semantics rules by TLG specification and implement the concrete semantics by
user-supplied Java classes. We also apply several object-oriented design patterns
(interpreter pattern, composite pattern, chain of responsibility pattern) to help
improve the modularity and abstraction level of TLG specification to enhance
the reusability of formal specifications in language implementation.

Relation to the Workshop. Object orientation plays an important role in the
design of language specifications for DSLs. This paper is a position paper that
describes the evolution of object-oriented language specifications. It explores
the current status of applying modular formal specification in language defi-
nitions and introduces several modern language specification approaches, such
as object-oriented attribute grammar [6], intentional programming [7], two-level
grammar [8], action semantics [9], JTS[10], JJForester [11], etc. Current short-
comings and future trends of language specification language are also introduced
at the end of this paper.

194 T. Cleenewerck et al.

We conclude in the paper that the use of object-oriented techniques and
concepts, like encapsulation and inheritance, improves language specification
languages to a much greater extent towards their modularity, reusability and
extensibility than any other technique. To illustrate this, our two latest object-
oriented approaches are introduced in the paper. The attribute grammars we
used in LISA system have been modeled as objects, which is similar to Jast-
Add II introduced by Ekman and Hedin. Likewise the two level grammars in
our second approach are also modeled and designed after objects. We go even
further and state that many object oriented design patterns are in fact useful
for the implementation of a TLG-based compiler generation system. Our two
approaches have been proven successful in developing various domain-specific
languages (e.g. SODL, COOL, AspectCOOL, PLM, PAM, Matrix language).
Our experience with these non-trivial examples shows that object-oriented spec-
ification languages are very useful in managing the complexity, reusability and
extensibility of language definitions. Specifications become much easier to read,
maintain and to modify.

3 Discussions

3.1 Reuse

Reuse of DSL specifications is hard, because of their domain dependent nature.
Lifting part of these specifications to general language constructs and generally
applicable semantics is therefore not easy. We compiled a non-exhaustive list of
general constructs and semantics that are most likely to be found in many DSL
implementations:

Value Construction. The computation of new values and new AST nodes.

Value Propagation and Distribution. The propagation of new values
throughout the tree and the distribution of the values to the AST nodes that
require these values. Various propagation schemes like tree traversals, xpaths,
attribute inheritance and synthesis, etc., already exist.

Name Resolution and Binding. In the grammar names are merely a syn-
tactic entity represented by some kind of an identifier or hierarchical identifier.
Because the actual semantic meaning of names is often context dependent, a
name resolution or analysis process must resolve their semantic meaning.

Type Analysis. Statically typing (whether it is explicit or implicit in the DSL
language) is a cornerstone to insure the correctness of a program written in
a DSL. In order to infer type correctness type analysis is required which (1)
connects the use sites to the declaration sites and (2) checks the operations in
the use sites against the operation supported by the type.

Construction of Typed Nodes According to a Pattern. The type of an
AST node plays in many transformation systems a crucial role because it is
one of the quantifiers to select certain transformations and computations on the

Evolution and Reuse of Language Specifications for DSLs (ERLS) 195

tree. However, the exact type can often only be determined after some analysis
of the tree. Therefore during transformation, the obtained information is used
to construct new AST nodes of a more appropriate type.

Resolving Non-local Results of One-to-Many Transformations. One-to-
many transformations exert an influence in the form of non-local AST nodes on
various parts of the parse tree. Appropriate mechanisms are needed to deal with
such non-local nodes.

Null-Value Elimination. Structural mismatches between the source and tar-
get language break the fundamental in-place substitution principle of many
transformation systems because certain source AST nodes cannot be substi-
tuted by the produced new AST nodes after their transformation. When this is
the case, null-values or empty subtrees must be removed from the tree.

The items in this list are closely related to implementation, compiler and lan-
guage infrastructure. How broad or narrow the notion of infrastructural mecha-
nism can be interpreted was a point of discussion. Some argued that DSL editors,
etc., were also part of this infrastructure, while others rather narrowed this no-
tion to implementation mechanisms. An item that is particularly difficult to
categorize are semantic validators. If the semantics of a language is described
via a transformation to another language, then semantic validators would not
be considered as infrastructure. When the semantics of a DSL is expressed with
some kind of formalism, validators based on that formalism would be considered
as infrastructure. Currently the reuse of language modules is largely investi-
gated in context of evolving a DSL to another version. Out of the discussions
we strongly believe that there is a lot reuse potential for language modules be-
longing the same domain. More research and field expertise is needed to further
broaden and increase reuse for the development of DSLs. The exploration of
reuse among researchers that are often not familiar with the domain proved to
be very difficult. Concrete cases of reuse could help us understand the required
mechanisms and the current difficulties better. Since reuse is rather at its early
stages, these cases are currently not available.

3.2 Role of Object Orientation

Object orientation plays an important role in the design of todays transformation
systems. The introduction of OO techniques and concepts in transformation
systems facilitates the development of new languages, increases the modularity
of the components and allows more reuse. Let us discuss each of the techniques
and concepts borrowed and used of OO in the design of a transformation system.

The notion of an object as an encapsulated entity with state and behavior
gets applied to language modules (either BNF rules, rewrite rules, linglets, tem-
plates or attributes depending on the kind of transformation system). Language
modules become configurable entities containing data and behavior. In Delesley,
language entities are concepts modeled after objects with fields and functions.
The attribute grammars discussed by Ekman and Bryant have been modeled
as objects where productions correspond to classes and attributes to methods.

196 T. Cleenewerck et al.

Likewise the two level grammars discussed in Bryant are also modeled and de-
signed after objects. Finally VanGorp points out that template transformation
languages like xDoclets -used to implement his model to code transformations-
are encapsulated entities containing datamembers and functions. Inheritance is
the mechanism object orientation offers for code reuse and code specialization.
In class based languages subclasses can override and inherit behavior and data,
respectively specialize and reuse existing code. Inheritance has been successfully
adopted towards language modules of DSLs. In the JastAdd II transformation
system described in the paper of Ekman, name analysis and typing for a ma-
trix extension to Java is introduced with a minimal amount of effort hereby
reusing existing name analysis and specializing typing rules. VanGorp argues
that there is a lot of potential for an inheritance mechanism to reduce the code
base containing the model to model and model to code transformations of MDA
for distributed enterprise Java applications. Bryant goes even further and shows
that many object oriented design patterns are in fact useful for the implemen-
tation of a TLG-based transformation system.

Besides inheritance as a reuse mechanism there are other mechanisms as well.
Goderis is exploring how to achieve reuse in the context of logic programming
by specializing certain rules or providing extra alternatives. This way existing
rules are reused and new behavior is accented for.

Because of this encapsulation, DSL designers can now pay more attention to
modularity, in terms of the relationship of the language components with the
rest of the compiler. Modularity is important because it is one of the corner
stones for reusability. In other words, encapsulation brought us a step closer to
our goal.

3.3 Conflicts

The reuse of language constructs and semantics can be hampered by conflicts
and information dependencies that occur when two or more of those reusable
elements are combined. The definition of a conflict was a point of much debate in
the workshop. From the debate the following preliminary definition of a conflict
can be summarized as follows: a conflict is a non-trivial resolution of two language
components, which have a mutual interest. An interest of a language component
can be every part of the language on which the component depends:

Constrains. The conditions under which a component may be executed.
Requirements. The conditions which a component relies on when executing.
Inputs. The information or structures the component needs to performs its task.
Outputs. The information or structures the component produces and/or
changes of a conflict categorization of conflicts.

In target-driven transformation systems the conflicts are resolved manually
in the modules that produce the targets. These modules actually deal with sev-
eral concerns at the same time. The transformations are in this regard not well
modularized from a separation of concerns viewpoint. Source-driven transfor-
mation systems tried to unhook most of the different concerns and put them in

Evolution and Reuse of Language Specifications for DSLs (ERLS) 197

separate modules. As a result of this separation of concerns, the conflicts that
were manually tackled must now be tackled by the transformation systems itself.
There exist various schemes to cope with conflicts. The most common approach
is to define an order by scheduling the two language components to achieve the
desired combined result. The prerequisite for this schema is that there must ex-
ists some correct partial order in which the language modules must be executed.
But for language modules which both create the same entity with a different
content, ordering is not sufficient and more invasive composition mechanisms
are needed like the ones supported in LTS (Linglet Transformation System).
Additionally the constraints and requirements of language modules could also
be more taken into account. The semantics of a DSL is often specified by its
translation to another language. Although this is a formal semantics, it is hard
to derive any properties form such a description. Up till now, one could con-
sider typing as the most widely spread implementation of this idea. A richer
mechanism like operational semantics, descriptive logic, f-logic, ontology seman-
tics, etc., would certainly help to detect and even resolve conflicts. Despite most
of these formalisms being around for quite some time, very few DSL designers
seem to revert to them. There are several reasons for that but the main reason
is that it is for most DSLs (like for example specification languages) quite un-
clear what we would like to describe. Krzysztof suggested the use of state charts
as an alternative mechanism. Although it doesn‘t capture the full semantics,
there are interesting properties that can be calculated out of a start chart. In
an offline discussion Bryant and Cleenewerck argued that a more suitable and
specific semantic formalism is needed. Some of the attendees pointed out that a
lot of those conflict resolution schemes can be found in other research tracks like
aspects, hyperspaces, subject oriented programming, etc. The ideas and mecha-
nisms of these schemes probably could contribute to the existing transformation
systems.

3.4 DSL Test-Case Example

The discussions were often broken off or stalled because of the absence of a sin-
gle shared test-case DSL. The problems mentioned were initially very abstract
because we didn‘t want to delve to deep in a particular problem domain and
implementation approach. Soon we realized that such statements are no help for
anybody. Not every participant had the same background making it impossible
to understand the statement. In order to concretize some of the statements, the
statements were rephrased with more problem domain information. Although
this helped a bit, since most of the participants were not familiar with prob-
lem domain itself, the general problem domain knowledge was difficult to grasp.
Moreover, in a single afternoon there is not enough time to discuss the problem
domain, the general concepts and the ideas behind the domain-specific state-
ment. So after such an attempt it was up to the other participants to recognize
the abstract statement in their problem domains. Not seldom due to the absence
of such recognition of ideas and statements there was only a poor response. It be-
came rapidly clear that a shared test-case DSL would greatly ease the discussions.

198 T. Cleenewerck et al.

In response to that need we tried first to get a more solid grip on the true
nature of a domain-specific language. In Ekman and Bryant a DSL is an set of
syntactical and semantical extensions to a general purpose language. In DeLes-
ley a DSL is described with a set of concepts and rules described using logics.
The DSLs of VanGorp are meta-models which are refinements (model to model
transformations) and model to code transformations. In Goderis a DSL is a logic
program querying facts to produce an effect. Clearly there is no strict definition of
what a DSL is. We found that DSLs can be classified according to number of axes:

Language Axis. The language axis refers to the relationship between GPL
(general programming language) and DSLs. DSLs range from GPL programs, to
extensions of GPLs all the way to an entirely new language.

Structural Axis. The structural axis refers the amount of flexibility and mech-
anisms to compose a program. In GPL a program is a complex composition of
fine-grained language constructs. Any construct can almost be composed with
any other construct. The more domain-specific a DSL is, the more the composi-
tion of language constructs is restricted. At the far-end of this spectrum we find
the specification languages, which constitute merely of the assigning of values to
properties. Domain-specifity is thus more a matter of a degree. Because of this
wide range of DSLs we may need to revert to a set of smaller DSL examples
instead of searching after the holy grail in programming languages.

As a first attempt to reach a shared test-case DSL we distilled and reformu-
lated our research questions to a set of requirements to which such a common
DSL should adhere to.

A Declarative DSL Approach to UI Specification. The three most impor-
tant and distinguishing research questions in the context of a declarative DSL
approach to UI specifications are:

– How to make keywords dependent on each other
– Which keywords should be provided and which keywords can be extended.

And how to allow a developer to extend keywords.
– How to ensure a developer does not violate the meaning of a certain keyword

when extending it such that contradictions are avoided.

From these research questions we can compile the following list of require-
ments to which a test-case DSL should adhere to:

– Dependencies among keywords
– Open variability’s in the language which must be provided and/or extended.
– Conflicting and non-conflicting constraints caused by simple use of the ex-

isting keywords or by the extensions of them.

Knowledge Representation in Domain Specific Languages. There are
various DSL implementation techniques with very different capabilities. A formal
comparison of these techniques would reveal how knowledge is captured and
made executable. From that comparison, properties on the kind of information

Evolution and Reuse of Language Specifications for DSLs (ERLS) 199

that can be handled can be derived and used to establish a hierarchy of DSL
techniques and DSLs, much like the regular-language, context-free language, and
Turing machine hierarchy in complexity theory.

For example: Small-step operational semantics is a classical way of formally
defining programming languages. Small-step semantics is based on the process of
term reduction. Each term is reduced to a simpler term, until it becomes a normal
form which cannot be further reduced. Reduction has two nice properties:

(1) Reductions only make use of local information. Reducing a term only
affects that particular term; it does not affect any surrounding terms. Assuming
that the reduction rules are confluent, reductions can be applied in any order.

(2) User-defined reductions can be supported within a language by means
of partial evaluation. If an expression only references constants, then it can be
evaluated (i.e. reduced) at compile-time. This mechanism is completely trans-
parent and requires very little in the way of compiler support; it’s what the Sym
calculus uses to handle type equations.

Full transformation systems which use rewrite rules are considerably more
powerful than partial evaluation. A rewrite rule can affect any number of terms
in any way. Rewrite rules are also especially prone to clashes and conflicts, which
makes them difficult to use and debug.

The important question here is, in the context of common DSL test-case,
what kinds of DSLs require the full power of a rewriting transformation system,
and what kinds can be implemented with simpler processes.

Reusable Language Specification Modules in JastAdd II. Our paper
deals with the approach where a GPL is extended with a DSL, and where the
DSL extensions are expressible in the base language. The DSL is transformed
into the GPL either through direct translation to GPL code or through calls to
a framework. This situation is useful when the generated code is to verbose to
hand code or to complicated to write by hand and therefore needs additional
semantic checks. The DSL high-level representation may also simplify domain
specific optimizations.

Some questions that form the basis for our work include:
Composition. How can we express the language specifications to enable trans-
parent composition of separate GPL and DSL specificiations?

Separation of Concerns. How can we achive good separation of concerns in
the language specifications? We would like to separate the logical phases in the
compiler such as name binding, type analysis, and code generation while at the
same time allowing language constructs to be expressed in a modular fashion.

GPL API. How do we model a suitable API to the GPL that the DSL can
use to reuse existing components such as name binding and type analysis? Can
the DSL also contribute to these components, e.g. add new scopes to the name
binding module?

200 T. Cleenewerck et al.

A suitable test-case DSL for this research must require a tight integration
with the target language (in this case the GPL) compilation phases, e.g. name
binding, type analysis, etc., on the one hand, but remaining modular with respect
to the target language and other extension module on the other hand.

Object-Oriented Language Specifications: Current Status and Future
Trends. As already mentioned, the use of object-oriented techniques and con-
cepts greatly improves language specification languages towards better mod-
ularity, reusability and extensibility. To achieve modularity, extensibility and
reusability to the full extent these techniques need to be combined with aspect-
oriented techniques since semantic aspects also crosscut many language com-
ponents. Moreover, special algorithms have to be invented (e.g. forwarding) to
improve modularity of underlying formal methods. Another shortcoming of cur-
rent approaches is lack of scalability since they do not fully support grammatical
operators such as described in [12]. The ideal solution where the language de-
signer can freely combine language components based on different formal meth-
ods is less likely to appear in forthcoming years.

In order to experiment or validate further research in this direction a test-
case DSL is required which is more like a family of DSLs or a DSL production
line constructed out of a set of different language components.

4 Conclusion

Summarizing what was said in each discussion topic, we conclude that :

– There is a lot of potential for reuse in (1) languages that must be customized
to support different sub-domains by means of language extensions and in (2)
languages that evolve overtime to keep up with changes in their associated
domains. Reusable language specifications for various domains are still rather
rare and tend to be more related to language implementation mechanism
then to language features.

– Object orientation plays an important role in the design of todays transfor-
mation systems. The introduction of OO techniques and concepts in trans-
formation systems facilitates the development of new languages, increases
the modularity of the components and allows more reuse.

– The reuse of language constructs and semantics can be hampered by con-
flicts and information dependencies that occur when two or more of those
reusable elements are combined. A richer mechanism like operational seman-
tics, descriptive logic, f-logic, ontology semantics, etc., but customizable and
more suitable for DSLs would certainly help to detect and even resolve con-
flicts. Also the ideas and mechanisms of conflict resolution schemes available
in aspects, hyperspaces, subject oriented programming, etc. probably could
contribute to the existing transformation systems.

– The discussions were often broken off or stalled because of the absence of
a single shared test-case DSL. As a first attempt to reach a shared test-
case DSL we distilled and reformulated our research questions to a set of
requirements to which such a common DSL should adhere to.

Evolution and Reuse of Language Specifications for DSLs (ERLS) 201

References

1. Epstein, E., Lalonde, W.: A smalltalk window system based on constraints. In:
Proceedings of OOPSLA88, ACMPress (1988)

2. Freeman-Benson, B.: Constraint technologie for user-interface construction in
ThingLabII. In: Proceedings of OOPSLA89, ACMPress (1989)

3. Ekman, T., Hedin, G.: Rewritable Reference Attributed Grammars. In: Pro-
ceedings of ECOOP 2004. Volume 3086 of Lecture Notes in Computer Science.,
Springer-Verlag (2004)

4. M. Mernik, J. Heering, T.S.: When and how to develop domain-specific languages.
Technical Report Technical Report, SEN-E0309, CWI (2003)

5. Bryant, B., Lee, B.S.: Two-level grammar as an object-oriented requirements spec-
ification language. In: Proceedings of the 35th Annual Hawaii International Con-
ference on System Sciences (HICSS’02)-Volume 9, IEEE Computer Society (2002)
280

6. Paakki, J.: Attribute grammar paradigms a high-level methodology in language
implementation. ACM Comput. Surv. 27 (1995) 196–255

7. de Moor, O.: Intentional programming. (2001)
8. van Wijngaarden, A.: Revised report on the algorithmic language ALGOL 68.

Acta Inf. 5 (1974) 1–236
9. Doh, K.G., Mosses, P.D.: Composing programming languages by combining action-

semantics modules. Sci. Comput. Program. 47 (2003) 3–36
10. Batory, D., Lofaso, B., Smaragdakis, Y.: JTS: tools for implementing domain-

specific languages. In: Proceedings Fifth International Conference on Software
Reuse, Victoria, BC, Canada, IEEE (1998) 143–153

11. Kuipers, T., Visser, J.: Object-oriented tree traversal with jjforester. In van den
Brand, M., Parigot, D., eds.: Electronic Notes in Theoretical Computer Science.
Volume 44., Elsevier (2001)

12. Wile, D.: Integrating syntaxes and their associated semantics. Technical Report
Technical Report, USC/Information Science Institute (1999)

Programming Languages and Operating Systems�

Olaf Spinczyk1, Michael Schoettner2, and Andreas Gal3

1 University of Erlangen-Nuremberg, Germany
Olaf.Spinczyk@informatik.uni-erlangen.de

2 University of Ulm, Germany
schoettner@informatik.uni-ulm.de
3 University of California, Irvine, USA

gal@uci.edu

Abstract. This report gives an overview over the First ECOOP Workshop on
Programming Languages and Operating Systems (PLOS 2004). It explains the
motivation for the workshop and gives a summary of the workshop contributions
and discussions during the workshop.

1 Introduction and Overview

The ECOOP Workshop on Programming Languages and Operating Systems (PLOS)
has its root in the ECOOP workshop series on Object-Orientation and Operating Sys-
tems (OOOSWS), which started in conjunction with ECOOP’97. Over the past years
the number of participants of OOOSWS has grown constantly and many high quality
papers have been presented at this workshop, some of which were later published at
relevant conferences and journals. For 2004, the workshop organizers decided to give
the workshop a more interactive format and a stronger focus on the special tension and
nearly historic relationship between programming languages and operating systems. To
underline this change in focus, a new workshop title was chosen as well.

The PLOS workshop aims to bring together researchers and developers from the
programming languages (PL) and the operating systems (OS) domain. It provides a
platform for discussing new visions, challenges, experiences, problems, and solutions
arising from the application of advanced programming and software engineering con-
cepts to operating systems construction.

The 2004 PLOS workshop was a very successful event and was attended by 23 par-
ticipants (11 presenters, 1 invited speaker, 2 organizers, and 9 other ECOOP attendees)
from 11 different countries. The papers presented at the workshop as well as the pre-
sentations by the working groups formed during the workshop are available from the
workshop web site at http://www.betriebssysteme.org/plos.

The remaining parts of this report are organized as follows. Section 2 describes the
motivation for organizing a workshop on this particular combination of topics. This
is followed by a section on the requirements on workshop contributions, the reviewing

� The title of this report should be referenced as “Report from the ECOOP 2004 Workshop on
Programming Languages and Operating Systems”.

J. Malenfant and B.M. Østvold (Eds.): ECOOP 2004, LNCS 3344, pp. 202–213, 2004.
c©Springer-Verlag Berlin Heidelberg 2004

Programming Languages and Operating Systems 203

process, and the workshop format. Section 3 briefly summarizes the presentations given
at the workshop. A major part of the workshop was dedicated to group work and dis-
cussions. The results of this work are presented in section 5. The report concludes with
some final remarks in section 6 and tables containing the list the workshop participants
and program committee members.

2 Motivation

Developing operating systems (OSs) is a highly complex task. OS programmers often
have to deal with millions of lines of code and common OS issues like concurrency,
performance optimization, real-time, deadlocks, and configurability make their work
even harder.

Today, the historic language C—created in the early seventies—is still predomi-
nantly used to implement OS. Only in a few cases have OS implementors switched
to more advanced languages like C++ or Java. Developing a new kernel and device
drivers from scratch is often rendered impossible by the sheer size and complexity of
operating systems. Thus, research is often limited to extend or modify existing systems.
Widely deployed general purpose OSs like Linux and the Windows OS family continue
to be developed using very conservative methods and languages. Modern software en-
gineering concepts and languages, which are well-known and proven in other domains,
are not adopted for the sake of performance optimization and backward compatibility.
However, the arousing discussion about security and reliability of OSs especially with
respect to internet attacks is an example that shows the drawbacks of the traditional
development approach and a demands for new ideas.

In this workshop we wanted to address this problem from the programming lan-
guage perspective and bring together researchers from both domains. The aim was to
facilitate a lively discussion about novel approaches in OS construction based on lan-
guage concepts in general. Examples are object-orientation, type safety, language sup-
port for OS verification, testing/debugging, separation of concerns by aspect-oriented
programming, and domain-specific languages.

3 Requested Contributions and Workshop Format

Prospective participants were asked to submit a position paper or experience report of
4 pages maximum. Suggested topics included, but were not limited to:

– object-oriented OSs, type-safe languages for OS
– separation of concerns in OS code, AOSD and OS
– domain-specific languages for OS development
– language support for OS verification, testing, and debugging, static configuration,

dynamic reconfiguration, and specialization

Each submitted paper was evaluated by at least two reviewers. All reviewers are des-
tinguished members of the community and have an excellent international reputation.
The names of the program committee members are listed at the end of this report.

204 O. Spinczyk, M. Schoettner, and A. Gal

Only authors of accepted papers were invited to the workshop to present their work.
For each presentation a 15 minutes slot was scheduled. All authors were asked to give
only a brief summary of their paper during the workshop (5-10 minutes). To make
the workshop highly interactive accepted papers were posted on the workshop website
ahead of the venue and participants were expected to familiarize themselves with the
content of the other contributions. In particular, participants should prepare questions,
comments and a list of suggested improvements for the authors.

Table 1. PLOS 2004 Workshop Program

9.00 - 9.05 Welcome and introduction
9.05 - 09.35 Keynote:

"Domain Specific Languages : A Safe and Efficient Approach for Developing
OSes", Gilles Muller

09.35 - 09.45 Discussion
09.45 - 10.30 Session 1: Languages

"Modularity for the Bossa process-scheduling language", Julia L. Lawall,
Anne-Françoise Le Meur, and Gilles Muller
"APPLE: Advanced Procedural Programming Language Elements", Christian
Heinlein
"Implementing high-performance in-kernel network services with WYKIWYG",
Sapan Bhatia and Charles Consel

10.30 - 11.00 Coffee break
11.00 - 12.30 Session 2: Operating Systems and Security

"On Objectifying Untyped Memory in Java Operating Systems", Christian Waw-
ersich, Meik Felser, and Jürgen Kleinöder
"Managing Code Complexity in a Portable Microkernel", Uwe Dannowski
"Flexible Bindings for Type-Safe Embedded Operating Systems", Damien Dev-
ille, Christophe Rippert, and Gilles Grimaud
"Generic Trigger Variables and Event Flow Wrappers in Reflex", Karsten
Walther, Reinhard Hemmerling, and Jörg Nolte
"Executing Legacy Applications on a Java Operating System", Andreas Gal,
Christian Probst, and Michael Franz
"Adding protection to the object model as the basis for secure operating sys-
tems", Darío Álvarez, María Ángeles Díaz Fondón, Iván Suárez Rodríguez,
Fernando Álvarez García, and Lourdes Tajes Martínez

12.30 - 13.30 Lunch
13.30 - 14.00 Session 3: Aspects in Operating Systems

"On Adaptable Aspect-Oriented Operating Systems", Daniel Lohmann, Wasif
Gilani, and Olaf Spinczyk
"RADAR: Really low level Aspects for Dynamic Analysis and Reasoning",
Owen Stampflee, Celina Gibbs, and Yvonne Coady

14.00 - 15.00 Discussion groups: Questions
15.00 - 15.30 Coffee break
15.30 - 16.15 Discussion groups: Answers
16.15 - 17.00 Presentation and discussion of the workshop results

Programming Languages and Operating Systems 205

4 Presentations

The workshop started with an invited talk by Gilles Muller from École des Mines de
Nates, France. He is the vice chair of the ACM Special Interest Group on Operating
Systems (SIGOPS) and, thus, represents European research on operating systems in the
international community.

The presentations of the position papers were grouped in three sessions. The
complete workshop program is shown in table 1.

In the following the talks and discussions during the presentation sessions are
briefly summarized.

4.1 Invited Talk

In his talk Gilles motivated the interest of using domain-specific languages (DSLs)
for operating system development. Domain-specific languages are languages that are
restricted to express a family of applications. They offer a high level of abstraction over
the considered domain. The advantages are that programming is easier, faster, and more
concise. Also domain-specific languages enable strict constraints to be enforced and
specific properties to be determined. Therefore, domain-specific languages permit to
increase software quality and the productivity level.

To present this approach Gilles described his work on Bossa, a framework and a
DSL for the development of scheduling policies. Bossa provides high-level abstractions
that are specific to the domain of scheduling. These constructs simplify the task of
specifying a new scheduling policy and facilitate the static verification of critical safety
properties. Bossa has been prototyped in Linux and can transparently replace the 2.4
kernel. Its overhead is negligeable on standard applications such as compilation, web
servers and multimedia players. Overall, Gilles and his team found that Bossa simplifies
scheduler development to the point that kernel expertise is not required to add a new
scheduler to an existing kernel. As such Bossa is used to teach scheduling in several
French Universities.

Gilles finished his presentation with an impressing demonstration of a running
Bossa/Linux system. With a Bossa scheduler he was able show a video stream while
compiling the Linux kernel. The same experiment, but with using the standard Linux
scheduler, led to unacceptable quality of the video.

4.2 Languages

The first session of the workshop was dedicated to programming languages design for
or used in operating system development and implementation. Julia Lawall gave the
first presentation on Modularity for the Bossa process-scheduling language. Bossa is
a framework for implementing complex scheduling policies in standard “off-the-shelf”
operating systems. Most existing operating systems use a general purpose language to
implement the scheduler proper. In contrast, the Bossa framework provides a domain-
specific language (DSL) that eases the specification of scheduling policies. Even more
importantly, because Bossa is a DSL, it allows to verify certain key properties of the
scheduler specification and implementation. For example, schedulers written in Bossa

206 O. Spinczyk, M. Schoettner, and A. Gal

are automatically checked for complete coverage, i.e. the Bossa compiler ensures that
appropriate handler code exists for all states of the scheduler. After a brief introduc-
tion of Bossa, the talk quickly focused on the idea of modular schedulers. The speaker
showed how complex schedulers such as Round-Robin (RR) can be composed from
simple scheduler modules (in this particular example Block, Interrupted, Fork, FIFO-
Timeslice, FIFOYield, and RRPriority). At the language level this was achieved by
adding a new module construct to the Bossa language. The talk concluded with an as-
sessment of the modular Bossa language by re-engineering the Linux scheduler from
existing Bossa modules. For this, only a single Linux scheduler-specific module had to
be written. The remaining aspects of the Linux scheduler could be covered by re-using
five existing Bossa scheduling modules.

The next talk was given by Christian Heinlein. He reported on Advanced Proce-
dural Programming Language Elements (APPLE). The talk started of with a critique
of existing programming languages such as AspectJ. The speaker felt that they were
too complex, making them both, hard to learn and hard to apply them in practice. He
went on and pointed out the simplicity of procedural programming languages in com-
parison to today’s object-oriented/aspect-oriented languages. Given this observation,
the speaker suggested to go back to the starting point of procedural programming lan-
guages and extend them into a different direction in order to create advanced procedural
languages which are significantly simpler than aspect-oriented languages while offering
comparable expressiveness and flexibility. In particular, the speaker proposed replacing
simple, statically bound procedures with arbitrarily overridable dynamic procedures,
which are roughly comparable to around advice in AOP. With some additional syntactic
sugar, this would cover the whole range of dynamic dispatch strategies usually found
in object-oriented languages. Similarly, replacing simple record types having a fixed
set of fields with modularly extensible open types and attributes would cover classes
and interfaces, field declarations in classes and aspects, multiple inheritance and sub-
type polymorphism, plus inter-type parent declarations and advice based on get and set
pointcuts. The speaker then walked the audience through some example code written
in “Advanced C”, an advanced procedural programming language. The talk concluded
with a discussion how Advanced C could be used in Operating System development.
The speaker pointed out that operating systems, like software systems in general, evolve
over time and that this kind of evolution is not well supported by existing programming
languages. When using conventional programming languages, the introduction of each
new concept typically requires modifications to numerous existing functions in addition
to implementing new functions. Using open types and dynamic functions instead offers
at least the chance to be able to implement new functionality in a truly modular way by
grouping new functions and necessary redefinitions of existing functions together in a
single new unit of code.

The final talk in the Languages section was given by Sepan Bhatia on Implementing
High-performance In-kernel Network Services With WYKIWYG. In his talk the speaker
introduced the design philosophy and underlying principles of WYKIWYG, a language
to implement high performance in-kernel network services. A WYKIWYG compiler,
unlike compilers for traditional languages, is empowered with the knowledge of under-
lying OS mechanisms such as task management, memory management, the device I/O

Programming Languages and Operating Systems 207

interface etc. It generates code which is especially optimized for these mechanisms, and
can even go as far as modifying or extending them in a controlled manner. The speaker
went on and discussed several optimizations that the WYKIWYG compiler is able to
perform because it has access to domain specific knowledge. For example, superpages
are used for memory allocations whenever possible for improved TLB utilization. The
WYKIWYG compiler also optimizes in-kernel servers by removing the overhead usu-
ally associated with thread management by collapsing them into language-level con-
structs. Finally, the WYKIWYG compiler removes the overhead of going throw an
socket interface by generating code that directly communicates with the OS scheduler,
instead of using high-level abstractions such as signals or system calls.

4.3 Operating Systems and Security

The second – and longest – session of the workshop focused on operating systems and
security. The first talk on Objectifying Untyped Memory in Java Operating Systems was
given by Christian Wawersich. He presented an approach to access memory-mapped
registers directly from Java. For this, the authors use memory objects to describe the
layout of a memory region. Instead of composing memory objects from primitive types,
which would limit the approach to the few primitive types specified by the JVM, but
would not work for unsigned registers or different byte orders, the authors compose
memory objects from predefined Java classes. Each such Java class represents a certain
register size and endianess. Using classes to describe the layout of memory-mapped
register regions allows to precalculate the offset for each register inside the memory
area. The authors use an extended Java virtual machine that recognizes get and set op-
erations on memory objects and replaces them with machine instructions to faciliate
the memory access. This eliminates the overhead that is usually incurred for method
calls. The talk concluded with a performance evaluation of memory objects in the JX
operating system. The speaker pointed out that while memory objects offer a signifi-
cant performance improvement over direct memory access using native Java methods,
their greatest benefit is a more robust driver design. Driver developers often wrap the
memory objects into task-oriented classes that provides methods for structured access
to memory. These methods just delegate the calls to a memory object. This kind of ab-
straction layer can be replaced by memory-mapped objects and therefore improve the
performance.

The next talk in the OS and security section was held by Uwe Dannowski. He argued
that increasing code complexity can become a serious issue even in a software project
as small as a microkernel. He reported on how the authors address this problem in the
L4Ka::Pistachio microkernel. Pistachio consists of multiple configuration dimensions
and code fragments are assigned to the appropriate dimensions. The kernel build system
combines code fragments for the specific configuration. While this approach avoids the
run-time costs of a full-blown object-oriented design, it does not avoid code duplication.
To address the code duplication problem, the authors model the code selection with
class hierarchies using multiple inheritance and polymorphism. However, the run-time
overhead of virtual functions results in a serious performance hit for the time-critical
kernel functionality. To address this latter problem, the authors apply class flattening to
completely eliminate the overhead of virtual function calls. The idea of class flattening

208 O. Spinczyk, M. Schoettner, and A. Gal

is to create a flat class from a whole class hierarchy by moving members of base classes
into the most derived class while maintaining semantic equivalence as far as possible.
The authors evaluation shows that a kernel with flattened class hierarchies performs as
fast as one without class hierarchies. The speaker concluded that, thus, advanced object-
oriented programming techniques need no longer be avoided in performance-focused
microkernels.

Damien Deville gave the next talk on Flexible Bindings for Type-Safe Embedded
Operating Systems. He presented the binding model implemented in Camille, an exten-
sible operating system for resource-limited devices. Modern embedded systems need on
the one hand to fully exploit the limited hardware on which they run and on the other
hand to dynamically adapt themselves to changes in their runtime environment. Camille
is an exokernel which supports static customization of components and dynamic load-
ing of system extensions. Dynamic kernel and application adaptation is implemented
by an inter-component communication model. This model is based on flexible bindings
which permit to fully customize the way components interact with each others. Bind-
ings can be static, virtual or compiled to guarantee performances of inter-component
communications. The speaker argued that using this model it is possible to build a flex-
ible operating system without sacrificing runtime performances, even for devices as
constrained as smart cards. He first presented the architecture of the Camille exokernel
and the intermediate language Facade into which applications and system components
are translated to ease type verification and then described the component model imple-
mented in Camille and the inter-component communication scheme based on embedded
binding factories. The talk concluded with an outlook on future work, which will fo-
cus on the extraction of selected properties such as the worst case execution time of
real-time tasks from generated code.

The next talk by Andreas Gal dealt with Executing Legacy Applications on a Java
Operating System. The speaker argued that the lack of backward-compatibility of Java
operating systems is one of the main reasons for their lack of acceptance in the com-
mercial marketplace. Traditional Java operating systems are design to execute Java pro-
grams – and Java programs only. They struggle to support established application pro-
gramming interfaces such as POSIX or Win32 as these are founded on the idea of direct
execution of native machine code. Instead of using the host processor to execute legacy
applications which would eliminate most of the security and portability benefits of using
a type-safe language for the OS implementation in the first place, the authors propose
using a virtual processor implemented on top of the virtual machine infrastructure to
execute legacy applications. The speaker explained that the virtual processor translates
the machine code into Java bytecode, which is then executed by the Java virtual ma-
chine. Because many modern virtual machines employ just-in-time (JIT) compilation,
this means that frequently execute machine code fragment will be translated to host
machine code and execute at full machine speed. The talk concluded with a discussion
of potential future work, which includes porting the prototype system to the Microsoft
.NET architecture. The speaker argued that the .NET VM has better capabilities re-
garding dynamic code generation, which should help to overcome certain performance
systems in the current implementation.

Programming Languages and Operating Systems 209

Dario Alvarez gave the last talk in this section on Adding protection to the object
model as the basis for secure operating systems. He pointed out that Operating environ-
ments (such as operating systems) are increasingly being built with object-oriented lan-
guages, for with virtual-machine runtime environments implementing the object model
of the language. He argued that adding protection to the traditional properties of the
object model (the ability to protect a method call from an object to another object) can
be of great advantage for building secure operating systems, using the protection prop-
erty of the object model as the access-control mechanism of the system. Using well-
known capabilities model as protection mechanism, the authors have implemented this
approach in their experimental system Oviedo3 as well as the Microsoft .NET virtual
machine (SSCLI). The speaker concluded his talk with a performance evaluation of
both implementations and reported that in both cases the performance overhead was
neglible.

4.4 Aspects in Operating Systems

The last paper session of the workshop covered novel ideas which exploit aspect-
oriented programming for the design and implementation of operating systems.

The first talk was given by Daniel Lohmann. With his work on Adaptable Aspect-
Oriented Operating Systems Daniel aims to provide OS support for emerging computer
science areas like Pervasive Computing, Sensor Networks, Smart Devices, etc. An im-
portant common property of these areas is that many very small (mobile) devices are
interacting in large networks. To cope with the strict resource limitations in this domain
operating systems have to be structured as a software product-line, which is config-
urable at compile time and reconfigurable at run time. Aspect-Orientation has shown
to be useful for the design and implementation of software product-lines. However, dy-
namically reconfigurable product-lines based on an aspect-oriented implementation are
widely unexplored. From the technical perspective dynamic aspect weaving would be
indespensible, but naturally dynamic weaving is much more expensive (in the sense
of consumed resources) than loading or unloading of ordinary modules. Therefore, the
talk concentrated on a bunch of techniqes which could help to make dynamic aspect
weaving affordable in areas with strict resource constraints. For example, the speaker
presented Server-Side Weaving (delegation of the weaving/reconfiguration to a remote
server) and Application-Specific Weaver Tailoring (using a priori knowledge to restrict
the set of potentially affected points in the code). The message of Daniel’s talk was “Do
as much as possible statically”. This means that a lot of static knowledge exists even in
a dynamically reconfigurable system. The development tools have to aid the developers
to exploit their knowledge in order to build more efficient system system software.

Yvonne Coady gave the last talk of the workshop. Her paper on RADAR: Really
low-level Aspects for Dynamic Analysis and Reasoning made the case for using aspects
for dynamic analysis in OS code. The authors are convinced that an effective tool for
reasoning about run-time behavior of systems software must provide selective anal-
ysis of uninstrumented code. Lengthy instrumentation cycles stand as a deterrent to
developers who could otherwise benefit from performing customized analysis in aid of
comprehension. Yvonne outlined current useful techniques for dynamic analysis of OS
kernels. Especially with AspectC++, Arachne, and TinyC AOP languages and tools are

210 O. Spinczyk, M. Schoettner, and A. Gal

maturing to a state where a really useful dynamic OS analysis tool like RADAR could
be implemented and would have a chance to be accepted by OS developers.

5 Group Work

The afternoon sessions of the workshop were allocated for collaborative work in discus-
sion groups. We formed three groups, namely the AOP experts, the type-safe and secure
operating system experts, and the DSL experts. During the first discussion session each
group had to prepare a list of hard questions for each of the other expert groups. In
the second discussion session these questions had to be answered by the experts. The
workshop closed with a panel where a speaker of each group presented the answers and
all other participants had the opportunity to comment them.

The following sections show some of the questions and answers from the workshop.
The whole list can be downloaded from the workshop web site.

5.1 Questions for the “AOP Experts”

1. What is the real use of AOP in an OS?
First of all, there are the same goals as with other applications, i.e. better modu-
larization and separation of concerns. However, there are also many specific OS
concerns, which typically crosscut the whole implementation. Examples are the
concerns which are usually associated with global OS policies like synchroniza-
tion (coarse-grained vs. fine-grained) or protection (e.g. single-user vs. multi-user).
Another important difference between an OS and normal software systems is that
many OS are statically or even dynamically (re-)configurable. If the implementa-
tion of a crosscutting concern is well modularized it can be configured fairly easy.

2. What problem does AOP address that can not be solved with a more traditional
programming language technique?
AOP addresses Crosscutting Concerns. A traditional implementation of such con-
cern leads to Code Tangling, and thus reusability, configurability, and maintainabil-
ity problems.

3. Is profiling the killer application for dynamic AOP. Are there others?
No, profiling is not the killer application. There are others. The dynamic weaving
techniques have a lot in common with techniques for dynamic loading of modules.
Everybody agrees that dynamically loadable modules are a good thing. What is
their killer application?

4. How feasible is dynamic weaving in static languages (performance impact)?
Doing something dynamically is always expensive. The idea is to do it only if
you really need it. The rule of thumb should always be: “do as much statically as
possible”.

5. How difficult is it to understand and teach AOP?
Our experience is that teaching AOP is not difficult at all if the studend has already
been involved in a bigger development project where crosscutting concerns were
a real problem. Experienced software developers understand AOP very quickly. In
general, it is easier to teach AOP than OO.

Programming Languages and Operating Systems 211

6. What compiler optimizations are potentially harmful for joinpoints in a dynamic
AOP environment?
There are a lot. Basically everything that removes symbol information. For exam-
ple, function inling might hide a function from the dynamic weaver. A programmer
would be unable to define advice for the execution of this function.

7. Are static/dynamic optimization an aspect?
Some could be implemented as one, if they are crosscutting, e.g. caching.

5.2 Questions for the “Type-Safe and Secure Operating System Experts”

1. Why use a language designed for applications for OS development when it is obvi-
ously not made for that?
To build an OS a language only needs few domain specific features (e.g. machine
access operations). An OS is a very complex application and needs similar high
level abstractions. Problems found in OS are similar to those found in applications
like Database Servers, Web Servers, Transaction Systems. Thus, we don’t see a
reason for a special OS programming language.

2. Why spend money on type-safe OS methodology instead of educating OS develop-
ers?
Even good programmers have a bad day and make mistakes. These mistakes are
very expensive as debugging is a very time intensive labour. Tools and Methodol-
ogy scale better than (educated) developers. Common errors are eliminated. Writ-
ing OS still requires educated developers. Good guys with good tools is the best
combination.

3. Killer question: How to convince the OS community and the industry that this is
the way to go?
One has to start with domains where the problems addressed by type-safe languages
are particularly grave. Another convincing argument is that type-safe languages
allows to employ cheaper programmers

4. What are the implementation and the runtime benefits of type-safe languages in OS
development?
The implementation benefits from static type-checking. It helps catching imple-
mentation errors at compile time. Static type checking is also beneficial at runtime.
For example, if the arguments of system call are strongly typed, runtime checks
on these arguments can be reduced to a minimum. Type-safe languages can further
be used to replace classic isolation mechanisms like MMU-based address space
separation. As a result inter-process communication can be implemented highly-
efficient.

5. What is a Java OS?
A JavaOS is an OS that is written for the JVM machine model. It can be written in
Java (Source Language), but it doesn’t have to.

5.3 Questions for the “DSL Experts”

1. Why not strip away features from existing general-purpose languages (GPLs) that
hinder analysis (for example require bounded loops)?

212 O. Spinczyk, M. Schoettner, and A. Gal

This is a good way to design a comprehensible syntax. However, in a DSL you
often want to express things that are not natural to express in a GPL.

2. When we have DSLed everything, how do all these DSLs integrate?
In the context of an OS, there would be a DSL per service. Interaction and integra-
tion are solved by service composition.

3. How different are DSLs for different domains?
They are as different as declarative and imperative languages.

4. Real world domains have the tendency to change. How do you find a language for
a changing domain?
A well-defined domain will not change very often. We try to isolate fundamen-
tal points of the domain, not implementation details. In a well-designed language,
language abstractions should mirror future evolution.

5. Can a DSL be Turing-complete?
No, a Turing-complete language is a general-purpose language. However, there
some DSLs which have been “badly influenced” and eventually became Turing-
complete.

6. Why use DSLs and not code analysis?
There are some things that are impossible to analyze in a GPL (e.g. termination).
Analysis of DSL code only has to consider specific program patterns, that could be
implemented in many different ways with a GPL.

7. Is it always implicit that a DSL is also about verification as well?
Yes, DSLs help us to verify the program. At the same time, they make the life of
the programmer easier. Verification is the difference between a DSL and a scripting
language.

6 Final Remarks

During the months leading up to the PLOS workshop, the organizers decided to make
PLOS significantly more interactive than the previous OOOSWS workshop series. To
a certain extent this has been a gamble as many workshops in both fields, operating
systems and programming languages, are more focused on paper presentation than ac-
tual discussion. Considering the record number of attendees, the interesting discussions
resulting from the group presentations, and the feedback we got, it seems that the new
format of PLOS was well received by the attendees. A quick poll at the end of the work-
shop indicated that there is significant interest to continue with the PLOS workshop in
conjunction with future ECOOPs.

>From a distant perspective programming languages and operating systems are only
small sub-disciplines of computer science. Thus, it might have been a surprise for some
participants how different we speak, how different we get our motivation, and how
different our solutions are. This diversity is good, but from time to time we should
come together and share our latest ideas. This is essential for a research community to
come up with mature solutions at the well-established conferences. We are convinced
that some of the ideas presented at this PLOS workshop will follow this pattern.

Finally we would like to thank the program committee members for their reviewing
work, all authors for sharing their novel ideas, and all attendees for their participation.

Programming Languages and Operating Systems 213

List of Participants

Name Affiliation
1. Darío Álvarez University of Oviedo, Spain
2. Rafik Amir Amerikan Univerity, Cairo, Egypt
3. Safan Bhatia Univesity of Bordeaux, France
4. Bartosz Blimke University of Wroclaw, Poland
5. Gilad Bracha Sun Microsystems
6. Yvonne Coady University of Victoria, Canada
7. Uwe Dannowski University of Karlsruhe, Germany
8. Damien Deville University of Lille, France
9. Frode v. Fjeld University of Tromso, Norway

10. Andreas Gal University of California, Irvine, USA
11. Wasif Gilani University of Erlangen-Nuremberg, Germany
12. Christian Heinlein University of Ulm, Germany
13. Arushi Kawamoto Technical University of Denmark
14. Julia Lawall DIKU, University of Copenhagen, Denmark
15. Daniel Lohmann University of Erlangen-Nuremberg, Germany
16. Gilles Muller École des Mines de Nantes, France
17. Sven-Olof Nyström Uppsala University, Sweden
18. Christophe Rippert Inria Lille, France
19. Aline Senart Trinity College, Dublin, Ireland
20. Olaf Spinczyk University of Erlangen-Nuremberg, Germany
21. Robert Strandh University of Bordeaux, France
22. Karsten Walther BTU Cottbus, Germany
23. Christian Wawersich University of Erlangen-Nuremberg, Germany

Program Committee Members

Name Affiliation
1. Michael Schoettner (chair) University of Ulm, Germany
2. Michael Franz University of California, Irvine, USA
3. Michael Golm Siemens AG, Corporate Technology
4. Jürg Gutknecht ETH Zürich, Switzerland
5. Julia Lawall DIKU, University of Copenhagen, Denmark
6. Gilles Muller École des Mines de Nantes, France
7. Wolfgang Schröder-Preikschat University of Erlangen-Nuremberg, Germany
8. Peter Schulthess University of Ulm, Germany

Author Index

Aagedal, Jan Øyvind 148
Aguiar, Ademar 94
Arévalo, G. 101
Astudillo, H. 101

Becker-Pechau, Petra 62
Beugnard, Antoine 67
Bézivin, Jean 148
Black, A.P. 101
Börstler, Jürgen 36
Bosch, Jan 158
Brito e Abreu, Fernando 23
Bryce, Ciarán 169

Calero, Coral 23
Canal, Carlos 133
Cazzola, Walter 118
Chiba, Shigeru 118
Cleenewerck, Thomas 187
Coglio, Alessandro 76
Costanza, Pascal 49
Czajkowski, Crzegorz 169
Czarnecki, Krzysztof 187

De Meuter, Wolfgang 49
Demeyer, Serge 177
D’Hondt, Theo 49
Dobson, Simon 84
Ducasse, Stéphane 49, 177

Eldadah, Sari R. 94
Ernst, E. 101

Fiege, Ludger 67
Filman, Robert 67
Finkelstein, Anthony 1
Fjuk, Annita 36

Gabriel, Richard 49
Gal, Andreas 202
González, Sebastián 49
Grenon, Pierre 62

Huchard, M. 101
Huisman, Marieke 76

Jucknath, Susanne 94
Jul, Eric 67, 94

Kiniry, Joseph R. 76

Lahire, Ph. 101
Lamersdorf, Winfried 1
Linington, Peter F. 148
Lycett, Mark 62

Mens, Kim 177
Michiels, Isabel 36
Müller, Peter 76
Murillo, Juan Manuel 133

Opluštil, T. 101

Partridge, Chris 62
Pechau, Jörg 62
Piccinelli, Giacomo 1
Poels, Geert 23
Poizat, Pascal 133
Poll, Erik 76

Reussner, Ralf 10

Saake, Gunter 118
Sadou, Salah 67
Sahraoui, Houari A. 23
Sakkinen, M. 101
Schoettner, Michael 202
Siebert, Dirk 62
Spinczyk, Olaf 202
Striegnitz, Jörg 187
Szyperski, Clemens 158

Valtchev, P. 101
Völter, Markus 187

Weck, Wolfgang 10, 158
Wloka, Jan 94
Wuyts, Roel 177

Yoneki, Eiko 67

Zirpins, Christian 1

	Frontmatter
	Object Orientation and Web Services
	Practical Problems of Programming in the Large (PPPL)
	8th Workshop on Quantitative Approaches in Object-Oriented Software Engineering (QAOOSE 2004)
	Eighth Workshop on Pedagogies and Tools for the Teaching and Learning of Object Oriented Concepts
	2nd Workshop on Object-Oriented Language Engineering for the Post-Java Era: Back to Dynamicity
	Philosophy, Ontology, and Information Systems
	Communication Abstractions for Distributed Systems
	Formal Techniques for Java-Like Programs (FTfJP)
	Component-Oriented Approaches to Context-Aware Computing
	The Combined 14th Workshop for PhD Students in Object-Oriented Systems and Doctoral Symposium
	MASPEGHI 2004 \underline{ M}ech\underline{ a}nisms for \underline{ Spe}ialization, \underline{ G}eneralization and In\underline{ h}er\underline{ i}tance
	Software Evolution: A Trip Through Reflective, Aspect, and Meta-data Oriented Techniques
	Coordination and Adaptation Techniques for Software Entities
	Model-Driven Development (WMDD 2004)
	Component-Oriented Programming(WCOP 2004)
	10th Workshop on Mobile Object Systems
	Fifth International Workshop on Object-Oriented Reengineering
	Evolution and Reuse of Language Specifications for DSLs (ERLS)
	Programming Languages and Operating Systems
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

