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Preface

This is the first volume in the series “Tutorials in Mathematical Biosciences”.
These lectures are based on material which was presented in tutorials or de-
veloped by visitors and postdoctoral fellows of the Mathematical Biosciences
Institute (MBI), at The Ohio State University. The aim of this series is to
introduce graduate students and researchers with just a little background in
either mathematics or biology to mathematical modeling of biological pro-
cesses. The first volume is devoted to Mathematical Neuroscience, which was
the focus of the MBI program in 2002-2003; documentation of this year’s ac-
tivities, including streaming videos of the workshops, can be found on the
website http://mbi.osu.edu.

The use of mathematics in studying the brain has had great impact on
the field of neuroscience and, simultaneously, motivated important research in
mathematics. The Hodgkin-Huxley model, which originated in the early 1950s,
has been fundamental in our understanding of the propagation of electrical
impulses along a nerve axon. Reciprocally, the analysis of these equations
has resulted in the development of sophisticated mathematical techniques in
the fields of partial differential equations and dynamical systems. Interaction
among neurons by means of their synaptic terminals has led to a study of
coupled systems of ordinary differential and integro-differential equations, and
the field of computational neurosciences can now be considered a mature
discipline.

The present volume introduces some basic theory of computational neu-
roscience. Chapter 2, by David Terman, is a self-contained introduction to
dynamical systems and bifurcation theory, oriented toward neuronal dynam-
ics. The theory is illustrated with a model of Parkinson’s disease. Chapter 3,
by Bard Ermentrout, reviews the theory of coupled neural oscillations. Oscil-
lations are observed throughout the nervous systems at all levels, from single
cell to large network: This chapter describes how oscillations arise, what pat-
tern they may take, and how they depend on excitory or inhibitory synaptic
connections. Chapter 4 specializes to one particular neuronal system, namely,
the auditory system. In this chapter, Alla Borisyuk provides a self-contained
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introduction to the auditory system, from the anatomy and physiology of the
inner ear to the neuronal network which connects the hair cells to the cortex.
She describes various models of subsystems such as the one that underlies
sound localization. In Chapter 1, I have given a brief introduction to neurons,
tailored to the subsequent chapters. In particular, I have included the electric
circuit theory used to model the propagation of the action potential along an
axon.

I wish to express my appreciation and thanks to David Terman, Bard
Ermentrout, and Alla Borisyuk for their marvelous contributions. I hope this
volume will serve as a useful introduction to those who want to learn about
the important and exciting discipline of Computational Neuroscience.

August 27, 2004 Avner Friedman, Director, MBI
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Introduction to Neurons

Avner Friedman

Mathematical Biosciences Institute, The Ohio State University, W. 18th Avenue
231, 43210-1292 Ohio, USA
afriedman@mbi.osu.edu

Summary. All living animals obtain information from their environment through
sensory receptors, and this information is transformed to their brain where it is
processed into perceptions and commands. All these tasks are performed by a system
of nerve cells, or neurons. Neurons have four morphologically defined regions: the cell
body, dendrites, axon, and presynaptic terminals. A bipolar neuron receives signals
from the dendritic system; these signals are integrated at a specific location in the
cell body and then sent out by means of the axon to the presynaptic terminals.
There are neurons which have more than one set of dendritic systems, or more than
one axon, thus enabling them to perform simultaneously multiple tasks; they are
called multipolar neurons.

This chapter is not meant to be a text book introduction to the general theory of
neuroscience; it is rather a brief introduction to neurons tailored to the subsequent
chapters, which deal with various mathematical models of neuronal activities. We
shall describe the structure of a generic bipolar neuron and introduce standard
mathematical models of signal transduction performed by neurons. Since neurons
are cells, we shall begin with a brief introduction to cells.

1 The Structure of Cells

Cells are the basic units of life. A cell consists of a concentrated aqueous
solution of chemicals and is capable of replicating itself by growing and di-
viding. The simplest form of life is a single cell, such as a yeast, an amoeba,
or a bacterium. Cells that have a nucleus are called eukaryotes, and cells that
do not have a nucleus are called prokaryotes. Bacteria are prokaryotes, while
yeasts and amoebas are eukaryotes. Animals are multi-cellular creatures with
eukaryotic cells. A typical size of a cell is 5–20µm (1µm = 1 micrometer =
10−6 meter) in diameter, but an oocyte may be as large as 1mm in diameter.
The human body is estimated to have 1014 cells. Cells may be very diverse
as they perform different tasks within the body. However, all eukaryotic cells
have the same basic structure composed of a nucleus, a variety of organelles

A. Borisyuk et al.: LNM 1860, pp. 1–20, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 Avner Friedman

and molecules, and a plasma membrane, as indicated in Figure 1 (an exception
are the red blood cells, which have no nucleus).

Fig. 1. A cell with nucleus and some organelles.

The DNA, the genetic code of the cell, consists of two strands of polymer
chains having a double helix configuration, with repeated nucleotide units A,
C, G, and T . Each A on one strand is bonded to T on the other strand by a
hydrogen bond, and similarly each C is hydrogen bonded to T . The DNA is
packed in chromosomes in the nucleus. In humans, the number of chromosomes
in a cell is 46, except in the sperm and egg cells where their number is 23. The
total number of DNA base pairs in human cells is 3 billions. The nucleus is
enclosed by the nuclear envelope, formed by two concentric membranes. The
nuclear envelope is perforated by nuclear pores, which allow some molecules
to cross from one side to another.

The cell’s plasma membrane consists of a lipid bilayer with proteins em-
bedded in them, as shown in Figure 2. The cytoplasm is the portion of the
cell which lies outside the nucleus and inside the cell’s membrane.

Fig. 2. A section of the cell’s membrane.
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An organelle is a discrete structure in the cytoplasm specialized to carry
out a particular function. A mitochondrion is a membrane-delineated organelle
that uses oxygen to produce energy, which the cell requires to perform its
various tasks. An endoplasmic reticulum (ER) is another membrane-bounded
organelle where lipids are secreted and membrane-bound proteins are made.
The cytoplasm contains a number of mitochondria and ER organelles, as well
as other organelles, such as lysosomes in which intra-cellular digestion occurs.
Other structures made up of proteins can be found in the cell, such as a variety
of filaments, some of which serve to strengthen the cell mechanically. The cell
also contains amino acid molecules, the building blocks of proteins, and many
other molecules.

The cytoskeleton is an intricate network of protein filaments that extends
throughout the cytoplasm of the cell. It includes families of intermediate fil-
aments, microtubules, and actin filaments. Intermediate filaments are rope-
like fibers with a diameter of 10nm and strong tensile strength (1nm=1
nanometer=10−9 meter). Microtubules are long, rigid, hollow cylinders of
outer diameter 25nm. Actin filaments, with diameter 7nm, are organized into
a variety of linear bundles; they are essential for all cell movement such as
crawling, engulfing of large particles, or dividing. Microtubules are used as a
“railroad tract” in transport of vesicles across the cytoplasm by means of mo-
tor proteins (see next paragraph). The motor protein has one end attached to
the vescicle and the other end, which consists of two “heads”, attached to the
microtubule. Given input of energy, the protein’s heads change configuration
(conformation), thereby executing one step with each unit of energy.

Proteins are polymers of amino acids units joined together head-to-tail in
a long chain, typically of several hundred amino acids. The linkage is by a
covalent bond, and is called a peptide bond. A chain of amino acids is known
as a polypeptide. Each protein assumes a 3-dimensional configuration, which
is called a conformation. There are altogether 20 different amino acids from
which all proteins are made. Proteins perform specific tasks by changing their
conformation.

The various tasks the cell needs to perform are executed by proteins. Pro-
teins are continuously created and degraded in the cell. The synthesis of pro-
teins is an intricate process. The DNA contains the genetic code of the cell.
Each group of three letters (or three base pairs) may be viewed as one “word”.
Some collections of words on the DNA represent genes. The cell expresses some
of these genes into proteins. This translation process is carried out by several
types of RNAs: messenger RNA (mRNA), transfer RNA (tRNA), and riboso-
mal RNA (rRNA). Ribosome is a large complex molecule made of more than
50 different ribosomal proteins, and it is there where proteins are synthesized.
When a new protein needs to be made, a signal is sent to the DNA (by a
promoter protein) to begin transcribing a segment of a strand containing an
appropriate gene; this copy of the DNA strand is the mRNA. The mRNA
molecule travels from the nucleus to a ribosome, where each “word” of three
letters, for example (A, C, T ), called a codon, is going to be translated into
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one amino acid. The translation is accomplished by tRNA, which is a rela-
tively compact molecule. The tRNA has a shape that is particularly suited to
conform to the codon at one end and is attached to an amino acid correspond-
ing to the particular codon at its other end. Step-by-step, or one-by-one, the
tRNAs line up along the ribosome, one codon at a time, and at each step a
new amino acid is brought in to the ribosome where it connects to the preced-
ing amino acid, thus joining the growing chain of amino acids until the entire
protein is synthesized.

The human genome has approximately 30,000 genes. The number of dif-
ferent proteins is even larger; however cells do not generally express all their
genes.

The cell’s membrane is typically 6–8nm thick and as we said before, it is
made of a double layer of lipids with proteins embedded throughout. The lipid
bilayer is hydrophobic and selectively permeable. Small nonpolar molecules
such as O2 and CO2 readily dissolve in the lipid bilayer and rapidly diffuse
across it. Small uncharged polar molecules such as water and ethanol also
diffuse rapidly across the bilayer. However, larger molecules or any ions or
charged molecules cannot diffuse across the lipid bilayer. These can only be
selectively transported across the membrane by proteins, which are embedded
in the membrane. There are two classes of such proteins: carrier proteins
and channel proteins. Carrier proteins bind to a solute on one side of the
membrane and then deliver it to the other side by means of a change in
their conformation. Carrier proteins enable the passage of nutrients and amino
acids into the cell, and the release of waste products, into the extracellular
environment. Channel proteins form tiny hydrophilic pores in the membrane
through which the solute can pass by diffusion. Most of the channel proteins
let through only inorganic ions, and these are called ion channels.

Both the intracellular and extracellular environments include ionized aque-
ous solution of dissolved salts, primarily NaCl and KCl, which in their disas-
sociated state are Na+, K+, and Cl− ions. The concentration of these ions,
as well as other ions such as Ca2+, inside the cell differs from their concen-
tration outside the cell. The concentration of Na+ and Ca2+ inside the cell
is smaller than their concentration outside the cell, while K+ has a larger
concentration inside the cell than outside it. Molecules move from high con-
centration to low concentration (“downhill” movement). A pathway that is
open to this movement is called a passive channel or a leak channel; it does
not require expenditure of energy. An active transport channel is one that
transports a solute from low concentration to high concentration (“uphill”
movement); such a channel requires expenditure of energy.

An example of an active transport is the sodium-potassium pump, pump-
ing 3Na+ out and 2K+ in. The corresponding chemical reaction is described
by the equation

ATP + 3Na+
i + 2K+

e → ADP + Pi + 3Na+
e + 2K+

i
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In this process, energy is expended by the conversion of one molecule ATP
to one ADP and a phosphate atom P .

Another example of active transport is the calcium pump. The concentra-
tion of free Ca2+ in the cell is 0.1µM, while the concentration of Ca2+ out-
side the cell is 1mM, that is, higher by a factor of 104 (µM=micromole=10−6

mole, mM=milimole=10−3 mole, mole=number of grams equal to the molec-
ular weight of a molecule). To help maintain these levels of concentration the
cell uses active calcium pumps.

An important formula in electrophysiology and in neuroscience is the
Nernst equation. Suppose two reservoirs of the same ions S with, say, a pos-
itive charge Z per ion, are separated by a membrane. Suppose each reservoir
is constantly kept electrically neutral by the presence of other ions T. Finally,
suppose that the membrane is permeable to S but not to T. We shall denote by
[Si] the concentration of S on the left side or the inner side, of the membrane,
and by [So] the concentration of S on the right side, or the outer side, of the
membrane. If the concentration [Si] is initially larger than the concentration
[So], then ions S will flow from inside the membrane to the outside, building
up a positive charge that will increasingly resist further movement of positive
ions from the inside to the outside of the membrane. When equilibrium is
reached, [So] will be, of course, larger than [Si] and (even though each side of
the membrane is electrically neutral) there will be voltage difference Vs across
the membrane. Vs is given by the Nernst equation

Vs =
RT

ZF
�n

[So]
[Si]

when R is the universal gas constant, F is the Faraday constant, and T is the
absolute temperature. For Z = 1, temperature=37◦C,

Vs = 62 log10
[So]
[Si]

.

By convention, the membrane potential is defined as the difference: The
outward-pointing electric field from inside the membrane minus the inward-
pointing electric field from outside the membrane.

The ions species separated by the cell membrane, are primarily K+, Na+,
Cl−, and Ca2+. To each of them corresponds a different Nernst potential. The
electric potential at which the net electrical current is zero is called the resting
membrane potential. An approximate formula for computing the resting mem-
brane potential is known as the Goldman-Hodgkin-Katz (GHK) equation.

For a typical mammalian cell at temperature 37◦C,

S [Si] [So] Vs

K+ 140 5 −89.7 mV
Na+ 5–15 145 +90.7 – (+61.1)mV
Cl− 4 110 −89mV
Ca2+ 1–2 2.5–5 +136 – (+145)mV
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where the concentration is in milimolar (mM) and the potential is in milivolt.
The negative Vs for S = K+ results in an inward-pointing electric field which
drives the positively charged K+ ions to flow inward. The sodium-potassium
pump is used to maintain the membrane potential and, consequently, to reg-
ulate the cell volume. Indeed, recall that the plasma membrane is permeable
to water. If the total concentration of solutes is low one side of the membrane
and high on the other, then water will tend to move across the membrane to
make the solute concentration equal; this process is known as osmosis. The
osmotic pressure, which drives water across the cell, will cause the cell to
swell and eventually to burst, unless it is countered by an equivalent force,
and this force is provided by the membrane potential. The resting potential
for mammalian cells is in the range of −60mV to −70mV.

2 Nerve Cells

There are many types of cells in the human body. These include: (i) a variety
of epithelial cells that line up the inner and outer surfaces of the body; (ii) a
variety of cells in connective tissues such as fibroblasts (secreting extracellular
protein, such as collagen and elastin) and lipid cells; (iii) a variety of muscle
cells; (iv) red blood cells and several types of white blood cells; (v) sensory
cells, for example, rod cells in the retina and hair cells in the inner ear; and
(vi) a variety of nerve cells, or neurons.

The fundamental task of neurons is to receive, conduct, and transmit sig-
nals. Neurons carry signals from the sense organs inward to the central nervous
system (CNS), which consists of the brain and spinal cord. In the CNS the
signals are analyzed and interpreted by a system of neurons, which then pro-
duce a response. The response is sent, again by neurons, outward for action
to muscle cells and glands.

Neurons come in many shapes and sizes, but they all have some common
features as shown schematically in Figure 3.

A typical neuron consists of four parts: cell body, or soma, containing the
nucleus and other organelles (such as ER and mitochondria); branches of
dendrites, which receive signals from other neurons; an axon which conducts
signals away from the cell body; and many branches at the far end of the
axon, known as nerve terminals or presynaptic terminals. Nerve cells, body
and axon, are surrounded by glial cells. These provide support for nerve cells,
and they also provide insulation sheaths called myelin that cover and protect
most of the large axons. The combined number of neurons and glial cells in
the human body is estimated at 1012.

The length of an axon varies from less than 1mm to 1 meter, depending
on the type of nerve cell, and its diameter varies between 0.1µm and 20µm.

The dendrites receive signals from nerve terminals of other neurons. These
signals, tiny electric pulses, arrive at a location in the soma, called the axon
hillock. The combined electrical stimulus at the hillock, if exceeding a certain
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Fig. 3. A neuron. The arrows indicate direction of signal conduction.

threshold, triggers the initiation of a traveling wave of electrical excitation in
the plasma membrane known as the action potential. If the plasma membrane
were an ordinary conductor, then the electrical pulse of the action potential
would weaken substantially along the plasma membrane. However, as we shall
see, the plasma membrane, with its many sodium and potassium active chan-
nels spread over the axon membrane, is a complex medium with conductance
and resistance properties that enable the traveling wave of an electrical exci-
tation to maintain its pulse along the plasma membrane of the axon without
signal weakening. The traveling wave has a speed of up to 100m/s.

A decrease in the membrane potential (for example, from −65mV to
−55mV) is called depolarization. An increase in the membrane potential (for
example, from −65mV to −75mV) is called hyperpolarization. Depolarization
occurs when a current is injected into the plasma membrane. As we shall see,
depolarization enables the action potential, whereas hyperpolarization tends
to block it. Hence, a depolarizing signal is excitatory and a hyperpolarizing
signal is inhibitory.

The action potential is triggered by a sudden depolarization of the plasma
membrane, that is, by a shift of the membrane potential to a less negative
value. This is caused in many cases by ionic current, which results from stim-
uli by neurotransmitters released to the dendrites from other neurons. When
the depolarization reaches a threshold level (e.g., from −65mV to −55mV)
it affects voltage-gated channels in the plasma membrane. First, the sodium
channels at the site open: the electrical potential difference across the mem-
brane causes conformation change, as illustrated in Figure 4, which results in
the opening of these channels.

When the sodium channels open, the higher Na+ concentration on the
outside of the axon pressures these ions to move into the axon against the
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Fig. 4. Change in membrane voltage can open some channels.

depolarized voltage; thus, the sodium ions flow from outside to inside the
axon along the electrochemical gradient. They do so at the rate of 108 ions
per second. This flow of positive ions into the axon further enhances the
depolarization, so that the voltage Vm of the plasma membrane continues to
increase.

As the voltage continues to increase (but still being negative), the potas-
sium channels at the site begin to open up, enabling K+ ions to flow out along
the electrochemical gradient. However, as long as most of the sodium chan-
nels are still open, the voltage nevertheless continues to increase, but soon the
sodium channels shut down and, in fact, they remain shut down for a period
of time called the refractory period.

While the sodium channels are in their refractory period, the potassium
channels remain open so that the membrane potential (which arises, typically,
to +50mV) begins to decrease, eventually going down to its initial depolar-
ized state where again new sodium channels, at the advanced position of the
action potential, begin to open, followed by potassium channels, etc. In this
way, step-by-step, the action potential moves along the plasma membrane
without undergoing significant weakening. Figure 5 illustrates one step in the
propagation of the action potential.

Most ion channels allow only one species of ions to pass through. Sodium
channels are the first to open up when depolarization occurs; potassium chan-
nels open later, as the plasma potential is increased. The flux of ions through
the ion channels is passive; it requires no expenditure of energy. In addition to
the flow of sodium and potassium ions through voltage-gated channels, trans-
port of ions across the membrane takes place also outside the voltage-gated
channels. Indeed, most membranes at rest are permeable to K+, and to a
(much) lesser degree to Na+ and Ca2+.

As the action potential arrives at the nerve terminal, it transmits a signal
to the next cell, which may be another neuron or a muscle cell. The spac-
ing through which this signal is transmitted is called the synaptic cleft. It
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Fig. 5. Propagation of the action potantial. 1: Na+ channels open; 2: K+ channels
open; 3: Na+ channels close; 4: k+ channels close.

separates the presynaptic cytoplasm of the neuron from the postsynaptic cell.
There are two types of synaptic transmissions: chemical and electrical. Figure
6 shows a chemical synaptic transmission. This involves several steps: The
action potential arriving at the presynaptic axon causes voltage-gated Ca2+

channels near the synaptic end to open up. Calcium ions begin to flow into
the presynaptic region and cause vesicles containing neurotransmitters to fuse
with the cytoplasmic membrane and release their content into the synaptic
cleft. The released neurotransmitters diffuse across the synaptic cleft and bind
to specific protein receptors on the postsynaptic membrane, triggering them
to open (or close) channels, thereby changing the membrane potential to a
depolarizing (or a hyperpolarizing) state. Subsequently, the neurotransmitters
recycle back into their presynaptic vesicles.

Electrical transmission is when the action potential makes direct electrical
contact with the postsynaptic cell. The gap junction in electrical transmis-
sion is very narrow; about 3.5nm. Chemical transmission incurs time delay
and some variability due to the associated diffusion processes, it requires a
threshold of the action potential, and it is unidirectional. By contrast, electri-
cal transmission incurs no time delay, no variability, it requires no threshold,
and it is bidirectional between two neurons.

3 Electrical Circuits and the Hodgkin-Huxley Model

The propagation of the action potential along the axon membrane can be
modeled as the propagation of voltage in an electrical circuit. Before describing
this model, let us review the basic theory of electrical circuits. We begin with
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Fig. 6. Synaptic transmission at chemical synapses. 1: Arrival of action potential.
2: Ca2+ flows in; vesicles fuse to cytoplasm membrane, and release their contents to
the synaptic cleft. 3: Postsynaptic (e.g. Na+) channels open, and Ca2+ ions return
to vesicles.

the Coulomb law, which states that positive charges q1 and q2 at distance r
from each other experience a repulsive force F given by

F =
1

4πεo

q1q2
r2

where ε0 is the permittivity of space. We need of course to define the unit of
charge, C, called coulomb. A coulomb, C, is a quantity of charge that repels
an identical charge situated 1 meter away with force F = 9 × 109N , where
N=newton=105 dyne. This definition of C is clearly related to the value of
ε0, which is such that

1
4πεo

= 9 × 109
Nm2

C2

The charge of an electron is −e, where e = 1.602× 10−19C. Hence the charge
of one mole of ions K+, or of one mole of any species of positive ions with
a unit charge e per ion, is NAC where NA = 6.023 × 1023 is the Avogadro
number. The quantity F = NAe = 96, 495C is called the Faraday constant.

Electromotive force (EMF or, briefly, E) is measured in volts (V ). One
volt is the potential difference between two points that requires expenditure
of 1 joule of work to move one coulomb of charge between the two points; 1
joule=107 erg=work done by a force of one Newton acting along a distance
of 1 meter.
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Current i is the rate of flow of electrical charge (q):

i =
dq

dt
.

Positive current is defined as the current flowing in the direction outward from
the positive pole of a battery toward the negative pole; the electrons are then
flowing in the opposite direction. In order to explain this definition, consider
two copper wires dipped into a solution of copper sulfate and connected to
the positive and negative poles of a battery. Then the positive copper ions
in the solution are repelled from the positive wire and migrate toward the
negative wire, whereas the negative sulfate ions move in the reverse direction.
Since the direction of the current is defined as the direction from the positive
pole to the negative pole, i.e., from the positive wire to the negative wire, the
negative charge (i.e., the extra electrons of the surface atoms) move in the
reverse direction.

The unit of current is ampere, A: One ampere is the flow of one coulomb
C per second.

Ohm’s law states that the ratio of voltage V to current I is a constant R,
called the resistance:

R =
V

I

R is measured in ohms, Ω : Ω = 1V
1A . Conductors, which satisfy the ohm law

are said to be ohmic. Actually not all conductors satisfy Ohm’s law; most
neurons are nonohmic since the relation I–V is nonlinear. The quantity 1

R is
called the conductivity of the conductor.

Capacitance is the ability of a unit in an electric circuit, called capacitor,
to store charge; capacity C is defined by

C =
q

V
(C = capacity) .

Where q is the stored charge and V is the potential difference (voltage) across
the capacitor.

The unit capacity is Farad, F :

1F =
1coulomb

1volt
.

A typical capacitor consists of two conducting parallel plates with area S each,
separated a distance r by a dielectric material with dielectric constant Kd.
The capacity is given by

C = εo − Kd − S

r
.

Later on we shall model a cell membrane as a capacitor with the bilipid layer
as the dielectric material between the inner and outer surfaces of the plasma
membrane.
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It should be emphasized that no current ever flows across a capacitor
(although the electric field force goes through it). However, when in an electric
circuit the voltage changes in time, the charge on the capacitor also changes
in time, so that it appears as if current is flowing. Since i = dq

dt where q = CV
is the charge on the conductor, the apparent flow across the capacitor is

i = C
dV

dt

(although there is no actual flow across it); we call this quantity the capaci-
tative current. This flow merely reflects shifts of charge from one side of the
capacitor to another by way of the circuit.

Kirchoff’s laws form the basic theory of electrical circuits:

(1) The algebraic sum of all currents flowing toward a junction is zero; here,
current is defined as positive if it flows into the junction and negative if
it flows away from the junction.

(2) The algebraic sum of all potential sources and voltage drops passing
through a closed conduction path (or “loop”) is zero.

We give a simple application of Kirchoff’s laws for the circuits described in
Figures 7a and 7b. In figure 7a two resistors are in sequence, and Kirchoff’s
laws and Ohm’s law give

E − 1R1 − 1R2 = 0 .

Fig. 7.

If the total resistance in the circuit is R, then also E = IR, by Ohm’s
law. Hence R = R1 + R2. By contrast, applying Kirchoff’s law to the circuit
described in Figure 7b, where the two resistances are in parallel, we get

I1 =
V

R1
, I2 =

V

R2
, and R =

V

I
where I = I1 + I2 ,

so that
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1
R

=
1

R1
+

1
R2

.

Capacitors introduce time element into the analysis of current flow. Indeed,
since they accumulate and store electrical charge, current and voltage changes
are no longer simultaneous. We shall illustrate this in an electric circuit, which
resembles the cell membrane of an axon, as shown in Figure 8.

Fig. 8. Current step input.

On the left side A we introduce a current step i, as input, and on the
right side B we measure the output voltage V ; the capacitor C represents
the capacity of the axon membrane and the resistor R represents the total
resistivity of the ion channels in the axon. Thus, the upper line with the input
i → may be viewed as the inner surface of the cell membrane, whereas the
lower line represents the outer surface of the membrane.

By Kirchoff’s laws and Ohm’s law,

IR =
V

R
, IC = C

dV

dt

and
iR = (IR + IC)R = V + RC

dV

dt
so that

V = iR
(
1 − e−t/RC

)
.

Hence the voltage does not become instantly equal to iR (as it would be by
Ohm’s law if there was no capacitor in the circuit); V is initially equal to zero,
and it increases to iR as t → ∞.

Figure 9 describes a more refined electric circuit model of the axon mem-
brane. It includes currents through potassium and sodium channels as well as
a leak current, which may include Cl− and other ion flows. For simplicity we
have lumped all the channels of one type together as one channel and repre-
sented the lipid layer as a single capacitor; a more general model will be given
in §4.

Since K+ has a larger concentration inside the cell that outside the cell,
we presume that positive potassium ions will flow outward, and we therefore
denote the corresponding electromotive force EK by



14 Avner Friedman

The reverse situation holds for Na+. The conductivity of the channels K+,
Na+ and the leak channel L are denoted by gK , gNa, and gL, respectively.

Fig. 9. An electric circuit representing an axon membrane.

By Kirchoff’s laws we get

Im = Cm
dV

dt
+ IK + INa + IL

where V is the action potential and Im is the current injected into the axon.
We assume that the leak channel is ohmic, so that

IL = gL(V − EL), gL constant

where EL is the Nernst equilibrium voltage for this channel. On the other
hand the conductivities gK and gNa are generally functions of V and t, as
pointed out in §2, so that

IK = gK(V, t)(V − EK), INa = gNa(V, t)(V − ENa)

where EK and ENa are the Nernst equilibrium voltages for K+ and Na+.
Thus, we can write

Im = Cm
dV

dt
+ gK(V, t)(V − EK) + gNa(V, t)(V − ENa) + gL(V − EL). (1)

Hodgkin and Huxley made experiments on the giant squid axon, which
consisted of clumping the voltage at different levels and measuring the corre-
sponding currents. Making some assumptions on the structure and conforma-
tion of potassium and sodium gates, they proposed the following equations:
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gK(V, t) = n4g∗K , gNa(V, t) = m3hg∗Na (2)

where n, m, h are the gating variables (gL is neglected here), and g∗K =
max gK , g∗Na = max gNa. The variables n, m, h satisfy linear kinetic equations

dn

dt
= αn(1 − n) − βnn,

dm

dt
= αm(1 − m) − βmm,

dh

dt
= αn(1 − h) − βhh . (3)

By fitting coefficients they obtained the empirical formulas

αn(V ) = 0.01
−V + 10[

e(−V +10)/10 − 1
] ,

βn(V ) = 0.125e
−V/80 ,

αm(V ) = 0.1
−V + 25[

e(−V +25)/10 − 1
] ,

βm(V ) = 4e
−V/18, αh(V ) = 0.07e

−V/20, βh(V ) =
1

e(−V +30)/10 + 1
. (4)

The system (1)–(4) is known as the Hodgkin-Huxley equations. They form
a system of four nonlinear ordinary differential equations in the variables V , n,
m, and h. One would like to establish for this system, either by a mathematical
proof or by computations, that as a result of a certain input of current Im

there will be solutions of (1)–(4) where the voltage V is, for example, a periodic
function, or a traveling wave, as seen experimentally. This is an ongoing active
area of research in the mathematical neuroscience.

The Hodgkin-Huxley equations model the giant squid axon. There are also
models for other types of axons, some involving a smaller number of gating
variables, which make them easier to analyze.

In the next section we shall extend the electric circuit model of the action
potential to include distributions of channels across the entire axon membrane.
In this case, the action potential will depend also on the distance x measured
along the axis of the axon.

4 The Cable Equation

We model an axon as a thin cylinder with radius a. The interior of the cylinder
(the cytoplasm) is an ionic medium which conducts electric current; we shall
call it a core conductor. The exterior of the cylinder is also an ionic medium,
and we shall assume for simplicity that it conducts current with no resistance.
We introduce the following quantities:
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ri = axial resistance of the core conductor, Ω
cm ,

Ri = specific intercellular resistance, Ω · cm,
rm = membrane resistance, Ω · cm,
Rm = specific membrane resistance, Ω · cm3,
cm = membrane capacitance, F

cm ,
Cm = specific membrane capacitance, F

cm3 .
Then

Ri = πa2ri, Rm = 2πarm, Cm =
cm

2πa
; (5)

the first equation, for example, follows by observing that ri may be viewed as
the resistance of a collection of resistances Ri in parallel.

Denote by x the distance along the axis of the core conductor, and by Vi

the voltage in the core conductor. We assume that the current flows along the
x-direction, so that Vi is a function of just (x, t). By Ohm’s law

∂V

∂x
= −iiri .

Where ii is the intracellular current; for definiteness we take the direction of
the current flow to be in the direction of increase of x. Hence

∂2Vi

∂x2
= −ri

∂ii
∂x

. (6)

If current flows out of (or into) the membrane over a length increment ∆x
then the current decreases (or increases) over that interval, as illustrated in
Figure 10.

Fig. 10. Decrease in current ii due to outflow of current im.

Denoting by im the flow, per unit length, out of (or into) the membrane,
we have

i2 − i1 = −im∆x ,

or
im = −∂ii

∂x
.
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Combining this with (6), we find that

1
ri

∂2Vi

∂x2
= im (7)

The membrane potential is V = Vi − Ve where Ve, the external voltage, is
constant since we have assumed that the extracellular media has no resistance.

We now make the assumption that there are many identical circuits dis-
tributed all over the surface of the membrane, as illustrated in Figure 11.

Fig. 11. Current flow along a cylindrical axon with many R-C circuits on the
membrane.

By Kirchoff’s laws (cf. Section 3) the flow im satisfies

im = cm
∂V

∂t
+

Vi − Ve

rm
. (8)

Combining this with (7) we get

rm

ri

∂2V

∂x2
= rmcm

∂V

∂t
+ V .

Setting

τm = rmcm = RmCm, λ =
√

rm

ri
=

√
Rm

Ri

a

2
,

we arrive at the cable equation

λ2 ∂2V

∂x2
= τm

∂V

∂t
+ V, (9)

or, with X = x
λ , T = t

τm
,

∂V

∂t
=

∂2V

∂x2
− V . (10)

The specific current of the membrane, Im, is related to the current im by
im = 2πaIm. Hence (7) can be written in the form
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a

2Ri

∂2V

∂x2
= Im . (11)

In the above analysis the current im was modeled using the configuration
of R-C units as in Figure 11. Let us now specialize to the case of the giant
squid axon, as illustrated in Figure 7, with the leak flow neglected. Then, as
in §3,

Im = Cm
∂V

∂t
+ IK + INa

so that, by (11),

a

2Ri

∂2V

∂x2
= Cm

∂V

∂t
+ gK(V, t)(V − Ek) + gNa(V, t)(V − ENa) (12)

where gK , gNa are as in the Hodgkin-Huxley equations. The spatial Hodgkin-
Huxley system consists of the equations (2)–(4) and (12).

We return to the cable equation (9) and note that this equation can also
model the voltage in any dendritic branch. But since the dendritic tree is
quite complex in general (see Figure 3), it is difficult to the compute the total
voltage, which sums up all the voltage inputs that go into the axon hillock.
There is however one special case where V can be easily computed. This case
was identified by Rall, and it assumes a very special relationship between some
of the dendritic branches. In order to explain the Rall Theory, we begin with
a situation in which a current I0 is injected into an infinite core conductor
(with −∞ < x < ∞) at x = 0. Then current I0/2 flows to the right and
current I0/2 flows to the left, so that the potential V satisifies

∂V

∂x
(+0) − ∂V

∂x
(−0) = −riI0 . (13)

The stationary solution of the cable equation in the semi-infinite portion 0 <
x < ∞ is then

V (x) = ri
I0
2

λe
−x/λ . (14)

Note that the factor ex−λ accounts for the current leak through the membrane:
If there is no leak then V (x) = V (0). The resistance of the cable is then

V (0)
I0
2

=
(RmRi/2)1/2

πa3
.

Hence the conductivity of the core conductor is

G = Kd
3/2 where K =

π

2
(RmRi)−1 (15)

where d is the diameter of the cable.
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Fig. 12. Schematic diagram of a neuron with a branched dendritic tree.

Suppose the dendritic tree has a form as in Figure 12. We assume that
each of end-branch is infinitely long, so that its conductivity is given by (15)
where d is its diameter.

The conductances of the end-branches with diameters d3111 and d3112 are
K(d3111)

3/2 and Kd
3/2
3112 respectively. Since the total conductances are just the

sum of all the parallel conductances, if the diameter d211 is such that

d
3/2
211 = d

3/2
3111 + d

3/2
3112 (16)

then we may replace the two branches at Y3, d3111 and d3112, by one semi-
infinite branch, which extends d211 to infinity; it is assumed here that Rm and
Ri (hence K) are the same for all branches.

We can now proceed to do that same reduction at the branch point Y2. If
the diameter d11 is such that

d
3/2
11 = d

3/2
211 + d

3/2
212 (17)

then we may replace the two branches at Y2, d211, and d212, by the branch
d211 extended to infinity.

Proceeding in this way with the other branch points, we may also replace
the part of the tree branching from d12 by the branch d12 extended to infinity.
Finally, if the diameter d0 is such that

d
3/2
0 = d

3/2
11 + d

3/2
12 (18)

then we may replace the two branches at Y1 by the branch d0 extended to
infinity.

In conclusion, the Rall Theory asserts that if the dendritic branches satisfy
the relations (16), (17), . . ., (18), then the dendritic tree is equivalent to
one semi-infinite core conductor of diameter do. This result holds for general
dendritic trees provided

d
3/2
p = Σd

3/2
D

when dP is in any parent dendritic branch and dD varies over its daughter
dendritic branches.
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The above analysis extends to the case where all the end-branches are of
the same length L and all other branches are of length smaller than L. In this
case, formula (15) is replaced by

G = Kd
3/2 tanh L .
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1 Introduction

A fundamental goal of neuroscience is to understand how the nervous system
communicates and processes information. The basic structural unit of the
nervous system is the individual neuron which conveys neuronal information
through electrical and chemical signals. Patterns of neuronal signals underlie
all activities of the brain. These activities include simple motor tasks such as
walking and breathing and higher cognitive behaviors such as thinking, feeling
and learning [18, 16].

Of course, neuronal systems can be extremely complicated. There are ap-
proximately 1012 neurons in the human brain. While most neurons consist of
dendrites, a soma (or cell body), and an axon, there is an extraordinary di-
versity of distinct morphological and functional classes of neurons. Moreover,
there are about 1015 synapses; these are where neurons communicate with one
another. Hence, the number of synaptic connections made by a neuron can
be very large; a mammalian motor neuron, for example, receives inputs from
about 104 synapses.

An important goal of mathematical neuroscience is to develop and analyze
mathematical models for neuronal activity patterns. The models are used to
help understand how the activity patterns are generated and how the pat-
terns change as parameters in the system are modulated. The models can
also serve to interpret data, test hypotheses, and suggest new experiments.
Since neuronal systems are typically so complicated, one must be careful to
model the system at an appropriate level. The model must be complicated
enough so that it includes those processes which are believed to play an im-
portant role in the generation of a particular activity pattern; however, it
cannot be so complicated that it is impossible to analyze, either analytically
or computationally.

A neuronal network’s population rhythm results from interactions between
three separate components: the intrinsic properties of individual neurons, the
synaptic properties of coupling between neurons, and the architecture of cou-
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pling (i.e., which neurons communicate with each other). These components
typically involve numerous parameters and multiple time scales. The synaptic
coupling, for example, can be excitatory or inhibitory, and its possible turn
on and turn off rates can vary widely. Neuronal systems may include several
different types of cells as well as different types of coupling. An important and
typically very challenging problem is to determine the role each component
plays in shaping the emergent network behavior.

Models for the relevant neuronal networks often exhibit a rich structure
of dynamic behavior. The behavior of even a single cell can be quite compli-
cated. An individual cell may, for example, fire repetitive action potentials or
bursts of action potentials that are separated by silent phases of near quies-
cent behavior [27, 15]. Examples of population rhythms include synchronized
oscillations, in which every cell in the network fires at the same time and clus-
tering, in which the entire population of cells breaks up into subpopulations
or blocks; every cell within a single block fires synchronously and different
blocks are desynchronized from each other [10, 31]. Of course, much more
complicated population rhythms are possible. The activity may, for exam-
ple, propagate through the network in a wave-like manner, or exhibit chaotic
dynamics [29, 44, 42].

In this article, I will discuss models for neuronal systems and dynamical
systems methods for analyzing these models. The discussion will focus primar-
ily on models which include a small parameter and results in which geometric
singular perturbation methods have been used to analyze the network behav-
ior. I will not consider other types of models which are commonly used in the
study of neural systems. The integrate and fire model of a single cell is one
such example. A review of these types of models can be found in [20, 13].

An outline of the article is as follows. Chapters 2 and 3 present an informal
introduction to the geometric theory of dynamical systems. I introduce the
notions of phase space, local and global bifurcation theory, stability theory, os-
cillations, and geometric singular perturbation theory. All of these techniques
are very important in the analysis of models for neuronal systems. Chapter
4 presents some of the basic biology used in modeling the neuronal systems.
I will then discuss the explicit equations for the networks to be considered.
Models for single cells are based on the Hodgkin-Huxley formalism [12] and
the coupling between cells is meant to model chemical synapses. I will then
consider models for single cells that exhibit bursting oscillations. There are,
in fact, several different types of bursting oscillations, and there has been con-
siderable effort in trying to classify the underlying mathematical mechanisms
responsible for these oscillations [27, 15]. I then discuss the dynamics of small
networks of neurons. Conditions will be given for when these networks ex-
hibit either synchronous or desynchronous rhythms. I conclude by discussing
an example of a larger network. This network was introduced as a model for
activity patterns in the Basal Ganglia, a part of the brain involved in the
generation of movements.
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2 One Dimensional Equations

2.1 The Geometric Approach

This chapter and the next provide an informal introduction to the dynamical
systems approach for studying nonlinear, ordinary differential equations. A
more thorough presentation can be found in [36], for example. This approach
associates a picture (the phase space) to each differential equation. Solutions,
such as a resting state or oscillations, correspond to geometric objects, such
as points or curves, in phase space. Since it is usually impossible to derive
an explicit formula for the solution of a nonlinear equation, the phase space
provides an extremely useful way for understanding qualitative features of
solutions. In fact, even when it is possible to write down a solution in closed
form, the geometric phase space approach is often a much easier way to analyze
an equation. We illustrate this with the following example.

Consider the first order, nonlinear differential equation

dx

dt
= x − x3 ≡ f(x). (1)

Note that it is possible to solve this equation in closed form by separating
variables and then integrating. The resulting formula is so complicated, how-
ever, that it is difficult to interpret. Suppose, for example, we are given an
initial condition, say x(0) = π, and we asked to determine the behavior of the
solution x(t) as t → ∞. The answer to this question is not at all obvious by
considering the solution formula.

The geometric approach provides a simple solution to this problem and
is illustrated in Fig. 1. We think of x(t) as the position of a particle moving
along the x-axis at some time t. The differential equation gives us a formula
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Fig. 1. The phase space for Equation (1).
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for the velocity x′(t) of the particle; namely, x′(t) = f(x). Hence, if at time t,
f(x(t)) > 0, then the position of the particle must increase, while if f(x(t)) <
0, then the position must be decrease.

Now consider the solution that begins at x(0) = π. Since f(π) = π−π3 < 0,
the solution initially decreases, moving to the left. It continues to move to the
left and eventually approaches the fixed point at x = 1. A fixed point is a
value of x where f(x) = 0.

This sort of analysis allows us to understand the behavior of every solution,
no matter what its initial position. The differential equation tells us what the
velocity of a particle is at each position x. This defines a vector field; each
vector points either to the right or to the left depending on whether f(x) is
positive or negative (unless x is a fixed point). By following the position of
a particle in the direction of the vector field, one can easily determine the
behavior of the solution corresponding to that particle.

A fixed point is stable if every solution initially close to the fixed point
remains close for all positive time. (Here we only give a very informal defini-
tion.) The fixed point is unstable if it is not stable. In this example, x = −1
and x = 1 are stable fixed points, while x = 0 is unstable.

This analysis carries over for every scalar differential equation of the form
x′ = f(x), no matter how complicated the nonlinear function f(x) is. Solutions
can be thought of as particles moving along the real axis depending on the
sign of the velocity f(x). Every solution must either approach a fixed point
as t → ±∞ or become unbounded. It is not hard to realize that a fixed point
x0 is stable if f ′(x0) < 0 and is unstable if f ′(x0) > 0. If f ′(x0) = 0, then one
must be careful since x0 may be stable or unstable.

2.2 Bifurcations

Bifurcation theory is concerned with how solutions of a differential equation
depend on a parameter. Imagine, for example, that an experimentalist is able
to control the level of applied current injected into a neuron. As the level of
applied current increases, the neuron may switch its behavior from a resting
state to exhibiting sustained oscillations. Here, the level of applied current rep-
resents the bifurcation parameter. Bifurcation theory (together with a good
model) can explain how the change in dynamics, from a resting state to oscil-
lations, takes place. It can also be used to predict the value of injected current
at which the neuron begins to exhibit oscillations. This may be a useful way
to test the model.

There are only four major types of so-called local bifurcations and three
of them can be explained using one-dimensional equations. We shall illustrate
each of these with a simple example. The fourth major type of local bifurcation
is the Hopf bifurcation. It describes how stable oscillations arise when a fixed
point loses its stability. This requires at least a two dimensional system and
is discussed in the next chapter.
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Saddle-Node Bifurcation
The following example illustrates the saddle-node bifurcation:

x′ = λ + x2. (2)

Here, λ is a fixed (bifurcation) parameter and may be any real number. We
wish to solve this equation for a given value of λ and to understand how
qualitative features of solutions change as the bifurcation parameter is varied.

Consider, for example, the fixed points of (2) for different values of the
bifurcation parameter. Recall that fixed points are those values of x where
the right hand side of (2) is zero. If λ < 0 then (2) has two fixed points; these
are at x = ±√−λ. If λ = 0 then there is only one fixed point, at x = 0, and
if λ > 0 then there are no fixed points of (2).

To determine the stability of the fixed points, we let fλ(x) ≡ λ + x2

denote the right hand side of (2). A fixed point x0 is stable if f ′
λ(x0) < 0.

Here, differentiation is with respect to x. Since f ′
λ(x) = 2x, it follows that the

fixed point at −√−λ is stable and the fixed point at +
√−λ is unstable.

A very useful way to visualize the bifurcation is shown in Fig 2 (left). This
is an example of a bifurcation diagram. We plot the fixed points x = ±√−λ
as functions of the bifurcation parameter. The upper half of the fixed point
curve is drawn with a dashed line since these points correspond to unstable
fixed points, and the lower half is drawn with a solid line since these points
correspond to stable fixed points. The point (λ, x) = (0, 0) is said to be a
bifurcation point. At a bifurcation point there is a qualitative change in the
nature of the fixed point set as the bifurcation parameter varies.

A basic feature of the saddle-node bifurcation is that as the bifurcation
parameter changes, two fixed points, one stable and the other unstable, come
together and annihilate each other. A closely related example is x′ = −λ+
x2. There are no fixed points for λ < 0 and two for λ > 0. Hence, two fixed
points are created as λ increases through the bifurcation point at λ = 0. This
is also referred to as a saddle-node bifurcation.

Transcritical Bifurcation
A second type of bifurcation is the transcritical bifurcation. Consider the equa-
tion

x′ = λx − x2. (3)

Note that x = 0 is a fixed point for all values of λ; moreover, there is a second
fixed point at x = λ.

To determine the stability of the fixed points, we let fλ(x) ≡ λx − x2

denote the right hand side of (3). Since f ′
λ(x) = λ − 2x, it follows that the

fixed point at x = 0 is stable if λ < 0 and is unstable if λ > 0. The fixed point
at x = λ is stable if λ > 0 and is unstable if λ < 0.

The bifurcation diagram corresponding to this equation is shown in Fig. 2
(right). As before, we plot values of the fixed points versus the bifurcation
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Fig. 2. The saddle-node bifurcation (left) and the transcritical bifurcation (right).

parameter λ. Solid curves represent stable fixed points, while dashed curves
represent unstable fixed points. Note that there is an exchange of stability at
the bifurcation point (λ, x) = (0, 0) where the two curves cross.

Pitchfork Bifurcation
The third type of bifurcation is the pitchfork bifurcation. Consider the equation

x′ = λx − x3. (4)

If λ ≤ 0, then there is one fixed point at x = 0. If λ > 0, then there are three
fixed points. One is at x = 0 and the other two satisfy x2 = λ.

In order to determine the stability of the fixed points, we let fλ(x) ≡
λx − x3. Note that f ′

λ(x) = λ − 3x2. It follows that x = 0 is stable for λ < 0
and unstable for λ > 0. Moreover, if λ > 0 then both fixed points x = ±√

λ
are stable.

The bifurcation diagram corresponding to (4) is illustrated in Fig. 3 (left).
There are actually two types of pitchfork bifurcations; (4) is an example of
the supercritical case. An example of a subcritical pitchfork bifurcation is

x′ = λx + x3. (5)

The bifurcation diagram for this equation is shown in Fig 3 (right). Here,
x0 = 0 is a fixed point for all λ. It is stable for λ < 0 and unstable for λ > 0.
If λ < 0, then there are two other fixed points; these are at x0 = ±√−λ. Both
of these fixed points are unstable.

2.3 Bistability and Hysteresis

Our final example of a scalar ordinary differential equation is:

x′ = λ + 3x − x3. (6)
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Fig. 3. A supercritical pitchfork bifurcation (left) and a subcritical pitchfork bifur-
cation (right).
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Fig. 4. Example of hysteresis.

The bifurcation diagram corresponding to (6) is shown in Fig. 4. The fixed
points lie along the cubic x3 − 3x − λ = 0. There are three fixed points for
|λ| < 2 and one fixed point for |λ| > 2. We note that the upper and lower
branches of the cubic correspond to stable fixed points, while the middle
branch corresponds to unstable fixed points. Hence, if |λ| < 2 then there are
two stable fixed points and (6) is said to be bistable.
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There are two bifurcation points. These are at (λ, x) = (−2, 1) and (λ, x) =
(2,−1) and both correspond to saddle-node bifurcations.

Suppose we slowly change the parameter λ, with initially λ = 0 and x
at the stable fixed point −√

3. As λ increases, (λ, x) remains close to the
lower branch of stable fixed points. (See Fig. 4.) This continues until λ = 2
when (λ, x) crosses the saddle-node bifurcation point at (λ, x) = (2,−1). The
solution then approaches the stable fixed point along the upper branch. We
now decrease λ to its initial value λ = 0. The solution remains on the upper
branch. In particular, x =

√
3 when λ = 0. Note that while λ has returned to

its initial value, the state variable x has not. This is an example of what is
often called a hysteresis phenomenon.

3 Two Dimensional Systems

3.1 The Phase Plane

We have demonstrated that solutions of first order differential equations can
be viewed as particles flowing in a one dimensional phase space. Remark-
ably, there is a similar geometric interpretation for every ordinary differential
equation. One can always view solutions as particles flowing in some higher
dimensional Euclidean (or phase) space. The dimension of the phase space is
closely related to the order of the ode. Trajectories in higher dimensions can be
very complicated, much more complicated than the one dimensional examples
considered above. In one dimension, solutions (other than fixed points) must
always flow monotonically to the left or to the right. In higher dimensions,
there is a much wider range of possible dynamic behaviors. Here, we consider
two dimensional systems, where many of the techniques used to study higher
dimensional systems can be introduced.

A two dimensional system is one of the form

x′ = f(x, y)
y′ = g(x, y). (7)

Here, f and g are given (smooth) functions; concrete examples are considered
shortly. The phase space for this system is simply the x − y plane; this is
usually referred to as the phase plane. If (x(t), y(t)) is a solution of (7), then
at each time t0, (x(t0), y(t0)) defines a point in the phase plane. The point
changes with time, so the entire solution (x(t), y(t)) traces out a curve, or
trajectory, in the phase plane.

Of course, not every arbitrarily drawn curve in the phase plane corresponds
to a solution of (7). What is special about solution curves is that the velocity
vector at each point along the curve is given by the right hand side of (7). That
is, the velocity vector of the solution curve (x(t), y(t)) at a point (x0, y0) is
given by (x′(t), y′(t)) = (f(x0, y0), g(x0, y0)). This geometric property – that
the vector (f(x, y), g(x, y)) always points in the direction that the solution is
flowing – completely characterizes the solution curves.
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3.2 An Example

Consider the system

x′ = y − x2 + x

y′ = x − y. (8)

We wish to determine the behavior of the solution that begins at some pre-
scribed initial point (x(0), y(0)) = (x0, y0). This will be done by analyzing the
phase plane associated with the equations.

We begin the phase plane analysis by considering the vector field defined
by the right hand side of (8). This is shown in Fig.5 where we have drawn the
vector (y − x3 + x, x − y) at a number of points (x, y). Certainly, one cannot
draw the vector field at every point. By considering enough points, one can
get a sense of how the vector field behaves, however. A systematic way of
doing this is as follows.
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Fig. 5. The phase plane for equation (8).

The first step is to locate the fixed points. For a general system of the
form (7), the fixed points are where both f and g vanish. For the example
(8), there are two fixed points; these are at (0, 0) and (2, 2). Later we discuss
later how one determines whether a fixed point is stable or unstable.

The next step is to draw the nullclines. The x-nullcline is where x′ = 0;
this is the curve y = x2 − x. The y-nullcline is where y′ = 0; this is the
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curve y = x. Note that fixed points are where the nullclines intersect. The
nullclines divide the phase plane into five separate regions. All of the vectors
within a given region point towards the same quadrant. For example, in the
region labeled (I), x′ > 0 and y′ < 0. Hence, each vector points towards the
fourth quadrant as shown. The vector field along the nullclines must be either
horizontal or vertical. Along the x-nullcline, the vectors point either up or
down, depending on the sign of y′. Along the y-nullcline, the vectors point
either to the left or to the right, depending on the sign of x′.

It is now possible to predict the behavior of the solution to (8) with some
prescribed initial condition (x0, y0). Suppose, for example, that (x0, y0) lies
in the intersection of the first quadrant with region (I). Since the vector field
points towards the fourth quadrant, the solution initially flows with x(t) in-
creasing and y(t) decreasing. There are now three possibilities. The solution
must either; (A) enter region II, (B) enter region V, or (C) remain in region
I for all t > 0. It is not hard to see that in cases A or B, the solution must
remain in region II or V, respectively. In each of these three cases, the solution
must then approach the fixed point at (2, 2) as t → ∞.

We note that (0, 0) is an unstable fixed point and (2, 2) is stable. This
is not hard to see by considering initial data close to these fixed points. For
example, every solution that begins in region V must remain in region V and
approach the fixed point at (2, 2) as t → ∞. Since one can choose points in
region V that are arbitrarily close to (0, 0), it follows that the origin must be
unstable.

A more systematic way to determine the stability of the fixed points is
to use the method of linearization. This method also allows us to understand
the nature of solutions near the fixed point. Here we briefly describe how this
important method works; this topic is discussed in more detail in any book
on differential equations.

The basic idea of linearization is to replace the nonlinear system (7) by
the linear one that best approximates the system near a given fixed point.
One can then solve the linear system explicitly to determine the stability of
the fixed point. If (x0, y0) is a fixed point of (7), then this linear system is:

x′ =
∂f

∂x
(x0, y0)(x − x0) +

∂f

∂y
(x0, y0)(y − y0)

y′ =
∂g

∂x
(x0, y0)(x − x0) +

∂g

∂y
(x0, y0)(y − y0). (9)

Note that the right hand side of (9) represents the linear terms in the Taylor
series of f(x, y) and g(x, y) about the fixed point. The stability of the fixed
point is determined by the eigenvalues of the Jacobian matrix given by the
partial derivatives of f and g with respect to x and y. If both eigenvalues have
negative real part, then the fixed point is stable, while if at least one of the
eigenvalues has positive real part, then the fixed point must be unstable.

By computing eigenvalues one easily shows that in the example given by
(8), (0, 0) is unstable and (2, 2) is stable.
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3.3 Oscillations

We say that a solution (x(t), y(t)) is periodic if (x(0), y(0)) = (x(T ), y(T )) for
some T > 0. A periodic solution corresponds to a closed curve or limit cycle in
the phase plane. Periodic solutions can be either stable or unstable. Roughly
speaking, a periodic solution is stable if solutions that begin close to the limit
cycle remain close to the limit cycle for all t > 0. We do not give a precise
definition here.

It is usually much more difficult to locate periodic solutions than it is
to locate fixed points. Note that every ordinary differential equation can be
written in the form x′ = f(x), x ∈ Rn for some n ≥ 1. A fixed point x0

satisfies the equation f(x0) = 0 and this last equation can usually be solved
with straightforward numerical methods. We also note that a fixed point is
a local object – it is simply one point in phase space. Oscillations or limit
cycles are global objects; they correspond to an entire curve in phase space
that retraces itself. This curve may be quite complicated.

One method for demonstrating the existence of a limit cycle for a two
dimensional flow is the Poincare-Bendixson theorem [36]. This theorem does
not apply for higher dimensional flows, so we shall not discuss it further.
Three more general methods for locating limit cycles are the Hopf bifurcation
theorem, global bifurcation theory and singular perturbation theory. These
methods are discussed in the following sections.

3.4 Local Bifurcations

Recall that bifurcation theory is concerned with differential equations that
depend on a parameter. We saw that one dimensional flows can exhibit saddle-
node, transcritical and pitchfork bifurcations. These are all examples of local
bifurcations; they describe how the structure of the flow changes near a fixed
point as the bifurcation parameter changes. Each of these local bifurcations
can arise in higher dimensional flows. In fact, there is only one major new
type of bifurcation in dimensions greater than one. This is the so-called Hopf
bifurcation. We begin this section by giving a necessary condition for the
existence of a local bifurcation point. We then describe the Hopf bifurcation.

We consider systems of the form

x′ = f(x, y, λ)
y′ = g(x, y, λ). (10)

It will be convenient to write this system using vector notation. Let

u = (x, y)T and F (u, λ) = (f(x, y, λ), g(x, y, λ))T .

Then (10) becomes

u′ = F (u, λ). (11)
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We note that nothing described here depends on (10) being a two dimensional
system. The following characterization of a local bifurcation point holds in
arbitrary dimensions.

Suppose that u0 is a fixed point of (10) for some value, say λ0, of the
bifurcation parameter. This simply means that F (u0, λ0) = 0. We will need to
consider the Jacobian matrix J of F at u0. We say that u0 is a hyperbolic fixed
point if J does not have any eigenvalues on the imaginary axis. An important
result is that if u0 is hyperbolic, then (u0, λ0) cannot be a bifurcation point.
That is, a necessary condition for (u0, λ0) to be a bifurcation point is that
the Jacobian matrix has purely imaginary eigenvalues. Of course, the converse
statement may not be true.

We now describe the Hopf bifurcation using an example. Consider the
system

x′ = 3x − x3 − y

y′ = x − λ. (12)

Note that there is only one fixed point for each value of the bifurcation pa-
rameter λ. This fixed point is at (x, y) = (λ, 3λ − λ3). It lies along the left
or right branch of the cubic x-nullcline if |λ| > 1 and lies along the middle
branch of this cubic if |λ| < 1.

We linearize (12) about the fixed point and compute the corresponding
eigenvalues to find that the fixed point is stable for |λ| > 1 and unstable for
|λ| < 1. When |λ| = 1, the fixed points are at the local maximum and local
minimum of the cubic; in this case, the eigenvalues are ±i. In particular, the
fixed points are not hyperbolic and a bifurcation is possible when λ = ±1.

As λ increases past −1, the fixed point loses its stability. The eigenvalues
are complex, so trajectories spiral towards the fixed point for λ < −1 and
trajectories spiral away from the fixed point for λ > −1. (Here we are assuming
that |λ + 1| is not too large.) One can show (using a computer) that these
unstable trajectories must approach a stable limit cycle. The amplitude of the
limit cycle approaches zero as λ → −1.

This is an example of a Hopf bifurcation. As the bifurcation parameter
varies, a fixed point loses its stability as its corresponding eigenvalues cross
the imaginary axis. The Hopf Bifurcation Theorem gives precise conditions
for when this guarantees the existence of a branch of periodic orbits.

Note that (12) exhibits two Hopf bifurcations. The first is the one we have
just discussed. It takes place when λ = −1 and the fixed point (x0, y0) =
(−1,−2) is at the local minimum of the cubic x-nullcline. The second Hopf
bifurcation takes place when λ = +1 and the fixed point (x0, y0) = (1, 2) is
at the local maximum of the cubic x-nullcline. Figure 6 shows a bifurcation
diagram corresponding to (12). Here we plot the maximum value of the x-
variable along a solution as a function of the bifurcation parameter λ. The
line x = λ corresponds to fixed points. This is drawn as a bold, solid line for
|λ| > 1 since these points correspond to stable fixed points, and as a dashed
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Fig. 6. The bifurcation diagram for (12). There are two Hopf bifurcation points.

line for |λ| < 1 since these points correspond to unstable fixed points. There
is a curve corresponding to limit cycles that connects the bifurcation points
at (λ, x) = (−1,−1) and (1, 1).

A Hopf bifurcation may be subcritical or supercritical. In the supercritical
case, the limit cycles are stable and they exist for the same parameter values
as the unstable fixed points (near the bifurcation point). In the subcritical
case, the limit cycles are unstable and exist for those same parameter values
as the stable fixed points.

3.5 Global Bifurcations

Hopf bifurcations are local phenomena; they describe the creation of limit
cycles near a fixed point. As the bifurcation parameter approaches some crit-
ical value, the limit cycle approaches the fixed point and the amplitude of
the limit cycle approaches zero. There are also global mechanisms by which
oscillations can be created or destroyed. It is possible, for example, that the
amplitude of oscillations remain bounded away from zero, but the frequency
of oscillations approaches zero. This will be referred to as a homoclinic bifur-
cation (for reasons described below). It is also possible for two limit cycles,
one stable and the other unstable, to approach and annihilate each other at
some critical parameter value. This is referred to as a saddle-node bifurcation
of limit cycles and resembles the saddle-node bifurcation of fixed points in
which two fixed points come together and annihilate each other.

Fig. 7 illustrates a homoclinic bifurcation. For all values of the bifurcation
parameter λ there are three fixed points; these are labeled as l, m, and u, and
they are stable, a saddle and unstable, respectively. When λ = λ0 (shown in
the middle panel), there is a homoclinic orbit labeled as γh(t). This orbit lies
in both the stable and unstable manifolds of the fixed point m. If γ < γ0
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Fig. 7. A homoclinic bifurcation.

(shown in the left panel) then there is no periodic orbit, while if γ > γ0, then
there is a stable limit cycle, labeled as p(t). Note that if γ < γ0, then the
stable manifold of m lies inside of the unstable manifold, while the opposite
holds if γ > γ0.

Note that solutions move very slowly as they pass near an unstable fixed
point. It follows that the period of the periodic solution, for λ > λ0, must
become arbitrarily large as λ approaches λ0. We also note that the nature
of the three fixed points do not change as λ is varied. Hence, there is no
local bifurcation. The homoclinic orbit is a global object, and the limit cycle
disappears via a global bifurcation.

3.6 Geometric Singular Perturbation Theory

Models for neuronal systems often involve variables that evolve on very dif-
ferent time scales. We shall see many examples of such systems in the next
chapter. The existence of different time scales naturally leads to models that
contain small parameters. Geometric singular perturbation theory provides a
powerful technique for analyzing these models. The theory gives a systematic
way to reduce systems with small parameters to lower dimensional reduced
systems that are more easily analyzed. Here we illustrate how this method
works with a simple example. The method will be used extensively in the
next chapter to study more complicated models arising from neuronal sys-
tems.

Consider a general two-dimensional system of the form

v′ = f(v, w)
w′ = εg(v, w). (13)

Here, ε > 0 is the small, singular perturbation parameter. We assume that
the v−nullcline is a cubic-shaped curve and the w−nullcline is a monotone
increasing curve that intersects the cubic at a single fixed point, denoted by
p0, that lies along the middle branch of the cubic nullcline. We also need to
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assume that v′ > 0 (< 0) below (above) the cubic v−nullcline and w′ > 0 (< 0)
below (above) the w−nullcline.

One can prove, using the Poincare-Bendixson theorem, that (13) has a
limit cycle for all ε sufficiently small. Moreover, the limit cycle approaches
a singular limit cycle as shown in Fig. 8 as ε → 0. The singular limit cycle
consists of four pieces. One of these pieces lies along the left branch of the
cubic nullcline. We shall see in the next chapter that this corresponds to the
silent phase of an action potential. Another piece of the singular solution lies
along the right branch of the cubic nullcline; this corresponds to the active
phase of the action potential. The other two pieces are horizontal curves in
the phase plane and they connect the left and right branches. The “jump-up”
to the active phase occurs at the left knee of the cubic and the “jump-down”
occurs at the right knee of the cubic.

f  = 0
g  =  0

W

V

p
0

Fig. 8. Nullclines and singular periodic orbit for an oscillatory relaxation oscillator.

We refer to (13) as a singular perturbation problem because the structure
of solutions of (13) with ε > 0 is very different than the structure of solutions
of (13) with ε = 0. If we set ε = 0, then (13) reduces to

v′ = f(v, w)
w′ = 0. (14)

Note that w is constant along every solution of (14); that is, every trajectory
is horizontal. The fixed point set is the entire cubic-shaped curve {f = 0}.
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This is very different from (13) with ε > 0 in which there is only one fixed
point and w is not constant along all other solutions.

The reduced system (14) does, however, give a good approximation of
solutions away from the cubic v−nullcline. In particular, it determines the
evolution of the jump-up and jump-down portions of the singular solution. In
order to determine the behavior of solutions near the cubic nullcline – that is,
during the silent and active phases – we introduce the slow time scale τ = εt
and then set ε = 0 in the resulting system. The leads to the system

0 = f(v, w)
ẇ = g(v, w). (15)

The first equation in (15) implies that the solution of (15) lies along the cubic
nullcline. The second equation in (15) determines the evolution of the solution
along this nullcline. Note that if we the write the left and right branches of
the cubic nullcline as v = HL(w) and v = HR(w), respectively, then we can
write the second equation in (15) as

ẇ = g(Hα(w), w) ≡ Gα(w) (16)

where α = L or R.
Note that each piece of the singular solution is determined by a single,

scalar differential equation. The silent and active phases correspond to so-
lutions of (16). This equation will be referred to as the slow equation. The
jump-up and jump-down correspond to solutions of the first equation in (14);
this is referred to as the fast equation.

The analysis described here will be used to study more complicated, higher
dimensional systems that arise in models for neuronal systems. Using the
existence of small parameters, we will construct singular periodic solutions.
Each piece of the singular solution will satisfy a reduced system of equations.
We note that the order of the slow equations will be equal to the number of
slow variables. In particular, if a given model has one variable that evolves at
a much slower time-scale than the other variables, then the order of the slow
equations will be just one. Hence, we will reduce the analysis of a complicated,
high dimensional system to a single, scalar equation.

4 Single Neurons

In this chapter we discuss models for a single neuron. We begin by quickly
reviewing the basic biology that forms the basis of the mathematical models.
We then present the Hodgkin-Huxley equations. This is certainly the most
important model in computational neuroscience. It was originally introduced
as a model for the generation of action potentials in the giant axon of a squid
and forms the basis of numerous other models of electrical activity in other
neurons. We then present a simpler, reduced model. This will be very useful
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in our analysis of networks of neuronal activity. We then review geometric
analysis of bursting oscillations.

4.1 Some Biology

The neuron is the basic information processing unit in the nervous system.
Most neurons consist of a cell body (or soma) and a number of processes that
project from the cell body; these are the dendrites and the axon. The dendrites
spread out from the cell body in a tree-like manner. They collect incoming
signals from other neurons or sensory receptors. Impulses are conducted away
from the soma along the axon. Axons may be very short, while others may
be very long (up to more than one meter). Many axons develop side branches
called axon collaterals that help bring information to several parts of the
nervous system simultaneously.

The neuron is surrounded by a cell membrane that maintains a stable
resting potential between the outside and the inside of the cell. In response
to a stimulus, the membrane potential may undergo a series of rapid changes,
called an action potential. This results in the generation of a nerve impulse.
In order to form a nerve impulse, the initial stimulus must be above some
threshold amount. Properties of the nerve impulse, including its shape and
propagation velocity, are often independent of the initial (superthreshold)
stimulus.

The resting potential is created because there is an imbalance in the con-
centrations of certain ions between the inside and the outside of the cell. The
intracellular concentrations of sodium and calcium ions are lower than in the
extracellular space, while the extracellular potassium concentration is lower
than inside the cell. In its resting state, the cell membrane is permeable to
potassium; however it is virtually impermeable to sodium and calcium. The
resting potential is about −70 mV and results, to a large extent, from the
selective permeability of the membrane and the imbalance in concentration of
potassium ions.

Following a stimulus, there is a sudden change in the permeability of the
membrane to sodium (or calcium) ions. There are channels in the membrane
selective to sodium. An action potential is generated when these channels
open and sodium ions rush into the cell interior, causing a rapid rise in the
membrane potential. After some delay, the sodium channels close and an in-
creased number of potassium channels open. Potassium ions then flow to the
outside of the cell and this brings the membrane towards the resting state.
The membrane potential actually overshoots the resting potential. There is
a recovery period in which sodium and potassium pumps move sodium and
potassium ions, respectively, out of and into the cell until the resting mem-
brane potential is achieved. During the initial phase of this recovery period,
it is impossible to generate another action potential. This is referred to as the
absolute refractory period.
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4.2 The Hodgkin-Huxley Equations

The Hodgkin-Huxley equations were published in 1952 and describe the gen-
eration of action potentials in the squid giant axon [12]. The principles un-
derlying the derivation of these equations form the basis of modeling other
cells throughout the nervous system. The Hodgkin-Huxley model consists of
four differential equations. One of these is a partial differential equation that
describes the evolution of the membrane potential. The other three equations
are ordinary differential equations that are related to properties of the ionic
channels. The Hodgkin-Huxley equations can be written as:

CM
∂v

∂t
= DM

∂2v

∂x2
− gNam

3h(v − vNa) − gKn4(v − vK) − gL(v − vL)

∂m

∂t
= (m∞(v) − m)/τm(v)

∂n

∂t
= (n∞(v) − n)/τn(v) (17)

∂h

∂t
= (h∞(v) − h)/τh(v)

Here, v(x, t) represents the membrane potential and each term in the first
equation represents a separate current. Since the cell membrane separates
charge it can be viewed as a capacitor and CM

∂v
∂t is the capacitive current. The

term DM
∂2v
∂x2 represents longitudinal current along the axon and the remaining

terms are ionic currents. The sodium current is INa ≡ gNam
3h(v − vNa).

It is modeled using Ohm’s law in which gNam3h is the conductance and
(v − vNa) is a driving potential. The maximal sodium conductance is gNa

and m3h can be thought of as the probability that a sodium channel is open.
This will be discussed in more detail shortly. The constant vNa is called the
sodium reversal potential. This is the value of the membrane potential when
the sodium concentration, which produces an inward flux of sodium through
the sodium channel, is balanced by the electrical potential gradient tending
to move sodium ions in the channel in the opposite direction. In a similar
manner, IK ≡ gKn4(v − vK) is the potassium current with gK being the
maximal potassium conductance and n4 is the probability that a potassium
channel is open. Finally, IL ≡ gL(v − vL) is usually referred to as a leak
conductance; it is due to the effects of other, less important, ions including
chloride.

Note that the gating variables m, h, and n satisfy differential equations
that depend on the membrane potential v. Hence, the probability that a
sodium or potassium channel is open or closed depends on the membrane po-
tential. The sodium channel depends on two variables, namely m and h. We
can think of the sodium channel as possessing two gates; both gates must be
open in order for sodium to flow into the cell. We will not describe the voltage
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dependent steady-state functions n∞(v), h∞(v), n∞(v) or the time constants
τm(v), τh(v), τn(v) here. A detailed description can be found in [16, 19].

What distinguishes one cell from another are the types of ionic currents
responsible for the action potential and what factors determine whether the
channels corresponding to these ions are open or closed. In what follows, we
simplify the presentation by ignoring the spatial dependence of the membrane
potential; hence, we only consider systems of ordinary differential equations.
Each cell then satisfies a system of the general form

CMv′ = −Iion(v, w1, w2, ..., wn) + I (18)
w′

i = ε[wi,∞(v) − wi]/τi(v).

Here v(t) denotes the membrane potential, Iion is the sum of v- and t-
dependent currents through the various ionic channel types and I represents
external applied current. Each variable wi(t) describes the state of channels
of a given type. Each current Ij is assumed to be ohmic and can be expressed
as Ij = ĝjσj(v, w1, ...., wn)(v − vj) where ĝj > 0, the vj are constants and
the function σj represents the fraction of j-channels that are open.

4.3 Reduced Models

The dynamics of even one single neuron can be quite complicated. Examples of
such complex behavior are given in the next subsection when we discuss burst-
ing oscillations. We are primarily interested in developing techniques to study
networks consisting of possibly a large number of coupled neurons. Clearly
the analysis of networks may be extremely challenging if each single element
exhibits complicated dynamics. For this reason, we often consider simpler,
reduced models for single neurons. The insights we gain from analyzing the
reduced models are often extremely useful in studying the behavior of more
complicated biophysical models.

An example of a reduced model are the Morris-Lecar equations [24]:

v′ = −gL(v − vL) − gKw(v − vK) − gCam∞(v)(v − vCa) + I

w′ = ε(w∞(v) − w)cosh((v + .1)/.3) (19)

The parameters and nonlinear functions in (19) are given by vL = −.1, gL =
.5, gK = 2, vK = −.7, gCa = 1, vCa = 1, ε = .1, m∞(v) = .5(1 + tanh((v −
.01)/.145)), w∞(v) = .5(1 + tanh((v + .1)/.15)).

These equations can be viewed as a simple model for a neuron in which
there are potassium and calcium currents along with the leak current. There
is also an applied current represented by the constant I. Here, v represents
the membrane potential, rescaled between −1 and 1, and w is activation of
the potassium current. Note that the activation of the calcium current is
instantaneous. The small, positive parameter ε is introduced to emphasize
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that w evolves on a slow time scale. We treat ε as a singular perturbation
parameter in the analysis.

Note that this simple model has no spatial dependence; that is, we are
viewing the neuron as a single point. This will certainly simplify our anal-
ysis of time-dependent oscillatory behavior. In Section 4.5, we add spatial
dependence to the model and consider the generation of propagating wave
activity.

If I = 0, then every solution approaches a stable fixed point. This cor-
responds to a neuron in its resting state. However, if I = .4, then solutions
of (19) quickly approach a stable limit cycle. The periodic solution alternates
between an active phase and a silent phase of near resting behavior. Moreover,
there are sharp transitions between the silent and active phases.

These solutions can be easily analyzed using the phase space methods
described in Section 3.6. The v-nullcline is a cubic-shaped curve, while the
w-nullcline is a monotone increasing function that intersects the v-nullcline at
precisely one point; hence, there exists precisely one fixed point of (19), de-
noted by p0. If I = 0, then p0 lies along the left branch of the cubic v-nullcline
and one can easily show that p0 is asymptotically stable. If, on the other hand,
I = .4, then p0 lies along the middle branch of the cubic nullcline and p0 is
unstable. There must then exist a stable limit cycle for all ε sufficiently small;
moreover, the limit cycle approaches a singular limit cycle as shown in Fig. 8
as ε → 0.

The phase plane analysis does not depend on the precise details of the non-
linear functions and other parameters in (19). We will consider more general
two dimensional systems of the form

v′ = f(v, w) + I

w′ = εg(v, w) (20)

where the v-nullcline and the w-nullcline satisfy the assumptions described in
Section 3.6.

We note that, with some assumptions, one can systematically reduce a
four dimensional Hodgkin-Huxley-like model (without spatial dependence)
to a two dimensional Morris-Lecar-like model. One first observes that some
of the channel-state variables evolve much faster than others. In particular,
the sodium activation variable m evolves on a much faster time-scale than
the sodium inactivation variable h and the potassium activation variable n.
We therefore assume assume that m activates instantaneously; that is, we
set m = m∞(v). This reduces the Hodgkin-Huxley equations to just three
equations for v, h, and n. To reduce the equations further, we observe that
along solutions h ≈ λ(1−n) for some constant λ. Assuming this to be true, we
can eliminate the equation for h and we now have a two-dimensional system
similar to the Morris-Lecar equations.

The reduced two-dimensional models given by (19), or more generally (20),
exhibit many properties of real neurons. For example, (20) exhibits a refrac-
tory period: immediately after an action potential it is difficult to generate
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another one. This is because when the trajectory in phase space correspond-
ing to the action potential returns to the silent phase, it lies along the left
branch of the cubic nullcline with an elevated value of the recovery variable
n. Here, the trajectory is further away from the threshold, corresponding to
the middle branch.

Note also that when there is no applied current (that is, I = 0), (20)
exhibits a stable fixed point; this corresponds to the resting state of a neuron.
If I is sufficiently large, then (20) exhibits sustained oscillations. The simple
model also displays excitability. That is, a small stimulus will not generate
an action potential. In this case the solution returns quickly to rest. In order
to produce an action potential, the initial stimulus must be larger than some
threshold. Note that the threshold corresponds to the position of the middle
branch of the cubic nullcline.

Finally, we now discuss how the geometric singular perturbation approach
can be used to understand the response of a neuron to injected current. Con-
sider the system

v′ = f(v, w) + I(t)
w′ = εg(v, w) (21)

where f and g are as in (20) and I(t) represents the injected current. We
assume that when I(t) = 0 the system is excitable; that is, the v- and w-
nullclines intersect along the left branch of the cubic. This is a globally stable
fixed point and the model neuron is in its resting state. We further assume
that there exists I0 and Ton < Toff such that

I(t) = I0 if Ton < t < Toff and I(t) = 0 otherwise.

We will consider two cases: either I0 > 0, in which case the injected current
is said to be depolarizing, or I0 < 0 and the injected current is hyperpolarizing.
Fig. 9 illustrates the neuron’s response when (top) I0 = .1 and (bottom) I0 =
−.1. In the depolarizing case, the neuron fires an action potential immediately
after the injected current is turned on. The cell then returns to rest. In the
hyperpolarizing case, the neuron’s membrane potential approaches a more
negative steady state until the current is turned off, at which time the neuron
fires a single action potential. This last response is often called post-inhibitory
rebound [9].

The geometric approach is very useful in understanding these responses.
As before, we construct singular solutions in which ε is formally set equal to
zero. See Fig. 10. The singular solutions lie on the left or right branch of some
cubic-shaped nullcline during the silent and active phases. The cubics depend
on the values of I(t). We denote the cubic corresponding to I = 0 as C and
the cubic corresponding to I0 as C0. Note that if I0 > 0, then C0 lies ‘above’
C, while if I0 < 0, then C0 lies ‘below’ C. This is because of our assumption
that f < 0 (> 0) above (below) the v-nullcline.

Consider the depolarizing case I0 > 0. This is illustrated in Fig. 10 (left).
For t < Ton, the solution lies at the fixed point p0 along the left branch of C.
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Fig. 9. Response of a model neuron to applied current. Current is applied at time
t = 50 and turned off at t = 100. In the top figure, the current is depolarizing
(I0 = .1), while in the bottom figure the current is hyperpolarizing (I0 = −.1) and
the neuron exhibits post-inhibitory rebound.

When t = Ton, I(t) jumps to I0 and the cell’s cubic switches to C0. If the left
knee of C0 lies above p0 then the cell jumps up to the right branch of C0; this
corresponds to the firing of an action potential. If the w-nullcline intersects
C0 along its left branch, then the cell will approach the stable fixed point
along the left branch of C0 until the input is turned off. It is possible that
the w-nullcline intersects C0 along its middle branch. If this is the case then
the cell oscillates, continuing to fire action potentials, until t = Toff when the
input is turned off. Note that in order for the cell to fire an action potential,
the injected current must be sufficiently strong. I0 must be large enough so
that the p0 lies below the left knee of C0.

We next consider the hyperpolarizing case I0 < 0, shown in Fig. 10 (right).
Then C0 lies below C and the w-nullcline intersects C0 at a point denoted
by p1. When t = Ton, the solution jumps to the left branch of C0 and then
evolves along this branch approaching p1 for Ton < t < Toff . When t = Toff ,
I switches back to 0 and the cell now seeks the left or right branch of C. If,
at this time, the cell lies below the left knee of C, then the cell will jump up
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Fig. 10. Phase space representation of the response of a model neuron to applied
current. Current is applied at time t = Ton and turned off at t = Toff . (Left)
Depolarizing current. The cell jumps up as soon as the current is turned on. (Right)
Hyperplorizing current. The cell jumps to the left branch of C0 when the current is
turned on and jumps up to the active phase due to post-inhibitory rebound when
the current is turned off.

to the active phase giving rise to post-inhibitory rebound. In order to have
post-inhibitory rebound, the hyperpolarizing input must be sufficiently large
and last sufficiently long. I0 must be sufficiently negative so that p1 lies below
the left knee of C. Moreover, Toff −Ton must be sufficiently large so that the
cell has enough time to evolve along the left branch of C0 so that it lies below
the left knee of C when the input is turned off.

4.4 Bursting Oscillations

Certain neurons and other excitable cells exhibit bursting oscillations; this
behavior is characterized by a silent phase of near steady state resting behavior
alternating with an active phase of rapid, spike-like oscillations, as shown in
Fig. 11. Examples of biological systems which display bursting oscillations
include the Aplysia R-15 neuron, insulin secreting pancreatic beta cells, and
neurons in the hippocampus, cortex and thalamus. For references, see [46], for
example.

Fig. 11 shows three types of bursting oscillations. Fig. 11 (top) displays
an example of square-wave bursting. This is characterized by abrupt peri-
odic switching between the quiescent, or silent, phase and the active phase of
repetitive firing. Note that the frequency of spikes decreases at the end of the
active phase. Fig. 11 (middle) illustrates elliptic bursting. Small amplitude os-
cillations occur during the silent phase and the amplitude of spikes gradually
waxes and wanes. Finally, Fig. 11 (bottom) displays parabolic bursting. The
spike rate first increases and then decreases in a parabolic manner.
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Fig. 11. Classes of bursting oscillations. (Top) Square-wave bursting. (Middle) El-
liptic bursting. (Bottom) Parabolic bursting.

The mathematical mechanisms responsible for each class of bursting os-
cillation are described in terms of geometric properties of the corresponding
phase space dynamics. Here we describe the mathematical mechanisms re-
sponsible for square-wave bursting. We only consider the simplest, lowest di-
mensional, models which generate square-wave bursting. Geometric analysis
of other bursting types can be found in [27].

Consider a three-dimensional version of (13) of the form

v′ = f(v, w, y)
w′ = g(v, w, y) (22)
y′ = εh(v, w, y, λ)

Here, ε > 0 is a small, singular perturbation parameter and λ is some other
fixed parameter. If we set ε = 0, then y is constant along solutions and we
can think of y as a bifurcation parameter in the fast system (FS) consisting
of the first two equations in (22). The primary assumptions on (22) concern
the bifurcation structure of the fast subsystem. This structure appears in
Fig. 12, which also shows the projection of the square-wave bursting solution
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Fig. 12. Bifurcation structure for square-wave bursting. The bold curve is the pro-
jection of a square-wave bursting solution.

onto the corresponding bifurcation diagram. The set of fixed points of (FS) is
assumed to be a Z-shaped curve in the (v, w, y) phase space. We denote this
curve by S; only a portion of this Z-shaped curve is shown in Fig. 12. The
fixed points along the lower branch of S are stable solutions of (FS), while
the fixed points on the middle branch of S are saddles. Fixed points along
the upper branch of S may be stable or unstable. We also assume that there
exists a one-parameter family of periodic solutions of (FS), denoted by P .
These limit cycles originate at a Hopf bifurcation along the upper branch of S
and terminate along a solution of (FS) that is homoclinic to one of the fixed
points on the middle branch of S.

Assumptions are also needed about the slow dynamics. We assume that
the y-nullsurface {h = 0} defines a two-dimensional manifold that intersects
S at a single point. This point lies on the middle branch of S between the
homoclinic point and the right knee of S. Finally, h > 0 above {h = 0} and
h < 0 below {h = 0}.

We now give a heuristic explanation for why this system generates a
square-wave bursting solution. Suppose that ε > 0 is small and consider a
solution that begins close to the lower branch. Because this branch consists of
stable fixed points of (FS), the trajectory quickly approaches a small neigh-
borhood of the lower branch. The trajectory tracks rightward along the lower
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branch according to the slow dynamics, until it passes the right knee. This
portion of the solution corresponds to the silent phase. Once past the right
knee, the trajectory is attracted to near P , the branch of periodic solutions of
(FS). This generates the fast repetitive spikes of the bursting solutions. The
trajectory passes near P , with decreasing y, until it reaches a neighborhood
of the homoclinic orbit of (FS). Once it passes the homoclinic orbit, the fast
dynamics eventually forces the trajectory back to near the lower branch of S
and this completes one cycle of the bursting solution.

This description is formal. It is not at all clear that if the system (22)
satisfies the above assumptions, then, for all ε sufficiently small, there exists a
unique periodic solution corresponding to a bursting oscillation. In fact, it is
shown in [38] that such a result cannot be true, in general. However, in [22],
it is proved that the bursting solution will be uniquely determined for all ε
sufficiently small, except for those ε that lie in a certain very small set.

Remark 4.1 A crucial ingredient for square-wave bursting is bistability. This
allows for a hysteresis loop between a lower branch of stable fixed points and
an upper branch of stable limit cycles. It is also very important that the slow
nullsurface {h = 0} lies between these two branches. If this last condition
is not satisfied, then the system may exhibit other types of solutions. For
example, suppose that {h = 0} intersects the lower branch of S. This point of
intersection will then be a globally stable fixed point of (22). If, on the other
hand, {h = 0} intersects S along its middle branch above the homoclinic
point, then (22) may give rise to a stable limit cycle which always remains
in the active phase near P . This type of solution is referred to as continuous
spiking. Rigorous results concerning the existence of continuous spiking are
presented in [39].

Remark 4.2 Square-wave bursting arises in models for electrical activity in
pancreatic β-cells. It is believed that this activity plays an important role in
the release of insulin from the cells. The first mathematical model for this
bursting was due to Chay and Keizer [5]. There have been numerous related
models, based on experimental data, since then. A review of these models,
along with a detailed description of the more biological issues, is given in [32].
Square wave bursting also arises in recent models for respiratory CPG neurons
[3] and models for pattern generation based on synaptic depression [37].

Remark 4.3 Very complicated (global) bifurcations can take place as the
parameters ε or λ are varied in (22). The singular perturbation parameter
ε controls the rate at which a bursting trajectory passes through the silent
and active phases. In particular, the number of spikes per burst is O(1/ε) and
becomes unbounded as ε → 0. It is demonstrated in [38] that Smale horseshoe
chaotic dynamics can arise during the transition of adding a spike.

Perhaps even more interesting is the bifurcation structure of (22) as λ
is varied. In the β-cell models, λ is related to the glucose concentration. As
the glucose level gradually increases, the cells exhibit resting behavior, then
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bursting oscillations, and then continuous spiking. This is consistent with
behavior exhibited by the model. As λ increases, the y-nullsurface {h = 0}
intersects the lower branch of S, then the middle branch of S below the
homoclinic point, and then the middle branch of S above the homoclinic point.
Numerical studies [6] and rigorous analysis [39] have shown that as λ varies
between the bursting and continuous spiking regimes, the bifurcation structure
of solutions must be very complicated. A Poincaré return map defined by the
flow from a section transverse to the homoclinic orbit of (FS) will exhibit
Smale-horseshoe dynamics for a robust range of parameter values. This leads
to solutions in which the number of spikes per burst varies considerably.

Remark 4.4 Some phenomenological, polynomial models for square-wave
bursting have been proposed. See, for example, [11], [25], [7]. Analysis of mod-
els with two slow variables which exhibit square-wave bursting is given in [33].

Remark 4.5 A system of equations which give rise to square-wave bursting
is [28]:

v′ = −(gcam∞(v)(v − vca) + gkw(v − vk) + gl(v − vl) + gkcaz(y)(v − vk))+I

w′ = 20φ(w∞(v) − w)/τ(v)

y′ = 20ε(−µgcam∞(v)(v − vca) − y)

where, gca = 4., gk = 8.0, gl = 2.0, vk = −84, vl = −60, vca = 120.0, I =
45, gkca = .25, φ = .23, ε = .005, and µ = .02. The nonlinear functions are
given by m∞(v) = .5(1. + tanh((v + 1.2)/18)), w∞(v) = .5(1. + tanh((v −
12)/17.4)), z(y) = y/(1 + y) and τ(v) = cosh((v − 12.)/34.8).

4.5 Traveling Wave Solutions

We have so far considered a model for neurons that ignores the spatial depen-
dence. This has allowed us to study how temporal oscillatory behavior arises.
One of the most important features of neurons is the propagating nerve im-
pulse and this clearly requires consideration of spatial dynamics. The nerve
impulse corresponds to a traveling wave solution and there has been extensive
research on the mathematical mechanisms responsible for both the existence
and stability of these types of solutions. Here we briefly illustrate how one
constructs a traveling wave solution in a simple model, the FitzHugh-Nagumo
equations. References related to this important topic are given later.

The FitzHugh-Nagumo equations can be written as:

vt = vxx + f(v) − w

wt = ε(v − γw). (23)

Here, (v, w) are functions of (x, t), x ∈ R and t ≥ 0. Moreover, f(v) = v(1 −
v)(v−a), 0 < a < 1/2, ε is a small singular perturbation parameter, and γ is



48 David Terman

a positive constant chosen so that the curves w = f(v) and v = γw intersect
only at the origin.

A traveling wave solution of (23) is a solution of the form (v(x, t), w(x, t)) =
(V (z), W (z)), z = x + ct; that is, a traveling wave solution corresponds to a
solution that propagates with constant shape and velocity. The velocity is c
as in not known a priori. We also assume that the traveling wave solution
satisfies the boundary conditions limz→±∞(V (z), W (z)) = (0, 0).

Note that a traveling wave solution corresponds to a solution of the first
order system of ordinary differential equations

V ′ = Y

Y ′ = cY − f(V ) + W

W ′ =
ε

c
(V − γW ) (24)

together with the boundary conditions

limz→±∞(V (z), Y (z), W (z)) = (0, 0, 0) (25)

Hence, a traveling wave solution corresponds to a homoclinic orbit of a first
order system. This homoclinic orbit will exist only for special values of the
velocity parameter c.

One can use geometric singular perturbation methods, as described in
Section 3.6, to construct a singular homoclinic orbit in which ε is formally set
equal to zero. One needs to then rigorously prove that this singular solution
perturbs to an actual homoclinic orbit that lies near the singular orbit for ε
sufficiently small.

The singular orbit is constructed as follows. As before, the singular orbit
consists of four pieces, as shown in Fig. 13. Two of these pieces correspond
to the silent and active phases and the other two pieces correspond to the
jump-up and jump-down between these phases. As before, we consider both
fast and slow time scales.

The jump-up and jump-down pieces correspond to solutions of the fast
equations. These are obtained by simply setting ε = 0 in (24). The resulting
equations are:

V ′ = Y

Y ′ = cY − f(V ) + W

W ′ = 0 (26)

Note that W must be constant along this solution. For the jump-up (or front),
we set W ≡ 0 and look for a solution of the first two equations of (24) that
satisfy

limz→−∞(V, Y ) = (0, 0) and limz→+∞(V, Y ) = (1, 0) (27)
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Fig. 13. The singular homoclinic orbit corresponding to a traveling wave solution.

It is well known that there exists a unique solution for a unique value of the
parameter c. We denote this parameter as c0. This is the velocity of the wave
in the limit ε → 0.

For the jump-down (or back) we set W ≡ W0, where W0 is chosen so that
if c = c0 then there exists a solution of the first two equations in (26) such
that limz→−∞(V, Y, W0) lies along the right branch of the cubic W = f(V )
and limz→+∞(V, Y, W0) lies along the left branch of this cubic. This is shown
in Fig. 13. We note that W0 is indeed uniquely determined.

We now consider the pieces of the singular traveling wave solution corre-
sponding to the silent and active phases. We introduce the slow time scale
η = εz and then set ε = 0 to obtain the slow equations

Y = 0
W = f(V )

Ẇ =
1
c0

(V − γW ) (28)

Here Ẇ corresponds to differentiation with respect to η. These equations
demonstrate that during the silent and active phases, the singular solution lies
along the cubic curve defined by W = f(V ), Y = 0. The complete singular
homoclinic orbit is shown in Fig. 13.

Remark 4.6 References to rigorous studies of the existence and stability of
traveling wave solutions can be found in [17].
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5 Two Mutually Coupled Cells

5.1 Introduction

In this section, we consider a network consisting simply of two mutually cou-
pled cells. By considering such a simple system, we are able to describe how
we model networks of oscillators, the types of behavior that can arise in such
systems and the mathematical techniques we use for the analysis of the be-
havior. For this discussion, we assume that each cell, without any coupling, is
modeled as the relaxation oscillator

v′ = f(v, w)

w′ = εg(v, w)
(29)

Here ε is assumed to be small; that is, w represents a slowly evolving quantity.
As in Section 3, we assume that the v-nullcline, f(v, w) = 0, defines a cubic-
shaped curve and the w-nullcline, g = 0, is a monotone increasing curve which
intersects f = 0 at a unique point p0. We also assume that f > 0 (f < 0)
below (above) the v-nullcline and g > 0 (< 0) below (above) the w-nullcline.

System (29) can be viewed as a simple model for a bursting neuron in
which the active phase corresponds to the envelope of a burst’s rapid spikes.
Of course, a two-dimensional model for a single cell cannot exhibit the more
exotic dynamics described in the previous section for a bursting cell. However,
by considering a simple relaxation-type oscillator for each cell, we will be able
to discuss how network properties contribute to the emergent behavior of a
population of cells. It is, of course, a very interesting issue to understand how
this population behavior changes when one considers more detailed models
for each cell. Some results for more detailed models are given in [30].

In the next section, we describe how we model the two mutually coupled
cells. The form of coupling used is referred to as synaptic coupling and is
meant to correspond to a simple model for chemical synapses. There are many
different forms of synaptic coupling. For example, it may be excitatory or
inhibitory and it may exhibit either fast or slow dynamics. We are particularly
interested in how the nature of the synaptic coupling affects the emergent
population rhythm. A natural question is whether excitatory or inhibitory
coupling leads to either synchronous or desynchronous rhythms. There are four
possible combinations and all four may, in fact, be stably realized, depending
on the details of the intrinsic and synaptic properties of the cells. Here we
discuss conditions for when excitatory coupling leads to synchronous rhythms
and inhibitory coupling leads to antiphase behavior.

5.2 Synaptic Coupling

We model a pair of mutually coupled neurons by the following system of
differential equations
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v′1 = f(v1, w1) − s2gsyn(v1 − vsyn)

w′
1 = εg(v1, w1)

v′2 = f(v2, w2) − s1gsyn(v2 − vsyn)

w′
2 = εg(v2, w2)

(30)

Here (v1, w1) and (v2, w2) correspond to the two cells. The coupling term
sjgsyn(vi − vsyn) can be viewed as an additional current which may change a
cell’s membrane potential vi. The parameter gsyn corresponds to the maximal
conductance of the synapse and is positive, while the reversal potential vsyn

determines whether the synapse is excitatory or inhibitory. If v < vsyn along
each bounded singular solution, then the synapse is excitatory, while if v >
vsyn along each bounded singular solution, then the synapse is inhibitory.

The terms si, i = 1, 2, in (30) encode how the postsynaptic conductance
depends on the presynaptic potentials vi. There are several possible choices
for the si. The simplest choice is to assume that si = H(vi − θsyn), where
H is the Heaviside step function and θsyn is a threshold above which one
cell can influence the other. Note, for example, that if v1 < θsyn, then s1 =
H(v1 − θsyn) = 0, so cell 1 has no influence on cell 2. If, on the other hand,
v1 > θsyn, then s1 = 1 and cell 2 is affected by cell 1.

Another choice for the si is to assume that they satisfy a first order equa-
tion of the form

s′i = α(1 − si)H(vi − θsyn) − βsi (31)

where α and β are positive constants and H and θsyn are as before. Note that
α and β are related to the rates at which the synapses turn on or turn off. For
fast synapses, we assume that both of these constants are O(1) with respect
to ε. For a slow synapse, we assume that α = O(1) and β = O(ε); hence, a
slow synapse activates on the fast time scale but turns off on the slow time
scale.

5.3 Geometric Approach

All of the networks in this paper are analyzed by treating ε as a small, sin-
gular perturbation parameter. As in the previous section, the first step in
the analysis is to identify the fast and slow variables. We then dissect the
full system of equations into fast and slow subsystems. The fast subsystem
is obtained by simply setting ε = 0 in the original equations. This leads to a
reduced set of equations for the fast variables with each of the slow variables
held constant. The slow subsystems are obtained by first introducing the slow
time scale τ = εt and then setting ε = 0 in the resulting equations. This leads
to a reduced system of equations for just the slow variables, after solving for
each fast variable in terms of the slow ones. The slow subsystems determine
the evolution of the slow variables while the cells are in either the active or
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the silent phase. During this time, each cell lies on either the left or the right
branch of some “cubic” nullcline determined by the total synaptic input which
the cell receives. This continues until one of the cells reaches the left or right
“knee” of its corresponding cubic. Upon reaching a knee, the cell may either
jump up from the silent to the active phase or jump down from the active
to the silent phase. The jumping up or down process is governed by the fast
equations.

For a concrete example, consider two mutually coupled cells with fast
synapses. The dependent variables (vi, wi, si), i = 1, 2, then satisfy (30) and
(31). The slow equations are

0 = f(vi, wi) − sjgsyn(vi − vsyn)

ẇi = g(vi, wi)

0 = α(1 − si)H(vi − θsyn) − βsi

(32)

where differentiation is with respect to τ and i 	= j. The first equation in
(32) states that (vi, wi) lies on a curve determined by sj . The third equation
states that if cell i is silent (vi < θsyn), then si = 0, while if cell i is active,
then si = α

α+β ≡ sA. We demonstrate that it is possible to reduce (32) to a
single equation for each of the slow variables wi. Before doing this, it will be
convenient to introduce some notation.

Let Φ(v, w, s) ≡ f(v, w) − gsyns(v − vsyn). If gsyn is not too large, then
each Cs ≡ {Φ(v, w, s) = 0} defines a cubic-shaped curve. We express the left
and right branches of Cs by {v = ΦL(w, s)} and {v = ΦR(w, s)}, respectively.
Finally, let

GL(w, s) = g(ΦL(w, s), w) and GR(w, s) = g(ΦR(w, s), w)

Now the first equation in (32) can be written as 0 = Φ(vi, wi, sj) with sj fixed.
Hence, vi = Φα(wi, sj) where α = L if cell i is silent and α = R if cell i is
active. It then follows that each slow variable wi satisfies the single equation

ẇi = Gα(wi, sj) (33)

By dissecting the full system into fast and slow subsystems, we are able to
construct singular solutions of (30),(31). In particular, this leads to sufficient
conditions for when there exists a singular synchronous solution and when this
solution is (formally) asymptotically stable. The second step in the analysis
is to rigorously prove that the formal analysis, in which ε = 0, is justified for
small ε > 0. This raises some very subtle issues in the geometric theory of
singular perturbations, some of which have not been completely addressed in
the literature. For most of the results presented here, we only consider singular
solutions.

We note that the geometric approach used here is somewhat different from
that used in many dynamical systems studies (see, for example, [28]). All of the



An Introduction to Dynamical Systems and Neuronal Dynamics 53

networks considered here consist of many differential equations, especially for
larger networks. Traditionally, one would interpret the solution of this system
as a single trajectory evolving in a very large dimensional phase space. We
consider several trajectories, one corresponding to a single cell, moving around
in a much lower dimensional phase space (see also [43], [41], [34], [40], [30]).
After reducing the full system to a system for just the slow variables, the
dimension of the lower dimensional phase space equals the number of slow
intrinsic variables and slow synaptic variables corresponding to each cell. In
the worst case considered here, there is only one slow intrinsic variable for
each cell and one slow synaptic variable; hence, we never have to consider
phase spaces with dimension more than two. Of course, the particular phase
space we need to consider may change, depending on whether the cells are
active or silent and also depending on the synaptic input that a cell receives.

5.4 Synchrony with Excitatory Synapses

Consider two mutually coupled cells with excitatory synapses. Our goal here
is to give sufficient conditions for the existence of a synchronous solution
and its stability. Note that if the synapses are excitatory, then the curve
CA ≡ CsA lies ‘above’ C0 ≡ {f = 0} as shown in Fig. 14. This is because
for an excitatory synapse, v < vsyn along the synchronous solution. Hence,
on CA, f(v, w) = gsynsA(v − vsyn) < 0, and we are assuming that f < 0
above C0. If gsyn is not too large, then both C0 and CA will be cubic shaped.
We assume that the threshold θsyn lies between the two knees of C0. In the
statement of the following result, we denote the left knee of C0 by (vLK , wLK).

Theorem: Assume that each cell, without any coupling, is oscillatory. More-
over, assume the synapses are fast and excitatory. Then there exists a syn-
chronous periodic solution of (30), (31). This solution is asymptotically stable
if one of the following two conditions is satisfied.

(H1) ∂f
∂w < 0, ∂g

∂v > 0, and ∂g
∂w < 0 near the singular synchronous solution.

(H2) |g(vLK , wLK)| is sufficiently small.

Remark 5.1 We note that the synchronous solution cannot exist if the cells
are excitable and the other hypotheses, concerning the synapses, are satisfied.
This is because along a synchronous solution, each (vi, wi) lies on the left
branch of C0 during the silent phase. If the cells are excitable, then each
(vi, wi) will approach the point where the w-nullcline {g = 0} intersects the
left branch of C0. The cells, therefore, will not be able to jump up to the
active phase.

Remark 5.2 The assumptions concerning the partial derivatives of f and g
in (H1) are not very restrictive since we are already assuming that f > 0 (< 0)
below (above) the v-nullcline and g > 0 (< 0) below (above) the w-nullcline.
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Remark 5.3 A useful way to interpret (H2) is that the silent phases of the
cells are much longer than their active phases. This is because g(vLK , wLK)
gives the rate at which the slow variables wi evolve near the end of the silent
phase. Note that g(vLK , wLK) will be small if the left knee of C0 is very close
to the w-nullcline.

Proof: We first consider the existence of the synchronous solution. This is
straightforward because along a synchronous solution (v1, w1, s1) = (v2, w2,
s2) ≡ (v, w, s) satisfy the reduced system

v′ = f(v, w) − sgsyn(v − vsyn)

w′ = εg(v, w)

s′ = α(1 − s)H(v − θsyn) − βs

The singular solution consists of four pieces. During the silent phase, s = 0
and (v, w) lies on the left branch of C0. During the active phase s = sA and
(v, w) lies on the right branch of CA. The jumps between these two phases
occur at the left and right knees of the corresponding cubics.

We next consider the stability of the synchronous solution to small per-
turbations. We begin with both cells close to each other in the silent phase
on the left branch of C0, with cell 1 at the left knee ready to jump up. We
follow the cells around in phase space by constructing the singular solution
until one of the cells returns to the left knee of C0. As before, the singular
solution consists of four pieces. We need to show that the cells are closer to
each other after this complete cycle than they were initially.

The first piece of the singular solution begins when cell 1 jumps up. When
v1(t) crosses θsyn, s1(t) → sA. This raises the cubic corresponding to cell
2 from C0 to CA. If |w1(0) − w2(0)| is sufficiently small, corresponding to a
sufficiently small perturbation, then cell 2 lies below the left knee of CA. The
fast equations then force cell 2 to also jump up to the active phase, as shown
in Fig. 14. Note that this piece takes place on the fast time scale. Hence, on
the slow time scale, both cells jump up at precisely the same time.

During the second piece of the singular solution, both oscillators lie in the
active phase on the right branch of CA. Note that the ordering in which the
oscillators track along the left and right branches has been reversed. While in
the silent phase, cell 1 was ahead of cell 2. In the active phase, cell 2 leads the
way. The oscillators remain on the right branch of CA until cell 2 reaches the
right knee.

The oscillators then jump down to the silent phase. Cell 2 is the first to
jump down. When v2(t) crosses θsyn, s2 switches from sA to 0 on the fast time
scale. This lowers the cubic corresponding to cell 1 from CA to C0. If, at this
time, cell 1 lies above the right knee of CA, then cell 1 must jump down to
the silent phase. This will certainly be the case if the cells are initially close
enough to each other.
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Fig. 14. Nullclines for an oscillatory relaxation oscillator with (CA) and without
(C0) excitatory coupling. Note that cell 2 responds to cell 1 through Fast Threshold
Modulation.

During the final piece of the singular solution, both oscillators move down
the left branch of C0 until cell 1 reaches the left knee. This completes one full
cycle.

To prove that the synchronous solution is stable, we must show that the
cells are closer to each other after this cycle; that is, there is compression in the
distance between the cells. There are actually several ways to demonstrate this
compression; these correspond to two different ways to define what is meant by
the ‘distance’ between the cells. Here we consider a Euclidean metric, which is
defined as follows: Suppose that both cells lie on the same branch of the same
cubic and the coordinates of cell i are (vi, wi). Then the distance between
the cells is defined as simply |w1 − w2|. Note that during the jump up and
the jump down, this metric remains invariant. This is because the jumps are
horizontal so the values of wi do not change. If there is compression, therefore,
it must take place as the cells evolve in the silent and active phases. We now
show that this is indeed the case if (H1) is satisfied.

Suppose that when τ = 0, both cells lie in the silent phase on C0. We
assume, for convenience, that w2(0) > w1(0). We need to prove that w2(τ) −
w1(τ) decreases as long as the cells remain in the silent phase. Now each wi

satisfies (33) with α = L and sj = 0. Hence,
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wi(τ) = wi(0) +
∫ τ

0

GL(wi(ξ), 0)dξ

and, using the Mean Value Theorem,

w2(τ) − w1(τ) = w2(0) − w1(0)

+
∫ τ

0

GL(w2(ξ), 0) − GL(w1(ξ), 0) dξ

= w2(0) − w1(0) (34)

+
∫ τ

0

∂GL

∂w
(w∗, 0)(w2(ξ) − w1(ξ))dξ

for some w∗. Now GL(w, s) = g(ΦL(w), w). Hence, ∂GL

∂w = gvΦ
′
L(w) + gw.

We assume in (H1) that gv > 0 and gw < 0 near the synchronous solution.
Moreover, Φ′

L(w) < 0 because v = ΦL(w) defines the left branch of the cubic
C0 which has negative slope. It follows that ∂GL

∂w < 0, and therefore, from
(34), w2(τ) − w1(τ) < w2(0) − w1(0). This gives the desired compression; a
similar computation applies in the active phase. We note that if there exists
γ > 0 such that ∂GL

∂w < −γ along the left branch, then Gronwall’s inequality
shows that w2(τ) − w1(τ) decreases at an exponential rate.

We next consider (H2) and demonstrate why this leads to compression
of trajectories. Suppose, for the moment, that g(vLK , wLK) = 0; that is, the
left knee of C0 touches the w-nullcline at some fixed point. Then both cells
will approach this fixed point as they evolve along the left branch of C0 in
the silent phase. There will then be an infinite amount of compression, since
both cells approach the same fixed point. It follows that we can assume that
the compression is as large as we please by making g(vLK , wLK) sufficiently
small. If the compression is sufficiently large, then it will easily dominate any
possible expansion over the remainder of the cells’ trajectories. This will, in
turn, lead to stability of the synchronous solution.

Remark 5.4 The mechanism by which one cell fires, and thereby raises the
cubic of the other cell such that it also fires, was referred to as Fast Threshold
Modulation (FTM) in [34]. There, a time metric was introduced to establish
the compression of trajectories of excitatorily coupled cells, which implies the
stability of the synchronous solution. A detailed discussion of the time metric
can be found in [20]; see also [23].

Remark 5.5 While the synchronous solution has been shown to be stable,
it need not be globally stable. In [21], it is shown that this network may
exhibit stable antiphase solutions if certain assumptions on the parameters
and nonlinear functions are satisfied.

We have so far considered a completely homogeneous network with just
two cells. The analysis generalizes to larger inhomogeneous networks in a
straightforward manner, if the degree of heterogeneity between the cells is not
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too large. The major difference in the analysis is that, with heterogeneity, the
cells may lie on different branches of different cubics during the silent and ac-
tive phases. The resulting solution cannot be perfectly synchronous; however,
as demonstrated in [43], one can often expect synchrony in the jump-up, but
not in the jump-down. Related work on heterogeneous networks include [35],
[26], [4].

One may also consider, for example, an arbitrarily large network of iden-
tical oscillators with nearest neighbor coupling. We do not assume that the
strength of coupling is homogeneous. Suppose that we begin the network with
each cell in the silent phase. If the cells are identical, then they must all lie on
the left branch of C0. Now if one cell jumps up it will excite its neighbors and
raise their corresponding cubics. If the cells begin sufficiently close to each
other, then these neighbors will jump up due to FTM. In a similar manner,
the neighbor’s neighbors will also jump due to FTM and so on until every cell
jumps up. In this way, every cell jumps up at the same (slow) time. While
in the active phase, the cells may receive different input and, therefore, lie
on the right branches of different cubics. Once one of the cells jumps down,
there is no guarantee that other cells will also jump down at this (slow) time,
because the cells to which it is coupled may still receive input from other ac-
tive cells. Hence, one cannot expect synchrony in the jumping down process.
Eventually every cell must jump down. Note that there may be considerable
expansion in the distance between the cells in the jumping down process. If
|g(vLK , wLK)| is sufficiently small, however, as in the previous result, then
there will be enough compression in the silent phase so that the cells will still
jump up together. Here we assumed that the cells are identical; however, the
analysis easily follows if the heterogeneities among the cells are not too large.
A detailed analysis of this network is given in [43].

5.5 Desynchrony with Inhibitory Synapses

We now consider two mutually coupled cells with inhibitory synapses. Under
this coupling, the curve CA now lies below C0. As before, we assume that
gsyn is not too large, such that both C0 and CA are cubic shaped. We also
assume that the right knee of CA lies above the left knee of C0 as shown in
Fig. 15. Some assumptions on the threshold θsyn are also required. For now,
we assume that θsyn lies between the left knee of C0 and right knee of CA.

We will assume throughout this section that the synapses are fast and
inhibitory. The main results state that if a synchronous solution exists then
it must be unstable. The network will typically exhibit either out-of-phase
oscillations or a completely quiescent state and we give sufficient conditions
for when either of these arises. We note that the network may exhibit bistabil-
ity; both the out-of-phase and completely quiescent solutions may exist and
be stable for the same parameter values. These results are all for singular
solutions. Some rigorous results for ε > 0 are given in [41].
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The first result concerns the existence and stability of the synchronous
solution.

Theorem: Assume that the synapses are fast and inhibitory. If each cell,
without any coupling, is oscillatory and θsyn is sufficiently large, then there
exists a singular synchronous solution. This solution is unstable. If each cell,
without any coupling, is excitable, then there does not exist a singular syn-
chronous solution.

Proof: The existence of a singular synchronous solution for oscillatory cells
follows precisely as in the previous section. During the silent phase, the tra-
jectory lies on the left branch of C0, while in the active phase it lies on the
right branch of CA. Note that we require that the right knee of CA lies above
the left knee of C0. Moreover, when the synchronous solution jumps up and
crosses the threshold v = θsyn, it should lie to the right of the middle branch
of CA; otherwise, it would fall down to the silent phase. This is why we assume
that θsyn is sufficiently large.

This solution is unstable for the following reason. Suppose both cells are
initially very close to each other on C0. The cells then evolve on C0 until one
of the cells, say cell 1, reaches the left knee of C0. Cell 1 then jumps up to
the active phase. When v1 crosses the threshold θsyn, s1 switches from 0 to
sA and cell 2 jumps from C0 to CA, as shown in Fig. 15. This demonstrates
that the cells are uniformly separated for arbitrarily close initial data. The
synchronous solution must, therefore, be unstable.

The synchronous solution cannot exist if the cells are excitable for precisely
the same reason discussed in the previous section. If such a solution did exist
then each cell would lie on C0 during its silent phase. Each cell would then
approach the stable fixed point on this branch and would never be able to
jump up to the active phase.

We next consider out-of-phase oscillatory behavior. One interesting feature
of mutually coupled networks is that such oscillations can arise even if each
cell is excitable for fixed levels of synaptic input. The following theorem gives
sufficient conditions for when this occurs. We will require that the active phase
of the oscillation is sufficiently long. To give precise conditions, we introduce
the following notation.

Assume that the left and right knees of C0 are at (vLK , wLK) and
(vRK , wRK), respectively. If the w-nullcline intersects the left branch of CA,
then we denote this point by (vA, wA) = pA. We assume that wA < wLK . Let
τL be the (slow) time it takes for the solution of (33) with α = L and s = sA

to go from w = wRK to w = wLK , and let τR be the time it takes for the
solution of (33) with α = R and s = 0 to go from w = wLK to w = wRK .
Note that τL is related to the time a solution spends in the silent phase, while
τR is related to the time a solution spends in the active phase.

Theorem: Assume that the cells are excitable for each fixed level of synaptic
input and the synapses are fast, direct, and inhibitory. Moreover, assume
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Fig. 15. Instability induced by mutual inhibition. Cell 2 jumps to CA when cell 1
fires.

that wA < wLK and τL < τR. Then the network exhibits stable out-of-phase
oscillatory behavior.

Remark 5.6 We do not claim that the out-of-phase solution is uniquely de-
termined or that it corresponds to antiphase behavior. These results may hold;
however, their proofs require more analysis than that given here.

Remark 5.7 The rest state with each cell at the fixed point on C0 also exists
and is stable. Hence, if the hypotheses of the last Theorem are satisfied, then
the network exhibits bistability.

Proof: Suppose that we begin with cell 1 at the right knee of C0 and cell 2
on the left branch of CA with wA < w2(0) < wLK . Then cell 1 jumps down
and, when v1 crosses the threshold θsyn, cell 2’s cubic switches from CA to
C0. Since w2(0) < wLK , cell 2 lies below the left knee of C0, so it must jump
up to the active phase. After these jumps, cell 1 lies on the left branch of CA,
while cell 2 lies on the right branch of C0.

Cell 2 then moves up the right branch of C0 while cell 1 moves down
the left branch of CA, approaching pA. This continues until cell 2 reaches
the right knee of C0 and jumps down. We claim that at this time, cell 1 lies
below the left knee of C0, so it must jump up. We can then keep repeating
this argument to obtain the sustained out-of-phase oscillations. The reason
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why cell 1 lies below the left knee of C0 when cell 2 jumps down is because
it spends a sufficiently long amount of time in the silent phase. To estimate
this time, note that because cell 2 was initially below the left knee of C0, the
time it spends in the active phase before jumping down is greater than τR.
Hence, the time cell 1 spends in the silent phase from the time it jumps down
is greater than τR > τL. From the definitions, since cell 1 was initially at the
right knee of C0, it follows that cell 1 must be below the left knee of C0 when
cell 2 jumps down, which is what we wished to show.

Remark 5.8 Wang and Rinzel [45] distinguish between “escape” and “re-
lease” in producing out-of-phase oscillations. In the proof of the preceding
theorem, the silent cell can only jump up to the active phase once the active
cell jumps down and releases the silent cell from inhibition. This is referred
to as the release mechanism and is often referred to as post inhibitory rebound
[9]. To describe the escape mechanism, suppose that each cell is oscillatory
for fixed levels of synaptic input. Moreover, one cell is active and the other
is inactive. The inactive cell will then be able to escape the silent phase from
the left knee of its cubic, despite the inhibition it receives from the active cell.
Note that when the silent cell jumps up, it inhibits the active cell. This lowers
the cubic of the active cell, so it may be forced to jump down before reaching
a right knee.

Remark 5.9 We have presented rigorous results that demonstrate that ex-
citation can lead to synchrony and inhibition can lead to desynchrony. These
results depended on certain assumptions, however. We assumed, for example,
that the synapses turned on and off on a fast time scale; moreover, the results
hold in some singular limit. In is, in fact, possible for excitatory synapses to
generate stable desynchronous oscillations and for inhibitory synapses to gen-
erate stable synchronous oscillations. Conditions for when these are possible
has been the subject of numerous research articles. References may be found
in [40].

Remark 5.10 The two cell model (30) can generate other rhythms besides
those discussed so far. For example, it is possible that one cell periodically
fires action potentials, while the other cell is always silent. This is sometimes
refereed to as a suppressed solution. It arises if the rate at which inhibition
turns off is slower than the rate at which a cell recovers in the silent phase.
That is, suppose cell 1 fires. This sends inhibition to cell 2, preventing it
from firing. Now if cell 1 is able to recover from its silent phase before the
inhibition to cell 2 wears off, then cell 1 will fire before cell 2 is able to. This
will complete one cycle and cell 2 will continue to be suppressed. If the time
for cells to recover in the silent phase is comparable to the time for inhibition
to decay, then more exotic solutions are possible (see [40]).
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6 Activity Patterns in the Basal Ganglia

6.1 Introduction

In this final chapter, we discuss a recent model for neuronal activity patterns
in the basal ganglia [42]. This is a part of the brain believed to be involved
in the control of movement. Dysfunction of the basal ganglia is associated
with movement disorders such as Parkinson’s disease and Huntington’s dis-
ease. Neurons within the basal ganglia are also the target of recent surgical
procedures, including deep brain stimulation. An introduction to the basal
ganglia can be found in [18].

The issues discussed arise in numerous other neuronal systems. We shall
describe how these large neuronal networks are modeled, what population
rhythms may arise in these networks and the possible roles of these activity
patterns.

6.2 The Basal Ganglia

The basal ganglia consist of several nuclei; these are illustrated in Fig. 16.
The primary input nucleus is the striatum; it receives motor information from
the cortex. The primary output nuclei are the internal segment of the globus
pallidus (GPi) and the substantia nigra par retularis (SNr). Neuronal informa-
tion passes through the basal ganglia through two routes. The direct pathway
passes directly from the striatum to the output nuclei. In the indirect path-
way, the information passes from the striatum to the external segment of the
globus pallidus (GPe) onto the subthalamic nuclues (STN) and then onto the
output nuclei. The final nucleus is the substantia nigra par compacta (SNc).
This is the primary source of dopamine.

Fig. 16 illustrates that some of the pathways within the basal ganglia are
excitatory and some are inhibitory. Most of the pathways are inhibitory except
for those that originate in the STN. Note that the pathways arising from SNc
are labeled both inhibitory and excitatory. This is because there are different
classes of dopamine receptors within the striatum. We also note that Fig. 16
illustrates only some of the pathways reported in the literature.

GPe

STN

STRIATUM

SNc

GPi/SNr

CORTEX

THALAMUS

Fig. 16. Nuclei within the basal ganglia. Solid arrows indicate excitatory connec-
tions and dashed arrows indicate inhibitory connections.
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Parkinson’s disease is associated with a severe reduction of dopamine. Ex-
periments have also demonstrated that during Parkinson’s disease, there is a
change in the neuronal activity of the output nucleus GPi. Previous explana-
tions for how a loss of dopamine leads to altered neuronal activity in GPi have
been in terms of an average firing rate of neurons; that is, the average number
of action potentials in some fixed interval of time. A detailed description of
this explanation can be found in [1, 8, 42]. It has been successful in accounting
for some features of PD; however, it cannot account for others. For example,
it is not at all clear how one can explain tremor. It also cannot account for
recent experiments that demonstrate that there is an increased level synchro-
nization among neurons in the STN and GPi during a parkinsonian state [14].
Several authors have suggested that the pattern of neuronal activity, not just
the firing rate, is crucially important.

The goal of the modeling study in [42] is to test hypotheses on how the
loss of dopamine may lead to tremor-like oscillations and changes in firing
patterns. We construct a model for neurons within GPe and STN based on
recent experiments [2]. We use computational methods to study the types of
activity patterns that arise in this model. In particular, we demonstrate that
the model can exhibit irregular uncorrelated patterns, synchronous tremor-
like rhythms, and propagating wave-like activity. In the next subsection, we
describe the computational model. We then describe the types of activity
patterns that arise in the model.

6.3 The Model

Here we describe the model for the STN and GPe network. The detailed
equations are given in [42]. These equations are derived using the Hodgkin-
Huxley formalism discussed earlier. The precise equations are different from
the Hodgkin-Huxley equations, however. This is because the STN and GPe
neurons contain channels different from those in the squid’s giant axon. In
particular, calcium plays a very important role in generating the action po-
tential of STN and GPe neurons. There are two types of potassium channels,
one of which depends on the concentration of intracellular calcium (along with
membrane potential). There are also two types of calcium channels in STN
neurons.

The membrane potential of each STN neuron obeys the current balance
equation:

Cm
dV

dt
= − IL − IK − INa − IT − ICa − IAHP − IG→S .

The leak current is given by IL = gL(v − vL), and the other voltage-
dependent currents are described by the Hodgkin-Huxley formalism as follows:
IK = gKn4(v − vK), INa = gNam

3
∞(v)h(v − vNa), IT = gT a3

∞(v)b2∞(r)(v −
vCa), and ICa = gCas2∞(v)(v − vCa). The slowly-operating gating variables n,
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h, and r are treated as functions of both time and voltage, and have first or-
der kinetics governed by differential equations of the form dX

dt = φX
(X∞(v)−X)

τX(v)

(where X can be n, h, or r), with τX(v) = τ0
X + τ1

X

1+exp[−(v−θτ
X
)/στ

X
] . Activa-

tion gating for the rapidly activating channels (m, a, and s) was treated as
instantaneous. For all gating variables X = n, m, h, a, r, or s, the steady state
voltage dependence was determined using X∞(v) = 1

1+exp[−(v−θX)/σX ] . The
gating variable b was modeled in a similar, but somewhat different, man-
ner; we do not describe this here. As the final intrinsic current, we take
IAHP = gAHP (v − vK) [Ca]

([Ca]+k1)
where [Ca], the intracellular concentration

of Ca2+ ions, is governed by [Ca]′ = ε (−ICa − IT − kCa[Ca]).
The current IG→S that represents synaptic input from the GPe to STN is

modeled as IG→S = gG→S(v − vG→S)
∑

sj . The summation is taken over the
presynaptic GPe neurons, and each synaptic variable sj solves a first order dif-
ferential equation s′j = αH∞(vgj−θg)(1−sj)−βsj . Here vgj is the membrane
potential of the GPe neuron j, and H∞(v) = 1/

(
1 + exp

[−(v − θH
g )/σH

g

])
.

The precise forms of the nonlinear functions in this model, along with
parameter values, are given in [42]. The GPe neurons are modeled in a similar
way. We do not describe these equations here.

The model STN neurons were adjusted to exhibit properties that are char-
acteristic of the firing of STN neurons in experiments [2]. Fig. 17, left column,
shows the firing properties of the model STN neurons. These cells fire in-
trinsically at approximately 3 Hz and exhibit high frequency sustained firing
and strong rebound bursts after release from hyperpolarizing current. Fig. 17,
right column, illustrates the firing properties of single GPe neurons. These
cells can fire rapid periodic spikes with sufficient applied current. They also
display bursts of activity when subjected to a small constant hyperpolarizing
current.

Currently the details of connections between STN and GPe cells are poorly
understood. It is known that STN neurons provide one of the largest sources
of excitatory input to the globus pallidus and that the GPe is a major source
of inhibitory afferents to the STN. However, the spatial distribution of axons
in each pathway, as well as the number of cells innervated by single neurons
in each direction, are not known to the precision required for a computer
model. Therefore, in [42] we consider multiple architectures in order to study
what types of activity patterns may arise in a particular class of network
architecture. In the model networks, each GPe neuron sends inhibition to other
GPe neurons as well as to one or more STN neurons. Each STN neuron sends
excitation to one or more GPe neurons. A prototype network is illustrated in
Figure 18.

6.4 Activity Patterns

Two activity patterns displayed by the model are shown in Fig. 19. The left
column displays irregular and weakly correlated firing of each cell. The volt-
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Fig. 17. Voltage traces for (left) STN and (right) GPe neurons for different levels of
applied current. STN cells display high frequency sustained firing with higher input
(as shown by the elevated dashed line) and fire rebound bursts after release from
hyperpolarizing current. GPe cells fire rapid periodic spikes for positive input and
fire bursts of spikes for small negative applied current.

STN  CELLS

GPe  CELLS

INHIBITION
EXCITATION

INHIBITION

Fig. 18. Architecture of the STN/GPe network.

age traces of two STN neurons are shown. shown. Irregular activity arises in
sparsely connected, unstructured networks in which each neuron is synapti-
cally connected to only a small number of other neurons chosen at random. It
is possible for irregular activity to also arise in structured networks, however.

The right column of Fig. 18 displays clustered activity, in which each
structure is divided into subsets of neurons that become highly correlated with
each other. The most commonly observed clustered pattern consists of two
clusters, with alternating pairs of cells belonging to opposite clusters. Different
clusters alternate firing, and in this pattern, cluster membership is persistent
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Fig. 19. Irregular and clustered patterns. Each column shows the voltage traces of
two STN neurons.

over time. Both episodic and continuous clustering are possible. Clustered
activity typically arises in networks with a structured, sparsely connected
architecture.

A third type of activity pattern is traveling waves (not shown). Propa-
gating wave-like activity can be very robust and exist over a wide range of
parameter values. They typically arise in networks with a structured, tightly
connected architecture. The speed of the wave depends on both the footprint
of network architecture and both intrinsic and synaptic time-scales.

We note that both of the patterns shown in Fig. 19 are generated for
a network with exactly the same architecture. In order to switch from the
irregular pattern to the synchronous pattern, we increase the applied current
to the GPe cells (this corresponds to input from the striatum) and the level
of intra-GPe inhibition.

6.5 Concluding Remarks

We have shown that in a biophysical, conductance-based model that the cellu-
lar properties of the STN and GPe cells can give rise to a variety of rhythmic
or irregular self-sustained firing patterns, depending on both the arrangement
of connections among and within the nuclei and the effective strengths of the
connections. The dependence on network architecture points out the impor-
tance of certain missing pieces of anatomical information. It is important to
determine the precision of the spatial organization of connections between the
STN and GPe neurons and whether the two nuclei project on each other in a
reciprocal or out of register manner.



66 David Terman

According to recent studies, correlated oscillatory activity in the GPe and
STN neurons is closely related to the generation of the symptoms of Parkin-
sonism. Previous firing rate models hold that during Parkinsonian states, an
increased level of inhibition from the striatum to GPe causes a decrease in the
activity of GPe. This in turn would send less inhibition to STN, thus increas-
ing STN activity and ultimately leading to increased inhibitory output from
the basal ganglia to the thalamus. In our model network, a more complex
picture emerges, in which the STN and GPe are spontaneously oscillatory
and synchronous, whereas intra-GPe inhibition and appropriate level of input
from the striatum can act to suppress rhythmic behavior.

The analysis described in earlier chapters is extremely useful in under-
standing the mechanisms responsible for the generation of the different firing
patterns arising in the STN/GPe model. The simple two-cell models consid-
ered earlier illustrate, for example, that inhibition may play multiple roles
in the generation of activity patterns. In the clustered rhythm, for example,
active STN neurons need moderate levels of feedback inhibition from GPe to
synchronize among themselves. Silent STN neurons, on the other hand, are
prevented from firing because they receive more powerful tonic inhibition. For
the generation of propagating waves, intra-GPe inhibition is needed to pre-
vent activity from persisting in the wake of the wave. Hence, this inhibition
helps to organize the network into a structured activity pattern. If one in-
creases the intra-GPe inhibition, this can desynchronize the GPe oscillations
and irregular firing may result.

The STN/GPe model is an example of an excitatory-inhibitory network.
This type of model arises in other neuronal systems. For example, recent mod-
els for thalamic sleep rhythms share many of the properties of the STN/GPe
model. References to papers on the thalamic sleep rhythms can be found
in [31].
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1 Introduction

In this review, I will discuss a number of methods than can be used to math-
ematically analyze the behavior of coupled neural oscillators and networks of
such units. This is by no means an exhaustive review and I refer the reader to
the comprehensive reviews by Kopell and Ermentrout [39] or Rubin and Ter-
man [55] which cover many more details. I will begin with a discussion of how
oscillations arise in neural models. I then discuss the phase resetting curve,
an experimental measure, and how this can be used to analyze coupled neural
oscillators. A related method using discrete dynamics is applied to pairs of
excitatory-inhibitory local networks. I then discuss a variety of general reduc-
tion procedures that lead to drastically simplified models suitable for use in
large networks. I conclude with a brief discussion of network behavior.

Oscillations are observed throughout the nervous system at all levels from
single cell to large networks. Some of the earliest experiments in physiology
were aimed at understanding the underlying mechanisms of rhythmicity in
nerve axons. Indeed, Hodgkin & Huxley won their Nobel Prize for dissecting
the biophysical mechanisms underlying action potential generation in the gi-
ant axon of the squid. Oscillations are often associated with simple repetitive
motor patterns such as walking, swimming, chewing, breathing, and copula-
tion. Muscles responsible for these actions are controlled by the outputs of
neurons whose outputs in turn are controlled by neural circuits in the brain
and spinal cord. For this reason, they are called central pattern generators
(CPGs). CPGs in the stomatogastric ganglion in the lobster have been well
characterized and the exact wiring and neurons responsible for the activity
are in some cases completely known [45]. CPGs produce a variety of regular
rhythms that control the behavior of the target muscles. Thus, in the case of
CPGs the importance of oscillatory behavior is clear and without doubt. Vari-
ous models based on coupled oscillators have been suggested for quadruped lo-
� Supported in part by NIMH and NSF.
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comotion ([6, 56, 14]). Undulatory swimming in the leech [4], the lamprey[13],
and other animals is controlled by a series of segmental oscillators [12].

Oscillations in various areas of the brain are also associated with various
pathologies. Epilepsy produces massive rhythmic or near rhythmic behavior
throughout large areas of the brain. Parkinsonian tremors appear to be a
consequence of pathological rhythmic behavior in an area of the brain called
the basal ganglia. Large amplitude rhythmic electroencephalographic (EEG)
activity is found in patients suffering from Creutzfeldt-Jacob disease. Oscil-
lations occur throughout large regions of the brain during anaesthesia and
sleep.

The possible role of oscillatory activity in normal sensory and cognitive
behavior is more controversial. It has been suggested that synchronous oscil-
lations in cortex and the phase and timing information they confer could be
used to bind together different aspects of a sensory stimulus [31, 57]. Syn-
chronous oscillations in the antennal lobe of insects appear to enhance the
ability of the animal to distinguish between two closely related odors [58]. In
[25], we suggested that synchronous oscillatory activity enhanced the compe-
tition different stimuli thus making it possible to direct attention the the more
salient one. In a series of papers [20, 28] we studied the role of oscillations
and waves in the learning of odors by the slug by modeling neurons in the
procerebral lobe. Ulinski and coworkers [47] have analyzed stimulus-induced
waves in the turtle visual area and suggest that the patterns of these waves are
characterizing the stimulus in a global distributed fashion. Lam et al [42] sug-
gest that odors are encoded by patterns of oscillations in the turtle olfactory
bulb. In spite of the large experimental literature on these sensory-induced
oscillations, there is still no definitive evidence for their role in cognition.

2 How Does Rhythmicity Arise

In this section, I discuss the mechanisms that generate periodic behavior from
the point of view of nonlinear dynamics. I will only sketch the main points; a
thorough and detailed account can be found in [54]. Suppose that we consider
a nonlinear differential equation of the form:

dx

dt
= F (x, α) (1)

where α is a parameter and x ∈ Rn. Most models of neurons have a resting
state which corresponds to a fixed point of the system (1). As the parameter
increases, we assume that a limit cycle arises. There are several mechanisms
by which this can happen. The best known is the Hopf bifurcation (HB). In
the HB, the fixed point x0(α) becomes unstable at α = α0 when a complex
conjugate pair of eigenvalues of the linearized system cross the imaginary axis
at ±iω. Generically, a branch of periodic orbits emerges from this fixed point;
these cycles have small amplitude and have the form:
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x(t) = x0(α0) + εz(t)Φeiωt + cc

where “cc” means complex conjugates, Φ is a fixed complex vector depending
on the problem and z(t) is a complex scalar which satisfies

dz

dt
= ε[a(α − α0)z + cz2z̄] (2)

with a, c complex constants. If Re c < 0 we say that the bifurcation is super-
critical and the resulting branch of small amplitude periodic orbits is stable
(Fig 1A). If Rec > 0, then the bifurcation is subcritical and the resulting
oscillations are unstable. In most neural models, the unstable branches turn
around and produce stable periodic orbits which have large amplitude. This is
shown in Figure 1B. This case is quite interesting since, for a range of param-
eters near α0, there is both a stable fixed point and a stable large amplitude
oscillation separated in phase space by the unstable small amplitude periodic
orbit. The frequency of oscillations in a Hopf bifurcation is generally confined
to a rather limited range (Fig 1D). Hodgkin [34] classified the firing patterns
of nerve axons into two different classes : Class I and Class II excitability.
(Also called Type I and Type II). In Rinzel and Ermentrout, we suggest that
the properties of type II neurons are consistent with the dynamics resulting
from a Hopf bifurcation.

A second common way for oscillations to emerge from a fixed point is
through a saddle-node infinite-period bifurcation. Unlike the Hopf bifurcation,
this is a global bifurcation and requires knowledge of the full phase space in
order to prove. Figure 1C illustrates this bifurcation. There is a stable fixed
point xn and a saddlepoint xs with a one-dimensional unstable manifold and
an n−1−dimensional stable manifold. The branches of the unstable manifold
terminate on the stable fixed point forming a heteroclinic loop. As the pa-
rameter α changes, these two fixed points merge at a saddle-node bifurcation.
However, the global loop still remains (see Figure 1C) and as the parameter
passes through α0, the fixed points disappear leaving a large amplitude stable
periodic orbit. The frequency of this orbit can be arbitrarily low and scales
as

√
α − α0 (Fig 1F.) Rinzel and Ermentrout suggest that the properties of

class I (Type I) neurons are consistent with this type of dynamics. The local
behavior of a saddle-node is captured by the normal form [41]:

dx

dt
= qx2 + b(α − α0) (3)

where q > 0, b > 0 are problem dependent parameters. When α > α0 (3)
has no fixed points and any initial conditions tend to infinity in finite time.
The real line can be mapped onto the circle so that this “blow-up” no longer
occurs by making the change of variables, x = tan θ/2 leading to:

dθ

dt
= q(1 − cos θ) + b(1 + cos θ)[α − α0]. (4)
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Fig. 1. Firing rates for neuron models. (A) Onset of periodicity through a supercriti-
cal Hopf bifurcation leading to small amplitude stable periodic orbits (B) Subcritical
Hopf bifurcation showing large amplitude limit cycles and bistability between os-
cillations and the fixed point. (C) Saddle-node on a limit cycle bifurcation to large
amplitude periodic orbits. (D) Frequency (firing rate) as a function of current for
the bifurcations in A,B. (E) Frequency versus current for the leaky integrate-and-
fire model (LIF). (F) Frequency versus current for the bifurcation C and for the
quadratic integrate-and-fire model (QIF). (G) Voltage plots for the LIF model with
spikes painted on. (H) Voltage plots for the QIF model.

In spite of the global nature of the dynamics, in [22] we show that the behavior
near the saddle-node on a circle is captured by this simple scalar model. This
model is often used to simulate spiking neurons and is called the “theta”
model. It seems to be a better model for the dynamics of cortical inhibitory
neurons than the Hopf bifurcation model. Note that under this change of
variables, θ = π is equivalent to approaching +∞ and “resetting” to −∞
in the original equation (3). If, instead of letting x reach +∞ in equation
(3)and then resetting to −∞ we reset to a finite value xreset when x crosses
xspike, then we obtain a simple computational model for a spiking neuron
called the quadratic integrate-and-fire (QIF) model. This was first introduced
by Latham et al [43] in the following equivalent form:
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τ
dV

dt
=

(V − Vrest)(V − Vthresh)
Vthresh − Vrest

+ RmI (5)

where I is the applied current, Rm is the membrane resistance of the cell, τ
is a characteristic time constant, Vrest is the resting state of the neuron, and
Vthresh is the threshold for excitability. Clearly as I increases, the two fixed
points of this model merge at a saddle-node and for I large enough, disappear.
The voltage V is reset to a finite value, Vreset > −∞ when it reaches a finite
value Vspike < ∞.

A simpler model for spiking neurons but one which cannot be derived from
any type of bifurcation is the leaky integrate and fire model (LIF) which has
the form:

τ
dV

dt
= −(V − Vrest) + RmI.

The LIF model is reset to Vreset whenever V crosses a value Vspike. The
approach to a spike for the LIF model is concave down while that of the
QIF is both. Figure 1E,F shows the output frequency of the LIF and the QIF
models to a constant current, I. Note that due to its equivalence, the QIF and
the saddle-node model have the same firing rate curve. Figures 1G,H show the
shape of the membrane potential, V (t) for several cycles; spikes are painted
on whenever the spike-threshold is crossed. The LIF model is often used for
analysis since it can be exactly solved even when I varies in time. This is not
true for the QIF model and the theta model. (However, for sinusoidal stimuli,
the theta model can be transformed into the Mathieu equation, [22]).

We point out one last model related to the QIF that is due to Izhikevich
[36] and which can produce many of the spiking patterns of cortical neurons
by changing parameters. If we add a simple linear negative feedback term to
the QIF, we obtain the following model:

dV

dt
= (v2 + 125v)/25 + 140 + I − z

dz

dt
= a(bv − z)

along with the the reset conditions, when v = +30 then v = c and z =
z + d. Here I is the input and a, b, c, d are free parameters. Ermentrout and
colleagues [17, 26] also considered this system when b = 0 as a model for
high-threshold spike frequency adaptation. The additional term, b makes this
similar to adding low-threshold adaptation.

3 Phase-Resetting and Coupling Through Maps

The stability properties of periodic orbits of autonomous differential equations
are different from those of fixed points. There is always a zero eigenvalue which
corresponds to translation in time of the orbit. This means that when a limit
cycle is perturbed through an external stimulus, there can be a phase shift.
This extra degree of freedom is what leads to the ability of several coupled
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oscillators to maintain differences in timing. It is also what is responsible for
jet-lag; the internal circadian oscillator (body clock) needs to be rest by sun-
light and this can take several days. Experimentalists have long known about
the ability of oscillators to shift their phase and the quantification of this shift
is one of the standard methods to characterize a biological oscillator. The ba-
sic thesis is that if I know how an oscillator shifts its phase to a stimulus, then
I can use this to study entrainment by periodic stimuli and other oscillators.
That is, given the phase-resetting curve (PRC) for an oscillator, it is possible
to construct a map for the behavior when it is periodically driven or coupled
to other similar oscillators.

0 T

{

T ’

t

T

t0 T t

∆ ∆(t) (t)

CBA

Fig. 2. Phase response curves (PRC). (A) Construction of the PRC. Natural period
is T. A perturbation arrives at t after the last spike causing the spike to change its
time to T ′. The PRC, ∆(t) = 1− T ′/T. Dashed pulses show the times at which the
oscillator fires without the perturbatioin and the solid curves show the perturbed
firing times. Note that a key assumption is that effect of the perturbation occurs
only during the cycle it was given. (B) PRC for the firefly P. Malaccae. (C) PRC
for a cortical neuron.

Figure 2A shows how the PRC is constructed. A convenient measure of
the timing of a neuron is the time of its action potential, so we assume that
the oscillator in question has a well define event corresponding to the start
of a cycle. Suppose the period of the unperturbed oscillator is T and a brief
stimulus is given at t ∈ [0, T ). This causes the oscillator to shift its timing
(that is, the time of the next event) to a time T ′. We define the PRC to be

∆(t) ≡ 1 − T ′

T

If we define φ = t/T as the phase of the oscillator, we can define this function
in terms of φ, ∆[φ] = ∆(φT ). If ∆(t) > 0 (respectively ∆(t) < 0), this means
that the oscillator fired early (late) and the phase was advanced (delayed).
Certain species of SE Asian fireflies (notably, Pteroptx mallacae or P. cribel-
lata) congregate by the thousands in trees along riverbanks and after some
time, flash synchronously with a period of about a second. The the PRC for a
single firefly has been measured [33, 5] to understand how such synchroniza-
tion could take place. Figure 2B shows the form of the PRC for P. mallacae
which is roughly sinusoidal. We note that the PRC for an oscillator near a
Hopf bifurcation has essentially the same shape. Figure 2C shows the PRC
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form for a cortical neuron injected with constant current (to make it oscil-
late) and then subjected to brief depolarizing pulses [53]. The main difference
between the two PRCs is that the cortical one is basically positive over the
whole range of perturbation times. Positive PRCs are characteristic of model
neurons which become periodic through a saddle-node bifurcation (Type I).
Suppose that we parameterize the PRC by the amplitude of the perturbing
stimulus, ∆(t, a). Then consider

Z(t) ≡ lim
a→0

∆(t, a)
a

.

This is called the infinitesimal PRC. Now suppose the model for the oscillator
has the form:

dV

dt
= F (V, w1, . . . , wn),

dwj

dt
= gj(V, w1, . . . , wn)

and the perturbation is applied only to the equation for V . Let (V 0(t), w0
j (t))

be the limit cycle solution to this equation with the maximum of V occur-
ring at t = 0. Then, the infinitesimal PRC, Z(t) is proportional to the V
component of the adjoint solution (see [32, 23]). Recall that if X ′ = F (X)
has a periodic solution, X0(t), then the adjoint, X∗(t) satisfies X∗′(t) =
−DXF (X0(t))T X∗(t) with X∗T (0)X ′

0(0) = 1. This makes the calculation of
the PRC for models simple, one need only compute the adjoint to a given pe-
riodic solution. This also allows one to explicitly calculate the PRC for certain
simple oscillators. The PRC for the theta model, equation (4), is proportional
to (1− cos(t)) while that for a supercritical Hopf bifurcation, equation (2), is
proportional to sin(t) where the period of the oscillation is 2π and the spike
occurs at t = 0. Many PRCs in biology satisfy ∆(0) = ∆(T ) = 0.

Looking at the PRC for the firefly (figure 2B), it is intuitively easy to
see how a pair of mutually coupled oscillators could synchronize. Suppose
oscillator 1 fires slightly before oscillator 2. Then it will speed up oscillator 2
since the PRC is positive right before the spike. Once oscillator 2 fires, this will
slow down oscillator 1 since it has recently fired. Thus, the oscillator ahead is
slowed down and the one behind is sped up. We can formalize by creating a
model for a pair of mutually coupled oscillators. But before doing this, we first
consider an oscillator that is periodically driven by a small pulsatile stimulus
with a period P relative to the period of the oscillator. Let φn be the phase
of an oscillator (φ ∈ (0, 1]) at the point the nth stimulus arrives. The phase
is incremented by an amount ∆(xn) immediately after the stimulus. Then
between stimuli, the oscillator advances by an amount P , so that we obtain

φn+1 = φn + ∆(φn) + P ≡ G(φn; P ) (6)

We will assume that the stimulus is weak enough so that the function F (x) =
x + ∆(x) is monotone increaing. (This means that ∆′(t) > −1.) We also
assume that ∆(0) = ∆(1) = 0. This implies that the map F : [0, 1) −→ [0, 1)
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is invertible. This has many implications for the forced oscillator; notably that
the ratio,

ρ = lim
n→∞

φn

n

is almost everywhere rational and a continuous function of the parameters of
the model. It is called rotation number. On regions where ρ is rational, we say
that the oscillator is phaselocked to the stimulus. One solution of interest to
(6) is 1:1 locking. This solution requires that ρ = 1 and that φn+1 = φn + 1.
The latter definition implies that φn = φ̄ satisfies

1 − P = ∆(φ̄).

Since ∆(φ) is periodic, solutions are lost in pairs at saddle-node bifurcations.
(For example, suppose that ∆(φ) = −a sin 2πφ. Then if |1−P | > |a| there are
no fixed points and if |1 − P | < |a| there are two fixed points; a saddle-node
occurs at |1−P | = |a|.) For a PRC such as the firefly’s, it is possible to obtain
1:1 locking for periods, P both shorter and longer than the natural period of
the oscillator. However, for oscillators with a PRC like type I oscillators or
like the cortical neuron, it is only possible to lock to stimuli that are faster
than the intrinsic period, i.e., P < 1. This is intuitively obvious; stimuli can
only speed up the oscillator since the PRC is positive. A 1:1 locked solution
is stable if and only if

|F ′(φ̄)| = |1 + ∆′(φ̄)| < 1.

By hypothesis, ∆′(φ) > −1 so that the necessary condition for stability is
that ∆′(φ̄) < 0. For the PRCs illustrated above, the solution stable solution
occurs on the falling side of the PRC.

We now turn to the analysis of the behavior of a pair of identical recip-
rocally coupled oscillators ([30]). We suppose that the period of each is 1
without loss in generality. We will write the coupled system, formally, as a
set of differential equations and from this derive a locally defined map near a
particular periodic solution:

θ̇1 = 1 + δ(θ2)∆(θ1), θ̇2 = 1 + δ(θ1)∆(θ2). (7)

Each time, say, oscillator 1 fires (that is, crosses 0 modulo 1), then oscillator 2
has its phase altered as θ2 = θ2 + ∆(θ2) ≡ F (θ2). The function, F (θ) is called
the phase-transition curve. Note that our assumptions on ∆(θ), namely that
∆′(θ) > −1, and that ∆(0) = ∆(1) = 0 imply that F (θ) is monotone, with
F (0) = 0 and F (1) = 1. Suppose that θ1 fires a spike at t = 0 and θ2 = φ.
Then immediately after the spike, θ2 = F (φ) < 1 since F is monotone and
F (1) = 1. θ2 will spike at t2 = 1 − F (φ) at which point θ1 has advanced by
an amount t2. The spike elicited by θ2 advances θ1 to F (1−F (φ)) while θ2 is
set to 0. θ1 will next fire at t1 = 1−F (1−F (φ)) and θ2 has advanced by the
same amount. Thus, we have the map
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φ −→ 1 − F (1 − F (φ)) ≡ Q(φ).

Note that Q(0) = 0 so that φ = 0 is always a fixed point of the map. Other
fixed points are found by solving φ = Q(φ). The fixed point, φ̄ is stable if
|Q′(φ̄)| < 1 which translates to F ′(1−F (φ̄)) ·F ′(φ̄) < 1 since F ′(φ) > 0. This
is the product of two terms; the derivative of the phase-transition curve evalu-
ated at the phase of each oscillator when the other fires a spike. In particular,
consider the synchronous solution. This will be stable if F ′(1−)F ′(0+) < 1 or,
[1+∆′(1−)][1+∆′(0+)] < 1. Consider the firefly PRC. Then since ∆′(0+) < 0
and ∆′(1−) < 0, this means that synchrony is always stable. On the other
hand, it is not necessary that the derivative of ∆ is continuous at 0, so that
it may be that case that ∆′(1−) = ∆′(0−) 	= ∆′(0+). This appears to be the
case for cortical PRCs for which ∆′(0+) > 0 and ∆′(1−) < 0. For the PRC
shown in figure 2C, for example, since the slope at 0 is positive but shallow
and the slope at 1 is steep and negative, this implies that Q′(0) < 1 so that
synchrony is stable.

We can use these general methods to create networks of coupled cells
through their PRCs:

θ̇j = ωj +
∑

k

δ(θk)∆jk(θj),

where we allow for some slight differences in natural frequencies, ωj. In [30], we
consider rings of cells for which we prove the existence and stability of traveling
waves. We also consider two-dimensional arrays of cells with nearest neighbor
interactions. We show the existence of rotating waves in such a network.

We close this section with a simplification of the general pulse-coupled
network:

dθj

dt
= ω +

∑
k

gjkP (θk)∆(θj). (8)

In this model, the Dirac function is replaced by a smooth pulse function and
all cells have the same PRC; the only difference lies in the coupling amplitudes,
gjk. This model was suggested by Winfree [64]. Suppose that gjk ≥ 0 and that
G =

∑
k gjk is independent of j. Let

dθ

dt
= ω + GP (θ)∆(θ)

have a solution θ(t) = φ(t) with φ′(t) > 0 and φ(0) = 0, φ(T ) = 1 for some
T > 0. Then (i) there is a synchronous solution to (8), θj(t) = φ(t) and (ii) it
is asymptotically stable if

∫ T

0

P (φ(t))∆′(φ(t)) dt < 0.

We remark that this depends crucially on the non-negativity of gjk. We also
note that if ∆(θ) is similar to the firefly in that it is decreasing around the



78 Bard Ermentrout

origin and P (θ) is sharply peaked around the origin, nonnegative, and vanishes
outside some small neighborhood of the origin, then the stability condition
will hold.

4 Doublets, Delays, and More Maps

In [24] we used maps to explain the importance of inhibitory doublets for
synchronizing two distant populations of neurons that were producing a so-
called gamma rhythm of about 40 Hz. Each population consists of excitatory
and inhibitory neurons which are locally coupled in such a way that they
are synchronous within the population. In the local populations, there are
few (or weak) excitatory-excitatory connections. Between distant groups, the
excitatory cells of one group connect to the inhibitory cells of the other group
and because the groups are far apart, the connection between them has a
delay. In large scale simulations of this setup [59, 60], thye found that the
inhibitory population of cells fires a pair of spikes (called a doublet) when
the two populations of excitatory cells were synchronized. Our approach to
this problem was to consider a firing time map for the spike times of the
excitatory population. The basic ideas are as follows. E cells cannot fire until
the inhibition from them has worn off below a certain level. Each time an I
cell fires the synapse to the E cell is set to its maximum conductance and then
it decays exponentially. When an I cell receives excitation, it fires a spike at
a time that depends on the last time that it spiked. In particular, if the I cell
has recently spiked, then an incoming E spike may not cause the I cell to spike
(absolute refractoriness) or if it does spike, it is with some perhaps lengthy
delay. Indeed, because the I cell models are class I excitable, they can fire
with an arbitrarily long latency if the stimulus is timed right. We now derive a
simple map for the synchronization of these two groups of oscillators. The key
feature that is responsible for the synchronization of the pair is the recovery
map for the inhibitory neurons, TI(t). Specifically, TI(t) is the time that the
I cell fires its next spike given that it has received an E spike t milliseconds
since it last fired. This map can be computed numerically by firing an E cell
at different times after the I cells has spiked and measuring the latency to the
next spike. For t large, the map approaches a small positive latency, Tei. For
t small, the map is rather steep and in fact, it may be undefined for t small
enough. Recurrent inhibitory synapses make the map steeper since they act to
make the I cell even more refractory. Stronger excitatory inputs make the map
shallower and lower the latency for all times. The map can be approximated
by the function:

TI(t) = Tei +
a

t + b
.

If b < 0, then the map is undefined for t < −b.
A brief digression Allow me to digress briefly and derive this map from the
biophysics of the I cell. The I cell is a type I neuron so that at the bifurcation,
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the dynamics is approximated by dx/dt = qx2 (see equation (3). Suppose
that the impulse from the E cell arrives at t∗ and x(0) = −x0 is the degree of
refractoriness of the I cell right after firing. Until the I cell receives input,

x(t) =
−1

1/x0 + qt

and when the input comes

x(t∗+) = A − 1
1/x0 + qt∗

where A is the amplitude of the input. Firing is defined as when the solution
“blows up” which occurs when

tfire ≡ q

A − 1
1/x0+qt∗

= Tei +
a

t∗ + b

where

Tei =
q

A
, a = A−2, and b =

1
q

(
1
x0

− 1
A

)
.

With this little derivation, we can assign meaning to each of the parameters.
The larger the refractory period, x0, the more negative the parameter b. Sim-
ilarly, the larger the value of the excitatory stimulus, the shallower the map.
For sufficiently large stimulus, the map is defined for t = 0, i.e., TI(θ) > 0.
End of digression

We assume that there is a conduction delay, δ, of the impulse from an E cell
in one group to the I cell in the other group. We are interested in the ability of
the two groups to synchronize stably in the presence of this delay. We suppose
that an E cell fires a fixed amount of time Tie after the last I spike that it
has received in a cycle. This is not unreasonable given our assumption that
the I cell synapses always produce their maximal conductance when the I cells
spike. This also implicitly assumes that the E cells have no slow processes that
are turned on when the E cell spikes. (For example, strong spike-frequency
adaptation would make the present analysis suspect. Indeed in [40] we include
adaptation in the excitatory cells and show that the behavior is quite different.
In [24], we in fact incorporate some memory of the previous spikes for the E
cells, but to keep matters simple, we ignore it here.) Let tj be the time of
firing of the excitatory neuron in group j (j = 1, 2) at the start of a cycle. By
this time the I cells in that group are completely recovered so that they fire
at a time, tj + Tei. The I cell in group 1 receives an extrinsic E spike at time
t2 + δ, so that this I cell will fire another spike (the “doublet”) at a time,

tdoub
1 = t2 + δ + TI [t2 + δ − (t1 + Tei)]
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The E cell in group 1 will then fire its next spike at tnew
1 = tdoub

1 + Tie. This
leads to the following map:

tnew
1 = t2 + δ + TI(t2 − t1 + δ − Tei) + Tie

tnew
2 = t1 + δ + TI(t1 − t2 + δ − Tei) + Tie.

We let φ be the timing difference between the two groups, φ = t2 − t2 so that
φ satisfies

φnew = −φ + TI(−φ + δ − Tei) − TI(φ + δ − Tei) ≡ G(φ). (9)

Clearly, G(0) = 0 so that synchrony (0 time difference) is a solution. Our
interest is in its stability. This requires that |G′(0)| < 1 or |−1−2T ′

I(δ−Tei)| <
1 which simplifies to T ′

I(δ − Tei) > −1 since T ′
I is always negative. Applying

this to our approximate map, we see that we must have

δ > a − b + Tei = A2 +
q

A
+

1
q

(
1
A

− 1
x0

)
.

However, for large values of δ, T ′
I is nearly zero so that G′(0) is close to -1

so that small heterogeneities in the two networks (say, Tie is different from
one to the other) will lead to an inability to lock, not through stability, but
through existence. That is, if, for example, the two oscillators have different
values of Tie, then equation (9) is replaced by

φnew = G(φ) − B

where B is the difference between the values of Tie. Fixed points satisfy:

TI(−φ + δ − Tei) − TI(φ + δ − Tei) = B.

For large δ the left-hand side is nearly zero so that if B, the heterogeneity, is
too large, there are no fixed points.

The maps derived in this section allow us to make some general conclusions
about the roles of different parameters. First, if the delay is too small, then the
slope of the TI map is large and negative so that we expect to see instabilities.
Increasing the I−I coupling makes the map steeper since it essentially makes
the I cells more refractory. The steeper the TI map, the more difficult it is
to stably lock for short delays. On the other hand, a steep TI map is better
able to overcome intrinsic differences between the two networks at long delays.
Conversely, increasing the E − I coupling makes the network less susceptible
to instabilities for short delays but less able to compensate for heterogeneity.

5 Averaging and Phase Models

One of the assumptions implicit in the use of phase-resetting curves is that
the coupling is not too strong. We can be more explicit about this “weak”
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coupling assumption by applying averaging to coupled oscillators. Consider
the following coupled system in Rn × Rn

X ′
1 = F (X1) + εG1(X2, X1), X ′

2 = F (X2) + εG2(X2, X1). (10)

We assume that when ε = 0, the system X ′ = F (X) has a phase-asymp-
totically stable limit cycle solution, X0(t) with period, T. The limit cycle
is homeomorphic to the circle, S1. Stability means that there is an open
neighborhood, N of S1 in Rn such that all point in N are attracted to the
limit cycle. Thus, when ε = 0, there is an attracting two-torus, S1 × S1 and
all points (X1, X2) ∈ N × N are attracted to the torus. Each point on the
stable limit cycle can be parametrized by a single variable, θ, so that when
ε = 0, the dynamics on the torus have the form

θ′1 = 1 and θ′2 = 1.

The solutions to these uncoupled equations are θj = t + φj where φj are ar-
bitrary constants. That is, without coupling, the solutions can have arbitrary
phases as they move around the torus. For ε 	= 0 and sufficiently small we
expect that the torus will persist, but that the parallel flow on the torus will
collapse toward a phaselocked solution where the difference, θ2 − θ1 takes on
isolated values. Indeed, we expect that for nonzero ε the equations have the
form θ′j = 1+ εhj(θj , θk). Our goal in this section is to discern the form fo hj .

In order to derive the equations for ε > 0, we introduce some notation. Let
B denote the space in Rn of continuous T−periodic solutions. We introduce
the inner product

< u(t), v(t) >=
1
T

∫ T

0

u(t) · v(t) dt.

X0(t) is the asymptotically stable limit cycle solution satisfying

X ′
0(t) = F (X0(t))

so that differentiating this, we see that the linear operator

(LY )(t) ≡ −dY (t)
dt

+ DXF (X0(t))Y (t) ≡ [− d

dt
+ A(t)]Y (t)

has a one-dimensional nullspace spanned by dX0(t)
dt . Under the above inner-

product, the adjoint operator is

(L∗Z)(t) = [
d

dt
+ AT (t)]Z(t)

and this has a one-dimensional nullspace spanned by Z∗(t) which can be
normalized to satisfy Z∗(t)·X ′

0(t) = 1. (For asymptotically stable limit cycles,
we can numerically compute Z∗(t) by integrating (L∗u)(t) backwards in time
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until convergence to a periodic solution is obtained.) Recall from section 3
that Z∗(t) is related to the infinitesimal phase-response curve (see also below).
Using the method of averaging [23] it is easy to derive the equations for the
evolution of phases, Xj(t) = X0(θj) + O(ε) where

θ′1 = 1 + εH1(θ2 − θ1) + O(ε2) and θ′2 = 1 + εH2(θ1 − θ2) + O(ε2)

with

Hj(φ) =
1
T

∫ T

0

Z∗(t) · Gj(X0(t + φ), X0(t)) dt.

Before turning to the analysis of this equation, we apply the formalism to
coupled neurons. Single compartment models are generally coupled through
the potentials, V (t). Suppose the equations for the voltage have the form:

dVj

dt
=

1
C

(
−Ij

ion(t) + Ijk
syn(t)

)
,

where Ij
ion(t) are all the ionic currents intrinsic to the cell and Ijk

syn(t) has the
form

Ijk
syn(t) = gjk

synsk(t)(Vj(t) − Ejk
syn) + gjk

gap(Vj(t) − Vk(t)).

The variable sk(t) is gating variable just like the usual voltage-gated ion chan-
nels, but it is gated by the presynaptic voltage, Vk rather than the postsynaptic
voltage. The second coupling term is called electrical coupling and depends
on the voltage difference between the pre- and post-synaptic cells. Let V ∗(t)
be the voltage component of the adjoint, Z∗(t); recall that this is proportional
to the PRC for the neuron, at least to lowest order. Then

Hj(φ) =
1
C

1
T

∫ T

0

V ∗(t)

× (
gjk

syns0(t + φ)(Ejk
syn − V0(t)) + gjk

gap(V0(t + φ) − V0(t))
)

dt.

Here V0(t), s0(t) are the solutions to the uncoupled system on the limit cycle.
Typically, s0(t) is qualitatively like, a2te−at where t is the time since the
neuron spiked during the cycle. Consider the first term in the integral:

1
C

1
T

∫ T

0

V ∗(t)(Ejk
syn − V0(t))s0(t + φ) dt ≡ Hjk

c (φ)

The terms multiplying s0 depend only on the postsynaptic cell (the one re-
ceiving the synapse). This term characterizes the response of a neuron to the
synapse. Thus the first term in the integral is the average of the response with
a phase-shift of the input. Note that in general, Hc(0) 	= 0. The second term
in the integral is

1
C

1
T

∫ T

0

Z∗(t)(V0(t + φ) − V0(t)) dt ≡ Hg(φ). (11)
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Note that Hg(0) = 0. We make one more observation. Suppose that the cou-
pling from one oscillator to the other is delayed by an amount, say, τ. Then
the only effect on the interaction function H is to shift the argument by τ.
Intuitively, this is because θ is essentially a time variable so that delays are
just translations in time.

s’(t)

t T

s’(t)

t T

R(t)

A

A

1

2
t

R(t)s’(t)
t

R(t)s’(t)

A B

R(t)

Fig. 3. Computation of the stability of synchrony. (A) the derivative of the synapse,
s′0(t) and the response function, R(t). The integral of their product is H ′(0) and is
negative. (B) If R(t) has a negative region after the spike, the area is positive and
synchrony is stable.

Suppose that the two oscillators are coupled identically. Then we can write

θ′1 = 1 + εH(θ2 − θ1), θ′2 = 1 + εH(θ1 − θ2),

where

H(φ) = ggapHg(φ) + gsynHc(φ)

Hg(φ) =
1

CT

∫ T

0

Z∗(t)(V0(t + φ) − V0(t)) dt,

Hc(φ) =
1

CT

∫ T

0

Z∗(t)s0(t + φ)(E − V0(t)) dt.

Let φ = θ − 2 − θ1. Then

φ′ = εH(−φ) − H(φ).

The right-hand side is a continuous odd-periodic function so that it has at
least two roots, φ = 0 and φ = T/2. The former represents the synchronous
solution. It is a stable solution if and only if −2H ′(0) < 0 which means that
H ′(0) > 0. For chemical synapses,

H ′(0) =
1
T

∫ T

0

R(t)s′0(t) dt,
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where R(t) = Z∗(t)(E − V0(t)). Consider first excitatory coupling. For cor-
tical neurons, R(t) has the shape shown in figure 2C. Figure 3 shows s′0(t),
R(t) and their product. From this figure it is also clear that the area of the
product R(t)s′0(t) is negative so synchrony is unstable. Less clear, but shown
in specific examples is the fact that the anti-phase solution, φ = T/2 is sta-
ble for excitatory coupling. For a PRC like that of the firefly which has a
substantial negative region right after the spike (see figure 2B), synchrony is
stable as seen in Figure 3B. Since inhibitory coupling essentially reverses the
sign of E − V0(t), synchrony is stable and the anti-phase state is unstable
[61, 29, 11, 63]. The behavior of gap junctions is more subtle and depends
strongly on the actual shape of the action potential [10]; from the above for-
mula:

H ′
g(0) =

1
CT

∫ T

0

Z∗(t)V ′
0 (t) dt.

Suppose that Z∗(t) is positive and essentially zero and the action potential
is short-lasting. Then V ′

0(t) is negative only at the beginning of the cycle
where Z∗(t) is small. For the majority of the cycle, V ′

0(t) > 0 as the neuron
repolarizes, so that the area under the integral is positive. Thus, we expect
that for thin action potentials, synchrony is stable. However, as the frequency
of the neuron increases, the action potential occupies a greater portion of the
cycle and it may be possible to destabilize synchrony. These simple intuitive
arguments are no replacement for the actual calculations. However, they serve
to shed insight into how different forms of coupling alter the locked states and
how these states depend on frequency.

5.1 Local Arrays

So far, we have considered pairs of oscillators and their phaselocked behavior.
I will next consider one-dimensional geometries and then use results from this
to look at planar arrays of oscillators. Since rings are easier to deal with (there
are no boundary effects), we start with them and illustrate traveling waves
and synchrony. We then turn our attention to linear arrays in which the edge
conditions play a pivotal role it determining the steady state patterns.

The ideas discussed above can be extended in an obvious fashion to large
networks of weakly coupled nearly identical cells. This leads to equations of
the form:

θ′j = ωj + Hj(θ1 − θj , . . . , θN − θj), j = 1, . . . , N. (12)

A phaselocked state is one for which θj(t) = Ωt + φj where φ1 = 0 and the
remaining φj are constants. Suppose that there is such a state and let

ajk =
∂Hj(ψi, . . . , ψN )

∂ψk

∣∣∣∣
φ1−φj ,...,φN−φj

.

With these preliminaries, we can now state a very general stability theorem.
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Theorem 1. [16] Suppose that ajk ≥ 0 and the matrix A = (ajk) is irreducible.
Then the phaselocked state is asymptotically stable.

This provides a quick sufficient check for stability. If we regard the oscil-
lators as nodes and draw directed line segments from j to k if ajk > 0, then
irreducibility of the matrix A says that we can go from any given node i to
any other node, � by following these directed segments. We also note that
stability implies that there are no zero eigenvalues of A other than the sim-
ple one corresponding to the translation invariance of limit cycles. Thus, the
theorem also provides conditions under which we can continue solutions using
the implicit function theorem as some parameter varies. We will apply some
of these principles below.

5.1.1 Rings

Since a general ring of oscillators (even phase models) is impossible to com-
pletely analyze, we will assume translation invariance in the model system.
That is, we assume the coupling between oscillators depends only on the dif-
ferences between their indices. Furthermore, we assume the nature of the cou-
pling between any two oscillators is the same and only the coefficient varies.
Thus, we restrict our attention to the system

θ′j = ω +
N∑

k=1

C(j − k)H(θj − θk) (13)

where as usual, H is a sufficiently differentiable 2π−periodic function. Equa-
tion (13) admits a family of traveling wave solutions of the form

θj = Ωmt + 2πjm/M, m = 0, . . .N − 1.

Substitution of this form into (13) implies that

Ωm = ω +
∑

k

C(k)H(2πkm/N).

This provides the so-called dispersion relation for the waves; that is, how the
frequency depends on the wave number, m. Stability of these wave is readily
found by linearizing about the solution. The linearized system satisfies

y′
j =

∑
k

C(j − k)H ′(2π(j − k)m/N)(yj − yk).

Because the resulting linearization matrix is circulant, the eigenvectors are of
the form exp(2πij�/N) so that for a given m, we have the N eigenvalues

λ�,m =
∑

k

C(k)H ′(2πkm/N)(1 − exp(−2πik�/N)).
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In particular, the synchronous solution has m = 0 and the eigenvalues are

λ�,0 = H ′(0)
∑

k

C(k)(1 − exp(−2πik�/N)).

If H ′(0) < 0 and C(k) ≥ 0, then it follows from Theorem 1 that synchrony
is stable. However, if C changes sign, then synchrony is often unstable as
are waves with a high value of m, but for some range of values of m, there
are stable waves. As an example, consider a network of 100 oscillators with
coupling between the 10 neighbors on either side, C(j) = 1/9 for |j| < 5 and
C(j) = −1/12 for 10 ≥ |j| ≥ 5. The function H(x) = 0.5 cosx − sin x. Then,
synchrony is unstable, but the wave with m = 4 is stable. Random initial data
for this ring network tend to a solution which is a mix of waves propagating
in both directions.

5.1.2 Linear Arrays

Linear arrays of oscillators, even with only nearest neighbor coupling, are
considerably more difficult to analyze. Unless the boundary conditions are
chosen very specially, the general behavior is nontrivial. However, with suffi-
ciently long chains, it turns out that the behavior is captured by the solutions
to a certain two-point singularly perturbed boundary value problem. Consider
the following network:

θ′j = ωj + Hf (θj+1 − θj) + Hb(θj−1 − θj), j = 1, . . . , N, (14)

where at j = 1 (j = N) we drop the Hb (Hf ) term. In [37, 38], we showed
that the phaselocked behavior of this system satisfies

θj+1 − θj −→ Φ(j/N)

where

Ω = ω(x) + Hf (Φ) + Hb(−Φ) +
1
N

[H ′
f (Φ) − H ′

b(−Φ)]Φx 0 < x < 1

Ω = ω(0) + Hf (Φ(0))
Ω = ω(1) + Hb(−Φ(1)).

For large N , this is a singularly perturbed first order differential equation.
As with many singularly perturbed systems, there are boundary layers. In
these papers, we exhaustively classify all possible phaselocked solutions for N
large by studying the singular boundary value problem and through the use
of matching of inner and outer equations. In figure 4, we illustrate various
solutions to equation (14) for N = 80. Note that for the isotropic case (panel
E), the boundary layer is in the interior. Note also, the value of N for which
the continuum approximation is reasonable, depends on the parameters of
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Fig. 4. Local phase differences in a chain of 80 nearest-neighbor oscillators under a
variety of cases. (A,B,D,F) anisotropic coupling; (C) isotropic coupling with a linear
gradient in frequency; (E) isotropic coupling.

the model. For example, panel F shows little evidence of a boundary layer
although one is predicted at both sides for N large enough.

As another example of the behavior of one-dimensional chains, we con-
sider the completely isotropic case with nearest neighnbors in which Hf (φ) =
Hb(φ) = H(φ). For large N , the boundary layer (if it exists) will be interior.
Suppose that H(φ) = C + g(φ) where g is an odd periodic function like sinφ.
Then, Φ(x) ≈ K(x − 1/2) so that, the gradient is linear. In the second ex-
ample, H(φ) = g(φ + C) where, again, g is an odd periodic function. In this
case, if g is similar to sin and |C| < π/4, then Φ(x) ≈ Asign(x− 1/2). In both
of these examples, the phase difference switches signs in the middle so that
physically, one observes either waves propagating from the ends toward the
middle or vice versa. These examples will play a role shortly.

5.1.3 Frequency Plateaus

In [21], we considered the behavior of a chain of oscillators with a linear fre-
quency gradient. The motivation for this comes from experiments on waves in
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the small bowel. Smooth muscle in the bowel generates rhythmic oscillations.
A plot of the frequency as a function of distance from the stomach (towards
the large bowel) shows that over large regions, the frequency is constant, but,
there are abrupt jumps to lower frequencies. When small pieces of the bowel
are isolated, they show a linear gradient in natrural frequencies. Figure 5
shows an schematic of the frequency of the intrinsic and the coupled oscilla-
tors. We were motivated to study the behavior of a chain of locally coupled
oscillators with a linear gradient in frequency:

θ′j = ω − gj + H(θj+1 − θj) + H(θj−1 − θj) j = 1, . . . , N + 1.

ω

x

intrinsic

coupled

A B
Fig. 5. Frequency plateaus in coupled oscillators. Left panel shows the intrinsic lin-
ear gradient in frequency and the coupled frequencies. Right panel gives a geometric
picture of how plateaus are formed.

Since coupling in the bowel is through gap junctions, H(0) = 0. (See
equation (11). Suppose, in addition, that H ′(0) > 0. Then, for g = 0, θj =
Ωt + C is a solution. From Theorem 1, it is a stable solution and so we
can continue the phaselocked state for g small. As g increases (that is, the
frequency gradient increases), phaselocking can become disrupted. Thus, we
can ask what happens for large g. This question can be answered to some
satisfaction if we make the simplification that the function H(θ) is odd. For
then, we can explicitly write down the solutions for the phase differences,
φj = θj+1 − θj :

H(φj) = −g
(N − j)j

2
. (15)

Since H is continuous and periodic, it is bounded; thus, there are phaselocked
solutions only if g is sufficiently small. Since H(x) = b generically has two
roots, x, there are 2N roots. We show that only one of these is asymptotically
stable. Furthermore, we show that there is another fixed point with one pos-
itive eigenvalue and all other eigenvalues negative. The two branches of the
one-dimensional unstable manifold form a closed invariant circle containing
the stable fixed point. Figure 5B shows four fixed points on an invariant torus
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for N = 2. The filled fixed point is stable and the fixed point to the left of
it has a one-dimensional unstable manifold forming the circle. Now, suppose
that H has ±1 as it extreme values. Then, from equation (15) g < g∗ ≡ N2/8
in order for phaselocking to occur. The righthand hand side is largest in mag-
nitude when j = N/2. Thus, as g increases beyond g∗, there is a saddle-node
bifurcation. We showed in [21] that the two fixed points on the aforemen-
tioned invariant circle merge and leave in their wake, an invariant circle. The
frequency of this oscillations is roughly q = a

√
g − g∗ so that the phases, φj

split into two groups. The frequency of the group with j ≤ N/2 is higher than
the group with j > N/2 by an amount q, thus the ideas provide a mechanism
for frequency plateaus.

5.1.4 Two-Dimensions

The behavior of two-dimensional arrays, with coupling to only four the eight
nearest neighbors turns out to be very similar to a cross product of behavior
of two associated one-dimensional chains. Thus, in a sense, the equations are
like separable PDEs. For simplicity, consider the network:

θ′j,k = ω + HN (θj,k+1 − θj,k) + HS(θj,k−1 − θj,k)
+HE(θj+1,k − θj,k) + HW (θj−1,k − θj,k). (16)

There are four different functions corrsponding to the four nearest neighbors.
in [52], we analyzed this and generalizations for N × N arrays where N is
large. We showed that

θj+1,k − θj,k ∼ Φ(j/N)
θj,k+1 − θj,k ∼ Ψ(j/N)

where Φ(x), Ψ(x) solved the corresponding horizontal and vertical chains.
Thus, in a continuum approximation (x = j/N, y = k/N), θx = Φ(x) and
θy = Ψ(y) so that we can integrate this to obtain the full solution:

θ(x, y) = Ωt +
∫ x

0

Φ(x′) dx′ +
∫ y

0

Ψ(y′) dy′.

In particular, suppose that the medium is completely isotropic and HN,S,E,W

(φ) = H(φ). Suppose that H(φ) = g(φ) + C as in the end of section 5.1.2.
Then we know that the phase gradient is linear so that we have:

θ(x, y) = Ωt + K[(x − 1
2
)2 + (y − 1

2
)2].

This representa a target wave; curves of constant phase are circles! In the
other example from section 5.1.2, H(φ) = g(φ + C), we have

θ(x, y) = Ωt + K[|x − 1
2
| + |y − 1

2
|],
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(.5,.5,0,0,0,0,−1,−1)(0,0,0,0,−.5,.5,−.8,.8)(0,0,0,0,.5,.1,.2,.6)

(1,1,1,1,0,0,0,0)(0,0,0,0,.5,.5,.5,.5)(0,0,0,0,.5,.5,−.5,−.5)

Fig. 6. Steady state phase relative to the upper-left oscillator in 32 × 32 arrays of
locally coupled oscillators. Coupling is through a function of the form A0+A1 cos θ+
B1 sin θ. Each of the four cardinal directions can be different. B1 = 1 in all cases.
Parameters in the parentheses correspond to (AE

0 , AW
0 , AS

0 , AN
0 , AE

1 , AW
1 , AS

1 , AN
1 ).

and waves are “square” target patterns. These and other patterns which are
consequences of the theorem in [52] are illustrated in figure 6.

Spiral waves. The two-dimensional patterns described in the previous section
are homotopic to the synchronous phaselocked solution and are a consequence
of boundary inhomogeneities. Do there exist patterns of phases which are not
branches of the synchronous state? For example, in a ring, the traveling wave
solutions are topologically different from the synchronous solution and thus
cannot be continued from that trivial branch. One analogue of such a pattern
in two-dimensions is a spiral wave. Some of these waves are illustrated in figure
7. Figure 7A is a solution to the highly symmetric system:

θ′jk = ω +
∑
j′,k′

sin(θj′,k′ − θjk)

where the sum is over the four nearest neighbors, {N,S,E,W}. In [49], we
showed that there is a rotating wave-solution to this equation and with theo-
rem 1, that it is asymptotically stable. Here is an example of the distribution
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of the phases for the 4 × 4 case:

0 ξ π/2 − ξ π/2
−ξ 0 π/2 π/2 + ξ

3π/2 + ξ 3π/2 π π − ξ
3π/2 3π/2 − ξ π + ξ pi

The reader is urged to check that there is a ξ ∈ (0, π/4) which leads to a
phaselocked solution and that this solution is stable. If we replace H(u) = sin u
with the more general, H(u) = sin u + d(cosu − 1), then the rotatinmg wave
develops a twist and looks more like a spiral wave. Figure 7B shows such
a spiral wave. As d increases, the spiral becomes tighter and tighter until
eventually, the phase differences near the center become too great. The spiral
disappears and leaves a “gently wobbling” spiral in its wake. Larger values of
d result to large scale meandering of the spiral; a snapshot is shown in Figure
7C. Figure 7D shows another solution with the same parameters as in figure
7B, but with random initial data. There are many apparently stable steady
state phaselocked solutions which consist of random arrangements of phase
singularities.

6 Neural Networks

The previous sections dealt with networks of single neurons which were cou-
pled together using chemical synapses. In this section, we are interested in
firing-rate models; that is models of neurons in which the actual times of
spikes are not specified. Rather, we specify the average firing rates of a neu-
ron or a population of neurons. There are many different derivations of these
firing rate models and we suggest that the reader consult [18, 15] for a general
survey of formal means of obtaining the equations. We will present one method
of deriving them that is tightly connected to the underlying biophysics of the
neuron. Our method entails the use of a slow time scale in order to reduce a
single neuron to a one (and possibly two) variable equation.

6.1 Slow Synapses

For simplicity, we consider a simple network with one excitatory cell which
has slow spike-frequency adaptation (which we can always set to zero) with
self-coupling and one inhibitory neuron which also is coupled to itself as well
as to the excitatory cell. (The reason for self-coupling is to give the most
general formulation of the reduction.) The derivation then suggests how to
couple whole networks of neurons.

We start with the following system:

C
dVe

dt
= −Ifast,e(Ve, . . .) − geese(Ve − Ee) − giesi(Ve − Ei) (17)
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A B

C D

Fig. 7. Spiral waves in a locally coupled 32×32 oscillator array. (A) Pure sinusoidal
coupling. (B) Coupling with H(θ) = sin θ+.6(1−cos θ). (C) With a cosine component
of 0.8, locking is no longer possible and the core of the spiral wobbles as shown in
this snapshot. (D) Same parameters as (B) but with random initial data.

− gzz(Ve − Ez) + Ie

C
dVi

dt
= −Ifast,i(Vi, . . .) − geise(Vi − Ee) − giisi(Vi − Ei) + Ii (18)

dse

dt
= αe(Ve)(1 − se) − se/τe (19)

dsi

dt
= αi(Vi)(1 − si) − si/τi (20)

dze

dt
= αz(Ve)(1 − ze) − ze/τz (21)

The first two equations represent the potentials of the excitatory and in-
hibitory cells respectively. The terms Ifast,∗ may involve many additional
variables such as the transient sodium and delayed rectifier channels neces-
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sary for spiking. The se,i variables gate the synapses between the neurons and
lie between 0 (fully closed) and 1 (fully open). The functions αe,i are zero
unless the neuron is spiking and then they are some finite value. τe,i are the
time constants for the decay of the synapses. The parameters gjk represent
the maximal conductances of the synapses and Ee,i are the reversal potentials
of the excitatory and inhibitory synapses. Typically Ee =0 mV and Ei = −70
mV although this latter value can be closer to -85 mV or up to -60 mV. The
variable z gates the degree of spike-frequency adaptation for the excitatory
cell; the function αz(V ) and the parameters, τz , gz, and Ez are similar to those
of the synapses.

In order to perform the needed reduction, we assume that se,i and z are
all much slower than the fast system. Thus, we can treat them as parameters.
We assume that the fast dynamics of both excitatory and inhibitory cells
is such that as current is increased, the neuron switches from a stable fixed
point to large magnitude periodic firing. Furthermore, we also assume that the
neuron is monostable so that there are no currents for which it can both stably
oscillate and remain at rest. For example, if the fast-dynamics is class I, then
as the current increases the fixed point diappears at a saddle-point and large-
amplitude periodic oscillations emerge. Consider the excitatory dynamics:

dVe

dt
= −Ifast,e(Ve, . . .) − Gee(Ve − Ee) − Gie(Ve − Ei) − Gz(Ve − Ez) + Ie

where Gee, Gie, Gz are parameters. Let

I(V ; Gee, Gie, Gz , Ie) = −Gee(Ve − Ee) − Gie(Ve − Ei) − Gz(Ve − Ez) + Ie

be the applied current. Holding (Gee, Gie, Gz) constant, we suppose that as
the applied current is increased, there is a saddle-node at I∗e (Gee, Gie, Gz).
For Ie < I∗e the neuron is at rest and for Ie > I∗e the neuron fires repetitively
with a frequency

fe ≈ βe

√
Ie − I∗e .

Now, we are ready for the reduction. Consider equation (19). If Ie < I∗e then
the neuron is not firing and αe(Ve) = 0. If Ie > I∗e , then the neuron fires
repetitively with period, Te = 1/fe. We have assumed that this is fast com-
pared to the dynamics of the synapse so that we can average the se dynamics
obtaining

dse

dt
= fe

[∫ Te

0

αe(Ve(t)) dt

]
(1 − se) − se/τe.

(We have used the fact that 1/Te = fe.) For many neural models, the spike-
width is nearly independent of the frequency, so that the integral can be
approximated as a constant independent of Te, say, ae. Using the frequency
approximation, we see that

dse

dt
= aeβe

√
Ie − I∗e (1 − se) − se/τe



94 Bard Ermentrout

when Ie > I∗e . We recall that I∗e is a function of (Gee, Gie, Gz) which are given
by (geese, giesi, gzz). Thus, to close the system, we need an expression for I∗e .
Numerically, for a wide variety of models, one finds that typically

Ie(Gee, Gie, Gz) ≈ GeeUee − GieUie − GzUz − Iθ,e

where Uee, Uie, Uz are positive constants which have the dimension of potential
and Iθ,e is the threshold current to initiate repetitive spiking in absence of
any slow conductances. Assuming the fast dynamics of the excitatory and
inhibitory cells are similar, we have reduced equations (17- 21) to the following
three equations

dse

dt
= ceF (Ie + Ieese − Iiesi − Izz − Iθ,e)(1 − se) − se/τe (22)

dsi

dt
= ciF (Ii + Ieise − Iiisi − Iθ,i)(1 − si) − si/τi (23)

dz

dt
= czF (Ie + Ieese − Iiesi − Izz − Iθ,e)(1 − z) − z/τz, (24)

where F (x) =
√

max(x, 0), ce = aeβe, cz = azβe, ci = aiβi and Iee = geeUee

and so on for the other Ijk.
Before continuing with our analysis of these models, we introduce a

smoothed version of the function F . Numerous authors have shown that the
presence of noise changes a sharp threshold for firing to a smoother and more
graded firing rate. In a recent paper, [44] analyzed the firing properties of
the normal form for a saddle-node. Using standard stochastic methods, they
derive a complicated integral form for the firing rate curve as a function of
the amount of noise. We find that a good approximation of such a curve is
given by the smooth function:

F (I) =
√

log(1 + exp(I/b))b

where b characterizes the amount of “noise.” That is, as b → 0+, F approaches
the deterministic model. In the analysis below, we use b = 0.1.

6.2 Analysis of the Reduced Model

We sketch some possible types of solutions to the reduced network model.
This is by no means exhaustive.

6.2.1 Purely Excitatory with No Adaptation

When there is no feedback inhibition and the adaptation is blocked, the equa-
tions reduce to

dse

dt
= ceF (Ie + Ieese − Iθ,e)(1 − se) − se/τe.
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This is a one-dimensional system so that there are only fixed points. Since
F ≥ 0, the interval [0, 1] is positively invariant so there exists at least one
stable fixed point. Suppose, Iee = 0 so there is no recurrent excitation. Then
the fixed point is unique:

s̄e =
ceF (Ie − Iθ,e)

ceF (Ie − Iθ,e) + 1/τe
.

For small enough Iee the fixed point persists and remains stable. Further
increases in Iee can lead to a fold bifurcation and the annihilation of the fixed
point. But since we know there is always at least one fixed point, then there
must in general (except at bifurcation points) be an odd number. Since this
is a scalar system and the function F is continuous, the fixed points alternate
in stability. For many choices of F , there is bistable behavior representing the
neuron firing at a low or zero rate and at a much higher rate.
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Fig. 8. Example behavior of a self-coupled excitary cell with adaptation. (A) The
bifurcation diagram as the driving current, Ie increases. (B,C,D) three sample phase-
planes at different driving currents showing excitability (B), bistability (C), and
periodic orbits (D). In (C), arrow shows the stable fixed point and the small blue
curve shows the unstable periodic orbit.

6.2.2 Excitatory with Adaptation

The presence of spike adaptation enables the network to oscillate and also
allows it to be excitable. We point out that oscillations in se at the slow time
scale assumed here correspond to bursting oscillations of the original model
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system. Baer et al [2] analyzed a slow two-variable system which modulates
a fast spiking system through a saddle-node bifurcation and used this as a
model for parabolic bursting. A rigorous analysis of a saddle-node that is
slowly periodically driven was provided by Ermentrout and Kopell [22]. Figure
8 shows the bifurcation diagram for a set of parameters as the drive increases.
Figure 8B shows the network in an excitable regime; weak stimuli lead to a
decay to rest while stronger stimuli cause a burst of activity. Increasing the
drive leads to a subcritical Hopf bifurcation and bistability between a large
amplitude periodic orbit and a fixed point (Figure 8C). Further increases in
the drive lead to a single stable periodic orbit (figure 8D).

6.2.3 Excitatory and Inhibitory

If we remove the adaptation, but allow inhibition, then we are in the case
considered in the classic Wilson-Cowan model. This scenario has been ex-
plored thoroughly by many authors [3, 18]. The phaseplane possibilities are
very close to those of the excitatory-adaptation model. There is more flexibil-
ity in the placement of the nullclines since the inhibitory cells receive inputs
independent of the excitatory population. That is, there is the possibility for
feedforward rather than feedback inhibition.

6.2.4 Full Model

Since the model is three variables, complex behavior is a possibility. For exam-
ple if the adaptation is slow, then it can slowly move the excitatory-inhibitory
“fast” system back and forth through bifurcations producing bursting [35].

6.3 Spatial Models

We can take the reduced model described in the previous section and create
a spatially distributed network in order to understand the kinds of behavior
in a one-dimensional slice of cortex. Consider the following spatial analogue
of equations (22-24):

∂se

∂t
= ceF (Ie + IeeJee ∗ se − IieJie ∗ si − Izz − Iθ,e)(1 − se) − se/τe (25)

∂si

∂t
= ciF (Ii + IeiJei ∗ se − IiiJii ∗ si − Iθ,i)(1 − si) − si/τi

∂z

∂t
= czF (Ie + IeeJee ∗ se − IieJie ∗ si − Izz − Iθ,e)(1 − z) − z/τz,

where
J ∗ u ≡

∫

Λ

J(x − y)u(y, t) dy.

In general, these spatial interaction functions are normalized so that the inte-
gral over the domain, Λ, is one. For the purposes of analysis, we will assume
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Fig. 9. Bistable media. (A) Space-time plot of a front for the scalar equation (26).
Color scale is amplitude of se(x, t) with time running vertically and space horizon-
tally. Jee = exp(−|x|/σ)/(2σ) with σ = 2. (B) Space-time plot for a network with
excitation and inhibition with local dynamics as in (C). The spatial interactions are
exponential with σi = 1, σe = 2. (C) Phaseplane for the se−si system with no adap-
tation showing bistability. (D) Stationary localized bumps in the same parameter set
as (B) but with excitation slowed by a factor of 2 and σe = 1, σi = 2.5. Horizontal
axis indicates spatial index and the black and red curves are se, si respectively.

that the domain is the real line, a circle, the plane, or a torus. In the cases of
a torus or a circle, the functions J(x) will be periodic.

6.3.1 Bistability and Fronts

As in the previous section, we first consider the purely excitatory case so that
the equations are simply:

∂se

∂t
= ceF (Ie + IeeJee ∗ se)(1 − se) − se/τe. (26)

Suppose that g(u) ≡ ceF (Ie + Ieeu)(1 − u) − u/τe has three roots. That is,
suppose that the spatially homogeneous excitatory network is bistable. Then,
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as in the case of the bistable scalar reaction-diffusion equation, we expect that
there may be front solutions joining one stable rest state to another. In fact,
for the present model if we assume that Jee is symmetric, positive, and has
an integral of 1, then a theorem of Chen [8] implies that there exists a unique
traveling front solution, se(x, t) = S(x − ct) with velocity, c joining the two
stable fixed points. We illustrate such a solution in figure 9A.

6.3.2 Fronts and Localized Excitation in the Presence of Inhibition

Figure 9B illustrates a front produced in a two-population network whose
nullcline configuration is illustrated in figure 9C. Here we have turned off the
adaptation so that Iz = 0. Unlike figure 9A, we have initiated the excitation
in the center of the medium. Clearly, there is still a front which propagates
but the rigorous existence of this front remains to be proven. Unlike the scalar
system, however, the properties of bistability alone are not sufficient to guar-
antee a wave front. In particular, the time constant and the spatial extents
matter in two-population models. Figure 9D illustrates a stationary localized
solution to the excitatory-inhibitory network where we have slowed the exci-
tation down by a factor of two and given the inhibitory cells a spatial extent
two-and-a-half times that of the excitatory cells. Localized pulses have been
the subject of numerous theoretical and numerical studies since the first rig-
ororous analysis of this problem by Amari [1]. These pulses are thought to
represent working or short-term memory [62]. Pinto and Ermentrout [50] used
sigular perturbation (treating the extent of inhibition, σi, as a large param-
eter) to contruct solitary pulses in an excitatory-inhibitory network of the
prsent form. Their starting point assumes the existence of fronts

6.3.3 Propagating Pulses

Suppose that we eliminate the inhibition. In experimental slice preparations,
this is a common protocol in order to study the excitatory connectivity. We
maintain the spike adaptation, z, and suppose that we have the phaseplane
depicted in Figure 8A (and repeated in 10A). Then, instead of fronts as in
figure 9A, we obtain traveling pulses as shown in Figure 10B. Essentially, if
the adaptation is slow, then this can be regarded as a singular perturbation
problem. For a fixed level of adaptation, the excitatory network is bistable and
produces fronts between high and low levels of activity as in figure 9. Thus, this
pulse can be viewed as a front and a “back” joined at a level of adaptation
leading to the same speed. In other words, these localized traveling pulses
are analogous to singular perturbation constructions of pulses in reaction-
diffusion equations [7]. Indeed, Pinto and Ermentrout [51] use such a singular
perturbation argument to construct these fronts.

In the scenario described above, the local dynamics is excitable; there is
a single globally stable fixed point. However, the excitability of the medium
depends on the slow dynamics of the adaptation. This type of excitability
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Fig. 10. Propagation of solitary pulses in an excitable network. (A) Phaseplane for
a system with no inhibition showing excitable behavior. (B) Behavior of a network
of 101 cells with exponentially decaying connectivity with local dynamics as in (A).
se(xt) is plotted with time increasing downward. (C) Excitable system with no
adaptation and just inhibitory and excitatory cells. Note that there are three fixed
points; only the leftmost one is stable. (D) Behavior of a network of excitatory and
inhibitory cells where σe = 4 and σi = 2. (E) Ring model with two fixed point as a
simple version for the dynamics in (C). (F) Solution to equation (27); P (θ) is plotted
since this represents the actual activity.

is called Class II in the context of single neuron models ([54];see also figure
1B in the present article). Suppose that there is no adaptation, but instead,
we allow inhibition. Then Class II excitability is still possible, but another
type of excitability is now possible. Figure 10C shows the phaseplane for the
excitatory-inhibitory network with no adaptation. Unlike the phaseplane in
figure 10A, there are three fixed points. However, the rightmost fixed point is
unstable. The middle fixed is a saddle-point whose unstable manifolds form
a heteroclinic loop with the leftmost stable fixed point. Thus, we have the
analogue of class I excitability as shown in figure 1C. The stable manifolds of
the saddle point provides a true threshold; it is not necessary to have widely
different timescales between the two variables to achieve excitability. Figure
10D shows the behavior of a network with excitatory and inhibitory neurons
whose local dynamics is that of 10C. There has been little analysis of this type
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of network excitability. However, we offer a simple approximation leading to
a scalar problem which may be amenable to analysis. The dynamics of the
pulse is largely confined to a tubular neighborhood of the unstable manifolds
of the saddle-point which form a ring. This suggests a scalar “ring model”
for the local dynamics as shown in figure 10E. Ermentrout and Rinzel [27]
used such a ring model to study propagation in a reaction-diffusion excitable
system. Consider the following system:

∂θ(x, t)
∂t

= F [θ(x, t)] + gR[θ(x, t)]
∫

Λ

J(x − y)P [θ(y, t)] dy. (27)

The functions F, R, P are, say, 2π−periodic functions of their arguments. The
function: q(u) = F (u)+R(u)P (u) characterizes the ring dynamics. We assume
that there are two fixed points, us and ut representing the stable fixed point
and the threshold respectively. Since q is periodic, there is also a fixed point,
us + 2π. The function R represents the response of the ring model to inputs;
since this is a class I system, R will usually be non-negative. The function
P (u) is the shape of the pulse of activity; it is positive and narrowly peaked.
We assume that R(us) > 0 so that inputs to a resting cell will excite it
past threshold. We can ask whether the scalar problem, equation (27), admits
a traveling front solution joining us to us + 2π. Note that since the phase
space is a ring, this actually represents a traveling pulse. Osan et al [48]
studied a similar system but in the context of single neurons and with a time-
dependent synapse replacing the function P (u). Figure 10E shows a simulation
of a network of 101 cells with J(x) exponential, R(u) = 1 + cosu, P (u) =
(.5+ .5 cos(u− 2.5))5, F (u) = .98− 1.02 cos(u) and g = 2.2. Since θ is a front,
we plot P (θ) instead since these are the real coordinates. Despite the similarity
of (27) to (26), we cannot apply Chen’s theorem to the former. The reason
for this is that one of the assumptions of the Chen theorem is equivalent to
P ′(u) ≥ 0. Since P is a pulse-like function, this assumption will be violated.
The precise conditions for the existence of solutions like figure 10E for (27)
remain to be determined.

6.3.4 Oscillatory Networks

Consider the excitatory-inhibitory network with no adaptation. Suppose that
we are in the same local configuration as figure 10C and drive the excita-
tory cells enough so that the lower two fixed points merge and disappear.
Then, the local network oscillates. Figure 11A shows the phaseplane of the
EI system with no adaptation. Now suppose that we couple the network with
exponentially decaying functions for which the excitation spreads more than
the inhibition (σe > σi). Then, as seen in figure 11B, the network generates
waves which eventually synchronize. However, if the inhibition spreads farther
than the excitation, the synchronous solution is no longer the unique stable
solution. One such non-synchronous solution is illustrated in figure 11C; the
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Fig. 12. The Turing instability. (A) The phaseplane for the local dynamics; there
is a stable fixed point on the middle branch. (B) The same system generates spa-
tial stationary patterns due to the long-range inhibition; σe = 2.0, σi = 7.5. (C)
Some of the inhibition is removed and an equal amount of adaptation is added to
compensate. The rest state of the local dynamics is still stable. However, the same
spatial interactions as in (B) lead to a destabilization of the rest state through a
Hopf bifurcation and a nonzero wave number. The spatial patterns become traveling
waves.

network breaks up into clustered states. Other initial data lead to synchrony
so that this network seems to be bistable.

6.3.5 Turing-Type Instabilities

As a final example of spatial effects on networks, we consider a system where
all of the interesting dynamics arises due to the spatial interactions. That is,
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the local dynamics consists of a single stable fixed point with no excitability.
We now connect this up with long-range inhibition and short-range excitation.
This is the classical scenario for pattern formation and results in an instability
of the uniform state to a nonzero wave number. We sketch the basic ideas of
the analysis. Let s̄e, s̄i be a spatially uniform fixed point to equation (25)
when there is no adaptation. Write se = s̄e +u and si = s̄i +v. The linearized
system has the form

∂

∂t

(
u
v

)
=

(−ceeu + deeJee ∗ u −dieJie ∗ v
deiJei ∗ u −ciiv − diiJii ∗ v

)

Since the rest state is on the middle branch, this means that −cee +dee > 0 so
that dee > 0. All of the other coefficients are obviously non-negative. Suppose
that we work on the infinite domain. Then solutions to this linear problem
have the form:

[u(x, t), v(x, t)] = eikx+λ(k)t[ū, v̄]

where k ≥ 0. {λ(k); [ū, v̄]} is a eigenvalue-eigenvector pair for the matrix:

M(k) ≡
(−cee + deeĴee(k) −dieĴie(k)

deiĴee(k) −cii − diiĴii(k)

)

where
Ĵ(k) =

∫ ∞

−∞
J(x)e−ikx dx.

We note that if J is an exponential or Gaussian, then Ĵ is non-negative and
decreases with |k|. If M(k) has eigenvalues with positive real parts for some k,
then the rest state is unstable and perturbations with this wavelength will tend
to grow. This sets the template for patterns for the full nonlinear system [46].
Since M is a 2 × 2 matrix, stability is guaranteed if the trace is negative and
the detrminant positive. If we suppose that Jee = Jei = Je and Jie = Jii = Ji,
then, the trace, δ and the determinant, ∆ satisfy:

δ(k) = −(cii + cee) + deeĴe(k) − diiĴi(k)
∆(k) = ceecii + (diedei − diidee)Ĵe(k)Ĵi(k) − ciideeĴe(k) + ceediiĴi(k).

At k = 0, we know that the rest state is stable and for k large, all k−dependent
terms vanish so that the rest state is stable to large k perturbations. How-
ever, because dee > 0 it is possible for intermediate values of k to produce
instabilities. This point is critical: if the rest state is not on the increasing
middle-branch of the E-nullcline, then no spatial instabilities are possible. If
the self-inhibition is weak, then dii is small and the trace will be negative for
k > 0 if it is negative for k = 0 as assumed. Consider for simplicity the case
where dii = 0. Then the trace is a monotonically decreasing function of k
and since it is assumed to be negative when k = 0, the trace is always nega-
tive. On the other hand, the determinant can become negative if dee is large
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enough since the term Ĵe(k)Ĵi(k) decreases more rapidly than Ĵe(k). Such a
scenario can then lead to an instability as an eigenvalue crosses through zero
at some non-zero k. Figure 12B illustrates as example of this instability for
the full nonlinear system. Two-dimensional analogues of this instability were
suggested as a mechanism for visual hallucinations in Ermentrout and Cowan
[19].

Suppose that we include adaptation as well as inhibition. We can remove
some of the inhibition to compensate for the presence of adaptation which
acts like a local slow inhibition. Figure 12C shows the result of this; instead of
stationary patterns of activity, we obtain traveling waves. What is surprising
about these waves is that the domain is finite and the boundaries seem to
have little influence on the waveform.

References

1. Amari, S, 1977, Dynamics of patternformation in lateral-inhibition type neural
fields, Biol. Cybernet. 27:77-87.

2. Baer, S.M., J. Rinzel, and H. Carrillo: Analysis of an autonomous phase model
for neuronal parabolic bursting. J. Math. Biol. 33:309-333 (1995).

3. Beer, R. On the Dynamics of Small Continuous-Time Recurrent Neural Net-
works, Adaptive Behavior, 3:469-509, 1994.

4. P.D. Brodfuehrer, E.A. Debski, B.A. O’Gara, and W.O. Friesen, 1995, Neuronal
control of leech swimming, J. Neurobiology, 27:403-418.

5. Buck, J., 1988, Synchronous rhythmic flashing in fireflies, II. Q. Rev. Biol.
63:265-289.

6. P.L. Buono and M. Golubitsky. Models of central pattern generators for
quadruped locomotion: I. primary gaits. J. Math. Biol. 42 (4) (2001) 291-326.

7. Casten RG, Cohen H, Lagerstrom PA (1975) Perturbation analysis of an approx-
imation to the Hodgkin-Huxley theory. Quart. J. Appl. Math. 32(4):365–402.

8. Chen, X, Existence, Uniqueness, and Asymtotic Stability of Traveling Waves
in Nonlocal Evolution Equations, Advances in Differential Equations 2, 125-160
(1997)

9. Chen, Z and Ermentrout, B Wave Propogation Mediated by GABAB Synapse
and Rebound Excitation in an Inhibitory Network: A Reduced Model Approach,
Journal of Computational Neuroscience 5, 53-69 (1998).

10. C.C. Chow and N. Kopell, ‘Dynamics of spiking neurons with electrical cou-
pling’, Neural Comp. 12, 1643-1678 (2000).

11. Chow, CC. Phaselocking in weakly heterogeneous neuronal networks. Physica
D 118:343-370 (1998).

12. A.H. Cohen, S. Rossignol, and S. Grillner, 1988, Neural Control of Rhythmic
Movements in Vertebrates, New York, Wiley.

13. Cohen AH, Ermentrout GB, Kiemel T, Kopell N, Sigvardt KA, Williams TL.
Modelling of intersegmental coordination in the lamprey central pattern gener-
ator for locomotion. Trends Neurosci. 1992 Nov; 15(11):434-8.

14. Crook, S and A Cohen. (1995) Central pattern generators. In Bower and Bee-
man, editors, The Book of GENESIS: A workbook of tutorials for the GEneral
NEural SImulation System, Chapter 6.



104 Bard Ermentrout

15. Dayan, P. and Abbott, L. Theoretical Neuroscience, 2001, MIT Press, Cam-
bridge MA, Chapt 7.

16. Ermentrout,-G.-Bard, Stable periodic solutions to discrete and continuum ar-
rays of weakly coupled nonlinear oscillators. SIAM-J.-Appl.-Math. 52 (1992),
no. 6, 1665-1687.

17. Ermentrout-B, Linearization of F-I curves by adaptation. Neural-Comput. 1998
Oct 1; 10(7): 1721-9

18. Ermentrout-B, Neural networks as spatio-temporal pattern-forming systems,
Reports on Progress in Physics, 61:353-430, 1998.

19. Ermentrout,-G.-B.; Cowan,-J.-D., A mathematical theory of visual hallucination
patterns. Biol.-Cybernet. 34 (1979), no. 3, 137-150.

20. Ermentrout-B; Flores-J; Gelperin-A, Minimal model of oscillations and waves
in the Limax olfactory lobe with tests of the model’s predictive power. J-
Neurophysiol. 1998 May; 79(5): 2677-89

21. Ermentrout, G.B. Kopell, N. Frequency plateaus in a chain of weakly coupled
oscillators. I. 1984 SIAM-J.-Math.-Anal. 15 (1984), no. 2, 215–237.

22. Ermentrout,-G.-B.; Kopell,-N., Parabolic bursting in an excitable system cou-
pled with a slow oscillation. SIAM-J.-Appl.-Math. 46 (1986), no. 2, 233-253.

23. Ermentrout G.B. and Kopell, N 1991, Multiple pulse interactions and averaging
in systems of coupled neural oscillators, J. Math. Biology 29:195-217

24. Ermentrout GB, Kopell N. Fine structure of neural spiking and synchronization
in the presence of conduction delays. Proc Natl Acad Sci U S A. 1998 Feb
3;95(3):1259-64.

25. Ermentrout GB, Kleinfeld D Traveling electrical waves in cortex: insights from
phase dynamics and speculation on a computational role NEURON 29: (1) 33-44
JAN 2001

26. Ermentrout B, Pascal M, Gutkin B The effects of spike frequency adaptation
and negative feedback on the synchronization of neural oscillators NEURAL
COMPUT 13 (6): 1285-1310 JUN 2001

27. Ermentrout,-G.-Bard; Rinzel,-John, Waves in a simple, excitable or oscillatory,
reaction-diffusion model. J.-Math.-Biol. 11 (1981) 269-294.

28. Ermentrout B, Wang JW, Flores J, and Gelperin, A. Model for olfactory discrim-
ination and learning in Limax procerebrum incorporating oscillatory dynamics
and wave propagation J NEUROPHYSIOL 85 (4): 1444-1452 APR 2001

29. W. Gerstner, J.L. van Hemmen, and J. Cowan. What matters in neuronal lock-
ing? Neural Comp. 8 1653-1676 (1996).

30. Goel P, Ermentrout B Synchrony, stability, and firing patterns in pulse-coupled
oscillators PHYSICA D 163 (3-4): 191-216 MAR 15 2002

31. C.M. Gray, 1994, Synchronous oscillations in neuronal systems: mechanisms and
functions, J. Computat. Neurosci. 1:11-38.

32. D. Hansel, G. Mato, and C. Meunier. Synchrony in excitatory neural networks.
Neural Comp. 7, 307-337 (1995).

33. Hanson FE. Comparative studies of firefly pacemakers. Fed Proc. 1978
Jun;37(8):2158-64.

34. Hodgkin, AL (1948) The local changes associated with repetitive action in a
non-medulated axon. J. Physiol (London) 107: 165-181

35. Izhikevich E.M. (2000) Neural Excitability, Spiking, and Bursting. International
Journal of Bifurcation and Chaos. 10:1171-1266.

36. Izhikevich E.M. (2003) Simple Model of Spiking Neurons IEEE Transactions on
Neural Networks, in press



Neural Oscillators 105

37. Kopell,-N.; Ermentrout,-G.-B., Symmetry and phaselocking in chains of weakly
coupled oscillators. Comm.-Pure-Appl.-Math. 39 (1986), no. 5, 623–660.

38. Kopell,-N.; Ermentrout,-G.-B., Phase transitions and other phenomena in chains
of coupled oscillators. 1990 SIAM-J.-Appl.-Math. 50 (1990), no. 4, 1014–1052.

39. N. Kopell and G.B. Ermentrout. “Mechanisms of phaselocking and frequency
control in pairs of coupled neural oscillators”, for Handbook on Dynamical Sys-
tems, vol. 2: Toward applications. Ed. B. Fiedler, Elsevier, pp 3-5. (2002)

40. Kopell N, Ermentrout GB, Whittington MA, Traub RD. Gamma rhythms and
beta rhythms have different synchronization properties. Proc Natl Acad Sci U
S A. 2000 Feb 15;97(4):1867-72.

41. Y. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, NY, 2000,
page 83.

42. Lam YW, Cohen LB, Wachowiak M, Zochowski MR. Odors elicit three different
oscillations in the turtle olfactory bulb. J Neurosci. 2000 Jan 15;20(2):749-62.

43. P.E. Latham, B.J. Richmond, P.G. Nelson, and S. Nirenberg. Intrinsic dynamics
in neuronal networks. I. Theory. J. Neurophysiol. 83(2):808-827 (2000).

44. Lindner, B. and Longtin, A. Neural Computation, (in press) 2003
45. E. Marder and R.L. Calabrese, 1996, Principles of rhythmic motor pattern gen-

eration, Physiological Reviews, 687-717.
46. Murray, J.D. Mathematical Biology, Springer NY 1989
47. Nenadic Z, Ghosh BK, Ulinski Propagating waves in visual cortex: a large-scale

model of turtle visual cortex. J Comput Neurosci. 2003 Mar-Apr;14(2):161-84.
48. Osan R, Rubin J, Ermentrout B Regular traveling waves in a one-dimensional

network of theta neurons SIAM J APPL MATH 62 (4): 1197-1221 APR 22 2002
49. Paullet, J.E and Ermentrout, G.B. Stable rotating waves in two-dimensional

discrete active media. SIAM-J.-Appl.-Math. 54 (1994), no. 6, 1720–1744.
50. Pinto, D.J. and Ermentrout, G.B. 2001a, Spatially Structured Activity in Synap-

tically Coupled Neuronal Networks: II. Lateral Inhibition and Standing Pulses,
SIAM J. Appl Math. 62(1):226–243

51. Pinto, D.J. and Ermentrout, G.B. 2001b, Spatially Structured Activity in
Synaptically Coupled Neuronal Networks: I. Traveling Fronts and Pulses SIAM
J. Appl Math. 62(1):206–225

52. Ren, LW and Ermentrout, G.B. Monotonicity of phaselocked solutions in chains
and arrays of nearest-neighbor coupled oscillators. SIAM-J.-Math.-Anal. 29
(1998), no. 1, 208–234

53. Reyes AD, Fetz EE, (1993a) Effects of transient depolarizing potentials on the
firing rate of cat neocortical neurons. J Neurophysiol 1993 May;69(5):1673-83

54. Rinzel-J; Ermentrout-B, Analysis of neural excitability and oscillations, In
“Methods in Neuronal Modelling: From synapses to Networks”, C. Koch and I.
Segev, eds. 1989, MIT Press (revised 1998).

55. Jonathan Rubin and David Terman, “Geometric Singular Perturbation Analysis
of Neuronal Dynamics,” in B. Fiedler, editor, Handbook of Dynamical Systems,
vol. 3: Toward Applications, Elsevier, 2002.

56. Schoner G, Jiang WY, Kelso JA. A synergetic theory of quadrupedal gaits and
gait transitions. J Theor Biol. 1990 Feb 9;142(3):359-91.

57. W. Singer, 1993, Synchronization of cortical activity and its putative role in
information processing and learning, Ann Rev. Physiol, 55:349-374.

58. M. Stopfer, S. Bhagavan, B.H. Smith, and G. Laurent, 1997, Impaired odour dis-
crimination on desynchronization of odour-encoding neural assemblies, Nature
390:70-74.



106 Bard Ermentrout

59. Traub RD, Jefferys JG, Whittington MA. Simulation of gamma rhythms
in networks of interneurons and pyramidal cells. J Comput Neurosci. 1997
Apr;4(2):141-50.

60. Traub RD, Whittington MA, Stanford IM, Jefferys JG. A mechanism for gen-
eration of long-range synchronous fast oscillations in the cortex. Nature. 1996
Oct 17;383(6601):621-4.

61. Van Vreeswijk C, Abbott L, and Ermentrout B. When inhibition not excitation
synchronizes neural firing. J Comput Neurosci. 1994 Dec; 1(4):313-21.

62. Wang X.-J. (1999a) Synaptic basis of cortical persistent activity: the importance
of NMDA receptors to working memory. J. Neurosci. 19, 9587-9603.

63. White JA, Chow CC, Ritt J, Soto-Trevino C, and Kopell N. Synchronization and
oscillatory dynamics in heterogeneous, mutually inhibited neurons. J. Comp.
Neurosci. 5, 5-16 (1998).

64. Winfree, A.T. Biological rhythms and the behavior of populations of coupled
oscillators, J. Theoret. Biol. 16:15-42, 1967.



Physiology and Mathematical Modeling
of the Auditory System

Alla Borisyuk

Mathematical Biosciences Institute, Ohio State University
W. 18th Avenue 231, 43210-1292 Ohio, USA
borisyuk@mbi.osu.edu

1 Introduction

It is hard to imagine what the world would be like if it was put on “mute”.
For most people the vast and diverse stream of auditory information is an in-
dispensable part of the environment perception. Our auditory system, among
other things, allows us to understand speech, appreciate music, and locate
sound sources in space. To be able to perform all perceptual functions the
auditory system employs complex multi-stage processing of auditory infor-
mation. For example, the sound waves are separated into frequency bands,
which later in the system are often fused to create perception of pitch, small
amplitude and frequency modulations are detected and analyzed, timing and
amplitude differences between the ears are computed, and everything is com-
bined with information from other sensory systems.

In this chapter we will discuss how the nervous system processes auditory
information. We will need to combine some knowledge from anatomy (to know
which structures participate), electrophysiology (that tells us the properties
of these structures), and, finally, mathematical modeling (as a powerful tool
for studying the mechanisms of the observed phenomena). In fact, one of the
goals of this chapter is to show examples of types of mathematical modeling
that have been used in the auditory research.

The material in this chapter is based on lectures given by Catherine
Carr and Michael Reed at the Mathematical Biosciences Institute, Ohio
State University in April 2003. It also uses material from the following
books: “The Mammalian auditory pathway: neurophysiology” (A.N. Pop-
per, R.R. Fay, eds. [77]), “Fundamentals of hearing: an introduction” by
W.A. Yost [116], ”An introduction to the psychology of hearing” by B.C.J.
Moore [67], “From sound to synapse” by C. Daniel Geisler [26], chapter
“Cochlear Nucleus” by E.D. Young and D. Oertel in [90]; and websites:
<http://serous.med.buffalo.edu/hearing/>,
<http://www.neurophys.wisc.edu/aud/training.html>.
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1.1 Auditory System at a Glance

Let us start by looking at the overall path that the auditory information trav-
els through the brain. The auditory system differs significantly from the visual
and somatosensory pathways in that there is no large direct pathway from pe-
ripheral receptors to the cortex. Rather, there is significant reorganization and
processing of information at the intermediate stages. We will describe these
stages in more details in the subsequent sections, but for now just outline the
overall structure.

Sound waves traveling through the air reach the ears — the outer part
of the peripheral auditory system. Then they are transmitted, mechanically,
through the middle ear to the auditory part of the inner ear — the cochlea.
In the cochlea the mechanical signal is converted into the electrical one by
auditory receptors, namely, hair cells. This transduction process is fundamen-
tal in all sensory systems as external signals of light, chemical compounds or
sounds must be “translated” into the language of the central nervous system,
the language of electrical signals.

Next, the signal originating from each cochlea is carried by the auditory
nerve into the brainstem (see Figs. 1, 2). Figure 3 shows a 3-dimensional
reconstruction of the human brainstem. It consists of three main parts: pons,
medulla, and midbrain. The auditory nerve first synapses in the cochlear nuclei
inside the medulla. From the cochlear nuclei, auditory information is split into
at least two streams. One stream projects directly to the auditory part of the
midbrain, inferior colliculus (Fig. 3); while the other goes through another set
of nuclei in the medulla, called superior olivary complex.

The first of these pathways is thought to pick up the tiny differences in
acoustic signals, that you need, for example, to differentiate between similar
words. The indirect stream, which is the one that we are mostly going to
consider, originates in the ventral cochlear nucleus. Auditory nerve fibers that
bring information to this stream end with giant hand-like synapses. This tight
connection allows the timing of the signal to be preserved up to a microsecond
(which is very surprising, because the width of action potential, the “unit
signal”, is on the order of milliseconds). This precisely timed information is
carried on to the superior olive, both on the same side of the brain and across
midline. In the superior olive the small differences in the timing and loudness
of the sound in each ear are compared, and from this you can determine the
direction the sound is coming from. The superior olive then projects up to the
inferior colliculus.

From the inferior colliculus, both streams of information proceed to the
sensory thalamus (Fig. 1-2). The auditory nucleus of the thalamus is the
medial geniculate nucleus. The medial geniculate projects to the auditory
cortex, located in the temporal lobes inside one of the folds of the cortex
(Fig. 4).

It is important to notice that many cells at each level of auditory system
are tonotopically organized. This means that in each of the auditory structures
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Fig. 1. Schematic of some of the auditory pathways from the ears (at the bottom)
to the cortex. Most of the auditory nuclei appear on both sides of the brain and are
shown twice: to the right and to the left of the (dotted) midline. Abbreviations are
as follows: CN – cochlear nucleus; MNTB – medial nucleus of the trapezoidal body;
MSO – medial superior olive; LSO – lateral superior olive; DNLL – dorsal nucleus
of the lateral lemniscus; IC – inferior colliculus. Excitatory connections are shown
with solid lines; inhibitory connections — with dashed.

it is possible to identify areas in which cells preferentially respond to sounds
of certain frequencies (tones) and the preferred frequencies vary more-or-less
continuously with position of the cell.

Notice also that both pathways starting at the cochlear nuclei are bilat-
eral. The consequence of this is that localized brain lesions anywhere along
the auditory pathway usually have no obvious effect on hearing. Deafness is
usually caused by damage to the middle ear, cochlea, or auditory nerve. In in-
fants the auditory system continues to develop throughout the first year of life.
Neurons in the brainstem mature and many connections are just beginning
to form (e.g. between brainstem nuclei, thalamic nuclei, and auditory cortex).
As for other sensory systems, stimulation during this time is essential for nor-
mal development. When hearing is impaired in early life, the morphology and
function of auditory neurons may be affected.

The overall structure of the sub-cortical auditory system and even some
anatomical details are similar across many species. A lot of information about
the auditory system has been obtained over the years from experiments, es-
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Fig. 2. Location of brainstem in the human brain. Three main parts of the brain-
stem are indicated with arrows. (Picture of the brain is from Digital Anatomist
Project [20], Department of Biological Structure, University of Washington, with
permission).

pecially anatomical and electrophysiological, with cats, bats, gerbils, owls,
monkeys and many other animals. Also, a large number of behavioral (psy-
chophysical) studies have been conducted with animals as well as humans.

1.2 Sound Characteristics

Here we describe some of the physical characteristics of the auditory stimuli
and some of the perceptual characteristics that we ascribe to them.

Sounds are pressure waves that transfer energy and momentum from the
source to places around it. One of their natural characteristics is the amount of
energy transmitted by a wave in unit time, called the power of the wave. The
power of a wave is proportional to the square of the frequency, the square of the
amplitude and the wave speed. Often it is convenient to consider the power per
unit area of the wavefront, i.e. the amount of energy transmitted by the wave
perpendicularly to its wavefront in unit time per unit area. This is called the
intensity of a wave. The sound waves can also be characterized by specifying
their time-dependent spectra. The way these physical characteristics of sounds
are usually described and quantified relates to our perception of the sounds.

The spectral properties of many sounds evoke a sensation of pitch. Pitch is
defined as the auditory attribute on the basis of which tones may be ordered on
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Fig. 3. Reconstructed view of human brainstem (red), together with thalamus (pur-
ple) and hypothalamus (yellow) (From Digital Anatomist Project [20], Department
of Biological Structure, University of Washington, with permission). Arrows point
different parts of the brainstem, while lines indicate planes within which cochlear
nuclei and superior olives are located.

Fig. 4. Lobes of the brain (From Digital Anatomist Project [20], Department of
Biological Structure, University of Washington, with permission): frontal lobe (blue),
parietal lobe (green), temporal lobe (purple), occipital lobe (yellow). White arrow
points at the fold within which most of the auditory cortex is located.
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a musical scale. The pitch of a tone is related to its frequency or periodicity.
The pitch of a periodic sound wave (simple tone) is usually indicated by
specifying its frequency in Hz. The pitch of a complex tone is usually indicated
by the frequency of a simple tone whose pitch would be perceived to be the
same. A simple tone evokes a sensation of pitch only if its frequency is between
20 Hz and 5 kHz, while the spectrum of audible frequencies extends from 20
Hz to 20 kHz.

As a side note: in musical and psychophysical literature there are two
different aspects of the notion of pitch. One is related to the frequency of a
sound and is called pitch height; the other is related to the place in a musical
scale and is called pitch chroma. Pitch height corresponds to the sensation of
’high’ and ’low’. Pitch chroma, on the other hand, describes the perceptual
phenomenon of octave equivalence, by which two sounds separated by an
octave (and thus relatively distant in terms of pitch height) are nonetheless
perceived as being somehow equivalent. Thus pitch chroma is organized in
a circular fashion. Chroma perception is limited to the frequency range of
50-4000 Hz [122].

The intensity of the sound is commonly quantified on the logarithmic
scale in Bels, or decibels. In this logarithmic scale the intensity I of a sound
is quantified relative to the intensity I0 of a reference sound, and is measured
in Bels:

1 Bel = log10

(
I

I0

)
,

or in decibels (dB):

1 dB =
1
10

log10

(
I

I0

)
.

These expressions give the difference between the intensities in Bels or dB.
For example, if I is hundred times I0, then the level of I is 2 Bel or 20 dB
greater than that of I0. If we want to express an absolute intensity I using
decibels then we have to use some standard reference intensity I0. The refer-
ence intensity most commonly used is 10−12 (Watt/m2), which corresponds
to a pressure of 20 µPa or about 2 · 10−10 atmosphere. The sound level of a
sound relative to this standard intensity is called the sound pressure level or
SPL of the sound. This standard reference intensity was chosen because it is
very close to the faintest sound of 1 kHz that a human can detect. This lower
limit to the detectable sounds is set by the Brownian motion of the molecules
in the ear. They produce noise input to the auditory receptors, so the signal
has to be strong enough to be detected on top of the noise. Notice that the
sound pressure level can be negative, and that 0 dB sound does not mean the
absence of a sound wave.

The reason for using the logarithmic scale is that when the sound intensity
increases linearly from low to high, it creates the perception that the “loud-
ness” (i.e. the perceived intensity) increases fast at first and then the increase
slows down as the sound gets louder. Logarithmic scale is also useful because
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of the great range of intensities that the auditory system deals with. Dynamic
range of human hearing is approximately 140 dB, ranging from a whisper to
a jet engine. To give some examples, the sound level at an average home is
about 40 dB, an average conversation is about 60 dB, and a loud rock band
is about 110 dB.

2 Peripheral Auditory System

Peripheral auditory system serves to transfer sounds from the environment
to the brain. It is composed of three main components – outer, middle, and
inner ear (Fig. 5).

Pinna

Ear canal

Ossicular chain

Eardrum

Vestibular
system
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r
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Fig. 5. Peripheral auditory system. From <http://www.workplacegroup.net/

article-ear-anatomy.htm>. With permission from W.C. Earnshaw at The Well-
come Trust Institute foe Cell Biology, Edinburgh.

2.1 Outer Ear

The outer ear is the part that we see — the pinna (a structure made of car-
tilage that we call “the ear” in common speech) and the ear canal. A sound
wave travelling in the air, before it reaches the entrance of the ear canal, must
interact with the head, the torso, and the intrinsic shapes of the pinna. As
a result, the waves can be amplified or attenuated, or their spectrum may
be modified. These changes depend on the specific frequencies of the waves
(e.g., they are most significant for waves of frequency above 1.5 kHz), but also
on the three-dimensional position of the sound source. Our brain can use the
difference of spectra between the two ears to determine the position of the
original sound source. A typical way to characterize the pressure that an arbi-
trary sound produces at the eardrum is by using the, so called, Head-Related
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Transfer Functions (HRTFs). These are constructed by placing microphones
at the entrance of the subject’s ear canal, and recording the generated pres-
sure as sounds originate from point sources at various locations. The resulting
functions, or their Fourier transforms – HRTF, are surprisingly complicated
functions of four variables: three space coordinates and frequency. Much re-
search has been devoted to measurements, and computations of the external
ear transformations, both for human and animal subjects (see, for example,
[66],[89],[109] for humans, [68] for cats), and databases can be found on the
web, for example at <http://www.ircam.fr/equipes/salles/listen/>, or
<http://interface.cipic.ucdavis.edu/CIL html/CIL HRTF database.
htm>. The HRTFs are used in many engineering applications, most popu-
larly in creation of realistic acoustic environments in virtual reality settings:
games, virtual music halls, etc. Unfortunately, because of the diversity of the
pinnae shapes and head sizes, HRTFs vary significantly from one person to
another. For this reason, each of the existing models of acoustic fields, based
on some average HRTF, is found adequate by only a relatively small number
of listeners.

Having been collected and transformed by the pinnae, the sound waves are
directed into the ear canal, where they travel towards the eardrum (also called
the tympanic membrane). The ear canal maintains the proper temperature
and humidity for the elasticity of the eardrum. It also contains tiny hairs that
filter dust particles, and special glands that produce earwax for additional
protection. The ear canal can also resonate sound waves and amplify tones in
the 3000-4000 Hz range.

2.2 Middle Ear

The eardrum (tympanic membrane), and the neighboring cavity with three
tiny bones (ossicular chain) comprise the middle ear (Fig. 5). The sound
waves travelling through the ear canal cause the vibrations of the tympanic
membrane, and these vibrations are further transmitted through the chain of
bones towards the inner ear. For the eardrum to function optimally, it should
not be bent either inwards or outwards in the absence of the sound waves. This
means that the air pressure should be the same in the outer and middle ear.
The pressure equalization is achieved through the eustachian tube — a tube
which connects the middle ear cavity with the back of the throat. Normally
this tube is closed, but it opens with swallowing or shewing, thus working as
a pressure equalizer. The middle ear bones (malleus, incus and stapes) are
the smallest bones in the body. They work together as a lever system, to
amplify the force of the vibrations. The malleus is attached to the tympanic
membrane, the stapes enters the oval window of the inner ear, and the incus
lies in between.
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2.3 Inner Ear. Cochlea. Hair Cells.

The inner ear is a series of fluid-filled structures. It has two main parts: a
part that is involved in balance and is called vestibular system, and a second
part that is responsible for converting sounds from mechanical vibrations into
electrical signals, and is called cochlea. Cochlea, in mammals, is coiled as a
snail’s shell (Fig. 5). It has two membrane-covered openings into the middle
ear: the oval window and the round window, and a membranous sac (containing
receptor cells) that separates them (Fig. 6). The size of the oval window is 15
to 30 times smaller than that of the eardrum. This size difference produces
amplification needed to match impedances between sound waves in the air
and in the cochlear fluid. The principal function of the membranous cochlear
sac is to act as a hydromechanical frequency analyzer.

window
Oval

Stapes

window
Round

Cochlear partition
(Tectorial membrane,

hair cells, basilar membrane)

Reissner’s membrane

Scala Vestibuli

Scala Tympani

Scala Media

Wave
propagation

Fig. 6. Schematic of a mammalian cochlea, straightened (see text).

Here is a rough outline of how it works (see Figure 6). The input from
the middle ear arrives at the oval window and creates pressure fluctuations
in the fluid. These fluctuations travel along the cochlea and eventually are
dissipated by the movements of the large round window, which serves as a
pressure release for incompressible fluids. As the pressure waves travel along
the membraneous sac, they permeate one of the walls (Reissner’s membrane)
and cause vibrations in the other (cochlear partition). The platform of the
cochlear partition (basilar membrane) changes in its mechanical properties
along its length from being narrow and stiff at the base of the cochlea, to
being wide and compliant at the apex. Therefore, the lower the frequency of
the tone the further from the oval window the vibration pattern is located.

Hair Cells

Looking at higher resolution inside the cochlear partition (Fig. 7A), there
are auditory sensory cells (inner and outer hair cells) that sit on the basilar
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membrane and have their stereocilia sticking out into the fluid and attached
to a floppy tectorial membrane. Because the basilar and tectorial membranes
attach to the bone at different points, their motion causes the tectorial mem-
brane to slide across the basilar membrane, tilting the hair bundle (Fig. 7B).
Using electrophysiological recordings and mechanical stimulation, it has been
demonstrated that deflection of the stereocilia leads to a change of the mem-
brane potential of the cell. Deflection towards the highest stereocilia leads
to a depolarization of the cell. It is also shown that both the initial change
in charge and calcium concentration occur near the tips of the stereocilia,
suggesting that the transduction channels are located at the tips. Moreover,
the calcium entry and charge change happens relatively fast (10 µsec), which
suggests that the transduction channels are gated mechanically rather than
through a second messenger system.

A B

Fig. 7. Location and basic structure of hair cells. A: Radial segment of cochlea
showing main components of the cochlear partition. B: Schematic of a hair cell. Bold
arrows indicate that excitation and inhibition of the cell voltage can be produced by
deflections of the hair bundle (see text). Illustration is made by Brook L. Johnson.

There are two types of auditory sensory cells: one row of inner hair cells
(IHCs; they are called “inner” because they are closer to the bony central
core of the twisted cochlea), and three to five rows of outer hair cells (OHCs).
Inner and outer cells have different functions, and different sets of incoming
and outgoing connections. Each inner hair cell’s output is read out by twenty
or so cochlear afferent neurons of type I (for characteristics of types of afferent
neurons see below), and each type I afferent neuron only contacts a single inner
hair cell. The output of each outer hair cell, on the other hand, is read together
with many other outer hair cell outputs, by several type II afferent neurons.
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All afferent neurons send their axons to the cochlear nuclei of the brainstem
and terminate there. Outer hair cells also receive descending (efferent) signals
from neurons with cell bodies in the brainstem. The afferent and efferent axons
together form the auditory nerve — the communication channel between the
peripheral auditory system and the auditory regions of the brain.

Inner hair cells convey frequency, intensity and phase of signal. As ex-
plained above, to a first approximation, the frequency is encoded by the iden-
tity of the activated inner hair cells, i.e. those inner hair cells that are located
at the appropriate place along the cochlea. The intensity of the signal is en-
coded by the DC component of the receptor potential; and the timing — by
the AC component (see Phase locking below).

The function of the outer hair cells is not presently known. Two main
theories are that they act as cochlear amplifiers, and that they act to affect
the movement of the tectorial membrane. Another theory is that they function
as motors, which alter the local micromechanics to amplify the sensitivity
and frequency selectivity of the cochlea. It seems that the outer hair cells
participate in the mechanical response of the basilar membrane, because loss
of outer hair cells leads to a loss of sensitivity to soft sounds and decrease in
the sharpness of tuning.

2.4 Mathematical Modeling of the Peripheral Auditory System

Mathematical and computational modeling of the peripheral auditory system
has a long history. For mathematical analysis and models of the external and
middle ear see, e.g. review by Rosowski [84]. More recently, there has been
a number of three-dimensional models of the middle ear that use the finite-
element method (e.g. [44, 27, 18, 22, 25, 41, 103]). Some of these models have
been successfully used for clinical applications (e.g. [41, 18]).

An even larger set of studies concentrated on the modeling of the cochlea
(for reviews see, for example, [40, 28]. Early models represented cochlea as
one- or two-dimensional structure and incorporated only a few elements of
the presently known cochlear mechanics. Early one-dimensional models of the
cochlea [23, 76] have assumed that the fluid pressure is constant over a cross-
section of the cochlear channel. The fluid is assumed to be incompressible
and inviscid, and the basilar membrane is modeled as a damped, forced har-
monic oscillator with no elastic coupling along its length. Qualitatively, this
model has been shown to capture the basic features of the basilar membrane
response. Quantitatively, however, it yields large discrepancies with measure-
ment results [120]. Two-dimensional models by Ranke [78] and Zwislocki [121]
make similar assumptions on the cochlear fluid and the basilar membrane.
Ranke’s model uses a deep water approximation, while Zwislocki used the
shallow water theory in his model. These models were further developed in
[3, 4, 53, 92] and in other works. Other two-dimensional models incorporate
more sophisticated representations of the basilar membrane using, for exam-
ple, elastic beam and plate theory [10, 17, 36, 37, 43, 99]. Three-dimensional
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models were considered by Steele and Taber [100] and de Boer [19], who used
asymptotic methods and computations and obtained an improved fit of the
experimental data. Their work seems to indicate that geometry may play a
significant role in the problem. In particular, the effect of the spiral coiling of
the cochlea on the wave dynamics remains unresolved; see [101, 105, 56, 60].

With the development of more powerful computers it became possible
to construct more detailed computational models of the cochlea. A two-
dimensional computational model of the cochlea was constructed by Beyer
[7]. In this model the cochlea is a flat rectangular strip divided into two equal
halves by a line which represents the basilar membrane. The fluid is modelled
by the full Navier-Stokes equations with a viscosity term, but elastic coupling
along the basilar membrane is not incorporated. Beyer has used a modifica-
tion of Peskin’s immersed boundary method, originally developed for modeling
the fluid dynamics of the heart [75]. Several three-dimensional computational
models have been reported, such as Kolston’s model [45], intended to simulate
the micro-mechanics of the cochlear partition in the linear regime (i.e., near
the threshold of hearing), Parthasarati, Grosh and Nuttal’s hybrid analytical-
computational model using WKB approximations and finite-element methods,
and Givelberg and Bunn’s model [28] using the immersed boundary method
in a three-dimensional setting.

We will consider as an example the analysis of a two-dimensional model
with fluid viscosity, by Peskin [73, 74]. In this model cochlea is represented by
a plane and the basilar membrane by an infinite line dividing the plane into
two halves. The fluid in this model satisfies the Navier-Stokes equations with
the non-linearities dropped. The distinctive feature of this model is that the
location of wave peak for a particular sound frequency is strongly influenced
by fluid viscosity and the negative friction of the basilar membrane. This
model was studied with asymptotic and numerical methods in [54, 55]. In the
example that we present here, the zeroth order approximation of the solution
is found by WKB method. (The WKB method was first used for this cochlear
model by Neu and Keller [69] in the case of zero membrane friction).
Problem setup: Basilar membrane at rest is situated along the x-axis. The
deviation of the basilar membrane from the axis will be denoted by h(x, t).
Vector (u, v) is the velocity of the fluid, and p is the pressure of the fluid (these
are functions of (x, y, t)).
Assumption 1: the fluid satisfies the Navier-Stokes equations with the non-
linearities left out, i.e.

for y 	= 0 :

ρ
∂u

∂t
+

∂p

∂x
= µ

(
∂2u

∂x2
+

∂2u

∂y2

)
, (1)

ρ
∂v

∂t
+

∂p

∂y
= µ

(
∂2v

∂x2
+

∂2v

∂y2

)
, (2)
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∂u

∂x
+

∂v

∂y
= 0. (3)

In these equations, ρ is the density and µ is the viscosity of the fluid. The last
equation represents the incompressibility of the fluid.

Notice that there is no explicit forcing term in this model. Yet, there are
bounded wave solutions that move in the direction of the increasing x as if
there is a source of vibration at x = −∞.
Assumption 2:
a) the basilar membrane (located at y = 0) has zero mass;
b) there is no coupling along the membrane;
c) each point of the membrane feels a restoring force that is proportional to
the displacement and to the compliance (flexibility) of the membrane, the
latter given by eλx (to represent the fact that the actual membrane is more
narrow and more flexible at the far end);
d) the membrane possesses an active mechanism (mechanical amplifier, pa-
rameter β below is negative), i.e.

for y = 0 :

u(x, 0, t) = 0, (4)

v(x, 0, t) =
∂h

dt
(x, t), (5)

p(x, 0−, t) − p(x, 0+, t) = s0e
−λx

(
h + β

∂h

∂t

)
(x, t). (6)

Note that the boundary conditions are applied at the rest position of the
membrane y = 0, not at its instantaneous position h(x, t). This, as well as the
above assumptions is justified by the small displacements of the membrane
and the fluid particles in the cochlea. Notice also that there is an unknown
function h(x, t) in the boundary conditions. Finding this function such that
the rest of the system has a bounded solution (u, v, p) is part of the problem.
In addition, the problem is complicated by presence of the stiffness term. The
parameter λ was measured (for dead cochlea) by von Békésey: λ−1 ≈ 0.7 cm,
i.e. over the length of the human cochlea (length ≈ 3.5 cm) the stiffness more
than doubles.

Because of the symmetry of the system, we look for solutions that satisfy

p(x, y, t) = −p(x,−y, t),

u(x, y, t) = −u(x,−y, t),

v(x, y, t) = v(x,−y, t).

Then we can restrict the system of equations (1-3) to y < 0 and, using notation
y = 0 instead of y = 0−, re-write the boundary conditions (4-6) as

u(x, 0, t) = 0, (7)
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v(x, 0, t) =
∂h

dt
(x, t), (8)

2p(x, 0, t) = s0e
−λx

(
h + β

∂h

∂t

)
(x, t). (9)

We also impose the condition

(u, v, p) → 0 as y → −∞.

Solution plan: We want to determine the solution that represents the steady
state response of the cochlea to a pure tone. We will look for this solution as
a small perturbation from the time-periodic function of the same frequency
as the tone (and thus introduce a small parameter in the system). Further,
we will use asymptotic expansion in the small parameter and by solving the
zeroth order system of equations we will find an approximation of the solution.

We use a change of variables



u
v
p


 (x, y, t, ε) =




U
V
P


 (x − xε, y/ε, ε)ei

(
ωt+

Φ(x−xε)
ε

)
,

h(x, t, ε) = H(x − xε, ε)e
i
(
ωt+

Φ(x−xε)
ε

)
,

where Φ is the local spatial frequency, ω is the given frequency of the exter-
nal pure tone stimulus (radians/second), functions U, V, P, H, Φ are complex-
valued, and the parameters ε and xε will be chosen later on. We set

X = x − xε,

Y = y/ε,

and
ξ(X) = Φ′(X) =

∂Φ

∂X
(X).

In terms of the new variables:

∂u

∂t
= iω · U · ei

(
ωt+

Φ(x−xε)
ε

)
,

∂u

∂x
=

[
∂U

∂X
+

i

ε
ξ(X)U

]
e

i
(
ωt+

Φ(x−xε)
ε

)
,

∂u

∂y
=

1
ε

∂U

∂y
e

i
(
ωt+

Φ(x−xε)
ε

)
,

∆u = ∆U =

=
[

∂2U
∂X2 + i

ε

(
ξ′U + 2ξ ∂U

∂X

)
+ 1

ε2

(
∂2U
∂Y 2 − ξ2U

)]
e

i
(
ωt+Φ(x−xε)

ε

)
.
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Then the equations (1-3) can be rewritten as:

for Y < 0 :

(iωρ − µ∆)U +
(

i
ξ

ε
+

∂

∂x

)
P = 0, (10)

(iωρ − µ∆)V +
1
ε

∂P

∂Y
= 0, (11)

(
i
ξ

ε
+

∂

∂x

)
U +

1
ε

∂V

∂Y
= 0, (12)

with boundary conditions
for Y = 0 :

U(X, 0, ε) = 0,

V (X, 0, ε) = iωH(X, 0, ε),
2P (X, 0, ε) = s0(1 + iωβ)e−λxεe−λxH(X, 0, ε),

(U, V, P ) → 0 as Y → −∞.

Assumption 3. The functions U, V, P, H have the expansion

U = U0 + εU1 + · · · ,

V = V0 + εV1 + · · · ,
P = ε(P0 + εP1 + · · ·),
H = H0 + εH1 + · · · .

We now choose

ε2 =
µλ2

ρω
, e−λxε = ε.

This choice of ε makes it indeed a small parameter for realistic values of other
quantities. For example, if the fluid has characteristics of water (ρ = 1 g/cm3,
µ = .02 g/(cm· s)), for a 600 Hz tone (ω = 2π·600/s) and 1/λ=.7 cm, ε ≈ .003.

If we substitute the expansions of U, V, P, H into the equations (10-12) and
collect terms with matching powers of ε, we find at the zeroth order:

for Y < 0 :

ρω

(
i − 1

λ2

(
−ξ2 +

∂2

∂Y 2

))
U0 + iξP0 = 0,

ρω

(
i − 1

λ2

(
−ξ2 +

∂2

∂Y 2

))
V0 +

∂P0

∂Y
= 0,
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iξU0 +
∂V0

∂Y
= 0,

and for Y = 0 :

U0(X, 0) = 0,

V0(X, 0) = iωH0(X),

2P0(X, 0) = s0(1 + iωβ)e−λxH0(X),

(U0, V0, P0) → 0 as Y → −∞.

Next, at the first order
for Y < 0 :

ρω

(
i − 1

λ2

(
−ξ2 +

∂2

∂Y 2

))
U1 + iξP1 =

ρω

λ2
i

(
ξ′ + 2ξ

∂

∂X

)
U0 − ∂

∂X
P0,

ρω

(
i − 1

λ2

(
−ξ2 +

∂2

∂Y 2

))
V1 +

∂P1

∂Y
=

ρω

λ2
i

(
ξ′ + 2ξ

∂

∂X

)
V0,

iξU1 +
∂V1

∂Y
= − ∂

∂X
U0,

and for Y = 0 :

U1(X, 0) = 0,

V1(X, 0) = iωH1(X),

2P1(X, 0) = s0(1 + iωβ)e−λXH1(X),

(U1, V1, P1) → 0 as Y → −∞.

Consider the zeroth order equations. For each fixed x, the functions P0, U0, V0

satisfy an ODE system whose solution is given by

P0(X, Y ) = P0(X, 0)e
√

ξ2Y ,

U0(X, Y ) = −P0(X, 0)
iξ

iωρ

(
e
√

ξ2Y − e
√

ξ2+iλ2Y
)

,

V0(X, Y ) = −P0(X, 0)
ξ2

iωρ

(
e
√

ξ2Y

√
ξ2

− e
√

ξ2+iλ2Y

√
ξ2 + iλ2

)
,

where √ denotes the root with positive real part.
Next, the zeroth order equations that contain H0 give two different for-

mulae for H0 in terms of P0(X, 0):

H0(X) =
V0(X, 0)

iω
= P0(X, 0)

ξ2

ω2ρ

(
1√
xi2

− 1√
ξ2 + iλ2

)
(13)

and
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H0(X) = P0(X, 0)
2eλX

s0(1 + iωβ)
. (14)

We have just expressed our zeroth order solution U0(X, Y ), V0(X, Y ),
P0(X, Y ), H0(X) in terms of P0(X, 0) and ξ(X). Now there are two steps
remaining. Step 1 is to find a function ξ(X) such that both equations for
H0(X) are satisfied. Step 2 is to find P0(X, 0).

Step 1. For ξ to satisfy both (13) and (14) we need to have

Q(X) = ξ2

(
1√
ξ2

− 1√
ξ2 + iλ2

)
, (15)

where

Q(X) =
2ρω2eλX

s0(1 + iωβ)
.

The condition (15) is called a dispersion relation. It implicitly defines the local
spatial frequency ξ in terms of X and ω. Equation (15) may have multiple
solutions, for example, if ξ is a solution, then −ξ is also a solution (a wave
going in the opposite direction). Using notation η =

√
ξ2 we can transform

(15) into

η3 − 1
2
(Q +

iλ2

Q
)η2 + iλ2η − 1

2
iλ2Q = 0.

But not every zero of this cubic satisfies the dispersion relation. First of all
the real part of η has to be non-negative. Second, by definition of Q: Q < η,
therefore only the zeros of the cubic such that

Q = η − η2

√
η2 + iλ2

satisfy the original equation. For every root of cubic that satisfies these two
conditions we can then take ξ(X) = ±η.

Step 2. Now we need to find P0(X, 0). If we multiply the first order equa-
tions by functions −U0, V0, P0, respectively (which represent solution to the
zeroth order equations with ξ replaced by −ξ), and integrate each equation
over Y ∈ (−∞, 0), then we obtain after integration by parts and combining
non-vanishing terms

∂

∂X

∫ 0

−∞

[
iωρξ

λ2
(V 2

0 − U2
0 ) + U0P0

]
dY = 0,

i.e. ∫ 0

−∞

[
iωρξ

λ2
(V 2

0 − U2
0 ) + U0P0

]
dY = C0,

where C0 is a constant independent of X . Notice that all terms containing
U1, V1 and P1 have disappeared because of the vanishing factors in front of
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them. Now substitute U0, V0 and P0 by their expressions in terms of P (X, 0),
and integrate. We get

(P0(X, 0)2) =
2ωρC0(

√
ξ2 + iλ2)3

√
ξ2

ξ(
√

ξ2 + iλ2 −
√

ξ2)(
√

ξ2 + iλ2
√

ξ2 − iλ2)
,

which gives us the solution.

3 Auditory Nerve (AN)

3.1 AN Structure

The auditory nerve is a collection of axons connecting the peripheral auditory
system and the auditory areas of the brain. It is made up of approximately
30,000 to 55,000 nerve fibers, depending on species. About 95% of them are
afferent, projecting from cell bodies in the cochlea to cochlear nuclei in the
brainstem, and the rest are efferent, coming to cochlea from cells in the olivary
complex (also part of the brainstem, see below). The afferent neurons are
divided into Type I and Type II, based on their morphology: type I cells are
large, have bipolar shape, their axons are large and myelinated, and, therefore,
fast; type II cells are smaller, have different shape and non-myelinated axons.
In addition, type I fibers innervate inner hair cells in many-to-one fashion, and
type II fibers innervate many-to-many outer hair cells. Very little is known
about the functional properties of type II afferents, partially because type I
fibers are much easier for physiologist to record from, due to their large size
and number. The role of efferent neurons in modifying the auditory input is
also not yet clear. So, the rest of this text will focus on type I afferents.

3.2 Response Properties

Spontaneous Rates

In mammals, afferents can be divided into low, medium and high spontaneous
rate fibers. The spontaneous rate (firing rate in the absence of stimuli) is
determined by pattern of hair cell innervation, although the mechanisms are
unclear. It could be that either smaller size of low spontaneous rate fibers
makes them less excitable, or less transmitter is released from the hair cells to
low spontaneous rate fibers. The variety of available fiber sensitivity provides
a way of encoding wide range of intensities in auditory nerve (see Intensity
sensitivity below).

Thresholds

The threshold is defined as minimal intensity of the stimulus that increases
firing rate above the spontaneous level. Note that this is not a real threshold
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because, for example, for very low frequency fibers, sound first synchronizes
spikes before there is ever an increase in rate. Usually the threshold is about
1 dB in mammals.

Latencies

Auditory fibers are also characterized by latencies in their responses. The la-
tencies can be measured using brief stimuli, for example, clicks. Fibers tuned
to different frequencies respond to a click at different latencies. Most of the
delay originates from travel time of wave along basilar membrane. High fre-
quency areas on the membrane are stimulated first, i.e. high frequency cells
have shorter latencies.

Frequency Tuning

If we fix the intensity of the stimulus at any particular level and look at the
firing rate of the given fiber at different frequencies, we find that the response
function is usually single-peaked. This means that the cell has a preferred
range of frequencies, inherited from its innervation of cochlea.

A typical way to characterize the basic properties of an auditory cell, is to
probe its responses to a variety of pure tones (stimuli with only one frequency
component and constant intensity). These responses are often summarized by
marking the areas of intensity and frequency that produce a change in the
firing rate of the cell (response areas). The border of this area is called a tun-
ing curve of the cell. For auditory nerve fibers (Fig. 8) these areas usually
have triangular shape, pointing down, and most of the area corresponds to an
increase in firing rate (excitatory). The frequency at which the tip of the re-
sponse area is located, i.e. the frequency at which the cell is most sensitive, is
called the cell’s characteristic frequency (CF) or best frequency (BF). The CF
of each cochlear afferent is well-defined and it provides accurate information
about the position on the cochlea of the hair cell that the afferent inner-
vates. Approximately, the linear distance on the cochlea is proportional to
the logarithm of CF. The shapes of the response areas change systematically
with CF. The response areas of high-CF fibers have very steep high-frequency
slope, and elongated tip (Fig. 8). Response areas of lower-CF afferents are rel-
atively broader and more symmetrical. Notice that often relative bandwidth
(normalized to CF), rather than absolute bandwidth, is used to characterize
the sharpness of tuning; and relative bandwidth increases with CF. A com-
mon measure of frequency tuning is the Q10, defined as the CF divided by
the bandwidth at 10 dB above CF threshold. Q indexes also get higher with
increasing CF.

Intensity Tuning

Next property of the auditory nerve fibers, that we will be discussing, is the
intensity tuning. Let us keep the frequency constant and consider responses, in



126 Alla Borisyuk

SP
L

, d
B

Frequency, kHz

Fig. 8. Examples of frequency-threshold tuning curves for chinchilla auditory nerve
fibers. Area above each curve is the response area of the given fiber. Reprinted by
permission of VCH Publishers, Inc. from [86].

terms of firing rate, at different intensity levels (rate-intensity function). This
function is generally monotonically increasing over 40-50 dB above threshold,
and then saturates. The range over which this function is increasing is termed
the neuron’s dynamic range. Maximum dynamic range is usually at CF. Notice
that the dynamic range of individual cells (40 dB) is 107 times smaller than
the total range of human hearing (110 dB). To build such a wide range out
of small-range elements, the auditory system makes use of the diversity in
sensitivity of individual cells. The threshold levels of less sensitive fibers are
situated at the upper end of the range of the more sensitive ones. In this way
one set of neurons is just beginning to fire above their spontaneous rate when
the other group is beginning to fire at their maximal rate. Additionally, at
very high sound levels, the frequency tuning properties of the cochlea break
down. Thus, we are able to tell that a 102 dB sound is louder than a 100 dB
sound, but it is hard for us to determine whether it has a different frequency.

Phase Locking (Transmission of Timing Information)

Phase-locking of one (potentially stochastic) process with respect to another
(often periodic) means that the events of the former preferentially occur at
certain phases of the latter; in other words, that there is a constant phase
shift between the two.

In the presence of a pure tone (periodic) stimulus, due to cochlear struc-
ture, inner hair cells are stimulated periodically by the pressure waves. If the
frequency is low enough, then the depolarizations of the hair cell are also peri-
odic and occur at certain phases of the stimulus cycle. This, in turn, generates
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a phase-locked release of neurotransmitter (that carries the neuronal signal to
other cells) and, ultimately, leads to spikes in the auditory nerve that are also
phase-locked to the stimulus cycle.

To observe or measure the phase-locking, people often build a histogram
of phases of the recorded spikes within a period of the stimulus (Fig. 9). To
have a meaningful resolution, given that stimuli frequencies can be quite high,
bin widths have to be in the microsecond range. Phase-locking is equivalent
to spikes accumulating at some parts of the periodogram, i.e. forming a peak.

A typical way to quantify phase-locking is by computing vector strength of
the period-histogram [30]. Vector strength of a periodic function is the norm
of the first complex Fourier component, normalized by the norm of the zeroth
Fourier component. Normalization is included to remove dependence on the
mean firing rate. This quantity can vary between 0 and 1, with 0 indicating
low phase locking (for example, in case of uniform distribution of spikes), and
1 indicating high phase locking (when all spikes fall in the same bin). Figure 9
shows an example of periodograms and vector strengths of an auditory fiber
in response to stimuli of different frequencies.

Phase-locking generally occurs for stimuli with frequencies up to 4-6 kHz.
Even high frequency fibers, when stimulated with low frequencies at intensities
10-20 dB below their rate threshold, will show phase locking of spikes, without
increase in firing rate [39]. Decline of phase-locking with increase in frequency
originates in the parallel reduction of the AC component of the inner hair cell
response.

Phase-locking plays an important role in our ability to localize sounds,
particularly at low frequencies, at which interaction of sound waves with the
body and the pinna is reduced. We are able to tell which direction a sound
is coming from (its azimuth), based on time delay between when it reaches
our right and left ears. The idea is that the sound, originating on one side
of the head, must follow a longer path and consequently takes a longer time
traveling to one ear than to the other. Then, due to the phase locking, the
time delay is translated into the phase shift between spike trains, originating
in the different sides of the brain. These delays are detected in some parts
of the auditory pathway superior olivary complex, with precision as small as
20 microseconds. We will come back to the issue of phase-locking and sound
localization when we talk about superior olivary complex below.

3.3 How Is AN Activity Used by Brain?

One of the basic questions one can ask about how the AN signal is decoded is
the following: how does a neuron differentiate between change in rate due to
change in intensity vs change in rate due to change in frequency? While the
complete answer is not yet clear, it seems that the key is to look not at the
responses of the single cell, but at the distribution of the responses across a
population. The basic view is that the loudness can be carried by the total
level of the population activity, and the frequency — by the position of the
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Fig. 9. Periodograms of responses of an auditory nerve fiber. Each panel shows
response to one stimulus frequency, and horizontal axis spans one stimulus period.
Above the histogram is the stimulus frequency, total number of spikes (N) and the
vector strength (VS). Reprinted by permission of Acoustical Society of America
from [5].

activity peak within the population (place principle) and/or by the temporal
structure of the spike trains (using phase-locking — volley principle).

In this simple view, one considers complex sounds as made up of sinu-
soids (Fourier components). This linear approximation works well (at normal
acoustic pressures) for the outer ear, less well for middle ear and only par-
tially for the inner ear. The inner ear, anatomically, breaks sound into bands
of frequencies, that persist for many stages of processing. How the information
from these different bands is put back together is unknown.

In reality things are not linear. We will give two examples of non-linearities.
The first example shows that the responses of AN fibers to tones depend on
the spectral and temporal context. We illustrate this by describing a two-tone
suppression: response of AN fiber to a given tone can be suppressed by a
presence of another tone of a given frequency. The second example illustrates
the non-linearity in a phenomenon of “hearing the missing fundamental”: tone
combinations can create perception of frequencies that are not really present
in the signal. Now we describe these examples in more detail.
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Example 1. Two-tone suppression occurs in recordings from cochlea or affer-
ents. It is defined as reduction in response to one tone in presence of a second
tone. It depends upon levels and frequencies of the two tones. To illustrate this
phenomenon, one can map response area of a cell (Fig. 10), then choose a test
tone near CF (triangle in Fig. 10), and mark by shading the tonal stimuli that
suppress responses to the test tone. Regions of overlap of the shading with the
response area show that some tones that are excitatory by themselves, can
suppress responses to CF tones. Latency for suppression is as short as initial
response, i.e. it is not caused by efferents. It is shown that major component
of the suppression originates from basilar membrane motion.

Frequency, kHz
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Fig. 10. Example of two-tone suppression. Tuning curve (black line), showing the
lower border of the response area of an auditory nerve fiber. Response to test tone
(triangle) can be suppressed by any of the tones in the shaded area. Recording from
chinchilla auditory nerve fiber, reprinted from [33] with permission from Elsevier.

Example 2. The second example of non-linearity is that in some specific types
of experiments it is possible to hear a sound of certain frequency even though
the ear is being stimulated by several other frequencies. This phenomenon
is sometimes referred to as “hearing the missing fundamental”. For exam-
ple, three frequencies are played simultaneously F1=4000 Hz, F2=6000 Hz,
F3=8000 Hz. Rather than hearing these three frequencies, the listener actu-
ally hears a 2000 Hz sound. It has been shown that the region of the cochlea
with its threshold tuned to 2000 Hz do not fire any faster, while the neurons
”tuned” to 4000 Hz, 6000 Hz and 8000 Hz are firing well above their spon-
taneous rate. To account for this paradox some scientist have proposed that
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frequency discrimination is not done based on basilar membrane resonance,
but on timing information. Due to phase locking and because all frequencies
present are multiples of 2000 Hz, multiple auditory nerve fibers will fire si-
multaneously at every cycle of the 2000 Hz oscillation. It is hypothesized that
if only this timing information is used to interpolate the frequency content of
the sound, the brain can be tricked into hearing the missing fundamental.

3.4 Modeling of the Auditory Nerve

Mathematical modeling of the responses of the auditory nerve fibers has
mostly been phenomenological. The models aimed to described as accurately
as possible the experimentally known characteristics of fibers’ responses. For
example, to match the responses to single simple tones or clicks and to tempo-
ral combinations of different stimuli [16, 104, 119], or to determine the lower
thresholds of the single-pulse responses [111]. Prevalence of this type of mod-
eling is due to the fact that the biophysics of the hair cells, where auditory
nerve fibers originate, has not been worked out in sufficient detail to allow con-
struction of more biophysically realistic models. However, the auditory nerve
fiber modeling has recently become one of the examples of how just how much
theoretical studies can contribute to the field of neuroscience. Recent mod-
els of Heinz et al. [34, 35] provide a link between auditory fiber physiology
and human psychophysics. They find how results equivalent to human psy-
chophysical performance can be extracted from accurate models of the fiber
responses. In essence, this demonstrates the “code” in auditory nerve fibers
via which the auditory system extracts all necessary information.

4 Cochlear Nuclei

As fibers of the auditory nerve enter the cochlear nuclei (CN), they branch to
form multiple parallel representations of the environment. This allows parallel
computations of different sound features. For example, sound localization and
identification of a sound are performed in parallel. This separation of process-
ing pathways exists both in the CN and further upstream in the brainstem.

Some information carried by auditory nerve fibers is relayed with great
fidelity by specific neurons over specific pathways to higher centers of the
brain. Other CN neurons modify the incoming spike trains substantially, with
only certain elements of the input signal extracted prior to transmission to
the next station in the auditory pathway.

One of the features that is inherited in CN from the auditory nerve is tono-
topy (continuous variation of the characteristic frequency with the position of
the cell, as on basilar membrane). But, interestingly, tonotopic projections are
not point-to-point. Each characteristic frequency point on basilar membrane
projects to an iso-frequency plane across the extent of the cochlear nucleus.
Thus cochlear place representation is expanded into a second dimension in
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brain. These tonotopic sheets are preserved in projections all the way to cor-
tex. We contrast this with the visual and somatosensory systems, where maps
reflect a location of stimulus in space and the representations are point to
point.

In this section we will first describe general structure of the CN and out-
line its input and output streams. Then we will describe in more details the
properties of cells that make information processing in the CN possible.

4.1 Basic Features of the CN Structure

As we mentioned above, there are parallel streams of information processing
in the cochlear nuclei. Thus, the CN is naturally subdivided into areas that
house cells with different specialized properties, receive different patterns of
inputs and project to different targets. The main subdivision structures are
the ventral cochlear nucleus (VCN) and the dorsal cochlear nucleus (DCN)
(Fig. 11).

Fig. 11. Schematic of cell type location in CN. Main parts of the CN are marked
by color (green is dorsal cochlear nucleus (DCN), yellow is posteroventral cochlear
nucleus (PVCN) and blue is anteroventral cochlear nucleus (AVCN)). Cell types are
marked by symbols. Illustration is made by Brook L. Johnson.

The VCN contains four types of principal cells: globular bushy cells, spher-
ical bushy cells, multipolar cells and octopus cells. We will describe their prop-
erties below, and just mention now that they play a very important role in
processing different sorts of timing information about the stimuli.
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Unlike VCN, DCN is layered and has interneurons. The outermost layer,
called the superficial or molecular layer, contains cell bodies and axons of
several types of small interneurons. The second layer, called he pyramidal cell
layer, has the cell bodies of pyramidal cells, the most numerous of the DCN
cell type, and cartwheel and granule cells. The deep layer contains the axons
of auditory nerve fibers as well as giant cells and vertical cells.

4.2 Innervation by the Auditory Nerve Fibers

The main external input to the CN comes from the auditory nerve fibers.
There is also input to granule cells that brings multimodal information from
widespread regions of the brain, including somatosensory, vestibular and mo-
tor regions, but we will not consider it here.

As a reminder, in mammals there are two types of the auditory nerve
fibers. Type I fibers innervate one inner hair cell each, the fibers are thick and
myelinated, and they constitute 90-95% of all fibers. Type II fibers innervate
outer hairs cells, they are thinner and unmyelinated.

Type I fibers in the cochlear nuclei form two branches: the ascending
branch goes to the anteroventral region of the cochlear nucleus (AVCN) and
the descending branch to the posteroventral region (PVCN) and parts of DCN.
Type II fibers project to DCN, but because it is not clear if they carry auditory
information, type II fibers are, once again, not considered here.

Auditory nerve fibers make synapses to all cell types in the cochlear nuclei,
except in the molecular layer of the DCN and in the granule cells region. The
innervation is tonotopic within each principal cell type in the VCN and in the
deep layer of DCN.

Nerves form different types of terminals onto different cell types and/or
different cochlear nucleus divisions. The terminals range from small to large
endbulbs. The largest are the endbulbs of Held (calices of Held) onto the
bushy cells. Each such terminal contains hundreds of synapses. This allows to
inject a lot of current into postsynaptic cell every time the pre-synaptic signal
arrives. Perhaps only one endbulb is needed to fire a cell, and the transmission
through these connections is very fast and reliable. Other CN cell types receive
input from auditory nerves through more varicose or bouton-like terminals,
located at their dendrites. In these cases more integration is required to fire
a cell.

All auditory nerve synapses use glutamate as the neurotransmitter, and
are depolarizing (excitatory). Often postsynaptic cells have specialized “fast”
receptors (of AMPA type), important in mediating precise coding. Interest-
ingly, in young animals glutamate receptors in the VCN are dominated by very
slow NMDA receptors and are replaced by AMPA receptors in the course of
development. The reason for this change is not presently clear.

Another important feature that is modified with age is synaptic plasticity.
In many neuronal systems the strength of synapses are modified, both on
the short (during a single stimulus response) and on the long time scale. In
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contrast, synaptic transmission by adult auditory nerve fibers shows little
plasticity. Synaptic depression (decrease in synaptic efficacy on time scale of
100 msec) is prominent in young animals and decreases with age.

4.3 Main CN Output Targets

Figure 12 shows the two major fiber bundles that leave the cochlear nucleus
in relation to other structures in the brainstem. It also shows some of the
auditory neuronal circuits of the brainstem. At the output of the cochlear
nucleus, spherical and globular bushy cells (SBC and GBC) project to the
medial (MSO) and lateral (LSO) superior olivary nuclei and the trapezoid
body (MNTB and LNTB). The MSO and LSO compare input from the two
ears and perform the initial computations necessary for sound localization in
the horizontal plane (see next section). Excitatory inputs to the superior olive
come mostly from the spherical bushy cells and inhibitory inputs come from
the globular bushy cells via the inhibitory interneurons in the trapezoid body.

M
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LNTBMNTB

VNLL
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Fig. 12. Main ascending connections from cochlear nucleus (CN). Main CN cell
types: globular bushy cells (GBC), spherical bushy cells (SBC), multipolar (M),
giant (Gi), pyramidal (Pyr) make connections to medial nucleus of the trapezoidal
body (MNTB), lateral nucleus of the trapezoidal body (LNTB), medial superior olive
(MSO), lateral superior olive (LSO), ventral nucleus of lateral lemniscus (VNLL)and
inferior colliculus (IC). All connections are symmetric with respect to midline (dot-
ted line), but not all are shown. Excitatory connections are shown with solid lines
and inhibitory with dashed.

Multipolar, giant, and pyramidal cells project directly to the inferior col-
liculus, where all ascending auditory pathways converge (see section 6). The
octopus cells project to the superior paraolivary nucleus and to the ventral
nucleus of the lateral lemniscus (VNLL). The granule cells axons project to
the molecular layer of the DCN, where they form parallel fibers. These par-
allel fibers run orthogonal to the auditory nerve fibers and cross isofrequency
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layers. The input from these two sources is combined by the principal cells of
the DCN – the pyramidal cells.

4.4 Classifications of Cells in the CN

In the current prevalent view, each cochlear nucleus cell type corresponds to
a unique pattern of response to sound; this is consistent with the idea that
each type is involved in a different aspect of the analysis of the information
in the auditory nerve. The diversity of these patterns can be accounted for by
three features that vary among the principal cell types: (1) the pattern of the
innervation of the cell by ANFs, (2) the electrical properties of the cells, and
(3) the interneuronal circuitry associated with the cell.

To study the correlation between physiological and anatomical properties
of the cells experimentally, it is necessary to make intracellular recordings of
responses to various current injections and then fill the cells with a dye to
image their shape. These experiments are hard to perform and while there
seems to be evidence that the correlation between structure and function in
these cells is strong, this evidence is not conclusive.

Physiological Types

Three major types of VCN cells (bushy, multipolar and octopus) probably
correspond to different physiological types: primary-like, chopper and onset.

Primary-like (spherical bushy) and primary-like with notch (globular
bushy) responses are very much like auditory nerve. Initial high burst of spikes
(>1,000 Hz) followed by decline to maximum rate of no more than 250 Hz.
Pause (notch) is mostly due to refractory period of cell.

Choppers are major response type in PVCN, also found in other divisions.
In response to high frequency tones, they discharge regularly, independent of
stimulus frequency and phase with firing rates sustained at up to 200-500 Hz.
These appear to be multipolar cells.

Onset responses have spikes at the onset of stimulus, and then fewer or
none. Standard deviation of first spike latency is very small, about 100 µsec.
Those few spikes that are produced during the ongoing stimulus phase lock to
low frequency tones. These cells are located mostly in PVCN. Some of them
are octopus cells and others are large multipolars. The properties of these
responses (precise onset and brief transient activation) allow them to play an
important role in temporal coding.

DCN cells exhibit wide variety of response types. Their functions probably
are related to pinna movement and echo suppression (which allows you to not
hear yourself many times when you speak in a small room). In addition, there
is also somatosensory input through granule cells that has to be combined
with the auditory one.
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In Vitro Physiology

To complicate things further, slice physiology in VCN provides additional view
of types. In these studies intracellular recordings are made from isolated cells.
It is possible to either control the current flowing across the cell membrane and
measure the induced voltage (current clamp), or to fix the membrane voltage
and to record the resulting trans-membrane current (voltage clamp). The
recordings reveal two major physiological response types. Type 1 fires regular
train of action potentials in response to depolarization. Also, it has relatively
linear current-voltage curve. Type 2 fires just one, or a few, action potentials in
response to ongoing depolarization. In addition it has very nonlinear current-
voltage curve, with zero (reversal potential) at about -70 mV and much steeper
slope in depolarizing than in hyperpolarizing direction.

Differences between types 1 and 2 are largely due to change in potassium
currents. Type 2 cells have low threshold potassium current that is partially
activates near rest values of voltage and strongly activates when voltage rises,
repolarizing the membrane and halting the response. Many type 1 cells are
multipolar and many type 2 cells are bushy (see more on this below, under
Bushy and Multipolar cells).

4.5 Properties of Main Cell Types

Bushy Cells

Bushy cells have short (<200 µm), bushy dendritic trees. Their synaptic input
is located mainly on the soma, with few synapses on their dendrites. Two
subtypes of bushy cells are recognized as spherical and globular.

Bushy cells receive inputs from auditory nerve through large synaptic ter-
minals (calyx of Held), have primary-like responses and accurate temporal
coding. As mentioned earlier, spherical bushy cells and globular bushy cells
differ in their locations and their projections. Spherical cells are located in
the more anterior region, and project to MSO, while globular cells project to
LSO and trapezoid body. Spherical cells have one or a few short dendrites
that terminate in a dense bush-like structure near the soma, and globulars
have more ovoid somata and larger, more diffuse dendritic trees. Spherical
cells also have lower characteristic frequencies, better phase-locking and are
specialized for accurate encoding of AN signal. Globular bushy cells some-
times chop or have onset responses, receive more and smaller endbulbs, and
have higher characteristic frequencies. Probably these cells started out as one
type and have diverged with evolution of sensitivity to higher frequencies.

Bushy cells respond to sound with well-timed action potentials. The char-
acteristics of both the synaptic current and the postsynaptic cell properties
are made so that they shape the timing of the response.
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Responses to Sounds

Figure 13A shows typical responses to tones of bushy cells. Large unitary
synaptic events (excitatory post-synaptic potentials; EPSPs) from between
one and three endbulbs cause spherical bushy cells to fire whenever the au-
ditory nerve fibers do (except when the cell is refractory). This one-spike-in,
one-spike-out mode of processing means that the responses to sound of spheri-
cal bushy cells resemble those of auditory nerve fibers, and for this reason they
are called “primary-like”. Evidence that primary-like responses reflect a “one-
spike-in, one-spike-out” is provided by their action potential (AP) shapes. The
AP is preceded by a pre-potential (reflecting the build up of the endbulb ac-
tivity) which are almost always followed by the postsynaptic component of
the spike, demonstrating security of the synapse.

Globular bushy cells give similar response, primary-like-with-notch. They
differ from primary in that in the beginning of the response there is a precisely
timed peak followed by a notch. Precise timing is helped by the convergence
of large number of fibers. If a globular cell needs one input to fire, then there
is a very high probability that one of the incoming fibers will activate early
on and cause a spike. This initial peak will be followed by recovery period
(refractoriness), generating notch.

Electrical Characteristics

As a response to injection of constant depolarizing current bushy cells produce
one to three spikes at the onset and then settle to a slightly depolarized con-
stant voltage value. This is due to the low-threshold potassium current. It is
partially activated at rest, then during spiking it strongly activates increasing
membrane conductance and thereby shortening the membrane time constant
and repolarizing the cell. To induce firing, the input must be very strong and
fast. The short time constant blocks temporal integration of inputs. Rapid
temporal processing permits bushy cells to preserve information about the
stimulus waveform information that is necessary for sound localization.

Multipolar Cells

Multipolar cells have multiple, long dendrites that extend away from the
soma in several directions. These cells are also sometimes referred to as “stel-
late”. Two major classes of multipolar cells have been described. The cells
of one group, T-multipolars (planar), have a stellate morphology with den-
drites aligned with auditory nerve fibers , suggesting that these cells receive
input from a restricted range of best frequencies. Their axons project through
the trapezoid body (hence the ”T”) to the contralateral IC. Cells of the sec-
ond group, D-multipolars (radiate), have dendritic fields that are not aligned
with auditory nerve fibers . Their axons project to the contralateral cochlear
nucleus.
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Fig. 13. Different response types. A1: Primary-like response (bushy cell). A2:
Primary-like with notch response (bushy cell). B: Chopper response from T-
multipolar cell. C: Single-spike onset response. D1: Pauser response. D2: builder
response. In all panels dark black line under the axes is the tone presentation. Pan-
els A and B are used by permission of The American Physiological Society from [8].
Panel C is reprinted from [42] with permission from Elsevier. Panel D is reprinted
by permission of VCH Publishers, Inc. from [29].

Both T- and D-multipolar cells in the VCN serve the role of interneurons
through their axon collaterals. These terminate locally within VCN as well as
projecting to the deep DCN. T-Multipolars are excitatory and D-multipolars
are inhibitory and glycin-ergic.

Responses to Sounds

Figures 13B shows responses characteristic of T-multipolar cells. T-multipolar
cells respond to tones by firing at regular intervals independent of frequency
of the tone, a pattern called chopping. The reproducibility of firing gives
histograms of responses to sound a series of characteristic modes that is inde-
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pendent of the fine structure of the sound. The intervals between nodes are of
equal duration and correspond to the intervals between spikes, with one spike
per node. The peaks are large at the onset of the response because the latency
to the first spike is quite reproducible in chopper neurons; the peaks fade away
over the first 20 msec of the response, as small variations in interspike interval
accumulate and spike times in successive stimulus repetitions diverge. The
chopping firing pattern must arise from the intrinsic properties of the cells
themselves, since it does not reflect properties of the inputs. Moreover, the
same pattern is elicited by depolarization with steady currents (Fig. 14).

D-multipolar cells are broadly tuned and respond best to stimuli like noise
but only weakly to tones. This is due to the fact that D-multipolars receive
input from many auditory nerve fibers on their somata and on dendrites that
spread across the frequencies. D-multipolars also respond with a precisely
timed onset spike to tones, but (unlike octopus cells) they give some steady
discharge after the onset spike. Also, unlike octopus cells, the firing pattern
in response to tones is shaped by inhibition along with the intrinsic electrical
properties.

Electrical Characteristics

Unlike bushy cells, multipolars are capable of temporal summation of succes-
sive EPSPs. Recall from above, that bushy and multipolar cells have AMPA
receptors with similar rapid kinetics. The differences between unitary voltage
responses arise because the decay of the unitary event, and therefore the de-
gree of temporal integration, is determined by the membrane time constant of
the cell. For bushy cells this is short (2-4 msec), whereas for multipolar cells
it is longer (5-10 msec).

Octopus Cells

Octopus cells in VCN (Fig. 11) are contacted by short collaterals of large
numbers of auditory nerve fibers through small terminal boutons. Octopus cell
dendrites are oriented in one direction, inspiring their name. The orientation
is perpendicular to the auditory nerve fibers so that the cell bodies encounter
fibers with the lowest best frequencies, and the long dendrites extend toward
fibers that encode higher frequencies. Each cell receives input from roughly
one-third of the tonotopic range, i.e. the frequency tuning is broad and con-
tribution of each fiber to the octopus cell response is very small. Also EPSPs
that an octopus cell receives are very brief, between 1 and 2 msec in duration.

Responses to Sounds

Octopus cells behave like bushy cells in that the low input resistance prevents
temporal summation of inputs. But instead of receiving a few large inputs,
octopus cells receive small inputs from many fibers. Thus, many fibers have
to fire simultaneously to drive an octopus cell.
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Such synchronous firing is not achieved with ongoing pure tone stimuli.
Rather, it happens at stimulus transients. For example, at the onset of a pure
tone (thus the term onset response, Fig. 13C), or at a rapid fluctuation of
a broadband stimulus such as at the onset of a syllable or during a train of
clicks. In fact an octopus cell can faithfully follow a train of clicks with rates
up to 500 Hz.

Electrical Characteristics

In the case of octopus cells, the fast membrane time constant or high mem-
brane conductance is generated by presence of two opposing voltage-sensitive
currents. One of them activates with hyperpolarization and has a reversal po-
tential near -40 mV, the other is a potassium current (reversal potential near
-80 mV) that activates with depolarization. At rest both currents are partially
activated. In fact, they are quite large, but they compensate one another. In
addition, the voltage-gated conductances of these currents are very sensitive
to voltage near resting potential. This means that any voltage fluctuation ac-
tivates these currents which counter the voltage change. As a result, EPSPs
are always small and brief and the cell is only sensitive to synchronous inputs.
Moreover, any depolarizing current that rises too slowly is bound to activate
the potassium conductance and to preclude the cell from responding. This
mechanism makes octopus cells sensitive to the rate of rise of their input, not
its amplitude. In a sense they are sensors of the derivative of the input.

Pyramidal Cells

Pyramidal (also called “fusiform”) neurons in the DCN are bipolar, with a
spiny dendritic tree in the molecular layer and a smooth dendritic tree in the
deep layer. The cell bodies of pyramidal cells form a band in the pyramidal
cell layer. The smooth dendrites are flattened in the plane of the isofrequency
sheets, where they receive input from the auditory nerve. The spiny dendrites
span the molecular layer and are contacted by parallel fibers at the spines.

Responses to Sounds

Pyramidal neurons in the DCN show pauser and buildup responses to sound.
The examples shown in Fig. 13D are typical of anesthetized animals, where
the inhibitory circuits of the DCN are weakened. The response shows a poorly
timed, long latency onset spike followed by a prominent pause or a slow
buildup in response with a long latency.

Electrical Properties

The pauser and buildup characteristics seem to derive from a transient potas-
sium conductance. This conductance is inactivated at rest. If a sufficient de-
polarizing stimulus arrives, the cell simply responds with a spike. However, if
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the cell is initially hyperpolarized, this removes the potassium current inac-
tivation. Any subsequent depolarization will activate the potassium current
transiently, producing the long latency of a pauser or buildup response. In
vivo a sufficient hyperpolarization isprovided by inhibitory synaptic inputs as
an aftereffect of a strong response to an acoustic stimulus.

Fig. 14. Responses of T-multipolar cell to intracellular injections of depolarizing
and hyperpolarizing currents. Membrane potential (top) and current time courses
(bottom). Spiking is in response to the depolarizing current. Reproduced with per-
mission from [59], Copyright 1991 by the Society for Neuroscience.

Some of the Other Cell Types

Giant cells are large multipolar cells located in the deep layers of the DCN.
They have large, sparsely branching, dendritic trees that cross isofrequency
sheets. Giant-cell axons project to the contralateral inferior colliculus.
Granule cells are microneurons whose axons, the parallel fibers, provide a
major excitatory input to DCN through the molecular layer. Granule-cell
axons terminate on spines of the dendrites of pyramidal cells, on spines of
cartwheel cells, and on the stellate cells.
The vertical cells are inhibitory interneurons that project to their isofrequency
sheets in both DCN and VCN; they inhibit all of the principal cells in the
cochlear nucleus, except the octopus cells. Vertical cells are narrowly tuned,
and they respond most strongly to tones at a frequency near their character-
istic frequency.
Cartwheel cells are inhibitory interneurons whose numerous cell bodies lie in
the pyramidal cell layer of the DCN. Their dendrites span the molecular layer
and are densely covered with spines that are contacted by parallel fibers.
They contact pyramidal, giant, and other cartwheel cells through glycinergic
synapses. The reversal potential of the cartwheel-to-cartwheel cell synapses
lies a few millivolts above the resting potential and below the threshold for
firing so that its effect is depolarizing for the cell at rest but hyperpolarizing
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when the cell has been depolarized by other inputs. Thus, the effects of the
cartwheel cell network are likely to be context-dependent: excitatory when
the cells are at rest but stabilizing when the cells are excited.

Figure 15 shows responses to sound of cartwheel cells. Cartwheel cells are
the only cells in the cochlear nucleus with complex action potentials, which
reflect a combined calcium and sodium spike. Many of the cartwheel cells
respond weakly to sounds and no particular pattern of response is consistently
observed. They probably mainly transmit non-auditory information to the
principal cells of the DCN.

A

B

Fig. 15. Weak (A) and strong (B) responses of cartwheel cells. Used by permission
of The American Physiological Society from [71].

As a side note: cartwheel cells share many features with cerebellar Purkinje
cells. For example, both of these fire complex action potentials; and genetic
mutations affect Purkinje cells and cartwheel cells similarly.

4.6 Modeling of the Cochlear Nuclei

As data on the membrane properties of cochlear nucleus neurons have accu-
mulated, it has become possible to use biophysical models of Hodgkin-Huxley
type to explore the different behaviors described in the previous section. These
models give researchers ability to test whether the biophysical mechanisms
discussed above can indeed underlie the observed cellular responses. In par-
ticular, when many ionic currents have been identified in a given cell type, a
model helps identify which of them are the key ingredients in shaping each
feature of the cell’s behavior.
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For example, a model of bushy cells [85] demonstrates that the presence
of a low-threshold potassium current in the soma of the cell can account for
responses of both spherical and globular bushy cells depending on number
and strength of inputs. When inputs are few and large the response matches
characteristics of the primary-like response, but with larger number of in-
puts it becomes primary-like with notch. Another computational study of
globular bushy cells [47] uses a much simpler underlying mathematical model
(integrate-and-fire rather than Hodgkin-Huxley type). This allows to study in
generality what increases or decreases synchrony in the output vs. the input,
using globular bushy cell as an example.

Some of the other models have dealt in detail with responses of various
cells in the dorsal cochlear nucleus [9, 80].

Another example of mathematical modeling in cochlear nucleus is a model
of multipolar cell [6]. This is a more complex multi-compartmental model,
which demonstrates which combination of known somatic and dendritic cur-
rents can accurately reproduce properties of a chopper response (regular firing
with irregular or constant inputs).

5 Superior Olive. Sound Localization, Jeffress Model

The superior olive is a cellular complex in the brainstem of about 4 mm long.
The cytoarchitecture of this complex defines three parts: the medial supe-
rior olive, the lateral superior olive, and the nucleus of the trapezoid body. It
should be emphasized that the trapezoid body itself is not a nucleus; it is a
bundle of fibers. The entire superior olive complex is surrounded by small cel-
lular groups known as the preolivary or periolivary nuclei. The olivary nuclear
complex is the first level in the auditory system where binaural integration
of auditory signals occur. It is the key station to performing many of the
binaural computations, including, in large part, localization of sounds.

Two nuclei within superior olivary complex that have been most exten-
sively studied are the medial and lateral superior olivary nuclei (MSO and
LSO). Other nuclei, such as medial and lateral nuclei of the trapezoid body
(MNTB and LNTB) are named according to their position with respect to
the MSO and LSO. There is also a group of cells called olivacochlear neurons.
They project to the cochlea. These neurons can be activated by sound, and
cause suppression of spontaneous and tone evoked activity in auditory nerves.

5.1 Medial Nucleus of the Trapezoid Body (MNTB)

The cell body of neurons in the MNTB receives input from axonal projection of
cells in the contralateral VCN, primarily from the globular bushy cells (GBC).
The GBC-to-MNTB synapses are large, endbulb type, i.e. they also provide
reliable synaptic connection. For that reason the responses of many MNTB
cells are similar to their primary excitatory input, the globular bushy cells.
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Some cells with chopper type responses are also found. Because convergence
of the bilateral auditory information has not occurred yet at the level of
MNTB, the neurons there are responsive exclusively to sounds presented to
the ear contralateral to the nucleus itself. As usual, each cell responds best to
a characteristic frequency. They then send a short axon to the LSO where it
forms inhibitory glycine-ergic synapses.

5.2 Lateral Superior Olivary Nucleus (LSO)

Principal cells receive inputs onto soma and proximal dendrites. Excitatory
input is received directly from the ipsilateral VCN. Inhibitory input is from
the contralateral VCN, transmitted through the MNTB. Even though there
is an extra synapse in the path of the inhibitory signal, inputs from each ear
arrive at the LSO simultaneously. This is possible due to the large reliable
synapses associated with MNTB. The cells that receive excitatory input from
ipsilateral ear and inhibitory input from the other ear are often called IE cells.

Because of the organization of their inputs, LSO cells are excited by the
sound which is louder in the ipsilateral ear and softer in the contralateral ear.
There is almost no response when a sound is louder in the contralateral ear
than in the ipsilateral ear. As a result the sensitivity functions of LSO neurons
to the interaural level difference (ILD) are sigmoidal. There are successful
computational models by Michael Reed and his colleagues (e.g. [81]) that
demonstrate how a spectrum of sound ILDs can be coded by a population of
the sigmoidally-tuned LSO cells.

The characteristic frequencies of LSO cells are predominantly in the high
frequency range complimenting the range of frequencies over which the MSO
is responsive. The frequency tuning is sharp, as narrow as in the cochlear
nucleus and the auditory nerve, because ipsilateral and contralateral inputs
are well matched in frequency. However, ipsilateral (excitatory) inputs are
slightly broader tuned. Therefore, to maintain a response level of an LSO
neuron, as contralateral sound moves away from characteristic frequency it
must become louder to continue counteracting the ipsilateral signal.

5.3 Medial Superior Olivary Nucleus (MSO)

The cell bodies of neurons in the MSO receive input from two sets of dendrites.
One projects laterally from the cell and gets its input from the ipsilateral
VCN. The other projects medially from the cell and receives its input from the
contralateral VCN. The cells in the MSO, as in LSO, are classified according
to their response to these two sets of dendritic inputs. If a cell is excited by
both contralateral and ipsilateral input, it is classified as an EE cell. If a cell
is excited contralateral, but inhibited by ipsilateral input, it is classified as an
EI cell. If a cell is excited by ipsilateral, but inhibited by contralateral input,
it is classified as an IE cell. If a cell is inhibited by both contralateral and
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ipsilateral input, that is it fires below its spontaneous rate when either ear is
presented with an appropriate stimulus, it is classified as an II cell.

MSO neurons respond to both binaural and monaural stimuli. The monau-
ral response however will always be submaximal when compared to similar
binaural stimuli. The response tends to be frequency selective and the best
frequency is typically the same for both ipsilateral and contralateral input
in a given cell. The characteristic frequencies in the MSO tend to be in the
low end of the hearing spectrum. In addition to a characteristic frequency,
many neurons in the MSO respond best to a specific delay between ipsilateral
and contralateral stimulus termed the “characteristic delay”. They also have
a “least characteristic delay” to which they respond worse than to monaural
input. If the characteristic delay is preserved across frequencies or modulation
frequencies, the cell is termed to be of “peak-type”. If the least characteristic
delay is preserved across frequencies the cell is termed “trough-type”. Most of
the cells in the MSO are of peak-type, and they form the basis for a famous
Jeffress theory, which is described below.

5.4 Sound Localization. Coincidence Detector Model

Many animals, especially those that function in darkness, rely on sound lo-
calization for finding their prey, avoiding predators, and locating members of
their own species. Therefore, it is not surprising that many mechanisms for
sound localization, well-suited for different circumstances, have been created
in the course of evolution.

Primary cues for sound localization are binaural. They include interaural
differences in sound pressure level, time of arrival and frequency spectrum of
the sound. It is also possible to localize sounds monaurally, but it is much less
efficient (see, e.g., [106]). Historically, the most studied binaural cues have
been interaural time and sound pressure level differences. Interaural time dif-
ference (ITD) arises because the sound, originating on one side of the head,
must follow a longer path and consequently takes a longer time traveling to
the distal than proximal ear (Fig. 16). The interaural level difference (ILD)
results from the interference of the head and ears of the listener with the prop-
agation of the sound so that a “sound shadow” may develop, i.e., the sound
may be attenuated on the far side relative to the near one. In natural settings
an acoustic signal usually gives rise to both time and amplitude differences.
Under certain conditions only one of the cues retains sufficient magnitude to
serve the listener. In particular, according to the duplex theory [79], interau-
ral level differences are the primary cue for localizing high-frequency tones,
whereas interaural time differences are responsible for the localization of the
low frequency tones. The basis for this distinction is that for high-frequency
sounds the wavelength is small compared with the size of the head and the
head becomes an obstacle. At lower frequency sounds the wave length is longer
and the head is acoustically transparent.
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In recent years many departures from the duplex theory have been found.
For example, for complex high-frequency signals ITD between low-frequency
envelopes can serve as a localization cue [115]; direct physical measurement of
ILD at the ears of the listener (e.g., in cats [108] and humans [21] show that
ILD does not vary in a systematic fashion with azimuth; further, the interau-
ral differences can be altered by factors such as head and pinnae shape; finally,
interaural spectral differences, that develop for complex acoustic signals (par-
ticularly with high frequency components), provide considerable directional
information that can enhance the localization task.
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Fig. 16. When a sound source is placed not directly in front of the animal, but
off-center, it generates ITD (and IPD). Two schematic sound source locations are
shown in the left panel. If the response of a neuron is recorded at the same time, then
it can be plotted vs. corresponding IPD (schematically shown in the right panel).
This plot of response vs. IPD is the static tuning curve of the neuron.

Nevertheless, time and level differences continue to be considered as pri-
mary sound localization cues. Many species are very acutely tuned to them.
Humans, for example, can readily sense interaural disparities of only a few
decibels or only tens of microseconds [79, 102]. The sensitivity is even higher,
for example, in some avians [46]. Besides psychophysical evidence, there is a
great amount of physiological data, showing that in various structures along
the auditory pathway (medial and lateral superior olive (MSO and LSO),
dorsal nucleus of lateral lemniscus (DNLL), inferior colliculus (IC), auditory
cortex) low-frequency neurons are sensitive to ITDs and high-frequency neu-
rons to ILDs. What frequency is “low” or “high” varies with species. Humans
are sensitive to ITDs for tone frequencies up to about 1500 Hz. Neural sensi-
tivity to ITD in cats, for example, goes up to 3kHz [50], and in owls, up to
6-8kHz [65].

Interaural Phase Difference (IPD)

Rose et al. [83] found that for some cells in the inferior colliculus of the cat
the discharge rate was a periodic function of interaural time delay, with a
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period equal to the stimulus wavelength. They argued that the periodic nature
of the response showed that the cells were sensitive to the interaural phase
difference (IPD) rather than ITD. Similar cells were found in other parts of
the mammalian auditory system (e.g., [30]). Of course, the issue of distinction
between IPD and ITD arises only when the sound carrier frequency is changed,
because, for example, if the cell is sensitive to ITD, then its preferred IPD
(the one that elicits the largest response) would change linearly with carrier
frequency; if, on the other hand, the cell is sensitive to IPD, its preferred
IPD would stay the same. For pure tones of a fixed frequency, talking about
IPD and ITD is redundant and we will sometimes use them interchangably,
assuming that the stimulus is a pure tone at the characteristic frequency of
the neuron.

Schematic of the Experiments

In experimental studies concerning the role of binaural cues and corresponding
neuronal sensitivity, the sound is usually played from speakers located at one
of the positions around the listener (free-field), or via headphones (dichotic).
Headphone stimulation is, of course, an idealized sound representation (for
example, the stimuli in the headphones are perceived as located within the
head, [118]). On the other hand, it may be hard to control the parameters
of the stimuli in the free-field studies. For example, the simplest geometrical
model of IPD induction, due to Woodworth [110], that assumes constant speed
and circular head shape, does not match the direct measurements of IPD [48]
(Gourevitch [31] notes that for a 400 Hz signal at 15◦off midline, the observed
IPD is about three times greater than IPD based on the Woodworth’s model).
A more detailed model by Kuhn [49] takes into account physics of sound wave
encountering the head as an obstacle. It shows the dependence of IPD on the
head size and the sound carrier frequency for humans and provides better fit
for the data, but also demonstrates that extracting the information available
to the auditory system in a free-field study is not a trivial task.

Neuronal Mechanisms of IPD-Sensitivity: Superior Olive

Many contemporary models of binaural interaction are based on the idea due
to Jeffress [38]. He suggested the following model: an array of neurons receives
signals from the two ears through delay lines (axons that run along the array
and provide conduction delay). The key assumption is that each neuron fires
maximally when the signals from both ears arrive to that neuron simultane-
ously, in other words — when the conductance delay exactly compensates the
IPD. These neurons are referred to as coincidence detectors. Mathematically,
we can also think about their action as computing the temporal correlation
of signals. The Jeffress-like arrangement was anatomically found in the avian
homolog of medial superior olive (the first site of binaural interaction), the nu-
cleus laminaris [117]. In mammals, recordings from single cells in MSO confirm
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that many cells do have the properties of coincidence detectors [30, 97, 112].
By recording the responses of these neurons to binaurally presented tones with
different IPDs (simulating sounds at different locations around the head of the
animal), one produces the (static) tuning curve (schematic in Fig. 16). It is
usually a relatively smooth curve that has a clearly distinguishable peak. The
peak of the binaural response appears when the ITD is approximately equal
(with a different sign) to the difference between times of maximal responses
to monaural signals [30], as expected for coincidence detectors.

In natural environments the relative positions of a sound source and the
head are free to change and, therefore, the binaural sound localization cues
are likely to be changing (dynamic) too. In experiments (e.g., [113]), the bin-
aural cue produced by a moving sound source may be simulated by temporal
variation of IPD. (In humans dynamic IPD modulation creates the percept of
sound motion.) If the MSO cells act like coincidence detectors, they are ex-
pected to signal the instantaneous value of the interaural delay and show no
evidence for motion sensitivity. This is confirmed experimentally (e.g., [98]).

Coincidence Detector Model

Cell Body

We describe here a coincidence detector point neuron model of the Morris-
Lecar type (after Agmon-Snir et al. [2]). The main dynamic variables are the
voltage V and a gating variable w.

CV̇ = −gNam∞(V )(V −VNa)−gK ·w·(V −VK)−gL(V −VL)−Gsyn(V −Vsyn)

τw(V )ẇ = w∞ − w

Parameters are chosen in a realistic range to tune the model neuron into the
phasic firing regime. Namely, this cell will fire only one spike in response to a
depolarizing current injection (Fig. 17), as observed experimentally (e.g. [82]).
Most of the parameters are the same as in Agmon-Snir et al. [2], unless noted
otherwise.

Input

Input is modeled as 2 delay lines (one from each ear). Each line makes 12
synapses on the cell (Fig. 18A). On each stimulus cycle every synapse can
produce a synaptic event with probability 0.7 (at 500 Hz stimulus frequency
this corresponds to average firing rate of the afferents equal to 350 Hz) (Fig.
18B). In case a synaptic event is produced, it results in the alpha-function
change of postsynaptic conductance, namely

Gsyn,unit = A
t − φ

tp
exp

(
1 − t − φ

tp

)
.
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Fig. 17. Responses to increasing level of depolarizing current. The cell fires only
once in response to a constant level injection of depolarizing superthreshold current.

Fig. 18. Schematic of the input to the model cell. A: Delay lines. B: Example of
distribution of input events times within stimulus cycle. Total number of events is
also random, see text.

Here, tp = .1 msec, amplitude A is chosen to produce reasonable firing rates
at the given number of inputs and φ is chosen from a Gaussian distribution
N(φ0, σ

2) for one side and N(IPD, σ2) for the other side (IPD – interaural
phase disparity, σ = 0.4 – measure of phase-locking, φ0 – preferred phase)
(see Fig. 19A).

Figures 19 and 20 show sample voltage and synaptic conductance time
courses and a tuning curve of the model neuron. The tuning curve was ob-
tained by computing number of spike elicited during a 1 sec stimulus presen-
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Fig. 19. Sample conductance and voltage traces. A: Synaptic conductance of one
line of inputs over 6 stimulus cycles. B: Corresponding voltage trace.
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Fig. 20. Tuning curve of the model neuron. It is computed with small amount of
averaging.

tation. This tuning curve shows that the neuron is a pretty good coincidence
detector.

However, the known coincident-detector avian auditory neurons have a
very specific structure. They have bipolar dendrites whose length varies con-
tinuously with characteristic frequency of the neuron (neurons with higher
characteristic frequencies have shorter dendrites). The function of the den-
drites was hard to unravel experimentally, until a mathematical model [2]
suggested that propagation of signal along the dendrites resulted in nonlin-
ear summation of conductances at the soma, improving coincidence detection.
The argument goes as follows. Let us measure the quality of coincidence de-
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tection as the difference between maximum and minimum of the tuning curve.
Let us also assume that the unitary synaptic conductance is adjusted in such
a way that when signals from both sides arrive simultaneously the probability
of firing is the same for either a point neuron or a bipolar neuron (this ensures
that the maximum of the tuning curve is the same), i.e. let us say that the cell
needs n simultaneous input spikes to fire (n/2 from each side). First, we need
to show that the quality of coincidence detection is better for a neuron with
bipolar dendrite than for a point neuron (i.e. minimum of the tuning curve is
lower with the dendrite included). The key observation is that the synaptic
current produced from a number of input spikes arriving at the same location
is smaller than the current produced by the same number of inputs arriving
at several different locations, because the driving force for excitatory current
decreases with increase in local voltage. When the signals from different sides
arrive half-cycle apart (worst ITD) and by chance one side produces n input
spikes, it is still enough to fire a point neuron (which does not care where the
inputs came from), but in the bipolar dendrite neuron all n spikes will now be
concentrated on one side, producing smaller (insufficient) synaptic current, i.e.
probability of firing will be smaller with dendrite included. Second, we need
to show that longer dendrites improve coincidence detection at lower rather
than higher input frequencies. This happens because of the jitter present in
the input trains. Higher frequencies mean larger overlap between inputs from
both sides even when the phase shift is maximal. These occasional “false”
coincidences, will only add a small fraction to the conductance. For the point
neuron it means only a small change in synaptic current. However, in case
with dendrite the small conductance arrives at the different dendrite, pro-
ducing relatively large current, i.e. higher probability of the “false” response.
As a result, at a given level of jitter, the minimum of the tuning curve in-
creases with frequency, i.e. the dendrites become less advantageous at higher
frequencies.

In addition, more recent computational models of MSO argue that Jeffress
model may need to be seriously revised. In fact, it has been shown experi-
mentally that MSO cells that ate ITD-sensitive may be receiving substantial
location-tuned inhibitory input [13]. A computational model [13] confirms that
if that inhibition arrives at the MSO cell with a fixed time delay relative to
excitation from the same side of the brain, it may allow to explain a larger
range of MSO response properties than traditional excitation-only coincidence
detector Jeffress-type model.

6 Midbrain

The inferior colliculus (IC) is the midbrain target of all ascending auditory
information. It has two major divisions, the central nucleus and dorsal cortex,
and both are tonotopically organized. The inputs from brainstem auditory
nuclei create multiple tonotopic maps to form what are believed to be locally
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segregated functional zones for processing of different aspects of the auditory
stimuli. The central nucleus receives both direct monaural input from cochlear
nuclei and indirect binaural input from the superior olive.

6.1 Cellular Organization and Physiology of Mammalian IC

The IC appears to be an auditory integrative station as well as a switchboard.
It is responsive to interaural delay and amplitude differences and may provide
a spatial map of the auditory environment, although this has not been di-
rectly shown, except in some birds, e.g., barn owls. Changes in the spectrum
of sounds such as amplitude and frequency modulation appear to have a sep-
arate representation in the IC. This sensitivity to spectral changes possibly
provides the building blocks for neurons responsive to specific phonemes and
intonations necessary to recognize speech. Finally, the IC is involved in inte-
gration and routing of multi-modal sensory perception. In particular, it sends
projections which are involved in ocular reflexes and coordination between
auditory and visual systems. It also modifies activity in regions of the brain
responsible for attention and learning.

One of the very interesting properties of the inferior colliculus responses is
its sensitivity to interaural time (or phase) differences. As we explained above,
ITD sensitivity first arises in the MSO, due to precise preservation of timing
information (phase locking) and coincidence detection. Notably, preservation
of timing information starts to deteriorate in the IC. In particular even its
low frequency cells do not phase lock as well as cells at the previous levels.
Yet, in spite of apparent lack of timing information, new properties of ITD
sensitivity, such as non-linear responses to dynamic changes in ITD arise in
the inferior colliculus. This has recently attracted attention of modelers to the
IC [14, 15, 88, 11, 12].

6.2 Modeling of the IPD Sensitivity in the Inferior Colliculus

The inferior colliculus (IC), in the midbrain, is a crucial structure in the cen-
tral auditory pathway (Fig. 1). Ascending projections from many auditory
brain stem nuclei converge there. Nevertheless, its role in the processing of
auditory information is not well understood. Recent studies have revealed
that many neurons in the IC respond differently to auditory stimuli presented
under static or dynamic conditions and the response also depends on the his-
tory of stimulation. These include responses to dynamically varying binaural
cues: interaural phase [62, 95, 96] and interaural level differences [87], and
monaural stimuli such as slowly modulated frequency [57]. At least some of
the sensitivity to dynamic temporal features is shown to originate in IC or
in the projections to IC, because, as we mentioned above, responses of cells
in lower level structures (MSO and dorsal nuclei of lateral lemniscus (DNLL)
for the low-frequency pathway, Fig. 1) follow the instantaneous value of the
stimulus [98]. A history-dependence of the responses, similar to that in IC,
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but of even greater magnitude, has been observed in the auditory cortex [58].
These findings suggest that there might be a hierarchy of representations of
auditory signals at subsequent levels of the auditory system.

Sensitivity to simulated motion in IC has been demonstrated with binau-
ral beats (periodic change of IPD through 360◦), [95, 114] and partial range
sweeps (periodic modulation of interaural phase in a limited range) [96, 62].
For example, it was shown that the binaural beat response is sometimes shifted
with respect to the static tuning curve (Fig. 22, 23), responses to IPD sweeps
form hysteresis loops (Fig. 24), and the response to the dynamic stimulus can
be strong outside of the statically determined excitatory receptive field (exam-
ple in Fig. 24A, arrow). Thus, there is a transformation of response properties
between MSO and IC, but there is no agreement on how this transformation
is achieved. Both intrinsic and synaptic mechanisms have been implicated.

One hypothesis is that the observed history-dependence of responses is
reflective of “adaptation of excitation” (firing rate adaptation) [62, 98]. The
firing rate adaptation is a slow negative feedback mechanism that can have
various underlying cellular or network mechanisms. It can manifest itself in
extracellular recordings of responses to a constant stimulus as the decrease of
probability of firing with time, and in in vitro recordings as the increase of
the interspike interval in response to the injection of a constant depolarizing
current. Both extracellular [62, 98], and intracellular [72, 93] recordings have
registered firing rate adaptation in IC. It has also been shown by Cai et
al., in a modeling study [15], that addition of a negative feedback, in the
form of a calcium-activated hyperpolarizing membrane conductance (one of
the adaptation mechanisms), to a motion-insensitive model of an IC neuron,
induced sensitivity to dynamic stimuli.

Another hypothesis [98] is that the motion is the result of interaction
between excitatory and inhibitory inputs, aided by adaptation and post-
inhibitory rebound. Post-inhibitory rebound (PIR) is observed when the neu-
ron fires upon its release from hyperpolarization; this has been demonstrated
in IC slice recordings [72, 93]. McAlpine and Palmer [64] argued that leaving
the key role in generation of motion sensitivity to inhibition contradicts their
data. They showed that sensitivity to the apparent motion cues is decreased
in the presence of the inhibitory transmitter, GABA, and increased in the
presence of inhibitory transmission blocker, bicuculline.

Unification of the hypotheses. To examine the role of various mechanisms
in shaping IC response properties, mathematical models of an IC cell were de-
veloped in which the cell receives IPD-tuned excitatory and inhibitory inputs
and possesses the properties of adaptation and post-inhibitory rebound.

In earlier modeling studies of IC, Cai et al. [14, 15] developed detailed
cell-based spike-generating models, involving multiple stages of auditory pro-
cessing. One of their goals was to describe some of the data that require a
hierarchy of binaural neurons. Recent models [11, 12] take a very different ap-
proach. These models are minimal in that they only involve the components
whose role we want to test and do not explicitly include spikes (firing-rate-
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type models). Exclusion of spikes from the model is based on the following
consideration. First, IC cells, unlike neurons in MSO, do not phase lock to
the carrier frequency of the stimulus. In other words, spike timing in IC is
less precise. Second, it is assumed that the convergent afferents from MSO
represent a distribution of preferred phases and phase-locking properties. As
a result, either through filtering by the IC cell or dispersion among the in-
puts, spike-timing information is not of critical importance to these IC cells.
This minimalistic approach greatly facilitates the examination of computa-
tions that can be performed with rate-coded inputs (spike-timing precision on
the order of 10 ms), consistent with the type of input information available to
neurons at higher levels of processing. In addition, these models are computa-
tionally efficient, can be easily implemented, and require minimal assumptions
about the underlying neural system.

It is shown in the modeling studies [11, 12] that intrinsic cellular mech-
anisms, such as adaptation and post-inhibitory rebound, together with the
interaction of excitatory and inhibitory inputs, contribute to the shaping of
dynamic responses. It is also shown that each of these mechanisms has a spe-
cific influence on response features. Therefore, if any of them is left out of
consideration, the remaining two cannot adequately account for all experi-
mental data.

Model

Cellular Properties

The model cell [12] represents a low-frequency-tuned IC neuron that responds
to interaural phase cues. Since phase-locking to the carrier frequency among
such cells is infrequent and not tight [51], this model assumes that binaural
input is rate-encoded. In this model the spikes are eliminated by implicitly
averaging over a short time scale (say, 10 ms). Here, we take as the cell’s
observable state variable its averaged voltage relative to rest (V ). This formu-
lation is in the spirit of early rate models (e.g., [32]), but extended to include
intrinsic cellular mechanisms such as adaptation and rebound. Parameter val-
ues are not optimized, most of them are chosen to have representative values
within physiological constraints, as specified in this section.

The current-balance equation for the IC cell is:

CV̇ = −gL(V − VL) − ḡaa(V − Va) − Isyn(t) − IPIR + I. (16)

The terms on the right-hand side of the equation represent (in this order) the
leakage, adaptation, synaptic, post inhibitory rebound, and applied currents.
The applied current I is zero for the examples considered here and all other
terms are defined below.

Leakage current has reversal potential VL = 0 mV and conductance gL =
0.2 mS/cm2. Thus, with C = 1 µF/cm2, the membrane time constant τV =
C/gL is 5 ms.
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The adaptation is modeled by a slowly-activating voltage-gated potassium
current ḡaa(V − Va). Its gating variable a satisfies

τaȧ = a∞(V ) − a. (17)

Here a∞(V ) = 1/(1+exp(−(V −θa)/ka)), time constant τa = 150 ms, ka = 5
mV, θa = 30 mV, maximal conductance ḡa = 0.4 mS/cm2, reversal potential
Va = −30 mV. The parameters ka, θa are chosen so that little adaptation
occurs below firing threshold; and ḡa so that when fully adapted for large
inputs, the firing rate is reduced by 67%. The value of τa, assumed to be
voltage-independent, matches the adaptation time scale range seen in spike
trains (Semple, unpublished) and it leads to dynamic effects that provide good
comparison with results over the range of stimulus rates used in experiments.

The model’s readout variable, r, represents firing rate, normalized by an
arbitrary constant. It is an instantaneous threshold-linear function of V : r = 0
for V < Vth and r = K · (V − Vth) for V ≥ Vth, where Vth = 10 mV. We
set (as in [12]) K = 0.04075 mV−1. Its value does not influence the cell’s
responsiveness, only setting the scale for r.

Synaptic Inputs

As proposed by Spitzer and Semple [98] and implemented in the spike-based
model of Cai et al. [14, 15], this model IC cell receives binaural excitatory input
from neurons in ipsilateral MSO (e.g., [1, 70]) and indirect (via DNLL [91])
binaural inhibitory input from the contralateral MSO. Thus DNLL, although
it is not specifically included in the model, is assumed (as in Cai et al. [14])
to serve as an instantaneous converter of excitation to inhibition.

The afferent input from MSO is assumed to be tonotopically organized
and IPD-tuned. Typical tuning curves of MSO neurons are approximately
sinusoidal with preferred (maximum) phases in contralateral space [97, 112].
We use a sign convention that the IPD is positive if the phase is leading in the
ear contralateral to the IC cell, to choose the preferred phases φE = 40◦for
excitation and φI = −100◦for inhibition. Preferred phases of MSO cells are
broadly distributed [63, 58]. Similar ranges work in the model, and in that
sense, the particular values picked are arbitrary.

While individual MSO cells are phase-locked to the carrier frequency [97,
112], we assume that the effective input to an IC neuron is rate-encoded, as
explained above. Under this assumption, the synaptic conductance transients
from incoming MSO spikes are smeared into a smooth time course that traces
the tuning curve of the respective presynaptic population (Fig. 21). Therefore,
the smoothed synaptic conductances, averaged over input lines and short time
scales, gE and gI , are proportional to the firing rates of the respective MSO
populations and they depend on t if IPD is dynamic. Then

Isyn = −gE(V − VE) − gI(V − VI), (18)
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gE,I = ḡE,I [0.55 + 0.45 cos(IPD(t) − φE,I)] . (19)
Reversal potentials are VE = 100 mV, VI = −30 mV, maximum conductance
values ḡE = 0.3 mS/cm2, ḡI = 0.43 mS/cm2.
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Fig. 21. Schematic of the model. A neuron in the inferior colliculus (marked IC),
receiving excitatory input from ipsilateral medial superior olive (MSO); contralateral
input is inhibitory. Each of the MSO-labelled units represents an average over several
MSO cells with similar response properties (see text). DNLL (dorsal nucleus of
lateral lemniscus) is a relay nucleus, not included in the model. Interaural phase
difference (IPD) is the parameter whose value at any time defines the stimulus. The
tuning curves show the stimulus (IPD) tuning of the MSO populations. They also
represent dependence of synaptic conductances (gE and gI) on IPD (see text). Used
by permission of The American Physiological Society from [12].

Rebound Mechanism

The post-inhibitory rebound (PIR) mechanism is implemented as a transient
inward current (IPIR in the equation (16)):

IPIR = gPIR · m · h · (V − VPIR). (20)

The current’s gating variables, fast (instantaneous) activation, m, and slow
inactivation, h, satisfy:

m = m∞(V ), (21)
τhḣ = h∞(V ) − h, (22)

where m∞(V ) = 1/(1 + e−(V −θm)/km), h∞(V ) = 1 − 1/(1 + e−(V −θh)/kh),
τh = 150 ms and VPIR = 100 mV. The parameter values: km = 4.55 mV,
θm = 9 mV, kh = .11 mV, θh = −11 mV, are chosen to provide only small
current at steady state for any constant V and maximum responsiveness for
voltages near rest. Maximum conductance gPIR equals 0.35 mS/cm2 in Fig.
24 and zero elsewhere.



156 Alla Borisyuk

Stimuli

The only sound input parameter that is varied is IPD as represented in equa-
tions (18) and (19); the sound’s carrier frequency and pressure level are fixed.
The static tuning curve is generated by presentation of constant-IPD stimuli.
The dynamic stimuli are chosen from two classes. First, the binaural beat
stimulus is generated as: IPD(t) = 360◦ ·fb · t (mod 360◦), with beat fre-
quency fb that can be negative or positive. Second, the partial range sweep
is generated by IPD(t) = Pc + Pd · triang(Prt/360). Here, triang(·) is a peri-
odic function (period 1) defined by triang(x) = 4x − 1 for 0 ≤ x < 1/2 and
triang(x) = −4x+3 for 1/2 ≤ x < 1. The stimulus parameters are the sweep’s
center Pc; sweep depth Pd (usually 45◦); and sweep rate Pr (in degrees per
second, usually 360◦/s). We call the sweep’s half cycle where IPD increases –
the “up-sweep”, and where IPD decreases – the “down-sweep”.

Simulation Data Analysis

The response’s relative phase (Figs. 22 and 23) is the mean phase of the re-
sponse to a binaural beat stimulus minus the mean phase of the static tuning
curve. The mean phase is the direction of the vector that determines the re-
sponse’s vector strength [30]. To compute the mean phase we collect a number
of response values (rj) and corresponding stimulus values (IPDj in radians).
The average phase ϕ is such that tanϕ = (

∑
rj sin(IPDj))/(

∑
rj cos(IPDj)).

For the static tuning curve the responses were collected at IPDs ranging from
-180◦to 180◦in 10◦intervals. For the binaural beat the response to the last
stimulus cycle is used.

Example of Results: Binaural Beats

The binaural beat stimulus has been used widely in experimental studies (e.g.,
[52, 61, 96, 107] to create interaural phase modulation: a linear sweep through
a full range of phases (Fig. 22). Positive beat frequency means IPD increases
during each cycle; negative beat frequency — IPD decreases (Fig. 22A). Using
the linear form of IPD(t) to represent a binaural beat stimulus in the model,
we obtain responses whose time courses are shown in Fig. 22A, lower.

To compare responses between different beat stimuli and also with the
static response, we plot the instantaneous firing rate vs. the corresponding
IPD. Fig. 22B shows an example that is typical of many experimentally
recorded responses (e.g., [52, 95, 96]). Replotting our computed response from
27A in 27C reveals features in accord with the experimental data (compare
27B and 27C): dynamic IPD modulation increases the sharpness of tuning;
preferred phases of responses to the two directions of the beat are shifted in
opposite directions from the static tuning curve; maximum dynamic responses
are significantly higher than maximum static responses. These features, espe-
cially the phase shift, depend on beat frequency (Fig. 22C, D).
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Fig. 22. Responses to binaural beat stimuli. A: Time courses of IPD stimuli (up-
per) and corresponding model IC responses (lower). Beat frequencies 2 Hz (solid)
and -2 Hz (dashed). B-D: Black lines show responses to binaural beats of positive
(solid) and negative (dashed) frequencies. Grey line is the static tuning curve. B:
Example of experimentally recorded response. Carrier frequency 400 Hz, presented
at binaural SPL 70 dB. Beat frequency 5 Hz. C,D: Model responses over the final
cycle of stimulation vs corresponding IPD. Beat frequency is equal to 2 and 20 Hz,
respectively. Used by permission of The American Physiological Society from [12].

Dependence of Phase on the Beat Frequency

In Fig. 22D the direction of phase shift is what one would expect from a lag
in response. Fig. 22C is what would be expected in the presence of adaptation
(e.g., [94]; as the firing rate rises, the response is “chopped off” by adaptation
at the later part of the cycle. This shifts the average of the response to earlier
phases). In particular, if we interpret the IPD change as an acoustic motion,
then for a stimulus moving in a given direction there can be a phase advance or
phase-lag, depending on the speed of the simulated motion (beat frequency).

To characterize the dependence of the phase shift on parameters, we define
the response phase as in a vector-strength computation (see above). We take
the average phase of the static response as a reference (ϕ0 = 0.1623). Fig.
23A shows the relative phase of the response (ϕ̃fb

− ϕ0) vs. beat frequency
(fb). At the smallest beat frequencies the tuning is close to the static case
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and the relative phase is close to zero. As the absolute value of beat frequency
increases, so does the phase advance. The phase-advance is due to the firing
rate adaptation (see above). At yet higher frequencies a phase lag develops.
This reflects the RC-properties of the cell membrane — the membrane time
constant prevents the cell from responding fast enough to follow the high
frequency phase modulation.

Plots such as in Fig. 23A have been published for several different IC
neurons [98, 12] and examples are reproduces in Fig. 23B. Whereas the present
model does not have a goal of quantitative match between the modeling results
and experimental data, there are two qualitative differences between Figs.
23A and 23B. First, the range of values of the phase shift is considerably
larger in the experimental recordings, particularly, the phase lag at higher beat
frequencies. Second, it had been reported in the experimental data, that there
is no appreciable phase advance at lower beat frequencies. Fig. 23B suggests
that the phase remains approximately constant before shifting in the positive
direction. Only in the close-up view of the phase at low beat frequencies (Fig.
23B, inset) can the phase-advance be detected. It is a surprising observation,
given that the firing rate, or spike frequency, adaptation has been reported in
IC cells on many occasions (e.g., [62, 96]) and that, as we noted above, the
phase advance is a generic feature of cells with adapting spike trains.

Role of Transmission Delay

The modeling study [12] suggested that the absence of phase advance and
high values of phase lag should be attributed to the transmission delay (five
to tens of milliseconds) that exists in transmission of the stimulus to the IC.
This delay was not included in the model, as outlined in Model above. In
fact, we can find its contribution analytically (Fig. 23C, inset). Consider the
response without transmission delay to the beat of positive frequency fb . In
the phase computation, the response at each of the chosen times (each bin of
PSTH) is considered as a vector from the origin with length proportional to
the recorded firing rate and pointing at the corresponding value of IPD. In
polar coordinates r̃j = (rj , IPDj), where rj is the jth recorded data point
(normalized firing rate), IPDj is the corresponding IPD. The average phase
of response (ϕ̃fb

) can be found as a phase of the sum of these vectors. If the
response is delayed, then the vectors should be rj = (rj , IPDj + d · fb·360◦),
because the same firing rates would correspond to different IPDs (see Fig.
23C, inset). The vectors are the same as without transmission delay, just
rotated by d · fb fractions of the cycle. Therefore, the phase with transmission
delay ϕfb

= ϕ̃fb
+ d · fb. If we plot the relative phase with the transmission

delay, it will be ϕfb
−ϕ0 = (ϕ̃fb

−ϕ0) + d · fb The phase of the static tuning
curve (ϕ0) does not depend on the transmission delay. Fig. 23C shows the
graph from 23A right, modified by various transmission delays (thick curve
is without delay — same as in 23A right). With transmission delay included
in the model, the range of observed phase shifts increases dramatically and
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Fig. 23. A: Dependence of phase shift on beat frequency in the model neuron. Phase
shift is relative to the static tuning curve (see text). B: Experimentally recorded
phase (relative to the phase at 0.1 Hz beat frequency) vs beat frequency. Six different
cells are shown. Carrier frequencies and binaural SPLs are: 1400 Hz, 80 dB (star);
1250 Hz, 80 dB (circle); 200 Hz, 70 dB (filled triangle); 800 Hz, 80 dB (diamond);
900 Hz, 70 dB (empty triangle); 1000 Hz, 80 dB (square). Inset is a zoom-in at low
beat frequencies. C: Phase of the model response, recomputed after accounting for
transmission delay from outer ear to IC, for various values of delay (d), as marked.
Inset illustrates computation of delay-adjusted phase. D,E: Average firing rate as a
function of beat frequency: experimental (D, same cells with the same markers as in
B) and in the model (E). Multiple curves in E – for different values of ḡI (ḡI = 0.1,
0.2, 0.3, 0.43, 0.5, 0.6, 0.7, 0.8 mS/cm2). Thick line — for the parameter values given
in Methods. Used by permission of The American Physiological Society from [12].

the phase-advance is masked. In practice neurons are expected to have various
transmission delays, which would result in a variety of phase-frequency curves,
even if the cellular parameters were similar.
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Mean Firing Rate

Another interesting property of response to binaural beats is that the mean
firing rate stays approximately constant over a wide range of beat frequencies
(Fig. 23D and [98]). The particular value, however, is different for different
cells. The same is valid for the model system (Fig. 23E). The thick curve is the
firing rate for the standard parameter values. It is nearly constant across all
tested beat frequencies (0.1 to 100 Hz). The constant value can be modified
by change in other parameters of the system, e.g. ḡI (shown).

Other Results

The model that we have just described allows to show [12] that the presence
of firing rate adaptation together with IPD-tuned excitatory and inhibitory
inputs can explain sharper tuning and phase shifts in response to beats; dis-
contiguous responses to overlapping IPD sweeps; and a decrease in motion
sensitivity in the presence of added inhibition. Also, a post-inhibitory re-
bound mechanism (modeled as a transient membrane current activated by
release from prolonged hyperpolarization) allows to explain the strong exci-
tatory dynamic response to sweeps in the silent portion of the static tuning
curve (Fig. 24A,B arrows). It also allows to make predictions for future in
vitro and in vivo experiments and suggest experiments that might help to
clarify what are the sources of inhibition. For further details and discussion
of this model see [12].

Fig. 24. Responses to partial range sweeps. “Rise-from-nowhere”. A: Experimen-
tally observed response arising in silent region of the static tuning curve (marked
with an arrow). Carrier frequency 1050 Hz; binaural SPL 40 Hz. B: Model responses
to various sweeps. The rightmost sweep produces “rise-from-nowhere” (arrow). Used
by permission of The American Physiological Society from [12].
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7 Thalamus and Cortex

The auditory part of the thalamus is the medial geniculate body. It is situ-
ated in the caudal part of the thalamus and is the last major relay station for
ascending auditory fibers before they reach the cortex. There is a tonotopic
arrangement in the medial geniculate body in which low frequencies are rep-
resented laterally and high frequencies are located medially in the principal
part. The main projection of the medial geniculate body is to the primary au-
ditory cortex. The medial geniculate body also sends fibers to other thalamic
nuclei and may play a part in a regulatory feedback system, with descending
projections to the inferior colliculus, the nucleus of the lateral lemniscus, the
trapezoid body, and the superior olivary nucleus.

The primary auditory cortex is a primary auditory reception area in cor-
tex and it receives its projections from the medial geniculate body. Areas
immediately adjacent to the primary auditory cortex are auditory-association
areas. These association areas receive signals from the primary auditory cor-
tex and send projections to other parts of the cortex. Tonotopic organiza-
tion of the auditory cortex is particularly complex. In the simplest analysis,
high frequencies are represented anteriorly and low frequencies posteriorly in
the auditory cortex. Each auditory cortical area is reciprocally connected to
an area of the same type area in the contralateral hemisphere. In addition,
auditory-association areas connect with other sensory-association areas such
as somatosensory and visual. They also send projections that converge in the
parietotemporal language area. It appears that the higher level of integra-
tion in the association areas is responsible for more complex interpretation of
sounds. These properties of the auditory cortex may explain why patients with
lesions in one of the cortical hemispheres have little difficulty with hearing as
measured by presenting simple sounds, e.g., pure tones. However, such pa-
tients may have impaired ability to discriminate the distorted or interrupted
speech patterns and have difficulty focusing on one stimulus if a competing
message, especially meaningful, i.e., speech is presented at the same time.

There is also a descending efferent auditory pathway that parallels the
afferent pathway and is influenced by ascending fibers via multiple feedback
loops. The specific function of this system in audition is not well understood,
but clearly modulates central processing and regulates the input from periph-
eral receptors.

Because auditory cortex seems to deal primarily with higher brain func-
tions, its modeling has been very scarce. However, recently there has been
an promising set of studies by Middlebrooks and colleagues, in which they
teach neural networks to interpret cortical recordings and make predictions of
the psychophysical performance [24]. More details will have to be unravelled
about biophysical properties of cortical auditory cells before more detailed
modeling can be successfully used.
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