

Lecture Notes in Computer Science 3279
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Geoffrey M. Voelker Scott Shenker (Eds.)

Peer-to-Peer
Systems III

Third International Workshop, IPTPS 2004
La Jolla, CA, USA, February 26-27, 2004
Revised Selected Papers

13

Volume Editors

Geoffrey M. Voelker
University of California, San Diego
Department of Computer Science and Engineering
9500 Gilman Dr., MC 0114, La Jolla, CA 92093-0114, USA
E-mail: voelker@cs.ucsd.edu

Scott Shenker
University of California, Berkeley
Computer Science Division, EECS Department
683 Soda Hall, 1776, Berkeley, CA 94720, USA
E-mail: shenker@icsi.berkeley.edu

Library of Congress Control Number: Applied for

CR Subject Classification (1998): C.2.4, C.2, H.3, H.4, D.4, F.2.2, E.1, D.2

ISSN 0302-9743
ISBN 3-540-24252-X Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11361909 06/3142 5 4 3 2 1 0

Preface

On February 26–27, 2004, the 3rd International Workshop on Peer-to-Peer Sys-
tems (IPTPS 2004) brought researchers and practitioners together to discuss
the latest developments in peer-to-peer technologies, applications, and systems.
As the third workshop in the series, IPTPS 2004 continued the success of the
previous workshops in pioneering the state of the art in peer-to-peer systems
and identifying key research challenges in the area.

The workshop received 145 submissions in the form of five-page position
papers. As with previous workshops, submissions went through two rounds of
reviews by an international program committee of 14 experts from industry and
academia. In the first round each submission received two reviews. In the second
round we focused our attention on submissions with either positive reviews, or
with reviews that expressed substantially different opinions. In addition to the
technical merit, the reviewing process emphasized originality and the potential
of the submission to lead to interesting discussions during the workshop.

In the end, the program committee selected a workshop program of 27 papers
covering a wide range of topics including new peer-to-peer applications, advances
in routing, load balancing, searching, as well as transport, mobility, and other
networking topics. Authors revised accepted position papers to six pages for the
workshop program, and made a final round of revision for this volume.

The workshop was composed of eight sessions that spanned two days. To
focus discussions, attendance was limited to 67 participants and included sub-
stantial time for interaction and discussion between sessions and at social events.
A hallmark of the IPTPS workshops is that they serve as a crossroads for re-
searchers to gather from many disciplines and communities, including systems,
networking, databases, theory, and scientific computing. The workshop this year
continued the trend with lively discussions and insight provided by researchers
from these many fields.

The workshop would not have been a success without substantial help from
a variety of people. First, we thank the program committee for their dedication
and effort during an intense reviewing period spanning the winter holidays. The
high quality and diversity of the program is due to their insight, experience, and
commitment. We would also like to thank Jennifer Anderson for the outstanding
local arrangements at the Sea Lodge in La Jolla, Marvin McNett for system
administrative support for the IPTPS 2004 Web server, and Michelle Panik for
assistance with formatting this volume. And we graciously thank our sponsors,
Microsoft Research and Intel, for their continued generous support of the IPTPS
workshops.

This volume includes a report on the discussions during the technical sessions.
This report conveys the interactions during the workshop beyond the material
included in position papers and presented in talks. We thank Sumeet Singh,

VI Preface

Sriram Ramabhadran, and Kiran Tati for diligently taking notes during the
workshop and collecting them into this report.

Finally, we thank all authors who submitted papers to the workshop for
continuing to make peer-to-peer computing a vibrant research community, the
authors of accepted papers for their ideas and contributions to the area, the
speakers for spirited and engaging talks, and all participants for making the
workshop a success.

March 2004 Geoffrey M. Voelker and Scott Shenker

Workshop Co-chairs

Scott Shenker ICSI and UC Berkeley, USA
Geoffrey M. Voelker UC San Diego, USA

Program Committee

Steve Gribble University of Washington, USA
John Kubiatowicz UC Berkeley, USA
Michael Mitzenmacher Harvard University, USA
Sylvia Ratnasamy Intel Research, USA
Srini Seshan CMU, USA
Alex Snoeren UC San Diego, USA
Robbert van Renesse Cornell, USA
Dan Wallach Rice University, USA
Roger Wattenhofer ETH Zurich, Switzerland
Alec Wolman Microsoft Research, USA
Zhichen Xu HP Labs, USA
Zheng Zhang Microsoft Research, China

Steering Committee

Peter Druschel Rice University, USA
Frans Kaashoek MIT, USA
Antony Rowstron Microsoft Research, UK
Scott Shenker ICSI and UC Berkeley, USA
Ion Stoica UC Berkeley, USA

Administrative Assistant

Jennifer Anderson UC San Diego, USA

Sponsoring Institutions

Table of Contents

Workshop Report for the 3rd International Workshop
on Peer-to-Peer Systems . 1

Sriram Ramabhadran, Sumeet Singh, and Kiran Tati

I Miscellaneous

A Practical Distributed Mutual Exclusion Protocol
in Dynamic Peer-to-Peer Systems . 11

Shi-Ding Lin, Qiao Lian, Ming Chen, and Zheng Zhang

On the Cost of Participating in a Peer-to-Peer Network 22
Nicolas Christin and John Chuang

2 P2P or Not 2 P2P? . 33
Mema Roussopoulos, Mary Baker, David S.H. Rosenthal,
Thomas J. Giuli, Petros Maniatis, and Jeff Mogul

II Networking

On Transport Layer Support for Peer-to-Peer Networks 44
Hung-Yun Hsieh and Raghupathy Sivakumar

Supporting Heterogeneity and Congestion Control
in Peer-to-Peer Multicast Streaming . 54

Venkata N. Padmanabhan, Helen J. Wang, and Philip A. Chou

Rapid Mobility via Type Indirection . 64
Ben Y. Zhao, Ling Huang, Anthony D. Joseph, and John Kubiatowicz

P6P: A Peer-to-Peer Approach to Internet Infrastructure 75
Lidong Zhou and Robbert van Renesse

III Routing

Comparing the Performance of Distributed Hash Tables Under Churn 87
Jinyang Li, Jeremy Stribling, Thomer M. Gil, Robert Morris,
and M. Frans Kaashoek

DHT Routing Using Social Links . 100
Sergio Marti, Prasanna Ganesan, and Hector Garcia-Molina

X Table of Contents

When Multi-hop Peer-to-Peer Lookup Matters . 112
Rodrigo Rodrigues and Charles Blake

IV Load Balancing and Searching

Uncoordinated Load Balancing and Congestion Games in P2P Systems . . . 123
Subhash Suri, Csaba D. Tóth, and Yunhong Zhou

Simple Efficient Load Balancing Algorithms for Peer-to-Peer Systems 131
David R. Karger and Matthias Ruhl

The Case for a Hybrid P2P Search Infrastructure . 141
Boon Thau Loo, Ryan Huebsch, Ion Stoica, and Joseph M. Hellerstein

Making Peer-to-Peer Keyword Searching Feasible
Using Multi-level Partitioning . 151

Shuming Shi, Guangwen Yang, Dingxing Wang, Jin Yu,
Shaogang Qu, and Ming Chen

V Miscellaneous

Providing Administrative Control and Autonomy
in Structured Peer-to-Peer Overlays . 162

Alan Mislove and Peter Druschel

Willow: DHT, Aggregation, and Publish/Subscribe in One Protocol 173
Robbert van Renesse and Adrian Bozdog

Friends Troubleshooting Network:
Towards Privacy-Preserving, Automatic Troubleshooting 184

Helen J. Wang, Yih-Chun Hu, Chun Yuan, Zheng Zhang,
and Yi-Min Wang

Spurring Adoption of DHTs with OpenHash, a Public DHT Service 195
Brad Karp, Sylvia Ratnasamy, Sean Rhea, and Scott Shenker

VI Applications

UsenetDHT: A Low Overhead Usenet Server . 206
Emil Sit, Frank Dabek, and James Robertson

Clustering in Peer-to-Peer File Sharing Workloads . 217
F. Le Fessant, S. Handurukande, A.-M. Kermarrec, and L. Massoulié

Table of Contents XI

Cluster Computing on the Fly:
P2P Scheduling of Idle Cycles in the Internet . 227

Virginia Lo, Daniel Zappala, Dayi Zhou, Yuhong Liu, and Shanyu Zhao

VII Security

Robust Distributed Name Service . 237
Baruch Awerbuch and Christian Scheideler

Peer-to-Peer Authentication with a Distributed Single Sign-On Service . . . 250
William K. Josephson, Emin Gün Sirer, and Fred B. Schneider

Secure Acknowledgment of Multicast Messages
in Open Peer-to-Peer Networks . 259

Antonio Nicolosi and David Mazières

VIII Routing

Know Thy Neighbor’s Neighbor:
Better Routing for Skip-Graphs and Small Worlds . 269

Moni Naor and Udi Wieder

SmartBoa: Constructing p2p Overlay Network
in the Heterogeneous Internet Using Irregular Routing Tables 278

Jingfeng Hu, Ming Li, Weimin Zheng, Dongsheng Wang, Ning Ning,
and Haitao Dong

Diminished Chord: A Protocol for Heterogeneous Subgroup Formation
in Peer-to-Peer Networks . 288

David R. Karger and Matthias Ruhl

Author Index . 299

Workshop Report for the 3rd International
Workshop on Peer-to-Peer Systems

(IPTPS 2004)

Sriram Ramabhadran, Sumeet Singh, and Kiran Tati

Department of Computer Science and Engineering
University of California, San Diego

{nramabha,susingh,ktati}@cs.ucsd.edu

1 Miscellaneous

Shiding Lin, Qiao Lian, Ming Chen, and Zheng Zhang, A Practical Dis-
tributed Mutual Exclusion Protocol in Dynamic Peer-to-Peer Sys-
tems. Presented by Zheng Zhang.

C: Some of the ideas are similar to previous work on Byzantine quorum systems.

Q: How is a consistent ordering on client requests obtained? A: A logical clock
is used to order client requests. Looser semantics result in a quasi-FIFO ordering
of requests rather than strictly FIFO.

Q: Mapping between resource and its replicas is non-atomic due to the presence
of churn. How does this affect the protocol? A: The protocol relies on the DHT
to eventually stabilize and present a consistent replica set. Large churn rates
could result in no overlap between the previous set of replicas and the new set
of replicas, and therefore the protocol performance may degrade (with possible
correctness issues).

Q: What kinds of assumptions are made about the DHT and synchrony in
the formal proof of correctness? A: One assumption is that two nodes do not
simultaneous claim ownership of a replica (could arise due to churn).

Nicolas Christin, John Chuang, On the cost of participating in a peer-to-
peer network. Presented by Nicolas Christin.

Q: Does your analysis extend if you consider maximum load rather than average
loads? In particular, does the star topology result in the social optimum? A: We
need to extend the analysis to other utility functions, such as non-linear functions
of load and delay. More general utility functions model cases where maximum
rather than average is important.

C: Randomness in choosing node identifiers is a source of asymmetry because
a real system will not be perfectly balanced in terms of load, messages routed,
etc. It would be interesting to extend the analysis to account for this.

G.M. Voelker and S. Shenker (Eds.): IPTPS 2004, LNCS 3279, pp. 1–10, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

2 Sriram Ramabhadran, Sumeet Singh, and Kiran Tati

Q: How will hierarchical constructions where small clusters of nodes are tied
together using a DHT help, given that most requests will still have to be routed
through the DHT? A: It depends on how the clusters are constructed, along
with the choice of routing algorithm. A desirable construction is where most
of the requests are satisfied locally (through a caching mechanism), while only
cache misses go through the DHT.

Mema Roussopoulos, Mary Baker, David Rosenthal, TJ Giuli, Petros Maniatis,
Jeff Mogul, 2 P2P or Not 2 P2P? Presented by Mema Roussopoulos.
C: Lack of trust is mentioned as a danger sign but it is also possible that lack
of trust among participating entities motivates a distributed design. This is be-
cause some applications are too critical to trust any one centralized entity to
implement. DNS is one such example.
Q: Peer-to-peer does not necessarily imply nodes are owned by different entities;
it may be regarded as a paradigm for designing large-scale distributed systems.
Therefore, it is not clear that somebody with a large budget may not want
a peer-to-peer solution. A: In our model, peer-to-peer is considered to be a
system with autonomous nodes rather than a distributed system with a common
administration.
C: Mutual trust, accountability and manageability are all important consider-
ations. Therefore it is not important what is the order of things appearing in
the decision; they are all things to be considered when evaluating a peer-to-peer
solution.
C: A distinction should be made between being able to design a peer-to-peer
solution and wanting to use a peer-to-peer solution. In other words, technical
issues should be separated from other issues.
Q: Areas where the decision tree indicates trouble spots are all active areas
of research; therefore it is conceivable that a peer-to-peer solution will become
desirable as the field matures. Is your decision tree predicting future trends with
respect to the success of peer-to-peer in these areas? A: These areas are potential
trouble spots where peer-to-peer solutions must be engineered carefully for them
to be successful.

2 Networking

Hung-Yun Hsieh, Raghupathy Sivakumar, On Transport Layer Support for
Peer-to-Peer Networks. Presented by Hung-Yun Hsieh.
Q: What is the relationship between your work and rate-less codes (IPTPS
2003)? A: Rate-less codes are application layer approaches used for file down-
loads from multiple sources. While the use of rate-less codes does not require
the support from the transport layer, it incurs extra processing (for encoding
and decoding) and communication (for transmitting redundant data) overheads.
In addition, its support for multipoint-to-point communication is application-
dependent (e.g., for non-real-time file downloads).

Workshop Report for the 3rd International Workshop 3

Q: If content is to be downloaded from multiple sources, there must be some
way of verifying that the content is the same at all the sources. Shouldn’t this
be implemented at the application layer rather than at the transport layer? A:
Yes, we assume that the peer-to-peer lookup service is responsible for providing
the list of supplying peers with replicated content to the requesting peer. The
validity of the data/content being transferred can be considered higher layer
semantics (e.g., presentation or application layer). Note that even in the case of
TCP, it does not verify the content being transferred–its functionality is merely
to reliably transfer the data given by the application.

Venkata N. Padmanabhan, Helen J. Wang, Philip A. Chou, Supporting Het-
erogeneity and Congestion Control in Peer-to-Peer Multicast Stream-
ing. Presented by Venkat Padmanabhan.

Q: How sensitive is the performance of the system to the accuracy of the drop-
ping decision? A: Identifying the source of congestion is important. For example,
if congestion is occurring at a parent, it is best to switch to a better parent. If
congestion is happening at a peer, the choice of which parent to drop is not abso-
lutely critical. Again, there are considerations of base layer versus enhancement
layer, where the base layer is much more important than the enhancement layer.

Ben Y. Zhao, Ling Huang, Anthony D. Joseph, John D. Kubiatowicz, Rapid
Mobility via Type Indirection. Presented by Ben Zhao.

Q: Where are the Tapestry nodes (wired/wireless)? A: Tapestry is used to im-
plement the overlay mobility infrastructure; the mobile end-hosts use a proxy
mechanism.

Q: Is the ability to locate a PDA/laptop relevant, considering they are not
likely to be content providers? A: We are providing the functionality (indirection
service), there may be potential applications in the future.

Q: How is group formation done? A: Try to predict common mobility patterns,
e.g., car-pooling.

Lidong Zhou, Robbert van Renesse, P6P: A Peer-to-Peer Approach to In-
ternet Infrastructure. Presented by Lidong Zhou.

Q: Sites may have multiple IPv6 prefixes. How does this affect your architecture?
A: P6P can easily support sites with multiple IPv6 prefixes. Such a site needs
to install one routing table entry for each IPv6 prefix it owns.

Q: How inherent is IPv6 to your architecture; in other words, what features of
IPv6 are used by P6P? A: P6P is a proposal to separate the network abstraction
presented to end sites (hosts) from the core Internet infrastructure. We believe
IPv6 is a reasonable abstraction for end applications. In theory, we could have
picked any other appropriate abstractions. In practice, because OS support for
IPv6 exists on end hosts, adopting IPv6 facilitates the deployment of P6P and
is therefore essential for the practicality of P6P.

4 Sriram Ramabhadran, Sumeet Singh, and Kiran Tati

Q: How is P6P different from I3? A: Like I3, P6P also embrace indirection and
the separation of identifiers from location. While I3 aims at presenting a general
indirection infrastructure, P6P focuses on a concrete and practical proposal that
is more likely to be adopted. In particular, unlike I3, which offers an entirely
new API to end applications, P6P advocates IPv6, which is already supported
in major operating systems.

Q: Can you quantify the routing overhead? A: P6P is not yet deployed, so
quantifying overhead is difficult. The routing cost consists mainly of routing
lookups and packet tunneling. The latter is relatively well understood because
it has been widely used.

3 Routing

Jinyang Li, Jeremy Stribling, Thomer M. Gil, Robert Morris, Frans Kaashoek,
Comparing the performance of distributed hash tables under churn.
Presented by Jinyang Li.

Q: Do you take failed operations into consideration? A: Yes. All protocols retry
failed/incorrect lookups for up to 4 seconds. So a low success rate (e.g., < 90%)
would translate into high lookup latency (> 400 ms).

Q: Is the spread of points on your convex hull graph of any importance? A:
The spread of points depends on the range of values we choose to vary for each
parameter and hence is somewhat arbitrary and does not mean anything much.
We also acknowledge that the convex hull found is conservative; it is possible
that there are ”better” parameter value combinations that we have not explored.

Q: How about protocols that adaptively tune the parameters? A: We presented
convex hulls for different DHTs. However, that does not mean a given DHT can
achieve its convex hull performance, as it needs to optimally pick its parameters.
A protocol that adaptively tunes its parameters might operate closer to its ideal
convex hull.

Q: In a real system with 100’s of parameters it is difficult to isolate the effect of
any one parameter using the approach used in this paper; for example, Oracle vs.
DB2. Is this a limitation with your approach? A: We are lucky that the DHTs
under study only have a couple of parameters. Even so, we find many parameters
are not really meaningful to the DHT cost-performance tradeoff. The current
method of varying all parameters simultaneously is not scalable to hundreds of
parameters. However, for a real system with hundreds of parameters, it is likely
most of them are not critical. It is conceivable to devise some optimizations to
quickly identify these non-critical parameters and throw them out.

Q: What is the effect of congestion and queuing on your simulation model? A:
We do not simulate queuing delays. We believe the load of DHT lookups and
maintenance on the network is relatively small compared with application level
traffic and will not be a source of congestion. As can be seen from our graphs,
the bandwidth usage of DHT level traffic is very small.

Workshop Report for the 3rd International Workshop 5

Q: What is the impact of data transfer? A: Data transfer is not the focus of
the work. One might argue that data transfer traffic might dwarf the mainte-
nance/lookup traffic of DHT operations. If so, this would imply we might want
to operate DHTs with generous bandwidth costs constraints. And this paper
says that all DHTs under study can be tuned to perform similarly to each other
when they generate larger amounts of traffic.

Q: How does this DHT perform under different workloads? A: We are currently
working on extending the model to include different workloads. The analysis in
the paper focuses on one type of workload where the lookups are few. One can
imagine things becoming different when lookups are abundant; less lookup hops
lead to decreased lookup traffic, learning from lookups become more effective,
etc.

Sergio Marti, Prasanna Ganesan, Hector Garcia-Molina, DHT Routing Us-
ing Social Links. Presented by Sergio Marti.

Q: Social networks are not uniformly distributed. This leads to different proper-
ties of the DHT, and in particular may lead to overloading of some well-connected
nodes. How do you deal with this? A: Load-balancing is a problem, but simple
strategies can be used to address this. For example, removing the friend links of
the most well-connected nodes results in an approximately even distribution of
load.

Q: Does trusting a friend translate to trusting a friend’s machine? A: That is
one of purposes of probability rating; trust in a friend is essentially the same as
trust in the ability of the friend to manage his machine.

Q: What is the basis of modeling trust as a probability, i.e., what does it mean
if you say that you trust someone with probability 0.9? How is the recursive
trust effect modeled correctly, if I trust you and you trust somebody, how much
do I trust your friend? A: One of the things we experimented with is using a
step function instead of a multiplicative model for trust. Modeling trust as a
probability is not perfect but does capture a lot of intuition.

Q: DHTs are supposed to be distributed, but social links can only be obtained
by a centralized database. A: The idea is to use existing infrastructure such as
AOL and Yahoo Messenger.

Rodrigo Rodrigues, Charles Blake, When Multi-Hop Peer-to-Peer Routing
Matters. Presented by Rodrigo Rodrigues.

Q: For database sizes of 1TB, is there really a need for P2P? A: You do not
want to mix technical issues with motivation issues for P2P.

Q: How many stale routing entries are there? And what is the cost incurred in
querying stale data? A: We target a large fraction of stale entries (1/3 in our
concrete example). The per-object availability can remain as high as desired by
setting redundancy levels appropriately. Fetch latency can remain low provided
we issue several fetch requests in parallel. The main problem would be increased
timeouts on synchronous store operations, but we expect stores to be less fre-

6 Sriram Ramabhadran, Sumeet Singh, and Kiran Tati

quent than fetches, and we think that waiting for all replicas to reply to a store
is a bad policy.

C: Although the paper used HDD growth rates as an indicator of future trends,
it is not necessarily the case that this is the same as growth in the amount of
content available for sharing via P2P.

4 Load Balancing and Searching

Subhash Suri, Csaba Toth, Yunhong Zhou, Uncoordinated Load Balancing
and Congestion Games in P2P Systems. Presented by Yunhong Zhou.

Q: Why use a bipartite graph to model the network when a node in a P2P
system can be both a client and a server? A: It does not really matter; if a
node is both a client and a server, it can be modeled as two nodes. Therefore a
bipartite graph can be derived from the more general graph of the peers.

David R. Karger, Matthias Ruhl, Simple Efficient Load Balancing Algo-
rithms for Peer-to-Peer Systems. Presented by Matthias Ruhl.

Q: In a real system, some objects are more popular or bigger in size than others.
Therefore uniformity of key-space may not be the critical issue. A: The second
protocol can handle arbitrary distributions of load and popularity. However, it
has the disadvantage that nodes can move to arbitrary locations in the key-space,
thereby potentially creating a security problem.

Q: Instead of using log(n) virtual nodes, can we distribute among the log(n)
finger nodes to get the same effect? A: It is not clear that this would work.

Q: How does the routing work when nodes can move to arbitrary places in the
key-space? A: See the details in the paper.

Boon Thau Loo, Ryan Huebsch, Ion Stoica, Joseph Hellerstein, The Case for
a Hybrid P2P Search Infrastructure. Presented by Boon Thau Loo.

Q: How do you handle the fact that some inverted lists may be too big (popu-
lar keywords)? A: Stop-words need to be filtered. While this step alone is not
sufficient to make keyword search feasible on a DHT, it is necessary.

Q: Apart from query, have you considered the effect of downloads? A: This is
part of future work.

Q: What is the connection between rare items and rare query terms? A: On the
average, rare items are likely to have rare keywords.

C: What is classified as a rare item is an artifact of your measurement methodol-
ogy. Just because your search algorithm is not able to find it does not necessarily
mean that the object is rare.

Q: Have you considered other hybrid architectures (for example a hierarchy of
DHTs)? This may make sense to limit popular search items to a smaller number
of nodes while using the global network to search for more rate items. A: This

Workshop Report for the 3rd International Workshop 7

is an interesting idea except that building DHTs over smaller sets of nodes does
not exploit the scalability of DHTs.

Shuming Shi, Guangwen Yang, Dingxing Wang, Jin Yu, Shaogang Qu, Ming
Chen, Making Peer-to-Peer Keyword Searching Feasible Using Multi-
level Partitioning. Presented by Zheng Zhang.

(No questions, authors unable to attend.)

5 Miscellaneous

Alan Mislove, Peter Druschel, Providing Administrative Control and Au-
tonomy in Peer-to-Peer Overlays. Presented by Alan Mislove.

(No questions recorded.)

Robbert van Renesse, Adrian Bozdog, Willow: DHT, Aggregation, and Pub-
lish/Subscribe in One Protocol. Presented by Robbert van Renesse.
Q: Almost any DHT can provide multicast, why is Willow special? A: In our
case multicast is used internally to keep the tree together. Willow also supports
aggregation and pub/sub routing.

Helen J. Wang, Yih-Chun Hu, Chun Yuan, Zheng Zhang, Yi-Min Wang,
Friends Troubleshooting Network: Towards Privacy-Preserving, Au-
tomatic Troubleshooting. Presented by Helen Wang.
Q: How representative were the 20 troubleshooting cases you looked at? How
likely is it that everybody will have the same value for the registry? A: We do
not know how representative they are, the 20 cases are real-world troubleshoot-
ing cases some of which are gathered from our co-workers’ troubleshooting ex-
periences, and some of which are obtained from MS customer tech support.
For the second question, the PeerPressure troubleshooting algorithm essentially
measures the uniqueness of a suspect entry value among the sample set entry
values and ranks the uniqueness metric among the suspects. This is effective for
most cases. However, for a highly customized computer, its unique configurations
would stand out as mis-configurations – and this is one source of false positives
of the PeerPressure algorithm.
C: There is a lot of work in statistics that is potentially relevant, especially
anonymous census. A: However, the existing techniques cannot address the
anonymous accumulation of all the parameters that are needed by Friends Trou-
bleshooting Network.
Q: How do you handle multiple entries? A: We currently do not handle multiple
entries but this is a future avenue of research.
Q: PeerPressure ranks the suspects on their probabilities of being sick. Then
what is next? A: The key benefit of PeerPressure is that it significantly narrows
down the root cause candidate set. The next step is to trial-and-error with each
entry from the lowest rank on and to see whether correcting that entry cures

8 Sriram Ramabhadran, Sumeet Singh, and Kiran Tati

the problem. It is true that this could be tricky since there can be rippling
configuration changes from a single configuration change.
Q: The configurations may be site-specific, which you do not know ahead of
time. How do you handle that? A: In this case, search could be scoped within a
domain first. Basically such heuristics could be incorporated into search.

Brad Karp, Sylvia Ratnasamy, Sean Rhea, Scott Shenker, Spurring Adoption
of DHTs with OpenHash, a Public DHT Service. Presented by Brad
Karp.
Q: OpenHash supports both Put/Get and ReDir, which do you expect people
to use more? A: We don’t know yet. We expect that both will be heavily used.
Q: Why don’t you want desktops to run this infrastructure? A: We are hoping
to start by limiting the nodes that participate. As the project advances we may
allow additional nodes to participate.
Q: Have you looked at the data management issues (for example infrastructure
nodes may fail)? A: We have not looked at it yet.
Q: Since it is a public infrastructure don’t you have to worry about security
issues? A: These are open issues.

6 Applications

Emil Sit, Frank Dabek, James Robertson, UsenetDHT: A Low Overhead
Usenet Server. Presented by Emil Sit.
Q: Does your scheme increase the potential for censorship? A: The data is fairly
well distributed, an attacked would need to control a very large set of nodes.
Q: Existing system exploits geographic locality. Can you do that? A: Certainly
you can form sub-groups to exploit locality.
Q: How does your approach compare to the alternate suggestion for USENET
to use content on demand? A: Implementing content on demand in current
USENET is technically very difficult, there any many issues to be dealt with.

F. Le Fessant, S. Handurukande, A.-M. Kermarrec, L. Massoulié,, Clustering
in Peer-to-Peer File Sharing Workloads. Presented by Fabrice Le Fessant.
Q: Have you used your observations to predict how much improvement you can
obtain as a result of the locality properties of P2P? A: We don’t know yet as
we have not done the analysis.

Virginia Lo, Daniel Zappala, Dayi Zhou, Yuhong Liu, Shanyu Zhao, Cluster
Computing on the Fly: P2P Scheduling of Idle Cycles in the Internet.
Presented by Virginia Lo.
Q: How do you make the quizzes indistinguishable from actual results? A: Some-
times the queries are the real thing.
Q: How do you see these reputation systems play out? A: It’s a hard problem
and we are not exactly interested in a totally secure reputation system.

Workshop Report for the 3rd International Workshop 9

7 Security

Baruch Awerbuch, Christian Scheideler,, Robust Distributed Name Ser-
vice. Presented by Christian Scheideler.
Q: Does the assumption about join and leave rate apply to bad guys? A: You
can come up with cryptographic puzzles, for example.
Q: What if the bad guys all behave very well for a while? A: The system is acting
on a proactive fashion even when the peers are behaving well; the reliability
argument is based on statistics.
Q: How much accuracy do you need in estimating N? Could N just be larger
than the number of nodes in the system or do you have to get N right? A: You
have to get N right to within a constant factor.

William K. Josephson, Emin Gün Sirer, Fred B. Schneider,, Peer-to-Peer
Authentication With a Distributed Single Sign-On Service. Presented
by Gün Sirer.
Q: How do you manage names in CorSSO? A: Every authentication server has its
own namespace. The names from different authentication servers are combined
to create a global name for each principal. These global names are associated
with a shorter name at each application server. This approach allows CorSSO
to separate the management of the name spaces from each other, yet link them
to identify principals uniquely. It also allows legacy services to transition to use
CorSSO without having to change their existing user names.
Q: Do you need a new public-private key pair to be generated for each service?
A: We need a key pair for each sub-policy.
Q: Can the identifiers change over time? A: The identifier can change over time.
Q: How do you do replication of client certificates? A: Certificates are timed.

Antonio Nicolosi, David Mazières, Secure Acknowledgment of Multicast
Messages in Open Peer-to-Peer Networks. Presented by Antonio Nicolosi.

(No questions recorded.)

8 Routing

Moni Naor, Udi Wieder, Know thy Neighbor’s Neighbor: Better Routing
for Skip-Graphs and Small Worlds. Presented by Udi Wieder.
Q: Why don’t we get 50% improvement? A: A non-hop is counted as two hops

Jingfeng Hu, Ming Li, Ning Ning, Weimin Zheng, SmartBoa: Constructing
P2P Overlay Network in the Heterogeneous Internet Using Irregular
Routing Tables. Presented by Ming Li.

(No questions.)

David R. Karger, Matthias Ruhl, Diminished Chord: A Protocol for Het-
erogeneous Subgroup Formation in Peer-to-Peer Networks. Presented
by David Karger.

10 Sriram Ramabhadran, Sumeet Singh, and Kiran Tati

Q: Would it be better to have 2 small DHTs as opposed to 1 DHT? A: I don’t
think so, even if the node sets are disjoint, you can get more robustness against
failures by attaching the two groups together. When you start building cache
tables the lookup hops don’t matter.
Q: Are we moving towards a service based model? A: OpenHash does have this
idea of separating out this layer of service, you can open the OpenDHT layer to
trusted nodes, but then who decides who are trusted? On the other hand, you
can limit to high bandwidth nodes.
C: One situation where smaller DHTs may be better is when nodes are geo-
graphically close together.

Acknowledgements

We thank the authors for their valuable comments and feedback.

©

{i-slin,i-qlian,zzhang}@microsoft.com

cm01@mails.tsinghua.edu.cn

•

•

•

•

•

•

−−

−=

−−

0.5 0.6 0.7 0.8 0.9 1
10

−40

10
−30

10
−20

10
−10

m/n ratio

br
ok

en
 p

ro
ba

bi
lit

y

n=4
n=8
n=16
n=32
n=64

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

incoming request rate (#/s)

su
cc

es
s

ra
te

 (
#/

s)

(a,b)=(0,200)ms
(a,b)=(50,150)ms
(a,b)=(90,110)ms

id resp[] resp[i]

Cowner nil
Towner

Queue

Request
OnRequest

OnResponse

owner

State Variables:
Cowner // the client it accepts
Towner // time stamp of Cowner
Queue // queue requests up

OnRequest(C, timestamp) {
if (Cowner = nil) {
Cowner := C;
Towner := timestamp;

}
else
Queue.Insert(C, timestamp);

SendResponse(C, Cowner, Towner);
}

OnRelease(C) {
if (C = Cowner) {
Cowner := nil;
if (not Queue.Empty())
 RespQueue();

}
else if (Queue.Contains(C))
Queue.Remove(C);

}

OnYield(C) {
if (C = Cowner) {
 Queue.Insert(C, Towner);
 RespQueue();
 if (C != Cowner)

 SendResponse(C, Cowner, Towner);
}

}

RespQueue() { // helper routine
<Cowner, Towner> := Queue.Front();
SendResponse(Cowner, Cowner, Towner);
Queue.Remove(Cowner);

}

State Variables:
 id // the identity of the client
 resp[] // responses from replica

Request(CS) {
timestamp := GetLogicalClock(); //lamport’s clock
for each R[i] of CS
SendRequest(R[i], id, timestamp);

}

OnResponse(R[i], owner, timestamp) {
resp[i].owner := owner;
resp[i].timestamp := timestamp;
if (enough responses received) {
winner := ComputeWinner();
if (winner = self) // case 1
 return success;
else if (winner = nil) { // case 3
 for each resp[i].owner is self {
 SendYield(R[i], id);
 Clear(resp[i]); // reset the state

 }
 }
// case 2: some one else wins, just wait

}
}

Release(CS) {
for all R[i] of CS
SendRelease(R[i], id);

}

•

•

•

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

incoming request rate (#/s)

th
ro

ug
hp

ut
 (#

/s
)

(a,b)=(0,200) ms
(a,b)=(50,150) ms
(a,b)=(90,110) ms
(a,b)=(0,200) ms (strawman)
(a,b)=(50,150) ms (strawman)
(a,b)=(90,110) ms (strawman)
saturated service rate

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

incoming request rate (#/s)

th
ro

ug
hp

ut
 (

#/
s)

replica life=10000s
replica life=100s
replica life=50s
replica life=30s
saturated service rate

On the Cost of Participating
in a Peer-to-Peer Network�

Nicolas Christin and John Chuang

University of California, Berkeley
School of Information Management and Systems

102 South Hall
Berkeley, CA 94720, USA

{christin,chuang}@sims.berkeley.edu

Abstract. In this paper, we model the cost incurred by each peer par-
ticipating in a peer-to-peer network. Such a cost model allows to gauge
potential disincentives for peers to collaborate, and provides a measure
of the “total cost” of a network, which is a possible benchmark to distin-
guish between proposals. We characterize the cost imposed on a node as
a function of the experienced load and the node connectivity, and express
benefits in terms of cost reduction. We discuss the notion of social opti-
mum with respect to the proposed cost model, and show how our model
applies to a few proposed routing geometries for distributed hash tables
(DHTs). We further outline a number of open questions this research has
raised.

1 Introduction

A key factor in the efficiency of a peer-to-peer overlay network is the level of
collaboration provided by each peer. In this paper, we take a first step towards
quantifying the level of collaboration that can be expected from each node par-
ticipating in an overlay, by proposing a model to evaluate the cost each peer
incurs as a member of the overlay. We express the benefits of participating in
the overlay in terms of a cost reduction.

Such a cost model has several useful applications, among which, (1) pro-
viding a benchmark that can be used to compare between different proposals,
complementary to recent works comparing topological properties of various over-
lays [1, 2], (2) allowing for predicting disincentives, and designing mechanisms
that ensure a protocol is strategyproof [3], and (3) facilitating the design of load
balancing primitives.

This work is not the first attempt to characterize the cost of participating
in a network. Jackson and Wolinsky [4] proposed cost models to analyze forma-
tion strategies in social and economic networks. More recent studies [5, 6] model
network formation as a non-cooperative game, where nodes have an incentive to

� This work is supported in part by the National Science Foundation through grants
ANI-0085879 and ANI-0331659.

G.M. Voelker and S. Shenker (Eds.): IPTPS 2004, LNCS 3279, pp. 22–32, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

On the Cost of Participating in a Peer-to-Peer Network 23

participate in the network, but want to minimize the price they pay for doing
so. These studies assume that each node has the freedom to choose which links
it maintains, whereas we assume that the overlay topology is constrained by a
protocol. Moreover, our approach extends previously proposed cost models [4–
6], by considering the load imposed on each node in addition to the distance to
other nodes and degree of connectivity.

In the remainder of this paper, we first introduce our proposed cost model,
before discussing the notion of “social optimum,” that is, the geometry that min-
imizes the sum of all costs over the entire network. We then apply the cost model
to several routing geometries used in recently proposed distributed hash table
(DHT) algorithms [2, 7–10], and compare the costs incurred by each geometry.
We conclude by discussing some open problems this research has uncovered.

2 Proposed Cost Model

The model we propose applies to any peer-to-peer network where nodes request
and serve items, or serve requests between other nodes. This includes peer-to-
peer file-sharing systems [11], ad-hoc networks [12], distributed lookup services
[8, 10], or application-layer multicast overlays [13–15], to name a few examples.
Formally, we define an overlay network by a quadruplet (V, E, K, F), where V
is the set of nodes in the network, E is the set of directed edges, K is the set
of items in the network, and F : K → V is the function that assigns items
to nodes. Each node u ∈ V is assigned a unique identifier (integer or string of
symbols), which, for the sake of simplicity, we will also denote by u. We define
by Ku = {k ∈ K : F (k) = u} the set of items stored at node u ∈ V . We have
K =

⋃
u Ku, and we assume, without loss of generality, that the sets Ku are

disjoint1. We characterize each request with two independent random variables,
X ∈ V and Y ∈ K, which denote the node X making the request, and the
item Y being requested, respectively.

Consider a given node u ∈ V . Every time an item k ∈ K is requested in the
entire network, node u is in one of four situations:

1. Node u does not hold or request k, and is not on the routing path of the
request. Node u is not subject to any cost.

2. Node u requests item k. In our model, we express the benefits of participating
in a peer-to-peer network in terms of latency reduction, similar to related
proposals, e.g., [6]. In particular, we assume that the farther the node v
holding k is from u (in a topological sense), the costlier the request is. If
there is no path between nodes u and v, the request cannot be carried out,
which yields an infinite cost. More precisely, we model the cost incurred by
node u for requesting k as lu,ktu,v, where tu,v is the number of hops between
nodes u and v, and lu,k is a (positive) proportional factor. We define the

1 If an item is stored on several nodes (replication), the replicas can be viewed as
different items with the exact same probability of being requested.

24 Nicolas Christin and John Chuang

latency cost experienced by node u, Lu, as the sum of the individual costs
lu,ktu,v multiplied by the probability k ∈ Kv is requested, that is

Lu =
∑
v∈V

∑
k∈Kv

lu,ktu,v Pr[Y = k] , (1)

with tu,v = ∞ if there is no path from node u to node v, and tu,u = 0
for any u. With this definition, to avoid infinite costs, each node has an
incentive to create links such that all other nodes holding items of interest
can be reached. An alternative is to store or cache locally all items of interest
so that the cost of all requests reduces to lu,ktu,u = 0.

3. Node u holds item k, and pays a price su,k for serving the request. For
instance, in a filesharing system, the node uses some of its upload capacity
to serve the file. We define the service cost Su incurred by u, as the expected
value of su,k over all possible requests. That is,

Su =
∑

k∈Ku

su,k Pr[Y = k] .

4. Node u does not hold or request k, but has to forward the request for k,
thereby paying a price ru,k. The overall routing cost Ru suffered by node u
is the average over all possible items k, of the values of ru,k such that u is on
the path of the request. That is, for (u, v, w) ∈ V 3, we consider the binary
function

χv,w(u) =

⎧⎨
⎩

1 if u is on the path from v to w,
excluding v and w

0 otherwise,
and express Ru as

Ru =
∑
v∈V

∑
w∈V

∑
k∈Kw

ru,k Pr[X = v] Pr[Y = k]χv,w(u) . (2)

In addition, each node keeps some state information so that the protocol gov-
erning the overlay operates correctly. In most overlay protocols, each node u
has to maintain a neighborhood table and to exchange messages with all of its
neighbors. The number of neighbors corresponds to the out-degree deg(u) of the
node, resulting in a maintenance cost Mu that is characterized by

Mu = mu deg(u) ,

where mu ≥ 0 denotes the cost associated with maintaining a link with a given
neighbor.

Last, we define the total cost Cu imposed on node u as

Cu = Lu + Su + Ru + Mu .

We can use Cu to compute the total cost of the network, C =
∑

u∈V Cu. Note
that the expression of Cu only makes sense if Su, Ru, Mu, and Lu are all ex-
pressed using the same unit. Thus, the coefficients su,k, ru,k, lu,k and mu have
to be selected appropriately. For instance, lu,k is given in monetary units per
hop per item, while mu is expressed in monetary units per neighbor entry.

On the Cost of Participating in a Peer-to-Peer Network 25

3 Social Optimum

The first question we attempt to address is whether we can find a social op-
timum for the cost model we just proposed, that is, a routing geometry that
minimizes the total cost C. We define a routing geometry as in [1], that is, as
a collection of edges, or topology, associated with a route selection mechanism.
Unless otherwise noted, we assume shortest path routing, and distinguish be-
tween different topologies. We discuss a few simplifications useful to facilitate
our analysis, before characterizing some possible social optima.

3.1 Assumptions

For the remainder of this paper, we consider a network of N > 0 nodes, where,
for all u ∈ V and k ∈ K, lu,k = l, su,k = s, ru,k = r, and mu = m 2. We suppose
that the network is in a steady-state regime, i.e., nodes do not join or leave the
network, so that the values l, s, r and m are constants. We also suppose that
requests are uniformly distributed over the set of nodes, that is, for any node u,
Pr[X = u] = 1/N . We make a further simplification by choosing the mapping
function F such that all nodes have an equal probability of serving a request.
In other words,

∑
k∈Ku

Pr[Y = k] = 1/N , which implies Su = s/N regardless
of the geometry used. Moreover, if we use E[x] to denote the expected value of
a variable x, Eqs. (1) and (2) reduce to Lu = lE[tu,v] and Ru = rE[χv,w(u)],
respectively. Last, we assume that no node is acting maliciously.

3.2 Full Mesh

Consider a full mesh, that is, a network where any pair of nodes is connected
by a (bidirectional) edge, i.e., tu,v = 1 for any v �= u. Nodes never any route
any traffic and deg(u) = N − 1. Thus, for all u, Ru = 0, Lu = l(N − 1)/N , and
Mu = m(N − 1). With Su = s/N , we get Cu = s/N + l(N − 1)/N + m(N − 1),
and, summing over u,

C = s + l(N − 1) + mN(N − 1) .

Let us remove a link from the full mesh, for instance the link 0 → 1. Because
node 0 removes an entry from its neighborhood table, its maintenance cost M0

decreases by m. However, to access the items held at node 1, node 0 now has
to send traffic through another node (e.g., node 2): as a result, L0 increases
by l/N , and the routing cost at node 2, R2, increases by r/N2. So, removing
the link 0 → 1 causes a change in the total cost ΔC = −m + l/N + r/N2. If
ΔC ≥ 0, removing a link causes an increase of the total cost, and the full mesh

2 While very crude in general, this simplification is relatively accurate in the case of
a network of homogeneous nodes and homogeneous links containing fixed-sized keys
such as used in DHTs.

26 Nicolas Christin and John Chuang

is the social optimum. In particular, the full mesh is the social optimum if the
maintenance cost is “small enough,” that is, if

m ≤ l/N + r/N2 . (3)

Note that, as N → ∞, the condition (3) tends to m = 0. In fact, we can also
express ΔC ≥ 0 as a condition on N that reduces to N ≤ �l/m + r/l	 when
m
 l2/r, using a first-order Taylor series expansion.

3.3 Star Network

Suppose now that Eq. (3) does not hold, and consider a star network. Let u = 0
denote the center of the star, which routes all traffic between peripheral nodes.
That is, χv,w(0) = 1 for any v �= w (v, w > 0). One can show [16] that R0 =
r(N − 1)(N − 2)/N2, L0 = l(N − 1)/N and M0 = m(N − 1), so that the cost
C0 incurred by the center of the star is

C0 = m(N − 1) +
s

N
+

l(N − 1)
N

+
r(N − 1)(N − 2)

N2
. (4)

Peripheral nodes do not route any traffic, i.e., Ru = 0 for all u > 0, and are
located at a distance of one from the center of the star, and at a distance of two
from the (N − 2) other nodes, giving Lu = l(2N − 3)/N . Further, deg(u) = 1
for all peripheral nodes. Hence, Mu = m, and the total cost imposed on nodes
u > 0 is

Cu = m +
s + l(2N − 3)

N
. (5)

A proof by identification [16] indicates that C0 = Cu can only hold when N
is a constant, or when l = r = m = 0. The difference C0 − Cu quantifies the
(dis)incentive to be in the center of the star.

Summing Eqs. (4) and (5), we obtain C = 2m(N − 1) + s + 2l(N − 1)2/N +
r(N − 1)(N − 2)/N2. On the one hand, removing any (directed) link from the
star either causes a node to be unreachable or prevents a node from contacting
any of the other nodes. In either case, C → ∞. On the other hand, adding a link
to the star also causes the cost C to increase, when Eq. (3) does not hold. For
instance, consider, without loss of generality, adding the link 1 → 2: M1 increases
by m, L1 decreases by l/N (the items held at node 2 can now be reached in one
hop), and R0 decreases by r/N2 (traffic from 1 to 2 is not routed through 0
anymore). All other costs are unchanged. Hence, the change in the cost C is
ΔC = m − l/N − r/N2, which is positive if Eq. (3) does not hold. Therefore,
adding or removing a link to a star when Eq. (3) is not satisfied cannot lead to
a social optimum.

From the above study, when Eq. (3) holds (i.e., N or m is small), the social
optimum is the full mesh. When Eq. (3) does not hold, repeatedly removing links
from the full mesh decreases the cost C until a star topology is reached. Thus,
a centralized topology seems to be desirable when N and/or m are significant,
while the objective is to minimize the total amount of resources used in the whole

On the Cost of Participating in a Peer-to-Peer Network 27

network to maintain the overlay. However, we stress that we do not consider
robustness against attack, fault-tolerance, or potential performance bottlenecks,
all being factors that pose practical challenges in a centralized approach, nor
do we offer a mechanism creating an incentive to be in the center of the star.
Furthermore, determining under which conditions on l, s, r, m and N the star
is the social optimum is an open problem.

4 Case Studies

We next apply the proposed cost model to a few selected routing geometries
and compare the results with those obtained in our study of the social optimum.
We present the various costs experienced by a node in each geometry, before
illustrating the results with numerical examples.

4.1 Analysis

Due to space limitations, we omit here most of the details in the derivations,
and instead refer the reader to a companion technical report [16] for complete
details.

De Bruijn Graphs. De Bruijn graphs are used in algorithms such as Koorde
[7] and ODRI [2], and present very desirable properties, such as short average
routing distance and high resiliency to node failures [2]. In a de Bruijn graph,
any node u is represented by an identifier string (u1, . . . , uD) of D symbols taken
from an alphabet of size Δ. The node represented by (u1, . . . , uD) links to each
node represented by (u2, . . . , uD, x) for all possible values of x in the alphabet.
The resulting directed graph has a fixed out-degree Δ, and a diameter D.

The maintenance, routing, and latency costs experienced by each node in
a De Bruijn graph all depend on the position of the node in the graph [16].
Denote by V ′ the set of nodes such that the identifier of each node in V ′ is of
the form (h, h, . . . , h). Nodes in V ′ link to themselves, and the maintenance cost
is Mu = m(Δ − 1) for u ∈ V ′. For nodes u /∈ V ′, we have Mu = mΔ.

For any node u ∈ V , the routing cost Ru is such that 0 ≤ Ru ≤ rρmax/N
2,

where ρmax denotes the maximum number of routes passing through a given
node, or maximum node loading, with (see [16]):

ρmax =
(D − 1)(ΔD+2 − (Δ − 1)2) − DΔD+1 + Δ2

(Δ − 1)2
.

One can show by contradiction that with shortest-path routing, nodes u ∈ V ′ do
not route any traffic, so that the lower bound Ru = 0 is reached for u ∈ V ′. One
can also show that Ru = rρmax/N

2 when Δ ≥ D for the node (0, 1, 2, . . . , D−1).
We further prove in [16] that the latency cost is bounded by Lmin ≤ Lu ≤

Lmax where

Lmin =
l

N

(
DΔD +

D

Δ − 1
− Δ(ΔD − 1)

(Δ − 1)2

)
,

28 Nicolas Christin and John Chuang

and

Lmax = l
DΔD+1 − (D + 1)ΔD + 1

N(Δ − 1)
.

We have Lu = Lmax for nodes u ∈ V ′, and Lu = Lmin for the node (0, 1, . . . , D−
1) when Δ ≥ D. Note that we can simplify the expressions for both Lmin and
Lmax when N = ΔD, that is, when the identifier space is fully populated.

D-Dimensional Tori. We next consider D-dimensional tori, as in CAN [8],
where each node is represented by D Cartesian coordinates, and has 2D neigh-
bors, for a maintenance cost of Mu = 2mD for any u.

Routing at each node is implemented by greedy forwarding to the neighbor
with the shortest Euclidean distance to the destination. We assume here that
each node is in charge of an equal portion of the D-dimensional space. From [8],
we know that the average length of a routing path is (D/4)N1/D hops3. Because
we assume that the D-dimensional torus is equally partitioned, by symmetry,
we conclude that for all u,

Lu = l
DN1/D

4
.

To determine the routing cost Ru, we compute the node loading as a function
ρu,D of the dimension D. With our assumption that the D-torus is equally
partitioned, ρu,D is the same for all u by symmetry. Using the observation that
the coordinates of two consecutive nodes in a path cannot differ in more than
one dimension, we can compute ρu,D by induction on the dimension D [16]:

ρu,D = 1 + N
D−1

D

(
−N

1
D + D

(
N

1
D − 1 +

(⌊
N

1
D

2

⌋
− 1

)(⌈
N

1
D

2

⌉
− 1

)))
.

For all u, Ru immediately follows from ρu,D with

Ru = r
ρu,D

N2
.

PRR Trees. We next consider the variant of PRR trees [17] used in Pastry
[9] or Tapestry [18]. Nodes are represented by a string (u1, . . . , uD) of D digits
in base Δ. Each node is connected to D(Δ − 1) distinct neighbors of the form
(u1, . . . , up−1, x, yp+1, . . . , yD), for p = 1 . . .D, and x �= up ∈ {0, . . . , Δ−1}. The
resulting maintenance cost is Mu = mD(Δ − 1).

Among the different possibilities for the remaining coordinates yp+1, . . . , yD,
the protocols generally select a node that is nearby according to a proximity
metric. We here assume that the spatial distribution of the nodes is uniform,
and that the identifier space is fully populated, which enables us to pick yp+1 =

3 Loguinov et al. [2] refined that result by distinguishing between odd and even values
of N .

On the Cost of Participating in a Peer-to-Peer Network 29

Table 1. Asymmetry in costs in a de Bruijn graph (l = 1, r = 1000)

(Δ, D) Lmin Lmax
Lmax
Lmin

R′
min Rmax

Rmax
R′

min

(2, 9) 7.18 8.00 1.11 3.89 17.53 4.51

(3, 6) 5.26 5.50 1.04 2.05 9.05 4.41

(4, 4) 3.56 3.67 1.03 5.11 13.87 2.71

(5, 4) 3.69 3.75 1.02 1.98 5.50 2.78

(6, 3) 2.76 2.80 1.01 5.38 9.99 1.86

up+1, . . . , yD = uD. Thus, two nodes u and v at a distance of k hops differ in k
digits, which, as described in [16], leads to

Pr[tu,v = k] =

(
D
k

)
(Δ − 1)k

N
. (6)

Using Eq. (6) in conjunction with the total probability theorem, leads, after
simplification, to

Ru = r
ΔD−1(D(Δ − 1) − Δ) + 1

N2
. (7)

Furthermore, from Lu = lE[tu,v], Eq. (6) gives

Lu = l
DΔD−1(Δ − 1)

N
. (8)

Chord Rings. In a Chord ring [10], nodes are represented using a binary string
(i.e., Δ = 2). When the ring is fully populated, each node u is connected to a
set of D neighbors, with identifiers ((u + 2p) mod 2D) for p = 0 . . .D − 1. An
analysis similar to that carried out for PRR trees yields Ru and Lu as in Eqs. (7)
and (8) for Δ = 2. Simulations confirm this result [10].

4.2 Numerical Results

We illustrate our analysis with a few numerical results. In Table 1, we consider
five de Bruijn graphs with different values for Δ and D, and X and Y i.i.d.
uniform random variables. Table 1 shows that while the latency costs of all
nodes are comparable, the ratio between Rmax and the second best case routing
cost4, R′

min, is in general significant. Thus, if r � l, there can be an incentive
for the nodes with Ru = Rmax to defect. For instance, these nodes may leave the
network and immediately come back, hoping to be assigned a different identifier
u′ �= u with a lower cost. Additional mechanisms, such as enforcing a cost of
entry to the network, may be required to prevent such defections.

Next, we provide an illustration by simulation of the costs in the different
geometries. We choose Δ = 2, for which the results for PRR trees and Chord
4 That is, the minimum value for Ru over all nodes but the Δ nodes in V ′ for which

Ru = 0.

30 Nicolas Christin and John Chuang

rings are identical. We choose D = {2, 6} for the D-dimensional tori, and D =
logΔ N for the other geometries. We point out that selecting a value for D and Δ
common to all geometries may inadvertently bias one geometry against another.
We emphasize that we only illustrate a specific example here, without making
any general comparison between different DHT geometries.

De Bruijn
(upper bound)De Bruijn

(sim, average)

6−torus (model)
Star (average)

(lower bound)
De Bruijn

PRR (sim)

2−torus
(sim)

2−torus
(model)

PRR (model)

 0

 5

 10

 15

 20

 100 200 300 400 500 600 700 800 900 1000

L
at

en
cy

 c
os

t

Number of nodes

(a) Latency cost (l = 1)

2−torus

Star (average)

De Bruijn
2−torus

(sim)

(model)

(sim, avg)

(upper bound)
De Bruijn

PRR (model)6−torus (model)

PRR
(sim)

 1

 10

 100

 1000

 100 200 300 400 500 600 700 800 900 1000

R
ou

tin
g

co
st

Number of nodes

(b) Routing cost (r = 1000)

Fig. 1. Latency and routing costs. Curves marked “sim” present simulation results.

We vary the number of nodes between N = 10 and N = 1000, and, for each
value of N run ten differently seeded simulations, consisting of 100,000 requests
each, with X and Y i.i.d. uniform random variables. We plot the latency and
routing costs averaged over all nodes and all requests in Fig. 1. The graphs show
that our analysis is validated by simulation, and that the star provides a lower
average cost than all the other geometries. In other words, whenever practical,
a centralized architecture appears more desirable to the community as a whole

On the Cost of Participating in a Peer-to-Peer Network 31

than a distributed solution. This relatively counter-intuitive result needs to be
taken with a grain of salt, however, given the scalability and resiliency concerns
linked to a centralized architecture, and the need for incentive mechanisms to
compensate for the asymmetry of a star network.

5 Discussion

We proposed a model, based on experienced load and node connectivity, for the
cost incurred by each peer to participate in a peer-to-peer network. We argue
such a cost model is a useful complement to topological performance metrics
[1, 2], in that it allows to predict disincentives to collaborate (peers refusing to
serve requests to reduce their cost), discover possible network instabilities (peers
leaving and re-joining in hopes of lowering their cost), identify hot spots (peers
with high routing load), and characterize the efficiency of a network as a whole.

We showed that, when the number of nodes is small, fully connected networks
are generally the most cost-efficient solution. When the number of nodes is large,
star networks may be desirable from the point of view of overall resource usage.
This result leads us to conjecture that, when feasible, centralized networks, where
the “center” consists of a few fully connected nodes can be an interesting alter-
native to completely distributed solutions, provided that incentive mechanisms
to handle network asymmetries are in place.

We believe however that this paper raises more questions than it provides
answers. First, we only analyzed a handful of DHT routing geometries, and even
omitted interesting geometries such as the butterfly [19] or geometries based on
the XOR metric [20]. Second, applying the proposed cost model to deployed peer-
to-peer systems such as KaZaA/FastTrack, which is based on interconnected
star networks, could yield some insight regarding user behavior. Third, for the
mathematical analysis, we used strong assumptions such as identical popularity
of all items, or uniform spatial distribution of all participants, and we assimilated
the costs incurred to the actual utility functions of each participant. Relaxing
these assumptions is necessary to evaluate the performance of a geometry in a
realistic setting. Also, obtaining a meaningful set of values for the parameters
(l, s, r, m) for a given class of applications (e.g., file sharing between PCs, ad-
hoc routing between energy-constrained sensor motes) remains an open problem.
Finally, identifying the minimal amount of knowledge each node should possess
to devise a rational strategy, or studying network formation with the proposed
cost model are other promising avenues for further research.

References

1. Gummadi, K., Gummadi, R., Gribble, S., Ratnasamy, S., Shenker, S., Stoica, I.:
The impact of DHT routing geometry on resilience and proximity. In: Proceedings
of ACM SIGCOMM’03, Karlsruhe, Germany (2003) 381–394

2. Loguinov, D., Kumar, A., Rai, V., Ganesh, S.: Graph-theoretic analysis of struc-
tured peer-to-peer systems: routing distances and fault resilience. In: Proceedings
of ACM SIGCOMM’03, Karlsruhe, Germany (2003) 395–406

32 Nicolas Christin and John Chuang

3. Ng, C., Parkes, D., Seltzer, M.: Strategyproof computing: Systems infrastructures
for self-interested parties. In: Proceedings of the 1st Workshop on the Economics
of Peer-to-Peer Systems, Berkeley, CA (2003)

4. Jackson, M., Wolinsky, A.: A strategic model for social and economic networks.
Journal of Economic Theory 71 (1996) 44–74

5. Chun, B.G., Fonseca, R., Stoica, I., Kubiatowicz, J.: Characterizing selfishly con-
structed overlay networks. In: Proceedings of IEEE INFOCOM’04, Hong Kong
(2004)

6. Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C., Shenker, S.: On a net-
work creation game. In: Proceedings of ACM PODC’03, Boston, MA (2003) 347–
351

7. Kaashoek, M.F., Karger, D.: Koorde: A simple degree-optimal distributed hash
table. In: Proceedings of IPTPS’03, Berkeley, CA (2003) 323–336

8. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: Proceedings of ACM SIGCOMM’01, San Diego, CA
(2001) 161–172

9. Rowston, A., Druschel, P.: Pastry: Scalable, decentralized object location and rout-
ing for large scale peer-to-peer systems. In: Proceedings of ACM Middleware’01,
Heidelberg, Germany (2001) 329–350

10. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D., Kaashoek, M.F., Balakrish-
nan, H.: Chord: A scalable peer-to-peer lookup protocol for Internet applications.
IEEE/ACM Transactions on Networking 11 (2003) 17–32

11. The annotated Gnutella protocol specification v0.4 (2001) http://rfc-gnutella.
sourceforge.net/developer/stable/index.html.

12. Perkins, C. (editor): Ad hoc networking. Addison-Wesley, Boston, MA (2000)
13. Banerjee, S., Bhattacharjee, B., Kommareddy, C.: Scalable application layer mul-

ticast. In: Proceedings of ACM SIGCOMM’02, Pittsburgh, PA (2002) 205–217
14. Chu, Y.H., Rao, S., Zhang, H.: A case for endsystem multicast. In: Proceedings

of ACM SIGMETRICS’00, Santa Clara, CA (2000) 1–12
15. Liebeherr, J., Nahas, M., Si, W.: Application-layer multicast with Delaunay trian-

gulations. IEEE Journal of Selected Areas in Communications 20 (2002) 1472–1488
16. Christin, N., Chuang, J.: On the cost of participating in a peer-to-peer net-

work. Technical report, University of California, Berkeley (2003) http://p2pecon.
berkeley.edu/pub/TR-2003-12-CC.pdf. See also: arXiv:cs.NI/0401010.

17. Plaxton, C.G., Rajamaran, R., Richa, A.: Accessing nearby copies of replicated
objects in a distributed environment. Theory of Computing Systems 32 (1999)
241–280

18. Zhao, B., Huang, L., Stribling, J., Rhea, S., Joseph, A., Kubiatowicz, J.: Tapestry:
A resilient global-scale overlay for service deployment. IEEE Journal on Selected
Areas in Communications 22 (2004) 41–53

19. Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: a scalable and dynamic emulation
of the butterfly. In: Proceedings of ACM PODC’02, Monterey, CA (2002) 183–192

20. Maymounkov, P., Mazières, D.: Kademlia: A peer-to-peer information system
based on the XOR metric. In: Proceedings of IPTPS’02, Cambridge, MA (2002)
53–65

2 P2P or Not 2 P2P?

Mema Roussopoulos1, Mary Baker2, David S.H. Rosenthal3,
Thomas J. Giuli4, Petros Maniatis5, and Jeff Mogul2

1 Harvard University, Cambridge, MA
2 HP Labs, Palo Alto, CA

3 Stanford University Libraries, Stanford, CA
4 Stanford University, Stanford, CA

5 Intel Research, Berkeley, CA

Abstract. In the hope of stimulating discussion, we present a heuristic
decision tree that designers can use to judge how suitable a P2P solution
might be for a particular problem. It is based on characteristics of a wide
range of P2P systems from the literature, both proposed and deployed.
These include budget, resource relevance, trust, rate of system change,
and criticality.

1 Introduction

Academic research in peer-to-peer (P2P) systems has concentrated largely on
algorithms to improve the efficiency [31], scalability [22], robustness [12], and
security [33] of query routing in P2P systems, services such as indexing and
search [20], dissemination [17], and rendezvous [27] [30] for applications running
on top of these systems, or even many of the above [18]. While these improve-
ments may be essential to enhancing the performance of some P2P applications,
there has been little focus on what makes a problem “P2P-worthy,” or on which
other, previously ignored problems may benefit from the application of P2P tech-
niques. What questions should a system designer ask to judge whether a P2P
solution is appropriate for his particular problem?

In this position paper, we hope to stimulate discussion by distilling the experi-
ence of a broad range of proposed and deployed P2P systems into a methodology
for judging how suitable a P2P architecture might be for a particular problem.
In Section 2, we identify some salient characteristics axes in typical distributed
problems. In Section 3, we describe a spectrum of specific problems for which
P2P solutions have been proposed. In Section 4, we propose an arrangement of
problem characteristics into a heuristic decision tree. We walk through the tree
explaining its choices and why we believe certain paths may lead to successful
P2P solutions to important problems, while other paths may encounter difficul-
ties. While any particular set of characteristics axes or fixed decision graph may
be inadequate for all purposes, we present the arrangement that has proved most
useful in our work so far.

G.M. Voelker and S. Shenker (Eds.): IPTPS 2004, LNCS 3279, pp. 33–43, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

34 Mema Roussopoulos et al.

2 Problem Characteristics Axes

In this section, we describe the characteristics we believe are important in as-
sessing the P2P-worthiness of distributed problems. Paraphrasing the call for
papers of this workshop, we identify as peer-to-peer those environments that
satisfy the following three criteria:

– Self-organizing: Nodes organize themselves into a network through a discov-
ery process. There is no global directory of peers or resources.

– Symmetric communication: Peers are considered equals; they both request
and offer services, rather than being confined to either client or server roles.

– Decentralized control: Peers determine their level of participation and their
course of action autonomously. There is no central controller that dictates
behavior to individual nodes.

Milojičić et al. [26] identify similar criteria.
Our axes are the problem’s budget, the relevance of resources to individual

peers, the rate of system change, the need for mutual trust, and the criticality
of the problem. In more detail:
Budget: If the budget for a centrally controlled solution is ample, a designer is
unlikely to consider worthwhile the inefficiencies, latencies and testing problems
of a P2P solution. If the budget is limited, a key motivator in the choice of P2P
architectures is the lowest possible cost of entry for individual peers, despite
increased total system cost. Assembling a system from local, often surplus, com-
ponents can be justified as a small part of many budgets and may be the only
economically feasible approach.
Resource relevance to participants: Relevance is the likelihood that a “unit
of service” within a problem (e.g., a single file in a file sharing problem) is
interesting to many participants. When resource relevance is high, cooperation
in a P2P solution evolves naturally. If relevance is low, cooperation may require
artificial or extrinsic incentives to make a possible P2P solution viable.
Trust: The cost to a P2P system of handling mutually distrusting peers is high.
Distrust may be a necessary evil of the problem, or it may be desirable as a
means of imposing fault isolation throughout a peer community to reduce the
risks posed by misbehaving peers.
Rate of system change: Different problems have different requirements for
timeliness and consistency. Problems or solutions with high rates of change in
the participants, the data or the system parameters make it difficult to meet
high requirements for timeliness and consistency.
Criticality: If the problem being solved is critical to the users, they may demand
centralized control and accountability irrespective of technical criteria. Even if a
P2P solution is not ruled out, the need for expensive fault-tolerance or massive
over-provisioning may make it uneconomic.

One question that arises is why we do not consider the physical constraints
of a problem along with the budget; some problems have physical constraints

2 P2P or Not 2 P2P? 35

such as scale or geographic size that require a distributed solution, regardless of
budget. One example is latency due to the speed of light in an interplanetary
internet [3]. However, we have found no examples of problems that also require
decentralized control or self-organizing peers.

We have excluded other characteristics which, while potentially important,
did not enter into this decision tree as far as we have elaborated it. First, it may
be important whether resources are public or private; private resources requiring
confidentiality may be more difficult to protect and manage in P2P systems,
and they may have less relevance to participants. Second, it may be important
whether resources are naturally distributed; resources that exist naturally in
many places, such as the usage statistics of many individual networks, may be
more amenable to a distributed solution, and even a P2P solution.

3 Candidate Problems

We analyze a variety of problems with proposed P2P solutions to determine
which of our characteristics they exhibit. These problems come from routing,
backup, monitoring, data sharing, data dissemination, and auditing.

3.1 Routing Problems

All distributed systems need a routing layer to get messages to their intended
recipients. Routing takes on P2P characteristics when the scale is large enough
(e.g., the Internet) or when centralization is ruled out (e.g., wireless ad hoc
networks).

Internet Routing. Internet routers must communicate to cope with a dynami-
cally changing network topology to determine how to route outbound packets to
their destination. They are arranged into “autonomous systems” which “peer”
with each other across organizational boundaries, frequently between competi-
tors.

Routing protocols have historically assumed that economic incentives and
legal contracts are sufficient to discourage misbehavior. At the application layer
(e.g., Resilient Overlay Networks (RON) [1]) or at the network layer (e.g.,
BGP [21]), routers trust information from known peers. They cooperate be-
cause the information being exchanged is relevant to all peers and important
to their function. This cooperation tends to fail if error, misbehavior or usage
patterns cause the data to change too fast. To scale to the size of the Internet,
BGP tries to limit the rate of change by aggregating routes instead of having
ISPs propagate internal routing updates. Aggregation reduces the ability to de-
tect path outages quickly [19]. RON instead gives up scaling to large numbers
of nodes in favor of more fine-grained route information exchanges.

Ad hoc Routing in Disaster Recovery. The ad hoc routing problem is to
use transient resources, such as the wireless communication devices of a dis-
aster recovery crew, to deploy temporary network infrastructure for a specific

36 Mema Roussopoulos et al.

purpose. Because each individual node’s wireless range does not reach all other
nodes, peers in the network forward packets on behalf of each other. The costly
alternative is to provide more permanent infrastructure for all possible eventu-
alities in all possible locations. The network is of relevance and critical to all
participants, and pre-configured security can give a high level of mutual trust.
Once established, the participants (humans in the crew) typically change and
move slowly, and do not exchange huge volumes of data.

Metropolitan-Area Cell Phone Forwarding. Ad hoc routing has also been
proposed in less critical settings, such as that of public, ad hoc cellular tele-
phony in dense metropolitan areas. The motivation is to reduce the need for
base stations, to use the radio spectrum more efficiently, and to avoid payment
for air time where traffic does not pass through base stations. Unlike the disas-
ter recovery problem, the participants do not trust each other and they change
and move rapidly. In its current state, this problem suffers from the “Tragedy
of the Commons” [14]. We doubt that a practical P2P solution to this prob-
lem exists, unless either on-going research [2, 4] devises strong, “strategy-proof”
mechanisms to combat selfishness, or the scope of the problem is limited to
close-knit communities with inherent incentives for participation.

3.2 Backup
Backup, the process in which a user replicates his files in different media at
different locations to increase data survivability, can benefit greatly from the
pooling of otherwise underutilized resources. Unfortunately, the fact that each
peer is interested only in its own data opens the way to selfish peer behavior.

Internet Backup. The cost of backup could be reduced if Internet-wide coop-
eration [9, 10] could be fostered and enforced. For example in Samsara [9] peers
must hold real or simulated data equivalent to the space other peers hold for
them. But there is no guarantee an untrusted node will provide backup data
when requested, even if it has passed periodic checks to ensure it still has those
data. Such a misbehaving or faulty node may in turn have its backup data else-
where dropped in retaliation. If misbehaving, it may already have anticipated
this reaction and, if faulty, this is exactly why it would participate in a backup
scheme in the first place. We believe that data backup is poorly suited for a P2P
environment running across trust boundaries.

Corporate Backup. In contrast, when participants enjoy high mutual trust,
e.g., within the confines of an enterprise intranet, P2P backup makes sense (Hive-
Cache [15] is one such commercial offering). This is because selfish behavior is
unlikely when a sense of trusting community or a top-down corporate mandate
obviate the need for enforceable compliance incentives.

3.3 Distributed Monitoring

Monitoring is an important task in any large distributed system. It may have
simple needs such as “subscribing” to first-order events and expecting notifica-
tion when those events are “published” (e.g., Scribe [27]); it may involve more

2 P2P or Not 2 P2P? 37

complicated, on-line manipulation, for instance via SQL queries, of complex dis-
tributed data streams such as network packet traces, CPU loads, virus signatures
(as in the on-line network monitoring problem motivating PIER [16]); it may be
the basis for an off-line, post mortem longitudinal study of many, high-volume
data streams, such as the longitudinal network studies performed by Fomenkov
et al. [11].

Although the abstract monitoring problem is characterized by natural dis-
tribution of the data sources monitored, specific instances of the problem vary
vastly. A longitudinal off-line network study, though important, is not necessar-
ily critical to its recipients, and has low timeliness constraints. In contrast, an
ISP may consider the on-line, on-time monitoring of its resources and those of
its neighbors extremely critical for its survival. Similarly, the mechanisms for
complex network monitoring described by Huebsch et al. [16] may be appropri-
ate for administratively closed, high-trust environments such as PlanetLab [6],
and they may be quite inappropriate in environments lacking mutual trust and
rife with fraud or subversion. In contrast, an off-line long-term network study
affords its investigators more time for validating data against tampering.

3.4 Data Sharing

File Sharing. In file sharing systems, participants offer their local files to other
peers and search collections to find interesting files. The cost of deployment is
very low since most peers store only items that they are interested in anyway.
Resource relevance is high; a great deal of content appeals to a large popula-
tion of peers. In typical file sharing networks, peer turnover and file addition is
high, leading to a high rate of system change. Peers trust each other to deliver
the advertised content and most popular file sharing networks do not have the
capacity to resist malicious peers. File sharing is mainly used to trade media
content, which is not a critical application.

Censorship Resistance. The goal of the FreeNet project [7] is to create an
anonymous, censorship-resistant data store. Both publishing and document re-
quests are routed through a mix-net [5] and all content is encrypted by the con-
tent’s creator. These steps are necessary because peers are mutually suspicious
and some peers may be malicious. Peers share their bandwidth as well as disk
space, which means that the cost of entry is low, promoting incremental rapid
growth; this growth is unstructured, which strengthens the system against legal
attacks. FreeNet is intended to provide a medium for material that some group
wishes to suppress, thus data are relevant to publishers, readers and attackers
alike. Fortunately, censorship-resistance does not require immediate availability,
making this a low rate-of-change problem.

Tangler [32] has similar goals. A peer stores a document by encoding it using
erasure codes and distributing the resulting fragments throughout the commu-
nity. To prevent an adversary from biasing where those fragments are distributed,
a peer combines its document with pseudo-randomness derived from other peers’
documents before erasure coding. To retrieve its own document, a peer must

38 Mema Roussopoulos et al.

store this randomness (i.e., other peers’ documents) locally. Although the prob-
lem lacks inherent incentives for participation, this solution ingeniously supplies
them.

3.5 Data Dissemination

Data dissemination is akin to data sharing, with the distinction that the problem
is not to store data indefinitely but merely to spread the data for a relatively
short amount of time. Often storing is combined with spreading.

Usenet. Usenet, perhaps the oldest and most successful P2P application, is a
massively distributed discussion system in which users post messages to “news-
groups.” These articles are then disseminated to other hosts subscribing to the
particular newsgroup, and made available to local users. Usenet has been a staple
of the Internet for decades, arguably because of the low cost barrier to peer en-
try and the high relevance of the content to participating peers. Unfortunately,
although the system flourished at a time when mutual trust was assumed, it
remains vulnerable to many forms of attack, perhaps jeopardizing its future in
less innocent times.

Non-critical Content Distribution. Dissemination of programs, program
updates, streaming media [8, 17], and even cooperative web caching [34] are all
non-critical content distribution problems.

One successful application is BitTorrent [8], which mitigates the congestion
at a download server when relevant (i.e., popular) but non-critical new resources
such as programs or updates are posted. Its tit-for-tat policy is effective despite
low peer trust.

Cooperative Web caching, although superficially attractive, has not suc-
ceeded, for complex and subtle reasons [34]. Although it offered some benefits
for large organizations in very low latency environments, and for low-relevance
(i.e., unpopular) documents, those benefits were only marginal.

Critical Flash Crowds. Other specific instances of dissemination have been
proposed to address flash crowds [28, 29], which could be used to distribute
critical data, such as news updates during a major disaster.

3.6 Auditing
Digital Preservation. The LOCKSS system preserves academic e-journals in
a network of autonomous web caches. Peers each obtain their own complete
replicas of the content by crawling the publisher’s web site. If the content be-
comes unavailable from the publisher, the local copy is supplied to local readers.
Slowly, in the background, a P2P “opinion poll” protocol [24] provides mutual
audit and repairs any damage it detects. Peers trust the consensus of other peers
but not any individual peer. Mutual distrust is essential to prevent cascade fail-
ures which could destroy every copy of the preserved content. The automatic

2 P2P or Not 2 P2P? 39

audit and repair process allows peers to be built from cheap, unreliable hard-
ware with very little need for administration, an important factor given library
budgets. Publication of new content and damage to preserved content causes
system change; the rates of both are limited. The content preserved is highly
relevant to many peers.

Distributed Time Stamping. A secure time stamping service [13] acts as the
digital equivalent of a notary public: it maintains a history of the creation and
contents of digital documents, allowing clients who trust the service to determine
which document was “notarized” first. Correlating the histories of multiple, mu-
tually distrustful secure time stamping services [23] is important, because not
everyone doing business in the world can be convinced to trust the same cen-
tralized service; being able to map time stamps issued elsewhere to a local trust
domain is essential for critical documents (such as contracts) from disparate ju-
risdictions. Luckily, sensitive documents such as contracts tend to change little
or not at all, and high latencies for obtaining or verifying secure time stamps
are acceptable, facilitating the development of an efficient enough P2P solution
to the problem.

4 2 P2P or Not 2 P2P?

Figure 1 is a decision tree organizing our characteristics to determine whether
the application of P2P techniques to a particular problem is justified. There are
other metrics, other decision trees and other decision graphs than those presented
here, but we have found this arrangement particularly useful. We examine our
example problems and suggested solutions by traversing the tree in a breadth-
first manner.

At the top of the tree we have the “budget” axis. We believe that limited
budget is the most important motivator for a P2P solution. With limited bud-
get, the low cost for a peer to join a P2P solution is very appealing. Otherwise,
a centralized or centrally controlled distributed solution can provide lower com-
plexity and higher performance for the extra money. Our tree thus continues
only along the “limited” budget end of the axis.

Our next most important characteristic is the “relevance” of the resource
in question. The more relevant (important to many) the resource, the more
motivated peers in a P2P architecture are to participate. Good P2P solutions
for problems with low relevance exist but have other mitigating characteristics,
as we explain below.

The next axis in the tree is “mutual trust.” Successful P2P solutions with
trusting peers exist, as do those whose other characteristics justify the perfor-
mance and complexity cost of measures to cope with mutual distrust. Those
problems with low relevance and low trust have the burden of fostering coop-
eration. While Tangler is a good example, we believe that metropolitan ad hoc
wireless networks and Internet backup have not yet succeeded. Motivation for
these problems seems inadequate to overcome the low relevance of the resources

40 Mema Roussopoulos et al.

Fig. 1. A decision tree for analyzing the suitability of a P2P solution to a problem.
Diamonds indicate decision points. Boxes contain problems or specific P2P solutions
to problems. A warning sign over a particular box indicates that the box is a “trouble
spot”; a P2P solution for the problems in that box may be inappropriate. In some
cases, we include particular P2P solutions (e.g., Tangler) and explain in the text how
those solutions overcome the difficulties of their box.

2 P2P or Not 2 P2P? 41

and the overheads of protecting against uncooperative or malicious peers. Where
peers are assumed to cooperate, problems such as corporate backup may succeed
with P2P solutions, since corporate mandate compensates for low relevance. Sim-
ilarly with cooperative web caching, proposed solutions [34] indicate that some
benefits may be obtainable with P2P techniques; note, however, that actual ben-
efits from cooperative web caching have thus far been only marginal compared
to centralized solutions.

Where relevance is high, the required level of trust between peers still has an
impact on the suitability of a P2P solution for the problem. Creating artificial
economies or “trading” schemes to provide extrinsic incentives for cooperation
(as in MojoNation) is generally unsuccessful [25]. The overhead in terms of com-
plexity and performance for managing mutually distrustful peers suggests that
solutions will be difficult to implement successfully in a P2P manner, unless
other characteristics intercede to simplify the problem.

Such a characteristic is the rate of change in the system. Problems with a low
rate of change, such as digital preservation, censorship resistant repositories, and
distributed time stamping, may succeed despite mutually distrustful peers. For
these problems, mutual distrust among peers is an inherent part of the problem,
and thus its cost must be born by any proposed solution. The cost, however, is
reduced by the low rate of change, which makes it possible to detect anomalies in
the system in time to address them, and reduces the performance impact of the
measures to protect against malicious peers. Problems with a high rate of change
in untrustworthy environments are unlikely to find successful P2P solutions.

The rate of change in the system remains important even for problems in
which peers may trust each other to cooperate. If the rate of peers entering
and leaving the system is kept low, then both non-critical problems (such as
off-line network studies, Usenet, and content distribution) and critical problems
(such as ad hoc wireless network deployment for disaster recovery and flash
crowd mitigation) may succeed. If the system moves quickly, we believe that it
is easier to deploy non-critical applications such as file sharing that can tolerate
inconsistent views among peers. When the problem involves critical information
that also changes quickly (as in the case of Internet routing and on-line network
monitoring), the designer should consider whether the application benefits suf-
ficiently from other features. To the degree that Internet routing is successful,
it is because it is amenable to trading accuracy for scalability through tech-
niques such as aggregation of data. If P2P network monitoring succeeds, it will
be because the natural distribution and high volume of the data allow few other
architectures.

5 Conclusions

To summarize, the characteristics that motivate a P2P solution are limited bud-
get, high relevance of the resource, high trust between nodes, a low rate of system
change, and a low criticality of the solution. We believe that the limited budget
requirement is the most important motivator. Relevance is also very important
but can be compensated for by “saving graces” such as assumed trust between

42 Mema Roussopoulos et al.

nodes or strong imposed incentives. Lacking these, we believe that problems with
low relevance are not appropriate for P2P solutions. Trust between nodes greatly
eases P2P deployment, however there are some applications, such as LOCKSS,
FreeNet and distributed time stamping, where deployment across trust domains
is a requirement. These applications must pay the overhead of distrust between
nodes, but are feasible in a P2P context because a low rate of change makes
these costs manageable.

While P2P solutions offer many advantages, they are inherently complex
to get right and should not be applied blindly to all problems. In providing a
framework in which to analyze the characteristics of a problem, we hope to offer
designers some guidance on whether their problem warrants a P2P solution.

Acknowledgments

We would like to thank the following people for their very helpful feedback and
suggestions: John Apostolopoulos, Sujata Banerjee, Kevin Lai, Dejan S. Miloji-
čić, Mitch Trott, Susie Wee, and Zhichen Xu.

References

1. D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient Overlay
Networks. In SOSP, 2001.

2. S. Bansal and M. Baker. Observation-based Cooperation Enforcement in Ad Hoc
Networks. Technical report, Stanford University, 2003.

3. S. Burleigh, K. Fall, V. Cerf, R. Durst, K. Scott, H. Weiss, L. Torgerson, and
A. Hooke. Delay-Tolernat Networking: An Approach to Interplanetary Internet.
IEEE Communications Magazine, June 2003.

4. L. Buttyán and J.-P. Hubaux. Stimulating Cooperation in Self-organizing Mobile
Ad hoc Networks. Mobile Networks and Applications, 2003.

5. D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM, 24(2), 1981.

6. B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and
M. Bowman. PlanetLab: An Overlay Testbed for Broad-Coverage Services. ACM
Computer Communication Review, 33(3):3–12, July 2003.

7. I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A Distributed Anony-
mous Information Storage and Retrieval System. In Workshop on Design Issues
in Anonymity and Unobservability, 2000.

8. B. Cohen. Incentives Build Robustness in BitTorrent. In P2P Econ Workshop,
2003.

9. L. P. Cox and B. D. Noble. Samsara: Honor Among Thieves in Peer-to-Peer
Storage. In SOSP, 2003.

10. F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area Coop-
erative Storage with CFS. In SOSP, 2001.

11. M. Fomenkov, K. Keys, D. Moore, and kc claffy. Longitudinal study of Internet
traffic from 1998–2003. http://www.caida.org/outreach/papers/2003/nlanr/.

12. K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Sto-
ica. The Impact of DHT Routing Geometry on Resilience and Proximity. In
SIGCOMM, 2003.

2 P2P or Not 2 P2P? 43

13. S. Haber and W. S. Stornetta. How to Time-stamp a Digital Document. Journal of
Cryptology: the Journal of the Intl. Association for Cryptologic Research, 3(2):99–
111, 1991.

14. G. Hardin. The Tragedy of the Commons. Science, 162, 1968.
15. HiveCache, Inc. Distributed disk-based backups. Available at http://www.

hivecache.com/.
16. R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and I. Stoica.

Querying the Internet with PIER. In VLDB, 2003.
17. D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: High Bandwidth

Data Dissemination Using an Overlay Mesh. In SOSP, 2003.
18. J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gum-

madi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. OceanStore:
An Architecture for Global-Scale Persistent Storage. In ASPLOS, 2000.

19. C. Labovitz, A. Ahuja, A. Abose, and F. Jahanian. Delayed Internet Routing
Convergence. In SIGCOMM, 2000.

20. J. Li, B. T. Loo, J. Hellerstein, F. Kaashoek, D. R. Karger, and R. Morris. On the
Feasibility of Peer-to-Peer Web Indexing and Search. In IPTPS, 2003.

21. K. Lougheed and Y. Rekhter. RFC 1267: Border Gateway Protocol 3, October
1991.

22. D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A Scalable and Dynamic Emula-
tion of the Butterfly. In CHI, 1989.

23. P. Maniatis and M. Baker. Secure History Preservation Through Timeline Entan-
glement. In USENIX Security, 2002.

24. P. Maniatis, M. Roussopoulos, TJ Giuli, D. S. H. Rosenthal, M. Baker, and Y. Mu-
liadi. Preserving Peer Replicas By Rate-Limited Sampled Voting. In SOSP, 2003.

25. J. McCoy. Lessons Learned from MojoNation. Personal Communication, April
2002.

26. D. S. Milojičić, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard,
S. Rollins, and Z. Xu. Peer-to-Peer Computing. Technical Report HPL-2002-57,
HP Labs, 2002.

27. A. I. T. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel. SCRIBE: The
design of a large-scale event notification infrastructure. In Networked Group Com-
munication, 2001.

28. T. Stading, P. Maniatis, and M. Baker. Peer-to-Peer Caching Schemes to Address
Flash Crowds. In IPTPS, 2002.

29. A. Stavrou, D. Rubenstein, and S. Sahu. A Lightweight, Robust P2P System to
Handle Flash Crowds. In ICNP, 2002.

30. I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Internet Indirection
Infrastructure. In SIGCOMM, 2002.

31. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord:
A Scalable Peer-to-Peer Lookup Service for Internet Applications. In SIGCOMM,
2001.

32. M. Waldman and D. Mazières. Tangler: A Censorship-Resistant Publishing System
Based On Document Entanglements. In ACM Conf. on Computer and Communi-
cations Security, 2001.

33. D. Wallach. A Survey of Peer-to-Peer Security Issues. In Intl. Symposium on
Software Security, 2002.

34. A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin, and H. Levy. On the
Scale and Performance of Cooperative Web Proxy Caching. In SOSP, 1999.

On Transport Layer Support for Peer-to-Peer Networks

Hung-Yun Hsieh and Raghupathy Sivakumar

School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, GA 30332, USA
{hyhsieh,siva}@ece.gatech.edu

Abstract. TCP is the transport protocol used predominantly in the Internet as
well as in peer-to-peer networks. However, peer-to-peer networks exhibit very
different characteristics from those of conventional client-server networks. In this
paper, we argue that the unique characteristics of peer-to-peer networks render
TCP inappropriate for effective data transport in such networks. Specifically, we
motivate transport layer support for multipoint-to-point connections to address
the problem of sources in peer-to-peer networks lacking server-like properties in
terms of capacity and availability. We outline several key elements in designing a
new transport protocol for supporting effective multipoint-to-point connections.
Finally, we present a case study for a multipoint-to-point transport protocol that
puts together these design elements in practice. We thus motivate further research
along this direction.

1 Introduction

Over the last few years, the area of peer-to-peer networking has attracted considerable
attention. The notion of end-users collaborating to create as well as to consume a richer
set of services and contents has been quite well received. Resources shared in a peer-to-
peer network are distributed in a decentralized fashion, and directly accessible to any
host participating in the network.

While existing works in the area of peer-to-peer networking have typically focused
on application layer approaches with vertically integrated solutions, the growing scale
and diversity of peer-to-peer networks have called for a common platform to facilitate
the development and interoperability of peer-to-peer applications. Several research en-
deavors have gone into building generic architectures, interfaces, and protocols that can
support peer-to-peer networks more effectively [1–3].

In this paper, we argue for transport layer support for peer-to-peer networks. TCP
(Transmission Control Protocol) has been the predominant transport protocol used in
the Internet as well as in peer-to-peer networks. It is designed for a unicast connection
between a server and a client. However, peer-to-peer networks exhibit very different
characteristics from those of conventional client-server networks. On one hand, the ex-
istence of multiple peers with replicated content provides users with multiple potential
sources to transfer data from. On the other hand, these peers that act as sources to supply
the content typically do not exhibit “server-like” properties due to their limited capacity
and transient availability [4]. We argue that using TCP not only prevents the requesting

G.M. Voelker and S. Shenker (Eds.): IPTPS 2004, LNCS 3279, pp. 44–53, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

On Transport Layer Support for Peer-to-Peer Networks 45

peer from leveraging the existence of multiple sources for achieving potential perfor-
mance improvement, but also exposes it to the non-server-like behavior of individual
sources thus causing performance degradation.

To this end, we first motivate the benefits of transport layer support for multipoint-
to-point connections in peer-to-peer networks1. The transport layer plays a defining role
in effective data transport between the source and the destination. However, existing
transport protocols support only point-to-point and/or point-to-multipoint (multicast)
connections. We discuss the performance benefits in enabling multipoint-to-point data
transport in Section 2. We then proceed to outline several key components that should
be considered in designing new transport layer protocols for supporting multipoint-to-
point connections. We discuss these design elements in Section 3. Finally, we present a
case study for a multipoint-to-point transport protocol called R2CP (Radial Reception
Control Protocol). We show in Section 4 that R2CP encompasses the desired transport
layer design and allows for further consideration in peer-to-peer networks. We discuss
issues for multipoint-to-point transport protocols and summarize the paper in Section 5.

2 Motivation

In this section, we present arguments for supporting multipoint-to-point connections in
peer-to-peer networks, from the perspectives of the destination (requesting peer), the
source (supplying peer), and the content. While there are several existing applications
that can use multiple replicated sources for achieving better performance in terms of
faster downloads or resilient streaming at the destination [5–8], we discuss why such
application layer approaches cannot effectively support multipoint-to-point communi-
cation without any modification at the transport layer. We thus motivate transport layer
support for multipoint-to-point connections in peer-to-peer networks.

2.1 The Destination (Requesting Peer)

From the perspective of the peer requesting the content, the benefit of maintaining
multipoint-to-point communication is the potential for better resource aggregation and
fault tolerance by tapping multiple sources, thus achieving higher access performance.

Hosts participating in peer-to-peer networks are typically located at the edges of the
Internet. It is reported in [4] that more than 70% hosts in the Napster network measured
have asymmetric links via dial-up (V.90), ADSL, or cable modems with the uplink
bandwidths significantly lower than the downlink ones. Hence it is conceivable that a
majority of connections in peer-to-peer networks is bottlenecked at the source, and the
performance of these connections can be improved by using multiple sources with repli-
cated content concurrently. Several peer-to-peer applications [5, 6] have started explor-
ing along this direction to provide the requesting peer with better download or streaming

1 In reference to the TCP/IP protocol model, the transport layer translates the services provided
by the network (internet) layer for use by the application. We note, however, that the argument
presented in this paper is also applicable to the session layer in the OSI model. The solution
proposed thus can build atop conventional transport protocols, with sufficient support from the
latter.

46 Hung-Yun Hsieh and Raghupathy Sivakumar

performance. Note, however, that a key issue for the destination to support multipoint-
to-point connections is the resequencing of data received from multiple sources. Ex-
isting approaches have relied on using the hard disk for offline buffering, where data
resequencing is performed only after the entire content has been received [7, 8]2. While
such approaches can be used for content downloads, they are not applicable to most
other applications that maintain a limited buffer and require the in-sequence delivery
service from lower layers. It has been shown in [9] that for such applications the per-
formance achieved can be throttled by the slowest link in the connection if application-
layer striping is performed without transport layer support.

Using multipoint-to-point connections is not limited to bandwidth aggregation. It
can also allow the requesting peer to mitigate performance degradation due to subop-
timal peer selection and transient peer availability. The problem of selecting the “best”
source to request data from is non-trivial, especially in peer-to-peer networks where
many peers may not be encountered more than once [10] or may not be uniquely iden-
tified [11], and they may even provide inaccurate bandwidth information [4]. Similarly,
peer transience due to dynamic peer arrivals and departures has been shown in related
work to be a serious problem causing disrupted or even aborted communication [4, 11].
The ability to incorporate multiple concurrent sources in a connection thus manifests
itself as an ideal solution for these problems, since the performance of a connection
is no longer tied to the capacity or availability of individual sources. For example, the
departure of any source(s) in the connection will not stall the content delivery at the
requesting peer as long as there is still one source available for transmissions. Note that
a transport layer protocol supporting multipoint-to-point connections can dynamically
maintain the number of sources in the connection, and mask such artifacts in the peer-
to-peer network from the application. However, any application layer approach will not
be able to address these problems without exposing the same to the application.

2.2 The Source (Supplying Peer)

From the perspective of the peer supplying the content, the benefit of participating in
multipoint-to-point communication is the potential for better load balancing in sharing
its resource, thus resulting in a lower average load on the sources.

It has been reported in [4] that while multiple sources may be available for content
supply in peer-to-peer networks, a significant portion of these hosts lacks the high-
bandwidth, low-latency profile of a server. For example, in the Napster network mea-
sured, 22% of the peers have upstream (outbound) bandwidths that are lower than
100Kbps. Existing systems address this problem by dropping connections or bypass-
ing hosts with low available bandwidths [12]. While such an approach can effectively
prevent these low-profile hosts from becoming the bottleneck of the network, it also pre-
vents them from contributing resources (bandwidths) to the network, thus potentially
increasing the load on qualified sources. The inefficiency incurred in utilizing low-
profile hosts, however, exists only for unicast connections where the performance of

2 We note that although the resequencing delay can potentially be reduced using smaller re-
quest blocks [7] with appropriate online scheduling (refer to Section 3.3), the communication
overheads incurred that increase with decreasing block sizes can make such an approach un-
desirable.

On Transport Layer Support for Peer-to-Peer Networks 47

the connection is upper-bounded by the bandwidth of the source. A multipoint-to-point
connection, on the other hand, can allow low-profile hosts to be aggregated to support
a high-bandwidth connection. It hence makes use of all available resources (however
small) that every host in the peer-to-peer network can provide, without sacrificing the
quality enjoyed by the requesting peer.

Multipoint-to-point support in peer-to-peer networks not only allows low-profile
hosts to contribute, but also encourages participation from hosts with relatively high
bandwidths. This is because any content search in peer-to-peer networks typically re-
sults in the host with the “highest” bandwidth being chosen. Although it can be argued
that hosts are willing to share unused resources [13], overloads in the uplink direction
can potentially delay the acknowledgment packets sent by the downlink TCP traffic,
thus decreasing the maximum utilization achievable in the downlink and increasing the
disincentive to share [14]. It has been shown in [4] that hosts tend to deliberately mis-
report their bandwidths, so as not to serve too many requests from other peers. In a
system with multipoint-to-point support, however, such “hot spots” can be alleviated,
since the requesting peer, by aggregating resources from the runners-up, can achieve the
same performance as that by using the best source3. Note that a key issue for the source
to support multipoint-to-point connections is that no data is redundantly transmitted
across multiple sources to the destination. Application layer approaches that perform
content coding at the sources have been proposed in content distribution networks [6,
8]. Although these approaches free the requesting peer from involving in coordinating
the transmissions of multiple sources, they are not applicable to peer-to-peer networks,
since they require the number and distribution (or characteristics) of the sources used to
be known a priori for performing content coding or reducing the reception inefficiency.
Moreover, it is difficult, if not impossible, to enforce source coding at all autonomous
peers. On the other hand, as we discussed in Section 2.1, approaches such as [7] where
the receiving application dynamically requests ranges of data from individual sources
can suffer from high communication overheads and application complexities without
transport layer support.

2.3 The Content

From the perspective of the content itself, the benefit of using multipoint-to-point com-
munication is the ability to preserve the integrity of the content better as it is propagated
through the peer-to-peer network, which will in turn benefit both the sources and desti-
nations.

Existing transport layer protocols provide a spectrum of reliability services, includ-
ing unreliable, partially reliable, and fully reliable services, that can be used by different
applications. However, an important issue in distributing the content and thus amplify-
ing the capacity of a peer-to-peer network is reliable content replication. Consider a
scenario where a video clip is streamed from one host to another, and the requesting

3 We note that load balancing using multipoint-to-point connections is different from that using
unicast connections, since the latter uses only the “second-best” host and hence can poten-
tially result in decreased performance otherwise enjoyed by the requesting peer without load
balancing.

48 Hung-Yun Hsieh and Raghupathy Sivakumar

peer later becomes the supplying peer serving other hosts. Since streaming applications
typically choose timeliness over reliability, it is possible that the requesting peer has a
lossy replication of the original video clip after the streaming is complete. If the lossy
copy is streamed to another host without the missing information being restored, the
quality of the video will continue to degrade after each replication – eventually render-
ing the clip unusable. An obvious approach to address this problem is for the applica-
tion to open a reliable connection after streaming, and retrieves the missing information
from the source. However, such an application layer approach increases implementa-
tion complexities (the application needs to implement loss detection and recovery) and
communication overheads (consider the overheads incurred in TCP when retrieving
data in a non-contiguous fashion). While it is non-trivial to design a transport proto-
col that can support 100% reliability without degrading the application performance
otherwise attainable using a partially reliable transport protocol (since the bandwidth
used for recovering the lost data may be wasted as far as the application is concerned),
such functionality can be easily implemented in the context of multipoint-to-point con-
nections. A transport protocol supporting multipoint-to-point connections can open one
more source (in addition to the original data source) dedicated to loss recovery. Such
out-of-band loss recovery allows loss recovery to take place without consuming the pre-
cious bandwidth available along the data path. In this way, the application can continue
to receive data in a timely, partially reliable fashion, but when the connection completes,
the data will be reliably replicated to the receiver.

3 Transport Layer Design

We have thus far motivated the benefits of transport layer support for multipoint-to-
point connections in peer-to-peer networks. In this section, we discuss several key com-
ponents in designing a transport layer protocol that can support effective multipoint-to-
point connections. We assume that the multipoint-to-point transport protocol needs to
provide the application with the same in-sequence data delivery semantics as TCP.

3.1 Multiple States

TCP is designed for point-to-point connections where it assumes a single path between
the source and the destination. TCP captures the characteristics of the path it traverses
such as bandwidth and latency in the form of TCB (Transmission Control Block) state
variables such as congestion window and round-trip time, for determining the send rate
of the connection. In a multipoint-to-point connection, packets from different sources
traverse different paths to the destination. Since hosts in peer-to-peer networks can ex-
hibit a very high degree of heterogeneity in terms of the connection bandwidth and
latency [4], maintaining only one set of TCB variables (single state) in a multipoint-to-
point connection can render the send rate and hence the achieved throughput subopti-
mal. Therefore, a key design in a multipoint-to-point transport protocol is to maintain
multiple states in accordance with the number of sources (paths) used in the connec-
tion. In the context of TCP, multi-state design allows TCP to maintain one TCB for
each path, and hence different sources can use different send rates (depending on the
characteristics of the underlying path) for transmitting packets to the destination. Note
that out-of-order arrivals at the destination due to packets traversing multiple paths will

On Transport Layer Support for Peer-to-Peer Networks 49

not trigger unnecessary window cutdown in such a multi-state TCP, since congestion
control is performed on a per-path basis. Vanilla TCP with single state, on the other
hand, will fail to utilize even the slowest path in the connection when operated over
multiple paths.

3.2 Decoupling of Functionalities

To incur minimum overheads resulting from the multi-state design, transport layer func-
tionalities should be divided between those associated with individual paths and those
pertaining to the aggregate connection. For example, congestion control estimates the
bandwidth of the underlying path, and hence should be performed for each path in the
connection. On the other hand, buffer management handles the socket buffer, and hence
should not be repetitively implemented across multiple states. While the reliable de-
livery of data can be considered either as a per-path functionality (packets are reliably
delivered along each path) or as a per-connection functionality (packets lost on one path
can be recovered through retransmissions on another path), there are several advantages
in designing reliability as a functionality of the aggregate connection: (i) Since loss re-
covery can take place along a path different from the one traversed by the lost packet,
path shutdown due to the departure of an active source (e.g. peer transience or failure)
does not interfere with the reliable delivery of data. (ii) One path can be dedicated to
loss recovery, while the others provide only unreliable (or partially reliable) service. In
this way, packets lost along the unreliable paths will be recovered “out-of-band” without
stalling the progression of data delivery along these paths.

3.3 Packet Scheduling

Since packets traverse different paths from multiple sources to one destination in a
multipoint-to-point connection, a key issue in providing in-sequence data delivery to
the receiving application is packet scheduling. Out-of-order arrivals not only call for a
large resequencing buffer at the receiver, but can also introduce head-of-line blocking. It
has been shown in [9] that head-of-line blocking can cause significant performance loss
in terms of the maximum aggregate bandwidth achievable. As we mentioned in Sec-
tion 3.1, different paths in a multipoint-to-point connection can exhibit very different
characteristics in terms of bandwidth/latency mismatches and fluctuations. A schedul-
ing algorithm that schedules packets based on a pre-determined bandwidth ratio of in-
dividual paths [15] will apparently suffer from bandwidth fluctuations. Moreover, since
different paths can exhibit latency mismatches by more than a factor of four [4], a
scheduling algorithm based purely on the bandwidth ratio without taking into consider-
ation the latency mismatch will fail to achieve the optimal performance in peer-to-peer
networks. Note that the scheduling algorithm should also handle the dynamic arrivals
and departures of sources in a multipoint-to-point connection.

3.4 Receiver-Driven Operation

While any data source may come and go, in a multipoint-to-point connection the invari-
ant is the destination (receiver). Moreover, since the receiver is the common point for

50 Hung-Yun Hsieh and Raghupathy Sivakumar

individual paths in a multipoint-to-point connection, it manifests itself as an ideal loca-
tion for coordinating packet transmissions of individual sources. Note that the role of
the receiver is not limited to performing packet scheduling. The reliability and conges-
tion control functionalities of the transport protocol can also be driven by the receiver.
If the receiver is primarily responsible for the reliable delivery of data from the sources,
any failure at the source (e.g. due to peer departure) will have minimal impact on the
connection. On the other hand, if congestion control is receiver-driven, the receiver will
have instant knowledge of the congestion control parameters such as bandwidth and la-
tency that can be used by the packet scheduling algorithm. In this way, the receiver con-
trols when, which, and how much data should be sent from individual sources. Adding
or deleting any source from the connection thus has the mere effect of increasing or
decreasing the bandwidth available to the connection, without causing any other unde-
sirable disruptions or stalls. Since the intelligence of the transport protocol is primarily
located at the receiver, whenever server migration is possible and desirable, the over-
heads incurred in synchronizing the states maintained (if any) between the old and the
new supplying peers will be minimized.

We have thus far identified multiple states, decoupling of functionalities, packet
scheduling, and receiver-driven operation as the key design elements in a multipoint-
to-point transport protocol. We hasten to add that there do exist several additional trans-
port layer elements for which an argument can be made in the context of peer-to-peer
networks. Examples of such elements include run-time peer selection, server load dis-
tribution, and reliable replication. Consideration of these other elements is part of our
ongoing work.

4 Case Study: The R2CP Protocol

We now present a case study for a multipoint-to-point transport protocol called R2CP
(Radial Reception Control Protocol) that puts together the design elements outlined
in Section 3 in practice. R2CP was originally proposed in [16] for mobile hosts with
heterogeneous wireless interfaces (such as 3G and WiFi). In the following, we provide
a synopsis of the R2CP protocol, and show that R2CP encompasses the desired transport
protocol design, allowing it to be considered for peer-to-peer networks.

1. R2CP is a receiver-driven, multi-state transport protocol that supports multipoint-
to-point connections. The R2CP destination (receiver) maintains multiple states,
each of them corresponds to the single state maintained by individual sources
(senders) in the connection. Fig. 1 shows the architecture of the R2CP protocol.

2. R2CP is built atop a single-state, point-to-point transport protocol called RCP (Re-
ception Control Protocol). RCP is a TCP clone in its general behavior, including
the use of the same window-based congestion control mechanism. However, RCP
transposes the intelligence of TCP from the sender to the receiver such that the RCP
receiver is primarily in charge of the congestion control and reliability. The RCP
receiver drives the progression of the connection, while the RCP sender merely re-
sponds to the instructions sent by the receiver. It is shown in [16] that RCP is indeed
TCP-friendly.

On Transport Layer Support for Peer-to-Peer Networks 51

Fig. 1. R2CP Architecture

3. Multiple RCP pipes in an R2CP connection are coordinated by the R2CP engine at
the receiver. The R2CP engine is responsible for buffer management, flow control,
and the reliable delivery of data to the application, while individual RCPs imple-
ment congestion control. Note that although RCP by itself is a reliable protocol like
TCP, R2CP allows data recovery to occur along the RCP pipe different from the one
data was sent. This is achieved in R2CP through dynamic binding of the application
data (to be requested) and the RCP packets using the binding data structure (see
Fig. 1). Effectively, individual RCPs control how much data to request from each
sender, while the R2CP engine control which data to request from each sender.

4. The R2CP engine performs packet scheduling to coordinate packet transmissions
along individual RCP pipes. R2CP uses an RTT-ranked, CWND-based schedul-
ing algorithm to minimize out-of-order arrivals at the receiver. Upon receiving the
send() call from any RCP pipe that has space in its window for packet requests (note
that each RCP pipe is self-clocked like TCP), the R2CP engine uses the rank data
structure to determine which data to request from the corresponding source such
that the data requested will arrive in sequence. Since R2CP provides in-sequence
data delivery to the application, minimizing out-of-order arrivals can also mini-
mize head-of-line blocking at the receive socket buffer (head-of-line blocking oc-
curs when R2CP is unable to bind more data to any RCP pipe for requests due to
the buffer being filled up). It has been shown in [16] that such a packet schedul-
ing algorithm allows R2CP to effectively aggregate the bandwidths available along
individual paths with bandwidth/latency mismatches and fluctuations.

While we refer interested readers to [16] for a more detailed presentation of the
R2CP protocol and its performance, it is clear from the above discussion that R2CP
follows the design elements outlined in Section 3, allowing it to address the unique
characteristics of peer-to-peer networks such as peer heterogeneity and peer transience.
Our ongoing work includes developing R2CP to support load balancing, peer selection,
and reliable replication mechanisms for use with peer-to-peer networks.

52 Hung-Yun Hsieh and Raghupathy Sivakumar

5 Issues and Summary

While we have made a case for transport layer support for multipoint-to-point connec-
tions in peer-to-peer networks, there are several issues that need to be addressed such as
potential server overload and network overload due to the greedy use of multipoint-to-
point connections. In particular, the need for a sound fairness model to avoid network
overload can be of importance when the bottleneck occurs in the backbone of the net-
work. Related work [17] has investigated this issue and proposed several fairness mod-
els for use with multipoint-to-point connections – with no consensus reached yet. Note
that the design elements outlined in Section 3 allow the fairness model to be seamlessly
incorporated in a multipoint-to-point transport protocol. For example, the receiver is
the ideal location to enforce the fairness model across multiple pipes. The “decoupling
of functionalities” design allows different congestion control mechanisms such as [18]
to be used for secondary pipes such that the aggregate connection does not exceed its
fair share. We recall from Section 2 that even when the fairness model prevents the
requesting peer from enjoying higher throughput than that achievable using a point-to-
point connection, a multipoint-to-point transport protocol can still provide significant
performance benefits.

In this paper, we argue for transport layer support for peer-to-peer networks. We
focus on the benefits of enabling multipoint-to-point communication from the perspec-
tives of requesting peers, supplying peers, and content replication. We first show that
existing application layer solutions cannot effectively address the challenges in peer-to-
peer networks and support multipoint-to-point communication, whereas a multipoint-
to-point transport layer protocol can be a power building block in peer-to-peer networks.
We then present several design components for developing a transport layer protocol
with multipoint-to-point support. Finally, we present a multipoint-to-point transport
protocol called R2CP that shows potential in addressing the unique characteristics of
the peer-to-peer networks. We hence motivate further investigation along this direction.

References

1. Global Grid Forum. (http://www.gridforum.org)
2. Dabek, F., Zhao, B., Druschel, P., Kubiatowicz, J., Stoica, I.: Towards a common API for

structured peer-to-peer overlays. In: Proceedings of International Workshop on Peer-to-Peer
Systems (IPTPS), Berkeley, CA, USA (2003)

3. Eriksson, J., Faloutsos, M., Krishnamurthy, S.: PeerNet: Pushing peer-to-peer down the
stack. In: Proceedings of International Workshop on Peer-to-Peer Systems (IPTPS), Berke-
ley, CA, USA (2003)

4. Saroiu, S., Gummadi, P., Gribble, S.: A measurement study of peer-to-peer file sharing
systems. In: Proceedings of SPIE Conference on Multimedia Computing and Networking
(MMCN), San Jose, CA, USA (2002)

5. Kazaa. (http://www.kazaa.com)
6. CenterSpan. (http://www.centerspan.com)
7. Rodriguez, P., Biersack, E.: Dynamic parallel-access to replicated content in the Internet.

IEEE/ACM Transactions on Networking 10 (2002) 455–464
8. Byers, J., Luby, M., Mitzenmacher, M.: Accessing multiple mirror sites in parallel: Using

Tornado codes to speed up downloads. In: Proceedings of IEEE INFOCOM, New York, NY,
USA (1999)

On Transport Layer Support for Peer-to-Peer Networks 53

9. Hsieh, H.Y., Sivakumar, R.: A transport layer approach for achieving aggregate bandwidths
on multi-homed mobile hosts. In: Proceedings of ACM MOBICOM, Atlanta, GA, USA
(2002)

10. Bernstein, D., Feng, Z., Levine, B., Zilberstein, S.: Adaptive peer selection. In: Proceedings
of International Workshop on Peer-to-Peer Systems (IPTPS), Berkeley, CA, USA (2003)

11. Bhagwan, R., Savage, S., Voelker, G.: Understanding availability. In: Proceedings of Inter-
national Workshop on Peer-to-Peer Systems (IPTPS), Berkeley, CA, USA (2003)

12. LimeWire. (http://www.limewire.com)
13. Anderson, D., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: SETI@home: An exper-

iment in public-resource computing. Communications of the ACM 45 (2002) 56–61
14. Feldman, M., Lai, K., Chuang, J., Stoica, I.: Quantifying disincentives in peer-to-peer net-

works. In: Proceedings of Workshop on Economics of Peer-to-Peer Systems, Berkeley, CA,
USA (2003)

15. Xu, D., Hefeeda, M., Hambrusch, S., Bhargava, B.: On peer-to-peer media streaming. In:
Proceedings of IEEE ICDCS, Vienna, Austria (2002)

16. Hsieh, H.Y., Kim, K.H., Zhu, Y., Sivakumar, R.: A receiver-centric transport protocol for
mobile hosts with heterogeneous wireless interfaces. In: Proceedings of ACM MOBICOM,
San Diego, CA, USA (2003)

17. Karbhari, P., Zegura, E., Ammar, M.: Multipoint-to-point session fairness in the Internet. In:
Proceedings of IEEE INFOCOM, San Francisco, CA, USA (2003)

18. Kuzmanovic, A., Knightly, E.: TCP-LP: A distributed algorithm for low priority data trans-
fer. In: Proceedings of IEEE INFOCOM, San Francisco, CA, USA (2003)

Supporting Heterogeneity and Congestion Control
in Peer-to-Peer Multicast Streaming�

Venkata N. Padmanabhan, Helen J. Wang, and Philip A. Chou

Microsoft Research

Abstract. We consider the problem of supporting bandwidth heterogeneity and
congestion control in the context of P2P multicast streaming. We identify sev-
eral challenges peculiar to the P2P setting including robustness concerns arising
from peer unreliability and the ambiguity of packet loss as an indicator of conges-
tion. We propose a hybrid parent- and child-driven bandwidth adaptation protocol
that is designed in conjunction with a framework for robustness and that exploits
application-level knowledge.

1 Introduction

There has been a growing interest in peer-to-peer, or end host-based, multicast for
streaming because of its advantages of being self-scaling, low cost (compared to
infrastructure-based approaches), and easy to deploy (compared to IP multicast) (e.g.,
[4][7][14]). However, a key challenge in P2P multicast is robustness. Unlike routers in
IP multicast or dedicated servers in an infrastructure-based content distribution network
such as Akamai, peers or end hosts are inherently unreliable due to crashes, disconnec-
tions, or shifts in user focus (e.g., a user may hop between streaming sessions or launch
other bandwidth-hungry applications). A natural way to achieve robustness is through
redundancy, both in network paths and in data. Our work on CoopNet [14][13] has
shown that resilient peer-to-peer streaming can be achieved by carefully constructing
multiple diverse distribution trees spanning the interested peers, efficiently introducing
redundancy in data using multiple description coding (MDC) [8], and striping the de-
scriptions (i.e., substreams) across the diverse set of trees. A key property of MDC,
which distinguishes it from traditional layering, is that with any subset of the descrip-
tions, a receiver can reconstruct the stream with quality commensurate with the number
of descriptions received.

A second key challenge in peer-to-peer multicast (as well as other forms of multi-
cast) is accommodating bandwidth heterogeneity. Heterogeneity in bandwidth can be
both static (e.g., due to differences in link speed) and dynamic (e.g., due to congestion).
It is desirable that the framework for congestion control and heterogeneity management
build on top of and take advantage of the robustness scheme outlined above. This then
is the focus of the present paper.

A popular approach to supporting bandwidth heterogeneity in the context of unicast
as well as multicast streaming is to offer multiple streams, each optimized for a specific

� Please visit the CoopNet project page at http://www.research.microsoft.com/projects/CoopNet/
for more information.

G.M. Voelker and S. Shenker (Eds.): IPTPS 2004, LNCS 3279, pp. 54–63, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Supporting Heterogeneity and Congestion Control in Peer-to-Peer Multicast Streaming 55

bandwidth level. Clients tune in to the stream that best matches their bandwidth. While
this approach has the advantage of being simple, it suffers from a number of drawbacks.
It is wasteful of bandwidth on links shared by streams of different rates, it typically
can only accommodate coarse-grained adaptation, and having clients switch between
streams of different bandwidth in response to congestion may be quite disruptive.

An alternative and more elegant approach is the one advocated in the seminal work
on Receiver-driven Layered Multicast (RLM) [11]. RLM tackles the heterogeneity and
congestion control problems by combining a layered source coding algorithm with a
layered transmission system that uses a separate IP multicast group for transmitting
each layer of the stream. Receivers specify their level of subscription by joining a subset
of the groups; at any point, a receiver’s subscription must be a contiguous subset that
includes the base layer group. By having receivers drop layers upon congestion and add
layers to probe for additional bandwidth, RLM enables scalable and adaptive congestion
control in an IP multicast setting.

A significant drawback of RLM, however, is that there is a fundamental mismatch
between the ordering of layers based on importance and the lack of widespread support
for differentiated treatment of packets in the Internet. In the face of congestion there
is no mechanism to ensure that the network preferentially drops enhancement layer
packets over the base layer ones1. Thus the support for heterogeneity and congestion
control has to be coupled with mechanisms to ensure robustness to packet loss.

Furthermore, RLM cannot be readily applied to peer-to-peer multicast because of
several differences compared to IP multicast. First, in P2P multicast, the interior nodes
as well as the leaves of the multicast tree are receivers. When an interior receiver adapts
the bandwidth usage on its incoming link, the effect on its downstream receivers must
be taken into account. Second, in P2P multicast, receivers that are interior nodes may
also need to adapt bandwidth usage on their outgoing links, as these may be bottlenecks.
And finally, in P2P multicast, the interior nodes of the multicast tree are a dynamic set
of end hosts rather than a set of dedicated routers. Hence packet loss seen by a receiver
arises not only from congestion in the network at large, but also from the unreliability
of its peers, tree dynamics, and local congestion. Hence, it is not always possible to
reduce packet loss by shedding traffic. In some cases the more appropriate response is
to switch from the current parent to a better one.

Motivated by the above considerations, we approach the problem as follows.

1. Joint design of support for heterogeneity and robustness: We design our adapta-
tion scheme for heterogeneity in the context of a framework for robustness [14][13]
that incorporates redundancy in network paths and in data. We use a layered MDC
codec [6], which combines the robustness of MDC with the adaptability of layering.

2. Hybrid parent- and child-driven adaptation: Parents and children cooperatively
determine the appropriate response to packet loss by exploiting path diversity to
localize the cause of packet loss.

1 The RLM paper [11] actually argues that the lack of support for preferential dropping is an
advantage since it discourages greedy behavior. However, we believe that this point is moot
in the context of peer-to-peer multicast since there are more direct opportunities to cheat, for
example, by failing to forward packets. Cooperative behavior is inherently assumed in such
settings.

56 Venkata N. Padmanabhan, Helen J. Wang, and Philip A. Chou

3. Exploiting application-level knowledge for adaptation: Both parents and chil-
dren exploit their knowledge of the relative importance of the layered MDC sub-
streams and the structure of the distribution trees to adapt to changing bandwidth
in a way that minimizes the impact on the descendant nodes.

The specific novel contributions of this paper are the adaptation protocol and the
application of layered MDC in this context. However, we believe that our paper also
makes a more general contribution by drawing attention to two observations. First, it
may often be advantageous to have the “routers” (i.e., the peers) in a P2P system use
application-level knowledge to optimize performance, for example, by shedding less
important data when there is congestion. There is no reason for the P2P nodes to simply
mimic the “dumb” forwarding that IP routers do. Second, while network path diversity
has been used in P2P systems for resilience [13] and for bandwidth management [4],
it can also be exploited to give the peers greater visibility into the network using tech-
niques such as tomography [3].

Before getting into layered MDC and our adaptation scheme, we briefly review our
previous work on CoopNet, which provides the framework we build on.

2 CoopNet Background

As mentioned in Section 1, CoopNet [14][13] employs redundancy in both network
paths and in data to make P2P streaming robust to peer unreliability and failures. Rather
than use a single distribution tree as in traditional multicast, CoopNet constructs mul-
tiple, diverse distribution trees, each spanning the set of interested peers. The trees are
diverse in their structures; for instance node A could be the parent of B in one tree but be
its child in another. Our experiments have suggested that having 8 trees works well. To
ensure diverse and bushy (i.e., high fanout) trees, each peer is typically made an interior
node (i.e., a “fertile” node) in a few trees and a leaf node (i.e., a “sterile” node) in the
remaining trees. In the extreme case, a peer may be fertile (and have several children)
in just one tree and be sterile in the remaining trees.

Tree management in CoopNet is done by a centralized tree manager. Our discussion
here is agnostic of how exactly tree management is done, and we do not discuss the
specifics of how nodes join and leave trees, and find themselves new parents.

The stream is encoded using multiple description coding (MDC). The MDC sub-
streams, or descriptions, are all of equal importance and have the property that any
subset of them can be used to reconstruct a stream of quality commensurate with the
size of the subset. This is in contrast to layered coding, which imposes a strict order-
ing on the layers; for instance, an enhancement layer is useless in the absence of the
base layer or a previous enhancement layer. The flexibility of MDC comes at a modest
price in terms of bandwidth (typically around 20%). It is important to note, however,
that MDC is optimized for the expected packet loss distribution. If few or no losses are
expected, then MDC would adapt by cutting down the amount of redundancy and the
bandwidth overhead.

The descriptions generated by the MDC codec are striped across the diverse set of
trees. This ensures that each peer receives the substreams over a diverse set of paths,
which makes it quite likely that it will continue to receive the majority of the descrip-

Supporting Heterogeneity and Congestion Control in Peer-to-Peer Multicast Streaming 57

tions (and hence be able to decode a stream of reasonable quality) even as other peers
experience failures.

In our earlier CoopNet work, we assumed that all peers received streams of the same
bandwidth. Also, we did not consider how peers might respond to congestion. We turn
to these issues next.

3 Key Questions

Our discussion of an adaptation framework for accommodating bandwidth heterogene-
ity and congestion control is centered around the following key questions:

1. How should the stream data be organized to enable peers to subscribe to just the
portion that matches their current available bandwidth?

2. How should peers respond to packet loss?
3. How should RLM-style adding and dropping of layers be done so that the impact

on the other peers is minimized?

We discuss these questions in the sections that follow.

4 Layered MDC

A particularly efficient and practical MDC construction uses layered coding and For-
ward Error Correction (FEC) as building blocks. Layered coding is used to prioritize
the data, while FEC, such as Reed-Solomon encoding, is then used to provide different
levels of protection for the data units. Determining the protection level for the data units
is an optimization procedure that is based on both the importance of the data units and
the packet loss distribution across all clients.

When the clients’ bandwidths are heterogeneous, either due to different link capac-
ities or dynamic network conditions, MDC becomes less efficient. A naive way of sup-
porting heterogeneity is to treat descriptions just as layers are treated in RLM: dropping
descriptions upon congestion and adding descriptions to see if additional bandwidth
is available. However, this approach is inefficient since the MDC construction is opti-
mized for the entire ensemble of (heterogeneous) clients. For high-bandwidth clients,
there is wasteful redundancy in the MDC, which unnecessarily degrades quality. For
low-bandwidth clients, the redundancy would typically be insufficient to enable decod-
ing the received stream.

In [6], we have developed a novel layered MDC scheme in which the descriptions
are partitioned into layers. For our discussion here, we consider two layers, a base
layer and an enhancement layer. The base layer descriptions are optimized for just the
low-bandwidth clients. The enhancement layer descriptions are optimized for the high-
bandwidth clients, while also providing additional protection for the less-protected data
units in the base layer. This ensures that the more important data units have a higher
probability of being successfully delivered over the best-effort Internet.

This layered MDC construction is clearly optimal for the low-bandwidth clients.
Our experiments also indicate that high-bandwidth clients suffer a modest penalty of

58 Venkata N. Padmanabhan, Helen J. Wang, and Philip A. Chou

about 1.4 dB (in terms of distortion) compared to the case where all of the descriptions
are optimized exclusively for the high-bandwidth clients. Thus layered MDC combines
layering and robustness without sacrificing much in terms of efficiency.

In the context of P2P streaming with heterogeneous clients, the base layer alone
is sent to the low-bandwidth clients while both the base and the enhancement layers
are sent to the high-bandwidth clients. Clients adapt to dynamic fluctuations in band-
width by adding/dropping descriptions in their current highest layer (or in the next layer
above/below if the current layer is full/empty).

5 Inferring the Location of Congestion

When a node experiences packet loss in its incoming stream, the appropriate response
depends on the reason for the packet loss. As discussed in Section 6, if there is conges-
tion near the node’s incoming link, then the node should shed some incoming traffic,
while if there is congestion near its parent’s outgoing link, then the parent should shed
some outgoing traffic, possibly destined for another node.

The interesting question then is how a node can determine where congestion is
happening. In our framework (Section 2), each node receives substreams from multiple
parents. Thus each node is in a position to monitor the packet loss rate of the substream
from each parent. This loss rate information from a diverse set of network paths can be
used to infer the likely location of network congestion using techniques akin to network
tomography [3]. If a child node experiences significant packet loss in most or all trees,
it can reasonably conclude that the congestion is occurring at or close to its incoming
link. Likewise, if a parent node receives packet loss indications from most or all of its
children, it can reasonably conclude that congestion is occurring at or near its outgoing
link.

To evaluate the efficacy of this heuristic, we conducted a simple simulation exper-
iment. We generated a 1000-node topology using the BRITE topology generator [12].
We used the preferential connectivity model provided by BRITE (based on the work
of Barabasi et al. [2]), which helps capture the power-law distribution of node degrees
observed in practice. The resulting topology had 662 leaves (i.e., nodes with degree
1), which we treat as candidates for peers (parents or children). In each run of the ex-
periment, we pick a child node and 16 parent nodes (corresponding to 16 distribution
trees) at random. We compute the shortest path routes from the parent nodes to the
child node. Each link contained in one of these shortest paths is independently marked
as “congested” with a probability of 10%. The substream from a parent node to the
child is assumed to suffer congestion if one or more links along the path is marked as
congested; we simply term the parent as “congested” in such a case.

Likewise, the path from a potential parent (i.e., a leaf node in the topology other
than the chosen parents and the child) to the child is considered to be congested (and
hence prone to packet loss) if it includes a congested link; again, for ease of exposition,
we term the potential parent as being “congested” in such a case.

Figure 1 shows the fraction of congested potential parents versus the fraction of
congested current parents over 1000 runs of the experiment. The scatter plot shows the
results of the individual runs while the solid line shows the mean. It is clear that when a

Supporting Heterogeneity and Congestion Control in Peer-to-Peer Multicast Streaming 59

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 c
on

ge
st

ed
 p

ot
en

tia
l p

ar
en

ts

Fraction of congested parents

Fig. 1. Fraction of congested parents versus fraction of congested potential parents.

large fraction (say over 75%) of a node’s current parents are congested, it is also likely
that a large fraction of its potential parents would be congested. This is so because
congestion is likely near the node’s incoming link. In such a case, the node should shed
incoming traffic to alleviate the congestion.

Conversely, the experiment also shows that if we swap the roles of parents and
children, then when a large fraction of a node’s children are congested, then there is
the likelihood of congestion near the node’s outgoing link. Thus, when a node receives
packet loss indications from most or all of its children, it should shed outgoing traffic
to alleviate the congestion.

Furthermore, sharing of information between parents and children can lead to a
more robust inference of the location of congestion. For instance, consider a child that is
unlucky to have several parents with congested uplinks2. The child can deduce that this
is the case (and search for new parents) based on the knowledge of complaints that its
parents are receiving from their other children. In the absence of complaint information
from its parents, the child might have incorrectly concluded that the congestion is at its
incoming link and hence proceeded to shed incoming traffic.

6 Adaptation Protocol

We now discuss our adaptation protocol. As outlined in Section 4, we assume that the
stream has been coded into sets of descriptions corresponding to each of the base layer
and one or more enhancement layers; each description is termed a “substream” here.

As in RLM, there are two aspects to the adaptation protocol: shedding traffic when
there is congestion, and adding traffic when there isn’t congestion. We discuss each of

2 This may happen in practice because congested links may be concentrated in the “last-mile”
to/from peers rather than be spread uniformly throughout the network as in our simple experi-
ment described above.

60 Venkata N. Padmanabhan, Helen J. Wang, and Philip A. Chou

these in turn. Our emphasis is on pointing out the unique opportunities for optimization
in a P2P setting.

6.1 Shedding Traffic

When congestion is encountered, the appropriate reaction depends on the location of
the congested link(s). We consider three cases:

1. If congestion is at or near the outgoing link of a node, the node sheds outgoing
traffic to alleviate the congestion. It does this by shedding children, who then have
to look for new parents.

2. If congestion is at or near the incoming link of the node, the node sheds incom-
ing traffic to alleviate the congestion. It does this by shedding parents. This entails
also shedding any children that may have been receiving the now-discontinued sub-
stream(s).

3. If congestion is in the “middle”, then the child node looks for new parents with a
view to routing around or avoiding the point(s) of congestion.

We now turn to the interesting questions of how a congested parent picks children
to shed and how a congested child picks parents to shed.

A congested parent preferentially sheds children that are receiving descriptions from
the highest enhancement layer. Of such children, it preferentially sheds those that have
no children or have few descendants in the tree of interest. (Recall from Section 2 that
each peer is a leaf node in most of the trees.) The objective is to pick children that will
be least affected by being orphaned because they are receiving substreams of the least
importance from the congested parent and have few or no descendants dependent on
them. Such parent-driven selective dropping results in better quality than a policy of
randomly dropping packets across all children.

Likewise, a congested child preferentially sheds parents from whom it is receiving
descriptions belonging to the highest enhancement layer. Of such parents, it preferen-
tially sheds those that are sending it substreams for which it has no children or has few
descendants. Such child-driven selective dropping likewise results in better quality than
randomly dropping incoming streams.

This hybrid parent- and child-driven congestion control scheme elegantly addresses
a key difficulty in using layered coding in today’s Internet, viz., the mismatch between
the prioritization of the layers and the lack of widespread support for service differenti-
ation in the Internet.

6.2 Adding Traffic

Receivers not only need to adapt to worsening network conditions but also need to probe
for newly available bandwidth, if any. When a receiver has not experienced any loss for
a threshold period of time, it carries out a join experiment, as in RLM, by subscribing to
an additional description in the current highest layer or one in the next higher layer if all
of the descriptions in the current highest layer are already being received. Subscribing
to the new description involves joining the corresponding tree.

Supporting Heterogeneity and Congestion Control in Peer-to-Peer Multicast Streaming 61

There is always the danger that a join experiment “fails” because the additional
traffic congests a link that was operating almost at capacity. Such an unsuccessful join
experiment could lead to packet loss and quality degradation at the receiver as well as
other nodes (in particular, its descendants). A key advantage of using layered MDC
over plain layered coding is that its inherent redundancy limits the damaged caused by
an unsuccessful join experiments. For our discussion here, we assume that subscribing
to an additional description causes the loss of at most one description’s worth of data
(basically, the additional data can at worst displace an equal amount of data previously
subscribed to). If the losses are confined to the same layer as the new description, then
we are no worse off than before the join experiment because all descriptions in a layer
are equally valuable. Even if losses are suffered in a lower and hence more important
layer, the redundancy in layered MDC can typically help recover the affected layer.

In contrast, RLM with plain layered coding is far more susceptible to the deleterious
effects of failed join experiments, in addition to the deleterious effects of random packet
loss. This is because there is nothing to mask packet loss suffered by a lower and hence
more important layer, which can then render all subsequent layers of received data
useless and degrade quality significantly.

To evaluate this, we compared the impact of join experiments with plain layered
coding (RLM) to those with plain multiple description coding (MDC). We set the total
number of substreams to be the same in both cases: 32 (thin) layers with RLM, and
32 descriptions with MDC. We assumed that layers (respectively, descriptions) are in-
dependently lost with probability 10%, and that the MDC system is optimized for this
loss probability. Figure 2 shows for the RLM system (with circles) and the MDC sys-
tem (without circles) typical video quality (measured as PSNR in dB3) as a function of
the number of substreams to which a receiver is subscribed after performing the join
in a join experiment. For the RLM system, even if the join succeeds (dotted line with
circles), quality does not improve significantly since it is saturated at a low level due
to the random packet loss frequently disrupting the more important layers; moreover, if
the join fails (solid line with circles), quality falls even further. In contrast, for the MDC
system, if the join succeeds (dotted line), quality is good for any number of substreams
above 25, while if the join fails (solid line), quality remains the same as before the join.
Thus the loss resilience provided by MDC also enhances the robustness of congestion
control.

7 Related Work

There has been much work following up on and improving on RLM [11]. There has
been work on adjusting the rate of each layer dynamically and adding/dropping layers
in a manner that is TCP-friendly [15, 10]. In our work, we do not advocate a specific
policy in this regard and could leverage this related work. There has also been work on
replacing the “thick” RLM layers with “thin” layers (called “thin streams”) to enable
more fine-grained adaptation [16]. Since in our scheme we add/drop individual descrip-
tions rather than entire layers, we enjoy the same benefits as thin streams and in addition

3 Peak Signal-to-Noise Ratio in decibels is given by 10log10(2552/D), where D is the mean
squared error between the original and reconstructed luminance video pixels.

62 Venkata N. Padmanabhan, Helen J. Wang, and Philip A. Chou

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

P
S

N
R

 a
fte

r
jo

in
 (

dB
)

Number of substreams after join

Fig. 2. Join Experiment for RLM vs. MDC: no collateral damage in MDC.

also have the benefit of robustness. An alternative approach for enabling fine-grained
adaptation is to use dynamic layers, i.e., layers whose transmission rate changes over
time [9].

In term of support for heterogeneity in P2P multicast streaming, we are aware of a
couple of different approaches. In end system multicast [1], clients choose between sep-
arate (non-layered) low-bandwidth (100 Kbps) and high-bandwidth (300 Kbps) streams.
In SplitStream [4], the stream is divided into substreams that are striped across multiple
trees. The number of stripes that a host subscribes to is a function of its bandwidth. The
focus is on accommodating static bandwidth heterogeneity rather than dynamic fluctu-
ations caused by congestion. There has also been work on exploiting heterogeneity to
improve the efficiency and scalability of P2P overlays by assigning a greater share of the
work to the more resourceful peers [5]. This is an orthogonal problem to heterogeneity
support and congestion control for data transmission over such P2P overlays.

8 Conclusion

In this paper, we have presented the design of a bandwidth adaptation protocol for P2P
multicast streaming with several novel features. First, the adaptation protocol is de-
signed jointly with a framework for robustness that incorporates redundancy in network
paths and in data. Second, parent and child nodes work in conjunction to determine the
appropriate response to packet loss by exploiting tree diversity to localize the cause of
packet loss. Third, both parents and children exploit knowledge of the relative impor-
tance of layered MDC substreams and the structure of the distribution trees to adapt to
changing bandwidth in a way that minimizes the impact on the descendant nodes.

Supporting Heterogeneity and Congestion Control in Peer-to-Peer Multicast Streaming 63

Although our discussion here has focussed on CoopNet for the sake of concreteness,
many of the ideas have general applicability to multicast and non-multicast P2P settings.
For instance, the robustness of join experiments with layered MDC would be advanta-
geous in any RLM-like setting, even one based on a single distribution tree. Inferring the
location of congestion could be useful even in an on-demand (non-multicast) streaming
scenario where the receiver requests different substreams from different peers.

References

1. End System Multicast. http://esm.cs.cmu.edu/.
2. BARABASI, A. L., AND ALBERT, R. Emergence of Scaling in Random Networks. Science,

286 (Oct. 1999), 509–512.
3. BU, T., DUFFIELD, N., PRESTI, F. L., AND TOWSLEY, D. Network Tomography on Gen-

eral Topologies. In Proc. ACM SIGMETRICS (June 2002).
4. CASTRO, M., DRUSCHEL, P., KERMARREC, A.-M., NANDI, A., ROWSTRON, A., AND

SINGH, A. SplitStream: High-bandwidth Content Distribution in a Cooperative Environ-
ment. In Proc. SOSP (Oct. 2003).

5. CHAWATHE, Y., RATNASAMY, S., BRESLAU, L., AND SHENKER, S. Making Gnutella-like
P2P Systems Scalable. In Proc. ACM SIGCOMM (Aug. 2003).

6. CHOU, P. A., WANG, H. J., AND PADMANABHAN, V. N. Layered Multiple Description
Coding. In Proc. Packet Video Workshop (Apr. 2003).

7. CHU, Y., RAO, S. G., SESHAN, S., AND ZHANG, H. Enabling Conferencing Applications
on the Internet using an Overlay Multicast Architecture. In Proc. ACM SIGCOMM (Aug.
2001).

8. GOYAL, V. K. Multiple Description Coding: Compression Meets the Network. IEEE Signal
Processing Mag. (Sept. 2001), 74–93.

9. KWON, G., AND BYERS, J. Smooth Multirate Multicast Congestion Control. In IEEE
Infocom (Apr. 2003).

10. LIU, J., LI, B., AND ZHANG, Y. A Hybrid Adaptation Protocol for TCP-friendly Layered
Multicast and Its Optimal Rate Allocation. In IEEE Infocom (June 2002).

11. MCCANNE, S. R., JACOBSON, V., AND VETTERLI, M. Receiver-driven Layered Multicast.
In Proc. ACM SIGCOMM (Aug. 1996).

12. MEDINA, A., LAKHINA, A., MATTA, I., AND BYERS, J. BRITE: An Approach to Univer-
sal Topology Generation. In Proc. MASCOTS (Aug 2001).

13. PADMANABHAN, V. N., WANG, H. J., AND CHOU, P. A. Resilient Peer-to-Peer Streaming.
In Proc. IEEE ICNP (Nov. 2003).

14. PADMANABHAN, V. N., WANG, H. J., CHOU, P. A., AND SRIPANIDKULCHAI, K. Dis-
tributing Streaming Media Content Using Cooperative Networking. In Proc. NOSSDAV
(May 2002).

15. WIDMER, J., AND HANDLEY, M. Extending Equation-based Congestion Control to Multi-
cast Applications. In Proc. ACM SIGCOMM (Aug. 2001).

16. WU, L., SHARMA, R., AND SMITH, B. Thin Streams, An Architecture for Multicasting
Layered Video. In Proc. NOSSDAV (1997).

Rapid Mobility via Type Indirection

Ben Y. Zhao, Ling Huang, Anthony D. Joseph, and John Kubiatowicz

Computer Science Division, University of California, Berkeley
{ravenben,hling,adj,kubitron}@cs.berkeley.edu

Abstract. Economies of scale and advancements in wide-area wireless network-
ing are leading to the availability of more small, networked mobile devices, plac-
ing higher stress on existing mobility infrastructures. This problem is exacerbated
by the formation of mobile crowds that generate storms of location update traffic
as they cross boundaries between base stations. In this paper, we present a novel
aggregation technique we call type indirection that allows mobile crowds to roam
as single mobile entities. We discuss our design in the context of Warp, a mobil-
ity infrastructure based on a peer-to-peer overlay, and show that its performance
approaches that of Mobile IP with optimizations while significantly reducing the
effect of handoff storms.

1 Introduction

Economies of scale and advancements in wide-area wireless networking are leading to
the widespread availability and use of millions of wirelessly-enabled mobile comput-
ers, Personal Digital Assistants (PDAs), and other portable devices. The same trends
are also resulting in the large-scale deployment of publically acessible wireless access
points in both fixed (e.g., hotel, coffee shop, etc.) and mobile (e.g., train, subway, etc.)
environments [1].

We consider two rapid mobility scenarios. The first is rapid individual mobility
across network cells (e.g., a mobile user on an inter-city bus travelling on a highway
with cell sizes of half a mile). This scenario requires fast handoff handling to main-
tain connectivity. A second, more problematic scenario is a bullet train with hundreds
of mobile users. With cell sizes of half a mile, there are frequent, huge bursts of cell
crossings that will overwhelm most mobility and application-level protocols.

The challenge is to provide fast handoff across frequent cell crossings for a large
number of users, potentially traveling in clusters (mobile crowds). Handled naively, the
delay in processing handoffs will be exacerbated by the large volume of users moving in
unison, creating congestion and adding scheduling and processing delays and disrupting
the timely delivery of packets to the mobile hosts.

A similar problem exists in cellular networks. As mobile crowds travel across the
network, cells can “borrow” frequencies from neighbors, but base stations are often
overloaded by control traffic and as a result, drop calls [2]. In certain cases, specialized
“mobile trunk” base stations can be colocated with mobile crowds to aggregate control
traffic. The mobile trunk maintains connectivity with nearby base stations while for-
warding traffic from local mobile hosts. Ideally, each provider would place such a base
station on each bus or train segment, but the individual component and maintenance
costs are prohibitive.

G.M. Voelker and S. Shenker (Eds.): IPTPS 2004, LNCS 3279, pp. 64–74, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Rapid Mobility via Type Indirection 65

4228

4A6D

4361

43FE Location Mapping

Publish Path

4377

437A

(4378)

Phil’s
Books

AA93 (4378)

Phil’s
Books

Tapestry Pointers

4664

4B4F

57ECE791

Fig. 1. Tapestry object publication. Two copies
of an object (4378) are published to its root
node at 4377.

4228

4A6D

4361

43FE Location Mapping

4377

437A

(4378)

Phil’s
Books

AA93 (4378)

Phil’s
Books

Tapestry Pointers

4664

4B4F

57ECE791

Query Path

Fig. 2. Tapestry route to object. Nodes send
messages to object 4378.

Previous works propose to minimize handoff delay using incremental route reestab-
lishment and hierarchical foreign agents or switches, or by organizing the wireless in-
frastructure as a static hierarchy or collection of clusters [3–5]. A proposal also exists
for Mobile IP to adopt a simplified version of hierarchical handoff management [6].
These approaches specify separate mechanisms to handle handoffs at different levels of
the hierarchy. Also, since they statically define aggregation boundaries in the infrastruc-
ture, foreign agents or switches are prone to overloading by spikes in handoff traffic,
such as those generated by the movement of large mobile crowds.

To address these issues, we introduce Warp, a mobility infrastructure leveraging
flexible points of indirection in a peer-to-peer overlay. Warp uses a mobile node’s
unique name to choose the members of a virtual hierarchy of indirection nodes. These
nodes act as hierarchical foreign agents to support fast handover operations. Warp also
supports hierarchical types, where mobile crowds can redirect traffic through single in-
direction points and aggregate handoffs as a single entity. For example, an access point
on the train can perform handoffs as a single node while forwarding traffic to local mo-
bile nodes. Although our techniques can be applied by layering the decentralized object
location and routing (DOLR) API on several structured peer-to-peer networks [7], we
discuss Warp in the context of the Tapestry overlay network.

We begin with a brief overview of the Tapestry [8] protocol. In Section 3, we discuss
basic mobility support, followed by a discussion in Section 4 of rapid mobility and
hierarchical type mobility. We present simulation results in Section 5, and finish with
related work and our conclusions in Section 6.

2 Tapestry Overview

We provide a brief overview of Tapestry [8], a scalable structured peer-to-peer (P2P)
infrastructure that routes messages to nodes and objects.

2.1 Routing Layer

Object and node IDs are chosen uniformly at random from the namespace of fixed-
length bit sequences with a common base (e.g. Hexadecimal). Each node uses local
routing tables to route messages incrementally to the destination ID digit by matching

66 Ben Y. Zhao et al.

prefixes of increasing length (e.g., 4*** =⇒ 45** =⇒ 459* =⇒ 4598 where *’s
represent wildcards). A node N has a routing table with multiple levels, where the nth

level stores nodes matching at least n − 1 digits to N . The ith entry in the jth level is
the location of the node closest in network latency that begins with prefixj−1(N) + i.

To forward on a message from its nth hop router, a node examines its n + 1th level
routing table and forwards the message to the link corresponding to the n + 1th digit in
the destination ID. This routing substrate provides efficient location-independent rout-
ing within a logarithmic number of hops and using compact routing tables.

2.2 Data Location

A server S makes a local object O available to others by routing a “publish” message
to the object’s “root node,” the live node O’s identifier maps to. At each hop along the
path, a location mapping from O to S is stored. Figure 1 illustrates object publication,
where two replicas of an object are published. A client routes queries toward the root
node (see Figure 2), querying each hop on the way, and routing towards S when it finds
the O to S location mapping. For nearby objects, queries quickly intersect the path
taken by publish messages, resulting in low latency routing to objects [8].

The data location layer embeds indirection pointers into the routing framework.
This built-in redirection routes messages to their destinations using only location-in-
dependent IDs. We leverage this generic mechanism for routing to named endpoints in
Warp. We also note that the routing protocol chooses the placement of these indirection
points and transparently maintains them across changes in the overlay network.

3 Mobility Support

We now discuss how to layer mobility support on top of a structured peer-to-peer over-
lay, referring to mobile nodes (MN) interacting with correspondent hosts (CH).

3.1 Basic Mobility Support

A mobile node roaming outside of its home network connects to a local proxy node as
its temporary care-of-addresses. Mobile nodes are client-only nodes that do not route or
store data for the overlay. We assume that infrastructure nodes are nodes with relatively
fixed positions, giving them the perspective of a relatively stable infrastructure. Nodes
join and leave the infrastructure using Tapestry’s dynamic membership algorithms [9].
Node Registration As with mobile IP, a mobile node MN registers itself with a nearby
proxy node P1. When a proxy receives a registration from MN, it uses the DOLR inter-
face [7] to publish MN as an endpoint. The infrastructure then routes messages destined
for the MN endpoint to the proxy. We call this use of the natural indirection facility
to perform redirection of messages (possibly multiple times) type indirection. At each
node along the path from proxy to MN’s root node, a local pointer to the last node on the
path is stored. The result is a multi-hop forwarding path from MN’s root to its proxy.

1 Registrations are encrypted with a node’s private key. Node IDs are hashes of public keys and
verified by certificates issued by a central certificate authority

Rapid Mobility via Type Indirection 67

RegisterMsg

Forwarding Ptrs

Route by Msg

Overlay Mesh

CH

mn

R(mn)

P

Fig. 3. Communicating with a mobile host. Mobile node mn registers with proxy P, and corre-
spondent host CH sends a message to mn.

P Q CH
mn Route by Msg

Forwarding Ptrs

ProxyHandoverMsg

Overlay Mesh
R(mn)

Fig. 4. Updating a location binding via ProxyHandoverMsg. Correspondent host CH sends a mes-
sage to mobile node mn after mn moves from proxy P to Q.

When a correspondent host CH sends a message to MN, Tapestry routes the message
towards MN’s root. When the message intersects the forwarding path, it follows the path
of pointers to the proxy and MN. Figure 3 shows a node CH routing a message to MN.
Note that hops in structured overlays such as Tapestry generally increase in physical
length (# of IP hops) closer to the destination. Messages avoid the longer hops to the
root by intersecting the forwarding path. This is key to reducing routing stretch for
communication with closeby CH’s.

Unlike other approaches to traffic redirection [10], Tapestry uses the overlay to
transport both control and data traffic. By using points inside the network to redirect
traffic, we eliminate the need to communicate with the endpoints when routes change.
In the case of Warp, it means that as nodes move, proxy handover messages modify the
forwarding path between proxies without incurring a roundtrip back to the home agent
or correspondent host.

Mobile nodes listen for periodic broadcasts from nearby proxies for discovery, sim-
ilar to techniques used by Mobile IP. Fast-moving nodes can proactively solicit proxy
nodes via expanding ring search multicast to reduce discovery latency.

Proxy Handover. Mobile node MN performs a proxy handover from P to Q by sending a
ProxyHandoverMsg to Q, <MN, P, Q> signed with its secret key. Q sets up a forwarding
route to MN, and requests that P sets up a forwarding pointer to Q. Q then routes the
ProxyHandoverMsg towards MN’s root node, and builds a forwarding path to itself. The

68 Ben Y. Zhao et al.

mn

Route taken by Msg

R(G2)R(G1)

CH

P

Forwarding PtrsTapestry Pointers

Fig. 5. Node aliasing with 2 IDs. This shows CH communicating to a mobile host (MH) using node
aliasing. MH registers with two independent pseudorandom IDs mnG1 and mnG2. CHmeasures the
end to end latency to MH using both and caches the shorter route for future communication.

message is forwarded until it intersects P’s forwarding path. Note the path taken by
the handover message is roughly proportional to the distance between P and Q. This
is a key distinction from basic Mobile IP, and is analogous to a version of hierarchical
handoff [3] with dynamically constructed, topologically-aware hierarchies.

When the message intersects a node A that is on the forwarding path to MN, it redi-
rects the forwarding pointers to point to the new path. A then forwards the message
downwards to P. Each node along the way schedules its forwarding pointer for dele-
tion and forwards the message towards P2. When the message reaches P, P schedules
the forwarding pointer to Q for deletion. Once all deletions are completed, handover is
complete. The process is shown in Figure 4.

If the proxies do not overlap in coverage area, then MN will have a window of time
after it leaves coverage of P and before it completes handover to Q. In this scenario, P
performs a limited amount of buffering for MN, and then forwards the buffer to Q when
a forwarding pointer is established [11].

Location Services for Mobile Objects. We also support the routing of messages to
objects residing on mobile nodes. An object named O residing on mobile node MN is
published in the overlay with the location mapping from O to MN. A message for O
routes towards O’s root until it finds the location mapping. Recognizing MN’s ID as a
mobile address3, the overlay routes the message for O as a normal message addressed
to the mobile node MN. The message routes to MN’s proxy, MN, then O.

3.2 Node Aliasing

One way to improve resilience and performance is for the mobile node mn to advertise
its presence via multiple identities, each mapping to an independent root. We call this

2 A delay in deleting forwarding pointers is required to handle potential reorderings of messages
between nodes by the underlying transport layer.

3 All mobile node IDs share a specialized tag appended to their normal ID

Rapid Mobility via Type Indirection 69

Client−end DaemonControl Traffic Tunneling Traffic

P2P Overlay Network

Peer Proxy

P1

Legacy
Node A

Register: A=P1

RouteToID(P2)

RouteToID(P1)

P2

Mobile
Proxy

Mobile

ProxyHandover

Node B

Fig. 6. Tunneling legacy application traffic through client-end daemons and overlay proxies.. A
legacy node A communicates with mobile node B.

node aliasing. Here, mn hashes its original ID concatenated with each of a small set of
sequential natural numbers to generate independent pseudorandom IDs, and registers
under each ID, creating several forwarding paths to the mobile proxy via independent
root nodes.

When establishing a connection, a correspondent host (CH) generates these IDs in-
dependently, and sends messages in parallel on all forwarding paths. With feedback
from the mobile node, CH chooses the ID that incurs the least latency for their connec-
tion, effectively reducing message delivery time to that of the shortest forwarding path.
Figure 5 shows how CH begins communication with mn using a node aliasing factor of
two. Note that after significant movement across the network, MN can repeat the path
selection process to try to reduce end-to-end latency.

Alternatively, the CH can choose to continue to send duplicate messages out to
several forwarding paths for additional fault-tolerance. We show in Section 5 that two
IDs provide significant reduction in routing latency.

3.3 Supporting Legacy Applications

Warp supports communication between mobile nodes and legacy (non-overlay) nodes
using a mechanism similar to those presented in the contexts of the Tapestry and I3
projects ([12, 10]). Mobile nodes are assigned unique DNS names with a specialized
suffix, such as .tap. The mobile node stores a mapping from a hash of its DNS name
to its overlay ID into the overlay.

Figure 6 shows an example of the connection setup. Legacy node A wants to estab-
lish a connection to mobile node B. The local daemon redirects the DNS lookup request,
retrieves the mobile node’s stored ID using a hash of B, and forwards traffic through the
overlay address to B’s overlay ID.

4 Supporting Rapid Mobility

Recall that in our approach, routing to mobile nodes uses indirection to translate a mo-
bile ID into an overlay identifier. Routing to a mobile object goes through two levels

70 Ben Y. Zhao et al.

ProxyHandoverMsgMobileObj Publish

Forwarding Ptrs Mapping: (m1−>mt)

R(mt)

Q P
CH

R(m1)

mobile trunk (mt)

m1 m2 m3

m5m4

Overlay Mesh

Route by Msg

Fig. 7. Mobile crowds. Five members (m1..5) of a crowd connected to a mobile trunk (mt). A
message routes to m1 as the crowd moves from proxy P to Q.

Mobile Node Mobile Node Mobile Node

Mobile Node Mobile Node Mobile Node

Static Node
Object on

Mobile Node
Object on

R e g i s t e r / H a n d o f f

Overlay Node

Trunk

Mobile Crowd

Leaf Leaf Leaf

J o i n / L e a v e

. . .

Proxy Node

Mobile Node

Mobile Node. . . .

. . .

Fig. 8. A figure summarizing levels of type indirection. The arrows on right illustrate relative
relationships between types.

of this type indirection, from object ID to mobile node ID to proxy ID. Here we dis-
cuss chaining multiple levels of type indirection to aggregate mobile crowds as single
entities, reducing handoff message storms to single handoff messages.

4.1 Mobile Crowds

A mobile crowd forms where large groups of mobile users travel together. Examples
include a large number of train passengers with wireless laptops and PDAs or tourists
wirelessly accessing information on historic sites on a group tour. Such groups cause
large bursts of handoff messages as they move in unison across cell boundries.

To minimize the resulting delay and congestion at nearby basestations, we choose
a mobile node as the mobile trunk, and use it as a secondary proxy for others in the
mobile crowd. The trunk advertises each member of the crowd (a mobile leaf), as a
locally available object. Messages to a mobile leaf routes first to the trunk, then to the
leaf. As the crowd moves across cell boundaries, only the trunk needs to update its
location with a single handover.

Figure 7 shows an example. When a mobile node joins a mobile trunk in the crowd,
the trunk publishes the <m1,mt> “location mapping.” A message addressed to m1
routes towards m1’s root. When it finds a location mapping, the message is redirected

Rapid Mobility via Type Indirection 71

towards node mt. It encounters the mapping from mt to its proxy Q, routes to Q, mt,
then m1.

4.2 Discussion

Type indirection reduces handoff messages from one message per node to one message
per crowd. For more flexibility, a crowd can choose an unique crowd ID. Any mobile
trunk would register with the proxy using the crowd ID instead of its own node ID.
This allows multiple trunks to function simultaneously to guard against trunk failures
or departures. Furthermore, since the trunk can suffer degraded performance, the re-
sponsibility can rotate across crowd members at periodic intervals to provide fairness.

We can further chain together type indirections for more interesting scenarios. For
example, multiple bluetooth-enabled devices on a passenger may form a personal mo-
bile crowd. These devices connect to a local mobile trunk, which joins a mobile trunk on
the tour bus, which itself acts as a mobile node traveling through the network. Figure 8
shows different types of mobility, and how we leverage type indirection.

5 Measurements and Evaluation

In this section, we evaluate our infrastructure design via simulation. Our performance
metric is routing stretch, the ratio of routing latency on an overlay to the routing latency
of IP. We use the shortest path latency as the IP layer latency. Note that our results
do not account for computational overhead at nodes. We believe that processing time
will be dominated by network latencies. More comprehensive measurement results are
available [13].

We use a packet-level simulator running on transit stub topologies [14] of 5,000
nodes. Each topology has 6 transit domains of 10 nodes each; each transit node has
7 stub domains with an average of 12 nodes each. Our simulator measures network
latency, but does not simulate network effects such as congestion, routing policies, or
retransmission at lower layers. To reduce variance, we take measurements on 9 different
5,000 node transit stub topologies, each with 3 random overlay assignments.

5.1 Routing Efficiency

We studied the relative routing performance of our system and Mobile IP under different
roaming scenarios. Mobile IP performance is a function of the distance from MN to
NODECH, and from MN to its HA. Our system allows free roaming without a home
network, and latency is dependent on the distance between CH and MN. We compare our
system against three Mobile IP scenarios, where the distance between MN and its HA is
(1) < 1

3 · D (near), (2) > 2
3 · D (far), and (3) > 1

3 · D and < 2
3 · D (mid), where D is

network diameter.
Figure 9 shows that for correspondents close to the mobile node (i.e., MN near CH),

basic Mobile IP generally performs quite poorly under scenarios 1 and 3 due to trian-
gle routing. In contrast, Warp’s RDP shows some initial variability for short routing
paths, but generally performs well with low stretch. Warp with node aliasing of factor 2

72 Ben Y. Zhao et al.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250 300 350 400 450 500

R
ou

tin
g

L
at

en
cy

 R
D

P

Shortest Path Latency

MIP Far
MIP Medium

MIP Close
Warp

Warp 2 aliases

Fig. 9. Routing stretch. Routing latency via Warp (with and without node aliasing) and Mobile IP
measured as a ratio of shortest path IP latency.

significantly outperforms all others. Note that Mobile IP with route optimization [15]
achieves a routing stretch of 1.

5.2 Rapid Mobility

We evaluate Warp’s support for rapid mobility by comparing latency to handle cell
handovers relative to Mobile IP. Time is measured from the initial request for location
binding update to when all forwarding routes are updated and consistent. Figure 10
show that when the mobile node roams far from its home network, it can take between
1-2 seconds for basic Mobile IP to converge after a handoff request. Note that this result
is independent of the rate of movement, and is only a function of distance from the home
network. In contrast, handoff latency in Warp is linear to the movement rate. Note that
the redirection of traffic via convergence points in Tapestry is similar in function to
hierarchical foreign agents in Mobile IP [6].

Note that the “jitter” or delay in traffic seen by the application during handoff is
not identical to handoff latency. It is the time elapsed before a valid forwarding path is
constructed to the new proxy. Warp sets up an immediate forwarding path between the
proxies to allow seamless traffic forwarding while updating the full forwarding path,
similar to the Mobile IP smooth handoffs scheme [16]. In cellular networks, the jitter,
or latency between adjacent proxies, is often less than 50ms and within the tolerable
range of most streaming media applications.

Finally, we examine the load placed on network routers by mobile crowds. Specif-
ically, we count the expected number of handoff messages required as mobile crowds
cross boundaries between base stations. We consider several scenarios: 1) naive mobil-
ity support with no aggregation, 2) using aggregation while assuming uniform distribu-
tion of crowd sizes from 1 to 50, 3) using aggregation with exponential distribution of
crowd sizes with parameter p = 0.1, 4) using aggregation with a binomial distribution

Rapid Mobility via Type Indirection 73

 0

 500

 1000

 1500

 2000

 0 50 100 150 200 250 300

T
im

e
to

 C
om

pl
et

e
H

an
do

ff
 (

m
s)

Distance between Handover Proxies (ms)

Warp
Warp Conv.

MIP Far
MIP Close

Fig. 10. Handoff latency as a function of den-
sity of adjacent proxies or base stations. For
Mobile IP, we measure both when the MN is
close and far from home. Warp converge is the
time to full routing state convergence.

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

H
an

do
ff

 M
es

sa
ge

s
in

 W
ar

p

Number of Mobile Hosts

No Crowds
Uniform Dist.

Exponential Dist.
Binomial Dist.

Fig. 11. Handoff load. Reducing handoff mes-
sages of mobile crowds in Warp as a function
of population size. Crowd sizes follow uni-
form, exponential, and binomial distributions.

of crowd sizes centered around 20 with parameter p = 0.5. Figure 11 shows the signif-
icant reduction in handoff messages. As the overall population increases, the net effect
is a linear factor reduction in handoffs based on the mean crowd size. The result means
that Warp can support larger and faster mobile crowds while using less bandwidth.

6 Related Work and Conclusion

The Internet Indirection Infrastructure project [10], supports a mobility framework
(ROAM [17]) by storing generic triggers in the network infrastructure for traffic redi-
rection. Each trigger maps a mobile node ID to its current IP address. A mobile node
chooses an overlay node based on its mobile ID, and sends it trigger location updates
to it while roaming. I3 triggers can be used to simulate a variety of mobility mecha-
nisms, including hierarchical mobility and aggregation among mobile crowds. Whereas
Tapestry uses the structured routing mesh to form the hierarchies necessary for traffic
redirection, ROAM nodes would require input from the mobile nodes to construct them
in an ad-hoc fashion.

Previous work has proposed hierarchical management for localizing handoff pro-
cessing [3, 6]. Also, optimizations similar to our proxy forwarding have been proposed
for Mobile IP [16]. In addition to matching these optimizations in performance, the key
to our work is the reliance on a self-organizing and adaptive protocol to manage these
mechanisms. For example, our analogous mechanism to hierarchical handoff leverages
virtual routing paths in the Tapestry routing mesh. Our mechanisms require no explicit
management in choosing or maintaining the hierarchy. The Tapestry routing protocol
quickly adapts to changes in network topology and unexpected failures. Finally, we
also leverage the novel mechanism of type indirection to aggregate mobile crowds into
a single mobile entity.

In summary, Warp treats mobile nodes as objects residing on proxies. We propose
the use of type indirection to aggregate mobile crowds as single mobile entities to re-
duce handoff messages. While Warp and the DOLR interface can be deployed on any

74 Ben Y. Zhao et al.

peer to peer protocol that supports the Key-Based Routing API [7], overlays that utilize
proximity neighbor selection will produce better routing performance.

References

1. Brewin, B.: Transportation companies moving to offer Wi-Fi service. In: ComputerWorld.
(2003)

2. Katzela, I., Naghshineh, M.: Channel assignment schemes for cellular mobile telecommu-
nication systems: A comprehensive survey. IEEE Personal Communications Magazine 3
(1996)

3. Caceres, R., Padmanabhan, V.N.: Fast and scalable handoffs for wireless internetworks. In:
Proceedings of MobiCom, ACM (1996)

4. Toh, C.K.: The design and implementation of a hybrid handover protocol for multi-media
wireless LANs. In: Proceedings of MobiCom, ACM (1995)

5. Keeton, K., Mah, B.A., Seshan, S., Katz, R.H., Ferrari, D.: Providing connection-oriented
network services to mobile hosts. In: Proceedings of MLIC, USENIX (1993)

6. Perkins, C.E.: Mobile-IP local registration with hierarchical foreign agents. IETF Draft
(1996)

7. Dabek, F., Zhao, B., Druschel, P., Kubiatowicz, J., Stoica, I.: Towards a common API for
structured P2P overlays. In: Proc. of IPTPS, Berkeley, CA (2003)

8. Zhao, B.Y., Huang, L., Rhea, S.C., Stribling, J., Joseph, A.D., Kubiatowicz, J.D.: Tapestry:
A global-scale overlay for rapid service deployment. IEEE JSAC 22 (2003) 41–53

9. Hildrum, K., Kubiatowicz, J.D., Rao, S., Zhao, B.Y.: Distributed object location in a dynamic
network. In: Proc. of SPAA, Winnipeg, Canada, ACM (2002)

10. Stoica, I., Adkins, D., Zhuang, S., Shenker, S., Surana, S.: Internet indirection infrastructure.
In: Proc. of SIGCOMM, ACM (2002)

11. Balakrishnan, H., et al.: Improving reliable transport and handoff performance in cellular
wireless networks. Wireless Networks 1 (1995)

12. Zhao, B.Y., Huang, L., Stribling, J., Joseph, A.D., Kubiatowicz, J.D.: Exploiting routing
redundancy via structured peer-to-peer overlays. In: Proc. of ICNP, Atlanta, GA, IEEE
(2003)

13. Zhao, B.Y., Joseph, A.D., Kubiatowicz, J.D.: Supporting rapid mobility via locality in an
overlay network. Technical Report CSD-02-1216, U. C. Berkeley (2002)

14. Zegura, E.W., Calvert, K., Bhattacharjee, S.: How to model an internetwork. In: Proc. of
INFOCOM, IEEE (1996)

15. Perkins, C.E., Johnson, D.B.: Route optimization in Mobile IP. IETF draft. (1997)
16. Perkins, C.E., Wang, K.: Optimized smooth handoffs in Mobile IP. In: Proceedings of ISCC,

IEEE (1999)
17. Zhuang, S.Q., Lai, K., Stoica, I., Katz, R.H., Shenker, S.: Host mobility using an internet

indirection infrastructure. In: Proceedings of MobiSys. (2003)

P6P: A Peer-to-Peer Approach
to Internet Infrastructure�

Lidong Zhou1 and Robbert van Renesse2

1 Microsoft Research Silicon Valley, Mountain View, CA 94043
lidongz@microsoft.com

2 Department of Computer Science, Cornell University, Ithaca, NY 14853
rvr@cs.cornell.edu

Abstract. P6P is a new, incrementally deployable networking infra-
structure that resolves the growing tensions between the Internet routing
infrastructure and the end sites of the Internet. P6P decouples the two
through a P2P overlay network formed by the edge routers. P6P brings
the benefits of IPv6 directly to end hosts, solving the major headache
of IPv6 deployment as well as those of ISP switching, multihoming, and
dynamic addressing.
P6P advocates Internet innovations at the overlay formed by the edge
routers, rather than at the core Internet. P2P protocols can be incor-
porated into P6P to provide advanced features such as multicast. This
opens the door for P2P research to play a central role in shaping the
future of the Internet. The paper describes the P6P design and architec-
ture, addresses the security and performance concerns, and shows simu-
lation results that support its feasibility.

1 Introduction

The current Internet has been torn with tensions between the inertia of the core
Internet, which forms the public routing infrastructure, and the ever increasing
demands from local end sites. While IPv6 was proposed to provide end hosts
with a large address space for truly end-to-end connectivity and with better
support for features such as multicast, anycast, and mobility, the core Internet
has been defying the switch to IPv6.

This paper presents P6P, a new networking infrastructure that alleviates
the tension between the core Internet and the end sites. P6P hinges on the de-
coupling of addresses as identifiers from addresses as locators for routing. The
decoupling creates a clean separation of end sites from the core Internet routing
infrastructure, as well as an isolation of the transport layer from the network
layer. More specifically, P6P provides end hosts with IPv6 capabilities, while
preserving IPv4 for core Internet routing; the transport layer for end hosts uses
IPv6 addresses as end-to-end identifiers, while the core Internet uses IPv4 ad-
dresses for routing packets. The use of persistent unique identifiers for end hosts
� This work was funded in part by DARPA/AFRL-IFGA grant F30602-99-1-0532, and

by the AFRL/Cornell Information Assurance Institute.

G.M. Voelker and S. Shenker (Eds.): IPTPS 2004, LNCS 3279, pp. 75–86, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

76 Lidong Zhou and Robbert van Renesse

restores the end-to-end connectivity, thereby simplifying deployment of IPSec
and P2P applications. Perhaps most importantly, P6P can be incrementally de-
ployed and uses the support for IPv6 networking already available in all major
operating system platforms.

The mapping from identifiers to locators is accomplished through a P2P over-
lay network formed by edge routers that connect end sites to the core Internet.
Persistent identifiers are isolated from any changes to how the site connects to
the core Internet through the mapping updates in the overlay. Therefore, P6P
shields local sites from ISP switching/multihoming. The overlay can use existing
distributed hash table (DHT) protocols (e.g., Chord [1]) to achieve scalability.

P6P is a promising candidate as a P2P killer app. P6P targets concrete and
fundamental networking problems in the current Internet and has the potential
to shape the future of the Internet. A full deployment of P6P requires the kind
of scalability that many P2P protocols are designed to achieve. Because P6P
builds upon relatively stable edge routers that maintain a manageable amount
of state, P6P circumvents the problem of churn in many P2P protocols and is
un-hampered by NATs or firewalls. P6P goes beyond providing IPv6 routing to
end sites; we envision P6P to be a unified and constantly evolving framework
that incorporates advanced features such as multicast and anycast. This reflects
our belief that the innovations on the network services for the end sites should be
accomplished at P6P, rather than in the core Internet. With P6P, the evolution
of the Internet translates into new challenges to P2P research.

Section 2 presents the architecture of P6P. Section 3 describes P6P tunnel
routing protocol, how P6P accommodates ISP switching, and how security can
be incorporated into P6P routing. A preliminary performance evaluation through
simulation is presented in Sect. 4. Alternative design choices, nested deployment
of P6P, and the support for multihoming, multicast, and robustness are the topic
of Sect. 5. We discuss related work in Sect. 6 and conclude in Sect. 7.

2 P6P Architecture

P6P assigns IPv6 addresses, referred to as P6P addresses, to hosts in each end
site, referred to as a P6P site. P6P addresses are identifiers that are perma-
nently assigned to hosts (or interfaces) in IPv6 sites. Each site has a unique site
identifier, which is a common and location-independent 48-bit prefix of the P6P
addresses in the site, possibly assigned by IANA (Internet Assigned Numbers
Authority), and is distinguishable from the site identifiers within native IPv6
addresses.

Note that P6P is not intended to solve the problems of Mobile IP routing and
addressing. The proposed solutions for Mobile IP (e.g., [2]) should work as well
with P6P as with native IPv6 and are orthogonal to the work described in this
paper. While P6P site identifiers are location-independent, P6P addresses are
not, as they are tied to their sites. Having P6P addresses be location-independent
would no longer make them aggregatable, severely complicating scalability. Also,
it would no longer be possible to use the existing IPv6 protocols available for
networking within sites.

P6P: A Peer-to-Peer Approach to Internet Infrastructure 77

Each edge router in P6P consists logically of two types of components: In-
ternal Gateway (IG) and External Gateway (EG). An IG forwards P6P packets
between a P6P site and its EG. The IG has its own P6P address, and hosts in
the site use it as their default gateway. Each P6P site has to be connected to
at least one IG, but multiple IGs may share a single EG. EG components are
attached to the core Internet and exchange encapsulated P6P packets through
tunnels set up between them.

When an EG receives a P6P packet from an IG, the EG retrieves the P6P
destination address from the packet. For routing, each EG maintains a routing
table that maps a site identifier to a set of address records, each containing the
type of protocol used to tunnel P6P packets and the corresponding protocol
address of the peer EG. Such protocols may include IPv4, UDP/IPv4, or even
native IPv6—a valid option for sites concerned about IPv6 renumbering. Fig-
ure 1 shows an example of P6P configuration. The routing table of each EG is
populated and maintained by the overlay formed by the EGs, as described in
the next section.

IG

EG

EG IG

A

B

128.84.10.2

157.50.20.1

30BA:0A9C:076A::1

30BA:0A9C:076A::9

3F6B:068D:07DE::1

3F6B:068D:07DE::2

Core IPv4 Network

P6P island with site identifier:
3F6B:068D:07DE

P6P island with site identifier:
30BA:0A9C:076A

Routing Table:

3F6B:068D:07DE (157.50.20.1, IPv4)

(128.84.10.2, IPv4)30BA:0A9C:076A

... ...

Fig. 1. An example of two P6P sites connected to a core IPv4 network.

3 P6P Routing

The P6P architecture requires a way to map P6P addresses to address records.
Unlike site identifiers in standard IPv6 unicast addresses, P6P site identifiers
are not location-dependent, and thus a non-hierarchical mapping is necessary
between site identifiers and EGs. This section describes one protocol for imple-
menting such a mapping based on a DHT. Alternatives are discussed in Sect. 5.1.
Due to space limitation, we omit error handling and other details.

3.1 Basic Protocol

Each EG runs a DHT agent that implements the DHT routing protocol. While
in theory it would be possible to use a DHT to find the EG’s address records

78 Lidong Zhou and Robbert van Renesse

corresponding to a P6P site identifier, doing so for each packet would be too
expensive. Instead, each EG maintains a routing table that caches a subset of
the mapping. Changes to the mapping are infrequent and are dealt with in
Sect. 3.2. The routing table of an EG initially contains only an entry for its
own site identifier. The address records in this entry correspond to the set of
protocols that this EG supports, and the set of ISPs the EG is connected to.
Let DHT (x) be the EG that the site identifier x maps to in the DHT. The EG
then uses the DHT agent to send an INSTALL message containing its local P6P
site identifier id and its address records to DHT (id). On receipt of an INSTALL
message, an EG copies the routing entry in the INSTALL message into its local
routing table.

When an EG receives a P6P packet from its IG, the EG first checks whether
it already has a mapping for the site identifier id of the destination P6P address
in its routing table. If so, the EG selects an appropriate address record and sends
the packet accordingly. If not, the EG sends a LOOKUP request to DHT (id) using
the DHT. The LOOKUP request contains the site identifier and the set of local
address records for returning the response. If the site exists, the receiving EG
should have a mapping for the site identifier, and returns the entire entry inside
an INSTALL message. This response is not sent using the DHT, but directly over
the core network using the return address in the LOOKUP request.

An important optimization is for each EG to piggyback a (limited) number
of entries from its routing table on each routing message it sends. The receiver
merges these entries into its own routing table. In order to be effective, it is
important that the sender selects good entries from its routing table. Random
entries are likely not to correspond to popular sites. We currently use the K
most recently looked up entries in the routing table. Although it is possible to
piggyback on encapsulated data packets as well, we only piggyback on INSTALL
and LOOKUP messages. We also piggyback the local entry of the routing table
on LOOKUP messages so that P6P response packets can be routed without an
additional LOOKUP.

3.2 Updating Address Records

So far we have assumed that the address records of a site do not change. Isolating
end sites from the core Internet shields a site from changes in how the site
connects to the core Internet (e.g., due to switching ISPs or adding ISPs for
multihoming.) In these infrequent cases, address records must be updated. Thus,
a routing table in an EG should be considered a cache of mappings from P6P to
core addresses; P6P must balance freshness and overhead.

Fortunately, it is likely that, when a customer switches ISPs or gets a new
address from an ISP to replace its old one, ISPs offer a grace period, during
which the customer can continue to receive packets on the old address. Thus
out-of-date address records are likely to remain valid for some time, affording
P6P some time for updates. We call this time Ttransition.

P6P routing table entries have version numbers for controlling replacement.
Routing table entries maintain the time at which a new version of an address

P6P: A Peer-to-Peer Approach to Internet Infrastructure 79

record is installed. Each EG increments the version number of its own mapping
every Trefresh seconds as well as whenever its address record changes, and installs
the new mapping (using an INSTALL request). When routing a P6P packet, an
EG looks up a mapping as before. If the mapping is older than some constant
Texpire or does not exist, the EG sends a LOOKUP request using the DHT. If the
mapping exists, whether old or new, the EG sends the packet across the core
network using the address record in the entry.

The following should hold:

Trefresh < Texpire < Ttransition

Ttransition is expected to be at least on the order of days, and we are currently
using Trefresh = 15minutes and Texpire = 30minutes in our prototype.

3.3 Security

In the P6P routing protocol, as described this far, it would be easy for an ad-
versary to hijack a P6P site identifier simply by installing a DHT entry for the
P6P site identifier with any address records of choice. The problem is resolved
through public key cryptography.

Entries in the routing table consist of a pair of X.509 certificates [3]: an owner
certificate and a map certificate. The owner certificate establishes the owner of
a P6P site identifier. It contains the P6P site identifier and a public key. The
corresponding private key is held only by the owner of the P6P site identifier. We
expect the owner certificate to be signed by the provider of P6P site identifiers
(i.e., IANA). A site obtains this certificate when applying for a P6P site identifier
along with the private key to be used for signing mappings.

The map certificate establishes a mapping of a P6P site identifier to address
records. It is signed using the private key of the owner of the P6P site identifier.
The map certificate also contains the mapping’s version number, which is used
for updates but also prevents replay attacks.

INSTALL messages contain these two certificates for each mapping. For each
received mapping, an EG should check both certificates in case the mapping was
previously unknown, or is an update for a currently installed mapping.

The solution scales well, as each EG only needs to have an owner certificate
for its P6P site identifier, the corresponding private key (for signing new map
certificates), and the public key of IANA.

An alternative to owner certificates is to apply the idea of cryptographically
generated addresses [4] to site identifiers, where a P6P site identifier contains
the hash of the site owner’s public key. This scheme no longer relies on a trusted
authority to issue owner certificates because the site’s owner public key is veri-
fiable through the site identifier itself. However, by embedding the information
of the public key in the site identifier, changes to a site’s public key (e.g., due to
revocation.) force changes in the site identifier, thereby eliminating an important
advantage of P6P that P6P addresses are permanent.

Finally, the DHT itself has to be secure. P6P implements its own integrity
through the use of X.509 certificates, but relies on the DHT for its availability.

80 Lidong Zhou and Robbert van Renesse

Note that the reachability of a destination host hinges not only on the connectiv-
ity between the source EG and the destination EG, but also on the availability
of the mapping from the site identifier of the destination to the address records
of the destination EG. The work in [5], for example, offers the needed solutions.

4 Evaluation

We developed a simulation to evaluate the P6P routing protocol. The perfor-
mance of P6P tunneling in a steady state with no routing table misses is rela-
tively well understood because similar techniques are widely used (e.g., in IPv6
transition mechanisms listed in Sect. 6). So, our evaluation focuses on the cases
of routing table misses that necessitate LOOKUP requests before packets are tun-
neled. In particular, we were interested in the ratio of routing table misses, as
well as in the distribution of the P6P routing load across the EGs, as functions
of N , the number of P6P sites, and K, the number of piggybacked entries on
LOOKUP and INSTALL messages. We ignore DHT churn at this time because we
expect the EGs to be fairly stable, although we do intend to study the impact
of churn on P6P performance in the near future.

The simulation runs 1000 rounds, and each run has N microrounds, where
N is the number of sites. In each microround, a random source site is chosen,
as is a random destination site, according to a Zipf distribution (the sites are
ranked according to their incoming packet rates.) Next, a packet is sent from a
randomly chosen address within the source site to a randomly chosen address
within the destination site. Expiration times and failures are not modeled in
these simulations.

In the first set of experiments, we fixed K to 8. Figure 2 shows the average
miss ratio (i.e., the number of routing table misses divided by N), as a function
of the round number (time, if you will) for various N . Note that the x-axis has
a log scale, and so the average miss ratio appears to decrease approximately
logarithmically with time until about 90% of routing requests (including all of
the most popular ones) can be filled from the local routing table. After that the
decrease slows down, as LOOKUP requests still occur for unpopular sites. In Fig. 3

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

av
g

m
is

s
ra

tio

round

N = 4096
N = 1024
N = 256

Fig. 2. Average miss ratio as a function of round number for various N . K = 8.

P6P: A Peer-to-Peer Approach to Internet Infrastructure 81

0

500

1000

1500

2000

0 100 200 300 400 500 600 700 800 9001000

av
g

ro
ut

in
g

ta
bl

e
si

ze

round

N = 4096
N = 1024
N = 256

Fig. 3. Average number of entries in the routing table as a function of round number
for various N . K = 8.

we show the average number of entries in the sites’ routing tables as a function
of the round number.

In the next set of experiments we used 4096 sites, and varied K, the number
of piggybacked routing table entries on routing protocol messages. In Fig. 4 we
show the average miss ratio as a function of round number. We see that even
if K = 1, piggybacking improves the protocol considerably compared to not
piggybacking. However, increasing K only gradually improves efficiency.

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

av
g

m
is

s
ra

tio

round

K = 0
K = 1
K = 2
K = 4
K = 8

K = 16

Fig. 4. Average miss ratio as a function of round number for various values of K.
N = 4096.

To see how load grows as a function of N , we look at the average number
of LOOKUP requests received divided by N in the 100th round of the simulation.
In Fig. 5, we plot the average load over all sites as a function of N . For K > 0,
the load appears to grow approximately logarithmically with N , which indicates
that the protocol scales well. (For K = 0, the load is high while the effectiveness
is low.) The load decreases logarithmically with K, and as it comes at the price
of larger protocol messages, choosing a large K is not cost-effective. The load is
still high in round 100, but as the load reduces in later rounds, the tendencies
as a function of N and K appear to remain the same (not shown in this paper).

82 Lidong Zhou and Robbert van Renesse

0

0.2

0.4

0.6

0.8

1

1.2

100 1000

av
g

lo
ad

 in
 r

ou
nd

 1
00

N

K = 0
K = 1
K = 2
K = 4
K = 8

K = 16

Fig. 5. Average load on EGs in round 100 as a function of N .

We were initially concerned that the P6P routing protocol might place an
uneven load on sites because of the highly non-uniform Zipf distribution of site
popularity. After all, all LOOKUP requests for the most popular site go to one
particular other site (as selected by the DHT.) This concern appears unfounded
for K > 0. Except for K = 0, the variance is low (not shown here), and thus
piggybacking ensures that the load is distributed well among the EGs.

The simulation results are synthetic and the number of sites small, and a
large-scale deployment will be necessary for further validation and for obtaining
realistic latency measurements. Nonetheless, the simulation results indicate that
the protocol appears to scale well in the number of sites. Piggybacking signifi-
cantly improves the protocol’s performance, as well as the distribution of load
across the P6P routers. The amount of piggybacking can be small, as increasing
the amount of piggybacking increases the size of protocol messages linearly while
improving the performance of the protocol only logarithmically. Most packets can
be routed immediately, while only the initial packets for unpopular sites require
waiting for the P6P lookup protocol to finish. The simulation results may be
pessimistic because locality of access is not modeled.

5 Discussion

5.1 Alternative Routing Protocols

We choose to present a simple and clean design of P6P because the design is
intended to serve as a proof of concept to show the feasibility of this approach.
For example, P6P currently adopts a well-known DHT protocol for routing, but
such a protocol is certainly not optimal for P6P. It could also be argued that the
DHT technology is not yet mature enough, and we only have experience with
DHTs on relatively small scales.

Other possibilities for mapping would include the use of a directory service.
For example, an EG can retrieve a set of address records by doing a reverse DNS
lookup on the P6P site identifier. This would require the introduction of a new

P6P: A Peer-to-Peer Approach to Internet Infrastructure 83

record type to DNS, but also some new protocol to replace the piggybacking of
P6P routing in order to reduce the load on DNS. For example, the most popular
mappings could be gossiped using an epidemic protocol [6].

Relying on and extending the existing DNS infrastructure could cause con-
flicts because the new functions might demand different system design tradeoffs
than the original DNS functions. Alternatively, the overlay formed by the P6P
EGs can provide a directory service of its own, making it possible to deploy P6P
without relying on another infrastructure and to customize the directory service
for P6P only. In fact, we could also imagine that the DNS functionalities be
implemented in P6P.

5.2 Nested Deployment

P6P can be deployed within a site as well as on the Internet, resulting in a
nested deployment of P6P. Within the site, IPv6 sub-sites would be connected
through the site’s private IPv4 network. A private DHT (or a simpler mapping
mechanism such as a directory) would tie the sub-sites together into a P6P
network. The site’s IG would serve as the site’s IPv6 exit router. This IG has to
be connected to an internal P6P relay router that the sub-sites can tunnel to.

Two small modifications to P6P are necessary to make this work. First,
instead of using the 48-bit site identifier, the key for the site’s internal DHT
would be made up from all or part of the subnet identifier in order to distinguish
the various sub-sites. Secondly, internal EGs should route packets destined for
local sub-sites using its DHT-managed routing tables, but packets destined for
remote P6P sites, as well as native IPv6 addresses, should be routed to the site’s
exit router.

5.3 Multihoming, Multicast, and Robustness

P6P does not require cooperation of the core routers or of the ISPs to take ad-
vantage of multihoming. A site can simply attach its EG to multiple ISPs and list
all connections in its set of address records. The address records can be extended
to contain policies for indicating a primary link or for traffic engineering.

P6P can incorporate application-level multicast (e.g., Narada [7] and Over-
cast [8]) to provide applications with the illusion of IPv6 multicast. P6P can also
adapt ideas from RON [9] and Detour [10] for routing robustness.

6 Related Work

The general idea of using P2P for implementing IPv6 appeared in [11], where
the IPv6 addresses for the end hosts are not aggregated. P6P instead trades off
generality for scalability by aggregating IPv6 addresses for each site. P6P further
improves the scalability using piggybacking and addresses the security concern.

In [12], the advantages and disadvantages of separating identifiers and loca-
tors, two roles currently overloaded on IP addresses, are discussed in the context

84 Lidong Zhou and Robbert van Renesse

of the GSE proposal [13]. GSE proposes to split an IPv6 address into two parts,
the first containing the locator, and the second the identifier. GSE routers rewrite
the locator part of the IPv6 address as they forward a packet. The essential dif-
ference between GSE and P6P is that GSE is a header-rewriting technology (like
NAT), while P6P is a layering technology. Therefore, in P6P the locators are
not visible to hosts. Clean separation between the network and transport layers
in P6P provides end hosts with truly end-to-end connectivity.

UIP (Unmanaged Internet Protocol) [14] also advocates the separation of
naming and routing. However, UIP aims to facilitate ubiquitous network com-
puting by designing a new Internet-independent routing infrastructure. As a
consequence, it has to build up a DHT when nodes join, while P6P can use the
existing Internet infrastructure for the construction of the DHT.

HIP (Host Identity Payload) is yet another proposal that supports the decou-
pling of internetworking from transport layer. The deployment of HIP requires
a new protocol number assigned by IANA and changes to DNS for maintaining
the mapping. In contrast, P6P does not require such dramatic changes to the
current Internet infrastructure and can be incrementally deployed.

IPNL (IP Next Layer) [15] is an alternative proposal to IPv6. IPNL is layered
on top of IPv4 with NAT-boxes, and uses DNS domain names as addresses, while
using the structure of domain names as a way to route packets. IPNL achieves
many of the same properties as P6P, but requires a large software development
commitment. PeerNet [16] goes a step further and proposes to replace the IP
layer with a P2P protocol that separates identifiers from addresses. The main
objective is routing in wireless networks. Compared to IPNL and PeerNet, P6P
deployment is relatively cheap because most operating systems support IPv6
stacks and many important applications have been ported.

I3 (Internet Indirection Infrastructure) [17] shares many of the same ob-
jectives with P6P, and also uses a DHT in order to separate identifiers from
addresses and to support a wide variety of end-to-end communication options.
I3 is an overlay, and with it comes a new API. P6P provides a standard IPv6
API, requires no changes to end hosts, and is unencumbered by churn.

The architecture of P6P is related to transitioning mechanisms such as ISA-
TAP [18], 6to4 [19], and Teredo [20]. None of these provide a separation of
identifiers and locators, nor the ability to add new communication services.

7 Conclusion

P6P is an overlay routing architecture that, transparently to end-hosts, imple-
ments the IPv6 routing abstraction. P6P simplifies transition to IPv6, but also
provides features that have value even in a core IPv6 network. These derive
from the fact that P6P allows end-host addresses to be administered separately
from the addresses used in the core routing infrastructure. Such features include
the ability to renumber the core Internet, to switch ISPs, and to support multi-
homing, without reconfiguring entire sites, breaking connections, updating DNS
records, mutual cooperation of ISPs, or increased load on core routers. P6P can
be extended to support multicast and robust routing.

P6P: A Peer-to-Peer Approach to Internet Infrastructure 85

P6P is easy to deploy as it interoperates with the IPv6 stacks supported
by all major operating systems. Moreover, P6P can be deployed incrementally
without any changes to existing IPv6 routing protocols.

We present the key elements of a preliminary design and evaluation to demon-
strate the feasibility of the approach. Various alternative design choices, opti-
mizations, and other engineering/deployment details are yet to be explored fully.
Even so, P6P has already shown promises as a killer-app for P2P protocols.

Acknowledgments

We are grateful to Piyoosh Jalan, Adrian Bozdog, and Michael A. Marsh for their
early contributions to this work, and to Yih-Chun Hu for the discussion on cryp-
tographically generated addresses. We would also like to thank the anonymous
reviewers for their comments and suggestions that helped improve the paper.

References

1. Stoica, I., Morris, R., Karger, D., Kaashoek, M.: Chord: A scalable peer-to-peer
lookup service for Internet applications. [21]

2. Perkins, C.: IP mobility support (1996) RFC 2002.
3. CCITT: Recommendation X.509: The Directory Authentication Framework (1988)
4. O’Shea, G., Roe, M.: Child-proof authentication for MIPv6 (CAM). ACM Com-

puter Communications Review 31 (2001)
5. Castro, M., Druschel, P., Ganesh, A., Rowstron, A., Wallach, D.: Secure routing for

structured peer-to-peer overlay networks. In: Proceedings of the 5th Symposium
on Operating System Design and Implementation (OSDI’02), Boston, MA (2002)

6. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis,
H., Swinehart, D., Terry, D.: Epidemic algorithms for replicated database mainte-
nance. In: Proc. of the 6th ACM Symp. on Principles of Distributed Computing,
Vancouver, BC (1987) 1–12

7. Chu, Y., Rao, S., Seshan, S., Zhang, H.: Enabling conferencing applications on the
Internet using an overlay multicast architecture. [21]

8. Jannotti, J., Gifford, D., K.L., J., M.F., K., O’Toole Jr., J.: Overcast: Reliable
multicasting with an overlay network. In: Proceedings of the 4th Symposium on
Operating System Design and Implementation (OSDI’00), San Diego, CA (2000)

9. Andersen, D., Balakrishnan, H., Kaashoek, M., Morris, R.: Resilient Overlay Net-
works. In: Proc. of the 18th ACM Symp. on Operating Systems Principles, Banff,
Canada (2001) 131–145

10. Collins, A.: The Detour framework for packet rerouting. Master’s thesis, University
of Washington, Seattle (1998)

11. Zhou, L., van Renesse, R., Marsh, M.: Implementing IPv6 as a peer-to-peer overlay
network. In: Workshop on Reliable Peer-to-Peer Distributed Systems, Proc. 21st
IEEE Symposium on Reliable Distributed Systems, Suita, Japan (2002)

12. Crawford, M., Mankin, A., Narten, T., Stewart, J., Zhang, L.: Separating identifiers
and locators in addresses: An analysis of the GSE proposal for IPv6 (1999) Internet
Draft, draft-ietf-ipngwg-esd-analysis-05.txt.

13. O’Dell, M.: GSE–an alternate addressing architecture for IPv6 (1997) Internet
Draft, draft-ietf-ipngwg-gseaddr-00.txt.

86 Lidong Zhou and Robbert van Renesse

14. Ford, B.: Unmanaged Internet Protocol: Taming the edge network management
crisis. In: 2nd Workshop on Hot Topics in Networks (HotNets-II). (2003)

15. Francis, P., Gummadi, R.: IPNL: A NAT-extended Internet architecture. [21]
16. Eriksson, J., Faloutsos, M., Krishnamurthy, S.: PeerNet: Pushing Peer-to-Peer

down the stack. In: Peer-to-Peer Systems—Second International Workshop
(IPTPS’03). Volume 2735 of Lecture Notes on Computer Science., Cambridge,
MA, Springer-Verlag (2003) 268–277

17. Stoica, I., Adkins, D., Zhuang, S., Shenker, S., Surana, S.: Internet Indirection
Infrastructure. In: Proc. of ACM SIGCOMM’02, Pittsburgh, PA (2002)

18. Templin, F.: Intra-Site Automatic Tunnel Addressing Protocol (ISATAP) (2001)
Internet Draft, draft-ietf-ngtrans-isatap-00.txt.

19. Holdrege, M., Srisuresh, P.: Connection of IPv6 domains via IPv4 clouds (2001)
RFC 3056.

20. Huitema, J.: Teredo: Tunneling IPv6 over UDP through NATs (2002) Internet
Draft, draft-ietf-ngtrans-shipworm-08.txt.

21. ACM SIGCOMM: Proc. of the ’01 Symp. on Communications Architectures &
Protocols. In: Proc. of the ’01 Symp. on Communications Architectures & Proto-
cols, San Diego, CA, ACM SIGCOMM (2001)

Comparing the Performance
of Distributed Hash Tables Under Churn�

Jinyang Li, Jeremy Stribling, Thomer M. Gil,
Robert Morris, and M. Frans Kaashoek

MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA
{jinyang,strib,thomer,rtm,kaashoek}@csail.mit.edu

http://pdos.lcs.mit.edu/

Abstract. A protocol for a distributed hash table (DHT) incurs com-
munication costs to keep up with churn – changes in membership – in
order to maintain its ability to route lookups efficiently. This paper for-
mulates a unified framework for evaluating cost and performance. Com-
munication costs are combined into a single cost measure (bytes), and
performance benefits are reduced to a single latency measure. This ap-
proach correctly accounts for background maintenance traffic and time-
outs during lookup due to stale routing data, and also correctly leaves
open the possibility of different preferences in the tradeoff of lookup time
versus communication cost. Using the unified framework, this paper ana-
lyzes the effects of DHT parameters on the performance of four protocols
under churn.

1 Introduction

The design space of DHT protocols is large. While all designs are similar in that
nodes forward lookups for keys through routing tables that point to other nodes,
algorithms differ in the amount of state they keep: from O(1) with respect to a
network size of size n [7, 9] to O(log n) [10, 13, 14, 16] to O(

√
n) [6] to O(n) [5].

They also differ in the techniques used to find low latency routes, in the way they
find alternate paths after encountering dead intermediate nodes, in the expected
number of hops per lookup, and in choice of parameters such as the frequency
with which they check other nodes for liveness.

How is one to compare these protocols in a way that separates incidental
details from more fundamental differences? Most evaluations and comparisons
of DHTs have focused on lookup hopcount latency, or routing table size in un-
changing networks [2, 12, 15]. Static analysis, however, may unfairly favor pro-
tocols that keep large amounts of state, since they pay no penalty to keep the
state up to date, and more state usually results in lower lookup hopcounts and
latencies.
� This research was conducted as part of the IRIS project (http://project-iris.
net/), supported by the National Science Foundation under Cooperative Agreement
No. ANI-0225660.

G.M. Voelker and S. Shenker (Eds.): IPTPS 2004, LNCS 3279, pp. 87–99, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

88 Jinyang Li et al.

This paper presents a framework for evaluating DHT algorithms in the face
of joining and leaving nodes, in a way that makes it easy to compare tradeoffs
between state maintenance costs and lookup performance. The paper compares
the Tapestry [16], Chord [14], Kelips [6], and Kademlia [10] lookup algorithms
within this framework. These four reflect a wide range of design choices for
DHTs.

We have implemented a simple simulator that models inter-node latencies
using the King method [3]. This model ignores effects due to congestion. We
compare the performance of the DHTs using a single workload consisting of
lookup operations and a particular model of churn. With these restrictions, we
find that with the right parameter settings all four DHTs have similar over-
all performance. Furthermore, we isolate and analyze the effects of individual
parameters on DHT performance, and conclude that common parameters such
as base and stabilization interval can behave differently in DHTs that make
different design decisions.

2 A Cost Versus Performance Framework

DHTs have multiple measures for both cost and performance. Cost has often
been measured as the amount of per-node state. However, an analysis should
also include the cost of keeping that state up to date (which avoids timeouts),
and the cost of exploring the network to search for nearby neighbors (which
allows low-latency lookup). A unified cost metric should indicate consumption
of the most valuable system resource; in our framework it is the number of bytes
of messages sent. This choice reflects a judgment that network capacity is a more
limiting resource to DHTs than memory or CPU time.

Lookup performance has often been measured with hopcount, latency, suc-
cess rate, and probability of timeouts. Our framework uses lookup latency as
the unified performance metric relevant to applications. Lookup hopcount can
be ignored except to the extent that it contributes to latency. The framework
accounts for the cost of trying to contact a dead node during a lookup as a
latency penalty equal to a small constant multiple of the round trip time to the
dead node, an optimistic simulation of the cost of a timeout before the node
pursues the lookup through an alternate route. DHTs retry alternate routes for
lookups that return failed or incorrectly for up to four seconds, which effectively
converts failed lookups into high latencies.

Protocol parameters tend to obscure differences in cost and performance
among protocols, since the parameters may be tuned for different workloads. A
key challenge is to understand differences solely due to parameter choices. We
evaluate each protocol over a range of parameter values, outlining a performance
envelope from which we can extrapolate an optimal cost-performance tradeoff
curve.

3 Protocol Overviews

This paper evaluates the performance of four existing DHT protocols (Tapestry
[16], Chord [14], Kelips [6], and Kademlia [10]) using the above framework. This

Comparing the Performance of Distributed Hash Tables Under Churn 89

Table 1. Tapestry parameters.

Parameter Range

Base 2 – 128

Stabilization interval 36 sec – 19 min

Number of backup nodes 1 – 4

Number of nodes contacted during repair 1 – 20

section provides brief overviews of each DHT, identifying the tunable parameters
in each.

3.1 Tapestry

The ID space in Tapestry is structured as a tree. A Tapestry node ID can be
viewed as a sequence of l base-b digits. A routing table has l levels, each with b
entries. Nodes in the mth level share a prefix of length m − 1 digits, but differ
in the mth digit. Each entry may contain up to c nodes, sorted by latency. The
closest of these nodes is the entry’s primary neighbor; the others serve as backup
neighbors.

Nodes forward a lookup message for a key by resolving successive digits in the
key (prefix-based routing). When no more digits can be resolved, an algorithm
known as surrogate routing determines exactly which node is responsible for the
key [16]. Routing in Tapestry is recursive.

For lookups to be correct, at least one neighbor in each routing table entry
must be alive. Tapestry periodically checks the liveness of each primary neighbor,
and if the node is found to be dead, the next closest backup in that entry (if one
exists) becomes the primary. When a node declares a primary neighbor dead, it
contacts some number of other neighbors asking for a replacement; the number
of neighbors used in this way is configurable. Table 1 lists Tapestry’s parameters
for the simulations.

3.2 Chord

Chord identifiers are structured in an identifier circle. A key k is assigned to
k’s successor (i.e., the first node whose ID is equal to k, or follows k in the
ID space). In this paper’s variant of Chord, a lookup for a key visits the key’s
predecessor, the node whose ID most closely precedes the key. The predecessor
tells the query originator the identity of the key’s successor node, but the lookup
does not visit the successor. The base b of the ID space is a parameter: a node
with ID x keeps (b − 1) logb(n) fingers whose IDs lie at exponentially increasing
fractions of the ID space away from itself. Any node whose ID lies within the
range x + (b−1

b)i+1 ∗ 264 and x + (b−1
b)i ∗ 264, modulo 264, can be used as the

ith finger of x. Chord leverages this flexibility to obtain Proximity Neighbor
Selection [2, 13]. Each node also keeps a successor list of s nodes. Chord can
route either iteratively or recursively [14]; this paper presents results for the
latter.

90 Jinyang Li et al.

Table 2. Chord parameters.

Parameter Range

Number of successors 4 – 32

Finger base 2 – 128

Finger stabilization interval 40 sec – 19 min

Successor stabilization interval 4 sec – 19 min

Table 3. Kelips parameters.

Parameter Range

Gossip interval 18 sec – 19 min

Group ration 8, 16, 32

Contact ration 8, 16, 32

Contacts per group 2, 8, 16

Times a new item is gossiped 2, 8

Routing entry timeout 30 min

A Chord node x periodically pings all its fingers to check their liveness. If a
finger i does not respond, x issues a lookup request for the key x + (b−1

b)i ∗ 264,
yielding node f . Node x retrieves f ’s successor list, and uses the successor with
the lowest latency as the level i finger. A node separately stabilizes its successor
list by periodically retrieving and merging its successor’s successor list; successor
stabilization is separate because it is critical for correctness but is much cheaper
than finger stabilization. Table 2 lists the Chord parameters that are varied in
the simulations.

3.3 Kelips

Kelips divides the identifier space into k groups, where k is a constant roughly
equal to the square root of the number of nodes. A node’s group is its ID mod k.
Each node’s routing table contains an entry for each other node in its group, and
“contact” entries for a few nodes from each of the other groups. Thus a node’s
routing table size is a small constant times

√
n, in a network with n nodes.

The variant of Kelips in this paper defines lookups only for node IDs. The
originating node executes a lookup for a key by asking a contact in the key’s
group for the IP address of the target key’s node, and then (iteratively) con-
tacting that node. If that fails, the originator tries routing the lookup through
other contacts for that group, and then through randomly chosen routing table
entries.

Nodes periodically gossip to discover new members of the network, and may
also learn about other nodes due to lookup communication. Routing table entries
that have not been refreshed for a certain period of time expire. Nodes learn
RTTs and liveness information from each RPC, and preferentially route lookups
through low RTT contacts.

Comparing the Performance of Distributed Hash Tables Under Churn 91

Table 4. Kademlia parameters.

Parameter Range

Nodes per entry (k) 4, 8, 16, 32

Parallel lookups (α) 1 – 10

Stabilization interval 20 min – 1 hour

Table 3 lists the parameters we use for Kelips. Rations are the number of
nodes mentioned in the gossip messages. Contacts per group is the maximum
number of contact entries per group in a node’s routing table; if it has value c,
then the size of each node’s routing table is

√
n + c(

√
n − 1).

3.4 Kademlia

Kademlia structures its ID space as a tree. The distance between two keys in
ID space is their exclusive or, interpreted as an integer. The k nodes whose IDs
are closest to a key y store a replica of y. The routing table of a node x has 64
buckets bi (0 ≤ i < 64) that each store up to k node IDs with a distance to x
between 2i and 2i+1.

Kademlia performs iterative lookups: a node x starts a lookup for key y by
sending parallel lookup RPCs to the α nodes in x’s routing table whose IDs are
closest to y. A node replies to a lookup RPC by sending back a list of the k
nodes it believes are closest to y in ID space. Each time node x receives a reply,
it sends a new RPC to the next-closest node to y that it knows about, trying
at all times to keep α outstanding RPCs. This continues until some node replies
with key y, or until k nodes whose IDs are closest to y (according to x) did
not return any new node ID closer to y. The simulated workloads look up node
IDs, and the last step in a lookup is an RPC to the target node. Our Kademlia
implementation favors proximate nodes. Like Kelips, Kademlia learns existence
and liveness information from each lookup. Table 4 summarizes the parameters
varied in the Kademlia simulations.

4 Evaluation

We implemented these four DHTs in a discrete-event packet-level simulator,
p2psim1. The simulated network consists of 1, 024 nodes with inter-node laten-
cies derived from measuring the pairwise latencies of 1, 024 DNS servers using
the King method [3]. The average round-trip delay is 152 milliseconds, which
serves as a lower bound for the average DHT lookup time for random keys.
The simulator does not simulate link transmission rate or queuing delay. All
experiments involve only key lookup, as opposed to data retrieval.

Nodes issue lookups for random keys at intervals exponentially distributed
with a mean of ten minutes, and nodes crash and rejoin at exponentially dis-
tributed intervals with a mean of one hour. This choice of mean session time
1 http://pdos.lcs.mit.edu/p2psim

92 Jinyang Li et al.

is consistent with past studies [4], while the lookup rate guarantees that nodes
perform several lookups per session. Each experiment runs for six hours of sim-
ulated time, and nodes keep their IP address and ID for the duration of the
experiment.

For each of the graphs below, the x-axis shows the communication cost: the
average number of bytes sent per second sent by live nodes. The communication
cost includes lookup, join, and routing table maintenance traffic. The size in
bytes of each message is counted as 20 bytes for headers plus 4 bytes for each
node mentioned in the message. The y-axis shows performance: the average
lookup latency, including timeout penalties (three times the round trip time)
and lookup retries (up to a maximum of four seconds).

4.1 Protocol Comparisons

Each protocol has a number of parameters that affect cost and performance. As
an example, Figure 1 shows Tapestry’s cost and performance for several hun-
dred parameter combinations. There is no single best combination of parameter
values. Instead, there is a set of best achievable cost-performance combinations:
for each given cost, there is a least achievable latency, and for each latency, there
is a least achievable cost. These best points are on the convex hull of the full set
of points, a segment of which is shown by the line in Figure 1. Points not on the
convex hull represent inefficient parameter settings which waste bandwidth.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60 70 80

av
er

ag
e

lo
ok

up
 la

te
nc

y
(m

s)

average live bandwidth (bytes/node/s)

Tapestry

Fig. 1. Cost versus performance under churn in Tapestry. Each point represents the
average lookup latency and communication cost achieved for a unique set of parameter
values. The convex hull represents the best achievable cost-performance combinations.

Figure 2 compares the convex hulls of Tapestry, Chord, Kademlia and Kelips.
Any of the protocols can be tuned to achieve a latency less than 250 ms if it
is allowed enough bandwidth. The small difference in latency (20 ms) between
Chord and Tapestry when bandwidth is plentiful is because Tapestry achieves

Comparing the Performance of Distributed Hash Tables Under Churn 93

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60 70 80

av
er

ag
e

lo
ok

up
 la

te
nc

y
(m

s)

average live bandwidth (bytes/node/s)

Chord
Kelips

Tapestry
Kademlia

Fig. 2. The convex hulls for all four protocols.

a success rate of only 99.5%, compared to 100% in Chord, due to a slower join
process that causes inconsistent views on which node is responsible for a given
key. Kademlia uses iterative routing, which we observe to be slower than recursive
routing when hopcounts are similar. When bandwidth is limited, the protocols
differ significantly in performance. Chord in particular uses its bandwidth quite
efficiently and can achieve low lookup latencies at little cost. This behavior
appears to be due to Chord giving priority to stabilizing successors over fingers
when bandwidth is limited, since correct successors are all that is needed to
ensure correct lookups. By focusing its limited stabilization traffic on this small,
constant amount of state (as opposed to its full O(log n) state), Chord is able to
maintain correctness. The other protocols do not have a simple way to ensure
correct lookups, and so their lookup times are increased by the need to retry
lookups that return incorrect responses.

4.2 Parameter Exploration

Figure 1 shows that some parameter settings are much more efficient than others.
This result raises the question of which parameter settings cause performance
to be on the convex hull; more specifically,

– What is the relative importance of different parameters on the performance
tradeoff for a single protocol?

– Do similar parameters have similar effects on the performance tradeoffs of
different protocols?

These questions are not straightforward to answer, since different parameters
can interact with one another, as we will see below. To isolate the effect of a
single parameter, we calculate the convex hull segment for each fixed value of
that parameter while varying all the other parameter values. The convex hull of
these segments should trace the full convex hull as shown in Figure 2.
Tapestry: Figure 3 shows the effect of identifier base on the performance of
Tapestry. Each line on the figure represents the convex hull segment for a specific

94 Jinyang Li et al.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60 70 80

av
er

ag
e

lo
ok

up
 la

te
nc

y
(m

s)

average live bandwidth (bytes/node/s)

Tapestry:base=2
Tapestry:base=4

Tapestry:base=16
Tapestry:base=32
Tapestry:base=64

Tapestry:base=128

Fig. 3. The effect of base in Tapestry.

value of base. With respect to bandwidth, these results are not surprising; as we
decrease base, each node has fewer entries in its routing table2, and thus needs to
contact fewer nodes during stabilization, using less bandwidth. For bases 2 and
4 nodes keep exactly the same amount of state, but base 4 lowers the hopcount
leading to slightly improved latencies.

The latency results, however, are a bit counter-intuitive: every value of base
is able to achieve the same lookup performance, even though a smaller base
results in more hops per lookup on average. This behavior is due to Tapestry’s
proximity routing. The first few hops in every lookup tend to be to nearby
neighbors, and so the time for the lookup becomes dominated by the last hop,
which is essentially to a random node in the network. Therefore, in a protocol
with proximity routing, the base can be configured as a small value in order to
save bandwidth costs due to stabilization.

Figure 4 illustrates the effect of stabilization interval on the performance of
Tapestry. As nodes stabilize more often, they achieve lower latencies by avoiding
more timeouts on the critical path of a lookup. Although this improvement comes
at the cost of bandwidth, the results show that the cost in bandwidth is marginal
when compared to the savings in lookup latency. Thus, not only can the base be
set low, but stabilization also can happen frequently to keep routing state up to
date under churn. For this workload, a reasonable value is 72 seconds.

Other experiments (not shown here) indicate that best performance is largely
insensitive to number of backup nodes (as long as there are more than 1) and
numbers of nodes contacted during repair.

Chord: Chord separately stabilizes finger and successors. While the relevant
graphs are not shown for reasons of space, a 72 second successor stabilization
interval is enough to ensure a high success rate (above 99%); faster rates result

2 If identifiers have base b in a network with n nodes, routing tables contain b ∗ logb n
entries on average [16].

Comparing the Performance of Distributed Hash Tables Under Churn 95

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60 70 80

av
er

ag
e

lo
ok

up
 la

te
nc

y
(m

s)

average live bandwidth (bytes/node/s)

Tapestry:stab=36000
Tapestry:stab=72000

Tapestry:stab=144000
Tapestry:stab=288000
Tapestry:stab=576000

Tapestry:stab=1152000

Fig. 4. The effect of stabilization interval in Tapestry (values are in milliseconds).

in wasted bandwidth while slower rates result in a greater number of timeouts
during lookups. The finger stabilization interval affects performance without
affecting success rate, so its value must be varied to achieve the best tradeoff.
Faster finger stabilization results in lower lookup latency due to fewer timeouts,
but at a higher communication cost.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60 70 80

av
er

ag
e

lo
ok

up
 la

te
nc

y
(m

s)

average live bandwidth (bytes/node/s)

Chord:base=2
Chord:base=8

Chord:base=32
Chord:base=64

Chord:base=128

Fig. 5. The effect of base in Chord.

Unlike Tapestry, there is no single best base value for Chord. Figure 5 shows
the convex hulls for different base values. The final convex hull is essentially made
up of two base values (2 and 8). Changing the base from 2 to 8 causes the best
achieved lookup latency to drop from 240 milliseconds to 203 milliseconds due
to decreased hopcount from 3.3 to 2.5. In comparison, small bases in Tapestry

96 Jinyang Li et al.

(see Figure 3) can achieve the same low latencies as higher bases; we believe
this is due to a more involved join algorithm that samples a larger number of
candidate neighbors during PNS.

Kelips: The most important parameter in Kelips in the gossip interval. Figure 6
shows that its value has a strong effect on the cost versus performance tradeoff.
The other parameters improve performance without increasing cost, and thus
are simple to set. For example, more contacts per group are always preferable,
since that results in a more robust routing table and a higher probability that
a lookup will complete in just one hop, at only slightly higher cost. With 16
contacts, for instance, the best lookup latency is 180 ms in 1.2 average hops as
opposed to 280 ms in 1.9 hops for 2 contacts.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60 70 80

av
er

ag
e

lo
ok

up
 la

te
nc

y
(m

s)

average live bandwidth (bytes/node/s)

Kelips:gossip=18000
Kelips:gossip=36000
Kelips:gossip=72000

Kelips:gossip=144000
Kelips:gossip=288000
Kelips:gossip=576000

Fig. 6. The effect of gossip interval in Kelips (values are in milliseconds).

Kademlia: Figure 7 shows the effect on Kademlia of varying the number of
parallel lookups (α). The final convex hull is made up of higher values of α, with
bigger α resulting in lower latency at the cost of more lookup traffic. A bigger
α decreases the time spent waiting for timeouts and increases the chances of
routing lookups through proximate nodes.

Figure 8 shows that the Kademlia stabilization interval has little effect on
latency, but does increase communication cost. Stabilization does decrease the
number of routing table entries pointing to dead nodes, and thus decreases the
number of timeouts during lookups. However, parallel lookups already ensure
that these timeouts are not on the critical path for lookups, so their elimination
does not decrease lookup latency.

4.3 Discussion

Base and stabilization interval have the most effect on DHT performance under
churn, although they affect different protocols in different ways. These results
are tied to our choice of workload: the effect of base depends on the size of the

Comparing the Performance of Distributed Hash Tables Under Churn 97

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60 70 80

av
er

ag
e

lo
ok

up
 la

te
nc

y
(m

s)

average live bandwidth (bytes/node/s)

Kademlia:alpha=3
Kademlia:alpha=4
Kademlia:alpha=5
Kademlia:alpha=6
Kademlia:alpha=7

Kademlia:alpha=10

Fig. 7. The effect of parallel lookups in Kademlia. Values of 1 and 2 are not shown,
and perform considerably worse than α = 3.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60 70 80

av
er

ag
e

lo
ok

up
 la

te
nc

y
(m

s)

average live bandwidth (bytes/node/s)

Kademlia:stab=1200000
Kademlia:stab=2400000
Kademlia:stab=3600000

Fig. 8. The effect of stabilization interval in Kademlia (values are in milliseconds).

network, while the effect of stabilization depends on the average session time of
churning nodes.

5 Related Work

This paper’s contribution is a unified framework for comparing DHTs under
churn and the effects of their parameters on performance under churn. Liben-
Nowell et al. [8] focus only on the asymptotic communication cost due to Chord
stabilization traffic. Rhea et al. [11] present Bamboo, a DHT protocol designed to
handle networks with high churn efficiently and gracefully. In a similar vein, Cas-
tro et al. [1] describe how they optimize their Pastry implementation, MSPastry,
to handle consistent routing under churn with low overhead. The implementation
of the protocols described here include similar optimizations.

98 Jinyang Li et al.

6 Conclusions and Future Work

This paper presents a unified framework for studying the cost versus lookup
latency tradeoffs in different DHT protocols, and evaluates Tapestry, Chord,
Kelips, and Kademlia in that framework. Given the workload described in Sec-
tion 4, these protocols can achieve similar performance if parameters are suffi-
ciently well-tuned. However, parameter tuning is a delicate business; not only
can different parameters interact within a protocol to affect the cost versus per-
formance tradeoff, but similar parameters in different protocols, such as base and
stabilization interval, can behave differently. We also identify several parameters
that are irrelevant under churn.

As future work, we plan to isolate and evaluate the design decisions that
cause performance deviations between the protocols. We will also explore how
varying the workload affects the cost versus performance tradeoff. We hope that
understanding the tradeoffs inherent in different design decisions, as well as in
parameter tuning, will lead to more robust and efficient DHT designs.

Acknowledgments

We thank Russ Cox for his help writing the simulator, Frank Dabek for numerous
useful discussions as well as the King dataset measurements, and the anonymous
reviewers for their helpful comments.

References

1. Castro, M., Costa, M., and Rowstron, A. Performance and dependability
of structured peer-to-peer overlays. Tech. Rep. MSR-TR-2003-94, Microsoft Re-
search, Dec. 2003.

2. Gummadi, K. P., Gummadi, R., Gribble, S., Ratnasamy, S., Shenker, S.,
and Stoica, I. The impact of DHT routing geometry on resilience and proximity.
In Proceedings of the 2003 ACM SIGCOMM (Karlsruhe, Germany, Aug. 2003).

3. Gummadi, K. P., Saroiu, S., and Gribble, S. D. King: Estimating latency be-
tween arbitrary Internet end hosts. In Proceedings of the 2002 SIGCOMM Internet
Measurement Workshop (Marseille, France, Nov. 2002).

4. Gummadi, P. K., Saroiu, S., and Gribble, S. A measurement study of Napster
and Gnutella as examples of peer-to-peer file sharing systems. Multimedia Systems
Journal 9, 2 (Aug. 2003), 170–184.

5. Gupta, A., Liskov, B., and Rodrigues, R. One hop lookups for peer-to-peer
overlays. In Proceedings of the Ninth Workshop on Hot Topics in Operating Systems
(May 2003).

6. Gupta, I., Birman, K., Linga, P., Demers, A., and van Renesse, R. Ke-
lips: Building an efficient and stable P2P DHT through increased memory and
background overhead. In Proceedings of the Second IPTPS (2003).

7. Kaashoek, M. F., and Karger, D. R. Koorde: A simple degree-optimal hash
table. In Proceedings of the Second IPTPS (2003).

Comparing the Performance of Distributed Hash Tables Under Churn 99

8. Liben-Nowell, D., Balakrishnan, H., and Karger, D. R. Analysis of the
evolution of peer-to-peer systems. In Proceedings of the 2002 ACM Symposium on
Principles of Distributed Computing (Aug. 2002).

9. Malkhi, D., Naor, M., and Ratajczak, D. Viceroy: A scalable dynamic emu-
lation of the butterfly. In Proceedings of the 2002 ACM Symposium on Principles
of Distributed Computing (Aug. 2002).

10. Maymounkov, P., and Mazieres, D. Kademlia: A peer-to-peer information
system based on the XOR metric. In Proceedings of the First IPTPS (Mar. 2002).

11. Rhea, S., Geels, D., Roscoe, T., and Kubiatowicz, J. Handling churn in
a DHT. Tech. Rep. UCB/CSD-3-1299, UC Berkeley, Computer Science Division,
Dec. 2003.

12. Rhea, S., Roscoe, T., and Kubiatowicz, J. Structured peer-to-peer overlays
need application-driven benchmarks. In Proceedings of the Second IPTPS (2003).

13. Rowstron, A., and Druschel, P. Pastry: Scalable, distributed object loca-
tion and routing for large-scale peer-to-peer systems. In Proceedings of the 18th
IFIP/ACM International Conference on Distr ibuted Systems Platforms (Middle-
ware 2001) (Nov. 2001).

14. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D. R., Kaashoek, M. F.,
Dabek, F., and Balakrishnan, H. Chord: A scalable peer-to-peer lookup pro-
tocol for Internet applications. IEEE/ACM Transactions on Networking (2002),
149–160.

15. Xu, J. On the fundamental tradeoffs between routing table size and network
diameter in peer-to-peer networks. In Proceedings of the IEEE Infocom (Mar.
2003).

16. Zhao, B. Y., Huang, L., Stribling, J., Rhea, S. C., Joseph, A. D., and Ku-
biatowicz, J. D. Tapestry: A resilient global-scale overlay for service deployment.
IEEE Journal on Selected Areas in Communications 22, 1 (Jan. 2004), 41–53.

DHT Routing Using Social Links�

Sergio Marti, Prasanna Ganesan, and Hector Garcia-Molina

Stanford University
{smarti,prasanna,hector}@cs.stanford.edu

Abstract. The equality and anonymity of peer-to-peer networks makes
them vulnerable to routing denial of service attacks from misbehaving
nodes. In this paper, we investigate how existing social networks can ben-
efit P2P networks by leveraging the inherent trust associated with social
links. We present a trust model that lets us compare routing algorithms
for P2P networks overlaying social networks. We propose SPROUT, a
DHT routing algorithm that significantly increases the probability of suc-
cessful routing by using social links. Finally, we discuss further optimiza-
tion and design choices for both the model and the routing algorithm.

1 Introduction

Because of the anonymity of peers and the lack of a centralized enforcement
agency, P2P systems are especially vulnerable to a category of attacks we call
misrouting attacks. We use the term misrouting to refer to any failure by a node
to forward a message to the appropriate peer according to the correct routing
algorithm. This includes dropping the message or forwarding the message to
other colluding nodes instead of the correct peer, perhaps in an attempt to
control the results of a query. A malicious node may wish to masquerade as the
index owner of the key being queried for in order to disseminate bad information
and suppress content shared by other peers.

In addition, malicious users can acquire several valid network identifiers
and thus control multiple distinct nodes in the network. This is referred to as
the Sybil attack and has been studied by various groups (e.g. [3] [?] [6]). This
implies that a small number of malicious users can control a large fraction of
the network nodes, increasing the probability that they participate in any given
message route.

To avoid routing messages through possibly malicious nodes, we would prefer
forwarding our messages through nodes controlled by people we know personally,
perhaps from a real life social context. We could most likely assume our friends
would not purposefully misroute our messages1. Likewise, our friends could try
and forward our message through their friends’ nodes. This would require a
mechanism to identify who our social contacts are and locate them in the network
when they are online.
� This research is supported in part by NSF Grant (IIS-9817799).
1 We assume a slim, but nonzero, chance that a virus or trojan has infected their

machine, causing it to act maliciously.

G.M. Voelker and S. Shenker (Eds.): IPTPS 2004, LNCS 3279, pp. 100–111, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

DHT Routing Using Social Links 101

Fortunately, this mechanism already exists in the form of various social net-
work services. AOL, Microsoft, and Yahoo! all provide instant messaging services
to millions of users, alerting them when their friends log on. Many websites, like
Friendster, specialize in creating and utilizing social networks. We propose build-
ing peer-to-peer networks which leverage these existing social network services
to establish additional, highly trusted, links at little additional cost. To deter-
mine the value of such a system we need a new way of modelling social trust and
how it translates to the chance of misrouting. We present such a trust model in
Section 2.

Adopting social links in an unstructured P2P network is relatively simple,
since nodes are free to connect to any peers. However, using them in structured
networks (e.g. DHTs) is more challenging because peer connections are typically
determined algorithmically. In Section 3 we present SPROUT, a routing algo-
rithm that takes advantage of social links in structured networks, and compare
it to current standard routing techniques in Section 4. Social networks can be
exploited by P2P systems for a variety of other reasons. In Section 5 we discuss
application scenarios where our model is useful, as well as other related and
future work. Finally, we conclude in Section 6.

2 Trust Model

The basic assumption of this paper is that computers managed by friends are
not likely to be selfish or malicious and deny us service or misroute our mes-
sages. Similarly, friends of friends are also unlikely to be malicious. We assume
the likelihood of a node B purposefully misrouting a message from node A is
proportional to the distance from A’s owner to B’s owner in the social network.

2.1 Trust Function

We express the trust that a node A has in node B as T (A, B). Based on our
assumption, this value is dependent only on the distance (in hops) d from A to
B in the social network. To quantify this measure of trust we use the expected
probability that node B will correctly route a message from node A. The reason
for this choice will become apparent shortly.

One simple trust function would be to assume our friends’ nodes are very
likely to correctly route our messages, say with probability f = 0.95. But their
friends are less likely (0.90), and their friends even less so (0.85). A node’s trust-
worthiness decreases linearly with respect to its distance from us in the social
network. This would level off when we hit the probability that any random node
will successfully route a message, say r = 0.6. In large networks probability r
represents the fraction of the network expected to be good nodes willing to cor-
rectly route messages. Thus, r = 0.6 indicates that we expect that 40% of the
network nodes (or more accurately network node identifiers) will purposefully
misroute messages. In smaller networks, r is the probability that a peer at a large
social distance from us will route correctly. Here we have presented a linear trust
function. We consider others in Section 4.3.

102 Sergio Marti, Prasanna Ganesan, and Hector Garcia-Molina

We do not claim any of these functions with any specific parameter values
is an accurate trust representation of any or all social networks, but they do
serve to express the relation we believe exists between social structure and the
probability of intentional routing misbehavior.

2.2 Path Rating

We need to compare the likelihood that a message will reach its destination
given the path selected by a routing algorithm. For this reliability metric we
calculate a path trust rating, denoted by P , by multiplying the separate node
trust ratings for each node along the routing path from the source to destination.
For example, assume source node S wishes to route a message to destination
node D. In order to do so a routing algorithm calls for the message to hop
from S to A, then B, then C, and finally D. Then the path rating will be
P = T (S, A) ∗ T (S, B) ∗ T (S, C) ∗ T (S, D). Given that T (X, Y) is interpreted as
the actual probability node Y correctly routes node X ’s message, then P is the
probability that the message is received and properly handled by D. Note that
T (X, Y) is dependent only on the shortest path in the social network between
X and Y and thus independent of whether Y was the first, second, or nth node
along the path.

Including the final destination’s trust rating is optional and dependent on
what we are measuring. If we wish to account for the fact that the destination
may be malicious and ignore a message, we include it. Since we are using path
rating to compare routing algorithms going to the same destination, both paths
will include this factor, making the issue irrelevant.

3 Social Path Routing Algorithm

We wish to leverage the assumed correlation between routing reliability and
social distance by creating a peer-to-peer system that utilizes social information
from a service such as a community website or instant messenger service. Though
there are many ways to exploit social links, for this paper, we focus on building
a distributed hash table (DHT) routing algorithm. Specifically, we build on the
basic Chord routing algorithm [10]. Our technique is equally applicable to other
DHT designs, such as CAN [8] or Pastry [9].

When a user first joins the Chord network, it is randomly assigned a network
identifier from 0 to 1. It then establishes links to its sequential neighbors in
idspace, forming a ring of nodes. It also makes O(log n) long links to nodes
halfway around the ring, a quarter of the way, an eighth, etc. When a node
inserts or looks up an item, it hashes the item’s key to a value between 0 and 1.
Using greedy clockwise routing it can locate the peer whose id is closest to the
key, and is thus responsible for indexing the item, in O(log n) hops.

Our Social Path ROUTing (SPROUT) algorithm adds to Chord additional
links to any friends that are online. All popular instant messenger services keep
a user aware of when their friends enter or leave the network. Using this existing

DHT Routing Using Social Links 103

mechanism a node can maintain links to their friends in the DHT as well. This
provides them with several highly trusted links to use for routing messages.
When a node needs to route to key k SPROUT works as follows:

1. Locate the friend node whose id is closest to, but not greater than, k.
2. If such a friend node exists, forward the message to it. That node repeats

the procedure from step 1.
3. If no friend node is closer to the destination, then use the regular Chord

algorithm to continue forwarding to the destination.

3.1 Optimizations

Here we present two techniques to improve the performance of our routing algo-
rithm. We evaluate them in Section 4.2.

Lookahead. With the above procedure, when we choose the friend node closest
to the destination we do not know if it has a friend to take us closer to the
destination. Thus, we may have to resort to regular Chord routing after the first
hop. To improve our chances of finding social hops to the destination we can
employ a lookahead cache of 1 or 2 levels. Each node may share with its friends
a list of its friends and, in 2-level lookahead, its friends-of-friends. A node can
then consider all nodes within 2 or 3 social hops away when looking for the node
closest to the destination. We still require that the message be forwarded over
the established social links.

Minimum Hop Distance. Though SPROUT guarantees forward progress to-
wards the destination with each hop, it may happen that at each hop SPROUT
finds the sequential neighbor is the closest friend to the target. Thus, in the
worst case, routing is O(n).

To prevent this we use a minimum hop distance (MHD) to ensure that the
following friend hop covers at least MHD fraction of the remaining distance
(in idspace) to the destination. For example, if MHD = 0.25, then the next
friend hop must be at least a quarter of the distance from the current node to
the destination. If not then we resort to Chord routing, where each hop covers
approximately half of the distance. This optimization guarantees us O(log n)
hops to any destination but causes us to give up on using social links earlier in
the routing process. When planning multiple hops at once, due to lookahead, we
require the path to cover MHD

k additional distance for each additional hop, for
some appropriate k.

4 Results

In this section we evaluate our friend-routing algorithm as well as present op-
timizations. We also discuss the trust model and compare the different trust
functions.

104 Sergio Marti, Prasanna Ganesan, and Hector Garcia-Molina

4.1 Simulation Details

To try out our SPROUT algorithm for DHTs we decided to compare it to Chord.
We use two sources for social network data for our simulations. The first is
data taken from the Club Nexus community website established at Stanford
University. This dataset consists of over 2200 users and their links to each other
as determined by their Buddy Lists. The second source was a synthetic social
network generator based on the Small World topology algorithm presented in [7].
Both the Club Nexus data and the Small World data created social networks
with an average of approximately 8 links per node. We assigned each social
network node a random id in Chord.

We also ran experiments using a trace of a social network based on 130,000
AOL Instant Messenger users and their Buddy Lists provided by BuddyZoo [2].
Because of the size of this dataset, we have only used the data to verify results
of our other experiments.

For each experiment we chose 1000 random nodes and, for each node, 1000
random keys to search for (uniformly from 0 to 1). We computed a path using
each routing algorithm and gathered statistics on path length and trust rating.
Each data point presented below is the average of all 1,000,000 paths.

In Section 4.2 we use the linear trust function described in Section 2 with
f = 0.95 and r = 0.6, which corresponds to 40% of the nodes misbehaving.
We feel such a large fraction of bad nodes is reasonable because of the threat
of Sybil attacks. We evaluate different trust functions and parameter values in
Section 4.3.

4.2 Algorithm Evaluation

We first evaluate SPROUT, using a lookahead of 1 and MHD = 0.5, to Chord
using the Club Nexus social network data. The first and third rows of Table 1
give the measured values for both the average path length and average path
rating (or path reliability) of both regular Chord routing and SPROUT. With
an average path length of 5.343 and average rating per path of 0.3080, Chord
performed much worse in both metrics than SPROUT, which attained values
of 4.569 and 0.4661, respectively. In fact, a path is over 1.5 times as likely to
succeed using standard SPROUT as with regular Chord.

Table 1. SPROUT vs. Chord

Avg. Path Length Avg. Reliability

Regular Chord 5.343 0.3080

Augmented Chord 4.532 0.3649

SPROUT(1,0.5) 4.569 0.4661

But this difference in performance may be simply due to SPROUT having
additional links available for routing, and the fact that they are friend links may
have no effect on performance. To even the comparison we augmented Chord

DHT Routing Using Social Links 105

by giving each node an equal number of random links for Chord to use as it
has friend links. The performance of the augmented Chord (AC) is given in the
second row of Table 1. As expected, with more links to choose from AC performs
significantly better than regular Chord, especially in terms of path length. But
SPROUT is still 1.3 times as likely to route successfully. In the following sections
we compare SPROUT only to the augmented Chord algorithm.

How were the lookahead and MHD values used above chosen? Table 2 shows
the results of our experiments in varying both parameters in the same scenario.
As we see, the largest increase in reliability comes from using a 2-level lookahead.
But this comes at a slight cost in average path length, due to the fact that more
lookahead allows us to route along friend links for more of the path. For example,
for MHD = 0.5, no lookahead averaged 0.977 social links per path, while 1-level
lookahead averaged 2.533 and 2-level averaged 3.491. Friend links tend to not
be as efficient as Chord links, so forward progress may require 2 or 3 hops,
depending on the lookahead depth. But friend links are more likely to reach
nodes closer to the sending node on the social network.

Table 2. Evaluating lookahead and MHD

Lookahead
MHD None 1-level 2-level

Length Rating Length Rating Length Rating

0 4.875 0.4068 5.101 0.4420 5.378 0.4421

0.125 4.805 0.4070 5.003 0.4464 5.258 0.4478

0.25 4.765 0.4068 4.872 0.4525 5.114 0.4551

0.5 4.656 0.4033 4.569 0.4661 4.757 0.4730

Increasing MHD limits the choices in forward progressing friend hops, caus-
ing the algorithm to switch to Chord earlier than otherwise, but mitigates in-
efficient progress. A large MHD seems to be most effective at both shortening
path lengths and increasing path rating. This is not very surprising. Since our
reliability function is multiplicative each additional link appreciably drops the
path reliability.

From these results we chose to use a 1-level lookahead and an MHD of 0.5 for
our standard SPROUT procedure. Though 2-level lookahead produced slightly
better path ratings we did not feel it warranted the longer route paths and
exponentially increased node state propagation and management. Our available
social network data indicates that a user has on average between 8 and 9 friends.
Thus, we would expect the average node’s level-1 lookahead cache to hold less
than 100 entries.

The path ratings presented above were relatively small, indicating a low, but
perhaps acceptable, probability of successfully routing to a destination in the
DHT. If the number of friends a user has remains relatively constant but the
total number of network nodes increases we would expect performance to drop.
But by how much? To study this we ran our experiment using our synthetic

106 Sergio Marti, Prasanna Ganesan, and Hector Garcia-Molina

Small World model for networks of different sizes with a maximum peer social
degree proportional to O(log n). We present these results in Figure 1.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 100 1000 10000 100000
 0

 10

 20

 30

 40

 50

 60

 70

 80

A
ve

ra
ge

 R
el

ia
bi

lit
y

P
er

ce
nt

ag
e

Number of Nodes

Augmented Chord
SPROUT

Percent Improvement (SPROUT over AC)

Fig. 1. Performance of SPROUT and AC in different size Small World networks. The
third curve shows the relative performance of SPROUT with respect to AC, plotted
on the right-hand y-axis. Note that the x-axis is logscale

As expected, for larger networks the path length increases, thus decreasing
overall reliability. Because the average path length is Θ(log n) as in Chord and
we are using a multiplicative path rating, the reliability drops exponentially
with respect to log n. The range of network sizes tested is insufficiently large to
properly illustrate an exponential curve, giving it a misguiding linear appearance.
Notice that the relative performance gain of SPROUT over AC increases as the
network grows. At 10,000 nodes SPROUT performs over 50% better than AC.
As the network grows, the average number of social links increases slightly. The
benefit SPROUT derives from additional friend links is greater than the benefit
AC derives from additional random links.

4.3 Calculating Trust

All of our previous results used a linear trust function with f = 0.95. Of course
other trust functions or parameter values may be more appropriate for different
scenarios. T (A, B), using the linear trust function LT we previously described,
is defined in Equation 1 as a function of d, the distance from A to B in the social
network.

DHT Routing Using Social Links 107

LT (d) = max(1 − (1 − f)d, r) (1)

Instead of a linear drop in trust, we may want to model an exponential drop
at each additional hop. For this we use an exponential trust function ET , shown
in Equation 2.

ET (d) = max(fd, r) (2)

Another simple function we call the step trust function ST (d) assigns an
equal high trustworthiness of f to all nodes within h hops of us and the standard
rating of r to the rest. Equation 3 defines the step trust function.

ST (d) = if (d < h) then f else r (3)

In our experiments we set h, the social horizon, to 5.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

A
ve

ra
ge

 P
at

h
R

el
ia

bi
lit

y

f

LT - Augmented Chord (AC)
LT - SPROUT

ST - AC
ST - SPROUT

ET - AC
ET - SPROUT

Fig. 2. Performance of SPROUT and AC for different trust functions and varying f .
Higher value is better

All three functions are expressed so that f is the rating assigned to nodes
one hop away in the social network, the direct friends. In Figure 2 we graph
both routing algorithms under all three trust functions as a function of the
parameter f .

We see here that both the linear (LT) and exponential (ET) trust functions
perform equivalently while the step trust function (ST) gives less performance
difference for varying f . For all trust functions SPROUT demonstrates a clear
improvement over augmented Chord for f > 0.85. For example, at f = 0.96

108 Sergio Marti, Prasanna Ganesan, and Hector Garcia-Molina

using the exponential function SPROUT succeeds in routing 55% of the time,
while AC only 46%.

We also varied r, the expected fraction of good nodes in the network. We
found that for values of r < 0.75 performance remained almost constant. Above
0.75 both algorithms steadily increased.

4.4 Message Load

One problem SPROUT faces is uneven load distribution due to the widely vary-
ing social connectivity of the nodes. Peers with more social links are expected
to forward messages for friends at a higher rate than weakly socially connected
peers. To study this issue we measure the number of messages forwarded by each
node over all 1,000,000 paths for both SPROUT(1,0.5) and augmented Chord.
The resulting load on each node, in decreasing order, is given by the first two
curves in Figure 3. The load is calculated as the fraction of all messages a node
participated in routing.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 1 10 100 1000 10000

Lo
ad

Node Rank

Augmented Chord
SPROUT

SPROUT (No Top 10)
SPROUT (Limit 20)

Fig. 3. Distribution of load (in fraction of routes) for augmented Chord and SPROUT.
Lower is better. Social links were removed for the top 10 highest connected nodes for
the No Top 10 curve. All nodes were limited to at most 20 social links for the Limit
20 curve. Note the logscale x-axis

The highest loaded node in the SPROUT experiment was very heavily loaded
in comparison to AC (4% vs 0.75%). As expected, a peer’s social degree is propor-
tional to its load, with the most connected peers forwarding the most messages.

DHT Routing Using Social Links 109

Though the top 200 nodes suffer substantially more load with SPROUT than
AC, the remaining nodes report equal or less load. Because the average path
length for SPROUT is slightly higher than for AC, the total load is greater
in the SPROUT scenario. Yet the median load is slightly lower for SPROUT,
further indicating an imbalanced load distribution.

To analyze the importance of the highly connected nodes we removed the
social links from the top 10 most connected nodes, but kept their regular Chord
links and reran the experiment. As the third curve in Figure 3 shows, the load
has lowered for the most heavily weighted nodes, yet remains well above AC.
Surprisingly the reliability was barely affected, dropping by 2% to 0.4569. If
highly connected nodes were to stop forwarding for friends due to too much
traffic, the load would shift to other nodes and the overall system performance
would not be greatly affected.

Instead of reacting to high load, nodes may wish to only provide a limited
number of social links for routing from the start. We limited all nodes to using
only at most 20 social links for SPROUT. As we can see from the Limit 20 curve
in Figure 3, the load on the highly-loaded peers (excluding the most loaded peer)
has fallen further, but not significantly from the No Top 10 scenario. The average
path reliability has dropped only an additional 1.5% to 0.4500.

In the end, it is the system architect who must decide whether the load skew
is acceptable. For weakly connected homogeneous systems, fair load distribution
may be critical. For other systems, improved reliability may be more important.
In fact, one could take advantage of this skew. Adding one highly-connected
large-capacity node to the network would increase reliability while significantly
decreasing all other nodes’ load.

5 Related and Future Work

In [1], Castro et al propose using stricter network identifier assignment and den-
sity checks to detect misrouting attacks in DHTs. They suggest using constrained
routing tables and redundant routing to circumvent malicious nodes and provide
more secure routing. SPROUT is complementary to their approach, simply in-
creasing the probability that the message will be routed correctly the first time.
One technique of theirs that would be especially useful in our system was their
route failure test based on measuring the density of network ids around oneself
and the purported destination. Not only can this technique be used to deter-
mine when a route has failed, but it can be used to evaluate the trustworthiness
of a node’s sequential neighbors by comparing local density to that at random
locations in idspace or around friends.

One open question is whether node ids can be assigned more intelligently to
improve trustworthiness. That is, if identifiers were assigned to nodes based on
the current ids of their connected friends, what algorithm or distribution for id
assignment would optimize our ability to route over social links?

We would like to evaluate SPROUT in a system using replication. To illus-
trate, assume we use k replicas, and node A attempts to insert an item in the

110 Sergio Marti, Prasanna Ganesan, and Hector Garcia-Molina

DHT and B searches for that item’s key. If a message has an expected probabil-
ity p of reaching its destination, then the probability of B discovering A’s item
is 1 − (1 − p2)k. Using the values in Table 1 for p and k = 3, SPROUT would
succeed 52% of the time compared to only 35% for AC.

Users may be willing to declare more friends if it would improve their per-
formance. How many social links would each user need to maintain to reach a
target average path rating?

With few modifications our model can be used to evaluate other issues, such
as Quality of Service. If peers prioritized message forwarding based on service
agreements and/or social connections we may want to use latency to compare
routing algorithms. Using functions that give expected delay at each node in
place of trust functions, and using an additive, instead of multiplicative, path
rating function, we could express this appropriately. In [5] we explore this and
other issues and demonstrate that SPROUT performs even better with respect
to Chord in such systems.

6 Conclusion

We have presented a method for leveraging the trust relationships gained by
marrying a peer-to-peer system with a social network, and applied it to the
problem of mitigating misrouting attacks. We described a model for evaluating
routing algorithms is such a system and proposed SPROUT, demonstrating how
it can improve successful routing in a system where a large fraction of the nodes
are malicious.

Acknowledgements

The authors would like to thank Orkut Buyukkokten for providing us with the
Club Nexus data and Adam D’Angelo for providing us with the BuddyZoo data.

References

1. Castro, M., Drushel, P., Ganesh, A., Rowstron, A., and Wallach, D. Secure routing
for structured peer-to-peer overlay networks. In OSDI ’02 (2002).

2. D’Angelo, A. BuddyZoo. http://www.buddyzoo.com.
3. Friedman, E., and Resnick, P. The social cost of cheap pseudonyms. Journal of

Economics and Management Strategy 10, 2 (1998), 173–199.
4. Gummadi, K., Gummadi, R., Gribble, S., Ratnasamy, S., Shenker, S., and Stoica,

I. The impact of DHT routing geometry on resilience and proximity. In Proc. ACM
SIGCOMM (2003).

5. Marti, S., Ganesan, P., and Garcia-Molina, H. SPROUT: P2P Routing with Social
Networks. Tech. rep., 2004. dbpubs.stanford.edu/pub/2004-5.

6. Marti, S., and Garcia-Molina, H. Identity crisis: Anonymity vs. reputation in p2p
systems. In IEEE 3rd International Conference on Peer-to-Peer Computing (P2P
2003).

DHT Routing Using Social Links 111

7. Puniyani, A. R., Lukose, R. M., and Huberman, B. A. Intentional Walks
on Scale Free Small Worlds. ArXiv Condensed Matter e-prints (July 2001).
http://aps.arxiv.org/abs/cond-mat/0107212.

8. Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Shenker, S. A scalable
content addressable network. Tech. Rep. TR-00-010, Berkeley, CA, 2000.

9. Rowstron, A., and Druschel, P. Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. IFIP/ACM International Conference
on Distributed Systems Platforms (2001), 329–350.

10. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D. R., Kaashoek, M. F., Dabek, F.,
and Balakrishnan, H. Chord: a scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Trans. Netw. 11, 1 (2003), 17–32.

When Multi-hop Peer-to-Peer Lookup Matters

Rodrigo Rodrigues and Charles Blake

MIT Computer Science and Artificial Intelligence Laboratory
rodrigo@csail.mit.edu, cb@mit.edu

Abstract. Distributed hash tables have been around for a long time [1,
2]. A number of recent projects propose peer-to-peer DHTs, based on
multi-hop lookup optimizations. Some of these systems also require data
permanence. This paper presents an analysis of when these optimizations
are useful. We conclude that the multi-hop optimizations make sense
only for truly vast and very dynamic peer networks. We also observe
that resource trends indicate this scale is on the rise.

1 Introduction

Distributed hash tables (DHTs) propose a logically centralized, physically dis-
tributed, hash table abstraction that can be shared simultaneously by many
applications [1, 2].

Recently, DHTs have been proposed as a basic interface for building peer-to-
peer systems [3–6]. These peer-to-peer DHTs share, in their design, the fact that
they are divided into a lookup layer, which locates nodes responsible for objects
in the system, and a storage layer that provides the DHT abstraction.

Most work on peer-to-peer DHTs takes the necessity of routing in a flat
address space as a given. In particular, peer-to-peer DHTs (with a single excep-
tion [7]) employ small lookup state optimizations that lead to multiple routing
hops, typically O(log N). While often not explicit, we can speculate that the
designers of these DHTs fear that the bandwidth or memory requirements of an
approach where every node maintains complete system membership information
are overwhelming for a “large scale” membership.

Since levels of routing indirection complicate several aspects of the system
(e.g., security, server selection, operation latency) we believe it is useful to quan-
tify what “large scale” means. Our thesis is that, in realistic deployment scenarios
for peer-to-peer DHTs, maintaining complete membership information is both
possible and beneficial.

The main contribution of this paper is to present an analytic model that
allows us to determine when indirection is desirable. To answer this question
we need to take into account several variables of the system. The most obvious
ones are the membership durations and the size of the system, since these affect
the size of the membership state and the bandwidth needed to maintain up-
to-date membership information. Other variables are also important, though
more implicitly, such as the total amount of data stored in the DHT (assuming
that the DHT provides a reliable mapping – other assumptions, along with

G.M. Voelker and S. Shenker (Eds.): IPTPS 2004, LNCS 3279, pp. 112–122, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

When Multi-hop Peer-to-Peer Lookup Matters 113

applications other than DHTs, are discussed in section 6). This will influence
how large and dynamic the membership can be – if the membership is too
dynamic, the bandwidth required to maintain data redundancy will overwhelm
the peers’ capacity [8].

Our analysis allows us to conclude that routing only matters for peer net-
works in excess of a few tens of millions of nodes. For smaller networks, the
feasibility of maintaining data requires membership to be stable enough that
maintaining full membership is cheap. With such stable membership, lookup in-
direction is an unnecessary complexity that can even hurt overall performance
(e.g., by increasing lookup latency or impeding server selection).

The remainder of the paper is organized as follows. Section 2 presents the
model for redundancy maintenance in a peer-to-peer DHT. Section 3 presents
the model for the bandwidth cost of maintaining full membership information.
Section 4 analyzes when routing needs optimizing, and this analysis is gener-
alized to produce a result independent of churn in Section 5. In Section 6 we
discuss possible applications of multi-hop routing schemes (other than peer-to-
peer DHTs), and we conclude in Section 7.

2 DHT Data Maintenance

In this section we consider the bandwidth necessary for maintaining data in a
peer-to-peer DHT. As mentioned, the bandwidth constrains are going to limit
the amount of data in the system, the membership dynamics, and the number of
nodes in the system, hence it will also influence the need for a routing substrate.
We present a simple analytic model for bandwidth usage that attempts to provide
broad intuition and still applies in some approximation to currently proposed
systems. A more detailed version of this analysis is presented in a previous
publication [8].

2.1 Assumptions

We assume a simple redundancy maintenance algorithm: whenever a node leaves
or joins the system, the data that node either held or will hold must be down-
loaded from somewhere. Note that by join and leave we mean really joining the
system for the first time or leaving forever. We do not refer to transient failures,
but rather the intentional or accidental loss of the contributed data. Transient
failures are masked by the use of appropriate redundancy techniques. We also
assume there is a static data placement strategy (i.e., a function from the current
membership to the set of replicas of each block).

We make a number of simplifying assumptions. Each one is conservative – in-
creased realism would increase the bandwidth required. The fact that we perform
an average case analysis also makes it conservative, since it does not consider
the worst-case accidents of data distribution and other variations.

We assume identical per-node space and bandwidth contributions. In prac-
tice, nodes may store different amounts of data and have different bandwidth

114 Rodrigo Rodrigues and Charles Blake

capabilities. Maintaining redundancy may require in certain cases more band-
width than the average bandwidth. Creating more capable nodes from a set of
less capable nodes might take more time. Average space and bandwidth therefore
conservatively bound the worst case – the relevant bound for a guarantee.

We assume a constant rate of joining and leaving. Here also, the worst case
is the appropriate figure to use for any probabilistic bound. The average rate
is therefore conservative. We also assume independence of leave events. Since
failures of networks and machines are not truly independent, more redundancy
would be required in practice to provide better guarantees.

We assume a constant steady-state number of nodes and total data size. A
decreasing population requires more bandwidth while an increasing one cannot
be sustained indefinitely. It would also be more realistic to assume data increases
with time or changes which would again require more bandwidth.

2.2 Data Maintenance Model

Consider a set of N identical hosts which cooperatively provide guaranteed stor-
age over the network. Nodes are added to the set at rate α and leave at rate λ,
but the average system size is constant, i.e. α = λ. On average, a node stays a
member for T = N/λ.

Our data model is that the system reliably stores a total of D bytes of unique
data stored with a redundancy expansion factor k, for a total of S = kD bytes
of contributed storage. One may think of k as either the replication factor or the
expansion due to coding. The desired value of k depends on both the storage
guarantees and redundant encoding scheme [8].

We now consider the data maintenance bandwidth required to maintain this
redundancy in the presence of a dynamic membership. Note that the model does
not consider the bandwidth consumed by queries.

Each node joining the overlay must download all the data which it must later
serve, however that subset of data might be mapped to it. The average size of
this transfer is S/N . Join events happen every 1/α time units. So the aggregate
bandwidth to deal with nodes joining the overlay is αS

N , or S/T .
When a node leaves the overlay, all the data it housed must be copied over to

new nodes, otherwise redundancy would be lost. Thus, each leave event also leads
to the transfer of S/N bytes of data. Leaves therefore also require an aggregate
bandwidth of λS

N , or S/T . The total bandwidth usage for all data maintenance
is then 2S

T , or a per node average of:

B/N = 2
S/N

T
, or BW/node = 2

space/node

lifetime
(1)

Figure 1 plots some example “threshold curves” in the lifetime-membership
plane. These assume a cable modem connection (limited by its 200 kbps up-
stream connection) and that 25% of the upstream bandwidth is used for data
redundancy maintenance. They assume the redundancy factor is k = 8. This
is an appropriate encoding rate if availability is over about 75% and we use
replication [8].

When Multi-hop Peer-to-Peer Lookup Matters 115

1000 TB

12 months
 6 months
 3 months

 1 month

 1 week

 1 day

 8 hrs

 3 hrs

 1 hr

A
ve

ra
ge

 M
em

be
rs

hi
p

T
im

e
(L

O
G

 S
C

A
L

E
)

1 M
IL

L
IO

N

10 M
IL

L
IO

N

100 M
IL

L
IO

N

1 B
IL

L
IO

N

100,000

10,000

1,000

Number of Peers (LOG SCALE)

<< 50 Kbps

REDUND

1 TB

EASY

HARD

REDUND

>> 50 Kbps

50 TB

24 months

Fig. 1. Log-Log plots for the participation requirements of a cable modem network.
Plotted are regions below which various amounts of unique data will incur over 25%
link saturation just to maintain the data. These use a redundancy k = 8.

This figure shows that for a million nodes to cooperatively store a petabyte
of data in a DHT, nodes must remain in the system for about one month on
average (albeit with possible temporary disconnections [8]).

3 Full Information Lookup

Now we turn to the cost of maintaining complete membership information at
each node. The storage cost of maintaining these data structures is negligible.
For instance, 10 million IPv4 addresses occupy only 57 MB. What is important
are the bandwidth costs which we now analyze.

3.1 Trivial Join Protocol

To bound bandwidth needs, we present a simple protocol for the cost of main-
taining full membership information in a peer-to-peer system. The point of this
protocol is not to constitute a “complete” system implementation. Instead, we
use it for its ostensible simplicity of description, implementation, and analysis.
Such analysis will afford us a rough estimate for the main bandwidth costs of
membership maintenance, neglecting less costly details such as TCP-layer re-
transmits.

Our join algorithm is simply this: the joining node downloads the entire mem-
ber list from anyone and then notifies everyone he is a member. Join notifications
are sent continuously until acknowledged from each node. To avoid exorbitant
retransmits, the retry time scale is exponentially backed off to some upper limit
related to the session time distribution.

116 Rodrigo Rodrigues and Charles Blake

This protocol is intentionally simple to ease analysis. A more sophisticated
multicast protocol might lower the cost of distributing membership information.
The bound we generate is hence quite conservative, since a larger point of this
paper is that good system design introduces such fancier protocols and complex-
ity only when required, not proactively for systems of scales which are unlikely
to be relevant any time soon.

Assuming that a fraction u of the nodes is unreachable during each notifica-
tion attempt, this generates the following per-join bandwidth consumption.

– outbound:
N × 48 × (1 + u + u2 + ...) = 48N

1−u ,
where 48 = 20 byte node id +28 byte UDP header.

– inbound:
acks: N× 28 bytes. (neglecting IP packet loss)
member list: N× 26 bytes,
where 26 = 20 byte id +6 byte IPv4 address/port.

The average per-node upload or download bandwidth to handle node joins
is given by:

(outbound + inbound)
λ

N
= (54 +

48
1 − u

)N
λ

N
= (54 +

48
1 − u

)N/T (2)

3.2 Trivial Leave Protocol

As protocols go, doing nothing at all is fairly simple. All that matters is all
remaining nodes to individually notice when a host has been persistently down.
This is most naturally done by some staggered or random probing of hosts
stretched out over a period of time, τ . Taking partial availability into account,
suppose a host must be non-responsive m times – say 4 times to yield a false
eviction rate of about 1/256 for unavailability u = 1/4. The expected fraction
of stale entries is then Pstale = 1 − T/(T + mτ). E.g., Pstale = 1/3 and m = 4
implies that τ = T/8.

A plausible timescale of true membership dynamics in data sharing peer-to-
peer systems, T , is one-to-several weeks [9]. So, τ = 1 day is a plausible target.
The bandwidth costs of such a staggered, retrying host eviction is modest. E.g.,
for N = 8, 640, 000 a refresh time of 1 day only costs 100 probes/s or roughly
20 kbps with 28 byte probe packets.

If N is a bit smaller and queries are randomly distributed then query traffic
itself can act as a passive probe at no cost of additional bandwidth. E.g. if the
system size is N = 100, 000 nodes and 64 kbps are used for uploading 8 kB
blocks then τ ≈ 1 day.

3.3 Stale Membership Issues

The principal consequence of the existence of a small fraction of stale membership
data is in slightly longer timeouts on synchronous “store” operations. When

When Multi-hop Peer-to-Peer Lookup Matters 117

storing data on new nodes the system must timeout store requests that fail,
creating a higher operation latency, perhaps ten times the worst case network
round-trip – a few seconds of real time. In replica-oriented redundancy, the first
few replicas are likely to be stored very quickly yielding some immediate data
reliability and availability. Synchronously waiting for the slowest few peers to
store provides diminishing returns on the reliability of a data block.

Additionally, reads dominate writes in most applications. It is often a very
desirable tradeoff for writes to be a highly concurrent background operation if
reads can be made faster. Engineering an entire system around an optimized
write latency with no particular application in mind seems off track. E.g., writes
to a backup system which occur at off hours to maximize the “user-level” data
coherency can take almost as long as one likes while having the particular
backup recovery block one wants as soon as possible is more important. Since
full-information lookups can surely do at least somewhat better dynamic server
selection for “get” operations, the end to end performance of user-relevant op-
erations could be faster.

4 When Indirection Helps

Now we move on to the main question of this paper: When do DHTs profit from
multi-hop lookup?

4.1 Combining Our Bounds

To answer this question we combine the results of the two previous sections, first
graphically and then algebraically. Figure 2 shows, in the lifetime-membership
plane, the intersection between Figure 1 and the region bounded by equation 2.
In other words, it shows, on the one hand, when is a peer-to-peer DHT feasible in
terms of redundancy maintenance bandwidth (i.e., the region above the dashed
lines of Figure 1). On the other hand, it also shows when it is not feasible
to maintain complete membership information (i.e., the region below the lines
defined by equation 2). For the latter region, we plotted two curves. The solid
curve assumes that the average membership maintenance bandwidth for node
joins saturated 25% of a cable modem uplink speed (50 Kbps), and fixed u = 0.25
in equation 2. We may argue that in some scenarios we would like to start
optimizing this cost even earlier, so we plotted another curve (marked “<< 1
Kbps”) corresponding to an average membership maintenance bandwidth of 1
Kbps. This ignores the costs of handling node departures, as we have shown that
this cost is small.

The intersection of these two lines delineates the interesting region where
small lookup state DHTs may be an adequate solution, since it is required to
avoid the large bandwidth consumption of maintaining full membership informa-
tion (the shaded quadrant marked “multi-hop matters”). The quadrant above
the dashed lines and also above the solid line defines when a peer-to-peer DHT
is feasible, but multi-hop lookup is not required (marked “lookup easy”).

118 Rodrigo Rodrigues and Charles Blake

24 months
12 months
 6 months
 3 months

 1 month

 1 week

 1 day

 8 hrs

 3 hrs

 1 hr
1 M

IL
L

IO
N

10 M
IL

L
IO

N

100 M
IL

L
IO

N

1 B
IL

L
IO

N

100,000

10,000

1,000

1 TB

50 TB

1000 TB

LOOKUP
EASY

<< 50
 K

bps

<< 1
Kbps

A
ve

ra
ge

 M
em

be
rs

hi
p

T
im

e
(L

O
G

 S
C

A
L

E
)

Number of Peers (LOG SCALE)

MATTERS
MULTI−HOP

Fig. 2. Putting it all together. The dashed lines from Figure 1 border the feasibility of
a peer-to-peer DHT. The lines marked “<< 1 Kbps” and “<< 50 Kbps” border the
need for multi-hop lookup. The shaded region corresponds to the deployment scenarios
where peer-to-peer DHTs are feasible and multi-hop optimizations may be required.

4.2 Data, Pointers, and All That

Figure 2 shows that, for a petabyte of data, DHT feasibility needing multi-hop
lookup requires over 10 million participants. Further, for 10 million hosts to store
1 petabyte of unique data, each node will only contribute merely 100 megabytes
of unique data, or 800 megabytes of total data (recall we used k = 8). This
seems like a modest contribution, only 1% of a small disk in a standard PC sold
today. More meaningful contributions would require a more stable membership,
and thus lessen the need for multi-hop routing.

For a smaller DHT (50 TB), multi-hop DHTs may be interesting if we have
to employ a few million nodes to serve the data. To store only pointers to a few
petabytes of data might require only 1 TB to be stored in the DHT. While storing
only pointers does lower the membership scale at which multi-hop optimizations
matter, as Figure 2 shows, it only does so for extremely volatile memberships.
This then raises the question about how the data itself is being maintained
(see Figure 1). If the data is being maintained then a fairly reliable pool of
peers is available and could also be used for the lookup service without multi-
hop schemes. (The lookup service adds negligible load since looking up a block
uses much less bandwidth than serving a block.) If the data is not reliable, then
it seems strange to have an indexing service that is much more reliable and
available. For the scenario of unreliable data or distributed caching, one of the
approaches in Section 6 is more appropriate.

When Multi-hop Peer-to-Peer Lookup Matters 119

4.3 Hardware Trends

The discussion so far suggests that for systems with the many millions of nodes
needed for multi-hop lookup to be a relevant optimization, data maintenance
bandwidth constraints prevent using more than a few hundred MB/node. A
quick reflection of hardware trends, recapped by Table 1, suggest that multi-hop
optimizations will be even less interesting in the future. This table shows how
long it would take to upload your hard disk through your network connection
for a “typical” user, and how this figure has evolved.

Table 1. Disk increased by 8000-fold while bandwidth increased only 50-fold.

Home access Academic access
Year Disk Speed Days Speed Time

(Kbps) to send (Mbps) to send

1990 60 MB 9.6 0.6 10 48 sec
1995 1 GB 33.6 3 43 3 min
2000 80 GB 128 60 155 1 hour
2005 0.5 TB 384 120 622 2 hour

Table 1 suggests that disk upload time is getting larger quickly. This implies
that if peers are to contribute substantial fractions of their disks then their
participation must become more and more stable. This additional stability makes
a multi-hop indirection infrastructure even less necessary. This supports the
point that multi-hop lookups will not be necessary if one wishes to build a DHT
from a large peer population: the more you move “up” on the graph in Figure 2,
the less likely it is that multi-hop will matter.

5 Factoring Out Churn

The idea of Section 4 can be generalized to a simple algebraic result independent
of membership turnover. Equation 1 and Equation 2 can be equated to discover
when membership maintenance overhead is about as large as data maintenance
overhead:

2S/N

T
=

(54 + 48
1−u)N
T

≈ 118N

T
⇒ N ≈ S/N

60 bytes

This gives the rough scale at which small-state (i.e., multi-hop) lookup op-
timizations matter. Per node contributions in the gigabytes implies multi-hop
importance scales in the tens of millions. E.g., if S/N = 3 GB, then one only
needs multi-hop lookup when N > 50 million.

While it is hard to know for sure, the current Internet is very unlikely to
have more than 50 million hosts simultaneously running the distributed ser-
vice 75% of the time. At the same time it seems very likely that many if not
most computers in the current Internet have 3 GB of disk space to contribute.

120 Rodrigo Rodrigues and Charles Blake

The hardware trends mentioned in Section 4 are therefore quite indicative. As
the disk-bandwidth disparity grows, multi-hop lookup systems will become less
relevant.

Even if our model is imprecise, estimating only the order of magnitude of
membership maintenance, it still seems unavoidable to conclude that current
multi-hop DHTs seem relevant, forward-looking designs only when one has ei-
ther an enormous system scale supporting a small amount of data or draconian
membership freshness guarantees.

6 Whither Peer-to-Peer Routing?

The analysis of the paper seems to imply that peer-to-peer routing is only useful
in a limited number of situations with very high membership, moderate peer
dynamics, and small total data state. However, our analysis is limited to robust
peer-to-peer DHTs, i.e., DHTs that provide a consistent and reliable mapping
from keys to values. Peer-to-peer routing may be extremely useful for other
classes of applications. In this section we highlight some relevant examples.

One example are DHTs that do not try to provide a consistent and reliable
mapping or do not place replicas randomly. An example of a DHT that falls
into this category is Coral [10]. This DHT only stores soft-state – thus it does
not require lookups to always retrieve the latest data that was stored under
that key – and it uses clustering techniques to create nearby copies of the data.
For both reasons, Coral does not incur in the DHT data maintenance costs of
Section 2, as the model in question does not apply to it.

The second example is the class of applications, other than DHTs, that take
advantage of the peer-to-peer routing topology. An example of such an appli-
cation is implementing a cooperative multicast infrastructure [11–13], but other
applications exist. These applications do not necessarily store data, and there-
fore do not incur in the costs of Section 2. Furthermore these applications may
find peer-to-peer routing useful for reasons other than saving bandwidth, since
they take advantage of the topology that is automatically formed by the routing
layer. Therefore the analysis in Section 4 does not apply here, and multi-hop
routing can be useful independently of system churn.

Some peer-to-peer storage systems exploit indirection to perform dynamic
volatile replica creation along the lookup path. Such caching spreads the load
for popular content at the cost of substantial additional bandwidth usage. Ef-
fectively, the curves in Figure 1 are shifted away from the origin. While this is a
possibly interesting application of multi-hop lookups, only one level of indirection
(i.e., two total routing hops) seems necessary to support this.

7 Conclusion

This paper argues that the feasibility of a peer-to-peer DHT may imply either
a relatively stable membership, or an extremely large participation in the sys-
tem. If the membership is somewhat stable, then the utility of multi-hop lookup
optimizations must be questioned.

When Multi-hop Peer-to-Peer Lookup Matters 121

Our analysis tries to quantitatively bound when multi-hop lookups may be
needed. The main conclusion is that this optimization is required only if the
system is comprised of more than tens of millions of nodes (under conservative
assumptions).

Further, hardware trends indicate that, if peers are to donate significant
fractions of the their free storage space to the DHT, then multi-hop lookup
optimizations are even less likely to be required in the future.

Acknowledgements

We would like to thank Nick Feamster, Sean Rhea, and Mike Walfish for helpful
comments on drafts of this paper.

This research is supported by DARPA under contract F30602-98-1-0237
and by the NSF under Cooperative Agreement ANI-0225660 (http://project-
iris.net). Rodrigo Rodrigues was supported by a fellowship from the Calouste
Gulbenkian Foundation, and was previously supported by a Praxis XXI fellow-
ship.

References

1. Gribble, S., Brewer, E., Hellerstein, J., Culler, D.: Scalable, distributed data struc-
tures for internet service construction. In: Proceedings of the 4th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 2000). (2000)

2. Litwin, W., Neimat, M.A., Schneider, D.A.: LH* - linear hashing for distributed
files. In: Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data. (1993)

3. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: Proc. ACM SIGCOMM. (2001)

4. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and rout-
ing for large-s cale peer-to-peer systems. In: Proc. IFIP/ACM International Con-
ference on Distributed Systems Platforms (Middleware 2001). (2001)

5. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: Proc. ACM SIG-
COMM. (2001)

6. Zhao, B., Kubiatowicz, J., Joseph, A.: Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Technical Report UCB/CSD-01-1141, UC Berkeley
(2001)

7. Gupta, A., Liskov, B., Rodrigues, R.: Efficient routing for peer-to-peer overlays. In:
Proc. First Symposium on Networked Systems Design and Implementation (NSDI
’04). (2004)

8. Blake, C., Rodrigues, R.: High availability, scalable storage, dynamic peer net-
works: Pick two. In: Proc. 9th Workshop on Hot Topics in Operating Systems.
(2003)

9. Bhagwan, R., Savage, S., Voelker, G.: Understanding availability. In: Proc. 2nd
International Workshop on Peer-to-Peer Systems (IPTPS ’03). (2003)

10. Freedman, M., Mazières, D.: Sloppy hashing and self-organizing clusters. In:
Proceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS
’03). (2003)

122 Rodrigo Rodrigues and Charles Blake

11. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.: SCRIBE: A large-scale
and decentralised application-level multicast infrastructure. IEEE Journal on Se-
lected Areas in Communications (2002)

12. Ratnasamy, S., Handley, M., Karp, R., Shenker, S.: Application-level multicast
using content-addressable networks. In: 3rd International Workshop on Networked
Group Communication (NGC’01). (2001)

13. Zhuang, S., Zhao, B., Joseph, A., Katz, R., Kubiatowicz, J.: Bayeux: An architec-
ture for scalable and fault-tolerant wide-area data dissemination. In: Network and
Operating System Support for Digital Audio and Video (NOSSDAV’01). (2001)

Uncoordinated Load Balancing and Congestion Games
in P2P Systems�

Subhash Suri1, Csaba D. Tóth1, and Yunhong Zhou2

1 Department of Computer Science, University of California, Santa Barbara, CA 93106
{suri,toth}@cs.ucsb.edu

2 Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304
yunhong.zhou@hp.com

Abstract. In P2P systems, users often have many choices of peers from whom
to download their data. Each user cares primarily about its own response time,
which depends on how many other users also choose that same peer. This interac-
tion is best modeled as a game among self-interested agents, which we call unco-
ordinated load balancing. The players in this game are the rational and strategic
users who are free to act in their own self-interest. We describe some of our recent
work on this problem, and propose several new research directions, including an-
alyzing Nash equilibria under general latency functions, a cost to switch servers,
settings where user groups are dynamic, as well as the complexity of finding Nash
solutions, and incentives for peers to be truthful in revealing their load.

1 Introduction

In Peer-to-peer (P2P) systems, data are often replicated to enable a high level of avail-
ability and fault tolerance. As a result, users typically have choice of many hosts from
whom to download their data. Each user is selfish and strategic, and wants to minimize
its response time. On the other hand, when serving data to multiple users, a host must
share its limited bandwidth among those users. Therefore, the latency (response time)
experienced by a user when downloading data from a host depends on how many other
users are connected to that host. Different hosts may have different speeds. We assume
that the response time is inversely proportional to the speed of the host, but grows lin-
early with the total number of users connected to a host. (All our results generalize to
the case where the response time grows as the pth power of the load.)

Each user independently trying to maximize its utility is essentially engaged in a
game with other users, which we call uncoordinated load balancing. Unlike traditional
load balancing, however, users are not interested in optimizing the social welfare (e.g.,
total response time). Instead, each user has its own private objective. The stable out-
comes of these interactions are the Nash equilibria – outcomes in which no user can
improve its utility by switching unilaterally. In general, Nash equilibrium solutions can
be much worse than the centralized outcomes, and Papadimitriou [8] has coined the
term “price of anarchy” to denote the worst-case ratio between a Nash outcome and the

� Research of the first two authors was partially supported by NSF grants CCR-0049093 and
IIS-0121562.

G.M. Voelker and S. Shenker (Eds.): IPTPS 2004, LNCS 3279, pp. 123–130, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

124 Subhash Suri, Csaba D. Tóth, and Yunhong Zhou

social optimum. We describe several problems and results concerning the price of an-
archy for uncoordinated load balancing, and explore many associated algorithmic and
structural questions. We begin by describing our model for the load balancing game.

2 Model and Results

An instance of the load balancing game is modeled as a bipartite graph G between a set
U of n users (data requesting peers) and a set V of m hosts (data hosting peers). An
edge (i, j) indicates that user i can obtain its data from node j. A peer matching is a
(many to one) mapping M : U → V that assigns each user to a host1. That is, each user
is matched to exactly one host, but a host can be matched to multiple users (or none).

Different hosts can have different speeds. Suppose a host j has speed σj and is
matched to dj users, then we assume that the response time, or latency, to each user
i connected to this host is λi = f(dj)/σj , where f() is an increasing function of the
load dj . In general, the response time has two components, one host dependent and one
network dependent. In our simplified model, we consider just the host-related latency,
and treat network latency to be a constant. Under the linear model, the latency is simply
dj/σj . (More generally, we consider latency functions of the form dp−1

j /σj , for p ≥ 1.)
The cost of a peer matching M is the total latency of all the users:

cost(M) =
n∑

i=1

λi.

A matching is a Nash equilibrium if no user can improve its latency by unilaterally
switching to another host. Let Mnash be a Nash solution, and let Mopt be the (coordi-
nated) social optimum. The price of anarchy ρ(G) is the worst-case bound on the ratio
between the costs of Mnash and Mopt for the problem instance G.

We have been able to prove that if all hosts have equal speed, then the price of
anarchy is

ρ(G) ≤ (1 + 2/
√

3) ≈ 2.15

A more revealing way to express the price of anarchy is the following: we show that
ρ(G) ≤ 1 + 2m

n , which tends to one as the ratio between the number of users to hosts
grows. We also exhibit an instance G for which ρ(G) ≥ 2.001, even with linear latency
and equal speed for all the servers.

With arbitrary speed hosts, we can prove a general bound of 2.5 on the price of
anarchy. If the latency function grows as the Lp norm of the host loads, we show that
the price of anarchy is bounded by p

log p (1 + o(1)). The matching cost turns out to be
related to the sum of the squares of the server loads. Thus, our techniques also lead to
improved bounds for a natural online greedy scheme for load balancing [1]. In this short
paper, we give a brief overview of some of our key results, so that we can formulate the
research problems we wish to propose; full papers describing our mathematical results
are in preparation [5, 13].

1 To avoid trivialities, we assume that for each client, there is at least one server that can provide
the data.

Uncoordinated Load Balancing and Congestion Games in P2P Systems 125

3 Related Work

Several algorithms have been proposed recently for peer selection, such as “controlled
update propagation” [12],“ adaptive peer selection” [2], among others. While these pa-
pers do acknowledge the fact that users selfishly want to choose peers with the best
response time, they fail to model the game theoretic interaction among the users.

Our uncoordinated load balancing game belongs to the general class of congestion
games introduced by Rosenthal [9] in game theory. In computer science, perhaps the
best known congestion game is the network routing, studied by Koutsoupias and Pa-
padimitriou [6], Czumaj and Vöcking [3], Roughgarden [10], and Roughgarden and
Tardos [11], among others.

The load balancing game differs from these routing games in one important and
fundamental respect: load balancing is atomic, while the routing games are non-atomic.
In the latter, a user’s task (flow) can be split arbitrarily (across multiple paths). By
contrast, in atomic games, one user is wholly assigned to a single host2. In routing
games, one also assumes that each user puts only a negligible traffic load on a network
link. We do not require such an assumption – a user can own an arbitrarily large fraction
of a host.

The more traditional coordinated or centralized load balancing has a long history
in distributed systems. Our peer matching problem has connections with the load bal-
ancing variant in which we wish to minimize the L2 norm of the server loads. The
best known result on this problem is by Awerbuch et al. [1], who show that the online
greedy algorithm achieves a constant factor competitive ratio. Using our techniques, we
are able obtain an improved upper bound for the greedy’s performance.

4 Bounding the Price of Anarchy

It is well-known that Nash equilibria do not always optimize the social welfare, with the
Prisoner’s Dilemma being one of the best-known examples. Our peer matching problem
is no exception: an equilibrium matching does not necessarily have minimum cost. See
Figure 1 for examples.

u u u

v v v1

1

2

2

3

3

(a)

u u u

v v v1

1

2

2

3

(d)

u u u

v v v1

1

2

2

3

3

(c)

u u u

v v v1

1

2

2

3

3

(b)

3

Fig. 1. (a) A client-server graph. (b) An optimal matching of cost 3. (c) A Nash but sub-optimal
matching of cost 5. (d) A non-equilibrium matching.

2 Indeed, for the the non-atomic version of the uncoordinated load balancing, we can show the
price of anarchy is one; that is, Nash is always optimal.

126 Subhash Suri, Csaba D. Tóth, and Yunhong Zhou

Fortunately, it can be shown that the price of anarchy (the worst-case ratio between
a Nash solution and the social optimum) for the peer matching game is quite modest.
We begin with some preliminary facts relating the optimal and the Nash matchings.

Upper Bounds

We have n clients, labeled 1, 2, . . . , n, and m servers, labeled 1, 2, . . . , m. The term
server load denotes the number of clients assigned to that server in a given matching.
We first observe that the cost of a matching (sum of clients’ latency) is related to the
sum of the squared server loads. That is, if M is a matching, in which client i has
latency λi and server j has load �j and speed σj , then

cost(M) =
n∑

i=1

λi =
m∑

j=1

�2
j

σj
. (1)

This follows because each of the �j clients matched to server j suffers latency �j/σj .
Given a problem instance, let Mopt denote an optimal peer matching, and let Mnash

denote a Nash matching. Let Oj and Nj denote the set of clients assigned to server j in
Mopt and Mnash, respectively. We use the shorthand notation oj = |Oj | and nj =
|Nj | for the cardinalities of these sets. If a client is assigned to server j in the Nash but
to server k in the optimal, then the following Nash Condition must hold, where σj and
σk denote the speeds of these servers:

nj

σj
≤ nk + 1

σk
, if Nj ∩ Ok �= ∅.

This condition basically expresses the fact the client could not have improved its
latency by switching. This innocent looking condition is powerful enough to give us the
following important Nash Inequality: If Mopt is an optimal matching and Mnash is a
Nash matching, then

m∑
j=1

n2
j

σj
≤

m∑
j=1

(nj + 1)oj

σj
.

This fundamental inequality allows us to prove the following upper bounds on the price
of anarchy.

Theorem 1. With linear latency functions and arbitrary server speeds, the price of
anarchy is at most 2.5. If all servers have the same speed, then the price of anarchy is
at most 1 + 2/

√
3 ≈ 2.15.

There are several specializations and generalizations of this main result. We mention
a few. First, if all servers have an identical and linear latency function, then

cost(Mnash)
cost(Mopt)

≤ 1 +
2m

n
.

Thus, as the ratio (number of clients)/(number of servers) grows, every Nash solution
approaches the social optimum. Second, if the server latency grows as the pth power of
the server load, then we can measure the total latency using the Lp norm. In this case,
the price of anarchy turns out to be p

log p (1 + o(1)).

Uncoordinated Load Balancing and Congestion Games in P2P Systems 127

A Lower Bound

Figure 1(c) shows an example where the Nash solution is 5/3 times the optimal. A
more involved construction shows that the price of anarchy is at least 2.001, even with
identical and linear latency functions.

5 Greedy Matching: A Myopic Strategy

Nash equilibrium is a compelling solution concept for distributed systems with self-
interested players. Unfortunately, the concept is descriptive, not prescriptive: it does not
suggest algorithms for computing an equilibrium and finding (distributed) algorithms
for Nash equilibria remains a topic of current research.

We are therefore motivated to investigate the following simple greedy strategy:
clients arrive in the system online in an arbitrary order; upon arrival, each client selects
a permissible server with the smallest current latency, and this selection is irrevocable.
The greedy is a myopic strategy – each client makes the best choice available to it at
the moment, although future choices by other clients may make it regret its selection.
While greedy does not generally lead to Nash solutions, it may well be a strategy most
commonly used in practice. Thus, a natural question to ask is: how bad is the greedy
matching in the worst case?

Surprisingly, even greedy has a modest price of anarchy: we show that with lin-
ear latency and arbitrary server speeds, the worst-case ratio cost(Mgreedy)/cost(Mopt)
is less than 17/3 ≈ 5.67. If all servers have equal speed, then the ratio improves to
2 +

√
5 ≈ 4.24. These results imply improved bounds on the competitive ratio of the

(coordinated) greedy solution for L2 norm server load balancing [1].

6 Optimal, Nash, and Greedy: Some Structural Results

The price of anarchy focuses on the worst-case equilibrium solution. A more optimistic
analysis could consider the best case Nash solution and ask how close to the social
optimum can one get? In this section, we consider some questions like this and provide
a few partial answers.

Theorem 2. Assuming that every server has the same latency function λ(x) and x·λ(x)
is convex, then every optimal matching is also a Nash matching.

Thus, for instance, if all servers have linear and identical latency functions, then
the best-case Nash achieves social optimum. The following theorem, on the other hand,
gives general conditions under which no Nash solution is optimal.

Theorem 3. Assuming non-identical but linear latency functions, there are instances
of the peer matching game where no Nash equilibrium matching is optimal. Assuming
that every server has the same latency function λ(x) and x · λ(x) is non-convex, there
are instances where no Nash equilibrium matching is optimal.

On the other hand, the following general result shows that under a broad class of
latency functions, every Nash solution can be generated by the greedy strategy (with an
appropriate order of client arrival).

128 Subhash Suri, Csaba D. Tóth, and Yunhong Zhou

Theorem 4. If servers have monotone increasing (though not necessarily identical)
latency functions, then every Nash matching can be generated by the greedy scheme.

Finally, if the clients’ job is allowed to be split across multiple servers, then it turns
out that every Nash solution is optimal. That is, the price of anarchy equals 1. A non-
atomic model of service is actually used in practice by the KaZaa system.

7 Research Directions

Our model and results suggest several natural and intriguing research problems, which
should be of interest to distributed systems in general and peer to peer networks in
particular. We mention some of the most promising such directions.

7.1 Computing Nash Matchings

The Nash equilibrium is a celebrated result in game theory. Unfortunately, there is no
polynomial time algorithm known for computing a Nash solution in general games. The
peer matching game, however, is not a general game. In fact, with identical and linear
latency (or more generally, the latency functions with convex x · λ(x)), even the best
case Nash can be computed in polynomial time, by using graph matching ideas [5, 4].
However, these algorithms require that the entire client-server graph be known to all the
clients. It will be interesting to explore algorithms that are distributed and require only
local information (i.e. each client knows only about its permissible servers).

7.2 From Greedy to Nash

The matching determined by the online greedy scheme is within a constant factor of the
social optimum, but it may not be stable – some of the users may want to switch to a
different server. It may be interesting to investigate how to transform a greedy matching
into a Nash. Suppose that users get one chance to switch their server in each round.
How many rounds are needed before a stable solution is found?

7.3 The Cost of Switching Servers

In the greedy scheme, a client is not allowed to switch after its initial selection – in ef-
fect, the cost for switching servers is infinite. On the other hand, Nash solutions assume
that a user can switch servers at zero cost. Thus, Nash and greedy can be viewed as two
extremes in this cost spectrum. A natural question to ask is this: suppose a user incurs
a cost α whenever he switches its server; what is the price of anarchy?

The server cost model may also have interesting algorithmic implications. With
the infinite switching cost, we have a simple, distributed, online algorithm for com-
puting the equilibrium matching (i.e. the greedy). With zero switching cost, no such
(distributed) algorithm is known. Is it possible that adding switching cost improves the
algorithmic complexity of finding a stable solution?

Uncoordinated Load Balancing and Congestion Games in P2P Systems 129

7.4 Coping with a Dynamic Client Set

We have assumed a static client group. In practice, new clients constantly arrive and
old ones leave. Little is know about the loss of efficiency in such a dynamic setting –
it involves both the lack of information about future arrivals as well as the lack of co-
ordination. One basic problem is to investigate the price of anarchy where we compare
centralized optimum to a solution in which clients are always at Nash – that is, when-
ever a new client arrives or an old one leaves, the remaining set recomputes a Nash
matching. Next, it would be more realistic to consider this problem with a fixed switch-
ing cost. Still more realistic would be the model where the cost of switching depends
on the state of the client – e.g., the cost may monotonically increase with time for each
client, reflecting its unwillingness to switch as its job nears completion.

7.5 Effect of Server Speeds

Our upper bound for the price of anarchy is worse when servers can have arbitrary
speeds (i.e. the ratio bound is 2.5 vs. 2.15 for equal speed servers). Intriguingly, we
know of no lower bound that shows that price of anarchy should be worse with hetero-
geneous servers. It would be an interesting result to show that the price of anarchy with
arbitrary speeds servers is never worse than with equal speed servers.

7.6 General Latency Functions

We have considered mostly linear or monomial latency functions. It would be worth
investigating more general latency functions. In Section 6, we mentioned a few basic,
isolated results in this direction, but much remains unknown. One very useful class to
consider is the piecewise linear latency functions. We do not know of any non-trivial
results for this class.

7.7 The Optimistic Nash

We have primarily considered the worst-case (pessimistic) Nash, except for the singular
result of Theorem 2. The best-case Nash solutions are also compelling objects of study.
With linear latency functions, perhaps the price of anarchy is modest enough to not
worry about the best case. However, with higher order latency functions, the worst-case
Nash may be too unattractive a solution, and it would be interesting to obtain bounds
for the best-case Nash. It seems like a challenging problem.

7.8 Advertising Server Loads

The greedy matching, as perhaps any reasonable algorithm, requires the knowledge of
current server loads. How should the load information be kept up-to-date and propa-
gated to the clients? One simple idea is for each client to probe its permissible servers;
the schemes in [2, 12] assume that the server either announces its load, or the client in-
fers it through a test download. When there are many potential servers, this can be quite
expensive. A possible direction to explore is to maintain either historical or current
server load information in the system.

130 Subhash Suri, Csaba D. Tóth, and Yunhong Zhou

7.9 Truthfulness and Mechanism Design

Because P2P participants are assumed to be selfish, and there is no central authority,
how can one ensure that players are truthful? In our context, what incentive does a server
have to truthfully declare its load? It can lie both ways – if he benefits from serving
many clients (e.g. through goodwill or ranking in the system), he may under-report,
hoping to attract more clients; if he does not benefit, then he can over-report. Nisan
and Ronen [7] have advocated using the VCG (Vickrey-Clarke-Grove) mechanism to
compensate servers in a scheduling application. Ours is another natural setting where
further research of this kind is needed.

References

1. A. Awerbuch, A. Azar, E. F. Grove, P. Krishnan, M. Y. Kao, and J. S. Vitter. Load balancing
in the Lp norm. Proc. 36th FOCS, 1995, pp. 383–391.

2. D. Bernstein, Z. Feng, B. Levine, S. Zilberstein. Adaptive peer selection. Proc. 2nd IPTPS,
2003, pp. 237–246.

3. A. Czumaj and B. Vöcking. Tight bounds for worst-case equilibria. Proc. 13th SODA, 2002,
pp. 413–420.

4. N. Harvey, R. Ladner, L. Lovász, and T. Tamir. Semi-matchings for bipartite graphs and load
balancing. Proc. 8th WADS, 2003, pp. 294–306.

5. A. Kothari, S. Suri, C. D. Tóth, and Y. Zhou. On a server selection game among selfish
clients. In preparation.

6. E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. Proc. 16th STACS, 1999,
pp. 404–413.

7. N. Nisan and A. Ronen. Computationally feasible VCG mechanisms. Proc. 2nd Conf. on
EC, 2000, pp. 242–252.

8. C. Papadimitriou. Algorithms, games, and the Internet. Proc. 33rd STOC, 2001, pp. 749–753.
9. R. W. Rosenthal. A class of games possessing pure-strategy Nash equilibria. Int. J. of Game

Theory 2:65–67, 1973.
10. T. Roughgarden. Selfish Routing. PhD thesis, Cornell University, 2002.
11. T. Roughgarden and E. Tardos. How Bad is Selfish Routing? Journal of ACM 49 (2):235–

259, 2002.
12. M. Roussopoulos and M. Baker. CUP: Controlled Update Propagation in Peer-to-Peer net-

works. USENIX Annual Technical Conference, 2003, pp. 167–180.
13. S. Suri, C. D. Tóth, and Y. Zhou. Selfish load balancing and atomic congestion games. Proc.

20th SoCG, 2004, to appear.

Simple Efficient Load Balancing Algorithms
for Peer-to-Peer Systems

David R. Karger1 and Matthias Ruhl2

1 MIT Computer Science and Artificial Intelligence Laboratory
Cambridge, MA 02139, USA

karger@csail.mit.edu
2 IBM Almaden Research Center

San Jose, CA 95120, USA
ruhl@almaden.ibm.com

Abstract. Load balancing is a critical issue for the efficient operation of
peer-to-peer networks. We give two new load-balancing protocols whose
provable performance guarantees are within a constant factor of optimal.
Our protocols refine the consistent hashing data structure that underlies
the Chord (and Koorde) P2P network. Both preserve Chord’s logarith-
mic query time and near-optimal data migration cost.

Our first protocol balances the distribution of the key address space to
nodes, which yields a load-balanced system when the DHT maps items
“randomly” into the address space. To our knowledge, this yields the first
P2P scheme simultaneously achieving O(log n) degree, O(log n) look-up
cost, and constant-factor load balance (previous schemes settled for any
two of the three).

Our second protocol aims to directly balance the distribution of items
among the nodes. This is useful when the distribution of items in the
address space cannot be randomized – for example, if we wish to sup-
port range-searches on “ordered” keys. We give a simple protocol that
balances load by moving nodes to arbitrary locations “where they are
needed.” As an application, we use the last protocol to give an opti-
mal implementation of a distributed data structure for range searches on
ordered data.

1 Introduction

A core problem in peer to peer systems is the distribution of items to be stored
or computations to be carried out to the nodes that make up the system. A par-
ticular paradigm for such allocation, known as the distributed hash table (DHT),
has become the standard approach to this problem in research on peer-to-peer
systems [1–4].

An important issue in DHTs is load-balance – the even distribution of items
(or other load measures) to nodes in the DHT. All DHTs make some effort
to load-balance, generally by (i) randomizing the DHT address associated with
each item with a “good enough” hash function and (ii) making each DHT node

G.M. Voelker and S. Shenker (Eds.): IPTPS 2004, LNCS 3279, pp. 131–140, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

132 David R. Karger and Matthias Ruhl

responsible for a balanced portion of the DHT address space. Chord is a proto-
typical example of this approach: its “random” hashing of nodes to a ring means
that each node is responsible for only a small interval of the ring address space,
while the random mapping of items means that only a limited number of items
land in the (small) ring interval owned by any node.

This attempt to load-balance can fail in two ways. First, the typical “ran-
dom” partition of the address space among nodes is not completely balanced.
Some nodes end up with a larger portion of the addresses and thus receive a
larger portion of the randomly distributed items. Second, some applications may
preclude the randomization of data items’ addresses. For example, to support
range searching in a database application the items may need to be placed in a
specific order, or even at specific addresses, on the ring. In such cases, we may
find the items unevenly distributed in address space, meaning that balancing the
address space among nodes is not adequate to balance the distribution of items
among nodes. We give protocols to solve both of the load balancing challenges
just described.

Address-Space Balancing. Current distributed hash tables do not evenly parti-
tion the address space into which keys get mapped; some machines get a larger
portion of it. Thus, even if keys are numerous and random, some machines re-
ceive more than their fair share, by as much as a factor of O(log n) times the
average.

To cope with this problem, many DHTs use virtual nodes: each real machine
pretends to be several distinct machines, each participating independently in the
DHT protocol. The machine’s load is thus determined by summing over several
virtual nodes’, creating a tight concentration of (total) load near the average. As
an example, the Chord DHT is based upon consistent hashing [5], which requires
O(log n) virtual copies to be operated for every node.

Virtual nodes have drawbacks. Besides increased storage requirements, they
demand network bandwidth. In general, to maintain connectivity of the network,
every (virtual) node must frequently ping its neighbors, make sure they are still
alive, and replace them with new neighbors if not. Running multiple virtual
nodes creates a multiplicative increase in the (very valuable) network bandwidth
consumed for maintenance.

Below, we will solve this problem by arranging for each node to activate only
one of its O(log n) virtual nodes at any given time. The node will occasionally
check its inactive virtual nodes, and may migrate to one of them if the distri-
bution of load in the system has changed. Since only one virtual node is active,
the real node need not pay the original Chord protocol’s multiplicative increase
in space and bandwidth costs. As in the original Chord protocol, our scheme
gives each real node only a small number of “legitimate” addresses on the Chord
ring, preserving Chord’s (limited) protection against address spoofing by mali-
cious nodes trying to disrupt the routing layer. (If each node could choose an
arbitrary address, then a malicious node aiming to erase a particular item could
take responsibility for that item’s key and then refuse to serve the item.)

Simple Efficient Load Balancing Algorithms for Peer-to-Peer Systems 133

Another nice property of this protocol is that the “appropriate” state of the
system (i.e., which virtual nodes are active), although random, is independent of
the history of item and node arrivals and departures. This Markovian property
means that the system can be analyzed as if it were static, with a fixed set
of nodes and items; such analysis is generally much simpler than a dynamic,
history-dependent analysis.

Combining our load-balancing scheme with the Koorde routing protocol [1],
we get a protocol that simultaneously offers (i) O(log n) degree per real node, (ii)
O(log n/ log log n) lookup hops, and (iii) constant factor load balance. Previous
protocols could achieve any two of these but not all 3 – generally speaking,
achieving (iii) required operating O(log n) virtual nodes, which pushed the degree
to O(log2 n) and failed to achieve (i).

Item Balancing. A second load-balancing problem arises from certain database
applications. A hash table randomizes the order of keys. This is problematic in
domains for which order matters – for example, if one wishes to perform range
searches over the data. This is one of the reasons binary trees are useful despite
the faster lookup performance of hash tables. An order-preserving dictionary
structure cannot apply a randomized (and therefore load balancing) hash func-
tion to its keys; it must take them as they are. Thus, even if the address space
is evenly distributed among the nodes, an uneven distribution of the keys (e.g.,
all keys near 0) may lead to all load being placed on one machine.

In our work, we develop a load balancing solution for this problem. Unfortu-
nately, the “limited assignments” approach discussed for key-space load balanc-
ing does not work in this case – it is easy to prove that if nodes can only choose
from a few addresses, then certain load balancing tasks are beyond them. Our
solution to this problem therefore allows nodes to move to arbitrary addresses;
with this freedom we show that we can load-balance an arbitrary distribution of
items, without expending much cost in maintaining the load balance.

Our scheme works through a kind of “work stealing” in which underloaded
nodes migrate to portions of the address space occupied by too many items.
The protocol is simple and practical, with all the complexity in its performance
analysis.

Extensions of our protocol can also balance weighted items, where the weight
of an item can for example reflect its storage size, or its popularity and the
resulting bandwidth requirements.

Preliminaries. We design our solutions in the context of the Chord DHT [4]
but our ideas seem applicable to a broader range of DHT solutions. Chord uses
Consistent Hashing to assign items to nodes, achieving key-space load balance
using O(log n) virtual nodes per real node. On top of Consistent Hashing, Chord
layers a routing protocol in which each node maintains a set of O(log n) carefully
chosen “neighbors” that it uses to route lookups in O(log n) hops. Our modifica-
tions of Chord are essentially modifications of the Consistent Hashing protocol
assigning items to nodes; we can inherit unchanged Chord’s neighbor structure
and routing protocol. Thus, for the remainder of this paper, we ignore issues of
routing and focus on the address assignment problem.

134 David R. Karger and Matthias Ruhl

In this paper, we will use the following notation.

n is the number of nodes in system
N is the number of items stored in system (usually N � n)
�i is the number of items stored at node i
L = N/n is the average (desired) load in the system

As discussed above, Chord maps items and nodes to a ring. We represent this
space by the unit interval [0, 1) with the addresses 0 and 1 are identified, so all
addresses are a number between 0 and 1.

2 Address-Space Balancing

We will now give a protocol that improves consistent hashing in that every node
is responsible for a O(1/n) fraction of the address space with high probability
(whp), without use of virtual nodes. This improves space and bandwidth us-
age by a logarithmic factor over traditional consistent hashing. The protocol
is dynamic, with an insertion or deletion causing O(log log n) other nodes to
change their positions. Each node has a fixed set of O(log n) possible positions
(called “virtual nodes”); it chooses exactly one of those virtual nodes to become
active at any time – this is the only node that it actually operates. A node’s
set of virtual nodes depends only on the node itself (computed e.g. as hashes
h(i, 1), h(i, 2), . . . , h(i, c log n) of the node-id i), making malicious attacks on the
network difficult.

We denote the address (2b + 1)2−a by 〈a, b〉, where a and b are integers
satisfying 0 ≤ a and 0 ≤ b < 2a−1. This yields an unambiguous notation for all
addresses with finite binary representation. We impose an ordering ≺ on these
addresses according to the length of their binary representation (breaking ties
by magnitude of the address). More formally, we set 〈a, b〉 ≺ 〈a′, b′〉 iff a < a′ or
(a = a′ and b < b′). This yields the following ordering:

0 = 1 ≺ 1
2
≺ 1

4
≺ 3

4
≺ 1

8
≺ 3

8
≺ 5

8
≺ 7

8
≺ 1

16
≺ . . .

We describe our protocol in terms of an ideal “locally optimal” state it wants to
achieve.

Ideal State: Given any set of active virtual nodes, each (possibly inactive)
virtual node “spans” a certain range of addresses between itself and the
succeeding active virtual node. Each real node has activated the virtual node
that spans the minimal possible (under the ordering just defined) address.

Note that the address space spanned by one virtual node depends on which other
virtual nodes are active; that is why the above is a local optimality condition.
Our protocol consists of the simple update rule that any node for which the
local optimality condition is not satisfied, instead activates the virtual node
that satisfies the condition. In other words, each node occasionally determines
which of its O(log n) virtual nodes spans the smallest address (according to ≺),

Simple Efficient Load Balancing Algorithms for Peer-to-Peer Systems 135

and activates that particular virtual node. Note that computing the “succeeding
active node” for each of the virtual nodes can be done using standard Chord
lookups.

Theorem 1. The following statements are true for the above protocol, if ev-
ery node has c log n virtual addresses that are chosen Ω(log n)-independently at
random.

(i) For any set of nodes there is a unique ideal state.
(ii) Given any starting state, the local improvements will eventually lead to this

ideal state.
(iii) In the ideal state of a network of n nodes, whp all neighboring pairs of

active nodes will be at most (4 + ε)/n apart, when ε ≤ 1/2 and c ≥ 1/ε2.
(This bound improves to (2 + ε)/n for very small ε.)

(iv) Upon inserting or deleting a node into an ideal state, in expectation at most
O(log log n) nodes have to change their addresses for the system to again
reach the ideal state.

Proof Sketch: The unique ideal state can be constructed as follows. The virtual
node immediately preceding address 1 will be active, since its real-node owner has
no better choice and cannot be blocked by any other active node from spanning
address 1. That real node’s other virtual nodes will then be out of the running
for activation. Of the remaining virtual nodes, the one most closely preceding
1/2 will become active for the same reason, etc. We continue in this way down
the ordered list of addresses. This greedy process clearly defines the unique ideal
state, showing (i).

Claim (ii) can be shown by arguing that every local improvement reduces
the “distance” of the current state to the ideal state (in an appropriately chosen
metric). We defer the details to the full version of this paper (cf [6, Lemma 4.5]),
where we also discuss the rate at which local improvements have to be performed
in order to guarantee load balance.

For the following, we will assume that virtual addresses are chosen indepen-
dently at random. As with to the original consistent hashing scheme [7], this
requirement can be relaxed to Ω(log n)-independence by applying results of [8]

To prove (iii), recall how we constructed the ideal state for claim (i) above
by successively assigning nodes to increasing addresses. In this process, suppose
we are considering one of the first (1 − ε)n addresses. Consider the interval I
of length ε/n preceding this address. At least εn of the real nodes have not yet
been given a place on the ring. Among the possible cεn logn possible virtual
positions of these nodes, with high probability one will land in the length-ε/n
interval I under consideration. So whp, for each of the first (1 − ε)n addresses
in the order, the virtual node spanning that address will land within distance
ε/n preceding the address. Since these first (1− ε)n addresses break up the unit
circle into intervals of size at most 4/n, claim (iii) follows. Note that for very
small ε, the first (1− ε)n addresses actually break up the unit circle in intervals
of size 2/n, which explains the additional claim.

For (iv), it suffices to consider a deletion since the system is Markovian,
i.e. the deletion and addition of a given node are symmetric and cause the

136 David R. Karger and Matthias Ruhl

same number of changes. Whenever a node claiming an address is deleted, its
disappearance may reveal an address that some other node decides to claim,
sacrificing its current spot, which may recursively trigger some other node to
move. But each such migration means that the moving node has left behind no
address as good as the one it is moving to claim. Note also that only a few nodes
are close enough to any vacated address to claim it (distant ones will be shielded
by some closer active node), and thus, as the address being vacated gets higher
and higher in the order, it become less and less likely that any node that can
take it will want it. We can show that after O(log log n) such moves, no node
assigned to a higher address is likely to have a virtual node close to the vacated
address, so the movements stop. �

We note that the above scheme is highly efficient to implement in the Chord
P2P protocol, since one has direct access to the address of a successor. Moreover,
the protocol can also function when nodes disappear without invoking a proper
deletion protocol. By having every node occasionally check whether they should
move, the system will eventually converge towards the ideal state. This can be
done with insignificant overhead as part of the general maintenance protocols
that have to run anyway to update the routing information of the Chord protocol.

One possibly undesirable aspect of the above scheme is that O(log log n)
nodes change their address upon the insertion or deletion of a node, because
this will cause a O(log log n/n) fraction of all items to be moved. However, since
every node has only O(log n) possible positions, it can cache the items stored
at previous active positions, and will eventually incur little data migration cost:
when returning to a previous location, it already knows about the items stored
there. Alternatively, if every real node activates O(log log n) virtual nodes instead
of just 1, we can reduce the fraction of items moved to O(1/n) per node insertion,
which is optimal within a constant factor. All other performance characteristics
are carried over from the original scheme. It remains open to achieve O(1/n)
data migration and O(1) virtual nodes while attaining all the other metrics we
have achieved here.

Related Work. Two protocols that achieve near-optimal address-space load-
balancing without the use of virtual nodes have recently been given [9, 10]. Our
scheme improves upon them in three respects. First, in those protocols the ad-
dress assigned to a node depends on the rest of the network, i.e. the address is
not selected from a list of possible addresses that only depend on the node itself.
This makes the protocols more vulnerable to malicious attacks. Second, in those
protocols the address assignments depend on the construction history, making
them harder to analyze. Third, their load-balancing guarantees are only shown
for the “insertions only” case, while we also handle deletions of nodes and items.

3 Item Balancing

We have shown how to balance the address space, but sometimes this is not
enough. Some applications, such as those aiming to support range-searching

Simple Efficient Load Balancing Algorithms for Peer-to-Peer Systems 137

operations, need to specify a particular, non-random mapping of items into the
address space. In this section, we consider a dynamic protocol that aims to
balance load for arbitrary item distributions. To do so, we must sacrifice the
previous protocol’s restriction of each node to a small number of virtual node
locations – instead, each node is free to migrate anywhere. This is unavoidable:
if each node is limited to a bounded number of possible locations, then for any
n nodes we can enumerate all the addresses they might possibly occupy, take
two adjacent ones, and address all the items in between them: this assigns all
the items to one unfortunate node.

Our protocol is randomized, and relies on the underlying P2P routing frame-
work only insofar as it has to be able to contact “random” nodes in the system
(in the full paper we show that this can be done even when the node distribution
is skewed by the load balancing protocol). The protocol is the following (where
ε is any constant, 0 < ε < 1). Recall that each node stores the items whose
addresses fall between the node’s address and its predecessor’s address, and that
�j denotes the load on node j. Here, the index j runs from 1, 2, . . . , n in the order
of the nodes in the address space.
Item Balancing: Each node i occasionally contacts another node j at random.

If �i ≤ ε�j or �j ≤ ε�i then the nodes perform a load balancing operation
(assume wlog that �i > �j), distinguishing two cases:

Case 1: i = j + 1: In this case, i is the successor of j and the two nodes handle
address intervals next to each other. Node j increases its address so that the
(�i − �j)/2 items with lowest addresses get reassigned from node i to node
j. Both nodes end up with load (�i + �j)/2.

Case 2: i �= j + 1: If �j+1 > �i, then we set i := j + 1 and go to case 1.
Otherwise, node j moves between nodes i − 1 and i to capture half of node
i’s items. This means that node j’s items are now handled by its former
successor, node j + 1.

To state the performance of the protocol, we need the concept of a half-life [11],
which is the time it takes for half the nodes or half the items in the system to
arrive or depart.

Theorem 2. If each node contacts Ω(log n) other random nodes per half-life as
well as whenever its own load doubles, then the above protocol has the following
properties.

(i) With high probability, the load of all nodes is between ε
8L and 16

ε L.
(ii) The amortized number of items moved due to load balancing is O(1) per

item insertion or deletion, and O(N/n) per node insertion or deletion. �
The proof of this theorem relies on the use of a potential function (some con-
stant minus the entropy of the load distribution) that is large when the load
is unbalanced. We show that item insertions and node departures cause only
limited increases in the potential, while our balancing operation above causes a
significant decrease in the potential if it is large.

The traffic caused by the update queries necessary for the protocol is suffi-
ciently small that it can be buried within the maintenance traffic necessary to

138 David R. Karger and Matthias Ruhl

keep the P2P network alive. (Contacting a random node for load information
only uses a tiny message, and does not result in any data transfers per se.) Of
greater importance for practical use is the number of items transferred, which is
optimal to within constants in an amortized sense.

Extensions and Applications. The protocol can also be used if items are repli-
cated to improve fault-tolerance, e.g. when an item is stored not only on the
node primarily responsible for it, but also on the O(log n) following nodes. In
that setting, the load �j refers only to the number of items for which a node j
is primarily responsible. Since the item movement cost of our protocol as well
as the optimum increase by a factor of O(log n), our scheme remains optimal
within a constant factor.

Our protocol can be adapted for the case when items have weights, and the
load of a node is the sum of the weights of the items stored at the node. The
weight of an item can reflect its size, or its bandwidth consumption, in case of
items with different popularity. The analysis is similar; we can show that the
insertion or deletion of an item of weight w causes an amortized weight of O(w)
to be moved. There is however, one restriction: the protocol can only balance
the load upto what the items allow locally. For example, consider two nodes, one
node storing a single item with weight 1, the other node a single item with weight
100. If these two nodes enter in a load exchange, then there is no exchange of
items what will equalize the two loads.

The above protocol can provide load balance even for data that cannot be
hashed. In particular, given an ordered data set, we may wish to map it to the
[0, 1) interval in an order-preserving fashion. Our protocol then supports the
implementation of a range search data structure. Given a query key, we can use
Chord’s standard lookup function to find the first item following that key in the
keys’ defined order. Furthermore, given items a and b, the data structure can
follow node successor pointers to return all items x stored in the system that
satisfy a ≤ x ≤ b. We give the first such protocol that achieves an O(log n +
Kn/N) query time (where K is the size of the output).

Related Work. Randomized protocols for load balancing by moving items have
received much attention in the research community. A P2P algorithm similar to
ours was studied in [12]. However, their algorithm only works when the set of
nodes and items are fixed (i.e. without insertions or deletions), and they give no
provable performance guarantees, only experimental evaluations.

A theoretical analysis of a similar protocol was given by Anagnostopoulos,
Kirsch and Upfal [13], who also provide several further references. In their set-
ting, however, items are assumed to be jobs that are executed at a fixed rate, i.e.
items disappear from nodes at a fixed rate. Moreover, they analyze the average
wait time for jobs, while we are more interested in the total number of items
moved to achieve load balance.

In recent independent work, Ganesan and Bawa [14] consider a load balancing
scheme similar to ours and point out applications to range searches. However,
their scheme relies on being able to quickly find the least and most loaded nodes

Simple Efficient Load Balancing Algorithms for Peer-to-Peer Systems 139

in the system. It is not clear how to support this operation efficiently without
creating heavy network traffic for these nodes with extreme load.

Complex queries such as range searches are also an emerging research topic
for P2P systems [15, 16]. An efficient range search data structure was recently
given [17]. However, that work does not address the issue of load balancing the
number of items per node, making the simplifying assumption that each node
stores only one item. In that setting, the lookup times are O(log N) in terms
of the number of items N , and not in terms of the number of nodes n. Also,
O(log N) storage is used per data item, meaning a total storage of O(N log N),
which is typically much worse than O(N + n log n).

4 Conclusion

We have given several provably efficient load balancing protocols for distributed
data storage in P2P systems. (More details and analysis can be found in a
thesis [6].) Our algorithms are simple, and easy to implement, so an obvious
next research step should be a practical evaluation of these schemes.

In addition, several concrete open problems follow from our work. First, it
might be possible to further improve the consistent hashing scheme as discussed
at the end of section 2. Second, our range search data structure does not eas-
ily generalize to more than one order. For example when storing music files, one
might want to index them by both artist and year, allowing range queries accord-
ing to both orderings. Since our protocol rearranges the items according to the
ordering, doing this for two orderings at the same time seems difficult. A simple
solution is to rearrange not the items themselves, but just store pointers to them
on the nodes. This requires far less storage, and makes it possible to maintain
two or more orderings at once. The drawback is that it requires another level
of indirection, which might be undesirable for fault-tolerance reasons. Lastly,
permitting nodes to choose arbitrary addresses in our item balancing protocol
makes it easier for malicious nodes to disrupt the operation of the P2P network.
It would be interesting to find counter-measures for this problem.

Acknowledgments

We would like to thank the anonymous reviewers for their helpful comments.

References

1. Kaashoek, F., Karger, D.R.: Koorde: A Simple Degree-optimal Hash Table. In:
Proceedings IPTPS. (2003)

2. Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: A Scalable and Dynamic Emulation
of the Butterfly. In: Proceedings PODC. (2002) 183–192

3. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A Scalable Content-
Addressable Network. In: Proceedings ACM SIGCOMM. (2001) 161–172

140 David R. Karger and Matthias Ruhl

4. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A Scal-
able Peer-to-peer Lookup Service for Internet Applications. In: Proceedings ACM
SIGCOMM. (2001) 149–160

5. Karger, D., Lehman, E., Leighton, T., Levine, M., Lewin, D., Panigrahy, R.: Con-
sistent Hashing and Random Trees: Tools for Relieving Hot Spots on the World
Wide Web. In: Proceedings STOC. (1997) 654–663

6. Ruhl, M.: Efficient Algorithms for New Computational Models. PhD thesis, Mas-
sachusetts Institute of Technology (2003)

7. Lewin, D.M.: Consistent Hashing and Random Trees: Algorithms for Caching
in Distributed Networks. Master’s thesis, Massachusetts Institute of Technology
(1998)

8. Schmidt, J.P., Siegel, A., Srinivasan, A.: Chernoff-Hoeffding bounds for applica-
tions with limited independence. In: Proceedings SODA. (1993) 331–340

9. Adler, M., Halperin, E., Karp, R.M., Vazirani, V.V.: A Stochastic Process on the
Hypercube with Applications to Peer-to-Peer Networks. In: Proceedings STOC.
(2003) 575–584

10. Naor, M., Wieder, U.: Novel Architectures for P2P Applications: the Continuous-
Discrete Approach. In: Proceedings SPAA. (2003) 50–59

11. Liben-Nowell, D., Balakrishnan, H., Karger, D.: Analysis of the Evolution of Peer-
to-Peer Systems. In: Proceedings PODC. (2002) 233–242

12. Rao, A., Lakshminarayanan, K., Surana, S., Karp, R., Stoica, I.: Load Balancing
in Structured P2P Systems. In: Proceedings IPTPS. (2003)

13. Anagnostopoulos, A., Kirsch, A., Upfal, E.: Stability and Efficiency of a Random
Local Load Balancing Protocol. In: Proceedings FOCS. (2003) 472–481

14. Ganesan, P., Bawa, M.: Distributed Balanced Tables: Not Making a Hash of it all.
Technical Report 2003-71, Stanford University, Database Group (2003)

15. Harren, M., Hellerstein, J.M., Huebsch, R., Loo, B.T., Shenker, S., Stoica, I.: Com-
plex Queries in DHT-based Peer-to-Peer Networks. In: Proceedings IPTPS. (2002)
242–250

16. Huebsch, R., Hellerstein, J.M., Lanham, N., Loo, B.T., Shenker, S., Stoica, I.:
Querying the Internet with PIER. In: Proceedings VLDB. (2003) 321–332

17. Aspnes, J., Shah, G.: Skip Graphs. In: Proceedings SODA. (2003) 384–393

The Case for a Hybrid P2P Search Infrastructure

Boon Thau Loo1, Ryan Huebsch1, Ion Stoica1, and Joseph M. Hellerstein1,2

1 UC Berkeley, Berkeley CA 94720, USA
{boonloo,huebsch,istoica}@cs.berkeley.edu

2 Intel Research Berkeley
jmh@cs.berkeley.edu

Abstract. Popular P2P file-sharing systems like Gnutella and Kazaa use unstruc-
tured network designs. These networks typically adopt flooding-based search
techniques to locate files. While flooding-based techniques are effective for lo-
cating highly replicated items, they are poorly suited for locating rare items. As
an alternative, a wide variety of structured P2P networks such as distributed hash
tables (DHTs) have been recently proposed. Structured networks can efficiently
locate rare items, but they incur significantly higher overheads than unstructured
P2P networks for popular files. Through extensive measurements of the Gnutella
network from multiple vantage points, we argue for a hybrid search solution,
where structured search techniques are used to index and locate rare items, and
flooding techniques are used for locating highly replicated content. To illustrate,
we present experimental results of a prototype implementation that runs at multi-
ple sites on PlanetLab and participates live on the Gnutella network.

1 Introduction

Unstructured networks such as Gnutella [1] and Kazaa [4] have been widely used in file-
sharing applications. These networks are organized in an ad-hoc fashion and queries are
flooded in the network for a bounded number of hops (TTL). While these networks are
effective for locating highly replicated items, they are less so for rare items1.

As an alternative, there have been proposals for using inverted indexes on distributed
hash tables (DHTs) [8]. In the absence of network failures, DHTs guarantee perfect re-
call, and are able to locate matches within a small number of hops (usually log(n) hops,
where n is the number of nodes). However, DHTs may incur significant bandwidth
for publishing the content, and for executing more complicated search queries such as
multiple-attribute queries. Despite significant research efforts to address the limitations
of both flooding and DHT search techniques, there is still no consensus on the best P2P
design for searching,

In this paper, we measure the traffic characteristics of the Gnutella network from
multiple vantage points located on PlanetLab [6]. Our findings confirm that while Gnu-
tella is effective for locating highly replicated items, it is less suited for locating rare
items. In particular, queries for rare items have a low recall rate (i.e., the queries fail to
return files even though the files are actually stored in the network). In addition, these
queries have poor response times. While these observations have been made before, to

1 In this paper, we will use the terms “files” and “items” interchangeably.

G.M. Voelker and S. Shenker (Eds.): IPTPS 2004, LNCS 3279, pp. 141–150, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

142 Boon Thau Loo et al.

the best of our knowledge, our study is the first to quantify them in a real network. For
example, we show that as many as 18% of all queries return no results, despite the fact
that for two thirds of these queries, there are results available in the network.

We use extensive measurements to analyze the traffic characteristics of Gnutella,
and based on our observations, we propose a simple hybrid design that aims to com-
bine the best of both worlds: use flooding techniques for locating popular items, and
structured (DHT) search techniques for locating rare items.

We find that such a design is particularly appropriate for existing P2P file-sharing
systems in which the number of replicas follow a long tailed distributions: flooding-
based techniques work best for the files at the head of the distribution, while DHT
techniques work best for the files at the tail of the distribution.

To evaluate our proposal, we present experimental results of a hybrid file-sharing
implementation that combines Gnutella with PIER, a DHT-based relational query en-
gine [11]. Our prototype runs at multiple sites on the PlanetLab testbed, and participates
live on the Gnutella network.

2 Setting and Methodology

To analyze the Gnutella network, we have instrumented the LimeWire client software
[5]. Our client can participate in the Gnutella network either as an ultrapeer or leaf node,
and can log all incoming and outgoing Gnutella messages. In addition, our client has
the ability to inject queries into the network and gather the incoming results.

The current Gnutella network uses several optimizations to improve the perfor-
mance over the original flat flooding design. Some of the most notable optimizations
include the use of ultrapeers [3] and dynamic querying [2] techniques. Ultrapeers per-
form query processing on the behalf of their leaf nodes. When a node joins the network
as a leaf, it selects a number of ultrapeers, and then it publishes its file list to those
ultrapeers.

A query for a leaf node is sent to an ultrapeer which floods the query to its ultrapeer
neighbors up to a limited number of hops. Our crawl reveals that most ultrapeers today
support either 30 or 75 leaf nodes2. Dynamic querying is a search technique whereby
queries that return fewer results are re-flooded deeper into the network. Our modified
client supports both of these optimizations.

2.1 Gnutella Search Quality

To estimate the size of the Gnutella network, we began our study by performing a crawl
of Gnutella. To increase the accuracy of our estimation, the crawl was performed in

2 This is confirmed by the development history of the LimeWire software: newer LimeWire
ultrapeers support 30 leaf nodes and maintain 32 ultrapeer neighbors, while the older ultrapeers
support 75 leaf nodes and 6 ultrapeer neighbors. As a side note, in newer versions of the
LimeWire client, leaf nodes publish Bloom filters of the keywords in their files to ultrapeers [7,
2]. There have also been proposals to cache these Bloom filters at neighboring nodes. Bloom
filters reduce publishing and searching costs in Gnutella, but preclude substring and wildcard
searching (which are similarly unsupported in DHT-based search schemes.)

The Case for a Hybrid P2P Search Infrastructure 143

 1

 10

 100

 1000

 1 10 100 1000

Q
ue

ry
 R

es
ul

ts
 S

iz
e

Average Replication Factor

Fig. 1. Correlating Query Results Size vs. Average Replication Factor.

parallel from 30 ultrapeers for about 45 minutes. This parallel crawl was carried out
on 11 Oct 2003 at around noon (Pacific time). The network size of Gnutella at the time
of the crawl was around 100,000 nodes, and there were roughly 20 million files in the
system.

Next, we turn our attention to analyzing the search quality of Gnutella, both in terms
of recall and response time. The recall of a query is defined as the number of results
returned divided by the number of results actually available in the network. Results are
distinguished by filename, host, and filesize. Thus, each replica of a file is counted as
a distinct result. Given the difficulty of taking a snapshot of all files in the network at
the time the query is issued, we approximate the total number of results available in the
system by issuing the same query simultaneously from all 30 PlanetLab ultrapeers, and
taking the union of the results. This approximation is appropriate for the following two
reasons. First, as the number of PlanetLab ultrapeers exceeds 15, there is little increase
in the total number of results (see Fig. 3). This suggests that the number of results re-
turned by all 30 ultrapeers is a reasonable approximation of the total number of results
available in the network. Second, because this approximation underestimates the num-
ber of total results in the network, the recall value that we compute is an overestimation
of the actual value.

We obtained Gnutella query traces, and chose 700 distinct queries from these traces
to replay at each of the PlanetLab ultrapeers. To factor out the effects of workload
fluctuations, we replayed queries at three different times. In total, we generated 63, 000
queries (700 × 30 × 3). We make three observations based on the results returned by
these queries.

First, as expected, there is a strong correlation between the number of results re-
turned for a given query, and the number of replicas in the network for each item in the
query result set. The replication factor of an item is defined as the total number of iden-
tical copies of the item in the network. Again, to approximate this number, we count
the number of items with the same filename in the union of the query results obtained
by the 30 ultrapeers for the same query. We then compute the average replication factor
of a query by averaging the replication factors across all distinct filenames in the query
result set. Figure 1 summarizes our results, where the Y-axis shows query results set

144 Boon Thau Loo et al.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 10 100 1000 10000

%
 o

f Q
ue

rie
s

Number of Results

Results (1 node)
Total Results (30 nodes)

Fig. 2. Result size CDF of Queries issued from 30 Ultrapeers.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20

%
 o

f Q
ue

rie
s

Number of Results

Results (1 node)
Total Results (5 nodes)

Total Results (15 nodes)
Total Results (25 nodes)

Total Results

Fig. 3. Result size CDF for Queries ≤ 20 results.

size, and the X-axis shows the average replication factor averaged across all queries for
each results set size. In general, queries with small result sets return mostly rare items,
while queries with large result sets return both rare and popular items, with the bias
towards popular items.

Second, our results demonstrate the effectiveness of Gnutella in finding highly repli-
cated content. Figure 2 plots the CDF of the number of results returned by all queries
(the Results curve), and a lower bound on the total number of matching items per query
(the Total Results curve). We compute this lower bound by taking the union of all result
sets obtained by the 30 ultrapeers for each query. Note that there are queries returning
as many as 1,500 results, which would seem more than sufficient for most file-sharing
uses. In addition, Fig. 4 shows that the queries with large result sets also have good
response times. For queries that return more than 150 results, we obtain the first result
in 6 seconds on average.

Third, our results show the ineffectiveness of Gnutella in locating rare items. Fig-
ure 4 shows that the average response time of queries that return few results is poor. For
queries that return a single result, 73 seconds elapsed on average before receiving the
first result.

The Case for a Hybrid P2P Search Infrastructure 145

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200

A
ve

ra
ge

 F
irs

t R
es

ul
t L

at
en

cy
 (

s)

Number of Results

Fig. 4. Correlating Result Size vs. First Result Latency.

An important point to note is that queries that return few items are quite prevalent.
Figure 3 shows the results of the same experiment as Fig. 2, limited to queries that
return at most 20 results for 5, 15 and 25 ultrapeers. Note that while 29% of queries
receive more than 100 results, and 9% receive more than 200 results, there are 41% of
queries that receive 10 or fewer results, and 18% of queries that receive no results. For a
large fraction of queries that receive no results, matching results are in fact available in
the network at the time of the query. Taking the union of results from all 30 ultrapeers
for each query, the results improve considerably: only 27% of queries receive 10 or
fewer results, and only 6% of queries receive no results. This means that there is an
opportunity to reduce the percentage of queries that receive no results from 18% to at
least 6%, or equivalently to reduce the number of queries that receive no results by at
least 66%. We say “at least” because the union of results is an underestimation of the
total number of results available in the network.

2.2 Increase the Search Horizon?

An obvious technique to locate more rare items in Gnutella would be to increase the
search horizon using larger TTLs. While this would not help search latency, it could
improve query recall. As the search horizon increases, the number of query messages
sent will increase almost exponentially. Given that queries that return few results are
fairly common, such aggressive flooding to locate rare items is unlikely to scale. In
future work, we plan to quantify the impact of increasing the search horizon on the
overall system load.

2.3 Summary

Our Gnutella measurements reveal the following findings:

– Gnutella is highly effective for locating popular items. Not only are these items
retrieved in large quantities, the queries also have good response times.

146 Boon Thau Loo et al.

– Gnutella is less effective for locating rare items: 41% of all queries receive 10 or
fewer results, and 18% of queries receive no results. Furthermore, the results have
poor response times. For queries that return a single result, the first result arrives
after 73 seconds on average. For queries that return 10 or fewer results, 50 seconds
elapsed on average before receiving the first result.

– There is a significant opportunity to increase the query recall for locating rare items.
For instance, the number of queries that return no results can be reduced from 18%
to at least 6%.

Thus, there are a considerable number of queries for rare items, and there is a con-
siderable opportunity to improve the recall and response times of these queries. Fur-
thermore, we note that flooding more aggressively is not an answer to this problem, as
flooding with a higher TTL will not necessarily decrease the response time, and will
significantly increase the system load.

3 The Case for Hybrid

Various research efforts have proposed DHTs as an alternative to unstructured networks
like Gnutella, arguing that DHTs can improve query performance. In this section, we
explore the feasibility of a DHT-based query system. In a flooding scheme, queries are
moved towards the data. In contrast, DHT-based search schemes move both queries
and data, causing them to rendezvous in the network. This movement typically consists
of two phases. First, a content publishing phase moves copies of data into traditional
inverted files which are then indexed by keyword in a DHTs. They are also known as
inverted indexes. Each inverted file comprises a set of unique file identifiers (a posting
list) for a distinct keyword. Secondly, a query execution phase performs boolean search
by routing the query via the DHT to all sites that host a keyword in the query, and
executing a distributed join of the postings list entries of matching items.

While DHT-based search provides perfect recall in the absence of network fail-
ures, a full-fledged DHT implementation has its own drawbacks. The content publish-
ing phase can consume large amounts of bandwidth compared to queries that retrieve
sufficient results via flooding in an unstructured network. Consider the query “Britney
Spears” that requests all songs from this popular artist. “Britney” and “Spears” are pop-
ular keywords with large posting lists. The publishing costs of building the inverted in-
dexes for these two keywords are high. A “Britney Spears” query also requires shipping
large posting lists to perform the distributed join. Recent back-of-the-envelope calcula-
tions [12] suggest that shipping large posting lists over DHTs is bandwidth-expensive.
While compression techniques and Bloom filters would reduce the bandwidth require-
ments of publishing, a flooding scheme that does not incur any publishing overheads is
both simpler and more efficient for such queries.

On the other hand, queries over rare items are less bandwidth-intensive to compute,
since fewer posting list entries are involved. To validate the latter claim, we replayed
70,000 Gnutella queries over a sample of 700,000 files3 using a distributed join al-
gorithm over DHTs [11]. We observed that on average, queries that return 10 or fewer

3 These queries and files were collected from 30 ultrapeers as described in Section 2.1.

The Case for a Hybrid P2P Search Infrastructure 147

results require shipping 7 times fewer posting list entries compared to the average across
all queries. This motivates a hybrid search infrastructure, where the DHT is used to lo-
cate rare items, and flooding techniques are used for searching highly replicated items.

3.1 Hybrid Techniques

The hybrid search infrastructure utilizes selective publishing techniques that identify
and publish only rare items into the DHT. Different heuristics can be used to identify
which items are rare. One simple heuristic is based on our initial observation in Sec-
tion 2.1: rare files are those that are seen in small result sets. In essence, the DHT is
used to cache elements of small result sets. This scheme is simple, but suffers from
the fact that many rare items may not have been previously queried and found, and
hence will not be published via a caching scheme. For these items, other techniques
must be used to determine that they are rare. For example, publishing could be based on
well-known term frequencies, and/or by maintaining and possibly gossiping historical
summary statistics on file replicas.

This hybrid infrastructure can easily be implemented if all the ultrapeers are orga-
nized into the DHT overlay. Each ultrapeer is responsible for identifying and publishing
rare files from its leaf nodes. Search is first performed via conventional flooding tech-
niques of the overlay neighbors. If not enough results are returned within a predefined
time, the query is reissued as a DHT query.

3.2 Network Churn

A practical concern of using DHTs is the network churn. A high network churn rate
would increase the DHT maintenance overhead to manage publishing (and unpublish-
ing). To understand the impact of churn, we measure the connection lifetimes of ul-
trapeer and leaf neighbors from two leaf nodes and two ultrapeers over 72 hours. The
connection lifetimes we measure are a lower bound on the session lifetime as nodes
may change their neighbor sets during the course of their Gnutella session. We make
the following two observations.

First, the measured average connection lifetimes of leaf and ultrapeer nodes are 58
minutes and 93 minutes respectively. Ultrapeers have 1.5 times longer lifetimes than
leaf nodes. To reduce the overheads of DHT maintenance, only stable ultrapeers with
more resources should be used as DHT nodes.

Second, the measured median connection lifetimes of leaf and ultrapeer nodes are
only 13 minutes and 16 minutes respectively. Since the median lifetime is much lower
than the mean, by discounting the short-lived nodes we have a fairly stable network. For
instance, if we eliminate all leaf nodes whose lifetimes exceed 10 minutes, the average
lifetime of the remaining nodes is 106 minutes4. In general, the longer a node is up, the
longer one can expect a node to stay up. Hence, to address the issue of stale data in the
DHT, file information of short-lived nodes should simply not be indexed. These short-
lived nodes are not useful sources of data anyway since they are likely to disconnect
before others can download their content.

4 This is consistent with the results reported by LimeWire’s measurements of 300 connections
over several days[7].

148 Boon Thau Loo et al.

4 Preliminary Experimental Results

To evaluate our hybrid design, we deploy a number of hybrid clients on PlanetLab that
participate on the Gnutella network as ultrapeers. In addition, these clients are plugged
into a DHT-based search engine built on top of PIER [11], a P2P relational query engine
over DHTs. Our deployment should be seen as a strawman; a fully-deployed hybrid
infrastructure would require an upgrade of all existing clients.

In addition to the traditional distributed join algorithm discussed earlier for search-
ing, the PIER search engine also utilizes Join Indexes, by storing the full text (i.e. the
filename) redundantly with each posting list entry. The search query is hence sent only
to a single node hosting any one of the search terms, and the remaining search terms are
filtered locally. This technique incurs extra publishing overheads, which are prohibitive
for text document search, but tolerable for indexing short filenames.

Each hybrid ultrapeer monitors query results from its regular Gnutella traffic. These
query results are responses to queries forwarded by the ultrapeer. Query results that
belong to queries with fewer than 20 results are then published into the DHT. The
publishing rate is approximately one file per 2-3 seconds per node. Each published
file and corresponding posting list entries incurs a bandwidth overhead of 3.5 KB per
file. Join Indexes increase the publishing overhead to 4 KB per file. A large part of the
bandwidth consumption is due to the overheads of Java serialization and self-describing
tuples in PIER, both of which could in principle be eliminated.

We test the hybrid search technique in PlanetLab on leaf queries of the hybrid ultra-
peers. Leaf queries that return no results within 30 seconds via Gnutella are re-queried
using the PIER search engine. PIER returns the first result within 10-12 seconds, with
and without Join Indexes respectively. While decreasing the timeout to invoke PIER
would improve the aggregate latency, this would also increase the likelihood of issuing
extra queries. As part of our future work, we plan to study the tradeoffs between the
timeout and query workload. Note that the average latency for these queries to return
their first result in Gnutella is 65 seconds (see Fig. 4). Hence, the hybrid approach would
reduce the latency by about 25 seconds.

In addition, the hybrid solution reduces the number of queries that receive no results
in Gnutella by 18%. This reduction serves as a lower bound of the potential benefits of
the hybrid system. The reason why this value is significantly lower than the potential
66% reduction in the number of queries that receive no results is two fold:

– Unlike Gnutella measurements reported in Section 2.1 where queries are proac-
tively flooded from many ultrapeers, in our experiment, we consider only the files
that are returned as results to previous queries. Thus, this scheme will not return
the rare items that were not queried during our experiments. Employing simple
optimizations in which peers publish proactively their list of rare items should con-
siderably boost the benefits of our scheme.

– As the number of clients that implement our scheme increase, we expect the cov-
erage to improve as well. The coverage would be even better in a full-fledged im-
plementation in which each ultrapeer would be responsible for a set of leaf nodes
from which they would identify and publish rare items.

The Case for a Hybrid P2P Search Infrastructure 149

Using Join Indexes, each query needs to be sent to only one node. The cost of each
query is hence dominated by shipping the PIER query itself, which is approximately
850 B. The distributed join algorithm incurs a 20 KB overhead for each query. These
results indicate that the benefits of reducing per-query bandwidth might outweigh the
publishing overheads of storing the filename redundantly, which makes Join Indexes a
more attractive option.

5 Related Studies

A recent study [9] has shown that most file downloads are for highly replicated items.
One might think that their findings contradict our analysis in Section 2.1 that shows
that queries for rare items are substantial. However, the two studies focus on different
aspects of Gnutella’s workload. First, we measure result set sizes of queries, while their
study measures download requests. Downloads only reflect successful queries, in in-
stances when users have identified matching items from the result set that satisfied their
search queries. This approach excludes queries that failed to find matching rare items
even when they exist somewhere in the network, or return too few results that are of rel-
evance to the search query. Second, both studies correctly reflect different aspects of the
Zipfian distributions. Their study shows the head of the Zipfian popularity distribution,
and hence they measure the download requests based on the items that match the top
50 query requests seen. In contrast, our study focuses on the long tail of the distribution
as well. While individual rare items in the tail may not be requested frequently, these
queries represents a substantial fraction of the workload, and are worth optimizing.

A separate study [10] has shown that the popularity distribution of a file-sharing
workload is flatter than what we would expect from a Zipfian distribution. The most
popular items were found to be significantly less popular than a Zipfian distribution
would predict. Our proposed hybrid infrastructure would still apply here, utilizing
flooding-based schemes for items in the “flattened head” region, and DHTs for indexing
and searching for items in the tail of the distribution.

6 Conclusion

In this paper, we have presented the case for a hybrid search infrastructure that utilizes
flooding for popular items and the DHT for searching rare items. To support our case,
we have performed live measurements of the Gnutella workload from different vantage
points in the Internet. We found that a substantial fraction of queries returned very
few or no results at all, despite the fact that the results were available in the network.
Preliminary experimental results from deploying 50 ultrapeers on Gnutella showed that
our hybrid scheme has the potential to improve the recall and response times when
searching for rare items, while incurring low bandwidth overheads.

Acknowledgements

The authors would like to thank Shawn Jeffery, Karthik Lakshminarayanan, Sylvia Rat-
nasamy, Sean Rhea, Timothy Roscoe, Scott Shenker, Lakshminarayanan Subramanian

150 Boon Thau Loo et al.

and Shelley Zhuang for their insights and suggestions. We thank the anonymous re-
viewers for their comments. This research was funded by NSF grants IIS-0205647,
IIS-0208588, IIS-0209108 and Intel Research Berkeley.

References

1. Gnutella. http://gnutella.wego.com.
2. Gnutella Proposals for Dynamic Querying.

http://www9.limewire.com/developer/dynamic query.html.
3. Gnutella Ultrapeers. http://rfc-gnutella.sourceforge.net/Proposals/

Ultrapeer/Ultrapeers.htm.
4. Kazaa. http://www.kazza.com.
5. Limewire.org. http://www.limewire.org/.
6. PlanetLab. http://www.planet-lab.org/.
7. Query Routing for the Gnutella Network. http://www.limewire.com/developer/

query routing/keyword routing.htm/.
8. BALAKRISHNAN, H., KAASHOEK, M. F., KARGER, D., MORRIS, R., AND STOICA, I.

Looking Up Data in P2P Systems. Communications of the ACM, Vol. 46, No. 2 (Feb. 2003).
9. CHAWATHE, Y., RATNASAMY, S., BRESLAU, L., LANHAM, N., AND SHENKER, S. Mak-

ing Gnutella-like P2P Systems Scalable. In Proceedings of ACM SIGCOMM 2003.
10. GUMMADI, K. P., DUNN, R. J., SAROIU, S., GRIBBLE, S. D., LEVY, H. M., AND ZA-

HORJAN, J. Measurement, Modeling and Analysis of a Peer-to-Peer File-Sharing Workload.
In Proceedings of the 19th ACM Symposium of Operating Systems Principles (SOSP-19)
(Bolton Landing, New York, October 2003).

11. HUEBSCH, R., HELLERSTEIN, J. M., LANHAM, N., LOO, B. T., SHENKER, S., AND STO-
ICA, I. Querying the Internet with PIER. In Proceedings of 19th International Conference
on Very Large Databases (VLDB) (Sep 2003).

12. LI, J., LOO, B. T., HELLERSTEIN, J., KAASHOEK, F., KARGER, D., AND MORRIS, R. On
the Feasibility of Peer-to-Peer Web Indexing and Search. In Proceedings of 2nd International
Workshop on Peer-to-Peer Systems (IPTPS ’03).

©

{ssm01,yujin,qsg02,cm01}@mails.tsinghua.edu.cn,
{ygw,dxwang}@mail.tsinghua.edu.cn

Providing Administrative Control and Autonomy
in Structured Peer-to-Peer Overlays

Alan Mislove and Peter Druschel

Rice University

Abstract. Structured peer-to-peer (p2p) overlay networks provide a decentral-
ized, self-organizing substrate for distributed applications and support powerful
abstractions such as distributed hash tables (DHTs) and group communication.
However, in most of these systems, lack of control over key placement and rout-
ing paths raises concerns over autonomy, administrative control and accountabil-
ity of participating organizations. Additionally, structured p2p overlays tend to
assume global connectivity while in reality, network address translation and fire-
walls limit connectivity among hosts in different organizations. In this paper,
we present a general technique that ensures content/path locality and adminis-
trative autonomy for participating organizations, and provides natural support for
NATs and firewalls. Instances of conventional structured overlays are configured
to form a hierarchy of identifier spaces that reflects administrative boundaries and
respects connectivity constraints among networks.

1 Introduction

Structured peer-to-peer (p2p) overlay networks provide a decentralized, self-organizing
substrate for distributed applications and support powerful abstractions such as dis-
tributed hash tables (DHTs) and group communication [13, 18–20, 22, 15]. Most of
these systems use randomized object keys and node identifiers, which yields good load
balancing and robustness to failures. However, in such overlays, applications cannot en-
sure that a key is stored in the inserter’s own organization, a property known as content
locality. Likewise, one cannot ensure that a routing path stays entirely within an orga-
nization when possible, a property known as path locality. In an open system where
participating organizations have conflicting interests, this lack of control can raise con-
cerns about autonomy and accountability [13].

Moreover, participants in a conventional overlay must agree on a set of protocols
and parameter settings like the routing base, the size of the neighbor set, failure detec-
tion intervals and replication strategy. Optimal settings for these parameters depend on
factors like the expected churn rate, node failure probabilities and failure correlation.
These factors may not be uniform across different organizations and may be difficult
to assess or estimate in a large system. The choice of parameters also depends on the
required availability and durability of data, which is likely to differ between participat-
ing organizations. Yet, conventional overlays require global agreement on protocols and
parameter settings among all participants.

Additionally, most structured p2p overlay protocols assume that the underlying net-
work is fully connected. In the real Internet, however, communication among host in dif-
ferent organizations is often constrained. Security firewalls and network address trans-

G.M. Voelker and S. Shenker (Eds.): IPTPS 2004, LNCS 3279, pp. 162–172, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Providing Administrative Control and Autonomy in Structured Peer-to-Peer Overlays 163

lation (NAT) often prevent nodes exterior to an organization from contacting interior
ones.

In this paper, we present a general technique to configure structured p2p overlay
networks into a hierarchy of overlay instances with separate identifier spaces. The hi-
erarchy reflects administrative and organizational domains, and naturally respects con-
nectivity constraints. Our technique leaves participating organizations in control over
local resources, choice of protocols and parameters, and provides content and path lo-
cality. Each organization can run a different overlay protocol and use parameter settings
appropriate for the organization’s network characteristics and requirements. Our solu-
tion generalizes existing protocols with a single id space, thus leveraging prior work on
all aspects of structured p2p overlays, including secure routing [2].

The rest of this paper is organized as follows. Section 2 describes in detail the design
of our system and explains how messages are routed across multiple rings. Section 3
discusses the costs, benefits and limitations of our technique. Section 4 details related
work and Section 5 concludes.

2 Design

In this section, we describe a hierarchical configuration of overlays that reflects or-
ganizational structure and connectivity constraints. For convenience, we will refer to
an instance of a structured overlay as a “ring”, because the identifier spaces of proto-
cols like Chord and Pastry form a ring. However, we emphasize that our design can be
equally applied to structured overlay protocols whose identifier spaces do not form a
ring, including CAN, Tapestry, and Kademlia [17, 22, 15].

A multi-ring protocol stitches together the rings and implements global routing and
lookup. To applications, the entire hierarchy appears as a single instance of a structured
overlay network that spans multiple organizations and networks. The rings can use any
structured overlay protocol that supports the key-based routing (KBR) API defined in
Dabek et al. [7].

Our design relies on a group anycast mechanism, such as Scribe [5, 6]. Scribe main-
tains spanning trees consisting of the overlay routes from group member nodes towards
the overlay node that is responsible for the group’s identifier. These trees are then used
to implement multicast and anycast. Scribe can be implemented on top of any structured
overlay that supports the KBR API. If the underlying overlay protocol uses a technique
like proximity neighbor selection [3, 12], then the Scribe trees are efficient in terms of
network proximity and anycast messages are delivered to a nearby group member [6].

Figure 1 shows how our multi-ring protocol is layered above the KBR API of the
overlay protocols that implement the individual rings. Shown at the right is a node that
acts as a gateway between the rings. The instances of structured overlays that run in
each ring are completely independent. In fact, different protocols can run in the different
rings, as long as they support the KBR API.

2.1 Ring Structure

The system forms a tree of rings. Typically, the tree consists of just two layers, namely
a global ring as the root and organizational rings at the lower level. Each ring has a

164 Alan Mislove and Peter Druschel

Ring A Ring B

Chord Chord

KBR API KBR API

Multiring Multiring

Pastry

KBR API

Multiring

AppApp App

Fig. 1. Diagram of application layers. The two nodes on the right are actually instances of the
same node in two different rings.

globally unique ringId, which is known to all members of the ring. The global ring has
a well-known ringId consisting of all zeroes. It is assumed that all members of a given
ring are fully connected in the physical network, i.e., they are not separated by firewalls
or NAT boxes.

All nodes in the entire system join the global ring, unless they are connected behind
a firewall or a NAT. In addition, each node joins a ring consisting of all the nodes that
belong to a given organization. A node is permitted to route messages and perform other
operations only in rings in which it is a member.

The global ring is used primarily to route inter-organizational queries and to enable
global lookup of keys, while application keys are stored in the organizational rings.
Each organizational ring defines a set of nodes that use a common set of protocols and
parameter settings; they enjoy content and path locality for keys that they insert into
the overlay. In addition, a organizational ring may also define a set of nodes that are
connected to the Internet through a firewall or NAT box.

An example configuration is shown in Figure 2. The nodes connected by lines are
actually instances of the same node, running in different rings. Ring A7 consists of
nodes in an organization that are fully connected to the Internet. Thus, each node is also
a member of the global ring. Ring 77 represents a set of nodes behind a firewall. Here,
only two nodes can join the global ring, namely the firewall gateway nodes.

2.2 Gateway Nodes

A node that is a member of more than one ring is a gateway node. Such a node supports
multiple virtual overlay nodes, one in each ring, but uses the same node identifier (id)

Ring A7

Global Ring

Ring 77

Fig. 2. Example of a ring structure. Nodes shown in gray are instances of the same node in mul-
tiple rings, and nodes in black are only in a single ring due to a firewall.

Providing Administrative Control and Autonomy in Structured Peer-to-Peer Overlays 165

in each ring. Gateway nodes can forward messages between rings, as described in the
next section. In Figure 2 above, all of the nodes in ring A7 are gateway nodes between
the global ring and ring A7. To maximize load balance and fault tolerance, all nodes are
expected to serve as gateway nodes, unless connectivity limitations (firewalls and NAT
boxes) prevent it.

Gateway nodes announce themselves to other members of the rings in which they
participate by subscribing to an anycast (Scribe) group in each of the rings. The group
identifiers of these groups are the ringIds of the associated rings. In Figure 2 for in-
stance, a node M that is a member of both the global ring and A7, joins the Scribe
groups:

Scribe group A700...0 in the global ring
Scribe group 0000...0 in ringId A7

2.3 Routing

Next, we describe how messages are routed in the system. We assume that each message
carries, in addition to a target key, the ringId of the ring in which the key is stored. In
the subsequent section, we will show how to obtain these ringIds.

Recall that each node knows the ringIds of all rings in which it is a member. If the
target ringId of a message equals one of these ringIds, the node simply forwards the
message to the corresponding ring. From that point on, the message is routed according
to the structured overlay protocol within that target ring.

Otherwise, the node needs to locate a gateway node to the target ring, which is ac-
complished via anycast. If the node is a member of the global ring, then it forwards
the message via anycast in the global ring to the group that corresponds to the desired
ringId. The message will be delivered to a gateway node for the target ring that is close
in the physical network, among all such gateway nodes. This gateway node then for-
wards the data into the target ring, and routing proceeds as before.

If the node is not a member of the global ring, then it forwards the message into the
global ring via a gateway node by anycasting to the group whose identifier corresponds
to the ringId of the global ring. Routing then proceeds as described above.

As an optimization, it is possible for nodes to cache the IP addresses of gateway
nodes they have previously obtained. Should the cached information prove stale, a new
gateway node can be located via anycast. This optimization drastically reduces the need
for anycast messages during routing.

2.4 Global Lookup

In the previous discussion, we assumed that messages carry both a key and the ringId
of the ring in which the key is stored. In practice, however, applications often wish to
look up a key without knowledge of where the key is stored. For instance, keys are often
derived from the hash of a textual name provided by a human user. In this case, the ring
in which the key is stored may be unknown.

The following mechanism is designed to enable the global lookup of keys. When a
key is inserted into a organizational ring and that key should be visible at global scope,

166 Alan Mislove and Peter Druschel

a special indirection record is inserted into the global ring that associates the key with
the ringId(s) of the organizational ring(s) where (replicas of) the key is(are) stored. The
ringId(s) of a key can now be looked up in the global ring. Note that indirection records
are the only data that should be stored in the global ring. Only legitimate indirection
records are accepted by members of the global ring to prevent space-filling attacks.

2.5 Multi-level Ring Hierarchies
We believe that a two-level ring hierarchy is sufficient in the majority of cases. Never-
theless, there may be situations where more levels of hierarchy are useful. For instance,
a world-wide organization with multiple campuses may wish to create multiple rings
for each of its locations in order to achieve more fine-grained content locality. In these
cases, it may be advantageous to group these machines into subrings of the organiza-
tion’s ring, further scoping content and path locality.

In order to provide for such extensions, the ring hierarchy described above can be
naturally extended. To do so, we view ringIds as a sequence of digits in a configurable
base b, and each level of ring hierarchy will append an extra digit onto the parent ring’s
ringId. Thus, organizations which own a given ringId can dynamically create new rings
by appending digits to their ringId.

The routing algorithm can be generalized to work in a multi-level hierarchy as fol-
lows. When routing to a remote ring R, the node first checks to see if it is a member of
R. If so, it simply routes the message in R using the normal overlay routing.

If the node is not a member of R, it must forward the message to a gateway. If
the node is a member of multiple rings, it must choose one of these rings in which
to forward the message. This is done by comparing the shared prefix length of each
local ringId and R and picking the ring with the longest shared prefix. In the case of
multiple ringIds with the longest prefix, the node should pick the shortest one in total
length. This process guarantees that the node picks the local ring which is “closest” to
the destination ring R.

Once the node has chosen in which local ring L to send the message, it the must
determine if it should route the message up (towards the global ring), or down. This is
an easy computation, as it is dependent only upon the length of the shared prefix of L
and R. If R has L as a prefix, the node should route the message downwards since R
is “below” this ring. Thus, the node should forward the message via an anycast to the
Scribe group rooted at substring(R, length(L)+ 1). The gateway node which receives
the message can then use the routing algorithm again in the other ring.

If R does not have L as a prefix, the node should route the message upwards, to-
wards the global ring. This is done by routing the message to the parent ring, or to a
ring with ringId substring(L, length(L)−1). Clearly, messages are routed efficiently by
forwarding the message until a ring is found whose id is a prefix of the destination ring,
and then routing the message downwards towards the destination ring.

The pseudo-code for routing a message msg to the ringId dst at a node in ringId
local is shown in Figure 3. Figure 4, below, shows an example a node in ring D1A8
routing to a location in the ring 63.

3 Discussion

In this section, we discuss the costs, benefits and limitations of our proposed technique.

Providing Administrative Control and Autonomy in Structured Peer-to-Peer Overlays 167

(1) route(dst, msg) {
(2) if (local == dst) {
(3) route normally(msg)

(4) } else {
(5) len = length(local)

(6)

(7) if (dst.hasPrefix(local))

(8) forward(substring(dst, len+1), msg)

(9) else

(10) forward(substring(local, len-1), msg)

(11) }
(12) }

Fig. 3. The pseudocode for routing between rings, which is executed at each node along the route.

3.1 Robustness

Partitioning an overlay network into organizational rings affords content/path locality
as well as autonomy over organizations’ resources, protocols and parameter choices.
However, the partitioning may also reduce the diversity among the set of nodes that
store a given object. On the other hand, organizations can assess the churn, failure rate
and failure correlation of its own nodes with much greater accuracy than in a global
ring. This allows less conservative replication strategies and greater confidence in the
resulting object availability and durability.

If the diversity of nodes in an organizational ring is not sufficient to provide the
desired durability of objects, then replicas must be stored in different organizations’
rings via an appropriate replica placement strategy. The lookup of objects replicated in
this manner proceeds by first looking up the object in the local ring and should that fail,
looking up the object’s indirection record in the global ring, which refers to other rings
containing the object.

Ring D1

Global Ring

Ring 63

Ring D19C Ring D1A8

5
1

2

3

4

Fig. 4. Diagram of a the routing process with multiple levels of hierarchy. Gray nodes are gate-
ways, which exist in multiple rings and route between them. Numbers 1-5 denote the steps in
routing.

168 Alan Mislove and Peter Druschel

When adding a participant node, one must choose the set of rings in which the
node should participate. When making this decision, organizations need to strike the
right balance between content locality and diversity. For instance, an organizational
ring should be large enough to contain nodes with different physical network links to
the Internet, independent power sources and locations in different buildings if not cities.

To retain the robustness of a single global overlay network, all nodes without con-
nectivity constraints should join the global ring. All such nodes act as gateway nodes
among the rings, thus ensuring load balancing, efficient routing across rings, and fault
tolerance. In the case of rings behind firewalls, some loss of these properties is unavoid-
able due to the limitations of the physical network.

In an organizational ring, objects can be inserted only by a member of the same ring,
providing organizations with authority over their resources. This enables organizations
to more easily provision storage space. Likewise, it eliminates the threat of denial-of-
service attacks from outsiders that aim at filling up the storage, which is a problem in
open rings. Nodes that participate in the global ring must store indirection records and
forward routing request on behalf of arbitrary other organizations. This is unavoidable
as some resource sharing is central to the idea of a cooperative overlay network. How-
ever, our system limits data stored in the global ring to legitimate indirection records.
This makes space-filling attacks more difficult to mount.

3.2 Performance

The cost of routing a message within a given ring depends on the overlay protocol used
within the ring, typically O(log N) routing hops and, if proximity neighbor selection is
used, a delay stretch below two.

In the common case of a two-level hierarchy, routing a message between two or-
ganizational rings requires in the worst case three intra-ring routes plus two anycast
transmissions. However, caching of gateway nodes eliminates the two anycasts in most
cases. Also, all nodes in organizational rings without connectivity constraints are gate-
ways to the global ring, thus eliminating the need for one anycast and one overlay route
if the source is such a node.

With proximity neighbor selection used in the overlay protocols, the gateways lo-
cated via anycast are nearby in the physical network. Thus, the gateway nodes are likely
to lie along or near the shortest path from source to destination node in the physical net-
work. Combined with an expected delay stretch of under two for the route segments
between the gateways, this suggests that the total delay stretch for an inter-ring route is
also around two in the common case.

In terms of maintenance, the principal overhead of our system results from the fact
that gateways nodes must join multiple rings, and thus require additional control mes-
sages for maintaining the routing state in each ring. In what we consider the most com-
mon case of a two-level hierarchy, the worst case overhead is twice that of a single ring.
The overhead is lower when many nodes are behind firewalls or NAT boxes. Moreover,
a large fraction of the additional control traffic for maintaining organizational rings re-
mains internal to a given organization. Since the basic maintenance overhead of the
most efficient structured overlays has been reduced to less than half a message per sec-

Providing Administrative Control and Autonomy in Structured Peer-to-Peer Overlays 169

ond and node [1], we believe that the overhead imposed by hierarchical rings is not a
concern.

In addition, various optimizations are possible that exploit overlap among the rout-
ing state of a given node in the different rings. For instance, the size of the neighbor set
(e.g., leaf set in Pastry, successor set in Chord) can be reduced in organizational rings,
as the global ring can be used to repair a organizational ring that has become discon-
nected due to many simultaneous node failures. Since the details depend on the specific
overlay protocols used in each ring, we don’t discuss them here.

3.3 Security

Our system does not require the use of a specific, new structured overlay protocol. This
allows us to leverage existing work, for instance on secure routing in the presence of
malicious participants [2]. The nodeId certificates used in this work can be extended
to bind a node’s IP address to both its nodeId and ringId. When a node joins an any-
cast group or offers to forward a request into a different ring, it presents its certificate
demonstrating that it is actually a member of the ring in question. With both nodeId
and ringIds certified, the techniques described in Castro et al. [2] can then be applied to
our hierarchical ring structure. A full analysis, however, remains the subject of ongoing
work.

3.4 Status

The system as described is actively used within POST, a serverless infrastructure for
collaborative applications including email, instant messaging, and shared whiteboards
[16]. Users’ desktops are collectively hosting the service, and organizational rings pro-
vide content/path locality and organizational autonomy.

An implementation of our technique will be available as part of the upcoming FreeP-
astry 1.4 release. The implementation is designed using only the KBR API [7], and can
be used with any structured overlay protocol supporting this API. The release is open
source and can be downloaded from http://freepastry.rice.edu.

4 Related Work

The use of multiple coexisting rings has been described before, most notably in the
context of Coral [9] and SkipNet [13]. In Coral, multiple rings are used to provide data
locality, and are configured dynamically based on measured ping delays among partic-
ipating nodes. The system does not provide organizational autonomy nor data/content
locality at the organizational level.

Harvey et al. have first articulated the case for content and path locality [13]. Skip-
Net uses location-based id assignment in order to provide content and path locality. It
employs a skiplist-based search structure to ensure robustness and load balancing de-
spite the inherently uneven population of the identifier space. However, the system is
more vulnerable to certain types of attacks that place malicious node near the bound-
aries of an organization’s segment in the namespace [13]. Moreover, SkipNet still re-
quires global agreement on protocols and parameterization. Our multi-ring approach

170 Alan Mislove and Peter Druschel

offers greater organizational autonomy and can leverage work on existing protocols at
the expense of a somewhat higher overhead for maintaining multiple rings.

An extension of the Chord protocol provides support for multiple virtual rings, each
consisting of a subset of the overlay participants [14]. The multiple rings are based on a
single overlay instance and a novel routing mechanisms delivers messages to the nearest
live node to a given key within a given subset. This technique has lower overlay mainte-
nance overhead than our hierarchical rings approach, but it provides less organizational
autonomy and no path locality.

The use of multiple physical rings has been suggested in order to provide universal
service discovery and code maintenance [4]. Such work is complementary to this paper.

The Brocade [21] system, based on Tapestry, provides more efficient routing and
path locality by using a secondary network of supernodes. Each administrative domain
chooses a supernode, and inter-domain routing is accomplished via DHT lookups and
landmark routing. This system is complementary to our work as it focuses on routing
efficiency and provides neither content/path locality nor organizational autonomy.

Hierarchical peer-to-peer systems have also been explored in Garces-Erce et al.
[10], but only with the goal of improving performance of the overlay network routing.
A system of hierarchal rings was mentioned in the SkipNet paper as a design alternative,
but was rejected due to the overhead of multiple rings. We believe that in our system,
this overhead is small enough to provide a practical alternative that can leverage existing
work on structured overlays and provides greater organizational autonomy.

Additionally, none of the projects described above address the problem of deploying
peer-to-peer overlays over networks with connectivity constraints. Many unstructured
peer-to-peer overlays [11] solve this problem through network engineering, including
push requests and rendezvous points, but these approaches add complexity and may not
scale. Bryan Ford [8] has attempted to solve this problem in general with the use of
a new network-layer protocol, the Unmanaged Internet Protocol (UIP). However, the
deployment of such technology or IPv6 is still, at best, years away.

5 Conclusions

Structured p2p overlay networks provide a decentralized, self-organizing substrate for
large-scale distributed applications. However, most existing overlays provide neither
content/path locality nor organizational autonomy. We have presented a hierarchical
configuration of structured overlays that provides content/path locality, organizational
autonomy and respects connectivity constraints while maintaining global connectivity.
A multi-ring protocol stitches together organizational overlays that can run different
overlay protocols with different parameter choices. To applications, the entire system
appears like a single structured overlay. Since our solution works with any structured
overlay protocol, it is able to leverage existing work, e.g., on secure overlay routing.

Acknowledgments

This work was supported in part by NSF (ANI-0225660), by Texas ATP (003604-0079-
2001) and by Intel Research. We thank Miguel Castro and Antony Rowstron for dis-

Providing Administrative Control and Autonomy in Structured Peer-to-Peer Overlays 171

cussions that lead to the ideas presented. We would also like to thank the anonymous
IPTPS reviewers for their comments.

References

1. M. Castro, M. Costa, and A. Rowstron. Performance and dependability of structured peer-
to-peer overlays, 2003. Technical report MSR-TR-2003-94.

2. M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. Wallach. Security for structured
peer-to-peer overlay networks. In Proc. of the Fifth Symposium on Operating System Design
and Implementation (OSDI 2002), Boston, MA, December 2002.

3. M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Proximity neighbor selection in tree-
based structured peer-to-peer overlays, 2003. Technical report MSR-TR-2003-52.

4. M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. One ring to rule them all: Ser-
vice discovery and binding in structured peer-to-peer overlay networks. In Proceedings of
the SIGOPS European Workshop, Saint-Emilion, France, 2002.

5. M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. SCRIBE: A large-scale and
decentralized application-level multicast infrastructure. IEEE JSAC, 20(8), Oct. 2002.

6. M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. Scalable application-level any-
cast for highly dynamic groups. In Proc. NGC 2003, Munich, Germany, 2003.

7. F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica. Towards a common API for
structured peer-to-peer overlays. In Proc. IPTPS 2003, Berkeley, California, 2003.

8. B. Ford. Unmanaged internet protocol: Taming the edge network management crisis. In In
Proceedings of the 2nd Workshop on Hot Topics in Networks (HotNets-II), Cambridge, MA,
2003.

9. M. Freedman and D. Mazieres. Sloppy hashing and self-organizing clusters. In In Proceed-
ings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS ’03), Berkeley, CA,
2003.

10. L. Garces-Erce, E. Biersack, P. Felber, K. Ross, and G. Urvoy-Keller. Hierarchical peer-to-
peer systems. In Proc. Euro-Par 2003, Klagenfurt, Austria, 2003.

11. The Gnutella protocol specification, 2000.
http://dss.clip2.com/GnutellaProtocol04.pdf.

12. R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica. The impact of DHT routing
geometry on resilience and proximity. In Proc. ACM SIGCOMM’03, Karlsruhe, Germany,
2003.

13. N. Harvey, M. Jones, S. Saroiu, M. Theimer, and A. Wolman. Skipnet: A scalable overlay
network with practical locality properties. In Proc. USITS 2003, Seattle, WA, 2003.

14. D. Karger and M. Ruhl. An augmented Chord protocol supporting heterogeneous subgroup
formation in peer-to-peer networks. In Proceedings of the 3nd International Workshop on
Peer-to-Peer Systems (IPTPS’04), San Diego, CA, 2004.

15. P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information system based on
the xor metric. In In Proceedings of the 2nd International Workshop on Peer-to-Peer Systems
(IPTPS’03), Berkeley, CA, 2003.

16. A. Mislove, A. Post, C. Reis, P. Willmann, P. Druschel, D. Wallach, X. Bonnaire, P. Sens,
J. Busca, and L. Arantes-Bezerra. Post: A secure, resilient, cooperative messaging system. In
Proceedings of the Ninth Workshop on Hot Topics in Operating Systems (HotOS ’03), Lihue,
HI, 2003.

17. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-
addressable network. In Proc. ACM SIGCOMM’01, San Diego, CA, Aug. 2001.

172 Alan Mislove and Peter Druschel

18. S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-level multicast using
content-addressable networks. In NGC, Nov. 2001.

19. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems. In IFIP/ACM Middleware 2001, Heidelberg, Germany,
Nov. 2001.

20. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for Internet applications. In Proc. ACM SIGCOMM’01, San
Diego, CA, Aug. 2001.

21. B. Zhao, Y. Duan, L. Huang, A. Joseph, and J. Kubiatowicz. Brocade: Landmark routing on
overlay networks. In Proceedings of the 1st International Workshop on Peer-to-Peer Systems
(IPTPS’02), Cambridge, MA, 2002.

22. B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for fault-resilient wide-
area location and routing. Technical Report UCB//CSD-01-1141, U. C. Berkeley, April 2001.

Willow: DHT, Aggregation,
and Publish/Subscribe in One Protocol�

Robbert van Renesse and Adrian Bozdog

Dept. of Computer Science,
Cornell University Ithaca, NY 14850
{rvr,adrianb}@cs.cornell.edu

Abstract. This paper describes a new peer-to-peer protocol that in-
tegrates DHT routing, aggregation, all-to-all multicast, as well as both
topic- and content-based publish/subscribe. In spite of this extensive set
of features, the Willow protocol is simple, scalable, balances the load
well across the members, is proximity-aware, adapts to network condi-
tions, and recovers quickly and gracefully from network partitions and
subsequent repairs.

1 Introduction

In recent years, many application-level protocols have been designed for re-
source location, point-to-point and multicast routing, publish/subscribe, and
aggregation. This paper introduces a new protocol, Willow, that provides all of
these features. More specifically, Willow supports DHT-based routing, standing
SQL aggregation queries on attributes of the nodes, Application-Level Multicast
(ALM), and multicast filtering capabilities strong enough to support topic- and
content-based pub/sub and more.

As with previous protocols, memory requirements on the nodes grow
O(log N), while latency grows O(log N) (O(log2 N) for aggregation). Willow
is proximity-aware, and prefers short hops over long ones. Other than many pre-
vious proximity-aware protocols, Willow adapts to link latencies changing over
time. A particularly important feature in the Willow protocol is its zippering
mechanism by which separate Willow instances can be merged efficiently (in
O(log N) parallel steps) into a single instance. The zippering mechanism is an
important factor to Willow’s stability both in the face of network partitions and
in the face of churn.

Willow borrows some of its design from Astrolabe [1, 2]. While Astrolabe
was intended to do aggregation only, Astrolabe can in fact be configured to
function as a DHT as follows. Rather than manually assigning the Astrolabe
domain names, they would be generated by concatenating, say, 32 4-bit digits.
DHT routing can then be performed by walking the Astrolabe hierarchy in a

� This work was funded in part by DARPA/AFRL-IFGA grant F30602-99-1-0532, and
by the AFRL/Cornell Information Assurance Institute.

G.M. Voelker and S. Shenker (Eds.): IPTPS 2004, LNCS 3279, pp. 173–183, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

174 Robbert van Renesse and Adrian Bozdog

straightforward manner. Using the SelectCast protocol [3] that runs on Astro-
labe, pub/sub can be supported on this infrastructure as well.

Willow, however, is closer in design to a traditional DHT. At the heart of the
Willow protocol is a standard Plaxton-routing [4] infrastructure much like that
of Kademlia [5]. But where other Plaxton-based DHTs hide aggregation facilities
such as supported by Plaxton’s original design, Willow exposes them. Compared
to Astrolabe, Willow can support more queries, and answers them more quickly.
Most importantly, Willow spreads load evenly across the members.

In this overview of the Willow protocol, we discuss related work in Sect. 2,
the Willow model in Sect. 3, and the implementation in Sect. 4. A short look
at results from simulation experiments are presented in Sect. 5, and Sect. 6
concludes.

2 Related Work

Due to space limitations, we limit ourselves to discussing only the most closely
related projects.

Aggregation is important for supporting queries more complex than DHT
lookup operations, as well as for scalable monitoring applications. In the area
of peer-to-peer aggregation protocols, the most closely related projects besides
Astrolabe are DASIS [6], Cone [7], SDIMS [8], SOMO [9], and PIER [10]. DASIS
uses a Kademlia-like structure and aggregates information about the members
in a way quite similar to Willow. In DASIS, information thus collected is used in
the join algorithm to balance the P2P topology better than is typically achieved
through random placement.

Cone augments a ring-based DHT with a trie, one for each attribute and ag-
gregation operation. Cone can then support range queries over those attributes.

The SDIMS design exploits the fact that each key in Plaxton-based DHT
identifies a tree consisting of the routes from each other node to the root node
for that key. In SDIMS, each attribute and aggregation operation is hashed onto
a key and then the aggregation is performed along the corresponding tree. The
SDIMS implementation extends the Pastry protocol. In order to allow for an
administrative hierarchy as in Astrolabe, Pastry was modified to have a leaf set
for each administrative domain, rather than a single one.

Rather than augmenting a DHT, SOMO layers over a DHT. Even though
Willow is an augmented DHT, SOMO aggregates information up a tree and then
multicasts the results back down using the same tree much like in Willow. While
Willow uses only a single tree, SOMO has a tree per key like in SDIMS.

In PIER, a DHT is used as a database index, and maps database keys to nodes
that store the corresponding tuples. The DHT is augmented in order to allow
for enumeration of tuples at nodes so that selection queries can be implemented.
Most of the work in PIER so far has focussed on distributed joins rather than
on how to support aggregation queries efficiently.

All DHT-based multicast protocols that we are aware of, such as Bayeux [11]
and SplitStream [12], are layered on top of a DHT. In those systems, a key

Willow: DHT, Aggregation, and Publish/Subscribe in One Protocol 175

is associated with each multicast group, and one or more trees are build on a
per-key basis, and these trees follow the DHT routes for those keys. Willow, in
contrast, does not associate any keys with groups, but uses filtering in order to
send messages to particular subsets of members. This leads to two advantages.
Willow has many more routing options for multicast than do previous DHT-
based multicast schemes, potentially resulting in better performance and load
balancing, and more addressing options, strong enough to support even content-
based publish/subscribe.

3 Willow Model

Before we show how the Willow protocol is implemented, we will first describe
what Willow looks like once deployed.

3.1 Willow Tree

Each agent chooses a random 128-bit identifier. For the remainder of this paper,
we assume that this results in each agent having a unique identifier, although
agents can easily detect if their identifiers conflict and resolve this situation by
choosing a new random identifier. The identifier determines a path in a virtual
binary tree of 129 levels. Starting at the first bit of the identifier and the root of
the tree, a 0 bit determines the left child, and a 1 bit the right child, and so on.
Vice versa, each node in the tree can be named using a bit string. For example,
the root is named by the empty bit string, and its right child is named “1”. We
call each node in the tree a domain, and all the agents whose identifiers start with
the domain’s identifier are considered members of that domain. In particular, all
agents are members of the root domain, and each agent is a member of the leaf
domain consisting of only the agent.

Each domain has attributes in addition to its identifier. In the case of a leaf
domain, these attributes and their values are written directly by its correspond-
ing agent. In the case of non-leaf domains (aka. internal domains), the attributes
are determined by the two child domains. If both the left and right child domains
are empty (contain no agents), then the set of attributes of the parent domain
is empty as well. If only one of the child domains is empty, the attributes are
the same as those of the non-empty child domain.

The interesting case is when a domain has two non-empty child domains.
We call such domains branching domains. The attributes of the parent domain
are then determined by an aggregation function over the attributes of the child
domains. In Willow this is done using SQL. Imagine the two sets of attributes
forming two rows in a relational table. One or more SQL aggregation queries over
the table are used to compute the attributes of the parent domain. For example,
the aggregation query might be “SELECT MAX(maxload) AS maxload.” This
specifies that the parent domain will have an attribute maxload which is com-
puted by taking the maximum of the maxload attributes of both child domains.
All nodes share the same aggregation functions, and therefore the root domain

176 Robbert van Renesse and Adrian Bozdog

0 1

0

1

001

1

0

010

0

101

1

100

0
(5) (2)

(5)

(5)

(4)

(4)

(4)

(2)

(5) (2)

Fig. 1. Willow tree with four agents using three bit identifiers. The maximum load in
each domain is indicated between braces.

will have an attribute maxload containing the global maximum load. Figure 1
shows an example Willow tree.

Each time the attributes of a leaf domain change, all the attributes of do-
mains on the path up from the leaf domain to the root are recalculated auto-
matically, much like in dependent cells in a spreadsheet. The aggregates are also
recalculated in case of membership changes, or when aggregation functions are
installed, updated, or removed, all of which can be done on the fly. We note
that such updates are not instantaneous, in that there is a latency involved in
the dissemination of queries and attribute updates to the various agents. Willow
also does not guarantee consistency between the attributes that different agents
observe, but all converge quickly to the same state in the absence of updates.

3.2 Willow Operations

Willow supports the following operations:

– DHT Routing: route a message to an agent with an identifier nearest to a
specified key in terms of the XOR metric [5];

– Monitoring: using a JDBC query, specify what data needs to be reported
by the agents into the Willow tree, and using an SQL query, how the data
should be aggregated;

– Publish/Subscribe: route a message down the (logical!) Willow tree to all
domains satisfying an SQL predicate specified within the header.

Monitoring is guided by two queries. (Both are installed and aggregated them-
selves as “executable attributes” within the Willow tree.) Once an agent installs
such queries, it will take some time for them to propagate to all agents, and then
some time before all the necessary information has been retrieved, reported, and
aggregated. In order to determine when a query has completed, Willow has a
permanent query installed that reports the total number of members of a domain
in the nmembers attribute.

For example, say a user wants to determine which machine has the least
load. Rather than reporting just the identifier and load of an agent, the user’s
query would really report (agent, load, count), where agent and load are the
least loaded agent for the corresponding domain, and count is total number of
agents that have reported their load for this query. The user waits until count
approaches nmembers. (Note that unless continuous updates are required, he or
she should also remove the query at this time.)

Willow: DHT, Aggregation, and Publish/Subscribe in One Protocol 177

There are queries that do not lend themselves well to aggregation. For ex-
ample, the agent with the median load would be impossible to determine in the
way described above. Such queries will require more than one pass to answer.
Any query may be answered simply by collecting all the necessary information
of all agents, but often more efficient approaches exist. In the example above,
the agent with the median load can be determined using a binary search.

Willow also supports multicast and publish/subscribe. Given any domain,
Willow supports a mechanism to forward a message to both child domains.
When applied recursively, this mechanism multicast the message to all agents in
the domain. The message may contain an SQL condition which is applied to the
attributes of each child domain in order to determine whether to forward the
message to the child domain or not. For example, it would be possible to send a
message to all agents with a load less than 3, as long as a query is installed that
reports the minimum load in each domain. Using a Bloom filter, traditional topic-
based publish/subscribe can be efficiently supported this way, but the Willow
mechanism is quite powerful and can support content-based publish/subscribe
as well (both are based on the work in [3] and described in detail there).

For this, each agent would specify a query as one of its attributes which is
applied to attributes of messages. The queries are aggregated using logical OR.
The Willow SQL query engine supports an EVAL function that allows such queries
to be evaluated. In order for this to scale, the queries have to be conservatively
simplified. For example, if there are too many terms in an aggregated query,
the query can be replaced with TRUE. This has the effect that the message is
broadcast in the higher levels of the Willow tree, and filtered in the lower levels.
(Note that the same thing happens with Bloom filters, which also conservatively
simplify the membership, leading to harmless false positives in the higher levels
of the tree.)

4 Willow Implementation

The internal architecture used by Willow is close to that of Kademlia [5], even
though the tree maintenance is very different. As the Willow tree itself is virtual,
each Willow agent maintains domain information for each of the 128 domains
that it is a member of. Given a particular domain 〈d〉 (a prefix of the agent’s
identifier of length d bits), the domain information for 〈d〉 contains the following:

– a small (possibly empty) set of friends, which are the “fingers” or “neighbors”
used for P2P routing. The friends are members of 〈d〉0 if the agent is in 〈d〉1,
or 〈d〉1 if the agent is in 〈d〉0;

– the attributes of both the left and right child domains, 〈d〉0 and 〈d〉1 respec-
tively, one of which (the one that the agent is not in) may be empty;

Figure 2 shows the data maintained by agent 001 in the example of Fig. 1.
DHT routing uses friends for DHT routing exactly as in Kademlia. But in

Willow, friends are also used for multicast routing as follows. Multicast mes-
sages contain an integer specifying in which domain they need to be forwarded.
Initially, this integer is zero. To forward a multicast message with integer d, an

178 Robbert van Renesse and Adrian Bozdog

level friend child contact candidate maxload

0 101 0 001 010 5
(root) 1 100 101 4

1 010 0 001 001 5
1 010 010 2

2 0
1 001 001 5

Fig. 2. Data maintained by agent 001 in Fig. 1. In actuality, not the identifiers of other
agents are stored, but their IP addresses and boot times.

agent considers all the branching domains that it is a member of with a name
of d bits or longer. For each such domain, it forwards the message to one of the
friends in the corresponding peer child domain (assuming they satisfy the SQL
condition attached to the message), replacing the integer to contain the length
of the child domain’s identifier.

Note that in spite of there being only one logical tree, there is a different
physical multicast tree from every agent, and this contributes to good load bal-
ancing. Most importantly, if agents are connected to the Internet with only a
single link, and can only send one message at a time, the approach can be shown
to maximize parallelism for relatively long messages.

4.1 Attribute Propagation

Consider an agent and some domain 〈d〉. The agent is either in the left or right
child domain, say 〈d〉0. In that case, the agent derives the attributes of 〈d〉0 from
the attributes in the domain information of 〈d+1〉, while it learns the attributes
of 〈d〉1 through communication with other agents. This proceeds as follows.

Each domain elects one of its agents to be the contact of its domain. The
default election strategy favors older, presumably more stable, agents to repre-
sent larger domains. This is done using the Willow aggregation facility, which
elects both a contact and a candidate for each domain. The contact of a branch-
ing domain is the younger one of the candidates of its child domains, while the
candidate of a domain is the older of the candidates of its child domains. The
contact and candidate of leaf domains are both the agent itself. Note that all
agents are contacts of exactly one internal domain, except for the oldest agent
which is contact only of its leaf domain. The election strategy can be changed
as needed simply by installing another aggregation query.

The contact of a domain is responsible for sending the attributes of the
domain to the corresponding peer domain. That is, the contact of domain 〈d〉0
sends updates of its corresponding attributes to a friend in 〈d〉1, which then
disseminates the update in its domain through multicast. Although higher level
contacts have usually more attributes to aggregate and disseminate, the variance
of higher level attributes tends to be low and so updates are often significantly
less common than those of lower level domains. This depends of course on the
choice of aggregation queries, but in practice we have seen relatively little load
on higher level contacts.

Willow: DHT, Aggregation, and Publish/Subscribe in One Protocol 179

4.2 Efficiency

An important aspect of the Willow protocol is how friends are determined, as
these determine how well Willow exploits network locality. Currently, Willow
maintains only a single friend per peer domain. At regular intervals (currently,
once a minute), each agent probes a random agent in each peer domain (deter-
mined using a DHT lookup to a random key in that domain). If the random
agent exhibits better latency than the current friend, the friend is replaced with
the new agent. In Sect. 5 we show that this is an effective strategy.

In the Willow implementation, all communication is through TCP. As TCP
connections do not lose any data, only diffs need to be exchanged over these
pipes, which reduces communication overhead. TCP takes care of congestion
control. Willow further limits the rate of sending updates in order to control load
on the network. If a TCP pipe is full or the maximum rate has been exceeded,
diffs can be “saved up.” Newer updates will typically overwrite parts of older
updates, and therefore the amount of backlog that builds up this way is limited.
Note that each agent only has to maintain one TCP connection per friend, plus
at most two for each of the domains the agent is contact of. Thus the total
number of TCP connections per agent is O(log N).

4.3 Tree Maintenance

So far we have tacitly assumed that there are no membership changes. Willow
supports a Tree Maintenance Protocol (TMP) to maintain a single instance of the
Willow tree in which all agents have a consistent view of this tree. The TMP is a
recursive protocol in which left and right child branches of a domain are repaired
in parallel. Even disjoint trees merge quickly once communication between any
two agents in the respective trees is established. Such initial contact between
separated trees can be established through a rendez-vous host, IP multicast or
broadcast. This is also how new agents join the Willow tree. Most other DHTs
use DHT routing in order to add new agents, but this does not work efficiently
when merging trees or fixing broken DHT structures.

A2

B2 C2

A1

B1 C1

Fig. 3. Two distinct Willow trees are merged recursively and in parallel.

180 Robbert van Renesse and Adrian Bozdog

In Fig. 3 we show two disjoint Willow trees (or subtrees). In order to merge
domains A1 and A2, we first recursively merge B1 and B2 first in parallel with
C1 and C2, and then fix the top-level domains. The TMP uses two types of
messages. A sync message contains the name of a (non-leaf) domain and the
attributes of both child domains as known by the sender of the message (which
is an agent in that domain). It is used when one agent discovers another agent
with a different top-level contact. A conflict message contains the level of a
domain and the address of a contact, and is used to repair inconsistencies.

On receipt of a sync message, agent R determines if it is in the specified
domain. If not, R returns to the sender a normal update message containing the
attributes of the smallest common domain. If R is in the domain, it compares
both the attributes of the left child domain and the right child domain with
those of its own. Both cases are handled in the same way, so we look at just
the left child domain. If the attributes of the left child domain were null, or if
the existing attributes share the same contact, then R adopts the attributes into
its corresponding domain information. If the contact in the domain information
is different from the contact in the message, R sends a conflict message to
one of the two contacts, containing the address of the other one. On receipt of
a conflict message, the agent determines the branching domain from which
the contact was calculated, and sends a sync message for that domain to the
conflicting contact.

For example, in Fig. 4, A1’s contact sends a sync message to A2’s contact.
Then, after comparing the attributes of its child domains with those of A1’s child
domains, A2’s contact detects conflicts in both child domains. It then sends a
conflict message to the contacts of both B1 and C2, starting two parallel
merges. The message to B1’s contact contains B2’s contact, and on receipt
B1’s contact transmits to B2’s contact the attributes of E1 using another sync
message. On the receipt of the sync message, B2’s contact adopts E1 as its
right child domain. In parallel with all this, C1’s contact adopts G2 as its right
child. After this, the normal update protocol fixes all attributes for all the agents
involved.

A1

B1 C1 B2 C2

A2

G2E1D2G2F1E1

Sync Conflict Update

Fig. 4. Example of the zippering protocol.

Willow: DHT, Aggregation, and Publish/Subscribe in One Protocol 181

When applied to two separate Willow trees, the TMP protocol zippers both
trees together in O(log N) parallel steps. But the TMP protocol also fixes internal
inconsistencies between agents. In particular, when an update message arrives
from a peer domain with a conflicting contact, the TMP protocol is started to
fix the inconsistency.

Not all inconsistencies can be detected this way. For example, it is possible
for an agent in a domain X to know about a peer domain Y , while the contact
for X does not. The agents in the peer domain may not know about X , or even
if they did, the contact for Y may not. Thus there is no communication between
domains X and Y .

The problem is resolved as follows. The Willow attribute update protocol
periodically sends update messages at configured intervals, even in the absence
of updates (in which case the message will have an empty set of diffs). Currently,
Willow is configured to do so every 10 seconds. If an agent in X has not received
an update (either directly from an agent in Y , or through multicast in the local
domain) for more than 20 seconds, it sends an update for X to a friend in Y .
This friend will multicast the attributes in Y , and so the contact for Y will learn
about X . That contact in turn will send an update to the contact of X , which
will then multicast the attributes of Y within X . After this, all agents in X and
Y will know about each other.

An agent that has not received an update for more than 20 seconds will
continue to sends updates to the peer domain every 10 seconds. However, if
more than 60 seconds have passed, the agent will remove the attributes for the
peer domain, and considers it failed.

5 Evaluation

A fully operating Java implementation of Willow is currently available. In order
to investigate the scaling issues of Willow, we conducted a study of Willow on a
simulated network. In each experiment we placed nodes uniformly at random on
a 250x250 millisecond Euclidean plane. The network latency between any two
nodes is determined by their Euclidean distance. In these simulations we assume
that the bandwidth is constant across the network.

In Fig. 5 we show the maximum end-to-end delay of multicasting a small mes-
sage from a random node to all other nodes, which we expect to grow O(log N).
We used five different strategies for agents selecting friends in peer domains.
They are

– Random: use a random agent in the peer domain.
– Best/2 : use the closest of two random agents.
– Best/5 : use the closest of five random agents.
– Optimal : use the closest agent in the peer domain.

The optimal friend selection strategy is not practical, as there is no cost-
effective way for all agents to determine their nearest-by peer agent, but serves
as a base line. (In fact, the simulation study was limited by investigating this

182 Robbert van Renesse and Adrian Bozdog

0

0.5

1

1.5

2

1 10 100 1000

m
ca

st
 la

te
nc

y
(s

ec
)

members

0

0.5

1

1.5

2

1 10 100 1000

m
ca

st
 la

te
nc

y
(s

ec
)

members

random
best/2
best/5

optimal

Fig. 5. Multicast latency as a function of the number of agents for different friend
selection strategies. The error bars denote 99% confidence intervals.

0

1

2

3

4

5

1 10 100 1000

up
da

te
 la

te
nc

y
(s

ec
)

members

0

1

2

3

4

5

1 10 100 1000

up
da

te
 la

te
nc

y
(s

ec
)

members

random
best/2
best/5

optimal

Fig. 6. Update latency as a function of the number of agents for different friend selec-
tion strategies.

aspect.) We can see, however, that trying random peer agents over time and
maintaining the one with the lowest latency converges fairly quickly to an optimal
latency.

In Fig. 6 we show the end-to-end delay of updates, that is, how long it takes
between the time that an update is made at a random agent and the time at
which all other agents have learned the new root-level aggregate. We simulate a
worst-case scenario in which the root-level aggregate indeed changes. Depending
on the application this can in fact be a rare event. From a complexity analysis
study we expect the latency to grow O(log2 N). Load studies omitted here show
that load is well balanced across the agents.

6 Conclusion

The Willow protocol represents two contributions over previous work. First, Wil-
low supports all of DHT routing, multicast, publish/subscribe, and aggregation
in one simple, location-aware protocol. The aggregation facilities allow for a wide
range of queries over the data. Second, Willow includes an efficient tree merging
protocol that allows disjoint trees to merge in O(log N) parallel steps, and also
repairs Willow trees efficiently when damaged by churn.

Willow: DHT, Aggregation, and Publish/Subscribe in One Protocol 183

Willow is implemented in 2300 lines of Java code, excluding the SQL parser
and engine (representing close to 10,000 lines of Java). Initial experience and
simulation results indicate that Willow scales well.

Acknowledgements

We would like to thank Ken Birman, Werner Vogels, Dan Dumitriu, and Vid-
hyashankar Venkatraman for many useful discussions that have led to the design
of Willow, and the anonymous reviewers for their comments and suggestions.

References

1. van Renesse, R.: Scalable and secure resource location. In: Proc. of the Thirty-
Third Annual Hawaii Int. Conf. on System Sciences, Los Alamitos, CA, IEEE,
IEEE Computer Society Press (2000)

2. van Renesse, R., Birman, K., Vogels, W.: Astrolabe: A robust and scalable tech-
nology for distributed system monitoring, management and data mining. ACM
Transactions on Computer Systems 21 (2003)

3. Bozdog, A., van Renesse, R., Dumitriu, D.: SelectCast: A scalable and self-repairing
multicast overlay routing facility. In: Proc. of the First ACM Workshop on Surviv-
able and Self-Regenerative Systems, Fairfax, VA (2003)

4. Plaxton, C.G., Rajaraman, R., Richa, A.W.: Accessing nearby copies of replicated
objects in a distributed environment. In: ACM Symposium on Parallel Algorithms
and Architectures. (1997) 311–320

5. Maymounkov, P., Mazieres, D.: Kademlia: A peer-to-peer information system based
on the XOR metric. In: Proc. of the First International Workshop on Peer-to-Peer
Systems (IPTPS’02), Cambridge, MA (2002)

6. Albrecht, K., Arnold, R., Wattenhofer, R.: Join and leave in peer-to-peer systems:
The DASIS approach. Technical Report 427, Dept. of Computer Science, ETH
Zurich (2003)

7. Bhagwan, R., Varghese, G., Voelker, G.: Cone: Augmenting DHTs to support dis-
tributed resource discovery. Technical Report CS2003-0755, UC, San Diego (2003)

8. Yalagandula, P., Dahlin, M.: A scalable distributed information management sys-
tem. (2003) In submission.

9. Zhang, Z., Shi, S.M., Zhu, J.: SOMO: Self-Organized Metadata Overlay for resource
management in p2p DHT. In: Proc. of the Second Int. Workshop on Peer-to-Peer
Systems (IPTPS’03), Berkeley, CA (2003)

10. Huebsch, R., Hellerstein, J., Lanham, N., Loo, B., Shenker, S.: Querying the Inter-
net with PIER. In: Proc. of the 19th Int. Conf. on Very Large Databases (VLDB).
(2003)

11. Zhuang, S., Zhao, B., Joseph, A., Katz, R., Kubiatowicz, J.: Bayeux: An architec-
ture for scalable and fault-tolerant wide-area data dissemination. In: Proc. of the
11th Int. Workshop on Network and Operating System Support for Digital Audio
and Video, Port Jefferson, NY (2001)

12. Castro, M., Druschel, P., Kermarrec, A.M., Nandi, A., Rowstron, A., Singh, A.:
SplitStream: High-bandwidth multicast in a cooperative environment. In: Proc.
of the 19th ACM Symp. on Operating Systems Principles, Bolton Landing, NY
(2003)

Friends Troubleshooting Network: Towards
Privacy-Preserving, Automatic Troubleshooting

Helen J. Wang1, Yih-Chun Hu3, Chun Yuan2, Zheng Zhang2, and Yi-Min Wang1

1 Microsoft Research, Redmond, WA, USA
2 Microsoft Research Asia, Beijing, China

3 University of California, Berkeley, CA, USA

Abstract. Content sharing is a popular usage of peer-to-peer systems for its in-
herent scalability and low cost of maintenance. In this paper, we leverage this
nature of peer-to-peer systems to tackle a new problem: automatic misconfigu-
ration troubleshooting. In this setting, machine configurations from the peers are
“shared” to diagnose the misconfigurations on a sick machine. A key challenge
for such a troubleshooting system is privacy preservation. To this end, we con-
struct Friends Troubleshooting Network (FTN), a peer-to-peer overlay network,
where the links between peer machines reflect the friendship of their owners. To
preserve privacy, we use historyless and futureless random-walk in the FTN, dur-
ing which search along with parameter aggregation are carried out for the purpose
of troubleshooting. Many of our techniques can be applied to other application
scenarios that require privacy-preserving distributed computing and information
aggregation. We have also identified a number of open challenges that remain to
be addressed.

1 Introduction

Today’s desktop PCs have not only brought to their users an enormous and ever-increas-
ing number of features and services, but also an increasing amount of troubleshooting
cost and productivity losses. Studies [14][15] have shown that technical support con-
tributes 17% of the total cost of ownership of today’s desktop PCs. A large amount of
technical support time is spent on troubleshooting.

In this paper, we tackle an important troubleshooting category in which application
failures are due to misconfigurations on the troubled machine. In our prior work [16],
we developed an effective algorithm called PeerPressure for diagnosing such miscon-
figurations. PeerPressure uses the common configurations from a set of helper machines
to identify the anomalous misconfigurations on the sick one. Searching for the right set
of helper machines and aggregating helper configurations is the topic of this paper.
Maintaining helper configurations at a centralized server or database is expensive as it
requires continuous update and maintenance. Further, such a solution places complete
trust on a single entity. Hence, the privacy of both helpers and troubleshooting users
are of great concern. These reasons lead us to explore the peer-to-peer approach where
peers share their content at low cost of maintenance and with inherent scalability. In
our setting, the “content” refers to the machine configurations of the peers. Further,
the trust is distributed among the peers. There are two essential goals in designing a
PeerPressure-based peer-to-peer troubleshooting system:

G.M. Voelker and S. Shenker (Eds.): IPTPS 2004, LNCS 3279, pp. 184–194, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Friends Troubleshooting Network 185

– Integrity: We should preserve the integrity of the troubleshooting results.
– Privacy: We should protect privacy-sensitive configurations for both troubleshoot-

ing users and peer helpers during routing and information aggregation.

Ensuring integrity is challenging because malicious peers may lie about the appli-
cations they own and the configuration state they have, which can lead to incorrect
troubleshooting results. A machine can be malicious either because its owner has ill
intentions or because it is compromised by an attacker.

We cope with the ill-intentioned-user problem by designing well-established social
trust into the troubleshooting framework. Today, when encountering computer prob-
lems, most people first seek help from their friends and neighbors. Based on this obser-
vation, we construct a Friends Troubleshooting Network (FTN), which is a peer-to-peer
overlay network, where a link between two machines is due to the friendship of their
owners. Here, we assume that a pair of friends intend to help each other out by con-
tributing their own authentic, relevant non-privacy-compromising configuration infor-
mation to each other for the purpose of troubleshooting. If the relevant configurations
are privacy-sensitive, they will refuse to supply the information rather than giving false
content. Further, just like in the real world, when Alice asks her friend Bob a question,
if Bob only has a partial answer or does not know the answer, Bob can potentially ask
his friend Carol on Alice’s behalf, especially when Alice and Carol are not friends. This
is exactly how a troubleshooting request recursively propagates in the FTN. One may
quickly conclude that our system manifests transitive trust. However, in our example,
because Carol and Alice are not friends, Carol may provide untruthful answers to Alice
if Alice asks Carol directly. So, more precisely, FTN manifests recursive trust instead.

Coping with compromised FTN nodes is an open challenge. We provide a rough
outline for integrity preservation under such conditions in Section 7.1.

Despite the friendship-based trust in the FTN, privacy remains a crucial goal in
FTN since friends do maintain privacy from one another. In fact, much configuration
state contains privacy-sensitive information, such as usernames, passwords, URLs vis-
ited, and applications installed. We achieve privacy through a historyless and futureless
random-walk of an ownerless troubleshooting request, during which search as well as
parameter aggregation are carried out for the purpose of PeerPressure troubleshooting.
Unlike the traditional peer-to-peer search and routing protocols which are destination-
driven, the historyless and futureless random-walk in FTN exhibits a new communi-
cation pattern which is destination-free searching and routing along with parameter
aggregation.

For the rest of the paper, we first provide background on PeerPressure in Section 2.
We state our privacy objectives in Section 3. In Section 4, we present our protocol
design for privacy-preserving search and parameter aggregation. We discuss on how
FTN achieves privacy objectives in Section 5. Then we discuss the overhead of our
protocol in Section 6. In Section 7, we list the open challenges remaining in this work.
We compare and constrast our work with the related work in Section 8 and finally
summarize in Section 9.

186 Helen J. Wang et al.

2 Background: PeerPressure

PeerPressure [16] assumes that an application functions correctly on most machines
and hence that most machines have healthy configurations. It uses the statistics from a
set of sample machines to identify anomalous misconfigurations. The distinct feature of
PeerPressure in contrast with other work in this area [17] is that it eliminates the need
of manually identifying a healthy machine as a reference point for comparison. We
have experimented with the PeerPressure algorithm and a corresponding troubleshoot-
ing toolkit on Windows systems where most of configuration data is stored at a central-
ized registry. Figure 1 illustrates the operations of our PeerPressure troubleshooter.

Registry Entry Suspects

0HKLM\System\Setup\...

OnHKLM\Software\Msft\...

nullHKCU\%\Software\...

DataEntry

PeerPressure

Search
& Fetch

Statistical
Analyzer

Canonicalizer

DB of Registry
Snapshots

Troubleshooting Result

0.2HKLM\System\Setup\...

0.6HKLM\Software\Msft\...

0.003HKCU\%\Software\...

Prob.Entry

App
Tracer

Run the
faulty app

P2P Trouble-
shooting

Community

Fig. 1. PeerPressure Troubleshooter

PeerPressure first uses application tracing (with the “AppTracer”) to capture the
configuration entries and their values that are touched by the abnormal execution of the
application under troubleshooting. These entries are misconfiguration suspects. Then,
the canonicalizer turns any user- or machine-specific entries into a canonicalized form.
For example, user names and machine names are all replaced with constant strings
“USER NAME” and “MACHINE NAME”, respectively. Next, from a sample set of
helper machines, for each suspect entry, PeerPressure obtains the number of samples
that match the value of the suspect entry, and the cardinality (the number of possible
values this entry may have). PeerPressure uses these parameters along with the sample
set size and the number of suspect entries to calculate the probability of a suspect entry
being the cause of the symptom. The intuition behind this sick probability calculation
is that the more conformant a suspect entry is with the samples, the more likely the
entry is to be healthy. The top ranking entries with regard to the sick probability are
diagnosed as the root-cause candidates. The sample set can be obtained either from
a database of registry snapshots collected from a large number of user machines or
from a peer-to-peer troubleshooting community such as the one described in this paper.

Friends Troubleshooting Network 187

We have demonstrated PeerPressure [16] as an effective troubleshooting method: Our
PeerPressure troubleshooter can pinpoint the root-cause misconfiguration accurately for
12 out of 20 real-world troubleshooting cases and for the remaining cases, it can narrow
down the root-cause candidates by three orders of magnitude.

3 Privacy Model and Objectives

Before we dive into our protocol design, we first state our privacy model and objectives.

3.1 Private Information

The information being communicated in FTN is PC configuration data. We denote
the complete set of configuration data on a machine as D. A subset of D is identity-
revealing, such as usernames and cookies, which we denote as Di. The remaining set
Dr = D − Di may contain information that compromises privacy when linked with
user identity. Some examples of such information are URLs visited and applications
installed. Our privacy objective is to protect all peers’ privacy by anonymizing such
privacy-sensitive information in Dr. Of course, this forbids Di to be revealed.

3.2 Attackers

We assume a friendly operational environment where attackers are simply curious
friends. We address compromised nodes in Section 7.1, and not else where.

3.3 Attacks

The ways attackers attempt to obtain privacy-sensitive information include the follow-
ing:

1. Message inspection attack: Infer privacy-sensitive information passively by inspect-
ing the messages that are passing by.

2. Polling attack: Repeatedly send fake troubleshooting requests to a friend to obtain
and infer his private information.

3. Eavesdrop on machines on the same LAN.
4. Known topology attack: Discover the FTN topology through side channels. This

information may be used to deduce privacy-sensitive information.
5. Gossip attack: Friends may gossip (i.e., collude) and correlate pieces of informa-

tion.

4 Privacy-Preserving Search and Parameter Aggregation Protocol
in FTN

We assume that the FTN bootstraps and maintains its overlay links in the same way as
Gnutella [8] or Kazaa [10] except that the neighbors are trusted friends’ machines. We
assume that each node and its immediate friends exchange their public keys through a
secure out-of-band mechanism. The neighboring nodes use their public keys to establish
secure channels for troubleshooting communications.

188 Helen J. Wang et al.

4.1 Basic Approaches

We take the following basic approaches to achieve our privacy objectives.

– Integration of search and parameter aggregation in one transaction: If the
search is a separate step, which returns the IP addresses of helpers, then the querier
can determine the applications running on the helpers’ machines. Since applica-
tion ownership could be private information, we integrate search and parameter
gathering for PeerPressure into one step in such a way (next bullet point) that the
parameter values at any point represents a collective state for a set of friends, and
therefore does not reveal any individual state.

– Historyless and futureless random-walk routing: To preserve the privacy of
the troubleshooting user as well as node owners on the path, we design the trou-
bleshooting messages to be ownerless, and not to contain any routing history or
future routing state such as the source and the nodes traversed or to be traversed. In
addition, we make sure that the troubleshooting state gathered from the past is ag-
gregate in nature so that individual state is disguised. Each node on the forwarding
path of the random-walk is either a forwarder which simply proxies the request or
a helper which contributes its own relevant configurations to the request and then
proxies the request. Each node on the path keeps per-request state on the previous
and next hop of the request. On the return path, the reply follows the same way
back. The reply contains all the parameters needed by PeerPressure calculation at
the sick machine.

4.2 Protocol Details

Figure 2 zooms into a segment of the random walk in FTN.

Creating a Request on the Sick Machine. A sick machine first filters out the identity-
revealing entries from the suspects, for example by removing all entries that contain
usernames. Then it creates a troubleshooting request as shown in Table 1.

The entry value distributions in field 3 are needed by the sick machine for deter-
mining the most popular values as legal values for root cause candidates as well as
determining the cardinality of the entry (Section 2). The size of the value distribution
depends on the cardinality of the entry. According to our study in [16], 87% of Win-
dows registry entries have a cardinality of 1 and 94% have no more than 2. So, value
distributions do not add significant overhead to our messaging.

Table 1. FTN Request

1 H(app.exe) where H is a one-way hash function.
2 Remaining number of samples needed, R
3 For each suspect entry e, EntryName, SickEntryValue, the

number of matches Me, and the value distribution of e from
the past samples

Friends Troubleshooting Network 189

HF

e1

e2

e3

e4

“google”

False

“c:\”

on

Vs

1

0

5

7

Me

e1

e2

e3

e4

“google”

False

“c:\”

on

Vs

1

0

5

7

Me

e1

e2

e3

e4

“google”

False

“c:\”

on

Vs

2

0

6

8

Me

e1

e2

e3

e4

“google”

False

“c:\”

on

Vs

3

1

15

30

Me

e1

e2

e3

e4

“google”

False

“c:\”

on

Vs

3

1

15

30

Me

e1

e2

e3

e4

“google”

False

“c:\”

on

Vs

3

1

15

30

Me

Fig. 2. FTN Search and Parameter Aggregation Protocol: in the forward path, H, the helper, up-
dates value distribution (not shown) of each configuration entry e and the number of matches
Me if its value for e matches the sick value Vs. The forwarder only proxies the request. On the
return trip, the complete PeerPressure parameter information is passed back to the sick machine
following the same path. (The role of being a helper or a forwarder is only known to the node
itself, and not anyone else)

To preserve anonymity, the requester initializes the value distribution with random
values.

We identify each request with RqID = H(n,AllEntryNames), where n is a nonce
generated at the sick machine, and H is a one-way hash function.

Forward Path and Parameter Aggregation. The sick machine establishes a secure
channel with an available friend chosen at random, then sends it the troubleshooting
request. The friend sends an ACK if it can become either a forwarder or a helper for
the request. If no ACK is received upon timeout, then the requester tries another friend
chosen at random. To avoid routing loops, if a friend has seen the RqID of an arriving
request in the past, the friend replies with a NACK.

If a node is involved in forwarding or helping and if it is capable to help because
it also runs the application under troubleshooting, then the node becomes a helper with
the probability of Ph. Without Ph, the second-to-last-hop node can potentially infer in-
formation about the last-hop-node. When the application under troubleshooting is very
popular, with high probability, the last-hop node is capable to help. Then the second-to-
last-hop node can correlate request and reply to infer the last-hop helper’s configuration
state. Nonetheless, even with Ph, a node can poll its next hop using fake requests with
R = 1 to infer information statistically. We make such attacks more difficult with a
bimodal Ph where Ph takes a smaller value for requests with small R’s.

A helper needs to update the troubleshooting request accordingly. It increments Me,
the number of matches for each suspect entry e, when the helper’s value matches that

190 Helen J. Wang et al.

of the sick’s. And the helper updates the value distributions in the request based on its
own respective entry values. (With our trust model, uncompromised FTN nodes do not
lie about these values (Section 1); and we address compromised nodes in Section 7.1).
Then, the helper decrements R. If R is positive, the helper proxies the request to one of
its friends.

Each node on the forwarding path must record the RqID, the request arrival time,
the previous and next hop friend along with R. There is timeout associated with each
request.

Last Hop and Return Path. If R becomes 0, the node is on the last hop. The last-hop
node waits for a random amount of time, then sends the reply back to the previous hop.
Without the random wait, the second-to-last hop node could know that the reply comes
from the last hop, then correlate the Me’s in request and reply to infer the last-hop node’s
values. It is possible that a curious friend launches a polling attack (Section 3) with
R = 1 and conducts statistical timing analysis to infer its next hop’s private information.
To make such statistical attacks more difficult, the random wait can be uniformly drawn
from a large range, e.g., 15 hops.

The reply follows the request path back to the sick machine. The sick machine
first subtracts the random initialization from the value distributions. Then it performs
PeerPressure diagnosis.

5 Achieving Privacy Objectives

The historyless and futureless random-walk along with integrated search and parame-
ter aggregation counters the message inspection attacks and polling attacks (see Sec-
tion 3.3). The use of secure channel on each overlay link counters the eavesdropping
attack. The use of Ph makes the potential inference in known topology attack difficult.
We can mitigate most gossip attacks with the use of Ph along with historyless and fu-
tureless routing, except in one scenario: If a victim has two gossiping friends, whenever
the victim “helps” with troubleshooting and is en route between the two, its information
could be inferred by the two gossipers. A potential technique for reducing the impact
of this attack is random perturbation which is discussed in Section 7.2.

6 Response Time and Bandwidth Overhead

In FTN, the troubleshooting response time is dictated by the number of hops a trou-
bleshooting request and its reply traverse, which is N/Ph ∗ 2 where N is the number
of samples needed. When N = 10, PeerPressure is already effective; nonetheless, the
larger the N is, the better the root-cause ranking becomes in general [16]. The response
time can be improved with fan-outs and by gathering a fraction of samples on each
branch.

In terms of bandwidth overhead, for the Windows applications we evaluated in [16],
there is a median of 1171 suspect entries. So, according to Table 1, our troubleshooting
messages are about 80 KB.

Friends Troubleshooting Network 191

7 Open Challenges

7.1 Integrity in the Face of Compromised FTN Nodes

Though friends may be trustworthy, their computers’ behaviors do not necessarily carry
out their owners’ intentions when they are compromised by attackers. To defend in-
tegrity when some FTN nodes may be compromised, all nodes on the request path
remember the troubleshooting request (see Table 1) that they forward. Then, on the re-
turn trip, each node checks these invariants: the additional number of matches for each
suspect does not exceed R, the recorded remaining number of samples needed; for each
suspect, the count in value distributions in the reply did not decrease; and the sum of
all counts in the reply minus the sum of all counts in the request equals to R. Only
when these invariants are maintained, a node forwards on the reply. Ensuring absolute
integrity here remains an open challenge.

Another serious attack is that one compromised node can bring in his gang of
malicious friends which could all be himself in the form of the Sybil attack [5]. A
large majority of “Sybils” impact the troubleshooting result without violating any in-
tegrity invariants mentioned above. One way to counter this attack is to initiate multiple
troubleshooting requests, hoping that a majority of them will return with correct trou-
bleshooting results, and therefore weed out the incorrect ones that have compromised
nodes on the path. The earlier a compromised node appears on a path (i.e., the higher
the R is), the more room the compromised node has to sway the final troubleshooting
result. In such cases, using a high fan-out (Section 6) reduces R, and limits the compro-
mised node’s influence. Further analysis is needed on the number of requests needed
given the positions of the compromised nodes.

7.2 Random Perturbation for Gossip Attack

In a gossip attack (Section 3), two common friends can collude to infer a third friend’s
private information by noticing the changes to Me. To reduce the impact of this attack,
it might be feasible for each node on the path to apply random perturbation [1] to R,
the remaining number of samples required, Me, the number of matches, and value dis-
tribution updates. For example, instead of incrementing Me for Suspect e when a helper
has a matching value, the helper adds a random noise to Me to confuse the gossipers.
Nonetheless, it is unclear how such random noise affect the final troubleshooting result
especially when the total number of samples is small. We are investigating the applica-
bility of this technique.

7.3 Ownerless Troubleshooting Request

Removing identity-revealing information from the original troubleshooting request is
non-trivial since entries that are not identity-revealing individually could be combined
to identify a user. Systematic recognition of all identity-revealing vectors of configura-
tion entries is an open challenge.

192 Helen J. Wang et al.

8 Related Work

There is much related work in the arena of anonymization. Our chain style of historyless
and futureless random-walk is similar in spirit to that of FreeNet [4] and Crowds [13].
FreeNet is a distributed anonymous information storage and retrieval system. Crowds
is for anonymous web transactions. Chaum’s approach to anonymization is based on
the use of mixes [3] which serve as proxies to provide sender-receiver unlinkability
through traffic mixing. Onion routing [9] extends the mixes with layers of onion-style
pre-encryptions. Tarzan [6] implements the mix idea using a peer-to-peer overlay and
provides sender anonymity and robustness to the mix entry point.

All of the above anonymization techniques address point-to-point communications.
However, our protocol in FTN takes the form of one-to-many communications and is
destination-free, since a sample set is drawn from the peers. As a result, nodes on the
path must look into the packet content and potentially modify it before proxying it for-
ward. Hence, our application additionaly requires user privacy not being compromised
in this process of state aggregation.

Our problem of privacy-perserving parameter aggregation shares much similarity to
the problem of secure and privacy-preserving voting [7][2] with four distinctions. First,
voting requires voters to be authenticated by a centralized authority, such as the gov-
ernment. Second, our protocol requires participation privacy additionally; otherwise,
the privacy of the application ownership is compromised. Third, unlike some voting
scenarios where there are limited number of voting candidates, our problem scenario
does not have such a limit. Lastly, while voting requires precise vote tallies, PeerPres-
sure uses the statistics which allows small amount of inaccuracies; therefore, random
perturbation could potentially be used for privacy in our scenario.

The authors of SIA[12] presented a set of techniques for secure information ag-
gregation in sensor networks with the presence of malicious sensors and aggregators.
The integrity of information aggregation is achieved essentially through authentication
which is identity-revealing. In FTN, we cannot do the same because of the privacy con-
cerns.

ACME [11] is a scalable, flexible infrastructure for monitoring, analyzing, and con-
trolling Internet-scale systems. ACME collects, aggregates and reduces nodes’ health
data as the data is routed through a peer-to-peer network, but it does not address privacy
or integrity.

9 Concluding Remarks

In this paper, we introduce automatic troubleshooting as an interesting application that
can also benefit from the content-sharing nature of peer-to-peer systems while being
legal at the same time. We leverage an automatic troubleshooting algorithm, PeerPres-
sure [16], which uses statistics among the peers to diagnose the anomalous misconfig-
urations on a sick machine. For a privacy-preserving PeerPressure-based peer-to-peer
system, we construct a Friends Troubleshooting Network (FTN) which is a peer-to-
peer overlay network where the links between peer machines reflect the friendship of
their owners. The FTN nodes manifest recursive trust rather than transitive trust. In

Friends Troubleshooting Network 193

FTN, we use historyless and futureless random-walk for integrated search and param-
eter aggregation for PeerPressure. We believe these techniques can be applied to other
application scenarios that require privacy-preserving distributed computing and infor-
mation aggregation. There is much future work ahead of us in making FTN a reality.
Integrity preservation in the face of compromised nodes, the feasibility of random per-
turbation in this setting, and recognizing identity-revealing configuration entries remain
open challenges.

Acknowledgement

Josh Benaloh, John Docceur, John Dunagan, Jon Howell, David Oppenheimer and Alf
Zugenmaier have given us invaluable discussions and critiques for numerous drafts of
this paper from the technical content to the presentation. We are grateful to their gen-
erous help. We also thank the anonymous reviewers for their insightful comments and
suggestions.

References

1. AGRAWAL, R., AND SRIKANT, R. Privacy Perserving Data Mining. In Proceedings of
SIGMOD (2000).

2. BENALOH. Verifiable Secret-Ballot Elections. PhD thesis, Yale University, Sept. 1987.
3. CHAUM, D. L. Untraceable Electronic Mail, Return Addresses and Digital Pseudonyms. In

CACM (1981).
4. CLARKE, I., SANDBERG, O., WILEY, B., AND HONG, T. W. Freenet: A distributed anony-

mous information storage and retrieval system. In Proc. International Workshop on Design
Issues in Anonymity and Unobservability. In Proceedings of International Workshop on
Design Issues in Anonymity and Unobservability (2001). Lecture Notes Computer Science
Volume 2009.

5. DOUCEUR, J. R. The Sybil Attack. In Proceedings of the 1st International Workshop on
Peer-to-Peer Systems (IPTPS) (2002).

6. FREEDMAN, M. J., SIT, E., GATES, J., AND MORRIS, R. Introducing Tarzan, a Peer-to-
Peer Anonymizing Network Layer. In IPTPS (2002).

7. FUJIOKA, T., OKAMOTO, T., AND OHTA, K. A Practical Secret Voting Scheme for Large
Scale Elections. In Proceedings of Auscrypt (Dec. 1992).

8. The Gnutella v0.6 Protocol, Gnutella Development Forum, 2001.
9. GOLDSCHLAG, D. M., REED, M. G., AND SYVERSON, P. F. Onion Routing for Anony-

mous and Private Internet Connections. In CACM (Feb 1999).
10. KaZaa. http://www.kazaa.com.
11. OPPENHEIMER, D., VATKOVSKIY, V., WEATHERSPOON, H., LEE, J., PATTERSON, D. A.,

AND KUBIATOWICZ, J. Monitoring, Analyzing, and Controlling Internet-Scale Systems
with ACME. Tech. Rep. UCB/CSD-03-1276, U. C. Berkeley, October 2003.

12. PRZYDATEK, B., SONG, D., AND PERRIG, A. SIA: Secure Information Aggregation in
Sensor Networks. In Proceedings of ACM SenSys (Nov 2003).

13. REITER, M. K., AND RUBIN, A. D. Crowds: Anonymity for Web Transactions. In ACM
Transactions on Information and System Security (Nov 1998).

14. SILVER, M., AND FIERING, L. Desktop and Notebook TCO Updated for the 21st Century,
September 2003.

194 Helen J. Wang et al.

15. Web-to-Host: Reducing the Total Cost of Ownership, The Tolly Group, May 2000.
16. WANG, H. J., CHEN, Y., PLATT, J., ZHANG, R., AND WANG, Y. M. PeerPressure, A

Statistical Method towards Automatic Troubleshooting. Tech. Rep. MSR-TR-2003-80, Mi-
crosoft Research, Redmond, WA, Nov 2003.

17. WANG, Y.-M., VERBOWSKI, C., DUNAGAN, J., CHEN, Y., WANG, H. J., YUAN, C., AND

ZHANG, Z. STRIDER: A Black-box, State-based Approach to Change and Configuration
Management and Support. In Proceedings of LISA (2003).

Spurring Adoption of DHTs with OpenHash,
a Public DHT Service

Brad Karp1,2, Sylvia Ratnasamy3, Sean Rhea3,4, and Scott Shenker4,5

1 Intel Research Pittsburgh, Pittsburgh, PA 15213, USA
2 Carnegie Mellon University, Pittsburgh, PA 15213, USA

3 Intel Research Berkeley, Berkeley, CA 94704, USA
4 UC Berkeley, Berkeley, CA 94720, USA

5 ICSI, Berkeley, CA 94704, USA

1 Introduction

The past three years have seen intense research into Distributed Hash Tables (DHTs):
both into algorithms for building them, and into applications built atop them. These
applications have spanned a strikingly wide range, including file systems [1–3], event
notification [4], content distribution [5], e-mail delivery [6], indirection services [7, 8],
web caches [9], and relational query processors [10]. While this set of applications is
impressively diverse, the vast majority of application building is done by a small com-
munity of DHT researchers. If DHTs are to have a positive impact on the design of dis-
tributed applications used by real users outside this research community, we believe that
the community of DHT-based application developers should be as broad as possible.

Why, then, has this community of developers remained narrow? First, keeping a
research prototype of a DHT running continually requires effort, and experience with
DHT code. Second, significant testbed resources are required to deploy and test DHT-
based applications. A hacker can download the code for Chord, but she cannot run
that code alone; recall that only a tiny fraction of would-be developers has access to a
testbed infrastructure like PlanetLab [11]. Consequently, most application developers
would turn to ad hoc application-specific solutions rather than attempt to use a DHT.

Our central tenet is that we, as a community, need to harness the ingenuity and tal-
ents of the vast majority of application developers who reside outside the rarified but
perhaps sterile air of the DHT research community. To that end, we issue a call-to-arms
to deploy an open, publicly accessible DHT service that would allow new developers
to experiment with DHT-based applications without the burden of deploying and main-
taining a DHT. We believe that there are many simple applications that, individually,
might not warrant the effort required to deploy a DHT but that would be trivial to build
over a DHT service were one available. Many-to-many instant messaging and photo
publication, where a user may share photos under a long-lived name even if the photos
are served from a home machine with a dynamic IP address are but two of the many
such applications. We term these lite applications, because they make only simple and
often fleeting use of a DHT1.

1 Our claim is not that a DHT service is the only or best way to build these applications, but
rather that a DHT service is a common building block that would be useful for a wide range of
such applications, and would be far preferable to building one-off, special-purpose rendezvous
or indirection mechanisms for each application (e.g., dynamic DNS for photo publication).

G.M. Voelker and S. Shenker (Eds.): IPTPS 2004, LNCS 3279, pp. 195–205, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

196 Brad Karp et al.

To spur the development of these lite applications we propose OpenHash, an open,
publicly accessible DHT service that runs on a set of infrastructure hosts and allows
any application to execute put() and get() operations. Its presence would hopefully
enable and encourage the development of a wide range of interesting and unexpected
DHT applications2.

However, we already know from our limited experience with DHT-based applica-
tions that some require application-specific processing and thus can’t be limited to using
the generic put()/get() interface. The technical contribution of this paper is an ex-
amination of what one can do to extend the functionality of a DHT service so that such
application-specific requirements can be reasonably accommodated. That is, we seek to
share a common DHT routing platform while allowing application-specific functional-
ity to reside only on certain nodes. To meet this hybrid challenge of shared routing but
application-specific processing we propose ReDiR, a distributed rendezvous scheme
that removes the need in today’s DHT systems to place application-specific code to-
gether with DHT code. The ReDiR algorithm itself requires only a put()/get() in-
terface from a DHT, but allows a surprisingly wide range of applications to work over
a DHT service.

2 DHT as Library vs. as Service

Implementing a DHT as a service that exports a narrow put()/get() interface is a
departure from how present-day DHT-based applications are built. To illuminate the
consequences of this design decision, we consider in turn the properties of the current
approach and the service approach.

Many existing DHT applications (e.g. [5, 10, 3]) are built using a “bundled” model,
where the application is able to read the local DHT state and receive upcalls from the
DHT (as in [12]), either by being linked into the same process as the DHT code or
through local RPC calls. For brevity, we will say these applications use the DHT as
a library in either case. To support upcalls, the library model requires that code for
the same set of applications be available at all DHT hosts. In practice, this limitation
prevents sharing of a single DHT deployment by multiple applications – or even by
different revisions of the same application – that require distinct upcall-invoked code
on all DHT hosts. Instead, different applications only re-use the DHT code, amortizing
the development of the DHT functionality over the set of applications that use it. A side
effect of this is that every such application imposes the maintenance traffic associated
with running a DHT on its underlying infrastructure.

The great strength of the library model is the flexibility it affords applications in
functionality. By bundling arbitrary application code with DHT code, the model sup-
ports any operation at any overlay host on any data held at that host. However, this
flexibility comes at the expense of synergy in deployment, and thus at the expense of
ease of use of the DHT. We believe that these weaknesses in the library model are the
primary reasons for the narrowness of the community of developers of DHT-based ap-
plications today. Most would-be DHT-using developers look elsewhere for rendezvous

2 We are often reminded that the most successful peer-to-peer application was developed by a
19-year-old.

Spurring Adoption of DHTs with OpenHash, a Public DHT Service 197

and indirection solutions, because the effort and resources required to deploy a DHT
are often greater than those required to hack up a more ad hoc solution.

In contrast, a DHT that provides a more limited interface, specifically only put()
and get(), does not need to be bundled with application code and can thus be deployed
as a common, openly accessible service. There are two principal weaknesses of this ser-
vice model. First, a publicly accessible service is subject to attack3. We include a brief
discussion in Section 4 but defer a full exploration of the problem to later work. The sec-
ond problem, which is the focus of this paper, is that the service model is far less flexible
in the functionality (and thus the applications) it supports. Intuitively the put()/get()
interface appears far more restrictive than the “any code, any node” approach of the
library model. We offer a detailed discussion of what the service model can and can-
not support in the following section. The library model and service model are extremes
on a continuum between maximal flexibility without an easily adopted infrastructure,
and providing such an infrastructure with reduced flexibility. In the next section, we
explore the space between these extremes and the extent to which application-specific
functionality can live atop a DHT service.

3 Application-Specific Functionality in OpenHash

Existing, library-based DHT applications [3, 10, 8, 2] co-locate application-specific
functionality with the DHT. We distinguish between application functionality invoked
at the endpoint (i.e., destination) of a DHT route versus functionality invoked at every
hop along a route and show that, surprisingly, the former is quite easily achievable over
a service while the latter is not.

3.1 Endpoint vs. Per-Hop Operators

We use illustrative examples drawn from existing applications, namely PIER and i3, to
expose the difference between endpoint and per-hop functionality.

The first system we consider is i3. In i3, packets are forwarded to identifiers called
triggers. To send a packet to x, a sender routes the packet to the DHT host responsible
for storing trigger entries for x. That DHT host then extracts the value I corresponding
to x and forwards the packet to I. There are two aspects to i3’s support for packet
forwarding within a DHT. First, each DHT host in i3 must implement the forwarding
operation. Second, that forwarding code must read the (key, value) pair stored locally
at that DHT host.

Likewise, to execute a join operation in PIER [10], a DHT host iterates over all
the (key, value) pairs in its local store, and rehashes them by a portion of their value
fields. Here the code for a join operator resides at every DHT host and has full access
to the host’s local store. The essence of the above behaviors is that the DHT routes
an operation request to a key within the keyspace, and the end DHT host responsible
for that key carries out an operation that typically accesses the key-value entries stored
locally. We term the combination of these behaviors an endpoint operator.

3 Note, however, that almost any deployed DHT-based system is subject to attack, whether it
uses a DHT library or service.

198 Brad Karp et al.

A somewhat different example is PIER’s computation of aggregates along a tree
rooted at a particular key. Nodes route messages toward the root and each DHT host
along the path aggregates data before forwarding them. Multicast forwarding within a
DHT (as in Scribe, Bayeux, or M-CAN) also uses per-hop processing to set up and
maintain dissemination trees. We term such behavior a per-hop operator, as it requires
application-specific operations be executed at each hop along the path to a key (as op-
posed to at the final node that holds the key).

3.2 Endpoint Operators in OpenHash

Note that OpenHash cannot by itself support either endpoint or per-hop operators;
code for these application-specific operators does not reside at the nodes that con-
stitute OpenHash’s DHT, as OpenHash is a shared service. However, we can allow
application-specific code to live outside of OpenHash and use OpenHash to direct re-
quests to hosts that do support the required operators. This approach allows developers
to deploy application-specific code at will while still sharing OpenHash’s common key-
based routing infrastructure. We term hosts that run the OpenHash DHT OpenHash
hosts and hosts outside OpenHash that run only application-specific endpoint opera-
tors application hosts. As with any DHT, application hosts must still divide ownership
of their shared keyspace among themselves. In this paper, in the interest of requiring
minimal application-specific support within OpenHash, we adopt an extreme point in
the design space for endpoint operator support, in which application hosts are an en-
tirely disjoint set of hosts from OpenHash hosts. However, the technique we present for
supporting endpoint operators works equally well when these sets overlap, or even at
the other extreme, where only OpenHash hosts implement endpoint operators, and each
such host may support different sets of endpoint operators. These two extremes are both
important: an application’s popularity may warrant its endpoint operators’ inclusion in
the code at OpenHash hosts, whereas novel endpoint operators for fledgling applica-
tions may still be deployed on application hosts without modifying the code installed at
OpenHash hosts.

To support endpoint operators, we introduce the notion of namespaces. Each appli-
cation corresponds to a single, uniquely named namespace, and requires a particular set
of endpoint operators be available for all keys in its keyspace. OpenHash must route
requests destined for key k in application A’s namespace (denoted (A : k)) to the ap-
plication host that both runs application A and is responsible for key k in namespace
A. Conventional DHTs consistently hash a set of keys over the hosts that run the DHT
itself. We need to solve a different problem: to consistently hash a set of keys over a set
of application hosts that may not run the DHT itself. This functionality is effectively the
same as that of the lookup() interface first proposed in the Chord paper and adopted
by the authors in [12] as the KBR or Key-Based Routing interface, with one important
difference: our lookup() maps application keys to arbitrary application hosts, rather
than only to the hosts that run the DHT.

Spurring Adoption of DHTs with OpenHash, a Public DHT Service 199

In this section, we describe ReDiR (Recursive Distributed Rendezvous), a mecha-
nism by which OpenHash can be used to achieve such application-specific lookup()s4.
ReDiR requires hosts that support an endpoint operator for application A to register with
OpenHash as application hosts in namespace A. Clients that wish to route to (names-
pace: key) destinations can then use OpenHash to route to the application host respon-
sible for that key.

(a) ReDiR. (b) Namespaces. (c) Multicast.

Fig. 1. 1(a) ReDiR hierarchy and rendezvous points for a node X belonging to application ABC.
Dashed lines denote enclosing partitions for X at each level. For clarity, the keyspace at each level
is redrawn; in practice there is only one keyspace. 1(b) Using ReDiR to find the correct successor
node for application ABC’s key k: Node X joined first, then Y and Z. Each rendezvous point lists
the nodes registered there. Node Z is key k’s correct successor. Dashed lines denote rendezvous
nodes contacted to locate k’s successor. 1(c) Example of multicast forwarding: transmission links
are labeled with their depth in forwarding hierarchy.

ReDiR. There are two interfaces to ReDiR. Application hosts use one interface to
register as members of a namespace, and clients use the other interface to perform
lookup()s of the form lookup(namespace: key), which return the IP address of
the application host registered in namespace that is responsible for key. We describe
each interface in turn, after first describing primitives used by both interfaces.

ReDiR hierarchically decomposes the OpenHash keyspace into nested binary par-
titions, as shown in Figure 1(a). Level 0 in the decomposition corresponds to the en-
tire keyspace [0,K − 1], and generally, level i of the keyspace is decomposed into
2i partitions, each of length K/(2i), to a depth of l levels, i ∈ [0, l − 1]5. Thus, ev-
ery point in the keyspace has a corresponding set of enclosing partitions, one at ev-
ery level in the decomposition tree. We assume that all hosts have available the same

4 Note that ReDiR solves a very different problem than bootstrapping multiple application-
specific DHTs from a single DHT [13]; we propose a single DHT shared by multiple ap-
plications.

5 In the interest of simplicity, we consider only base-2 decompositions and fixed depth l, though
these need not be the same across applications, and could in fact be encoded into the ren-
dezvous name.

200 Brad Karp et al.

hash function H() → [0,K −1] to map arbitrary data to keys. We define mapping a key
k ∈ [0,K−1] to k′ within a narrower subrange of the keyspace [P,Q] by scaling linearly:
k′ = P + �k(Q−P)/K	. For a key k ∈ [0,K − 1], when we write “get(k) or put(k)
over a subrange of the keyspace [P,Q],” we invoke this mapping implicitly.

Each application that requires endpoint operators has its own namespace, identified
by a unique string. Consider an application host X that runs endpoint operator code
for application ABC. Essentially, host X registers in namespace ABC by walking up the
ReDiR hierarchy, put()ting its own IP address as it goes, until it finds a predecessor.
In detail:

– Host X computes H(X). There is exactly one binary partition (keyspace subrange)
at each level i that encloses H(X).

– At each level i, starting at the deepest level (2 in the example in Figure 1(a)) and
progressing up the tree toward its root (the partition including the entire keyspace),
host X first executes put(H(ABC),X) over the subrange of the keyspace in which
H(X) falls at that level. Figure 1(a) shows an example of where H(ABC) falls at
each level, given a particular H(X). Host X thus appends its IP address to the list
of IP addresses (if any) previously put() by other hosts within that partition that
previously joined namespace ABC. Next, host X executes get(H(ABC)) over the
same subrange of the keyspace. Host X then searches the one or more returned IP
addresses I j for a predecessor – for an I j such that H(I j) < H(X) 6. If for any j this
condition is satisfied, and a predecessor has been found, host X has completed the
registration process. If no predecessor was found, host X continues walking up the
tree, and repeats this entire process at the level of the tree next closest to the root.
If host X finds no predecessor at levels 1 or greater, the process terminates when it
visits level 0 of the tree and stores its IP address there.

Because application hosts periodically refresh their ReDiR entries, as all put()s
are timer-expired soft state (see Section 4.1), ReDiR converges to storing at most 2 IP
addresses per namespace entry at levels 0 . . . l − 2 of the hierarchy. At level l − 1 of
the hierarchy, ReDiR stores as many IPs per namespace entry as there are application
hosts whose IP addresses fall within that portion of the keyspace; one must choose l
commensurately.

A client performs lookup(ABC: k) as follows:

– Note that k falls in one binary partition (keyspace subrange) at each level i of the
hierarchy.

– As before, beginning at the deepest level of the tree, and proceeding upward, the
client performs a get(H(ABC)) over the keyspace subrange at that level which
encloses k. Among the IP addresses I j returned, if any, the client searches for the
successor to k; that is, for the I j such that H(I j) is the smallest value satisfying
H(I j) > k, where modular wraparound at the high end of the global [0,K − 1]
keyspace is used in the comparison, in the usual fashion when computing DHT
keys’ successors. When a successor I j is found at one level of the tree, that I j is the
result of the lookup(). If no such successor is found, the search continues up the
tree, at the next wider partition enclosing k.

6 There is no modular wrapping here; the comparison is absolute.

Spurring Adoption of DHTs with OpenHash, a Public DHT Service 201

Figure 1(b) shows an example of a client performing lookup(ABC: k) after the
registration process has completed for hosts X , Y , and Z. In the worst case, ReDiR re-
quires a client perform l get() operations to complete a lookup(namespace: key);
in practice, we expect client-side caching and other optimizations to reduce this cost
significantly. We point out that the entire ReDiR mechanism builds exclusively over
the simple DHT put()/get() interface. To OpenHash, the ReDiR-related (key, value)
pairs appear as any others.

Even with ReDiR, OpenHash leaves developers with the burden of deploying appli-
cation-specific operators. We imagine that over time OpenHash will grow to incorpo-
rate some of these more specialized operators, but we don’t yet know what this subset
should be. Moreover, expecting every node in the OpenHash infrastructure always to
run exactly the same set of operators is unrealistically utopian. ReDiR enables a single
routing layer to be shared by all services whether partially deployed or not. Without
ReDiR, we are stuck with either utopia or bust.

3.3 Per-Hop Operators in OpenHash

Although a DHT service with ReDiR performs the route-to-key function for an appli-
cation, there is no obvious way to support per-hop operators in OpenHash. However, in
considering the various forms of per-hop operators described in the literature, we dis-
covered that in most cases one could achieve similar functionality outside of the DHT
service, essentially by converting per-hop operations into “scoped” endpoint operations
(which ReDiR supports). While we do not claim to know whether all per-hop operators
can be implemented using a service, we find this approach promising, and will explore
it in greater detail in future work. In this section, we very briefly describe how three
sample operations that typically use per-hop operations – multicast, aggregation and
server selection (DOLR) – can be built over a DHT service.

Multicast. The following is a brief sketch of one possible solution to multicast in which
OpenHash (using ReDiR) provides the rendezvous mechanism, while end nodes imple-
ment forwarding. To join group G, a node A inserts (G,A) within successively largely
partitions enclosing H(A) until it hits a partition in which there is already an entry for
G. Let d be the maximum depth of the ReDiR hierarchy. Then, to multicast to all of
group G, node A does a get(G) within its level d partition and unicasts the message to
all the group members returned by the get(). A also does a get(G) within each of its
“sibling” partitions from level d−1 to 0 and unicasts a message to any one node at each
level. A node, say B, that receives a message from A assumes that it is responsible for
forwarding it on within its half of the smallest partition in the decomposition that con-
tains both A and B; if that decomposition is at level d, B does nothing. Figure 1(c) shows
an example of this forwarding. Note however, that unlike schemes like Scribe [5], the
above solution need not result in trees optimized for low latency.

Aggregation. Aggregation along the path to a root R could be implemented similarly
to multicast by having rendezvous nodes for R at level i aggregate messages before
forwarding them on to level i−1.

Server Selection Using DOLR. In systems such as OceanStore and PAST, a client’s
lookup returns the address of the node closest to the client that stores a copy of the

202 Brad Karp et al.

requested object. These systems achieve this through a combination of proximity-sen-
sitive DHT construction and by caching pointers along the path between a node stor-
ing a copy and the root node for that object’s identifier. This mechanism (often called
DOLR) serves two purposes: (1) server selection based on network latency and (2) fate
sharing in the sense that if a closeby (e.g., within the client’s organization) server is
available, the lookup will succeed even if a large fraction of the DHT is unavailable
to the client. Both of the above can be achieved without explicitly embedding the sup-
porting functionality into the DHT. For example, [7] and [6] use an org-store and local
rings to achieve fate sharing, and [1, 8] use network coordinates to find close copies. In
fact, such approaches frequently give applications more control over selection criteria
(e.g., server bandwidth or load could be used in place of or in addition to latency). Such
flexibility is much harder to achieve using DOLR.

4 Architecture Details

In this section we discuss architectural issues in the design of OpenHash. We begin with
the service model, then discuss issues of resource contention.

4.1 Basic Service Model

Figure 2 presents an overview of the OpenHash architecture. Each PlanetLab host runs
the OpenHash code and maintains a local store of the (key, value) pairs for which
it is responsible. These local stores are accessible to OpenHash clients only through
the put()/get()interface. Lite applications use only the put()/get()interface, and

PlanetLab

Host a

O
p
e
n
H

a
s
h

A
p

p
 A

A
p

p
 B

Host d

A
p

p
 C

A
p

p
 A

Host e

O
p
e
n
H

a
s
h

Host b

O
p
e
n
H

a
s
h

A
p

p
 C

A
p

p
 B

Host c

A
p

p
 A

A
p

p
 B

Host g

Chat Client

Host f

Chat Client

Host h

App B

Client

A
p

p
 A

O
p
e
n
H

a
s
h

OpenHash

code

OpenHash

store

Endpoint

operator code

Endpoint

operator store

Lite apps

App B get()s addr

of host c from

OpenHash

using ReDiR

OpenHash

get()

Fig. 2. Overview of the OpenHash architecture. Lite applications, such as instant messaging, use
OpenHash only through its put()/get()interface, while more advanced applications deploy
endpoint code and may be co-located with OpenHash servers.

Spurring Adoption of DHTs with OpenHash, a Public DHT Service 203

are generally not co-located with OpenHash code and data. In the figure, two instant-
messaging clients use OpenHash to discover each other, then communicate over IP.
The endpoint operators of more advanced applications may run either by themselves
on application hosts, or be co-located with OpenHash on OpenHash hosts. In the fig-
ure, endpoint operators for application B run on some of the PlanetLab hosts and on
other hosts outside PlanetLab. Endpoint operator instances for B use ReDiR to coor-
dinate amongst themselves. They may also maintain local data stores not managed by
OpenHash.

An OpenHash put() consists of a client address, key, value, and time to live (TTL).
Stored data are soft state; if a value is not refreshed before its TTL expires, OpenHash
discards it. Consequently, stored entries do not consume resources indefinitely. put()s
are uniquely identified by client and key; a subsequent put() with the same client and
key simply refreshes the TTL, and put()s from separate clients do not overwrite each
other. Additionally, a client may include a secret with a put(); a value thus stored may
later be changed by resupplying the secret. We imagine using simple replication (e.g.,
at k successor nodes) for availability and borrowing from the numerous proposals in
the literature for caching and load balancing schemes [3, 14, 8]. An open question is the
degree to which OpenHash should expose control over caching and load balancing to
its users.

4.2 Resource Contention

A fundamental challenge in providing an open service is that of resource contention;
under load, the service should provide each client with a “fair” share of the service’s re-
sources. In this section, we briefly put forth three different resource-management tech-
niques as a starting point for discussion. The first approach is a best-effort service in
which OpenHash makes no attempt to arbitrate between the needs of conflicting appli-
cations; excess requests are simply discarded and end hosts react to perceived losses by
scaling back their rate of resource consumption, perhaps aided by stardardized end-host
code as in TCP. This model is easy to implement but vulnerable to faulty or malicious
clients that fail to scale back. A more sophisticated approach is to discourage self-
ish consumption by using fair queueing at every OpenHash node. One challenge with
fair queueing is the need for secure identification of clients, though we believe such
identification is achievable using SYN-cookie-like techniques [15]. A final approach to
resource management is to charge for each use of a resource as has been previously pro-
posed [16, 17], but using computational puzzles instead of micropayments as currency.
Unlike with fair queuing, there is no need to securely identify clients in a charge-per-use
model.

5 Future Work

Recasting OpenHash as an active service, in which DHT nodes download application-
specific code, warrants future investigation. For an initial deployment, we believe the
simple DHT model is appropriate because it avoids the complexity of downloadable
code, yet still supports application-specific operators (with ReDiR), and is, in any case,
a prerequisite for an active service.

204 Brad Karp et al.

We view our deployment plans (on PlanetLab, administered by the authors) as
largely a bootstrap phase beyond which we imagine OpenHash will evolve to run on
infrastructure hosts administered by different authorities. Ensuring robustness when
service hosts are not mutually trusting is non-trivial, and the subject of future research.

Acknowledgements

We thank David Tennenhouse, Timothy Roscoe, Hans Mulder, Robert Morris, Frans
Kaashoek, Kevin Fall, David Culler, David Mazières, Yatin Chawathe, Michael Walfish,
Joe Hellerstein, Petros Maniatis, and John Kubiatowicz for insightful discussions and
comments that improved this work.

References

1. Dabek, F., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Wide-area Cooperative Storage
with CFS. In: Proceedings of the 18th ACM Symposium on Operating Systems Principles
(SOSP 2001), Lake Louise, AB, Canada (2001)

2. Druschel, P., Rowstron, A.: Storage Management and Caching in PAST, a Large-scale, Per-
sistent Peer-to-peer Storage Utility. In: Proceedings of the 18th ACM Symposium on Oper-
ating Systems Principles (SOSP 2001), Lake Louise, AB, Canada (2001)

3. Kubiatowicz, J.: Oceanstore: An Architecture for Global-Scalable Persistent Storage. In:
Proceedings of the ASPLOS 2000, Cambridge, MA, USA (2000)

4. Luis Felipe Cabrera, M.B.J., Theimer, M.: Herald: Achieving a Global Event Notification
Service. In: Proceedings of the HotOS VIII. (2001)

5. Castro, M., Druschel, P., Kermarrec, A.M., Nandi, A., Rowstron, A., Singh, A.: SplitStream:
High-bandwidth content distribution in a cooperative environment. In: Proceedings of the
IPTPS 2003. (2003)

6. Mislove, A., Post, A., Reis, C., Willmann, P., Druschel, P., Wallach, D., Bonnaire, X., Sens,
P., Busca, J.M., Arantes-Bezerra, L.: POST: A Secure, Resilient, Cooperative Messaging
System. In: Proceedings of the HotOS IX. (2003)

7. Walfish, M., Balakrishnan, H., Shenker, S.: Untangling the Web from DNS. In: Proceedings
of the 1st Symposium on Networked Systems Design and Implementation (NSDI 2004), San
Francisco (2004)

8. Stoica, I., Adkins, D., Zhuang, S., Shenker, S., Surana, S.: Internet Indirection Infrastructure.
In: Proceedings of the ACM SIGCOMM 2002, Pittsburgh, PA, USA (2002)

9. Freedman, M.J., Freudenthal, E., Mazières, D.: Democratizing Content Publication with
Coral. In: Proceedings of the 1st Symposium on Networked Systems Design and Imple-
mentation (NSDI 2004), San Francisco (2004)

10. Huebsch, R., Hellerstein, J.M., Lanham, N., Loo, B.T., Shenker, S., Stoica, I.: Querying the
Internet with PIER. In: Proceedings of VLDB 2003, Berlin, Germany (2003)

11. Peterson, L., Anderson, T., Culler, D., Roscoe, T.: A Blueprint for Introducing Disruptive
Technology into the Internet. In: Proceedings of the HotNets-I 2002, Princeton (2002)

12. Dabek, F., Zhao, B., Druschel, P., Kubiatowicz, J., Stoica, I.: Towards a Common API for
Structured Peer-to-peer Overlays. In: Proceedings of the IPTPS 2003, Berkeley (2003)

Spurring Adoption of DHTs with OpenHash, a Public DHT Service 205

13. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.: One Ring to Rule Them All: Ser-
vice Discovery and Binding in Structured Peer-to-peer Overlay Networks. In: Proceedings
of the 2002 SIGOPS European Workshop. (2002)

14. Rao, A., Lakshminarayanan, K., Surana, S., Karp, R., Stoica, I.: Load Balancing in Struc-
tured P2P Systems. In: Proceedings of the IPTPS 2003, Berkeley (2003)

15. Bernstein, D.: Syn cookies. http://cr.yp.to/syncookies.html (1996)
16. Hand, S., Roscoe, T.: Mnemosyne: Peer-to-Peer Steganographic Storage. In: Proceedings of

the IPTPS 2002, Boston (2002)
17. Roscoe, T., Hand, S.: Palimpsest: Soft-capacity Storage for Planetary-Scale Services. In:

Proceedings of the HotOS IX. (2003)

UsenetDHT: A Low Overhead Usenet Server�

Emil Sit1, Frank Dabek1, and James Robertson1

MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA
{sit,fdabek,jsr}@mit.edu
http://pdos.lcs.mit.edu/

Abstract. UsenetDHT is a system that reduces the storage and band-
width resources required to run a Usenet server by spreading the burden
of data storage across participants. UsenetDHT distributes data using
a distributed hash table. The amount of data that must be stored on
each node participating in UsenetDHT scales inversely with the number
of participating nodes. Each node’s bandwidth requirements are propor-
tional to the fraction of articles read rather than to the total number
posted.

1 Introduction

Usenet is a large, distributed, messaging service that serves thousands of sites
world wide. Since its introduction in 1981, the Usenet has been growing ex-
ponentially. The daily size of Usenet postings doubles approximately every ten
months. In early 2004, users created approximately 1.4 TB of new Usenet data,
corresponding to about 4 million articles, per day. Each server that wishes to
carry the full content of Usenet (a “full feed”) must replicate this amount of data
each day, which is more than a 100 Mbps connection can support. To provide
many days of articles for readers becomes an expensive proposition.

UsenetDHT provides a service that is substantially similar to Usenet but
which reduces aggregate bandwidth and storage requirements by organizing the
storage resources of servers into a shared distributed hash table (DHT) that
stores all article data. This approach obviates the need for articles to be repli-
cated to all participating servers. Instead of storing article data at each server,
UsenetDHT stores article data on a small number of nodes in the DHT. The
DHT distributes articles geographically, and can locate them quickly. It ensures
high availability by re-replicating as necessary, maintaining the benefits of full
replication without incurring the bandwidth and storage costs.

Using this approach, for an n-host system, each host will be able to offer a
full Usenet feed while only storing 2/n as much data as it would have had to
using a traditional system. Instead of using local storage to hold a large number
of articles for a short period of time, UsenetDHT allows each server to hold fewer
articles but retain them for longer periods of time.
� This research was conducted as part of the IRIS project http://project-iris.net/,

supported by the National Science Foundation under Cooperative Agreement No.
ANI-0225660. Emil Sit was supported by the Cambridge-MIT Institute.

G.M. Voelker and S. Shenker (Eds.): IPTPS 2004, LNCS 3279, pp. 206–216, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

UsenetDHT: A Low Overhead Usenet Server 207

The bandwidth required to host a Usenet feed using UsenetDHT is propor-
tional to the percentage of articles that are read rather than to the total number
of articles posted. Given the current size Usenet and known readership patterns,
we expect this optimization to translate into a significant reduction in the band-
width required to host a full feed.

2 Background

2.1 Usenet

Usenet is a distributed mesh of servers that are connected in a mostly ad-hoc
topology that has evolved since its creation in 1981. Servers are distributed
world-wide and traditionally serve readers located in the same administrative
realm as the server. Each server peers with its neighbors in the topology to
replicate all articles that are posted to Usenet.

The servers employ a flood-fill algorithm to ensure that all articles reach all
parties: as a server receives new articles (either from local posters or from other
feeds), it floods NNTP CHECK messages to all its other peers who have expressed
interest in the newsgroup containing the article. If the remote peer does not
have the message, the server feeds the new article to the peer with the TAKETHIS
message. Because relationships are long-lived, one peer may batch articles for
another when the other server is unavailable. RFC977 [10] and RFC2980 [1]
describes the NetNews Transfer Protocol in more detail.

Articles are organized into a hierarchy of newsgroups. Upon receiving each
article, each peer determines which newsgroups the article is in (based on meta-
data included in the article) and updates an index for the group. The group
indices are sent to news reading software and is used to summarize and organize
displays of messages.

Certain newsgroups are moderated to keep discussions on-topic and spam-
free. Moderation is enforced by requiring a special header – articles posted with-
out this header are sent to a pre-configured moderation address instead of being
flood-filled as normal.

Special messages called control messages are distributed through the regular
distribution channels but have special meaning to servers. Control messages can
create or remove newsgroups, and cancel news postings (i.e. remove them from
local indices and storage).

2.2 Server-Side Policies

Each Usenet site administrator has complete control over the other sites that it
peers with, what groups it is interested in carrying and the particular articles
in those groups that it chooses to keep. This flexibility is important as it allows
administrators to utilize local storage capacity in a manner that best suits the
needs of the site. For example, commercial Usenet providers will often invest in
large amounts of storage in order to be able to retain articles over a longer period

208 Emil Sit, Frank Dabek, and James Robertson

of time. Some Usenet providers will choose only to receive articles affiliated with
text newsgroups in order to minimize the bandwidth and storage required. Most
servers today will also filter incoming and outgoing articles with CleanFeed [13]
to remove articles that are considered to be spam.

2.3 Usenet Data Characterization

The size of Usenet is a moving target; many estimates have shown growth by
a factor of two in traffic volume every 10–12 months. Growth has largely been
driven by increased postings of “binaries” – encoded versions of digital media,
such as pictures, audio files, and movies. Users are increasingly taking advantage
of Usenet as a distribution mechanism for large multi-media files. In 2001, there
was an average of 300 GB of “binary” articles posted per day, but the volume
in early 2004 is already approaching 2 TB [8]. In contrast, the volume of text
articles has remained relatively stable for the past few years at approximately 1
GB of new text data, from approximately 400,000 articles [7].

2.4 Distributed Hash Tables

A distributed hash table (DHT) is a peer-to-peer storage system that offers a
simple put and get interface to client applications for storing and retrieving
data. DHTs are often built out of a robust self-organizing lookup system (such
as Chord [16] or Tapestry [17]) and a storage layer (such as DHash [4]).

The lookup layer maintains state information about nodes and their iden-
tifiers while the storage layer automatically handles balancing storage load be-
tween the participants in the system. The storage layer automatically rebalances
data as nodes join and leave the system. In order to keep data reliably available,
DHTs will typically use replication or erasure codes to store data on geographi-
cally distributed machines. This strategy also allows DHTs to optimize reads by
using nearby servers.

3 Architecture

In this section we present the high-level design of UsenetDHT, trace through the
life of an article after it is posted, and discuss some tradeoffs of our design.

3.1 Design

The main goal of this system is to reduce the resources consumed by Usenet
servers – specifically, the data transfer bandwidth and the on-disk storage re-
quirements for articles – while mostly preserving the major features of Usenet.
UsenetDHT accomplishes this goal by replacing the local article storage at each
server with shared storage provided by a DHT. This approach saves storage since
articles are no longer massively replicated; it also saves bandwidth since servers
only download articles that their clients actually read.

UsenetDHT: A Low Overhead Usenet Server 209

(a) (b)

Fig. 1. The design of Usenet (a) and UsenetDHT (b). Usenet servers are connected
to form a mesh network and exchange article data (solid lines) and meta-data such as
article announcements and cancellations (dotted lines). Each Usenet server has enough
local storage for all articles and meta-data. UsenetDHT servers are connected by the
same mesh network to exchange meta-data, which is still stored locally. Articles are
written to a a large, shared DHT (at right), with backing storage contributed by the
peer servers. The colors associate each participant with the storage they provide.

All indexing of articles remains local to servers. In order to support this,
UsenetDHT nodes exchange meta-data and control-data using the same flood-
fill network as Usenet. In essence, the article bodies are elided from the news feed
between servers. This approach allows cancellation and moderation of articles
to work much as they do now; for example, cancellation simply updates the
local group index to exclude the canceled article and no DHT storage needs to
be touched. We considered using application-level broadcast to transmit meta-
data. An efficient broadcast tree would reduce link stress by ensuring that data
is transmitted over each link only once. However, Section 4 shows that the meta-
data streams are relatively small, so the bandwidth reduction does not outweigh
the complexities introduced by such a system. Further, the mesh network system
is more robust, so we chose to leverage the existing infrastructure.

Figure 1 illustrates this design. Dotted-lines in the figure denote the transfer
of meta-data, and solid lines denote article data. In the UsenetDHT design, each
node donates storage capacity to form a DHT, which acts like virtual shared
disk (right). Articles are stored in the DHT and fetched as required to satisfy
read requests.

Servers will locally cache recently requested documents to avoid making mul-
tiple requests to the DHT for the same article. If servers cache locally, caching
inside the DHT will be unnecessary. The main benefit of local caching is to re-
duce load on other servers in the system – if servers cache locally, no server is
likely to experience more than n remote read requests for the DHT blocks cor-
responding to a given article. Each server will need to determine an appropriate
cache size that will allow them to serve their readership efficiently.

3.2 ArtIcle Lifetime

Consider how an article is posted and eventually read using UsenetDHT. A
newsreader in communication with a local server posts an article using the stan-
dard NNTP protocol. By design, the reader is unaware that the server is part

210 Emil Sit, Frank Dabek, and James Robertson

of UsenetDHT, instead of a standard server. Upon receiving the posting, the
server stores the article data in the DHT under the content-hash of an inode-like
structure that points to fixed size chunks of the article [4]. As an optimization,
if the article fits within a single 8KB DHT block, the body is stored directly
in the inode [6]. The use of a secure hash function such as SHA-1 to produce
the content-hash guarantees that articles will be evenly distributed through the
nodes in the system. It also ensures that servers can verify the integrity of data
received over the network.

After the block has been successfully stored in the DHT, the server sends
an announcement with the article’s header information and content-hash to its
peers. This information is sufficient for the peer servers to insert the article
into the appropriate group indices, provide a summary of the article to readers
connecting to the server and retrieve the contents of the article when necessary.
Each server, upon receiving the article, also shares the announcement with its
other peers. In this manner, the article’s existence is eventually flooded to all
news servers.

When a reader wishes to read a newsgroup, he requests a list of new articles
from his local news server. As is done in Usenet, the server responds with a
summary of articles that it has accumulated from its peers. This summary is
used by readers to construct a view of the newsgroup. When the client requests
an article body, the server sends a get request to the DHT for the content-hash
associated with the article. Once the server obtains the article data it can be
returned to the reader. As with posting, the reader is not aware that the news
server has been modified.

3.3 Tradeoffs

The primary drawback of UsenetDHT is a loss of control by individual adminis-
trators over what data (articles) are stored on and transit their machines. In a
DHT-based storage system, article data will be evenly spread across all partic-
ipating nodes. Similarly, all nodes must participate in processing DHT lookups
for articles, even those in groups that they do not wish to carry. This sacrifice
is inherent to the design as presented above.

From a resource standpoint, this drawback is probably not critical: each
server in UsenetDHT need only provide a fraction of the space required to store a
feed. Even if a traditional server only served a fraction of newsgroups, its storage
requirements are not likely to rise if it participates in UsenetDHT. In addition,
sites can run virtual nodes [4] to match DHT storage requirements with available
capacity: each virtual node allows a physical node to claim responsibility for an
additional fraction of the blocks stored in the DHT.

Article expiration must also be handled on a system-wide level. Blocks asso-
ciated with articles can only be removed when the article has expired from the
indices of all servers. This global parameter is set out-of-band.

More troubling are issues relating to content filtration. One common policy
that UsenetDHT would like to support is the ability for servers to decide not to
carry particular newsgroups, such as erotic newsgroups. Normally, such servers

UsenetDHT: A Low Overhead Usenet Server 211

would request not to receive articles associated with unwanted groups from their
upstream server. In UsenetDHT, a fraction of the articles from all groups will be
randomly distributed to all servers. One possible solution may be to make use of
recent work that enables a Chord ring to be organized into subrings such that a
lookup could be targeted at an item’s successor in a given subset of nodes [11].
Subrings could be used so that storage for content such as adult material would
be limited to a single subring: lookups for articles in adult groups would be
confined within the subring. We have not fully investigated this solution, but
plan to do so in the future.

A different challenge is effectively filtering spam; the previous solution would
not work since spam appears in all newsgroups. In total, the use of UsenetDHT
should reduce the storage impact of spam since each spam message will only be
stored once. However, administrators will still want to reduce the presence of
spam in newsgroup indices – naively, any node wishing to do this would have to
retrieve every complete article to determine if it is spam. This approach would
lose all the bandwidth benefits of UsenetDHT. Fortunately, existing techniques
such as spam cancellation can still work in UsenetDHT – a small number of sites
determine what messages are spam (or are otherwise undesirable) and publish
cancel messages. Other sites process the cancel messages to filter out spam lo-
cally. Sites would continue to filter local posts to prevent spam from originating
locally as well.

4 Evaluation

We have implemented a prototype UsenetDHT server that can accept small
news feeds, insert articles into the DHash DHT [4], and make them available to
clients. However, the system has yet to be tested with a full feed. In this section,
we quantify the potential bandwidth and storage requirements of a UsenetDHT
server compared to a Usenet server based on available statistics about the cur-
rent Usenet. We also describe what performance we require from the underlying
DHT. We hope that a future deployment of our implementation running on the
PlanetLab test bed will verify these calculations experimentally.

4.1 Analysis Model

The resource usage of a UsenetDHT server depends on the behavior of readers;
we parameterize our analysis based on a simplistic model of the input rate to
the system and estimated readership. Let n be the number of servers in the
system. Let a represent the average number of articles injected into the system
per second. Correspondingly, let b represent the average number of bytes injected
per second. For example, based on recent statistics from a well-connected news
server (newsfeed.wirehub.nl), b ≈ 21 MB per second. Statistics from other
large news servers are similar. When we examine the storage requirements of a
UsenetDHT server it will be convenient to consider data stored per day: we will
write a for the total number of articles injected on average each day (a = 86400a)
and b for total bytes injected per day.

212 Emil Sit, Frank Dabek, and James Robertson

To model the readership patterns of Usenet, we introduce r, the average
percentage of unique articles read per site. Unfortunately, few studies have been
done to measure how many articles are actually read on different servers. In
1998, Saito et al. observed that roughly 36% of all incoming articles were read
on the server at Compaq [15]. Today, because of large traffic volume, many
networks outsource their news service to large, well-connected providers, such
as GigaNews. Byte-transfer statistics for the month of January 2004 from a
small ISP that outsources news service to GigaNews suggest that the ISP’s
approximately 5000 customers read approximately 1% of the total monthly news.
In fact, the trends from that ISP show that the number of bytes downloaded
has remained relatively constant around 300 GB per month over the past year.
This may mean that r will decrease over time if the growth of Usenet remains
exponential.

For the purposes of this analysis, we will treat these parameters as constants,
though of course, they will change over time.

Table 1. UsenetDHT reduces the bandwidth and storage requirements of hosting a
Usenet feed in proportion to the fraction of articles read (r) and the number of servers
in the network (n), respectively. This table compares the current transfer and storage
requirements per day for a full Usenet feed in both systems, where b represents the
total number of bytes for articles injected each day. A single peer is assumed.

Total Bytes Transferred Storage

Usenet 2b b

UsenetDHT 2br + 2 · 512a 2b/n + 512a

4.2 Storage

UsenetDHT reduces system-wide storage by storing articles once in the DHT
instead of copying them to each site. The storage requirements of a node are
proportional to the amount of data in the system and the replication overhead
of the underlying DHT and inversely proportional to the number of participating
servers.

We assume that UsenetDHT is based on a low-overhead DHT that maintains
and replicates data with a replication factor of 2 using some sort of erasure coding
to ensure high availability. This assumption means that the system receives 2b
bytes of new article data each second. This load is spread out over all n servers in
the system instead of being replicated at all hosts, resulting in an overall per-host
load that is 2/n times the load of traditional Usenet. If the number of servers
participating in UsenetDHT increases and the number of articles posted remains
constant, each server must bear less load. Because each server must dedicate a
factor of n less storage, UsenetDHT should allow articles to be retained longer
within the system.

There is also a small incremental cost required for local indexing. Suppose
that each article requires about 512 bytes to store the overview data, which

UsenetDHT: A Low Overhead Usenet Server 213

includes article author, subject, message-id, date, and references headers. This
data adds an additional 512a bytes per day to the cost of supporting a full feed.
In early 2004, this corresponds to approximately 3.2 GB daily, which is barely
0.1% of the total data stored daily.

Sites must also provide some storage space for caching locally read articles.
The sizing and effectiveness of this cache is dependent on the size of the reader
population and the diversity of articles that they retrieve.

The total daily storage requirement for a UsenetDHT server is 2b/n+C+512a
where C is the size of the server’s article cache. This differs from the cost of a
traditional Usenet server by roughly a factor of 2/n. A Usenet server requires
b + 512a bytes of storage daily.

4.3 Bandwidth

UsenetDHT servers save bandwidth by not downloading articles that are never
going to be read at their site. Unlike Usenet, the bandwidth used by a Usenet-
DHT server is proportional to readership, not to the volume of the feed the
server carries. In this evaluation, we are only interested in wide-area data trans-
fer. When comparing UsenetDHT’s bandwidth requirements to Usenet, we will
not consider the cost of sending articles to readers for Usenet servers since these
readers are likely to be on the same network as the server.

Servers must download articles from the DHT to satisfy requests by local
readers. If the average actual fraction of read articles is r, each server will require
roughly rb bytes per second of downstream bandwidth. In addition, each node
is required to receive the header and DHT information for each article, which
corresponds to 512a bytes per second. This header overhead may need to be
multiplied by a small factor, corresponding to the overhead of communicating
with multiple peers.

A server must also send data it stores in its role as part of the DHT. As we
showed above, each server requests rb bytes per second from the DHT. This load
will be spread out over all n servers. Correspondingly, each participating server
must send rb/n bytes per second to satisfy read requests from each other server
in the system. Thus, in aggregate, each site must have rb bytes per second
of upstream bandwidth. Additionally, each site must have sufficient upstream
bandwidth to inject locally-authored articles into the system.

A Usenet server’s wide-area bandwidth requirements are equal simply to the
size of the feed it serves. In our notation, a Usenet server is required to read b
bytes per second from the network.

4.4 DHT Performance

The DHT used by UsenetDHT must provide sufficient read and write perfor-
mance to support the aggregate load on the system. Because the news servers
themselves will form the DHT, we expect that the membership of the DHT
will be stable (more stable than, for instance, the membership of the Gnutella

214 Emil Sit, Frank Dabek, and James Robertson

network). A stable membership makes it easier for the DHT to provide highly
reliable storage [2].

Recent DHTs have demonstrated performance scaling properties that suggest
they can meet the demands of UsenetDHT [5]. An improved version of the DHash
DHT can locate and download an 8K block in approximately 100ms when run
on the PlanetLab test bed [14]. The read latency of the DHT will be visible to
end-users when they request an uncached article: reading a small text article
requires the DHT to perform a single block download. The time required by
the DHT to perform the fetch is likely to be significantly higher than the time
to perform a similar operation on a local server. This delay can be partially
masked by pre-fetching articles in a newsgroup when the indexing information
is requested but before they are actually read. We believe that the bandwidth
and storage savings of UsenetDHT are worth the delay imposed by the DHT.

The throughput requirement for a UsenetDHT node is rb. Thus, a full-feed
deployment with r = 0.01 in early 2004 would require that each DHT node
provide 200 KB/s of symmetric bandwidth. A node participating in the DHash
DHT and located at MIT was able to read data at 1 MB/s from the DHT. Such
performance should be sufficient to support a full feed for the near future. An
experimental deployment of the system will allow us to verify that DHash is able
to meet the performance requirements of the system.

5 Related Work

There have been some other proposals to reduce the resource consumption of
Usenet. Newscaster [3] examined using IP multicast to transfer news articles to
many Usenet servers at once. Each news article only has to travel over backbone
links once, as long as no retransmissions are needed. In addition, news propa-
gation times are reduced. However, Newscaster still requires that each Usenet
server maintain its own local replica of all the newsgroups. Also, each news server
still consumes the full news feed bandwidth across the network links closest to
the server.

NewsCache [9] reduces resource consumption by caching news articles. It is
designed to replace traditional Usenet servers that are leaf nodes in the news
feed graph, allowing them to only retrieve and store articles that are requested
by readers. In addition to filling the cache on demand, it can also pre-fetch
articles for certain newsgroups. These features are also available as a mode of
DNews [12], a commercial high-performance server, which adds the ability to dy-
namically determine the groups to pre-fetch. Thus, both NewsCache and DNews
reduce local bandwidth requirements to be proportional to readership as well as
more optimally using local storage. However, they only do this for servers that
are leaf nodes and does not help reduce the requirements on upstream servers.
By comparison, UsenetDHT also reduces resource requirements for those servers
that are not leaf nodes. Also, standard caches will continue to work with Usenet-
DHT servers.

UsenetDHT: A Low Overhead Usenet Server 215

6 Conclusion and Future Work

UsenetDHT has the potential to reduce the bandwidth and storage requirements
of providing access to Usenet by storing article data in a DHT. UsenetDHT’s
bandwidth savings depend heavily on readership patterns, but UsenetDHT pro-
vides storage savings that scale with the number of participants. A planned
deployment on PlanetLab will help to quantify the benefits of UsenetDHT.

Acknowledgments

We would like to thank Richard Clayton for his assistance in gathering statistics
about Usenet’s recent growth and status, and the anonymous reviewers and the
members of the PDOS research group for their helpful comments.

References

1. Barber, S. Common NNTP extensions. RFC 2980, Network Working Group, Oct.
2000.

2. Blake, C., and Rodrigues, R. High availability, scalable storage, dynamic peer
networks: Pick two. In Proc. of the 9th Workshop on Hot Topics in Operating
Systems (May 2003).

3. Bormann, C. The Newscaster experiment: Distributing Usenet news via many-
to-more multicast. http://citeseer.nj.nec.com/251970.html.

4. Dabek, F., Kaashoek, M. F., Karger, D., Morris, R., and Stoica, I. Wide-
area cooperative storage with CFS. In Proc. of the 18th ACM Symposium on Op-
erating Systems Principles (Oct. 2001).

5. Dabek, F., Sit, E., Li, J., Robertson, J., Kaashoek, M. F., and Morris,
R. Designing a DHT for low latency and high throughput. In Proc. of the 1st
Symposium on Networked System Design and Implementation (Mar. 2003).

6. Ganger, G. R., and Kaashoek, M. F. Embedded inodes and explicit grouping:
exploiting disk bandwidth for small files. In Proc. of the 1997 USENIX Annual
Technical Conference (Jan. 1997), pp. 1–17.

7. Gradwell.com. Diablo statistics for news-peer.gradwell.net.
http://news-peer.gradwell.net/. Accessed 12 February 2004.

8. Grimm, B. Diablo statistics for newsfeed.wirehub.nl (all feeders).
http://informatie.wirehub.net/news/allfeeders/. Accessed 12 February 2004.

9. Gschwind, T., and Hauswirth, M. NewsCache: A high-performance cache im-
plementation for Usenet news. In Proc. of the 1999 USENIX Annual Technical
Conference (June 1999), pp. 213–224.

10. Kantor, B., and Lapsley, P. Network news transfer protocol. RFC 977, Network
Working Group, Feb. 1986.

11. Karger, D., and Ruhl, M. Diminished Chord: A protocol for heterogeneous
subgroup formation in peer-to-peer networks. In Proc. of the 3rd International
Workshop on Peer-to-Peer Systems (Feb. 2004).

12. NetWin. DNews: Unix/Windows Usenet news server software.
http://netwinsite.com/dnews.htm. Accessed 9 November 2003.

13. Nixon, J., and D’Itri, M. Cleanfeed: Spam filter for Usenet news servers.
http://www.exit109.com/ jeremy/news/cleanfeed/. Accessed on 15 February 2004.

216 Emil Sit, Frank Dabek, and James Robertson

14. PlanetLab. http://www.planet-lab.org.
15. Saito, Y., Mogul, J. C., and Verghese, B. A Usenet performance study.

http://www.research.digital.com/wrl/projects/newsbench/usenet.ps, Nov. 1998.
16. Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan,

H. Chord: A scalable peer-to-peer lookup service for Internet applications. In Proc.
of the ACM SIGCOMM (Aug. 2001). An extended version appears in ACM/IEEE
Trans. on Networking.

17. Zhao, B. Y., Huang, L., Stribling, J., Rhea, S. C., Joseph, A. D., and Ku-
biatowicz, J. D. Tapestry: A resilient global-scale overlay for service deployment.
IEEE Journal on Selected Areas in Communications 22, 1 (Jan. 2004).

Clustering in Peer-to-Peer
File Sharing Workloads

F. Le Fessant1, S. Handurukande2, A.-M. Kermarrec3, and L. Massoulié3

1 INRIA-Futurs and LIX, Palaiseau, France
2 Distributed Programming Laboratory, EPFL, Switzerland

3 Microsoft Research, Cambridge, UK

Abstract. Peer-to-peer file sharing systems now generate a significant
portion of Internet traffic. A good understanding of their workloads is
crucial in order to improve their scalability, robustness and performance.
Previous measurement studies on Kazaa and Gnutella were based on
monitoring peer requests, and mostly concerned with peer and file avail-
ability and network traffic. In this paper, we take different measurements:
instead of passively recording requests, we actively probe peers to get
their cache contents information. This provides us with a map of con-
tents, that we use to evaluate the degree of clustering in the system1,
and that could be exploited to improve significantly the search process.

1 Introduction

File sharing using peer-to-peer (P2P) networks has gained wide popularity; some
reports [10, 12] suggest that P2P traffic is the dominant consumer of bandwidth
ahead of Web traffic. This popularity triggered a lot of research activity. While
one research trend aims at improving the performance and features [11, 16, 5],
another trend is concerned with analysing and modeling these networks.

In the last few years, many measurement analysis of P2P networks focusing
on Free-Riding [2], peer connectivity and availability (e.g., [3, 14, 13]), peer dis-
tribution and locality within the network (in [14, 8]) were carried out. But to the
best of our knowledge no detailed analysis has been done on the type of content
shared on these networks.

Recent studies [8] show that locality-awareness in P2P networks can improve
their efficiency significantly: by clustering users according to their geographical
locality, file requests can be answered faster.

Similarly, clustering based on the types of files that peers have, also called
interest-based locality, may improve search performance: it may reduce the du-
ration of the search phase in general, and more specifically when searching for
rare files [15]. Obviously, the performance gains obtained from exploiting either
type of locality will depend on the corresponding degree of clustering. Our work
investigates these issues.

1 We define clustering here as the overlap between cache contents.

G.M. Voelker and S. Shenker (Eds.): IPTPS 2004, LNCS 3279, pp. 217–226, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

218 F. Le Fessant et al.

Contribution. In this paper we present an analysis of contents (the type of
files: music, video, documents etc) that peers offer to others in P2P file sharing
networks. We used an active probing technique which allowed to capture the
lists of files that peers offer. The community that we probed used eDonkey 2000,
Kazaa’s main competitor among all the P2P networks [9]. We then examine the
clustering properties of the observed workload. Our preliminary findings show
that both geographical and interest-based clustering are present and could thus
be leveraged in order to yield significant performance improvements.

2 Experimental Setup

2.1 The eDonkey Network

The eDonkey 2000 network is one of the most advanced P2P file-sharing net-
works, providing features such as concurrent download of a file from multiple
sources, detection of file corruption using hashing, partial sharing of files while
being downloaded and expressive querying methods for file search. According to
a recent study [19], in some European countries eDonkey is now ahead of Kazaa
in terms of resulting traffic.

The eDonkey network is a hybrid two-layer network composed of clients and
servers. The clients connect to a server and register the files that they are sharing,
providing the meta-data describing the files. Once registered, the clients can
either search by querying meta-data or request a particular file via its unique
network identifier. Servers provide the locations of files when requested by clients,
so that clients can download the files directly from the provided locations.

2.2 Methodology

Measurements reported in this paper have been obtained by crawling the eDon-
key network during the first week of November 2003. 230,000 eDonkey clients
were discovered; 55,000 of them were connected during a 3 days period. We kept
37,000 clients that could clearly be identified as distinct clients, among which
25,000 clients shared no files at all. Our study is based on the 923,000 different
files shared by the remaining 12,000 clients.

Our crawler has been implemented by modifying an existing eDonkey client,
namely MLdonkey [7]. Our modified client runs two concurrent tasks: discovering
eDonkey clients and scanning their contents.

Client Discovery. Our crawler first connects to as many eDonkey servers as pos-
sible requesting their list of clients (server responses are limited to 200 clients).
In order to obtain as many clients as possible from each server (servers may
have up to 100,000 simultaneously connected users), we send requests for clients
containing the strings “aa”, “ab”, “ac”, ... and so on until “zz”.

Client Content Scanning. Our crawler attempts to connect to every eDonkey
client that is discovered. If it succeeds, it obtains the unique identifier of the

Clustering in Peer-to-Peer File Sharing Workloads 219

client and requests its list of shared files. All these data are then stored in a
file, named using a digest of the IP address and port of the client, so that the
resulting trace is completely anonymised.

3 Workload Properties

Our crawler provides us with the content lists of each peer that replied with
a non empty list of files. The first set of results presents the properties of the
workload in terms of popularity, distribution between various types of files and
sharing profiles of peers.

As opposed to previous studies which gathered requests from a particular
location – such as a university [8]–, we gather a map of contents over a large
number of countries (see Figure 1).

 0

 2000

 4000

 6000

 8000

 10000

DE FR ES US IT NL IL GB TW PL CH Others

27%

20%

16%

7%

4%
3%

2% 1% 1% 1% 1%

12%

DE
FR
ES
US
IT

NL
IL

GB
TW
PL
CH

Others

Fig. 1. Distribution of peers per country.

3.1 Replication Patterns

While previous studies evaluated the popularity as the number of requests per
file, we measure a file’s popularity by its replication degree. Results match for-
mer observations on file popularity; i.e., a few files are extremely replicated
while a large number is not replicated at all and approximately 100,000 files are
present in two caches or more. Figures 2 and 3 respectively present the replica
distribution of files for all files and for various types of files, per file rank. We
observe similar properties between the eDonkey workloads and the Kazaa work-
loads presented in [8], and in particular after an initial flat region, the popularity
distributions have a clear linear trend on log-log plots. Therefore, whether the
popularity of a file is expressed in terms of number of requests or number of
replicas, the observed patterns are similar.

220 F. Le Fessant et al.

 1

 10

 100

 1000

 1 10 100 1000 10000 100000 1e+06

N
um

be
r

of
 S

ou
rc

es
 p

er
 F

ile

File Rank

All Files

Fig. 2. Replica distribution of files (900,000 files).

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06

N
um

be
r

of
 S

ou
rc

es
 p

er
 F

ile

File Rank

Video Files
Audio Files

500MB+ Files
100-500MB- Files

10-100MB Files
0-10MB Files

Fig. 3. Replica distribution of files depending of their type.

3.2 Sharing and Distribution

Figures 4 and 5 display respectively the CDF of number of files and the disk-
space that each peer offers to the network. While the proportion of free-riding
is still significant (68 %), most of the remaining clients share few files (between
10 and 100), but large files (between 1 and 50 GB of shared data, the protocol
limit for file size is 4 GB).

Clustering in Peer-to-Peer File Sharing Workloads 221

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

P
ro

po
rt

io
n

of
 c

lie
nt

s

Number of files shared

Without free-riders
With free-riders

Fig. 4. Distribution of the number of files offered per client.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 MB 10 MB 100 MB 1 GB 10 GB 100 GB

P
ro

po
rt

io
n

of
 c

lie
nt

s

Disk space shared

Without free-riders
With free-riders

Fig. 5. Distribution of the disk-space shared per client.

We have also investigated the proportion of files of a given type share in
the system, measured both in number of files and disk-space. We observe that
multimedia files, audio and video, dominate: Audio files represent the largest
number of files (48% against 16% for video), while in terms of size video files
are dominant (67% against 16% for audio). Other measures show that MP3

222 F. Le Fessant et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

P
ro

po
rt

io
n

of
 fi

le
s

(C
D

F
)

Proportion of Sources in Main Country

popularity >= 5

Fig. 6. Proportion of sources in one country (for video files with more than 5 sources).

files dominate in number, while AVI files largely dominate in terms of size.
Although such distribution is expected and matches results obtained on different
workloads, it is interesting since it leads to the exploitation of two different types
of clustering: geographical and interest-based clustering.

3.3 Clustering

For clarity, we consider only the two major types of files, audio and video files,
leading to different opportunities in terms of clustering exploitation.
Geographical Clustering and Video Files. It seems reasonable to assume that the
traffic generated by video files dominates largely in the network. For such files,
the latency and traffic induced by the search process are negligible as compared
to the download phase. Figure 6 shows a measure of geographical clustering for
video files in the collected workload. The graph can be read as follows: the y-
value of a point represents the proportion of video files (having more than 5
replicas) for which x-value% of the sources are located in the main country of
replication2. For example, the graph shows that, for 60 % of the files, more than
80% of the replicas are located in the main country. This definitively attests of
the presence of geographical clustering, i.e., peers requesting a given video file
may in a large proportion of cases download it from peers in their own country,
thus achieving low latency and network usage compared to downloading it from
a randomly chosen peer.
2 The main country is defined as the country where the majority of replicas are hosted.

Clustering in Peer-to-Peer File Sharing Workloads 223

Interest-Based Clustering and Audio Files. As 48 % of the shared files are audio
files, it is reasonable to assume that most requests are for such files.

Performance of P2P search for such files can be greatly improved if we exploit
interest-based locality [15, 6, 18]: if two peers share interests, (in other words if
the contents of their cache overlap significantly) the search mechanism can be
significantly improved by having these peers connect to one another and first
send their requests to each other.

 0

 20

 40

 60

 80

 100

 1 10 100 1000

P
ro

ba
bi

lit
y

of
 a

no
th

er
 c

om
m

on
 fi

le

Number of files in common

Fig. 7. Clustering between peers (for all files).

Clustering Measurements. Figure 7 displays the clustering between every pair
of peers and is measured as the probability that any two clients having at least
a given number of files in common share (at least) another one. We observe that
this curve is increasing very quickly with the number of files in common, up to a
certain point (here, 325) that reflects the maximal cache overlap in the observed
trace. As soon as some peers have a small number of files in common (say 10),
the probability is high (approximatively 0.8) that they will have another one
in common. This probability is very close to 1 for peers sharing over 50 files in
common.

Figure 8 presents the same clustering information, calculated for sub-classes
of files, namely for audio files, and depending on their popularity. Results indicate
that the clustering is pretty high for un-popular audio files (2-10 replicas) and
in addition the maximal overlap between peers cache contents reach over 200
unpopular audio files. As the popularity increases, the overlap tends to decrease
as well (30-40 replicas). However, the probability increases consistently and fairly
quickly with the number of files in common.

224 F. Le Fessant et al.

 0

 20

 40

 60

 80

 100

 1 10 100 1000

P
ro

ba
bi

lit
y

of
 a

no
th

er
 c

om
m

on
 fi

le

Number of files in common

30-40
20-30
10-20
0-10

Fig. 8. Clustering between peers for audio files (according to popularity).

We also evaluated the correlation between files, rather than between peers.
We define the correlation between two files as the correlation between the fact
that a randomly selected peer has either file. More precisely, this is the correla-
tion coefficient between the indicator variables equal to 1 if a randomly chosen
peer has the document, and zero otherwise. Figure 9 displays the cumulative
distribution function of the maximal correlation coefficients of files to other files.
For example a correlation value of 60 % on the x-axis corresponds to a y-value
of less than 70 % (for the curve of all files). Thus, at least 30 % of the files have
a correlation larger than 60 % to some other file. This can be expected, as many
files are cdrom images of programs or movies in several parts, sets of cracks for
programs, and un-popular MP3 tracks of popular albums.

Further interpretation of the results, as well as processing of the data is
needed to get a better characterization of interest-based clustering and how it
might be exploited. Such extensions are currently under way.

4 Conclusion

Peer to peer file sharing is now the main component of Internet traffic. Yet,
there have been only a few studies of workload measurements and even less
consideration of clustering properties. In this paper, we presented the results of
an evaluation we conducted on the most popular file sharing network in Europe,
namely the eDonkey 2000 network, in an attempt to provide a map of the content
shared by its peers. In particular, we focused on the geographical and the interest-
based clustering properties for video and audio files respectively, of the observed

Clustering in Peer-to-Peer File Sharing Workloads 225

 0.01

 0.1

 1

 0 20 40 60 80 100

N
um

be
r

of
 fi

le
s

Correlation (%)

Popularity >= 10
Popularity >= 5

All Files

Fig. 9. The CDF of maximal correlation to other files (for distinct file popularities).

workload. We demonstrated that there is a significant locality of interest for
audio files, that could be used to improve the search mechanisms without relying
on servers. Interest-based locality can be exploited to create additional links
to semantically related peers. These peers are contacted first before sending a
request to the servers or to flood the request over the network. The advantage of
implementing these additional links is that the technique is generic and can be
applied to both flooding-based peer-to-peer networks, whether they are based
on a structured [4] or unstructured network [17], and server-based [1, 7].

The interest of this measurement study is three fold: First, to the best of our
knowledge, it represents the first evaluation study focusing on clustering proper-
ties and providing such a map of contents. Second, we also aim at doing a more
comprehensive study by looking at a broader spectrum of users from different
countries, and not limited to a particular community. Finally, the workloads we
evaluated can be used as input to evaluate peer-to-peer file sharing systems and
contribute to the improvement of such systems.

The trace collected demonstrates a certain degree of clustering between peers,
we are currently investigating the impact of the generous peers (both in space and
number of files) to evaluate their impact on the detected semantic relationships.

Analysing workloads of peer-to-peer file sharing system is crucial to under-
stand and improve such systems and is very challenging as it depends on the
cooperation of peers. Future work includes a similar study for the Kazaa network
in order to study the similarities and differences between the two networks.

226 F. Le Fessant et al.

References

1. Kazaa (fasttrack network), sharman networks. http://www.kazaa.com/.
2. E. Adar and B. Huberman. Free riding on gnutella. First Monday 5, Oct. 2000.
3. R. Bhagwan, S. Savage, and G. Voelker. Understanding availability. In IPTPS’03,

Feb. 2003.
4. M. Castro, M. Costa, and A. Rowstron. Should we build gnutella on a structured

overlay? In HotNets 2003, Boston, MA, USA, Nov 2003.
5. Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. Making

gnutella-like p2p systems scalable. In SIGCOMM’03, 2003.
6. A. Crespo and H. Garcia-Molina. Semantic overlay networks for p2p systems. Tech-

nical report, Stanford University, 2003.
7. F. L. Fessant. Mldonkey, a multi-network file-sharing client.

http://www.mldonkey.net/, 2002.
8. K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and J. Zahorjan.

Measurement, modeling, and analysis of a peer-to-peer file-sharing workload. In
SOSP’03, 2003.

9. N. Leibowitza, A. Bergman, R. Ben-Shaul, and A. Shavit. Are file swapping net-
works cacheable? characterizing p2p traffic. In WCW’02, 2002.

10. D. Plonka. Napster traffic measurement. Technical report, University of Wisconsin-
Madison, 2000.

11. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In Middleware, 2001.

12. S. Saroiu, K. P. Gummadi, R. Dunn, S. D. Gribble, and H. M. Levy. An analysis
of Internet content delivery systems. In OSDI’02, Dec. 2002.

13. S. Saroiu and S. G. P. Krishna Gummadi. A measurement study of peer-to-peer
file sharing systems. In MMCN’02, Jan. 2002.

14. S. Sen and J. Wong. Analyzing peer-to-peer traffic across large networks. In SIG-
COMM’02 Workshop on Internet measurment, 2002.

15. K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient content location using
interest-based locality in peer-to-peer systems. In INFOCOM’03, 2003.

16. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications. In SIGCOMM 2001,
San Diego, USA, Aug. 2001.

17. Gnutella. http://www.gnutella.com/.
18. S. Voulgaris, A.-M. Kermarrec, L. Massoulié, and M. van Steen. Exploiting seman-

tic proximity in peer-to-peer content searching. In 10th International Workshop
on Future Trends in Distributed Computing Systems (FTDCS 2004), China, May
2004.

19. G. Wearden. eDonkey pulls ahead in European P2P race.
http://news.com.com/2100-1025 3-5091230.html, 2003.

Cluster Computing on the Fly :
P2P Scheduling of Idle Cycles in the Internet

Virginia Lo, Daniel Zappala, Dayi Zhou, Yuhong Liu, and Shanyu Zhao�

Computer and Information Science, University of Oregon, Eugene, Oregon 97403-1202
{lo,zappala,dayizhou,liuyh,szhao}@cs.uoregon.edu

Abstract. Peer-to-peer computing, the harnessing of idle compute cy-
cles throughout the Internet, offers exciting new research challenges in
the converging domains of networking and distributed computing. Our
system, Cluster Computing on the Fly, seeks to harvest cycles from or-
dinary users in an open access, non-institutional environment. CCOF
encompasses all activities involved in the management of idle cycles: over-
lay construction for hosts donating cycles, resource discovery within the
overlay, application-based scheduling, local scheduling on the host node,
and meta-level scheduling among a community of application-level sched-
ulers. In this paper, we identify four important classes of cycle-sharing ap-
plications, each requiring its own scheduling strategy: workpile, workpile
with deadlines, tree-based search, and point-of-presence. We describe a
Wave Scheduler for workpile tasks that exploits idle night-time cycles
using a geographic-based overlay. The scheduler incorporates a quizzing
mechanism to check the correctness of results and determine trust rat-
ings for the hosts. We also propose a Point-of-Presence Scheduler to
discover and schedule hosts that meet application-specific requirements
for location, topological distribution, and available resources.

1 Introduction

Peer-to-peer computing, the harnessing of idle compute cycles throughout the
Internet, offers an exciting new challenge for P2P networks beyond current infor-
mation sharing applications. Experience has shown that not only are idle cycles
widely available throughout the Internet, but in addition, many users are willing
to share cycles [1–3]. This creates a compelling opportunity for research in this
new juncture between the fields of networking and distributed computing.

Our research addresses the problem of peer-to-peer computing, which encom-
passes all of the activities involved with utilizing idle cycles from ordinary users
in a distributed, open environment. In contrast to Grid computing [4, 5] and
other institution-based cycle-sharing systems [6], we are targeting an open en-
vironment, one that is accessible by the average citizen and does not require
membership in any organization. Peer-to-peer computing represents the next
step in distributed computing, providing potentially greater computing power
� This work was supported in part by the National Science Foundation under grant

ANI-9977524.

G.M. Voelker and S. Shenker (Eds.): IPTPS 2004, LNCS 3279, pp. 227–236, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

228 Virginia Lo et al.

than institutional-based projects while also empowering ordinary users. This
view of P2P computing is the focus of several other current research projects
[7–9].

P2P computing in an open environment gives rise to a new generation of
resource management problems that are dramatically different from those ad-
dressed by traditional scheduling systems, including issues of resource discovery,
trust, incentives, fairness, security, and new criteria for evaluating performance.
We use the term “P2P scheduling system” to encompass all activities involved
in the management of idle cycles: overlay management for hosts donating cy-
cles, resource discovery within the overlay, application-based scheduling, local
scheduling on the host node, and meta-level scheduling which involves coordi-
nation of efforts among a community of application-based schedulers.

We believe that peer-to-peer scheduling solutions must be driven by the char-
acteristics and goals of the specific applications to be scheduled. We identify
four important classes of problems that are particularly well-suited to capturing
idle cycles in the Internet: infinite workpile, deadline-driven workpile, tree-based
search, and point-of-presence applications.

Popular applications for harvesting idle cycles from ordinary users, such as
SETI@home [10], are limited to CPU-intensive workpile applications and require
donors of cycles to manually coordinate through a centralized web site. More gen-
eral cycle-sharing systems, such as Condor [6], provide automatic scheduling but
require a centralized matchmaking service and are limited to members of partic-
ipating institutions. Our goal is the development of a scheduling infrastructure
that supports automatic scheduling of these four broad classes of applications in
an open environment.

In this paper, we discuss the problems faced by P2P scheduling systems
that presume an open and large scale environment. We first present a taxonomy
of P2P cycle sharing applications and their specific requirements. We then de-
scribe the Cluster Computing on the Fly architecture and discusses issues and
open problems involved in the design of an open P2P scheduling system. We con-
clude by illustrating how CCOF addresses some of these problems. In particular,
we introduce CCOF’s Wave Scheduler, which harvests night time idle cycles by
using geographic timezones to organize the hosts, and CCOF’s method for ver-
ification of results returned by the hosts. We also describe our PoP Scheduler,
which utilizes scalable protocols to schedule point-of-presence applications by
discovering strategically located hosts to meet application-specific requirements
for location, topological distribution, and available resources.

2 P2P Scheduling Systems

2.1 P2P Cycle-Sharing Applications

We organize P2P cycle-sharing applications into four classes whose scheduling
needs are starkly distinct, calling for individualized scheduling services that are
tailored to those needs.

Cluster Computing on the Fly: P2P Scheduling of Idle Cycles in the Internet 229

Infinite Workpile Applications. These applications consume huge amounts
of compute time under a master-slave model in which the master delivers code to
as many hosts as possible, over long periods of time. Each host computes inten-
sively and then returns the results back to the master node. The workpile applica-
tion is “embarrassingly parallel” in that there is no communication at all between
slave nodes. Examples of infinite workpile applications include SETI@home [2],
the Stanford Folding Project [11], and numerous mathematical applications rang-
ing from number theory to cryptography [1].

Infinite workpile applications need scheduling that can (a) automatically
identify large blocks of idle cycles and (b) support validation of results. Per-
formance may be measured by some large-grained metric representing the yield
of idle cycles, such as tasks completed per day or week. For the protection of the
wider community, safeguards need to be installed to provide some notion of fair-
ness among competing workpile jobs, as well as security against denial-of-service
attacks from a malicious job that preys on the generosity of participating hosts.

Workpile Applications with Deadlines. Deadline-driven workpile applica-
tions are similar to infinite workpile applications, but their needs for compute
cycles are more moderate. These applications are deadline-driven because they
require that results be returned within a specified deadline (on the order of
days or weeks). Examples of this class of application include compute intensive
jobs: complex insurance analysis, simulation experiments with a large parameter
space, 3D modeling and ray tracing code. These jobs needs to be completed to
meet a business presentation deadline, research publication deadline, or school
project deadline.

While many scheduling strategies are suitable for infinite workpile jobs with
and without deadlines, the urgency of deadlines calls for more aggressive ap-
proaches for discovery and scheduling of cycles.

Tree-Based Search Applications. This class of applications requires sub-
stantial compute cycles, with loose coordination among subtasks requiring low
communication overhead. Distributed branch-and-bound algorithms, alpha-beta
search, and recursive backtracking algorithms are used for a wide range of op-
timization problems; these computationally intensive state-space search algo-
rithms are ideal candidates for P2P scheduling.

Distributed branch-and-bound algorithms use a tree of slave processes rooted
in a single master node. The tree dynamically grows as slave processes expand the
search space and is dynamically pruned as subspaces leading to costly solutions
are abandoned. There is a small amount of communication among slave nodes
to inform other slaves of newly discovered lower bounds.

The scheduler manages the dynamic population of host nodes by continu-
ously providing new hosts while the search tree is growing. It must also support
communication among slave nodes, either indirectly through the master or di-
rectly from slave to slave.

Point-of-Presence Applications. PoP applications typically consume mini-
mal cycles but require placement throughout the Internet (or throughout some

230 Virginia Lo et al.

subset of the Internet). The dispersement of tasks from a PoP application is
driven by specific requirements of the job. For example, distributed monitor-
ing applications (security monitoring, traffic analysis, etc.) require widely and
evenly distributed placement as well as placement at strategic locations. Testing
of distributed protocols requires placement of test-bots dispersed throughout the
Internet in a manner that captures a variety of realistic conditions with respect
to latency, bandwidth, and server performance. In addition, security concerns
must be addressed by limiting communication only to the set of PoP tasks.

2.2 An Open P2P Cycle-Sharing Architecture

In the CCOF architecture, hosts join a variety of community-based overlay net-
works, depending on how they would like to donate their idle cycles. Clients then
form a compute cluster on the fly by discovering and scheduling sets of machines
from these overlays. The basic service offered by CCOF is best-effort in the sense
that any host may preempt guest code at any time. Hosts retain local control
and can thus offer a range of quality of service options.

The components of this architecture, as shown in Fig. 1, highlight the many
complex research issues to be addressed in the design of an open P2P scheduling
system which include the following:

Overlay Management of Host Communities. An important area of re-
search for P2P computing lies in the organization of communities of hosts will-
ing to share idle cycles. One way to organize such communities is through the
creation of overlay networks based on factors such as interest, geography, per-
formance, trust, institutional affiliation, or generic willingness to share cycles.
Communities may span multiple organizations, such as a collaborative research
project among several research groups. Chess enthusiasts, or participants in the
Intel Philanthropic project [3] may form a community based on their hobbies
or a spirit of volunteerism. Users may form nested communities based on trust,
such as a group of family and friends, co-workers, and customers. We assume
that it is possible to exclude untrusted hosts from the overlay using a central
certificate-granting authority, as proposed by Pastry [12].

Community-based overlay networks

Application scheduler
Local scheduler

Local scheduler

Host

Host

Client

Host

Local scheduler
Coordinated scheduling

C
oo

rd
in

at
ed

 s
ch

ed
ul

in
g

Fig. 1. CCOF architecture.

Cluster Computing on the Fly: P2P Scheduling of Idle Cycles in the Internet 231

This arena of research exceeds the immediate bounds of scheduling research
per se, but has a direct impact on it. Past work on overlay networks [13, 14, 12],
trust and reputation systems, performance analysis and monitoring all serve as
the foundations for new work in this direction.

Resource Discovery. The problem of resource discovery is extremely difficult
in an open environment in which the set of participating hosts is potentially very
large and highly dynamic. Resource discovery takes on new dimensions when
the resource (compute cycles) is perishable, cannot be shared, and is dynamic.
Moreover, the search for idle cycles may be coupled with the need for other
resources such as memory and data. Work has already begun in this area, much
of it focused towards institutional and Grid Computing environments.[15, 6, 16].

We conducted a comprehensive study of generic searching methods in a highly
dynamic environment for workpile applications [17]. We compared four scalable
search methods: expanding ring, advertisement-based, random walk and ren-
dezvous point. We model a variety of workloads, simple scheduling strategies and
stabilities of hosts. Our preliminary results show that under light workloads, ren-
dezvous point performs best with respect to job completion, while under heavy
workloads its performance falls below the other techniques. We expected ren-
dezvous point to consistently outperform the other search techniques because of
its inherent advantage in gathering knowledge about the idle cycles. However,
in a peer-to-peer environment, which satisfies requests on-demand, large jobs
may dominate, resulting in delays for scheduling smaller jobs. With respect to
message-passing overhead, rendezvous point dramatically outperforms the other
discovery strategies.

Application Scheduling. The application scheduler is responsible for selec-
tion of hosts for a P2P computation from a pool of candidates, for exporting the
code to the hosts, and for managing and verifying returned results. Application
scheduling requires an analysis of both the application’s needs and the nature
of the offered resources. The scheduler’s decision about which hosts to select
becomes very complex since trust, performance, and fairness all come into play.
Strategies such as oversubscription and duplication scheduling, may be used for
maximum flexibility. Furthermore, if coordination across a set of host nodes is
required, it may be desirable to organize the selected hosts into a new over-
lay to support the interprocess communication needs of the application, further
complicating the host selection process.

Local Scheduling. The local scheduler tracks idle cycles and negotiates with
the application scheduler using local criteria for trust, fairness, and performance
to decide which tasks to accept. It also interacts with its own native scheduler
to inject those jobs into the scheduling queue.

Because each host may implement its own policies, we envision Quality of
Service as an important feature of P2P computing. The job of a local sched-
uler can be viewed as an admission control problem, similar to that faced by
integrated services networks [18]. Some hosts may provide guaranteed service by
accepting only CCOF jobs – they have no local tasks that may preempt guest

232 Virginia Lo et al.

code. Likewise, a host may offer predictive service by providing a statistical
performance estimate based on past behavior.

Incentives and Fairness. The choice of policies and mechanisms for fairness
in a P2P scheduling system is a non-trivial decision since the notion of fairness
is itself open to debate. Several current projects require strict fairness, fairly
tightly controlled accounting of cycles and resources consumed through a vari-
ety of economic and social models (credit-based systems, bartering systems and
auction-based systems, ticket-based systems) [7, 8, 19]. Our philosophy is much
more open - we presume that the donors of idle cycles are more relaxed: they are
concerned with immediate access to idle cycles but not cycle-for-cycle equality.
Under this model of long-term fairness, it is still necessary to enforce some kind
of accounting. In either case, interesting research questions arise with respect to
what incentives work best, how to measure contributions and usage for fairness
in a large scale and dynamic environment.

Trust and Reputation. Trust and reputation systems are needed throughout
P2P scheduling for the formation of trust-based overlays as described above,
for local hosts to use when deciding whether to accept or reject tasks from an
application, and for applications to use to select host nodes from multiple candi-
dates. Several new trust systems for P2P networks have recently been developed
that can potentially be utilized in an open environment [20, 21]. However, sev-
eral difficult problems remain: how to effectively utilize the trust values to make
scheduling decisions and also how to determine whether the results returned by
a host are correct or not. In Section 3 we describe how our CCOF application
scheduler probes host nodes using undetectable quiz codes to develop a trust
rating for each host, as well as to validate returned results.

Security. How can a host defend itself against denial of service attacks, such
as when a malicious node occupies large numbers of hosts with useless code? Or
worse yet uses hosts to launch a distributed denial of service attack or a worm?

We assume that hosts protect themselves from a variety of attacks by running
guest code within a virtual machine monitor, creating a “sandbox” that protects
the host and controls resource usage [22]. Despite this protection, hosts must still
protect their resources from being misused. Preventing denial-of-service attacks,
particularly those that are launched from the cluster itself, is a difficult problem.
Likewise, the CCOF system itself can be abused if malicious users schedule large
numbers of useless tasks.

One possibility for coping with these problems is for hosts to deny network
access for untrusted clients, using the trust and reputation systems discussed
above. Likewise, users can give priority to projects they have deemed trustworthy
through any outside form of communication. In cases where a greater degree of
openness is desired, it may be possible to use network monitors to detect and
take action against attacks. We are working closely with fellow researchers at
the University of Oregon who are working on distributed detection of worms and
denial-of-service attacks.

Cluster Computing on the Fly: P2P Scheduling of Idle Cycles in the Internet 233

Performance Monitoring. The P2P scheduling environment is radically dif-
ferent from traditional scheduling domains. Evaluation of scheduling perfor-
mance is thus faced with several challenges. What are are the appropriate met-
rics, benchmarks, performance monitoring tools and techniques for an open P2P
scheduler? What kinds of user interfaces, testing, simulation, and monitoring
tools will be most effective?

3 Cluster Computing on the Fly

In this section we present CCOF’s support for two classes of P2P applica-
tions: deadline-driven workpile applications and point-of-presence applications.
Workpile jobs, with their heavy demand for free cycles, are scheduled using
CCOF’s Wave Scheduler, which captures available night time cycles in time-
zones from east to west. CCOF also provides a simple yet effective quiz system
for verifying the results returned by hosts. CCOF scheduling of PoP applications
involves fully distributed algorithms for careful placement of tasks according to
topological or performance-based criteria.

3.1 Wave Scheduling for Workpile Applications

Wave scheduling seeks to capture cycles from the millions of machines that
lie completely idle at night. By following night timezones around the globe, it
continuously gives workpile tasks dedicated access to cycles without interruption
from users reclaiming their machines. Wave scheduling is thus particularly useful
for workpile applications with deadlines since it provides a higher guarantee of
ongoing available cycles. Wave scheduling was motivated by the notion of prime
time v. non-prime time scheduling regimes enforced by parallel job schedulers
[23, 24] and by wave scheduling in systolic computing systems.

The CCOF Wave Scheduler uses a CAN-based DHT overlay to organize
nodes located in different time zones. Our wave scheduling protocol functions as
follows (see Fig. 2).

Timezones in the CAN Overlay. We select one dimension of the d-dimen-
sional mesh to represent time zones. For example, a 1 x 24 CAN space could be
divided into hourly zones 1 through 24 based on its second dimension.

Host Nodes Join the Overlay. A host node that wishes to offer its night
time cycles knows which time zone it occupies, say zone 8. It randomly selects
a node label in zone 8 such as (0.37, 7.12) and sends a join message to that
node. According to the CAN protocol, the message will reach the physical node
in charge of CAN node (0.37, 7.12) who will split the portion of the CAN space
it owns, giving part of it to the new host node.

Application Scheduler Selects Initial Nightzone. The scheduler for a
workpile application knows which timezones are currently nightzones. It selects
one of these nightzones (based on some nightzone selection criteria) and decides

234 Virginia Lo et al.

I
1 2 3 4

K L

J

M H

F G D

E B

A

C

T1

T3

T4

T2

Timezone

Application

T1

T2

I
1 2 3 4

K L

J

M H

F G D

E B

A

C

T1T3

T4 T2

Timezone

T1

Night Zone

Day Zone

Task

Fig. 2. Task initiation and migration in wave scheduling.

on the number H of hosts it would like to target. This number could be an over-
estimation of the number it would ideally like to schedule in order to achieve
more flexibility.

Application Scheduler Selects Set of Target Hosts. The scheduler ran-
domly generates a collection of H node labels in the target nightzone. It sends
a request message to each target host using CAN routing which finds the physi-
cal host managing that host node. After negotiations, the application scheduler
selects a subset of those nodes to ship tasks to. It can make its selection based
on trust or other criteria.

Migration to Next Timezone. When morning comes to a host node, it selects
a new target nightzone, randomly selects a host node in that nightzone for
migration, and after negotiating with that host, migrates the unfinished task to
the new host.

Returning Results to the Application. Whenever a task finishes computing
its results on a host node, it sends the results directly back to the application.
If the application is offline, it can store the results in the CAN distributed file
system. The application can later retrieve results using the DHT lookup.

We are investigating the use of wave scheduling for deadline-driven workpile
tasks to see if it compares favorably with two other models: centralized master-
slave approach and distributed master-slave approach. In both latter cases, idle
nodes advertise their availability dynamically to the masters and the only option
is to sleep when cycles are withdrawn. Our current evaluation includes applica-
tion harvest yield (results returned per day); utilization (fraction of idle cycles
being consumed relative to demand); host impact; and overlay traffic generated
by the scheduler, by task migration, and return of results.

Our current implementation and evaluation is simulation-based, but in the
future, we would like to do empirical experiments assuming we can find sufficient
numbers and placements of volunteer nodes.

3.2 Trust-Based Verification for Workpile Applications

We validate the correctness of results returned by host nodes to the workpile
application using a quiz mechanism. The application node sends a set of quizzes

Cluster Computing on the Fly: P2P Scheduling of Idle Cycles in the Internet 235

to the hosts whose solutions are known beforehand. Based on the hosts per-
formance on the quizzes, the application can then decide whether to accept or
reject the results. We are investigating two methods for quizzing hosts. One
method uses quizzes that are distinct from the actual application code. These
are packaged so that a (malicious) host cannot distinguish quiz code from gen-
uine application code. If the host passes its quiz, it will then be sent another task,
this one containing application code. The second method embeds simple short
quizzes into the application code. Quiz and application results are periodically
sent back from the host to the application. If the application node receives wrong
quiz answers, it can immediately reschedule the task on another host. Note that
for both methods, when a host does return correct (or incorrect) results, this
information can be used to give that host an appropriate trust ranking. This
information is stored in a reputation system such as Eigenrep [21] or TrustMe
[20].

3.3 Scheduling Point-of-Presence Applications

Our investigation of scheduling PoP applications is motivated by collaborative
work at the University of Oregon on distributed security monitoring systems and
distributed massively multiplayer games.

Topological distribution of monitoring tasks involves placement of these tasks
on selected hosts throughout the overlay such that ordinary nodes are within
t hops of j host nodes. This problem has been proposed abstractly as leader
election in distributed systems, and as the dominating set problem in graph
theory.

This task is much more difficult in an open, large scale environment. One of
our approaches uses a torus-based overlay similar to CAN [13] that provides its
regular node labeling scheme and Lee distances [25] to elect leaders using only
local computation in constant time. Another approach is a fully distributed pro-
tocol that uses gossiping in a tournament-style backoff algorithm. Initially, each
node says hello to its k-hop neighbors. Nodes then gossip with its immediate
neighbors and either persists as a leader or backs-off based on the information
each neighbor provides on the number of non-leader nodes it covers. We have
developed several versions of this algorithm that trade off communication over-
head and latency for accuracy. We are also investigating placement of game-bots
throughout the Internet that meet varying level of performance with respect to
network bandwidth and computational power.

References

1. Hayes, B.: Computing Science – Collective Wisdom. American Scientist (1998)
2. D.Anderson, Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: Seti@home: An

experiment in public-resource computing. Communications of the ACM 45 (2002)
56–61

3. Intel: The Intel Philanthropic Peer-to-Peer Program (2003)
http://www.intel.com/cure/.

236 Virginia Lo et al.

4. F. Berman and G. Fox and A. Hey, ed.: Grid Computing Making the Global
Infrastructure a Reality. John Wiley and Sons Ltd. (2002)

5. Foster, I., Kesselman, C., eds.: The GRID Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann Publishers, Inc. (1999)

6. Litzkow, M., M.Livny, Mutka, M.: Condor – A Hunter of Idle Workstations. In:
Eighth International Conference on Distributed Computing Systems. (1988)

7. Fu, Y., Chase, J., Chun, B., Schwab, S., Vahdat, A.: SHARP: An Architecture for
Secure Resource Peering. In: SOSP. (2003)

8. Butt, A., Fang, X., Hu, Y., Midkiff, S., Vitek, J.: An Open Peer-to-Peer Infras-
tructure for Cycle-Sharing (2003) Poster, SOSP.

9. UC Berkeley: BOINC: Berkeley Open Infrastructure for Network Computing
(2004) http://boinc.berkeley.edu.

10. D.Anderson, Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: SETI@home:
An Experiment in Public-Resource Computing. Communications of the ACM 45
(2002)

11. Stanford Folding Project: Folding@Home (2003) http://folding.stanford.edu/.
12. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and

Routing for Large-Scale Peer-to-Peer Systems. In: 18th IFIP/ACM Int’l Conf. on
Distributed Systems Platforms. (2001)

13. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A Scalable Content
Addressable Network. In: ACM SIGCOMM. (2001)

14. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A Scal-
able Peer-to-Peer Lookup Service for Internet Applications. In: ACM SIGCOMM.
(2001)

15. Iamnitchi, A., Foster, I., Nurmi, D.: A Peer-to-Peer Approach to Resource Location
in Grid Environments. In: Symp. on High Performance Distributed Computing.
(2002)

16. F. Berman: High-Performance Schedulers. In I. Foster and C. Kesselman, ed.: The
GRID Blueprint for a New Computing Infrastructure. Morgan Kaufmann (1999)

17. Zhou, D., Lo, V.: Cluster Computing on the Fly: Resource Discovery in a Cycle
Sharing Peer-to-Peer System. In: IEEE/ACM International Workshop on Global
and Peer-to-Peer Computing. (2004)

18. Clark, D.D., Shenker, S., Zhang, L.: Supporting Real-Time Applications in an
Integrated Services Packet Network: Architecture and Mechanism. In: ACM SIG-
COMM. (1992)

19. Andrade, N., Cirne, W., Brasileiro, F., Roisenberg, P.: OurGrid: An Approach to
Easily Assemble Grids with Equitable Resource Sharing. In: 9th Workshop on Job
Scheduling Strategies for Parallel Processing. (2003)

20. Singh, A., Liu, L.: TrustMe: Anonymous Management of Trust Relationships in De-
centralized P2P Systems. In: IEEE Intl. Conf. on Peer-to-Peer Computing. (2003)

21. S.Kamvar, Schlosser, M., Garcia-Molina, H.: The Eigentrust Algorithm for Rep-
utation Management in P2P Networks. In: 12th International World Wide Web
Conference 2003. (2003)

22. B. Dragovic, e.a.: Xen and the Art of Virtualization. In: ACM Symposium on
Operating Systems Principles. (2003)

23. Veridian Systems: OpenPBS v2.3: The Portable Batch System Software (2000)
24. Lo, V., Mache, J.: Job Scheduling for Prime Time vs. Non-Prime time. In: 4th

IEEE International Conference on Cluster Computing (CLUSTER 2002). (2002)
25. Lo, V., Bose, B., Broeg, B.: Lee Distance, Gray Codes and the Torus. Intl. Journal

of Telecomm. Systems (1998)

Robust Distributed Name Service

Baruch Awerbuch� and Christian Scheideler��

Department of Computer Science, Johns Hopkins University,
3400 N. Charles Street, Baltimore, MD 21218, USA

{baruch,scheideler}@cs.jhu.edu

Abstract. This paper suggests a method called Trust-but-Verify that,
under certain simplifying assumptions, provides robust distributed name
service even under massive adversarial attacks.

1 Introduction

The Internet was originally designed for the purpose of being extremely robust
against hardware attacks, such as natural disasters or wars. However, software
attacks (such as viruses, worms, or denial-of-service attacks) have become in-
creasingly severe over the past few years, whereas hardware attacks are negligi-
ble. Thus, for any distributed application to run reliably on the Internet, it is of
utmost importance that it is robust against adversarial software attacks. This is
especially important for critical applications such as name service, i.e. a service
that translates names such as “machine.cs.school.edu” into IP addresses so that
machines can communicate with each other.

The current way name service is provided in the Internet is server-based.
However, server-based architectures are vulnerable to attacks. A much more
robust alternative appears to be the recently emerged peer-to-peer paradigm
with its strictly decentralized approach. Unfortunately, despite the appeal of a
decentralized approach, it appears to be a daunting task to develop peer-to-
peer networks that are robust against adversarial attacks. Obviously, in an open
environment any attempt to keep adversarial peers out of the network is doomed
to failure because a priori there are no trust relationships that would allow to
distinguish adversarial peers from honest peers. So one approach has been to
at least limit the number of identities adversarial peers can obtain. Here, the
use of a certification authority was suggested that requires credentials, sensitive
information, or a payment to obtain an identity that allows the peer to join
the system [4]. However, being overly restrictive here would not only prevent
adversarial peers but also many honest peers from joining the system, either
because they cannot provide the necessary credentials or they are not willing
to reveal sensitive information or to pay for their membership. Thus, it should
be clear that without being overly restrictive, a certification authority will be
ineffective in limiting the number of identities adversarial peers may obtain,
� Supported by NSF grant ANIR-0240551 and NSF grant CCR-0311795.

�� Supported by NSF grant CCR-0311121 and NSF grant CCR-0311795.

G.M. Voelker and S. Shenker (Eds.): IPTPS 2004, LNCS 3279, pp. 237–249, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

238 Baruch Awerbuch and Christian Scheideler

allowing them to start so-called Sybil attacks [7] that can cause severe problems
to all structured peer-to-peer systems that have been suggested so far. Hence,
new designs are needed that provide reliability despite adversarial peers with a
potentially unlimited number of identities.

The goal of this paper is to demonstrate that it is possible, under certain
simplifying assumptions, to design completely open peer-to-peer systems that are
provably robust against adversarial peers of arbitrary behavior with an unlimited
number of identities, as long as the adversarial peers in the system (or more
precisely, their currently active identities) are in the minority.

1.1 Distributed Name Service

A peer is defined as an entity with a unique identity, i.e. each peer p is uniquely
identified by a tuple (Name(p), IP(p)) where Name(p) represents the name of p
and IP(p) represents the IP address of p. In order to provide a distributed name
service, the following operations have to be implemented:

– Join(p): peer p wants to join the system.
– Leave(p): peer p wants to leave the system.
– Lookup(Name): returns the IP address of the peer p in the system with

Name(p) = Name, or NULL if there is no such peer.

These operations must be implemented so that they can be run concurrently
and reliably in an asynchronous environment without any trust relationships in
which adversarial peers have an unlimited number of identities at their disposal
and behave in an arbitrary way (i.e. we allow Byzantine peers). To formalize
this goal, we need a model.

1.2 Security Model

We consider a peer to be adversarial if it belongs to an adversary or it is sim-
ply unreliable. Otherwise, a peer is called honest. We do not assume any prior
trust relationships between the peers. Hence, a priori honest peers cannot be
distinguished from adversarial peers.

Certification Authority. A necessary requirement for a name service as de-
fined above to work correctly is that every possible name x has at most one
peer p with Name(p) = x, i.e. the Lookup operation provides a unique peer
for a given name (if such a peer is currently in the system). To guarantee this
property, an authority is needed that resolves conflicts among the peers and that
prevents peers from taking over names of other peers. Thus, we assume that a
certification authority is available that issues certified names to peers that want
to enter the system and that only provides such a name if no peer has registered
under that name before. Certified names allow peers to prove that they are the
rightful owner of a name, which prevents peers from taking over the identities
of other peers. However, this does not prevent the adversary from registering a

Robust Distributed Name Service 239

large number of adaptively chosen names that are different from names of the
honest peers.

Notice that the certification authority does not need to be online during the
operation of the peer-to-peer system if all peers have registered names with it
before. Hence, it does not introduce a single point of failure for the operation of
that system and therefore does not undermine the benefits of having a decen-
tralized peer-to-peer system.

Semantics of Join, Leave, and Lookup. Recall that a peer p is defined as an
entity with a unique, certified identity, i.e. p = s(Name, IP) where s is a signature
scheme, Name is the name of p, and IP is the IP address of p. Join, Leave, and
Lookup are operations acting on a name service relation DNS ⊆ Names × IPs in
the following way:

– Join(p): if this operation was initiated by IP(p) and p is correctly certified
then DNS ← DNS ∪ {(Name(p), IP(p))}

– Leave(p): if this operation was initiated by IP(p)
then DNS ← DNS \ {(Name(p), IP(p))}

– Lookup(Name): if there is a peer q with (Name, IP(q)) ∈ DNS
then return IP(q) and otherwise return NULL

Given that the certification authority maintains a mapping CA : Names → IPs
that is well-defined at any time (i.e. each name is associated with at most one IP
address), also the lookup operation will be well-defined. Indeed, if the operations
above are correctly implemented and executed, then DNS ⊆ CA at any time and
DNS consists of all identities currently present in the peer-to-peer system.

Notice, that there are many ways for adversarial peers to attack the correct-
ness of DNS: adversarial peers may execute Join(p) for honest peers currently
not in the system or Leave(p) for honest peers currently in the system, or may
leave the system without notice. Also, adversarial peers may attempt to provide
a wrong answer to a lookup operation. So countermeasures have to be taken to
protect the system against these attacks.

Resources. We allow arbitrary adversaries with bounded presence, i.e. the
number of adversarial identities or peers is at most an ε-fraction of the peers in
the system at any time. Such adversaries are called ε-bounded.

We consider asynchronous systems in which every honest peer has roughly the
same clock speed but there is no global time. Since honest peers are considered
reliable, we assume that at any point in time, any message sent by an honest peer
p to another honest peer q will arrive at q within a unit of time. (Other message
transmissions may need any amount of time.) Furthermore, honest peers have
unbounded bandwidth and computational power, i.e. an honest peer can receive,
process, and send out an unbounded number of messages in a unit of time.
The latter assumption allows us to ignore denial-of-service attacks, but it does
not simplify the task of securing an overlay network against legal attacks (i.e.
attacks exploiting security holes in its protocols). As long as adversarial peers

240 Baruch Awerbuch and Christian Scheideler

do not transmit unnecessary packets, the number of messages an honest peer
will have to deal with in a time unit will normally be low so that we believe that
our protocols are practical despite this assumption. Designing provably secure
overlay networks for honest peers with bounded bandwidth is very challenging
and needs further research.

Bootstrap Peers. We assume that the certification authority provides a limited
number of so-called bootstrap peers that are always part of the overlay network.
This list of peers may be downloaded by a new peer when it registers its name so
that it can contact one of the bootstrap peers without contacting the certification
authority again. Bootstrap peers are like normal peers. For the Join protocol to
work correctly we assume that at least one of the bootstrap peers is honest.
Otherwise, there is no reliable way for a new peer to join the system. However,
the Leave and Lookup protocols should not rely on the bootstrap peers so that
the system is scalable and can work correctly under ε-bounded adversaries even
if all bootstrap peers are adversarial.

To simplify the Join protocol in this extended abstract, we will assume that
all bootstrap peers are honest.

Notice that the concept of bootstrap peers is necessary because somehow new
peers have to be able to find out about peers already in the system. Assump-
tions like “peers contact random peers in the system” are not realistic because
how should a peer find this random peer over the Internet? Furthermore, it is
important to have peers that are permanently present in the overlay network
because otherwise a server would have to be established that is always accessible
and that provides a continuously updated list of peers currently in the system,
which introduces a single point of failure.

Messages. Finally, we need some assumptions about how messages are passed.
We assume that the (IP address of the) source of a message cannot be forged so
that adversarial peers cannot forge messages from honest peers. Also, a message
sent between honest peers cannot be deleted or altered by the adversary.

Notice that the source issue can actually be solved easily without cryptogra-
phy as long as adversaries cannot hijack IP addresses or listen to communication
between honest peers: if a message arrives from IP address x, then the receiver
y asks x for a confirmation that contains a secret (for example, a random key).
Only if y receives an acknowledgement from x containing the secret, y will ac-
cept the message. The assumption that messages cannot be deleted or altered by
the adversary is realistic in our case because we assume the peers of our overlay
network to sit at the edge of the Internet, and therefore peers cannot manipulate
communication between other peers.

1.3 Security Goal

Recall that our security goal is to implement the Join, Leave, and Lookup op-
erations so that they can be run concurrently and reliably in an asynchronous

Robust Distributed Name Service 241

environment. More precisely, any of these operations executed by any of the
honest peers in the system should be executed in a correct and efficient way. “In
the system”, “correct” and “efficient” require precise definitions.

A Join(p) (resp. Leave(p)) operation is called completed if any Lookup(Name(p))
operation executed afterwards by an honest peer in the system (and before an-
other Join(p) or Leave(p) operation) returns IP(p) (resp. NULL). A peer p belongs
to the system if Join(p) has been completed and Leave(p) has not been initiated
yet. A Lookup(Name) operation is called completed once the peer initiating the
request accepts the return value.

An overlay network operation is said to execute correctly if it completes within
a finite amount of time. Furthermore, an overlay network operation is called

– work-efficient if it is completed using at most polylog(n) messages and
– time-efficient if it is completed using at most polylog(n) time,

where n be the current number of peers in the overlay network.
Finally, we call an overlay network survivable if it can guarantee the cor-

rect and (time and work) efficient execution of any overlay network operation
initiated by an honest peer, with high probability, for at least 1/polylog(n)-
bounded adversaries and a join/leave rate of at least 1/polylog(n), i.e. at least
n/polylog(n) peers may join or leave the network in a time unit.

This definition implies that in a survivable network, any overlay network
operation initiated by an honest peer can be executed correctly for at least
poly(n) time units, with high probability, where n is the minimum number of
peers in the system during that time.

Notice that we only require correct and efficient executions for honest peers,
i.e. we do not care whether the semantics of Join, Leave, or Lookup are violated for
adversarial peers. For example, a Lookup(Name) request for some Name owned
by an adversarial peer q is allowed to give inconsistent answers, i.e. some honest
peers may receive the answer IP(q) and others receive the answer NULL.

Also, notice that we have to add the term “with high probability” above,
because we said that a priori, it is not possible to distinguish between honest and
adversarial peers. So no absolute guarantees can be given, unless we completely
interconnect all peers, which is highly inefficient and therefore out of question.

An overlay network is called weakly survivable if it can only guarantee cor-
rectness and time-efficiency, but no work-efficiency. In this paper we propose a
design called Trust-but-Verify that provides weak survivability as long as the ad-
versarial peers are in the minority. Recently, the authors also managed to design
overlay networks that are survivable in the strong sense. See [1, 2] for details.

1.4 Existing Work

Classical distributed computing methods [13, 5, 14, 17] use Byzantine agreement
and two-phase commit approaches with inherently linear redundancy and over-
head to maintain a safe state.

242 Baruch Awerbuch and Christian Scheideler

The proactive security approach in [16, 12, 11, 3, 10] uses different coding tech-
niques to protect unreliable data in reliable networks; applying these methods
in our context still yields linear overhead.

Fixed topology networks as in [9], will work only for non-Byzantine peers, and
only allow fail-stop faults; the construction cannot handle malicious behavior of
even a few malicious players.

The reliability of hash-based peer-to-peer overlays (or DHT’s) such as Chord
[18], Pastry [8], and Tapestry [19] hinges on the assumption that the IDs given to
the nodes are pseudo-random, so that they can cope with a constant fraction of
the nodes failing concurrently, with only logarithmic overhead. While this may
seem to perfectly defeat massive attacks under these randomness assumptions,
DHT’s cannot handle even small-scale adaptive adversarial attacks involving
the selection of adversarial IP addresses (to get close to desired IDs). One such
“Sybil” attack is described in [7]. Remarkably, the attackers do not need to do
anything complex such as inverting the hash function; all that is needed is to get
hold of a handful (actually, logarithmic) number of IP addresses so that IDs can
be obtained that allow to disconnect some target from the rest of the system.
This can be accomplished by a linear number (i.e. O(n)) of offline trial/errors.
For similar attacks, see [6].

Random or unpredictable placement of data in a logarithmic size subset of
locations (as in Freenet) ensures that data is difficult to attack, but also makes it
difficult to retrieve. Specifically, data retrieval of randomly placed data requires
a linear number of queries, which is definitely unscalable.

2 The Trust-but-Verify Approach

The basic approach of our Trust-but-Verify scheme is similar to previous hash-
based overlay networks such as Chord [18]. All hash-based overlay networks are
based on the concept of a virtual space. The basic idea underlying these systems
is that peers are given virtual locations in some space, and the overlay network
is constructed based on these virtual locations. That is, depending on its virtual
location, a peer aims to maintain connections to other virtual locations and does
this by establishing pointers to the peers closest to these locations. See, e.g. [15]
for a general framework behind this approach. To illustrate this approach, we
give the Chord network as an example.

2.1 The Chord Overlay Network

Suppose that we have a system currently consisting of a set V of n peers, and
further suppose we have a (pseudo-)random hash function h : Names → [0, 1)
that maps peers to real values in the interval [0, 1). The real value a peer p is
mapped to is called its identification number or ID and denoted by ID(p). The
basic structure of Chord is a doubly-linked cycle, the so-called Chord ring, in
which all peers are ordered according to their IDs. In addition to this, every peer
p has edges to peers fi(p), called fingers, with fi(p) = argmin{q ∈ V | ID(q) ≥
ID(p) + 1/2i} for every i ≥ 1.

Robust Distributed Name Service 243

To avoid identity theft, h is usually assumed to be a one-way hash function
so that it is hard to find a name Name �= Name(p) for some peer p so that
h(Name) = h(Name(p)).

2.2 Problems with the Chord Overlay Network

Using a pseudo-random hash function allows to assume that IDs of honest peers
are distributed uniformly at random in [0, 1), but it does not allow to assume that
also IDs of adversarial peers are distributed uniformly at random in [0, 1). The
problem is that adversarial peers may pick names deliberately for the purpose
of getting very close to some values in [0, 1).

For example, by generating a set A of adversarial peers with IDs in [x− ε, x],
[x, x+ ε], and [x+1/2i, x+1/2i + ε] for all relevant i with ε < 1/n2, peer p with
ID(p) = x will have no honest peer pointing to it any more, and all peers p is
pointing to belong to A, with high probability. Hence, if the peers in A leave,
p will be disconnected from the system, with high probability. Notice that even
a relatively modest adversary can come up with such a set A, even if the hash
function is not invertible. It just has to try enough names.

Once p is isolated, overlay network operations cannot be executed successfully
any more, because p is not able to communicate with other honest peers in the
system. Thus, the Chord overlay network is not survivable in our sense.

2.3 An Approach Robust Against Isolation Attacks

The Trust-but-Verify overlay network also uses a pseudo-random one-way hash
function to map peers to IDs in [0, 1). (Recall that the pseudo-randomness makes
sure that IDs of honest peers are random, and the one-way property makes sure
that if the name of a peer cannot be taken over, it is also hard to take over its
ID.) However, peers are interconnected in a different way.

A region is an interval in [0, 1) of size 1/2r for some r ∈ IN0 starting at an
integer multiple of 1/2r. Imagine for a moment that every peer knew the current
number of peers, n, in the system, and that every peer p aims to maintain
connections to all peers in the system with IDs in the regions Ri(p), i ∈ ZZ,
where Ri(p) is the unique region of size closest from above to (c log n)/n, for
some fixed constant c, that contains ID(p) + sgn(i)/2|i|(mod 1).

Suppose now that the ID of every honest peer is like an independent, random
value in [0, 1) (but hash values of adversarial peers may be any values different
from the values of honest peers). Then the well-known Chernoff bounds imply
the following result:

Theorem 1. For any (1 − ε)-bounded adversary for some constant ε > 0 there
is a constant c = O(1/ε) so that in every region of size closest from above to
(c log n)/n there are Ω(log n) honest peers, with high probability.

It follows from the theorem and the way the regions are selected that no
matter how the IDs of adversarial peers are distributed in [0, 1), the honest peers
in the system will form a single connected component. However, just having

244 Baruch Awerbuch and Christian Scheideler

connectivity among the honest peers does not seem to suffice to achieve the
desired semantics of Join, Leave, and Lookup. The problem here is that in a
Lookup(Name) execution adversarial peers may claim that a certain peer with
that name is in the system, and there does not seem to be a reliable way for
an honest peer to verify this claim because adversarial peers may represent the
majority in the region containing h(Name). So a different approach is needed to
achieve survivability.

2.4 Outline of Trust-but-Verify Approach

The main idea of our Trust-but-Verify approach is that honest peers will organize
in regions R ⊆ [0, 1) they consider to be safe (i.e. the honest peers are in the
majority) and not just some regions of size (c log n)/n. If an honest peer feels
that one of its regions is no longer safe, it will change it to a larger region. On
the other hand, if an honest peer feels that a subregion within one of its regions
is now safe, it will move to the subregion. Each honest peer will continuously
probe peers it knows in its regions. If some peer does not respond, the honest
peer will drop its connection to it. Since we assume honest peers to be reliable,
this will not happen to honest peers. Messages are routed along safe regions to
make sure that adversarial peers cannot alter, delay, or delete them. Next we
give a more detailed description of how to maintain regions, how to interconnect
the peers, and how to join, leave, and search in the overlay network.

3 The Trust-but-Verify Scheme

3.1 Safe Regions

Recall that a region is an interval in [0, 1) of size 1/2r for some r ∈ IN0 starting
at an integer multiple of 1/2r. Suppose that every peer p knows the current
number n of peers in the system. Given a peer p and a region R, let V p

R denote
p’s view of R, i.e. the set of peers p knows in R. p considers R to be safe if, for
some fixed constants c > 1 and ε ≤ 1/12,

1. |R| ≥ (c log n)/n and
2. |V p

R | ≤ (1 + ε)|R| · n.

Safe regions have the following nice property when given an ε-bounded adversary:

Theorem 2. Let 0 < ε ≤ 1/12 and c > 0 be constants. If for some peer p and
region R, p considers R to be safe, V p

R contains all honest peers in R, and c is
sufficiently large compared to ε, then at least 3/4 of the peers in V p

R are honest,
with high probability.

The theorem directly follows from the well-known Chernoff bounds because
if |R| ≥ (c log n)/n for a sufficiently large c, then the number of honest peers in
R is at least (1 − 2ε)|R| · n, with high probability. In this case, the fraction of
adversarial peers in V p

R can be at most 3ε ≤ 1/4 if ε ≤ 1/12.

Robust Distributed Name Service 245

3.2 Maintaining Safe Regions

Since the membership of regions can change rapidly, each honest peer p will
keep safe snapshots (Si(p), rs

i (p)) and current versions (Ci(p), rc
i (p)) of regions

containing ID(p) + sgn(i)/2|i|, where Si(p) is the view and 1/2rs
i (p) is the size of

the snapshot region Rs
i (p) and Ci(p) is the view and 1/2rc

i (p) is the size of the
current region Rc

i (p) of p. These regions are updated as follows.

1. A subregion R ⊆ Rc
i (p) containing ID(p) + sgn(i)/2|i| is now safe: then p

executes (Si(p), rs
i (p)) ← (V p

R ,− log |R|) and (Ci(p), rc
i (p)) ← (Si(p), rs

i (p)),
i.e. p updates its snapshot and current region to R.

2. Rc
i (p) is unsafe: then p executes Ci(p) ← Ci(p) ∪ View(R) and rc

i (p) ←
rc
i (p) − 1, i.e. p doubles the size of its current region and extends its view

by requesting a view of the unknown half, R, of the new region (the View
command is specified below).

3. A new peer q joins Rc
i (p): then p executes Ci(p) ← Ci(p) ∪ {q}.

4. An old peer q leaves Rc
i (p): then p executes Ci(p) ← Ci(p) \ {q}.

5. An old peer q leaves Rs
i (p): then p executes Si(p) ← Si(p) \ {q}.

p maintains connections to all peers it knows of in every Rc
i (p) and Rs

i (p) (and
some limited number of older versions of Rs

i (p) to preserve the correctness of
overlay network operations) and all peers q it knows of with p in Rc

i (q) or Rs
i (q).

Notice that there can be different values i1 and i2 with Rc
i1(p) ⊆ Rc

i2(p), so
regions may sometimes be contained in other regions, but for any two active
regions R1 and R2 of a peer p it must hold that either R1 ⊆ R2 (resp. R2 ⊆ R1)
or R1 ∩ R2 = ∅. Those regions R1 with R1 ⊆ R2 only have to be maintained
implicitly, so that p only has to explicitly store O(log n) regions at any point in
time.

Also, notice that Rs
i (p) ⊆ Rc

i (p) at any time. New peers are only added
to Ci(p) because safe snapshots have to preserve the safeness condition at any
time, and therefore new peers should not be added there. However, peers may
still leave safe snapshots. Hence, they have to be updated quickly enough to
make sure that honest peers always represent the majority. Fortunately, if the
departure rate of honest peers is limited to ε/ log2 n for some small constant
ε > 0, then the honest peers will be able to find new safe snapshots quickly
enough. More precisely, the following result can be shown.

Theorem 3. If the adversary is ε-bounded for some sufficiently small constant
ε > 0 and the arrival and departure rate of (honest and adversarial) peers is
at most ε′/ log2 n for some sufficiently small constant ε′ > 0, then our region
update rules ensure that for every honest peer p and every i, at least 2/3 of the
peers in Rs

i (p) are honest at any time, with high probability.

To be able to verify this result, we describe below how to execute the View(R)
operation. Notice that Rs

i (p) ⊆ Rc
i (p) at any time. It is not difficult to check

that this operation is well-defined and completes in O(log n) time.

246 Baruch Awerbuch and Christian Scheideler

View(R):
// p: peer initiating the view request
if ∃i ∈ ZZ : R ⊆ Rs

i (p) then return V p
R (w.r.t. Ci(p))

else
if ID(p) ∈ R then

// R1, R2: two halfs of R, i.e. R1 ∪ R2 = R
for each i ∈ {1, 2}:

if ∃j ∈ ZZ : Ri ⊆ Rs
j(p) then Vi = V p

Ri
(w.r.t. Cj(p))

else
fix any Rs

j(p) ⊆ Ri

send to all peers in Sj(p): (View, Ri)
wait until (View, Ri, Vi(q)) from ≥ 2/3 of peers q ∈ Sj(p)
Vi ← {q′ : |{Vi(q) | q′ ∈ Vi(q)}| ≥ |Sj(p)|/3}

return V1 ∪ V2

else
send to all peers in the Sj(p) closest to R: (View, R)
wait until receiving (View, R, V (q)) from ≥ 2/3 of peers q ∈ Sj(p)
V ← {q′ : |{V (q) | q′ ∈ V (q)}| ≥ |Sj(p)|/3}
return V

Upon receiving (View, R) from some peer p′:
// q: peer receiving the region request
if ∃i ∈ ZZ : R ⊆ Rs

i (q) then send to p′: (View, R, V q
R)

else
if ID(q) ∈ R then

// use same strategy as above to compute V1 and V2

send to p′: (View, R, V1 ∪ V2)
else

// use same strategy as above to compute V
send to p′: (View, R, V)

It remains to show how to execute Join, Leave, and Lookup operations and
how to estimate n.

3.3 Join and Leave

If a new peer p wants to join via some bootstrap peer q, q starts with requesting
views for regions of p of lowest possible size, i.e. (c log n)/n. If this does not
provide a safe region for some Si(p), q moves to a larger region for that i until
it obtains views satisfying the requirements of a safe region for every relevant i
(here, i ∈ {− logn, . . . , log n} is sufficient). Afterwards, q passes these views to
p. p uses these views to integrate itself into the system.

The Leave(p) operation is straightforward: p just cuts all connections it has
in the overlay network. Join takes O(log2 n) time and Leave takes O(1) time.

Robust Distributed Name Service 247

3.4 Lookup

Next we specify the Lookup operation. It is not difficult to check that it completes
in O(log n) time.

Lookup(Name):
// p: peer initiating the lookup request
if ∃i : h(Name) ∈ Rc

i (p) then
if ∃q ∈ Ci(p) : Name(q) = Name then return q
else return NULL

else
send to all peers in the Si(p) closest to h(Name): (Lookup, Name)
wait until receiving (Lookup, Name, a) from > 1/2 of peers in Si(p)
return a

Upon receiving (Lookup, Name) from some peer p′:
// q: peer receiving the lookup request
if ∃i : h(Name) ∈ Rc

i (q) then
if ∃q′ ∈ Ci(q) : Name(q′) = Name then

send (Lookup, Name, q′) to p′

else send to p′: (Lookup, Name,NULL)
else

send to all peers in the Si(q) closest to h(Name): (Lookup, Name)
wait until receiving (Lookup, Name, a) from > 1/2 of peers in Si(q)
send to p′: (Lookup, Name, a)

3.5 Estimating n

Finally, we show how to estimate n. This is done recursively, starting with each
peer p executing Size(r0) for r0 = �log(n

c log n)	. Size(r0) never has to wait for
incoming messages and therefore terminates for all honest peers. This will then

Size(r):
// p: peer executing the operation
R ← unique region of size r containing ID(p)
(R1, R2) ← two halfs of R
for each i ∈ {1, 2}:

if ∃j ∈ ZZ : Ri ⊆ Rs
j(p) then vi = |V p

Ri
| (w.r.t. Cj(p))

else
fix any Rs

j(p) ⊆ Ri

wait until receiving (Size, vq , r + 1) from ≥ 2/3 of peers q ∈ Sj(p)
vi ← median({vq : q ∈ Sj(p) and q sent message})

if r = 0 then return v1 + v2

else
R′ ← unique region of size r − 1 containing ID(p)
send to all q ∈ V p

R′ : (Size, v1 + v2, r)

248 Baruch Awerbuch and Christian Scheideler

allow Size(r0 − 1)-calls to terminate, which allow Size(r0 − 2)-calls to terminate,
and so on until an estimate of the number of peers in the system is returned by
Size(0). To make sure that this estimates n sufficiently well, only estimates from
honest peers are accepted by using the median rule in each stage.

It is not difficult to show that these operations make the Trust-but-Verify
approach weakly survivable.

References

1. B. Awerbuch and C. Scheideler. Enforced Spreading: An improved protocol for
provably secure distributed name service. Technical report, Johns Hopkins Univer-
sity, February 2004.

2. B. Awerbuch and C. Scheideler. Group Spreading: A protocol for provably se-
cure distributed name service. In Proc. of the 31st International Colloquium on
Automata, Languages and Programming (ICALP), 2004.

3. R. Canetti, R. Gennaro, A. Herzberg, and D. Naor. Proactive security: Long-term
protection against break-ins. RSA CryptoBytes, 3(1):1–8, 1997.

4. M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. Wallach. Secure routing
for structured peer-to-peer overlay networks. In Proc. of the 5th Usenix Symp. on
Operating Systems Design and Implementation (OSDI), 2002.

5. M. Castro and B. Liskov. Practical Byzantine fault tolerance. In Proc. of the 2nd
Usenix Symp. on Operating Systems Design and Implementation (OSDI), 1999.

6. S. Crosby and D. Wallach. Denial of service via algorithmic complexity attacks. In
Usenix Security, 2003.

7. J. R. Douceur. The sybil attack. In Proc. of the 1st International Workshop on
Peer-to-Peer Systems (IPTPS), 2002.

8. P. Druschel and A. Rowstron. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In Proc. of the 18th IFIP/ACM Inter-
national Conference on Distributed Systems Platforms (Middleware 2001), 2001.

9. A. Fiat and J. Saia. Censorship resistant peer-to-peer content addressable net-
works. In Proc. of the 13th ACM Symp. on Discrete Algorithms (SODA), 2002.

10. Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung. Optimal resilience proac-
tive public-key cryptosystems. In Proc. of the 38th IEEE Symp. on Foundations
of Computer Science (FOCS), pages 384–393, 1997.

11. A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung. Proactive
public key and signature systems. In Proc. of the ACM Conference on Computer
and Communications Security (CCS), pages 100–110, 1997.

12. A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing or:
How to cope with perpetual leakage. In CRYPTO ’95, pages 339–352, 1995.

13. L. Lamport. The weak Byzantine generals problem. Journal of the ACM,
30(3):669–676, 1983.

14. L. Lamport and N. Lynch. Distributed computing. Chapter of Handbook on Theo-
retical Computer Science. Also, to be published as Technical Memo MIT/LCS/TM-
384, Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, MA, 1989.

15. M. Naor and U. Wieder. Novel architectures for P2P applications: the continuous-
discrete approach. In Proc. of the 15th ACM Symp. on Parallel Algorithms and
Architectures (SPAA), 2003.

Robust Distributed Name Service 249

16. R. Ostrovsky and M. Yung. How to withstand mobile virus attacks. In Proc. of the
10th ACM Symp. on Principles of Distributed Computing (PODC), pages 51–59,
1991.

17. R. De Prisco, B. W. Lampson, and N. Lynch. Revisiting the Paxos algorithm. In
Workshop on Distributed Algorithms, pages 111–125, 1997.

18. I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for Internet applications. In Proc. of the ACM
SIGCOMM ’01, 2001.

19. B.Y. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for fault-
tolerant wide-area location and routing. Technical report, University of California
at Berkeley, Computer Science Department, 2001.

Peer-to-Peer Authentication
with a Distributed Single Sign-On Service�

William K. Josephson, Emin Gün Sirer, and Fred B. Schneider

Department of Computer Science
Cornell University

Ithaca, New York 14853

Abstract. CorSSO is a distributed service for authentication in net-
works. It allows application servers to delegate client identity checking
to combinations of authentication servers that reside in separate admin-
istrative domains. CorSSO authentication policies enable the system to
tolerate expected classes of attacks and failures. A novel partitioning of
the work associated with authentication of principals means that the
system scales well with increases in the numbers of users and services.

1 Introduction

A central tenet of the peer-to-peer paradigm is relocation of work from servers
to their clients. In the limit, the distinction between clients and servers becomes
completely attenuated, resulting in a system of peers communicating with peers.
CorSSO1 (Cornell Single Sign-On), the subject of this paper, explores this peer-
to-peer tenet in the design of a network-wide authentication service. In par-
ticular, authentication functionality is removed from application servers and
relocated to their clients and to new authentication servers. This partitioning of
functionality between clients and authentication servers is designed not only to
support scalability but also to distribute trust, enabling the resulting service to
tolerate attacks and failures.

When application servers outsource authentication, it becomes possible to
support a single, persistent user identity. Users can now authenticate once and
� This work is supported in part by ARPA/RADC grant F30602-96-1-0317, AFOSR

grant F49620-03-1-0156, Defense Advanced Research Projects Agency (DARPA) and
Air Force Research Laboratory Air Force Material Command USAF under agree-
ment number F30602-99-1-0533, National Science Foundation Grant 0205452, and
grants from Intel Corporation and Microsoft Corporation. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessar-
ily representing the official policies or endorsements, either expressed or implied, of
these organizations or the U.S. Government. William Josephson is supported by a
National Science Foundation graduate research fellowship.

1 Pronounced as in the Italian corso, the past participle of the verb correre (“to run”)
which is broadly used in Italian to convey a sense of forward motion. The word
corso variously could refer to a course at a University (a means of forward motion
in learning) or to an avenue (a means for making forward motion in a city).

G.M. Voelker and S. Shenker (Eds.): IPTPS 2004, LNCS 3279, pp. 250–258, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Peer-to-Peer Authentication with a Distributed Single Sign-On Service 251

access any participating service. This so-called single sign-on service has several
benefits:
– Users no longer need to keep track of multiple identities and associated

secrets.
– The administrative burden required for running an application server is re-

duced, since expensive tasks, such as validating users, ensuring the confiden-
tiality of per-user secrets, and recovering lost passwords, are delegated to
authentication servers.

– The single user identity can be used to link actions performed by that user
at different applications.
Microsoft’s passport.com is an example of a single sign-on service. It has not

been universally embraced, partly because users and developers of application
servers are wary of having a single administrative entity in charge. CorSSO,
by comparison, delegates authentication to a set of servers, each potentially
managed by a separate administrative entity. An application server S, through
its CorSSO authentication policy, specifies which subsets of the authentication
servers must work together in checking a user’s identity in order for S to trust the
result. And a user U establishes an identity by visiting a subset of authentication
servers that U selects; together, these must satisfy the authentication policies
for application servers that U will visit.

Thus, the authentication policy for an application server (i) specifies which
subsets of the authentication servers together make sufficient demands (e.g, by
variously checking what the user knows, has, or is) to establish the identity of a
user and (ii) embodies assumptions about independence with respect to failures
and attacks of the authentication servers in those subsets. Authentication servers
are more likely to exhibit independence when they are managed by separate
entities, are physically separated, communicate over narrow-bandwidth channels,
and execute diverse software.

2 The Authentication Problem

CorSSO is concerned with authenticating users, programs and services, which
we henceforth refer to as principals. Each public key KX and corresponding
private key kX is associated with a principal X ; public key KX is then said to
speak for X , because KX allows any principal to check the validity of signatures
produced by X . A message m signed using kX is denoted 〈m〉kX ; a message m
encrypted with key p is denoted {m}p. We do not introduce distinct notations
for symmetric versus assymetric encryption but instead rely on the type of the
encryption key to disambiguate. We employ the (now common) locution “KX

says m” for the sending of 〈m〉kX .
The problem solved by CorSSO is – in a manner that an application server

trusts – to establish a binding between a public key KX and the principal X
that asserts KX speaks for X . Three kinds of name spaces are involved.

– Each application server S has a local name space N (S). The access control
list at S associates privileges with names from N (S), and clients of S may
refer to other clients of S using names from N (S).

252 William K. Josephson, Emin Gün Sirer, and Fred B. Schneider

– Each authentication server A has a local name space N (A). A implements
one or more means to check whether a principal had previously registered
with some given name from N (A).

– There is a single global name space N ∗. Each server H , be it an authen-
tication server and or an application server, implements a correspondence
between names from N ∗ and local name space N (H).

Global name space N ∗ is defined so that if p1 ∈ N (A1), p2 ∈ N (A2), . . . ,
pr∈N (Ar) hold then

p1@A1|p2@A2| · · · |pn@Ar ∈ N ∗

holds. Each application server S stores a mapping between names in N (S) and
names in N ∗. But each authentication server A translates a request by a principal
P to be authenticated as global name p1@A1|p2@A2| · · · |pr@Ar into the task of
checking whether P satisfies the identify requirements for every name pi where
A = Ai holds, 1 ≤ i ≤ r.

A single unstructured global name space would, in theory, have sufficed. But
the richer structure of N ∗ grants a measure of naming autonomy to authentica-
tion servers and to application servers, which should prove useful for integrating
legacy systems. Our structure also allows short human-readable names to be
used for interacting with authentication servers and applications servers, yet at
the same time enables principals at different application servers to be linked
through a global name space.

2.1 Specifying Authentication Policies
A CorSSO authentication policy P is a disjunction ℵ1 ∨ ℵ2 ∨ · · · ∨ ℵn of sub-
policies; P is satisfied for a principal P provided some sub-policy ℵi is satisfied.
Each sub-policy ℵi specifies a set ℵ̂i of authentication servers {A1

i , A
2
i , . . . , A

m
i }

and a threshold constraint ti; ℵi is satisfied by a principal P provided ti of the
authentication servers in ℵ̂i each certify their identity requirements for P .

Our language of authentication policies is equivalent to all positive Boolean
formulas over authentication server outcomes, because ℵ̂i with threshold con-
straint |ℵ̂i| is equivalent to conjunction of authentication server outcomes. Con-
sequently, CorSSO authentication policies range over surprisingly rich sets of
requirements.

– The conjunction implicit in the meaning of a sub-policy allows an application
server to stipulate that various different means be employed in certifying a
principal’s identity. For example, to implement what is known as 3-factor
authentication, have every sub-policy ℵ specify a threshold constraint of 3
and include in ℵ̂ servers that each use a different identity check.

– The conjunction implicit in the meaning of a sub-policy also allows an ap-
plication server to defend against compromised authentication servers and
specify independence assumptions about those severs. For a sub-policy ℵ in-
volving threshold parameter ti, a set of ti or more authentication servers in
ℵ̂i must come under control of an adversary before that adversary can cause
P to be satisfied.

Peer-to-Peer Authentication with a Distributed Single Sign-On Service 253

– The disjunction used to form an authentication policy P from sub-policies
and the threshold parameter in sub-policies supports fault-tolerance, since
the failure of one or more authentication servers then won’t necessarily ren-
der P unsatisfiable.

The disjunction and sub-policy threshold constraints implement a distribu-
tion of trust, since these constructs allow an authentication policy to specify
that more trust is being placed in an ensemble than in any of its members. Fi-
nally, the absence of negation in authentication policies is worth noting. Without
negation, the inability of a principal to be certified by some authentication server
can never lead to a successful CorSSO authentication; with negation, it could.
So, by omitting negation from our policy language, crashes and denial of service
attacks cannot create bogus authentications.

3 Protocols for CorSSO Authentication

Three protocols are involved in authenticating a principal C to an application
server S: a setup protocol for the application server, a client authentication
protocol, and a protocol for client access to the application server. Throughout,
let ℵ1 ∨ ℵ2 ∨ · · · ∨ ℵn be the authorization policy P for application server S,
and let sub-policy ℵi have threshold constraint ti.

Application Server Setup Protocol. This protocol (Figure 1) is used by an ap-
plication server to enlist authentication servers in support of an authentication
policy. For each sub-policy ℵi in P , if one does not already exist then the pro-
tocol creates (step 2) a fresh private key ki that speaks for all collections of ti
servers in ℵ̂i. This is implemented by storing at each authentication server in
ℵ̂i a distinct share from an (ti, |ℵ̂i|) sharing2 of ki. Therefore, authentication
servers in ℵ̂i can create partial signatures that, only when ti are combined using
threshold cryptography, yield a statement signed by ki. Moreover, that signature
can be checked by application server S, because corresponding public key Ki is
sent to S in step 3.

Client Authentication Protocol. This protocol (Figure 2) is used by a principal
with name C ∈ N ∗ to acquire an authentication token for subsequent use in
accessing application servers. Each authentication token corresponds to a sub-
policy; the authentication token for ℵi asserts: Ki says that KC speaks for C.
Any application server for which ℵi is a sub-policy will, by definition of P , trust
what Ki says on matters of client authentication because Ki speaks for subsets
containing ti servers from ℵ̂i.

Validity of an authentication token can be checked by an application server S
because the authentication token is signed by ki; S was sent corresponding public
key Ki (in step 3 of the Application Server Setup protocol). The authentication
token itself is derived (step 5) using threshold cryptography from the partial
2 A (t, n) sharing of a secret s comprises a set of n shares such that any ti of the shares

allow recovery of s but fewer than ti reveal no information about s.

254 William K. Josephson, Emin Gün Sirer, and Fred B. Schneider

For 1 ≤ i ≤ n:

1. For all A ∈ ℵ̂i:
S → A : Enlist A for ℵi

2. Authentication servers in ℵ̂i create a

(ti, |ℵ̂i|) sharing k1
i , k2

i , . . . , k
|ℵ̂i|
i for a fresh private key ki, if one

does not already exist.

3. For some A ∈ ℵ̂i:
A → S: Public key for ℵi is: Ki

Fig. 1. Application Server Setup Protocol.

1. C → S: Request authentication policy for S.
2. S → C: P
3. C: Select a sub-policy ℵi and private key kC .

4. For all Aj
i ∈ ℵ̂i:

4.1 C → Aj
i : Request partial certificate for:

principal C,
public key KC ,
sub-policy ℵi,
starting time st,
ending time et

4.2 Aj
i : If C satisfies identity checks then

Aj
i → C: 〈C, KC ,ℵi, st, et〉kj

i

5. C: Compute authentication token
〈C, KC ,ℵi, st, et〉ki

from responses received in step 4.2 from servers in ℵ̂i.

Fig. 2. Client Authentication Protocol.

certificates obtained (in step 4) from ti authentication servers in ℵ̂i. So the
authentication token will be valid only if C satisfies the identity tests that ti
authentication servers Aj

i ∈ ℵ̂i impose.

Client Access to Application Server. The preceding two protocols establish an
authentication token and a corresponding public key that can be used to authen-
ticate a client C to an application server S. The need for mutual authentication,
the presence of trusted third parties, the trust placed in the integrity of the
network, and the access patterns of clients, all impact the design of the Client
Access to Application Server protocol. CorSSO deliberately leaves this proto-
col unspecified; applications choose a protocol that suits their assumptions and
needs.

Figure 3 outlines a simple Client Access to Application Server protocol. In
this protocol, C initiates a connection to S (step 1), and S replies (step 2)
with a nonce nS and a certificate 〈S, KS〉kCA signed by certification authority
CA and containing public key KS for server S. If C trusts KCA (step 3) then
C can provide the raw material for a symmetric session key for a mutually
authenticated secure channel to S. This is done by C picking a random nonce nC

Peer-to-Peer Authentication with a Distributed Single Sign-On Service 255

1. C → S: Initiate authentication.
2. S → C: nS , 〈S, KS〉kCA for a nonce nS .
3. C: (i) Check signature 〈S,KS〉kCA .

(ii) Compute k = hash(C, S, nC , nS) for a random nonce nC .
4. C → S: {nC , nS, 〈k〉kC}KS , 〈C, KC ,ℵi, st, et〉ki

5. S: (i) Extract nC , nS, 〈k〉kC using kS , reconstruct k
using nC , nS and names C and S;

(ii) Check validity of 〈k〉kC using public key KC from
authentication token 〈C, KC ,ℵi, st, et〉ki ;

(iii) Check validity of the authentication token
using Ki and the current time of day.

Fig. 3. Client Access to Application Server.

(step 3), computing k = hash(C, S, nC , nS) (step 3), and sending nC , nS , 〈k〉kC

to S encrypted under KS (step 4). Notice the signature in 〈k〉kC associates k with
client C; the presence of nS rules out replay, names C and S rule out man-in-
the-middle attacks, and nC serves as a source of randomness for the symmetric
key. C then establishes its identity to S by sending (step 4) an authentication
token that asserts: Ki says KC speaks for C. A valid such token (containing KC)
and a matching signature 〈k〉kC allows S henceforth to conclude that messages
KC “says” do come from C. (The session key for the mutually authenticated
secure channel is then derived from k.)

An actual deployment of CorSSO today in the Internet would likely build on
SSL, now predominantly used only to authenticate application servers to clients.
Here, to authenticate clients to application servers, it suffices for CorSSO sub-
policy keys ki to be installed in the SSL layer on application servers and for
CorSSO authentication tokens to be used by SSL during session setup for client
authentication.

Protocol Architecture Notes

In CorSSO, work associated with authentication is divided between application
servers, authentication servers, and clients in a way that supports scalability in
two dimensions: number of clients and number of application servers.

– In the Application Server Setup Protocol, the amount of work an application
server must do is a function of how many sub-policies comprise its authenti-
cation policy P ; it is not a function how many application servers or clients
use P .

– In the Client Authentication Protocol, the amount of work a client must do is
determined by what authentication policies it must satisfy; that is unrelated
to the number of applications servers that client visits if, as we anticipate,
application servers share authentication policies.

– The cost to an application server running the Client Access to Application
Server protocol is independent of the number of authentication servers and
of the complexity of the authentication policy.

256 William K. Josephson, Emin Gün Sirer, and Fred B. Schneider

Notice also that the size of an authentication token is unaffected by the
number of application servers, the policy it is used to satisfy, and the number
of authentication servers involved in constructing that token. This is in contrast
to the naive implementation of single sign-on, which has the client obtain a
separate certificate from each authentication server and then present all of those
certificates to each application server for checking.

Implementation Status

To date, we have built the core cryptographic components of CorSSO. We imple-
mented digital signatures based on threshold RSA using verifiable secret shar-
ing [FGMY97,Rab98], and preliminary measurements indicate good performance
and a favorable distribution of the computational burden. In particular, we
benchmarked the performance-critical path consisting of the Client Authenti-
cation and Client Access to Application Server protocols on a 2.60GHz Pentium
4. For RSA signatures using a (4, 5)-threshold sharing of a 1024-bit RSA key,
the Client Authentication protocol took 430 msec and the Client Access to Ap-
plication Server protocol took 947 μsec.

The burden of the computation thus falls on the client, decreasing the chance
that an authentication server would become a bottleneck. Time spent in the
Client Access to Application Server protocol is evenly divided between partial
signature generation at the authentication servers and the full signature con-
struction at the client. So by performing communication with authentication
servers in parallel, end-to-end latency for authentication is 431 msec, which is
typically dwarfed by delays for the identity tests that authentication servers
make.

4 Related Work

Prior work on decomposing network-wide authentication services has focused
on delegation – but not distribution – of trust. Kerberos [SNS88] performs user
authentication in wide-area networks, but ties user identity to a centralized au-
thentication server. OASIS [Org04] and the Liberty Alliance Project [Lib03] are
recent industry efforts aimed at supporting a federated network identity. OASIS
provides a standard framework for exchange of authentication and authorization
information; Liberty uses this framework to delegate authentication decisions
and to enable linking accounts at different authentication servers. The authenti-
cation policy in these systems corresponds to a disjunction of sub-policies, each
specifying a single authentication server.

PolicyMaker [BFL96] is a flexible system for securely expressing statements
about principals in a networked setting. It supports a far broader class of au-
thentication policies than CorSSO does. Besides authentication, PolicyMaker
also implements a rich class of authorization schemes. But with PolicyMaker,
an application server must check each certificate involved in authentication or
authorization decisions. In contrast, with CorSSO, the check at an application

Peer-to-Peer Authentication with a Distributed Single Sign-On Service 257

server is constant-time, because work has been factored-out and relocated to
set-up protocols at the authentication servers and clients.

CorSSO borrows from Gong’s threshold implementation of Kerberos KDCs
[Gon93] and from COCA [ZSvR02] the insights that proactive secret sharing
and threshold cryptography can help defend distributed services against attacks
by so-called mobile adversaries [OY91], which attack, compromise, and control a
server for a limited period before moving on to the next. Ultimately, we expect to
deploy in CorSSO protocols for proactive recovery of the (ti, |ℵ̂i|) sharing of ki.

5 Discussion

If broadly deployed, CorSSO would enable a market where authentication servers
specialize in various forms of identity checks and compete on price, functionality,
performance, and security. And authentication servers comprising a CorSSO
deployment could receive payment on a per-application server, per-principal, or
per-authentication basis.

Markets work provided participants are not only rewarded for their efforts
but also are discouraged from taking disruptive actions. The CorSSO protocols
described above allow participants to subvert a market through various forms
of free-riding. For instance, an unscrupulous application server S′ can use the
policy from, hence certificates issued for, an application server S that is paying
for its authentication policy to be supported. So S is subsidizing S′. This problem
could be avoided by restricting the dissemination of public keys for sub-policies,
issuing them only to application servers that pay. Keys that have been leaked to
third parties are simply revoked and reissued.

Acknowledgments

Lorenzo Alvisi provided prompt and informative answers to questions relating
to some cultural aspects of CorSSO. Martin Abadi provided helpful comments
on the Client Access to Application Server protocol.

References

[BFL96] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust man-
agement. In Proceedings 1996 IEEE Symposium on Security and Privacy,
pages 164–173, May 1996.

[FGMY97] Y. Frankel, P. Gemmell, P. Mackenzie, and M. Yung. Proactive RSA. Lec-
ture Notes in Computer Science, 1294:440–455, 1997.

[Gon93] L. Gong. Increasing availability and security of an authentication service.
IEEE J. Select. Areas Commun., 11(5):657–662, June 1993.

[Lib03] Liberty Alliance Project. Introduction to the liberty alliance identity ar-
chitecture, March 2003.

[Org04] Organization for the Advancement of Structured Information Standards.
http://www.oasis-open.org, February 2004.

258 William K. Josephson, Emin Gün Sirer, and Fred B. Schneider

[OY91] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks. In Pro-
ceedings of the 10th ACM Symposium on Principles of Distributed Com-
puting, pages 51–59, 1991.

[Rab98] T. Rabin. A simplified approach to threshold and proactive RSA. Lecture
Notes in Computer Science, 1462:89–104, 1998.

[SNS88] J. G. Steiner, B. C. Neuman, and J. I. Schiller. Kerberos: An authentica-
tion service for open network systems. In Proceedings of the Winter 1988
Usenix Conference, February 1988.

[ZSvR02] L. Zhou, F. B. Schneider, and R. van Renesse. COCA: A secure distributed
on-line certification authority. ACM Transactions on Computing Systems,
20(4):329–368, November 2002.

Secure Acknowledgment of Multicast Messages
in Open Peer-to-Peer Networks

Antonio Nicolosi and David Mazières

Courant Institute of Mathematical Sciences, New York University, NY, USA
{nicolosi,dm}@cs.nyu.edu

Abstract. We propose a new cryptographic technique, Acknowledgment
Compression, permitting senders of multicast data to verify that all inter-
ested parties have either received the data or lost network connectivity.
Joining the system and acknowledging messages both require bandwidth
and computation logarithmic in the size of a multicast group. Thus, the
technique is well-suited to large-scale, peer-to-peer multicast groups in
which neither the source nor any single peer wishes to download a com-
plete list of participants. In the event that sufficiently many nodes are
malicious, a message may fail to verify. However, in such cases the source
learns the real network address of a number of malicious nodes.

1 Introduction

Peer-to-peer (P2P) multicast systems are a promising technology for inexpen-
sively distributing information to large numbers of nodes. Traditional, central-
ized distribution schemes consume prohibitive amounts bandwidth, transmiting
data repeatedly from a handful of sources. In contrast, P2P schemes can exploit
the high aggregate bandwidth of all peers to disseminate data without requiring
any particularly high-bandwidth nodes. Indeed, several P2P multicast systems
have already been built, based on trees [1], forests [2], meshes [3], and other
topologies.

Unfortunately, current P2P multicast schemes provide no way to confirm
the reliable delivery of information. Yet for many applications, a data source
might like to know if all interested parties have received messages. For exam-
ple, a publisher might wish to confirm the receipt of a multicast invalidation for
widely-cached popular data before considering a modification operation com-
plete. Alternatively, the maintainers of an operating system distribution might
like to know that everyone who wants security-critical updates has received the
latest one.

In the P2P setting, multicast message acknowledgment is complicated by the
open nature of the systems. Not only might many of the nodes in a multicast
group be malicious, but the source of a message has no way of even knowing
precisely who wants to receive the data. In large-scale P2P systems, even just
transmitting a complete list of all nodes in a multicast group might consume
undesirable amounts of bandwidth. Fortunately, it is reasonable to assume ma-
licious nodes cannot subvert the routing structure of the Internet itself. Thus,

G.M. Voelker and S. Shenker (Eds.): IPTPS 2004, LNCS 3279, pp. 259–268, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

260 Antonio Nicolosi and David Mazières

particularly given the number and diversity of participants that P2P systems
are designed for, a good node is likely to be able to communicate with almost
any other honest node given that node’s network address.

In this paper, we propose a new cryptographic mechanism, Acknowledgment
Compression, that enables confirmation of messages delivered to large numbers
of participants in an open network. Using this new primitive, a node that joins a
multicast group receives a signed receipt from the data source acknowledging its
entry into the system. For efficiency, arbitrarily many such join operations can
be aggregated; no matter how many people join, the maximum computation and
bandwidth required at any node is logarithmic in the total size of the multicast
group. In particular, a join receipt does not explicitly name each new node, as
no single node may even wish to consume the bandwidth necessary to download
such a list.

Once a node has joined the system, it must acknowledge any messages sent
to the multicast group. When a node fails to produce an acknowledgment, the
multicast source can likely uncover its network address and contact that node
directly, or else delegate the task – for instance to a probabilistically chosen
subset of another part of a multicast tree. If a multicast group fails unrecoverably,
it may be impossible to recover the address of an unreachable participant, but
then the multicast source will learn the network address of malicious or faulty
nodes who are blocking proper operation of the system.

2 Our Scheme

In this section, we define a model for Acknowledgement Compression, and pres-
ent an efficient instantiation based on the cryptographic properties of special
algebraic groups. Our scheme provides cryptographic proof of message deliver at
the cost of consuming a small (logarithmic in the number of users in the system)
amount of storage, computing time, and upstream/downstream bandwidth at
each node.

2.1 The Model

An Acknowledgment Compression scheme comprises four protocols – Init, Join,
Leave and Collect – with the following operational semantics. The content pro-
vider (or source) uses the Init protocol to carry out an initialization phase, at
the end of which a public key for a secure digital signature scheme is produced
and made widely available as a public parameter of the just-created multicast
group. After the initial setup, the system grows by allowing batches of multiple
user additions at discrete time instants, handled by the Join protocol. Normally,
users would leave gracefully by invoking the Leave protocol, but some robust-
ness mechanism is provided to recover from unanticipated node departures (or
crashes). The fundamental operation of our scheme is the Collect protocol, which
allows the source to specify a payload message m (e.g., an acknowledgment for
the last multicast message) and to obtain a compact proof that every unfailed

Secure Acknowledgment of Multicast Messages 261

user in the group saw and endorsed the message m. As a side-effect, Collect also
purges the system of failed users.

2.2 A Cryptographic Construction

This Section presents a specific construction within the framework of Section 2.1,
based on cryptographic groups known as Gap Diffie-Hellman (GDH) groups. We
address the related cryptographic literature in Section 4. Briefly, a GDH group
G = 〈g〉 is an algebraic group of prime order q for which no efficient algorithm
can compute gab for random ga, gb ∈ G, but such that there exists an efficient
algorithm D(ga, gb, h) to decide whether h = gab.

Digital signatures can be obtained from such groups as follows. A user secret
key is a random value x ∈ Zq; the corresponding public key is y ← gx. The signa-
ture on a message m is computed as σ ← H(m)x, where H is some cryptographic
hash function (e.g., SHA-1 [4]). The validity of a putative signature σ on a mes-
sage m under the public key y is tested by checking that D(y, H(m), σ) = 1.
The key property of this signature scheme that we will exploit in our construc-
tion is that the product of two signatures of the same message m under two
different public keys y1, y2 yields a signature of m under the combined public
key y ← y1y2 = g(x1+x2), since H(m)x1H(m)x2 = H(m)(x1+x2).

We now describe an Acknowledgment Compression scheme for the case that
nodes don’t crash abruptly; in Section 2.3 we discuss how to make the construc-
tion robust against node failures.

For the sake of clarity, we detail the case in which the communication happens
via an (almost) balanced multicast tree with bounded maximum branching factor
k (which most P2P multicast schemes strive to achieve anyway); however, our
techniques can easily be adapted to the case of multiple multicast trees [2, 5], or
other application-level multicast schemes and information dispersal algorithms.

Notation. In describing the protocols, we will make use of the following nota-
tion. 1G denotes the identity element in G. For a node i, let yi denote its public
key, Loci denote its location (e.g, its network address), and Ti denote the subtree
rooted at i. We will refer to the quantity:

Yi
def
=

∏
j∈Ti

yj

as the combined public key for the subtree Ti. Furthermore, we will denote i’s
children with i1, . . . , ik, and i’s parent with i1; more generally, let id denote node
i’s dth ancestor – i.e., the node sitting d levels above i in the tree. Many of the
quantities associated with the system (most notably, the combined public key
Yi associated with each subtree Ti) evolve during the lifetime of the system as a
consequence of members joining and leaving the multicast tree. To distinguish
between old and new values, we will use a prime notation for old values e.g., Y ′

i

refers to the value of the combined public key for Ti before the user additions of
the current execution of Join.

262 Antonio Nicolosi and David Mazières

The Init Protocol. Init starts by choosing a cryptographic hash function H and
a GDH group G = 〈g〉, along with a secret key/public key pair (xs, ys ← gxs)
for the source. It then initializes a variable Ys ← ys, which will always hold the
value of the combined public key Ys for the whole multicast tree, Ts. This will
be guaranteed by the Join and Leave protocols, which will update Ys in such
a way that the source, as well as every user of the system, can verify that the
new value of Ys is indeed the product of the public keys of all the users in the
multicast tree.

The Collect Protocol. Before detailing how the Join and Leave protocols each
manage to fulfill their pledge, we show how, assuming that Ys actually embodies
the public keys of all users in the system, the Collect protocol can produce a
compressed acknowledgment for a payload message m specified by the source1.
First, the source prepares and signs a collect request message:

CollectReq
def
= {“CollectReq”, m}

and sends this signature to all its children. Internal nodes forward such signatures
to their children; when the signed CollectReq message gets to a leaf j, node j
verifies the source’s signature, signs the payload message m as σj ← H(m)xj ,
and replies to its parent with a collect message:

CollectMsg j
def
= {“CollectMsg”, m, σj}.

Upon receiving a reply from each of its k children i1, . . . , ik, an internal node
i combines its signature σi ← H(m)xi with the multi-signatures Σi1 , . . . , Σik

contributed by its children as:

Σi ← σi ·
k∏

l=1

Σil

and then it replies to its parent with the message:

CollectMsg i
def
= {“CollectMsg”, m, Σi}.

Eventually, the source will get a collect message from each of its children.
After combining their signatures with its own, the source obtains what should be
a multi-signature Σs on the message m, bearing the endorsement of each user in
the system. To check this, the source tests whether Σs verifies correctly as a sig-
nature of m under the current combined public key Ys, at which point the Collect
operation terminates. Since, under standard cryptographic assumptions [6], no
adversary can forge a multi-signature for a fresh message m, the source can infer
that all the users whose public keys have been included in Ys must have signed
m. Finally, by the correctness of the Join protocol, this guarantees that each user
in the system endorses the message m, as required of the Collect protocol.
1 For security, the payload message m should be different across all executions of

Collect; it is up to the application to provide such a guarantee, for instance by
including a sequence number in each message.

Secure Acknowledgment of Multicast Messages 263

Messages exchanged in the Join protocol

CertReq i

def
= {“CertReq”, Y ′

i , Yi,Loci,Loci1}
Cert i

def
= {CertReq i}(Yi)

−1

Ci,j
def
= {CertReq i}(Yj)

−1 // j descendent of i

ci,j
def
= {CertReq i}(yj)

−1 // j descendent of i

State information stored at node i

Certi :: current self-certificate for Ti

Cert′i :: previous self-certificate for Ti

for each ancestor id:

yid :: public key yid of node id

Yid :: current value of combined public key Yid

for each child il:
Certil :: current self-certificate for Til

Cert′il
:: previous self-certificate for Til

Fig. 1. Join protocol – Messages exchanged during the protocol and state information
for node i.

The Join Protocol. We now describe the details of the Join protocol in terms
of a distributed computation carried out by the source together with all the
(unfailed) nodes in the multicast tree. Figure 1 defines the format of the messages
that will be exchanged during the protocol, as well as the state information
maintained at each node, which requires O(k + log n) space for a system with n
users, assuming a (roughly) balanced multicast tree with fan-out factor at most
k at each node.

The protocol starts with the source executing the distributed algorithm Re-
portJoins described in Figure 2. ReportJoins initiates a “parallelized” post-
order traversal of the multicast tree that visits all the children of a given node
concurrently, and in the process it gathers information about user additions since
the last execution of Join.

The actual computation begins once the recursion has reached the leaves of
the multicast tree. Pre-existing leaves simply report that they don’t have any
change, whereas a newcomer j finalizes its ingress into the system by returning
to its parent a signed message containing its public key yj and its location
information Locj .

An internal node i whose children have all reported no changes reports to
its parent that it has no changes. Otherwise, if at least one child il has reported
changes (meaning that some user(s) just joined the subtree Til

), then i must
update the combined public key Yi to reflect the presence of the newcomers in
the subtree Ti, as nodes in Til

belong to Ti, too. In order to report such a change
to its parent, node i must construct a self-certificate Cert i, cryptographically
justifying the evolution of Yi.

To obtain a self-certificate, node i has to get the signature on a certificate
request CertReqi (cfr. Figure 1) from all its descendents – a self-certificate for
a subtree is only valid if all nodes in that subtree endorse it. To achieve this

264 Antonio Nicolosi and David Mazières

i.ReportJoins()

1. if i is a pre-exisiting leaf return ⊥
2. else if i is a new leaf then
3. Cert′i ← 1G

4. Certi ← ci,i

5. return Certi

6. else
7. for each child il of i (l = 1, . . . , k)
8. Cert′il

← Certil

9. Certil ← il.ReportJoins()
10. Ail ← 〈Cert′il , Certil〉
11. if (∀l = 1, . . . , k)[Certil = ⊥] return ⊥
12. CheckCerts(Ai1 , . . . , Aik)
13. Y′i ← Yi

14. update Yi according to Ai1 , . . . , Aik

15. Cert′i ← Certi

16. for each child il of i (l = 1, . . . , k)
17. Ci,il ← il.SignCert(i, ci,i, Ai1 , . . . , Aik)
18. Certi ← ci,i · Ci,i1 · . . . · Ci,ik

19. return Certi

j.SignCert(i, ci,i, Ai1 , . . . , Aik)

1. CheckCerts(Ai1 , . . . , Aik)
2. look up i among j’s ancestors; let i = jd

3. verify the signature on ci,i

4. check that ci,i is consistent with Ai1 , . . . , Aik

5. update Yjd (= Yi) according to Ai1 , . . . , Aik

6. if i is a leaf then
7. Ci,j ← ci,j

8. else
9. for each child jl of j (l = 1, . . . , k)

10. Ci,jl ← jl.SignCert(i, ci,i, Ai1 , . . . , Aik)
11. Ci,j ← ci,j · Ci,j1 · . . . · Ci,jk

12. return Ci,j

CheckCerts(Ai1 , . . . , Aik)

1. for l = 1, . . . , k
2. parse Ail as 〈Cert′il , Certil〉
3. if Certil �= ⊥ then
4. verify the signatures on Cert′il

and Certil

5. if new PK in Cert′il
�= old PK in Certil then

6. throw InvalidCertsException

Fig. 2. Join protocol – Pseudo-code for the distributed algorithms ReportJoins (as
run by node i) and SignCert (as run by node j, a descendent of i). Exception handlers
for consistency check failures are not shown.

goal, i puts its signature on CertReqi, and invokes the SignCert distributed
algorithm (described in Figure 2), which recursively pushes the request down to
all descendents.

Secure Acknowledgment of Multicast Messages 265

Node i’s descendents, however, do not blindly sign whichever message they
get to see – they need to be convinced of the legitimacy of the certificate request
CertReqi. For this reason, node i attaches two self-certificates for each child il
who has reported changes: a cached version Cert ′il

from the previous execution
of Join, and the current version Cert il

that il just provided.
Given such accompanying documentation, each descendent j of node i can

test the legitimacy of the certificate request sent by node i (cfr. the CheckCerts()
procedure, Figure 2); after this check, j affixes its signature on CertReqi and
forwards the execution of the SignCert invocation down to its own children
j1, . . . , jk.

Upon hearing back from its children, j will obtain the partial signatures
Ci,j1 , . . . , Ci,jk

relative to their subtrees Tj1 , . . . , Tjk
. Then, j will piece all the

parts together as:

Ci,j = ci,j ·
k∏

l=1

Ci,jl

and will reply to its parent with the partial signature Ci,j on CertReqi relative
to subtree Tj.

Eventually, node i will obtain partial signatures from all its children, which
will enable i to compute the actual self-certificate Cert i. At this point, node i
will have enough information to justify the evolution of the combined public key
for subtree Ti from its old value Y ′

i to the new value Yi, thus being able to finally
complete its part in the ReportJoins by sending Cert i to its parent.

As the recursion of ReportJoins climbs up the tree, it will eventually reach
the source. Then, as part of the SignCert call invoked by the source, every
node in the tree will get the source’s signature on the message:

CertReqs
def
= {“CertReq”, Y ′

s , Ys,Locs,Locs}.

This, together with all the consistency checks performed during each step of
the protocol, guarantees each new user that its public key has been included into
the new value Ys of the system’s combined public key, and each existing user
that its public key has not been factored out.

The Leave Protocol. The Leave protocol proceeds similarly to the Join pro-
tocol. In particular, a distributed algorithm ReportLeaves (akin to the dis-
tributed algorithm ReportJoins from Figure 2; not shown) traverses the mul-
ticast tree in a concurrent, bottom-up fashion, collecting signed leave messages
of the form:

{“LeaveMsg”, yj, 1G,Locj ,Locj1}(yj)
−1

for each departing user j.
Such messages are then forwarded up the tree, and in the process, the com-

bined public key of each subtree that contained a departing node is updated, and
the necessary self-certificates are constructed to provide evidence supporting the
evolution of the affected combined public keys. We omit the details.

266 Antonio Nicolosi and David Mazières

2.3 Dealing with Unanticipated Failures
During normal operation, the users of the system are often required to sign
messages. Due to the cryptographic consistency checks performed by all the other
users, a malicious user j cannot deviate from the protocol except by refusing to
cooperate, thus preventing its ancestors from successfully completing subsequent
Collects or Joins. However, a user j that crashes without executing the Leave
protocol would cause its parent, node j1, to experience a similar refusal, which
creates a troublesome ambiguity.

Simply allowing node j1 to drop its non-cooperating child, as is often done in
multicast systems, would undermine the main goal of Acknowledgement Com-
pression. Such a policy, in fact, would expose the system to a possible abuse,
based on the difficulty of distinguishing the case that node j didn’t want to
release its signature from the case that j’s parent, node j1, pretended to have
been unable to obtain a signature from j to make j look bad.

Instead, we deal with this problem by requiring j1 to produce j’s self-certif-
icate, which contains j’s network address. Thus, either j1 can fail to cooperate
and be ejected from the system, or else other nodes can obtain j’s address and
attempt to deliver the message to j directly. In this way, a list of unreach-
able network addresses can be compiled and forwarded up the tree. If none of
the ancestors of these unreachable nodes can reach them to obtain the missing
component of the acknowledgment, the source will obtain the list of network
addresses.

3 Discussion

One limitation of Acknowledgment Compression is the bandwidth required to
deal with crashes. As described in the previous section, the source node receives
a list of network addresses of all nodes that have failed to acknowledge a message,
so as either to deliver the message directly or to confirm each node’s unreacha-
bility. Though the list could conceivably be partitioned between a small set of
well-known, trusted nodes, if the churn is too high, it may simply require too
much bandwidth for each trusted node to receive its portion of the list. Thus,
the technique may be ill-suited to networks in which many nodes could exit un-
gracefully, unless the lifetime of a multicast group is considerably less than the
half-life of nodes. For infrastructure nodes, however, such as news servers and
routers, it seems reasonable to expect long uptimes and graceful exits.

There are two possible approaches to handling large numbers of crashed
nodes, though the problem is future work – we do not have a complete solution
along the lines of either approach. First, there may be ways of obtaining large
numbers of effectively trusted nodes, so as to partition the work of downloading
crashed nodes’ locations and probing them. This might, for instance, be achieved
through some PGP-like web-of-trust overlay. Second, verification could be prob-
abilistically farmed out to large-enough subgroups of multicast peers that at
least one of them is likely to be honest. Subgroups can confirm the results of
their probes by supplying a product of missing acknowledgment components (for
nodes they managed to deliver the message to), plus a compressed acknowledg-
ment on the product of public keys of unreachable nodes.

Secure Acknowledgment of Multicast Messages 267

A final, related issue is that while Acknowledgment Compression confirms
reliable multicast, it is not in itself a multicast protocol. Much work exists on
fault-resilient P2P infrastructures, but of course malicious nodes may still suc-
ceed in partitioning or otherwise subverting the P2P system, rendering honest
nodes that are routable at the network layer unreachable in the overlay net-
work. Acknowledgment Compression cannot prevent such attacks, but at least
it exposes the network address of malicious nodes who can then potentially be
excluded from the system. The reason is that any node unable to produce some
necessary component of an acknowledgment signature must instead be able to
show a signed CertReq containing the Location (e.g., network address) of the
missing contact that is its child node. To avoid reporting the network address
of an isolated honest node, all nodes through which the missing contact is sup-
posed to be routable must fail to return the CertReq certificate, thereby exposing
themselves as malicious or unreliable.

4 Related Work

4.1 Multicast in Peer-to-Peer Networks

Recently, there has been much promising work on P2P multicast and data dis-
tribution e.g., Scribe [1], SplitStream [2], P2PCast [5] and Bullet [3].

Scribe is an application-level multicast infrastructure built upon the Pastry
P2P routing scheme [7]. In Scribe, messages are multicast over a single tree,
created as the union of the (reverse) Pastry routes from each group member
to a group-specific rendez-vous key. SplitStream improves on this approach by
employing a forest of multicast trees, thus shedding the forwarding load some-
what more evenly among the members. P2PCast also operates on a forest of
multicast trees, but departs from SplitStream’s approach in that it sacrifices
some freedom in the construction of the multicast forest so as to ensure a reg-
ular structure for the trees of the forest. Bullet advocates the use of a different
topology, namely a mesh, to achieve more reliable and bandwidth-efficient data
dissemination.

Although Section 2.2 focused on the case of a single multicast tree, we believe
that our techniques can be adapted to the other topologies as well, so that current
P2P multicast systems can be combined with Acknowledgment Compression to
obtain confirmed message delivery.

4.2 Cryptography

GDH groups have been the focus of much cryptographic research [8–10]. The
basic GDH signature scheme we use for a single-node signatures was proposed
by Boneh et al. [11]. The idea of combining such signatures and public keys
by multiplication was used by Boldyreva [6] to construct multi-signatures – a
variation of digital signatures in which a group of users, each holding a unique
signing key, can produce signed documents that can later be verified to bear the
endorsement of every signer in the group.

268 Antonio Nicolosi and David Mazières

5 Summary

Acknowledgment Compression is a new cryptographic primitive useful for veri-
fying message delivery in open, P2P multicast systems. Acknowledgment Com-
pression allows senders to learn the network address of nodes that fail to ac-
knowledge messages, yet without ever having to download a complete list of all
participants. We propose an instantiation based on Gap Diffie-Hellman groups,
and briefly discuss some usage issues for the technique.

Acknowledgments

We are grateful to Victor Shoup for his help with this work, and to Nelly
Fazio, Michael Freedman and the anonymous reviewers for their comments on
earlier drafts. This research was conducted as part of project IRIS (http://
project-iris.net/), supported by the NSF under cooperative agreement
#ANI-0225660. David Mazières is supported by an Alfred P. Sloan Research
Fellowship.

References

1. Castro, M., Druschel, P., Kermarrec, A., Rowstron, A.: Scribe: A large-scale and
decentralized application-level multicast infrastructure. IEEE Journal on Selected
Areas in communications (JSAC) 20 (2002) 1489–1499

2. Castro, M., Druschel, P., Kermarrec, A.M., Nandi, A., Rowstron, A., Singh, A.:
Splitstream: High-bandwidth content distribution in a cooperative environment.
In: SOSP ’03, Bolton Landing, NY, USA (2003)

3. Kostić, D., Rodriguez, A., Albrecht, J., Vahdat, A.: Bullet: High bandwidth data
dissemination using an overlay mesh. In: SOSP ’03, Bolton Landing, NY, USA
(2003)

4. FIPS 180-1: Secure Hash Standard. U.S. Department of Commerce/N.I.S.T., Na-
tional Technical Information Service, Springfield, VA. (1995)

5. Nicolosi, A., Annapureddy, S.: P2PCast: A peer-to-peer multicast scheme for
streaming data. 1st IRIS Student Workshop (ISW’03). Available at:
http://www.cs.nyu.edu/~nicolosi/P2PCast.ps (2003)

6. Boldyreva, A.: Efficient threshold signature, multisignature and blind signature
schemes based on the gap-diffie-hellman-group signature scheme. Full length ver-
sion of extended abstract in PKC’03, available at
http://eprint.iacr.org/2002/118/ (2003)

7. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In: IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware). (2001) 329–350

8. Joux, A.: A one round protocol for tripartite diffie-hellman. In: Proceedings of
ANTS IV. Volume 1838 of LNCS., Springer-Verlag (2000) 385–394

9. Joux, A., Nguyen, K.: Separating decision diffie-hellman from diffie-hellman in
cryptographic groups. Available at http://eprint.iacr.org/2001/060/ (2001)

10. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Ad-
vances in Cryptology - Crypto ’01. Volume 2139 of LNCS., Springer-Verlag (2001)
213–229

11. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Advances in Cryptology – AsiaCrypt’01. Volume 2248 of LNCS., Berlin, Springer-
Verlag (2001) 514–532

Know Thy Neighbor’s Neighbor: Better Routing
for Skip-Graphs and Small Worlds�

Moni Naor�� and Udi Wieder

Department of Computer Science and Applied Mathematics
The Weizmann Institute of Science

Rehovot 76100 Israel
{moni.naor,udi.wieder}@weizmann.ac.il

Abstract. We investigate an approach for routing in p2p networks
called neighbor-of-neighbor greedy. We show that this approach may re-
duce significantly the number of hops used, when routing in skip graphs
and small worlds. Furthermore we show that a simple variation of Chord
is degree optimal. Our algorithm is implemented on top of the conven-
tional greedy algorithms, thus it maintains the good properties of greedy
routing. Implementing it may only improve the performance of the sys-
tem.

1 Introduction

Our aim in this paper is to propose an approach for routing in DHT’s which
is better than greedy routing. Greedy routing is a common approach in many
DHT constructions. Typically some metric is imposed on the key space and
then routing is performed by moving the message to the closest neighbor to the
target. Examples include Chord [15], Skip Graphs or Skip Nets [2, 6], Pastry [14],
Tapestry [16] and more. We discuss constructions which do not employ greedy
routing towards the end of this section. The greedy routing approach has many
advantages, among which are the following:

Simplicity – Greedy routing is easy to understand and implement. The routing
is oblivious in the sense that the link used depends only on the destination
of the message.

Fault Tolerance – In greedy routing closer is better. So when nodes or links
fail, as long as each node has some edge towards the target, it is guaranteed
that the message would reach its destination. In many constructions (such
as Chord and Tapestry) it is assumed that a ring like structure exists. It is
clear that as long as the ring edges exist, greedy routing would eventually
succeed.

Locality in the Key Space – Messages do not ‘wander’ in the key space. If the
source and the target are close to each other in the key space, then during

� Research supported in part by the RAND/APX grant from the EU Program IST
�� Incumbent of the Judith Kleeman Professorial Chair.

G.M. Voelker and S. Shenker (Eds.): IPTPS 2004, LNCS 3279, pp. 269–277, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

270 Moni Naor and Udi Wieder

the routing, the message would stay between the source and the target, in
a small portion of the key space. If the key of a resource is associated with
its location in the physical world then greedy routing might have proximity
preserving properties; i.e. it might minimize the physical distance a message
travels. If keys have semantic meaning, such as file names and sizes, then
greedy routing would supply prefix search (as in skip graphs, see Section 1.1).

If greedy routing is so good then why use something else? Greedy rout-
ing has one major disadvantage - it requires a large number of hops, at least
larger than what is dictated by the degree. In the previous examples, the degree
is logarithmic in the network size, while the number of hops used by greedy
routing is O(log n). Logarithmic degree may permit theoretically path lengths
of O(log n/ log log n), thus greedy routing is not degree optimal. Furthermore,
there are lower bounds that show that under some general conditions, greedy
routing uses Ω(log n) hops, when the degree is logarithmic, see [1, 11]. The latter
bounds any routing algorithm which uses the immediate neighbor only.

Recently constructions with optimal path length were suggested. De-Bruijn
based DHT’s [13, 8, 4] offer an optimal tradeoff between degree and path length
for every degree, in particular logarithmic degree permits routing in O(log n/
log log n) hops. These routing algorithms however, are not greedy and rely on
some arithmetic manipulation of the keys. Thus routing in these graphs is not
local in the key space. Furthermore these algorithms assume keys are random,
so there is no immediate way to make the keys carry semantic meaning.

Can We Have the Advantages of Greedy Routing Together with Optimal Path
Length? In this paper we answer this question affirmatively. We show that a
variation of the greedy algorithm called ‘neighbor-of-neighbor (NoN) greedy’
enjoys the advantages of greedy routing while being degree optimal in a large
family of constructions. We show that our algorithm reduces substantially the
latency of skip graphs and of small worlds. Furthermore while it is known that
Chord is not degree optimal [5], we show that a variation of Chord is indeed
degree optimal.

1.1 Small Worlds and Skip Graphs

The notion of ‘small worlds’ originated as a term to describe the high connec-
tivity of social networks. Kleinberg [9] modelled social networks by taking a two
dimensional grid and connecting each node u to q edges when edge (u, v) exists
with probability proportional to ||u−v||−2. For simplicity, we remove the param-
eter q and assume that each edge (u, v) is connected with probability ||u−v||−2,
thus creating a graph with average degree Θ(log n). For any dimension d > 1,
the small world graph of dimension d has nd nodes associated with the points of
a d−dimensional mesh, where edge (u, v) is occupied with probability ||u−v||−d.
Small world graphs serve as a motivation for p2p networks. Indeed they were
analyzed in this context by Aspnes et al [1] who proved that the one dimensional
small world graph permits greedy routing of O(log n) even if nodes and links fail
independently.

Know Thy Neighbor’s Neighbor 271

Skip-Graphs or Skip-Nets is a dynamic data structure meant to serve as a
tool for locating resources in a dynamic setting. It was proposed independently
by Aspnes and Shah in [2] and by Harvey et al in [6]. The main advantage of skip
graphs is that they supply prefix search and proximity search. In a skip graph
each nodes chooses randomly a string of bits called the membership vectors. The
links are determined by the membership vectors, and therefore the keys could
be arbitrary. In other words, there is no need for the keys to be randomized
and they may maintain semantic meaning. It is therefore essential that routing
algorithms remain local in the key space. This is achieved without compromising
the complexity of the Insert and Delete operations, thus skip graphs(nets) are an
especially attractive p2p construction. It is shown in [2, 6] that greedy routing
takes O(log n) hops. It is shown in [11] that greedy routing takes Ω(log n) hops.

2 The NoN-Greedy Llgorithm

The NoN approach originates from a work by Coppersmith et al [3], which used
it to prove bounds on the diameter of the small world graph, though not in
an algorithmic perspective. It was also used by Manku et al (under the name
’lookahead’) as a heuristic for the ‘Symphony’ P2P construction [10] which is
based upon small world graphs. We assume that each node holds its own routing
table, and on top of that it holds its neighbors routing tables. Thus each node
has knowledge of a neighborhood of radius 2 around it. The NoN algorithmis
presented in Figure 1.

Algorithm for routing to node t.

1. Assume the message is currently at node u �= t. Let w1, w2, . . . , wk be the
neighbors of u.

2. For each i, let zi1 , zi2 , . . . , zik be the neighbors of wi.
3. Among these k2 nodes, assume zij is the one closest to t.
4. Route the message from u via wi to zij .

Fig. 1. The NoN-Greedy Algorithm. It is assumed for simplicity that the degree of
each node is k.

The NoN algorithmcould be thought of as greedy in two hops instead of
just one. One might think that practically the NoN algorithm uses a routing
table of size O(log2 n). This however is not the case. In order to apply NoN,
the memory allocated to hold the routing tables of the neighbors is O(log2 n)
instead of O(log n). The main cost of an entry in the routing table lies in its
maintenance (pinging periodically etc.). The cost in terms of memory of simply
holding the entry is marginal.

Step (2) of the algorithmis implemented internally by putting all the z in a
search tree. Thus the time it takes to find the next link is the time it takes to find
the correct link is the search time of the tree which is O(log(k2)). Assuming that
k = O(log n), Step (2) takes O(log log n) time, which is the same as in greedy
routing.

272 Moni Naor and Udi Wieder

NoN is not greedy since wi might not be the closest node to t among the
neighbors of u. While not being greedy per se it is clear that NoN enjoys the
advantages of greedy. The following theorem is taken from a companion paper
[11], and shows that asymptotically the NoN algorithm is optimal both for skip
graphs and for small world graphs.

Theorem 1. When using the NoN algorithm:

(a) The average number of hops it takes to route a message in a skip graph is
O(log n/ log log n).

(b) Using the NoN algorithm, the number of hops it takes to route a message in
a small world graph of any dimension is O(log n/ log log n) with high proba-
bility.

2.1 An Interesting Phenomenon

A common approach when constructing p2p systems is to try and ‘emulate’ dy-
namically a good static network. Thus Chord, Pastry and Tapestry are ‘inspired’
by the hypercube. A perfect skip graph has a topology similar to that of Chord.
A deterministic protocol that achieves it is presented by Harvey and Munro in
[7]. The work of Ganesan and Manku [5] implies that the average diameter of a
perfect skip graph is Ω(log n), thus we conclude that the randomization of edges
reduces the expected path length. See [11] for a discussion of this phenomena.

� � � � � � � 	
 		 	� 	� 	� 	� 	� 	�
	
�
�
�
�
�
�
�
�

	

		
	�
	�
	�

����������
�����������
�������������

��� ���� ��

Fig. 2. The number of hops in skip graphs.

3 Simulation Results

We ran simulations in which we compared the performance of the greedy algo-
rithm and the performance of the NoN greedy algorithm. We constructed a skip
graph of up to 217 nodes and a small world graph of up to 224 nodes. In a small
world graph it is not necessary to create the full graph in advance. Each time

Know Thy Neighbor’s Neighbor 273

the message reached a node, we randomly created the neighborhood of radius
2 around the node. This is a negligible compromise over the definition of the
model, since the edge in which the node was entered might not be sampled. This
technique allowed us to run simulations on much larger graphs. For each graph
size we ran 150 executions. A substantial improvement could be seen. Figures
2,3 demonstrate an improvement of about 48% for skip graphs of size 217 and
an improvement of 34% for small world graphs of size 224. Figure 2 also depicts
the average shortest path in the graph. We see that the shortest paths may be
30% shorter than the paths found by NoN, yet even for moderate network sizes,
the NoN algorithm performs substantially better than the Greedy one.

� � � � 	
 		 	� 	� 	� 	� 	� 	� 	� 	� �
 �	 �� �� ��
�

�

�

�

�

�

�

�

	

		

	�

����������

�����������
! ��"����#�$%

�"����&���
�����"�����

� � 	
 	� 	� 	� 	� �
 �� ��
�

�

�

�

�

�

�

�

	

		

	�

����
������
�����������

�"����&���
�'���"������

Fig. 3. The number of hops in a small world of dimensions 1, 2.

An even more impressive improvement could be seen when the size of the
graph is fixed and the average degree changes. We fixed a small world graph of
size 220. After that we deleted each edge with a fixed probability which varied
from 0 (the usual small world graph) to 0.9 (a graph with roughly one tenth of
the edges). Figure 4 depicts the results of these simulations. It shows that the
reduction in the number of hops is more or less independent from the number
of edges. The latency achieved by the Greedy algorithmwhen the degree is 26
is achieved by the NoN algorithm when the degree is merely 12. In the case of
skip graphs we ran the simulation for a graph of size 217 and varied the size
of the alphabet of the membership vectors. When the alphabet size is s the
average degree is O(logs n). We can see in Figure 4 that NoN with alphabet size
20 is better than Greedy with alphabet size 2, i.e. when the average degree is
log2 20 � 4.3 bigger.

3.1 A Different Implementation

The algorithm presented in Figure 1 is somewhat unnatural. Each NoN step has
two phases. In the first phase the message is sent to a neighbor whose neighbor

274 Moni Naor and Udi Wieder

� � � 		 	� 	� 	� 	� �	 �� �� �� �� �	
	
�
�
�
�
		
	�
	�
	�
	�
�	
��
��
��
��

�"����&���
�����"�����

������
�����������

� �

�(������������
� � � � 	
 	� 	� 	� 	� �

	
�
�
�
�
		
	�
	�
	�
	�
�	
��

��)��*��� ��+��

� �

��� ���� ��

������
�����������

Fig. 4. The tradeoff between average degree and latency in a small world with 220

nodes (left) and skip graphs of 217 nodes (right).

� � � 	
 	� 	� 	� 	� �

�

�

�

�

�

�

�

����

� �

���� �������
	��� �������

�"����&���
�����"�����

� � � � � � 	
 		 	� 	� 	� 	� 	� 	�
�

�

�

�

�

�

�

����

� �

	� �������
�� �������

��� ���� ��

Fig. 5. Comparison between the two variants of NoN.

is close to the target. In the second phase a greedy step is taken (i.e. the message
moves to the neighbor of neighbor). A 1−phase implementation would let each
node initiate a NoN step again, i.e. each node upon receiving a message, finds the
closest neighbor of neighbor, and passes the message on. This variant is harder
to analyze, indeed Theorem 1 holds for the 2-phase version only. Yet, as Figure 5
shows, in practice the two variants have basically the same performance.

3.2 Fault Tolerance

The previous simulations assumed that the list of neighbor’s neighbors each node
holds is always correct. In reality this might not be the case. We examine two
scenarios which capture the two extremes of this problem.

Know Thy Neighbor’s Neighbor 275

� � � � � � � 	
 		 	� 	� 	� 	� 	� 	�
	
�
�
�
�
�
�
�
�

	

		
	�
	�
	�

����������

�����������
! ��"����#�$%

��� ���� ��

	 � � � � 		 	� 	� 	� 	� �	 ��
	

�

�

�

�

�

�

�

�

	

		

�����������
�����"����#�$%�,
�����"����#�$%�,,
������

�"����&���
�����"�����

Fig. 6. Optimistic fault tolerance in Skip Graphs and pessimistic fault tolerance in
Small Worlds.

Optimistic Scenario: In this case we assume that a node knows whether its
neighbors of neighbors lists are up-to-date or not. Whenever a node has a stale
list is performs a greedy step. If a node cannot perform the NoN step from
any other reason, it performs the greedy step instead. We ran simulations in
which each node performs with probability 1

2 a NoN step, and with probability
1
2 a greedy step. Whenever a NoN step is performed, both phases of it are
performed correctly. Figures (3) and (6) show that the total performance is
hardly compromised. A small world of size 222 suffered a relative delay of less
than one hop, A skip graph of size 217 suffers a relative delay of 1.2 hops.
But why is the optimistic scenario justified? Our suggestion is that each node
would calculate a hash of its neighbors list. This hash would be sent to all its
neighbors on top of the maintenance messages. Thus with a minuscule overhead
in communication each node would know whether its lists are up-to-date. We
discuss specific hash functions in Section 4.

Pessimistic Scenario: In this scenario we assume that a node is unaware that
its neighbor’s neighbors lists are not up-to-date. So when node u passes a mes-
sage to node w expecting it to move on to node z, with probability 1

2 the edge
(w, z) no longer exists. We tested two variants: in the first one, whenever this
occurs the intermediate node w performs a greedy step. In the second variant
the intermediate node w initiates another NoN step. The results of the simula-
tions appear in Figure 6. It could be seen that in the pessimistic scenario, the
performance of NoN is approximately the same as the Greedy algorithm.

We conclude that even if we assume that the neighbor lists are error prone,
still the use of the NoN algorithm may be beneficial.

4 Implementation Issues

The execution of a NoN hop requires a node to store the neighbor lists of its
neighbors. This implies that nodes should update each other regarding their own
lists of neighbors. Such an update occurs in two scenarios:

276 Moni Naor and Udi Wieder

1. Each node upon entrance, must send its list of neighbors to its neighbors.
2. Whenever a node encounters a change in its neighbor list (due to the entrance

or exit of a node), it should update its neighbors.
The extra communication imposed by these updates is not heavy due to the two
following reasons. First, assume nodes u, v are neighbors. Node u periodically
checks that v is alive (for instance by pinging it). Checking whether v’s neighbor
list has changed could be added to the maintenance protocol by letting v send
a hash of its neighbor list on top of the maintenance protocol. A possible hash
function may be MD5 (though the cryptographic properties of this hash function
are not needed). Another possibility is simply to treat the id of neighbors as
coefficients of a polynomial, and evaluate this polynomial at a random point.
Either way the actual cost in communication is very small. When an actual
update occurs there is no reason for v to send its entire neighbor list. It may
only send the part of it which u misses. If it does not know which part it is
then u, v may participate in a very fast and communication efficient protocol
that reconciles the two sets, see e.g. [12] for details. The second reason the
communication overhead is small is that the the actual updates are not urgent
(as the simulations of the optimistic scenario show) and may be done when the
system is not busy.

It is important to notice that the implementation of the NoN algorithmdoes
not affect the Insert/Delete operations. Once a node enters, the needed updates
should occur. We conclude that implementing NoN has very little cost both in
communication complexity and in internal running time. It is almost a free tweak
that may be implemented on top of the previous constructions.

5 Other Constructions – NoN-Chord

Does NoN-Greedy improve more p2p systems? In this section we show that
a variation of Chord [15] is degree optimal. In Chord the key space is a ring
[0, 1, . . . , n]. A node whose i.d. is x is connected (more or less) to x+1, x+2, x+
4, . . . , x + n

2 mod n. It was shown by Manku [5] that the average diameter of
Chord is Θ(log n), thus no algorithm may significantly reduce the path length.
We show a slight variation of Chord, (in search of a better name lets call it
NoN-Chord). The idea is to make Chord resemble the Small-World graph. Now
each node x is connected to log n nodes y0, y1, y2, . . . such that yi is a random
point in the segment [x + 2i, x + 2i+1]. An easy adaptation of the proofs in [11,
3] shows that w.h.p the path length used by NoN is O(log n/ log log n). The
Insert operation now, would take log2 n/ log log n operations, in log n/ log log n
parallel time. So we have an interesting tradeoff of parameters. An increase in
the communication complexity of the Insert operation (though not in the time
complexity) reduces the latency of the paths.

Acknowledgments

We thank James Aspnes and Gauri Shah for supplying us with their implemen-
tation of skip graphs, and the anonymous referees for useful comments.

Know Thy Neighbor’s Neighbor 277

References

1. James Aspnes, Zoe Diamadi, and Gauri Shah. Fault-tolerant routing in peer-to-
peer systems. In Proceedings of the twenty-first symposium on Principles of dis-
tributed computing (PODC), pages 223–232, 2002.

2. James Aspnes and Gauri Shah. Skip graphs. In fourteenth ACM SIAM Symposium
on Discrete Algorithms (SODA), pages 384–393, 2003.

3. Don Coppersmith, David Gamarnik, and Maxim Sviridenko. The diameter of
a long-range percolation graph. Random Structures and Algorithms, 21(1):1–13,
2002.

4. Pierre Fraigniaud and Philippe Gauron. The content-addressable network d2b.
Technical Report LRI 1349, Univ. Paris-Sud, 2003.

5. Prasanna Ganesan and Gurmeet Singh Manku. Optimal routing in chord. In fif-
teenth ACM SIAM Symposium on Discrete Algorithms (SODA), 2004.

6. Nicholas Harvey, John Dunagan, Michael B. Jones, Stefan Saroiu, Marvin Theimer,
and Alec Wolman. Skipnet: A scalable overlay network with practical locality prop-
erties. In 4th USENIX Symposium on Internet Technologies and Systems, (USITS),
2003.

7. Nicholas Harvey and J. Ian Munro. Deterministic skipnet. In Twenty Second An-
nual ACM Syposium on Priciples of Distributed Computing (PODC), pages 152–
153, 2003.

8. Frans Kaashoek and David R. Karger. Koorde: A simple degree-optimal distributed
hash table. In Second International Workshop on Peer-to-peer Systems IPTPS,
2003.

9. Jon Kleinberg. The Small-World phenomenon: An algorithmic perspective. In Pro-
ceedings of the 32nd ACM Symposium on Theory of Computing (STOC), 2000.

10. Gurmeet Singh Manku, Mayank Bawa, and Prabhakar Raghavan. Symphony: Dis-
tributed hashing in a small world. In 4th USENIX Symposium on Internet Tech-
nologies and Systems, (USITS), 2003.

11. Gurmeet Singh Manku, Moni Naor, and Udi Wieder. Know thy neighbor’s neigh-
bor: the power of lookahead in randomized p2p networks. In STOC, 2004.

12. Yaron Minsky and Ari Trachtenberg. Practical set reconciliation. Technical Report
2002-03., Boston University, 2002.

13. Moni Naor and Udi Wieder. Novel architectures for p2p applications: the
continuous-discrete approach. In Proceedings of the fifteenth annual ACM sym-
posium on Parallel algorithms and architectures SPAA, pages 50–59, 2003.

14. Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object loca-
tion, and routing for large-scale peer-to-peer systems. Lecture Notes in Computer
Science, 2218:329–350, 2001.

15. Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Frank Dabek Hari
Balakrishnan. Chord: A scalable Peer-To-Peer lookup service for internet applica-
tions. Technical Report TR-819, MIT LCS, 2001.

16. Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph. Tapestry: An in-
frastructure for fault-tolerant wide-area location and routing. Technical Report
UCB/CSD-01-1141, UC Berkeley, April 2001.

©

{hujinfeng00,lim01,nn02,dht02}@mails.tsinghua.edu.cn,
{zwm-dcs,wds}@tsinghua.edu.cn

()

α
α { }α

α α αα ≠
>

> αα =

{ }Φ

{ } { }

{ }α

()+ ()()++

{ }Φ { } { }
{ }

Routine Multicast (m, s):
//Receive report m at the step s.
 Rs = getTargetGroup(m)
 //Get target group of report m from local routing en-
tries
 For i := s+1 to 128 do
 Rn := getSuffix(Rs, i−1)
 //Get set of nodes in Rs whose ID’s (i-1)-bit
length suffix is identical to local node, but the i-th
to last bit is different.
 If Rn = null then
 continue
 fi
 P := getHighestLevel(Rn)
 //Select one of the highest level nodes
 send_bcast(P, m, i)
 //Send the message to P, mark it as the i-th step.
 End do

=
= =

≈×=×

= ()=
()=+= = ≈

≈

()+=

Diminished Chord: A Protocol
for Heterogeneous Subgroup Formation

in Peer-to-Peer Networks

David R. Karger1 and Matthias Ruhl2

1 MIT Computer Science and Artificial Intelligence Laboratory
Cambridge, MA 02139, USA

karger@csail.mit.edu
2 IBM Almaden Research Center

San Jose, CA 95120, USA
ruhl@almaden.ibm.com

Abstract. In most of the P2P systems developed so far, all nodes play
essentially the same role. In some applications, however, different ma-
chine capabilities or owner preferences may mean that only a subset of
nodes in the system should participate in offering a particular service.
Arranging for each service to be supported by a different peer to peer
network is, we argue here, a wasteful solution.
Instead, we propose a version of the Chord peer-to-peer protocol that al-
lows any subset of nodes in the network to jointly offer a service without
forming their own Chord ring. Our variant supports the same efficient
join/leave/insert/delete operations that the subgroup would get if they
did form their own separate peer to peer network, but requires signifi-
cantly less resources than the separate network would.
For each subgroup of k machines, our protocol uses O(k) additional stor-
age in the primal Chord ring. The insertion or deletion of a node in the
subgroup and the lookup of the next node of a subgroup all require
O(log n) hops.

1 Introduction

In most of the P2P systems developed, all nodes play essentially the same role
in the system. In many applications, however, this might not be appropriate:
nodes might be heterogeneous either in their capabilities or their approved uses.
From the capability perspective, a bandwidth-intensive application might wish
to limit itself to the subset of nodes with high connectivity, a storage-intensive
one might focus on nodes with large disks, a compute intensive one on fast
machines. Socially, in an environment where many different P2P services can be
offered, some users might be comfortable running only certain “nice” services
on their machines, steering clear of music-piracy services, music piracy detection
services, or code-cracking endeavors by hackers or the NSA.

One way to support such endeavors would be to form a separate P2P over-
lay for each service, and let nodes join all the overlays in which they wish to

G.M. Voelker and S. Shenker (Eds.): IPTPS 2004, LNCS 3279, pp. 288–297, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Diminished Chord: A Protocol for Heterogeneous Subgroup Formation 289

participate. This is inefficient, however, as the same routing infrastructure will
have to be replicated repeatedly – a machine may find itself pointing at the same
successors and fingers in an unlimited number of distinct P2P networks. Even
worse, it might need to maintain different successors and fingers in each of its
networks.

In this paper, we give an efficient mechanism for an arbitrary set of nodes
to form “subgroups” without increasing their overhead. We augment the Chord
protocol to allow queries of the following form: find the first node in subgroup
X whose address follows a given address on the Chord ring. This query can be
answered in the same O(log n) time as standard Chord queries. To join a given
group, a machine performs O(log n) routing hops and deposits a tiny constant
amount of additional information. In other words, within the larger Chord ring,
we are able to simulate a Chord ring on the nodes in group X . The maintenance
traffic a node uses to maintain its groups is negligible (per group) compared
to the amount of traffic the node spends maintaining the underlying Chord
infrastructure.

Besides the precisely measurable improvements in efficiency, our use of sub-
rings instead of independent rings provides a less quantifiable reduction in com-
plexity by delegating some of the most complex parts of the ring maintenance
protocol to be performed only once, by the primal ring, instead of once per
subring. For example, our approach simplifies the rendezvous problem. To join
a Chord ring, a node needs to identify, using some out-of-band mechanism, at
least one node already in the ring. This remains true for joining the base Chord
ring in our protocol. But once a node is in the base Chord ring, it can easily join
any existing subgroup in the ring, without any new out-of-band communication.
Thus, if the primal join problem is solved once (for example, by making all nodes
in the world part of a primal Chord ring) it never needs to be addressed again.
As a second example, consider the use of numerous redundant successor pointers
by Chord to provide fault tolerant routing in the presence of node failures. Since
the subrings live inside of a ring that provides such fault tolerance, the subrings
themselves do not have to do so.

Our protocol works by embedding in the base Chord ring, for each subgroup,
a directory tree that lets a node find its own successor in the subgroup. We
arrange for the edges of the directory tree to be fingers of the Chord ring so
that traversing the directory tree is cheap. Finding the group-X successor of a
given key is accomplished by finding the primal-ring successor s of the key and
then finding the group-X successor of node s (from a practical perspective, this
suggests that such subring lookups will take roughly twice as long as standard
ones).

1.1 Chord

Our discussions below are in the context of the Chord system [1] but our ideas
seem applicable to a broader range of P2P solutions. Since we are only interested
in routing among subgroups of nodes, we can ignore item assignment issues and
concentrate on the routing properties of the system.

290 David R. Karger and Matthias Ruhl

Chord defines a routing protocol in which each node maintains a set of
O(log n) carefully chosen neighbors called fingers that it uses to route lookups
in O(log n) hops. To do so, it maps the nodes onto a ring which we shall consider
to be the interval [0, 1] (where the numbers 0 and 1 are identified). Every node
receives as address some random (fractional) number in the interval (e.g. by
hashing the node’s name or IP-address). A node with address a then maintains
finger pointers to all nodes with addresses of the form succ(a+2−b), where b ≥ 1
is an integer. By succ(x) we refer to the first node succeeding address x in the
address space. It can be shown that with high probability, only O(log n) of the
pointers are distinct. Thus, each node has O(log n) neighbors.

For the purposes of this work, we will ignore the insertion and deletion of
nodes into the (underlying) Chord system itself.

1.2 Our Results

The formal problem considered in this work is the following. We have a subset
of nodes in the network which are associated with some identifier X . We want
to efficiently (in terms of storage and communication) perform the following
operations:

Insert(q, X): Inserts the node with address q into the subset with identi-
fier X .
Lookup(q, X): Returns the first node succeeding address q that is a mem-
ber of the subset with identifier X .

Note that our protocol has to handle an arbitrary number of subgroups in the
P2P system simultaneously. Using the Lookup-function as a primitive, each
node in a subgroup can determine its successor in the subgroup. Also, as with
the base Chord protocol, we assume that deletions are handled just like node
failures: nodes repeatedly insert themselves to stay in the system while alive,
and are eventually expunged once they depart and stop inserting themselves.

We will give algorithms for Insert and Lookup that require O(log n) hops
to execute. The protocol does not have to know the size of the subgroups to
operate. For each subgroup of size k, we have to store O(k) additional data in
the network (i.e. at nodes that are not necessarily in the subgroup themselves),
but at most O(log n) data per subgroup at any single node.

Moreover, our algorithms are load-balanced in the following sense. If random
nodes call Insert and Lookup, then the access load will be equally distributed
among Ω(k) nodes. This precludes, for example, storing the entire group mem-
bership list at a single node, since this node would get swamped with requests.
If k = 1 the claimed load balance does not offer much help. While in this case
we are already expecting the single member of X to cope with all requests to
X , our approach does have the drawback of swamping a single non-member of
X with routing requests. Presumably caching techniques can be used to address
this issue.

The simplest version of our protocol relies on a minor technical modification
of the Chord protocol. It requires that with every finger pointer succ(a + 2−b)

Diminished Chord: A Protocol for Heterogeneous Subgroup Formation 291

we also maintain a prefinger pointer to the immediate predecessor pred(a+2−b)
of our finger. Here pred(x) denotes the node preceding an address x. In Chord,
fingers are actually found by finding prefingers and taking their immediate suc-
cessors, so maintaining the additional prefinger information does not increase
the processing requirements of the protocol.

For completeness we also give (more complicated) variants of our protocols
that do without the prefinger pointers. These protocols require O(log n log∗ n)
hops, however.

1.3 Related Work

An application where our subgroup protocol might be useful is a Usenet-caching
application that runs on a P2P system [2]. The goal is to replace the current
broadcast of Usenet news to all news servers with a more limited broadcast to an
appropriate subset of servers from which news can be pulled by clients who want
to read it. In this application, a given P2P node may wish to cache only certain
newsgroups (e.g., those used by the node’s owners). Our subgroup protocol can
support this scheme by creating a single subgroup for each newsgroup.

Similar in spirit to our results, the OpenHash system [3] tries to separate the
system layer in P2P system from the application layer. This allows several P2P
applications to co-exist independently within the same P2P system.

In [4] subgroups within P2P systems are created, but the focus is on sub-
groups corresponding to regions of administrative control. To maintain this con-
trol, lookups are required to be resolved wholly within subgroups, not utilizing
the rest of the network, as is done in our work.

2 The Subgroup Protocol

In this section, we state and analyze a Diminished Chord protocol for subgroup
creation. For simplicity, we will just consider a single subgroup in the following
discussion. We will refer to the nodes in the given subgroup as “green nodes.”
Later we will discuss the interactions between multiple groups.

2.1 A Tree-Based Solution

To provide some intuition, we outline a solution for the case where the nodes
in our P2P network have somehow formed an ordered (by addresses) depth-
O(log n) binary tree, such that each machine has a pointer to its parent machine
in the tree. Some of the leaf nodes in the tree can become green, and we want
any leaf node to be able to resolve a query of the form “what is the first green
node following me in the tree?”

To support such queries, we augment the tree so that every node x stores the
minimum address of a green node in the right subtree of x, if one exists. Note
that this requires storing at most one value in any node. In fact, since each green
node can be stored only in its ancestors, each green node will generate O(log n)

292 David R. Karger and Matthias Ruhl

storage in the tree. When a new node decides to become green, it takes O(log n)
work for it to announce itself to its O(log n) ancestors.

Given such storage, we can easily answer a green-successor query. Let q be a
leaf node and s the green successor of q. Consider the root-leaf paths to q and to
s. These two paths diverge at some node a with the path to q going left and the
path to s going right (since s is a successor of q). To be the green-successor of q,
it must be that s is the first green node in the right subtree of a. It follows by
the previous paragraph that a will hold s. This leads to the following algorithm
for finding s in time O(log n). Walk up the path from q to the root. Each time
we arrive at a node along a left-child pointer, inspect the contents of the node.
This will ensure that we inspect node a and thus that we find s.

Since a green node may be stored in all of its ancestors, this scheme uses
O(log n) space per green node. We can improve this bound by noticing that we
only need to store s in the highest node in which it is stored in the scheme above.
Since s is stored only at ancestors of s, any query that traverses any node storing
s will necessarily, as it continues up to the root, traverse the highest node that
stores s. This reduces the space usage to O(1) per green node.

2.2 Embedding the Tree

We studied the tree because our approach using Chord is to embed just such a
tree into the Chord ring. This can be explained most simply by assuming that
all addresses in the Chord ring are occupied by nodes; once we have done so we
will explain how to “simulate” the full-ring protocol on a ring with only a small
number of nodes.

Our tree is actually built over a space of “address representations” in the
Chord ring. For each subgroup, we have a base address a0, which for example
could be computed as a hash of the group’s name X . Let 〈a, b〉 denote the address
(a0 + b/2a) mod 1 for 1 ≤ a and 0 ≤ b < 2a (recall that we have defined the
Chord ring to be the interval [0, 1], so all addresses are fractions). Note that
representations are not unique – in particular, 〈a, b〉 actually defines the same
address as 〈a + 1, 2b〉 – but we will treat these as two distinct nodes in the tree.
The work for a particular tree node will be done by the machine at the address
the node represents; one machine thus does work for at most one tree node on
each level of the tree.

We make the 〈a, b〉 into a tree by letting 〈a, b〉 be the parent of the two nodes
〈a + 1, 2b − 1〉 and 〈a + 1, 2b〉 (where 〈a,−1〉 := 〈a, 2a − 1〉). Note that under
this definition, one (the right) child of a node actually defines the same address
as that node, while the left child is a (not immediate) predecessor of the node.
Furthermore, given the full address space assumption, the address gap between
a node and its parent is a (negative) power of two – meaning that there is a
finger pointing from each node to its parent (see Figure 1).

Notice also that the tree thus defined is properly ordered with respect to the
address space – that is, that the set of addresses represented in a node’s subtree
is a contiguous interval of the ring, and that the subtrees of the two children
of a node divide the node’s interval into two adjacent, equal-sized contiguous

Diminished Chord: A Protocol for Heterogeneous Subgroup Formation 293

a +1/80

a0

a +5/80

a +1/20

a +3/80

a +1/40

a +7/80
a +3/40

Fig. 1. The Chord address space shown as a loop. Nodes preceding the indicated ad-
dresses will be selected as nodes p(a, b). The dashed lines show tree-pointers from left
children to their parents.

segments. It follows that our tree-based green-successor algorithm can be applied
to this tree, and will return the minimal green tree-successor, which by the
consistent ordering is also the minimal green address successor, of any node in
the tree. The depth of the tree is equal to the number of bits in the address
space, and this determines the time to query or update the data structure.

The actual tree-structure of the addresses (i.e., which finger is the parent
pointer of a given address) depends on the base addresses a0. It would be pro-
hibitively expensive to record the tree structure; however, this is unnecessary as
the correct parent pointer can easily be determined as a function of the current
address and the base address.

2.3 Sparser Rings

It remains to extend this scheme to sparsely populated rings. We use the same
“simulation” approach as was used to simulate a de Bruijn network over the full
address space in the Koorde protocol [5]. The work a given address 〈a, b〉 needs
to do is simulated by the machine immediately preceding that address on the
Chord ring. We will call that machine p(a, b).

To implement both Insert and Lookup, we have to traverse a path through
the (logical) tree from a leaf address q towards the root a0 until we find an
answer. To simulate this traversal, we need to visit all the nodes immediately
preceding addresses on this path. We give two different algorithms for this. The
first, simpler one takes O(log n) hops, but requires that with each finger to a
node succ(a + 2−b) in Chord we also maintain a prefinger to pred(a + 2−b), the

294 David R. Karger and Matthias Ruhl

node preceding the address a + 2−b. As discussed above, prefingers are already
found by Chord when it looks up fingers [1]. Thus, this additional information
comes “for free.”

For completeness, we sketch a second algorithm that computes a node-to-root
path without requiring prefinger pointers. This algorithm takes O(log n log∗ n)
hops for Insert and Lookup, and is considerably more complicated to imple-
ment.

With Prefingers. Given our embedding, there are two kinds of edges on a
(logical) path through the tree. The edge from a right child to its parent is easy
to follow in simulation since p(a + 1, 2b) = p(a, b), i.e. the two tree nodes are
mapped to the same physical machine. It therefore suffices to show how to get
from a left child p(a + 1, 2b − 1) to its parent p(a, b).

So assume that we are at some machine q1 = p(a + 1, 2b− 1) responsible for
address 〈a + 1, 2b − 1〉 and want to find the machine q2 = p(a, b) representing its
parent 〈a, b〉. We know that q1 precedes address a1 = a0 + (2b − 1)/2a, while q2

precedes address a2 = a1 + 1/2a+1. First, we use the distance-1/2a+1 prefinger
from node q1 to arrive at the node q preceding address addr(q1)+ 1/2a+1. Then
we repeatedly compute the successor of q until we pass the address a2. This
yields the last node before address a2, i.e. node q2.

To bound the running time, note that we perform one (prefinger) hop per
move along the path. Since the tree has depth O(log n), this results in O(log n)
hops. The prefinger from p(a+1, 2b−1) may not point to exactly the node p(a, b)
that we want. For the node p(a + 1, 2b − 1) is at an address slightly preceding
〈a + 1, 2b − 1〉, so its prefinger may be at an address slightly preceding 〈a, b〉 and
some nodes might end up in the gap. So we may have to follow some successor
pointers to reach p(a, b). Nonetheless, it can be shown [1] that over the whole path
the number of successor computations is only O(log n) with high probability.

As with Koorde, it would seem that our simulation must perform a number
of hops equal to the number of address bits. However all but the first few hops
of the simulation are actually in the purview of the same node, so take no time
to simulate. The number of actual hops performed in the simulation is O(log n)
with high probability.

Without Prefingers. In the previous algorithm we crucially needed the fact
that we had access to prefinger pointers. Had we used fingers, the uneven dis-
tribution of nodes on the ring could have made us “overshoot” the addresses we
actually needed to traverse, without any option of backtracking to them. The
intuition in the following algorithm is to leave some “buffer” between the visited
machines and the addresses on the path to absorb the overshoot.

In this discussion, we use the word “distance” to denote the amount of the
ring’s address space traversed by a finger; i.e. a finger reaching halfway around
the circle is said to traverse distance 1/2.

In the previous algorithm, we simulated the traversal of a sequence of ad-
dresses on the ring by traversing the nodes immediately preceding those ad-
dresses, using prefinger pointers. The addresses we want to visit are separated

Diminished Chord: A Protocol for Heterogeneous Subgroup Formation 295

by distances that are exact (negative) powers of two. Suppose that at each
step, we instead traverse the finger corresponding to the desired power-of-two
distance. This finger may traverse a slightly greater distance. But the random
distribution of nodes on the ring means that the distance traversed by the ring
is only O(1/n) units greater than the intended power of two, and that over a
sequence of O(log n) hops, the distance traversed is O((log n)/n) units greater
than the sum of the intended powers of two (this analysis is similar to that used
for Koorde [5]). In other words, even with the overshoots, we remain quite close
to the intended path.

To cope with this overshoot, we arrange to begin the search at a node q′ that is
at distance O((log n)/n) before q (note that finding q′ seems to require computing
predecessors to move backward on the ring, which Chord does not support,
but we will remove this technicality in a moment). From q′ we use fingers to
perform the same power-of-two hops that we would follow from q. By the previous
paragraph, we will never overshoot the addresses we wanted to traverse from q.
At the same time, those desired addresses will be only O((log n)/n) distance
ahead of the nodes we visit; the random node distribution means that in such
an interval there will be O(log n) nodes with high probability. To summarize,
our finger-following path will traverse a sequence of O(log n) nodes, each only
O(log n) nodes away from the address we actually want to traverse.

Chord actually proposes that each node keep pointers to its Θ(log n) im-
mediate successors for fault tolerance; these pointers let us reach the addresses
we really want with one additional successor hop from each of the nodes we
encounter on our path and thus accomplish the lookup in O(log n) time.

If we do not have the extra successor pointers, we can reach each desired ad-
dress using O(log log n) Chord routing hops from the addresses we actually tra-
verse. By doing this separately for each address, we can find all the addresses on
the leaf-to-root path of q in O(log n log log n) steps. This bound can be decreased
to O(log n log∗ n) by computing not just one path starting Θ(log n) nodes before
q, but log∗ n paths starting at distances log(k) n before q. (Here log(k) stands for
the k-times iterated logarithm.) We omit the details in this paper, in particular
since this algorithm is probably too complicated to be useful in practice.

It remains to explain how to get around the requirement of starting the search
at a node q′ which is Θ(log n) nodes before q. Instead of going backward Θ(log n)
steps, we go forward Θ(log n) steps using successor pointers. If we encounter a
green node, we are done. If not, we end up at a node q′′ with the same green
successor as q. Since q is at distance Θ((log n)/n) preceding q′′, we can use q as
the starting node to perform the green node lookup for q′′, also providing the
answer for q.

2.4 Load Balance

For a given subgroup, our protocol treats certain nodes (the ancestors of green
nodes) as “special” nodes that carry information about the subgroup. These
nodes attract query-answering work even though they are not part of the group,
which may seem unfair. But much the same happens in the standard Chord pro-

296 David R. Karger and Matthias Ruhl

tocol, where certain nodes “near” (immediately preceding) a given node become
responsible for answering lookups of that node. And like the Chord protocol,
our protocol exhibits a nice load balancing behavior when there are numerous
subgroups. Recall that for a subgroup X , the “root” of the lookup tree for a
subgroup named X is determined by a hash of the name, and is therefore effec-
tively random. Thus, by symmetry, all addresses have the same probability of
being on the lookup path for a given subgroup query. Since Chord distributes
nodes almost-uniformly over the address space, we can conclude that the proba-
bility of any node being “hit” by a subgroup query is small. More precisely, since
there are O(log n) steps per subgroup query, and each node is responsible for
an O(1/n) fraction of the address space in expectation, the probability a given
node is hit by a subgroup query is O((log n)/n).

Of course, queries about the same subgroup tend to hit the same nodes.
But suppose that many different subgroups are formed. The random (hashed)
placement of query tree roots means that queries to different subgroups are not
correlated to each other. This makes it very unlikely for any node to be in-
volved in queries for many different subgroups. Space precludes fully formalizing
this effect, but as one particular example, suppose that m different (possibly
overlapping) subgroups are formed, and that one subgroup lookup is done for
each group. Then with high probability, each node in the ring will be hit by
O(m(log n)/n) subgroup queries.

3 Discussion

We stated and analyzed a protocol that allows for the creation of subgroups
of nodes in the Chord P2P protocol. These subgroups are useful for efficiently
carrying out computations or functions that do not require the involvement of
all nodes. Our protocol utilizes the routing functionality of the existing Chord
ring, so that subgroups can be implemented more efficiently than by creating a
separate routing infrastructure for each subgroup.

Adding a node to the subgroup, or locating a node of the subgroup that
follows a given address takes O(log n) hops. Although the algorithm is omitted
for space reasons, the deletion of nodes from a subgroup can be performed in
the same time bounds.

Our scheme requires only O(k) storage per size-k subgroup, compared to the
O(k log k) storage resulting from creating a new Chord ring for the subgroup. As
opposed to the naive scheme, however, our protocol requires that information is
stored at machines that are not part of the subgroup. We do not think that this is
a significant problem however, as the protocol load is roughly equally distributed
among at least Ω(k) machines in the network – the machines corresponding to
the top k nodes in the embedded tree for a subgroup. A more complete analysis
of the load distribution properties of our protocol will be in the full version of
this paper.

Beyond the simple resource-usage metrics, our subring approach has an im-
portant complexity benefit over one using redundant, independent rings for each

Diminished Chord: A Protocol for Heterogeneous Subgroup Formation 297

subgroup. The primal chord ring needs to handle complex correctness issues,
keeping redundant successor pointers to preserve ring connectivity in the face of
node failures, carefully maintaining successor pointers so as to avoid race con-
ditions that would create artificial network partitions, and so on. Subrings can
take all of this infrastructure for granted, using less robust but more efficient
algorithms and relying on the primal chord ring to guarantee eventual correct-
ness. Our approach thus parallels Chord’s approach of layering efficient elements
(such as proximity routing) atop a core that focuses on correctness issues (such
as preserving connectivity).

Acknowledgments

We would like to thank the anonymous reviewers for their helpful comments.

References

1. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A Scal-
able Peer-to-peer Lookup Service for Internet Applications. In: Proceedings ACM
SIGCOMM. (2001) 149–160

2. Sit, E., Dabek, F., Robertson, J.: UsenetDHT: A Low Overhead Usenet Server. In:
Proceedings IPTPS. (2004)

3. Karp, B., Ratnasamy, S., Rhea, S., Shenker, S.: Spurring Adoption of DHTs with
OpenHash, a Public DHT Service. In: Proceedings IPTPS. (2004)

4. Mislove, A., Druschel, P.: Providing Administrative Control and Autonomy in Peer-
to-Peer Overlays. In: Proceedings IPTPS. (2004)

5. Kaashoek, F., Karger, D.R.: Koorde: A Simple Degree-optimal Hash Table. In:
Proceedings IPTPS. (2003)

Author Index

Awerbuch, Baruch 237

Baker, Mary 33
Blake, Charles 112
Bozdog, Adrian 173

Chen, Ming 11, 151
Chou, Philip A. 54
Christin, Nicolas 22
Chuang, John 22

Dabek, Frank 206
Dong, Haitao 278
Druschel, Peter 162

Ganesan, Prasanna 100
Garcia-Molina, Hector 100
Gil, Thomer M. 87
Giuli, Thomas J. 33

Handurukande, S. 217
Hellerstein, Joseph M. 141
Hsieh, Hung-Yun 44
Hu, Jingfeng 278
Hu, Yih-Chun 184
Huang, Ling 64
Huebsch, Ryan 141

Joseph, Anthony D. 64
Josephson, William K. 250

Kaashoek, M. Frans 87
Karger, David R. 131, 288
Karp, Brad 195
Kermarrec, A.-M. 217
Kubiatowicz, John 64

Le Fessant, F. 217
Li, Jinyang 87
Li, Ming 278
Lian, Qiao 11
Lin, Shi-Ding 11
Liu, Yuhong 227
Lo, Virginia 227
Loo, Boon Thau 141

Maniatis, Petros 33

Marti, Sergio 100
Massoulié, L. 217
Mazières, David 259
Mislove, Alan 162
Mogul, Jeff 33
Morris, Robert 87

Naor, Moni 269
Nicolosi, Antonio 259
Ning, Ning 278

Padmanabhan, Venkata N. 54

Qu, Shaogang 151

Ramabhadran, Sriram 1
Ratnasamy, Sylvia 195
Rhea, Sean 195
Robertson, James 206
Rodrigues, Rodrigo 112
Rosenthal, David S.H. 33
Roussopoulos, Mema 33
Ruhl, Matthias 131, 288

Scheideler, Christian 237
Schneider, Fred B. 250
Shenker, Scott 195
Shi, Shuming 151
Singh, Sumeet 1
Sirer, Emin Gün 250
Sit, Emil 206
Sivakumar, Raghupathy 44
Stoica, Ion 141
Stribling, Jeremy 87
Suri, Subhash 123

Tati, Kiran 1
Tóth, Csaba D. 123

van Renesse, Robbert 75, 173

Wang, Dingxing 151
Wang, Dongsheng 278
Wang, Helen J. 54, 184
Wang, Yi-Min 184
Wieder, Udi 269

300 Author Index

Yang, Guangwen 151
Yu, Jin 151
Yuan, Chun 184

Zappala, Daniel 227
Zhang, Zheng 11, 184

Zhao, Ben Y. 64
Zhao, Shanyu 227
Zheng, Weimin 278
Zhou, Dayi 227
Zhou, Lidong 75
Zhou, Yunhong 123

	Frontmatter
	Workshop Report for the 3rd International Workshop on Peer-to-Peer Systems (IPTPS 2004)
	I Miscellaneous
	A Practical Distributed Mutual Exclusion Protocol in Dynamic Peer-to-Peer Systems
	On the Cost of Participating in a Peer-to-Peer Network
	2 P2P or Not 2 P2P?

	II Networking
	On Transport Layer Support for Peer-to-Peer Networks
	Supporting Heterogeneity and Congestion Control in Peer-to-Peer Multicast Streaming
	Rapid Mobility via Type Indirection
	P6P: A Peer-to-Peer Approach to Internet Infrastructure

	III Routing
	Comparing the Performance of Distributed Hash Tables Under Churn
	DHT Routing Using Social Links
	When Multi-hop Peer-to-Peer Lookup Matters

	IV Load Balancing and Searching
	Uncoordinated Load Balancing and Congestion Games in P2P Systems
	Simple Efficient Load Balancing Algorithms for Peer-to-Peer Systems
	The Case for a Hybrid P2P Search Infrastructure
	Making Peer-to-Peer Keyword Searching Feasible Using Multi-level Partitioning

	V Miscellaneous
	Providing Administrative Control and Autonomy in Structured Peer-to-Peer Overlays
	Willow: DHT, Aggregation, and Publish/Subscribe in One Protocol
	Friends Troubleshooting Network: Towards Privacy-Preserving, Automatic Troubleshooting
	Spurring Adoption of DHTs with OpenHash, a Public DHT Service

	VI Applications
	UsenetDHT: A Low Overhead Usenet Server
	Clustering in Peer-to-Peer File Sharing Workloads
	{\itshape Cluster Computing on the Fly}: P2P Scheduling of Idle Cycles in the Internet

	VII Security
	Robust Distributed Name Service
	Peer-to-Peer Authentication with a Distributed Single Sign-On Service
	Secure Acknowledgment of Multicast Messages in Open Peer-to-Peer Networks

	VIII Routing
	Know Thy Neighbor's Neighbor: Better Routing for Skip-Graphs and Small Worlds
	SmartBoa: Constructing p2p Overlay Network in the Heterogeneous Internet Using Irregular Routing Tables
	Diminished Chord: A Protocol for Heterogeneous Subgroup Formation in Peer-to-Peer Networks

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

