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Foreword

WHAT’S ALL THE COMMOTION ABOUT
SCATTER SEARCH AND TABU SEARCH
ANYWAY?

Fred Glover
Leads School of Business, University of Colorado, Boulder, CO 80309-0419, US4,
fred.glover@colorado.edu

Given an opportunity to dig into a good book, such as the one you
presently hold in your hands, little can be more of a nuisance than to read a
preface. Let me acknowledge at once that I certainly won’t be offended if you
don’t read this one. (After all, I’ll never know whether you did or not!) As
my grandmother used to say, a preface to a book is like a speech before a
banquet: it only delays enjoying what follows.

If you’ve bothered to read this far, at the least I owe you the courtesy of
letting you know what to expect by reading farther. First, I'11 quickly describe
some features of the book that I'm delaying you from enjoying. Then I'll see
I can offend as many of our mutual friends as possible (including you, to be
sure) by suggesting that some popular conceptions of search strategies may
be leading us down the wrong track. If at this point you haven’t yet shredded
the preface in the firm resolve to read the remainder of the book without
further distraction, you will come to a proposal for an experiment to put my
contentions to the test, and thereby to expose their underlying sense or
nonsense. Finally, I'll wrap up by commenting on where we are headed in the
grand scheme of things, as a way to remind you once again of what you’ve
been missing by pausing to scan these preliminary pages.

What the book offers.

Tabu search and scatter search have come a long way from their origins,
and the papers in this volume disclose some of the significant recent
developments that are fueling advances in these areas. New contributions are
documented for solving a varied collection of challenging problems, both
those representing classical optimization models that have attracted the
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attention of researchers for many years, and those representing quite recent
models, that belong to forefront of modern optimization concerns. The
volume additionally includes papers devoted to experimentation, exposing
lessons learned from evaluating the performance of past and recent proposals.
Still another section focuses on identifying currently established and
emerging roles for tabu search and scatter search in realms such as parallel
optimization and constraint programming, thereby affording a cross
fertilization with other disciplines. And not least, the volume contains a
collection of papers offering innovative proposals for new research directions.

This work represents the first time that tabu search and scatter search have
been examined together in the same volume. Such a side-by-side examination
is long overdue, particularly in view of the fact that the two approaches grew
out of common beginnings, and share overlapping principles and
perspectives. Today tabu search is typically applied from the perspective of
adaptive memory concepts and strategies that it has introduced into the
metaheuristic literature, while scatter search is primarily pursued within the
context of an evolutionary approach, emphasizing processes concerned with
generating and managing a population of solutions. Yet tabu search has
always likewise embraced strategies for managing populations of solutions,
notably within the setting of two of its basic types of intensification
processes, the first concerned with saving and re-visiting elite solutions to
explore their vicinity more thoroughly and the second concerned with
analyzing these solutions to isolate critical features, such as variables that
strongly and frequently receive particular values, as a basis for generating
other solutions sharing these features.

In a complementary manner, scatter search has made use of adaptive
memory, chiefly by virtue of incorporating improvement processes which,
curiously enough, have only become recognized as relevant in other
evolutionary approaches in relatively recent years. In the setting of these
contrasting evolutionary procedures, the slowly dawning appreciation of the
value of such improvement procedures has spawned the appearance of
methods that currently go by the names of “hybrid” and “memetic”
procedures. Characteristically, however, by its association with tabu search,
scatter search is more often disposed to make use of improvement processes
that embody adaptive memory, whereas other evolutionary approaches often
still lag in bridging the gap to exploit such strategies.

Curious as it may seem, an eminent body of traditional wisdom inclines us
to see little of interest in designs anchored to adaptive memory and associated
strategies for exploiting it. The TS focus on adaptive memory admittedly
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poses challenges that many researchers may prefer to sidestep. But, granting
some liberty to speculation, these challenges may also help to define the
frontiers of research into problem-solving processes that seek to incorporate
abilities analogous to our own. Perhaps the human impulse to avoid
acknowledging that our methods are still somewhat primitive steers us away
from ideas that expose the yawning chasms of our ignorance. In any case, the
blueprints drawn up for methods that do not venture far into the realms of
memory and learning seem to capture the devotion of many search
practitioners. From this standpoint, the papers of this volume represent a
more daring collection than those found in many treatments of metaheuristics,
by confronting important issues connected with the use of adaptive memory
in search and seeking to draw inferences about experiments that may shed
light on such issues.

Randomization: For Better or Worse'

Apart from the issue of adaptive memory, a topic that conspicuously
separates tabu search and scatter search from other approaches concerns the
application of random choice. It is impossible to look very far in the
metaheuristic literature without becoming aware that it is engaged in a love
affair with randomization. Our “scientific” reports of experiments with nature
reflect our fascination with the role of chance. When apparently chaotic
fluctuations are brought under control by random perturbations, we seize
upon the random element as the key, while downplaying the importance of
attendant restrictions on the setting in which randomization operates. The
diligently concealed message is that under appropriate controls, perturbation
is effective for creating outcomes of desired forms. If the system and
attendant controls are sufficiently constrained, perturbation works even when
random, but a significant leap is required to conclude that randomization is
preferred to intelligent design. (Instead of accentuating differences between
workable and unworkable kinds of perturbation, in our quest to mold the
universe to match our mystique we often portray the source of useful
outcomes to be randomization in itself.)*

! This section and the next draw on portions of the reference F. Glover (2003) “Tabu Search —
Uncharted Domains,” University of Colorado, Boulder.

? The attraction of randomization is particularly evident in the literature of evolutionary
methods, but the theme that randomization is an essential underpinning of modern search
methods is also echoed throughout many other segments of the metaheuristic literature.
Perhaps this orientation relates to our natural disposition to take comfort in the notion that
all can be left up to chance and everything will turn out for the best in the end. Or perhaps
randomization has a seductive charm akin to the appeal of a certain kind of romantic



The orientation behind tabu search and scatter search evidently contrasts
with this perspective. Many of the fundamental TS and SS strategies do not
require randomization for their execution. While tabu search and scatter
search principles do not exclude recourse to randomization, neither do they
embrace it as essential. Occasionally such implementations are found where
randomization is given a highly significant role, a fact that is consonant with
the notion that a probing literature should entertain exceptions. However, as a
rule, variants of TS and SS that incorporate randomized elements operate in a
context where variation is tightly controlled by strategy.

There is of course a setting where randomization makes good sense. In a
game against a shrewd opponent, it can be desirable to make sure one’s
behavior exhibits no demonstrable pattern, in order to avoid the chance that
the pattern will be detected and turned to the adversary’s advantage. In this
case, recourse to randomization is a prudent policy. On the other hand, if we
are entitled to presume that our search spaces are not possessed of a devious
intelligence bent on thwarting our moves, random behavior fulfills no
purpose comparable to its role in game playing. Instead, within the context of
search, randomization seems more likely to be a means of outwitting the
player who uses it. A policy of embarking on a series of random steps would
seem one of the best ways of confounding the goal of detecting and
exploiting structure.

We may grant that systematic search runs the risk of systematic blundering,
something we are all susceptible to. But with appropriate monitoring,
systematic search also affords an opportunity to isolate and rectify our
blunders, and therefore to carry out more effective explorations. (Of course, if
the search terrain itself is inherently random, no amount of systematization
will do any good. The presence or absence of patterned design makes no
difference when all is reduced to blind luck.)’

encounter — which seems somehow more captivating when marked by an element of
capriciousness.

3 Even the statement that structured search has little value for a problem whose character is
“essentially random” deserves qualification. A sorting problem may involve entirely
random data, but may still be handled advantageously by a method that is highly
systematic. (The “P vs. NP” distinction is relevant, but does not remove the need for
additional qualification.)
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An Experiment with Randomization.

I am tempted to pose a research challenge, as a way of testing the relevance
of randomization in search. If a policy of random choice produces a useful
sequence of responses, then we may presume that a different randomly
generated sequence will likewise prove useful. On the other hand, not all
sequences are apt to be equally good if the total number of moves is limited —
a relevant consideration if it is important to reach good outcomes before the
knell of doomsday, or at least before next summer’s vacation. When time
matters, we may anticipate that not all randomly generated sequences will
provide the same quality of performance.

This observation prompts the following experiment. To determine the
relative utility of randomization, we might examine the outcomes of
executing some number, say k, of randomly guided searches (each of limited
duration) with the goal of finding a value of k such that at least one of the
underlying choice sequences will lead to a solution of specified quality. We
seek a value for our parameter that is not too large and that is applicable to a
large portion of problems from a given class.

Now the evident question comes to mind. If we replace the k randomly
generated choice sequences with k systematically generated sequences, can
we obtain comparable or better results? Or can the replacement allow us to
produce such results for a smaller value of k? In accordance with the theme of
diversification strategies used in TS and SS, the systematically generated
sequences may be equipped to incorporate feedback, allowing a new
sequence may be influenced by the outcomes of preceding sequences. (There
is an issue of time invested in the systematic approach, so that the value of k
must be adjusted to account for this.)

The outcome of such an experiment of course depends on our skills in
designing systematic choice sequences, and also depends on the types of
problems we confront. It must be acknowledged that the experiment I am
advocating has been implicit in a variety of TS and SS implementations of the
past. But there may be advantages to bringing the relevant factors into more
explicit focus. Perhaps this will help us to better understand what is essential
and what is superfluous when we speak of “intelligent strategy,” and to
identify better instances of such strategy over time.



Xii
Where Are We Headed?

The papers of this book provide a series of landmarks along the way as we
investigate and seek to better understand the elements of tabu search and
scatter search that account for their successes in an astonishingly varied range
of applications. The contributions of the chapters are diverse in scope, and are
not uniform in the degree that they plumb or take advantage of fundamental
principles underlying TS and SS. Collectively, however, they offer a useful
glimpse of issues that deserve to be set in sharper perspective, and that move
us farther along the way toward dealing with problems whose size and
complexity pose key challenges to the optimization methods of tomorrow.
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Chapter 1

A SCATTER SEARCH TUTORIAL FOR
GRAPH-BASED PERMUTATION PROBLEMS

César Rego' and Pedro Ledo”

"Hearin Center for Enterprise Science, School of Business Administration, University of
Mississippi, University, MS 38677, USA, crego@bus.olemiss.edu;

2 Universidade Portucalense, Departamento de Informdtica, Rua Dr. Anténio Bernardino de
Almeida 541-619, 4200, Porto, Portugal, pedro@upt.pt.

Abstract:

Keywords:

Scatter search is an evolutionary method that has proved highly effective in
solving several classes of non-linear and combinatorial optimization problems.
Proposed early 1970s as a primal counterpart to the dual surrogate constraint
relaxation methods, scatter search has recently found a variety of applications in
a metaheuristic context. Because both surrogate constraint methods and scatter
search incorporate strategic principles that are shared with certain components
of tabu search methods, scatter search provides a natural evolutionary
framework for adaptive memory programming. The aim of this paper is to
illustrate how scatter search can be effectively used for the solution of general
permutation problems that involve the determination of optimal cycles (or
circuits) in graph theory and combinatorial optimization. In evidence of the
value of this method in solving constrained optimization problems, we identify
a general design for solving vehicle routing problems that sets our approach
apart from other evolutionary algorithms that have been proposed for various
classes of this problem.

Metaheuristics, Scatter Search, Combinatorial Optimization, Permutation
Problems, Vehicle Routing Problems

1. Introduction

Scatter search is an evolutionary method proposed by Glover (1977) as a
primal counterpart to the dual approaches called surrogate constraint
methods, which were introduced as mathematical relaxation techniques for
discrete optimization problems (Glover 1965). As opposed to eliminating
constraints by plugging them into the objective function as in Lagrangean
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relaxations, for example, surrogate relaxations have the goal of generating
new constraints that may stand in for the original constraints. The method is
based on the principle of capturing relevant information contained in
individual constraints and integrating it into new surrogate constraints as a
way to generate composite decision rules and new trial solutions. Scatter
search combines vectors of solutions in place of the surrogate constraint
approach of combining vectors of constraints, and likewise is organized to
capture information not contained separately in the original vectors. Also, in
common with surrogate constraint methods it is organized to take advantage
of auxiliary heuristic solution methods to evaluate the combinations produced
and generate new vectors. As any evolutionary procedure, the method
maintains a population of solutions that evolves in successive generations.

A number of algorithms based on the scatter search approach have
recently been proposed for various combinatorial problems (see Kelly,
Rangaswamy and Xu 1996, Fleurent et al. 1996, Cung et al. 1999, Laguna,
Marti and Campos 1999, Campos et al. 1999, Glover, Lokketangen and
Woodruff 1999, Atan and Secomandi 1999, Laguna, Lourengo and Marti
2000, Xu, Chiu and Glover 2000).

In this study we provide a general scatter search design for problems
dealing with the optimization of cycles (or circuits) on graphs. The traveling
salesman problem (TSP) which consists of finding the shortest Hamiltonian
cycle (or circuit in the asymmetric case) is a typical example of this class of
problems. It is well-known that the TSP is NP-Complete so that efficient
heuristic methods are required to provide high quality solutions for large
problem instances (see Johnson and McGeoch 1997, Rego 1998). A direct
extension of the TSP is the vehicle routing problem (VRP) where side
constraints force the creation of multiple Hamiltonian cycles (routes) starting
and ending at a central node (representing a hub or depot). Both TSP and
VRP problems provide a general model for a wide range of practical
applications and are central in the fields of transportation, distribution and
logistics (see Reinelt 1994, Laporte and Osman 1995). Empirical studies have
shown that the VRP is significantly harder to solve than TSPs of similar sizes
(see Gendreau, Hertz and Laporte 1994, Rochat and Taillard 1995, Rego
1998, 2000, and Toth and Vigo 2003, for some of the current best heuristic
algorithms for the VRP). Because of its theoretical and practical relevance we
use the vehicle routing problem to illustrate the various procedures involved
in the scatter search template.

Also, while other tutorials on scatter search exist (see, e.g. the articles by
Laguna 2001, and Glover, Laguna and Marti 2001), there have been no
exposition of the approach that disclose its operation within the setting of
routing.
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The remainder of this paper is organized as follows. An overview of the
scatter search method is presented in Section 2. Section 3 defines the vehicle
routing problem and presents formulations that are relevant for the context of
the paper. Section 4 illustrates the design of the scatter search procedure for
an instance of the problem. Section 5 summarizes and discusses possible
generalizations of the proposed template.

2. Scatter Search Overview

Scatter search operates on a set of reference solutions to generate new
solutions by weighted linear combinations of structured subsets of solutions.
The reference set is required to be made up of high-quality and diverse
solutions and the goal is to produce weighted centers of selected subregions
that project these centers into regions of the solution space to be explored by
auxiliary heuristic procedures. Depending on whether convex or nonconvex
combinations are used, the projected regions can be respectively internal or
external to the selected subregions. For problems where vector components
are required to be integer a rounding process is used to yield integer values
for such components. Rounding can be achieved either by a generalized
rounding method or iteratively, using updating to account for conditional
dependencies that can modify the rounding options. Regardless the type of
combinations employed, the projected regions are not required to be feasible
so that the auxiliary heuristic procedures are usually designed to incorporate a
double function of mapping an infeasible point to a feasible trial solution and
then to transform this solution into one or more trial solutions. (Although, the
auxiliary heuristic commonly includes the function of restoring feasibility,
this is not an absolute requirement since scatter search can be allowed to
operate in the infeasible solution space.) From the implementation standpoint
the scatter search method can be structured to consist of the following
subroutines:

Diversification Generation Method - Used to generate diverse trial
solutions from one or more arbitrary seed solutions used to initiate the
method.

Improvement Method - Transform a trial solution into one or more
enhanced trial solutions. (If no improvement occurs for a given trial solution,
the enhanced solution is considered to be the same as the one submitted for
improvement.)

Reference Set Update Method - Creates and maintains a set of reference
solutions consisting of the best according to the criteria under consideration.
The goal is to ensure diversity while keeping high-quality solutions as
measured by the objective function.



Subset Generation Method - Generates subsets of the reference set as a
basis for creating combined solutions.

Solution Combination Method - Uses weighted structured combinations to
transform each subset of solutions produced by the subset generation method
into one or more combined solutions.

A general template for a scatter search algorithm can be organized in two
phases outlined as follows.

¢ Initial Phase

Diversification Generation Method

Improvement Method

Reference Set Update Method

Repeat this initial phase until producing a desirable level of high-quality
and diverse solutions.
e Scatter Search Phase

Subset Generation Method

Solution Combination Method

Improvement Method

Reference Set Update Method

Repeat this scatter search phase while the reference set converges or until
a specified cutoff limit on the total number of iterations.

3. The Vehicle Routing Problem

The vehicle routing problem is a classic in Combinatorial Optimization.
To establish some basic notation, and to set the stage for subsequent
illustrations, we provide a formal definition of the vehicle routing problem in
this section. We also present two mathematical formulations which are
relevant for the scatter search design introduced in the next section.

3.1 Problem Definition

In graph theory terms the classical VRP can be defined as follows. Let
G=(V,A) be a graph where V ={vy,v,,...,v,} is a vertex set, and
A= {(vi,v Mvi,v;eVizj } is an arc set. Vertex v, denotes a depot, where a
fleet of m identical vehicles of capacity O are based, and the remaining
vertices V'=V \ {v,} represent n cities (or client locations). A nonnegative
cost or distance matrix C=(c;) which satisfies the triangle inequality
(cj<cy+cy ) is defined on A. When ¢ =c; for all (v;,v;)e A the
problem is said to be symmetric and it is then common to replace 4 with the
edge set E:{(vi,vj)l v,V eV,iij}. It is assumed that m e [m, 7] with
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m=1 and @ =n-1. The value of m can be a decision variable or can be
fixed depending on the application.

Vehicles make collections or deliveries but not both. With each vertex
v; is associated a quantity g; (g, = 0) of some goods to be delivered by a
vehicle. The VRP consists of determining a set of m vehicle routes of
minimal total cost, starting and ending at a depot v,, such that every vertex in
v; € V' is visited exactly once by one vehicle and the total quantity assigned
to each route does not exceed the capacity Q of the vehicle which services the
route.

We define a solution for the VRP as a set of m routes, S = {Rl,...,Rm},
Ry =(vg, Uy ,Ux, Vo) where Ry is an ordered set representing consecutive
vertices in the route k. Consequently, we denote v; € Ry if v; is component
of Ry and similarly (v;,v;) e Ry if v;, v, are two consecutive vertices in
R, . Finally, the cost of a solutlon §'is defined as C(S) = Zl<k<m z (i.)eR, €

3.2 Vehicle Flow Formulation

quyl Qk’ kzl"--’m (1)

IR Y @)
~7 T, i=1,..n
Ly S o, J=0,..m
xl = x‘i_y|5 (3)
i=0 ’ i=0 / k:l’ ,m
I<|u|sn-1
xp <|U|-1 i=0,...,n (4
H k=1
{0 l} l9j=1, ’n (5)
y,, =1,...m

In this formulation (Fisher and Jaikumar 1981), variables xl’j indicates

whether or not (v;,v;) is an edge of route £ in the optimal solution, and
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similarly yF specifies whether route & contains vertex v; . Constraints (1)
guarantee that vehicle capacity is not exceeded; constraints (2) ensure that
each city is visited by exactly one vehicle and m vehicles visit the depot;
constraints (3) ensure that every city is entered and left by the same vehicle;
subtour elimination are specified by constraints (4); and equations (5) are the
integrality constraints.

This formulation contains two well-known problems: the generalized
assignment problem (GAP) specified by constraints (1), (2) and (5); and the
traveling salesman problem (TSP). The TSP results when the y; ’s are fixed
to satisfy the GAP constraints for a given &, whereupon constraints (3) and (5)
define a TSP for vehicle k. Specifically, the GAP is the subproblem
responsible for assigning clients to vehicle routes, and the sequence in which
clients are visited by a vehicle is determined by the TSP solution over each
individual route.

Laporte, Nobert, and Desrochers (1985) show that a two-index
formulation can be derived from a three-index formulation by aggregating all
xz,? variable into a single variable x; which does not refer specifically to a
particular route, but simply indicates whether or not an arc (v;,v;)is in the
optimal solution. For the symmetrical case the value of the x; variable
indicates the number of times (0,1, or 2) that the corresponding edge is used
in the optimal solution. We will see later that this vehicle-flow formulation
and the index-reduction concept proves useful in several parts of our scatter

search model.

33 A Permutation-Based Formulation

In combinatorial optimization it is usually useful to distinguish two
classes of problems according to whether the objective is to find (1) an
optimal combination of discrete objects, or (2) an optimal permutation of
objects. In the first case, a solution is a non-ordered set while in the second a
solution is a ordered set (or a sequence). For instance, the 0-1 knapsack
problem and the set covering problem are typical examples of combination
problems where a solution can be interpreted to consist simply of a set of
elements. Permutation problems on the other hand, are exemplified by job
scheduling, traveling salesman, and vehicle routing problems where different
arrangements of the same set represent different solutions (allowing for a
sequence to be considered equivalent to its reverse ordering in the case of
symmetric problems). The differentiation of these two types of combinatorial
problems is particularly relevant because the specialized methods that apply
to these problems, especially those methods based on graph theoretic
representations, differ dramatically in the two cases. We will address to these
features later on when describing the proposed scatter search template.
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The VRP, which is the primary focus of this tutorial, seeks to determine
an optimal permutation according to the following formulation:

m e
min Z Z c/r,-k k)
k=1 =0

i=1
Z n<n 2)
k=1

Here, a solution is defined by the permutation {7711 ,..,,ﬂil,...,ﬂ;n,...,ﬂ::n } of
vertices {v;,...,u, . Vertex v, is implicitly represented by inserting it at the

beginning and end of each subsequence & of the permutation (and may be

expressed by “dummy elements” 7§ and ﬂ,’fkﬂ ). The permutation is

partitioned into subsequences by indexes n;, and may be interpreted to

consist of m separate routes, where the sequence of nodes on a given route
identifies the order in which clients (vertices) are visited by a vehicle
assigned to that route.

4. Scatter Search Template

Consider the following VRP instance with n=14, Q=30,
qg=(q;)(i=0,...,14) = (0,6,20, 89,10,8,7,5,5,4,3,4,7), me[L,14], and a
cost matrix C = (cy)(i,j=1,...,14,i < j) defined as follows:

[07.8510.82 8.18 9.71 4.53 3.13 5.11 6.40 7.54 6.40 9.30 8.51 4.61 7.96
0 14.40 436 4.19 9.41 9.39 2.77 1.57 1.12 2.82 1.73 8.98 12.0415.74
0 10.8912.5215.2413.6212.4813.0414.9615.0216.1019.1913.2013.54
0 1.84 11.4710.80 4.40 3.78 5.34 6.48 5.76 12.5912.7915.88
0 12.6012.12 5.30 4.30 5.30 6.82 5.12 13.0514.3017.54
0 1.71 7.31 8.46 8.60 6.8510.26 5.02 4.15 8.01
0 6.96 822 875 7.14 10.48 6.60 2.94 6.91
C= 0 1.30 2.72 2.60 4.34 8.27 9.44 13.04
0 1.92 2.70 3.26 8.8510.7414.35
0 1.81 1.77 7.88 11.5015.30
0 3.40 6.24 9.98 13.86
0 8.9513.2617.07
0 9.14 12.87
0 397
0




A viewgraph of the clients’ spatial distribution and the corresponding
vertex coordinates that gave rise to the matrix C is provided in the appendix.
We will use this special representation of the problem to illustrate different
procedures used in the scatter search design.

Now, we can proceed to the illustration of the scatter search design using
the defined VRP instance as an example of a permutation problem. We first
describe in the context of the VRP each of the methods considered in the
general scatter search template. Then, we present the various procedures
integrated in the overall algorithm.

e Initial Phase
Diversification Generation Method
Scatter search starts with an initial set of trial solutions which are required
to be different, thus the use of a systematic procedure to generate these
solutions is appropriate. Regarding the VRP as permutation problem we
consider the generator of combinatorial objects described in Glover (1997),
which operates as follows. A trial permutation P is used as a seed to generate
subsequent permutations. Define the subsequence P(h.s) where s is a positive
integer between / and 4, so that P(h :s)=(s,s+h,s+2h,...,s+rh), where
r is the largest nonnegative integer such that s+rh < n. Finally, define the
permutation P(h) for h<n, to be P(h)= (P(h:h), P(h:h-1), ..., P(h:1)).
In the VRP context we consider permutations in n-vectors where components
are all vertices v; € V\ {v,}. Consider for illustration h =4, and a seed
permutation P = {1,2,3,4,5 ,6,7,8,9,10,11,12,13,1 4} given by the sequence of
clients ordered by their indices. The recursive application of P(4:s) for
s =4,...,1 results the subsequences:
P={4812}, P={3,7,11} , P={2,6,10,14} and P={1,5,9,13}, hence
P(4) = {4,8,12,3,7,1 1,2,6,10,14,1,5,9,1 3} . For illustration purposes we
consider the set of initial vertices assignments 4, to vehicle routes derived
from permutations P(h) (h=1,...,10) where each cluster of vertices in a
route is obtained by successively assigning a vertex v;(i € P(h)) to a route
Ry, (initially k=) until the cumulative quantity Q; = Zv cr, i does not
exceed Q with the insertion of a new vertex Uk, - As soon ‘assuch a cutoff
limit is attained a new assignment is created by incrementing k£ by one unit,
and the process goes on until all vertices have been assigned. Table 1.1 shows
the assignment A, derived from permutation P(4), where shadowed cells
indicate the Q, value associated with the insertion of vertex v; in a route Ry .
In fact, the result obtained can be viewed as a generalized assignment
process which does not rely on the order in which clients are visited, though it
ensures that all the initial solutions that can be created are feasible and
different (since they derive from distinct permutations). Vehicle routes can
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thus be determined by using any traveling salesman algorithm on the
subgraph defined by the previous assignments.

Table 1.1. Sequential assignment of clients to vehicle routes
P4 |i 4 I8 12 |3 7 11 2 16 10 |14 |1 5 9 13
8 14 [20

For illustration, we consider the standard 2-exchange procedure (Lin
1965) to find a 2-optimal TSP tour for each individual route. The 2-optimal
procedure is a local search improvement method, hence an initial feasible
TSP solution for each route R, is required to start the method. A
straightforward method to create this solution can be obtained by successively
linking vertices in the order they appear in the permutation and attaching the
initial and ending vertices to the depot. Then, the method proceeds by
replacing two edges (v;,0;) and (v;,V;) by two others (v;,v;) and (v;,U;)
where U denotes the successor of v in a given orientation of the route. Hence,
in order to maintain the feasible orientation of the route, the subpath
(Ui,--50}) needs to be reversed, so that the subpath (v,v;,...,v;,7;)
becomes (v;,v;,...,0;,0;) . For convenience, denote the c; values by
c(v;,v;) so that the solution cost change produced by a 2-exchange move can
be expressed as A; = cfv;,v;)+c(0;,0;)—c(v;,0;)—c(v;,0;). A 2-optimal
(or 2-opf) solution is obtained by iteratively applying 2-exchange moves until
no possible move yield a negative A value.

As the purpose of the diversification generation method is to generate
diverse solutions rather than high quality solutions, it is convenient to make
the method fast, therefore we have adopted a first-improvement (as opposed
to a best-improvement) strategy for the TSP heuristic.

Table 1.2 shows the four iterations carried out to create the solution S,.
Specifically, the first column shows the initial trial solution T created from
the assignment A, (defined in Table 1.1) and the final solution S,. Figures
within parenthesis indicate the iteration number. The second column shows
vertices v;, v, that define the move from one iteration to another. (Note that a
2-exchange move is completely identified by vertices v;,v; since the two
other vertices are necessarily their successors, respectively o; and v;.) The
remaining columns show the routes in each solution, the solution cost, and the
value associated with the move that has led to the solution shown in the next
row. Boldfaced numbers indicate the changes carried out by the
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corresponding move. The result of these changes are illustrated in Figure 1.1,
which depicts the initial trial solution 7., and the final solution S,.

Table 1.2. Application of 2-opt procedure to 7, trial solution
Solution | Move | R, R, Ry R, Rs Cost A
T Vevia | 48123 | 711 | 26 101415 | 913 | 163.5¢ | -11.94
7,2 vievy | 12843 | 711 | 26 101415 1913 | 151.60 | -12.45
7,2 vvs | 12843 | 711 | 26 101145 | 913 | 13915 -2.90
T,® vevy | 12843 | 711 |26 101514 {913 | 13625 |-LI0
Sy 128431711 |26 110514 | 913 | 13515

Figure 1.1. Solutions T, (left-hand side) and S., (right-hand side)

The shape of the solutions in the figure clearly show that routes R, and Ry
were significantly improved. Repeating the process for the rest of the
permutations we obtain the ten solutions produced by the diversification
generation method as illustrated in Table 1.3.

Improvement Method

The improvement method used in the initial phase may or may not be the
same method used in the scatter search phase. This decision usually depends
on the context and on the search strategy one might want to implement. For
the purpose of this tutorial we use the same procedure in both phases, though
in the scatter search phase the method is required to deal with some additional
features.
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Table 1.3. Trial solutions (T,) and final solutions (C;) produced by the diversification
eneration method

Solution Routes Cost
T1 012034506789010111213140 120.90
S1 012034506987011101214130 120.83
T2 024068101201413057911130 132.28
S2 024061210801431071195130 122.74
T3 036912025081114104710130 157.24
S3 0612930250811114074101390 128.27
T4 0481230711026010141509130 163.54
S4 0128430711026011051409130 135.15
TS5 051049014381302701216110 149.08
S5 051094083141302701111260 119.50
Té6 061251104103902801417130 140.97
S6 065121103491002801413170 113.74
T7 0714613051241103100290180 139.83
S7 0761314051211403100290180 130.47
T8 0876014513401231102100190 146.83
S8 0786014135401211302100190 136.29
T9 0987605144130312021110100 148.42
S9 0789601413540312021110100 137.16
T10 0109870654014313021210110 148.65
S10 0109870654031413021120110 135.92

We consider an iterative improvement method based on local search. The
method is designed to directly operate on the problem graph using a very
straightforward neighborhood structure consisting of removing a vertex from
its current position and inserting it between two other vertices. Specifically,
denoting respectively by v and v the predecessor and successor of a vertex
v, the insertion of a vertex v; between vertices v, and v, operates by
inserting edges (v;,0;), (Vp,V;), (V;,V4), and by removing edges (v;,v;),
(v;,v;) and (v,,U,), where v, =, . Hence, the solution cost change is
given by Ay, =c(v;, ;) +c(vy,,v;)+c(v;,U,) - c(v;,v;) — c(v;,0;) —c(v,,,0,) .
Applying the procedure on each S; solution (in Table 1.3) we obtain the
corresponding improved solutions reported in Table 1.4. (A graphic
illustration of the method is shown in the scatter search phase where some
additional features of the method are included.)

Reference Set Update Method

This method is used to create and maintain a set of reference solutions. As
in any evolutionary (population-based) method, a set of solutions (population
of individuals) containing high evaluation combinations of attributes replaces
less promising solutions at each iteration (generation) of the method in order
to enhance the quality of the population.
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Table 1.4. Improved Solutions

Solution Routes Cost

S1 0203450698701111012141360 109.67
S2 020341806513140711910120 92.51

S3 065129020811113140734100 106.37
S4 08430711191002012560131490 96.84
S5 051210940731413020811160 111.52
S6 065034910120280141311170 106.30
S7 065131403411101202091870 92.48
S8 078190141356012101143020 92.48
S9 078014135603491012021110 102.11
S10 010911870650431413021120 107.74

In genetic algorithms, for example, the updating process relies on
randomized selection rules which select individuals according to their relative
fitness value. In scatter search the updating process relies on the use of
memory and is confined to maintain a good balance between intensification
and diversification of the solution process. In advanced forms of scatter
search reference solutions are selected based on the use of memory which
operates by reference to different dimensions as defined in tabu search.
Depending on the context and the search strategy, different types of memory
can be used. The way they are integrated to achieve both intensification and
diversification is generically called adaptive memory programming. (See
Glover and Laguna 1997 for a detailed explanation of various forms and uses
of memory within search processes.) For the purpose of this tutorial we use a
simple rule to update the set of reference solutions, where intensification is
achieved by the selection of high-quality solutions (in terms of the objective
function value) and diversification is basically induced by including diverse
solutions from the current candidate set CS. Thus the reference set RS can be
defined by two distinct subsets B and D, representing respectively the subsets
of high-quality and diverse solutions, hence RS = Bu D . Also, in the context
of our example the terms “highest evaluated solution” and “best solution” are
interchangeable and refer to the solution that best fits the evaluation criterion
under consideration.

Consider the candidate set CS ={S;,...,S;,} defined by the improved
solutions, and a reference set of size |RS|=6 where |B| =|D|=3.".. Before

1 The cardinality of B and D does not need to be identical and can vary during
the search. For instance, relatively higher values of B (D) can be
appropriate during a phase that is more strongly characterized by an
intensification (diversification) emphasis. Also different schemes can be
chosen to implement these variations. A dynamic variation of these values
can be implemented by a perturbation scheme conducted strategically
rather than randomly. For example, a strategic oscillation can be
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proceeding to the creation of the reference set we first need to eliminate
possible repeated solutions in the current set of trial solutions of Table 1.4.
We can see that S and S represent the same solution, so we drop Ss from the
solution candidate set, making CS = CS\ {Sg}. Now, to create RS we start by
selecting the three best solutions S, S and S, in CS to generate B, then the
set D of diverse solutions is generated by successively selecting the solution
which mostly differs from the ones currently belonging to RS. As a diversity
measure we define d; = I(S,- US;)\(S;nS; )‘ as the distance between
solutions S; and S;, which gives the number of edges by which the two
solutions differ from each other. For example, solution S; contains 6 edges
(1,8), (3.7), (4,10), (9.0), (9,12), (11,13), which are not in solution S, and
solution S, has 7 edges (1,7), (3.0), (4.8), (9,10), (9,11), (12,0), (13,0), which
are not in the solution S;. Hence the distance between the two solutions is /3.
Table 1.5 shows dj; values for each pair of solutions S; e RSand S; €CS.

Candidate solutions are included in RS according to the Maxmirn criterion
which maximizes the minimum distance of each candidate solution to all the
solutions currently in the reference set. The method starts with RS = B and at
each step RS is extended with a solution S; € CS, to be RS=RSu {S ; }, and
consequently CS is reduced to CS=CS\ {S j}. Then the distance of solution
S; to every solution currently in the reference set is computed to make
possible the selection of a new candidate solution according to the Maxmin
criterion. More formally, the selection of a candidate solution is given by
S;= argmaxizﬁ?"r]les‘{dlj cj=1,..,csl}.

Table 1.5. Distances between solutions

Candidate solutions (CS)
Reference set (RS) S 18 | Ss Ss. So. S0
S 16 116 | 22 16 12 20
S, 20 |16 |18 12 10 18
S4 19 | 13 17 11 13 15
Minimum distance 16 |13 |17 11 10 15
Ss. 18 | 16 16 18 18
Minimum distance 16 | 13 11 10 15
S 22 18 16 18
Minimum distance 13 11 10 15

The process is repeated until ]RS] is achieved. In the table, boldfaced figures
represent the maxmin values obtained at each step of the method.

implemented by using critical event memory as an indicator of the order of
magnitude of the relative variations. Note that since the cardinality of
subsets B and D are complementary in relation to the RS size and the
decision can be uniquely based on the variation of either one.
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This results in an initial reference set formed by solutions S, Sz, S¢, Ss.,
S1, 8. For convenience, we reorder the solution indexes by setting
RS = {SI,SZ,S3,S4,SS,S6} as illustrated in Table 1.6.

Table 1.6. Initial reference set.

Solution Routes Cost

S1 065131403411101202091870 92.48
S2 020341806513140711910120 92.51
S3 0843071119100201256013140 96.84
S4 051210940731413020811160 111.52
S5 020345069870111101214130 109.67
S6 010911870650431413021120 107.74

It is important to note that a balance between intensification and
diversification is achieved by an evaluation criterion that causes the highest-
evaluated solutions considered for the reference to include qualities other than
a “good” (small) objective function value. Solution Sy with a cost of 702.11 is
by-passed in favor of other solutions that will add more diversity to the set.
As indicated in Table 1.5, the distance between Sy to solutions in the
reference set are relatively lower, making this solution unattractive from the
standpoint of diversification.

e Scatter Search Phase

Subset Generation Method

This method consists of generating subsets of reference solutions to
create structured combinations in the next step. The method is typically
designed to organize subsets of solutions to cover different promising regions
of the solution space. In a spatial representation, the convex-hull of each
subset delimits the solution space in subregions containing all possible
convex combinations of solutions in the subset. In order to achieve a suitable
intensification and diversification of the solution space, three types of subsets
are required to be organized:

1. subsets containing only solutions in B,
2. subsets with only solutions in D, and
3. subsets mixing in solutions in B and D in different proportions.

Subsets defined by solutions of type 1 are conceived to intensify the
search in regions of high-quality solutions while subsets of type 2 are created
to diversify the search to unexplored regions. Finally, subsets of type 3
integrate both high-quality and diverse solutions with the aim of exploiting
solutions across these two types of subregions.

Again, adaptive memory can be used to appropriately define combined
rules for clustering elements in the various types of subsets. This has the
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advantage of incorporating additional information about the search space and

problem context.

Since the use of sophisticated memory features is beyond the scope of this
study, we consider a simpler yet systematic procedure to generate the
following types of subsets:

1. All 2-element subsets.

2. 3-clement subsets derived from two element subsets by augmenting each
2-element subset to include the best solution (as measured by the objective
function value) not in this subset.

3. 4-clement subsets derived from the 3-elelement subsets by augmenting
each 3-element subset to include the best solution (as measured by the
objective function value) not in this subset.

4. The subsets consisting of the best b elements (as measured by the
objective function value), for b=5,...,|B|
Table 1.7 shows the subset generated using the current reference set.

Table 1.7. Subset generation

Type | Subsets

1 (51, 82), (S1, S3), (51, §4), (S1, S5), (S1, §6), (52, S3), (52, §4), (52, S5), (S2, 56),
(53, 84), (53, 53), (83, S6), (54, S5), (54, S6), (S5, S6)

2 (S1, 82, 83), (S1, 82, S4), (S1, 82, S5), (S1, 82, S6), (S1, S3, $4), (S1, 3, S5), (S1,
83, S6), (S1, S4, S5), (S1, $4, S6), (51, S5, S6)

3 (S1, §2, 83, 84), (51, 82, §3, $5), (S1, S2, §3, §6), (S1, S2, §4, S5), (51, S2, §4,
S6), (51, 82, 55, S6);

4 (S1, 82, §3, S5, S6), (51, S2, S3, 54, S5, S6)

Subsets of type 1 are the fifteen possible combinations of two solutions.
For type 2 subsets, we start by adding solution S; to the subset (S, Sz). Then
since adding solution S, to the subset (S;, S3) leads to a repeated subset, the
procedure jumps to the next subset, adding S, to the subset (S;, S4), and so
forth. Type 3 subsets are created in a similar way, now starting by adding
solution Sy to the subset (S;, S, S3). Finally, subsets of type 3 consist of
successively adding solutions S5 and S, to subsets (S,,525;:Ss) and
(81,82,83,56,55).

Solution Combination Method

This method is designed to explore subregions within the convex-hull of
the reference set. We consider solutions encoded as vectors of variables
x;; representing edges (v;,v;) . New solutions are generated by weighted
linear combinations which are structured by the subsets defined in the last
step. In order to restrict the number of solutions only one solution is
generated in each subset by a convex linear combination defined as follows.
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Let E be a subset defined in RS, |E| =7, and let H(E) denote the convex-hull
of E. We generate solutions S € H(E) represented as

where the multiplier A, represents the weight assigned to solution S,. We
compute these multipliers by

1

__C(S)
3
C(S;)

t=1

so that the better (lower cost) solutions receive higher weight than less
attractive (higher cost) solutions. Then, we calculate the score of each
variable x;; relative to the solutions in £ by computing

score(x;) = ) (Ax5;)
t-1

where xij- means that x; is an edge in the solution S,. Finally as variables

are required to be binary, the value is obtained by rounding its score to give
X = l_score( X;; )+.5J. The computation of the value for each variable in E

results in the linear combination of the solutions in E. Table 1.8 shows the
computation of the linear combination of solutions S}, S,, S;, and S, in the
initial reference set illustrated in Table 1.7. For the sake of simplicity only
edges that appear in at least one solution are represented in the table, since the
remaining variables correspond to x; =0 .
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Table 1.8. Linear combinations of solution vectors
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Solution S, S, Sa. Sy
As 0.2643 0.2642 0.2524 0.2191
Edges score(x;; ) xij
1,4 0.2642 0.2642 0
1,7 0.2524 0.2524 0
(1,8) 0.2643 0.2642 0.2191 0.7476 1
(L9 0.2643 0.2643 0
1,10 0.2524 0.2191 0.4715 0
2,00 0.2643 0.2642 0.2524 0.2191 1.0000 1
3.0 0.2643 0.2642 0.2524 0.7809 1
3.4 0.2643 0.2642 0.2524 0.7809 1
€N)) 0.2191 0.2191 0
(3.14) 0.2191 0.2191 0
4.0 0.2191 0.2191 0
4.8) 0.2524 0.2524 0
4,9) 0.2191 0.2191 0
4,11 0.2643 0.2643 0
(5,0 0.2191 0.2191 0
(5,6 0.2643 0.2642 0.2524 0.7809 1
(5,12) 0.2524 0.2191 0.4715 0
(5,13) 0.2643 0.2642 0.5285 1
(6,0) 0.2643 0.2642 0.2524 0.2191 1.0000 1
6,11) 0.2191 0.2191 0
(7,0) 0.2643 0.2642 0.2524 0.2191 1.0000 1
(7,8) 0.2643 0.2643 0
(1,11) 0.2642 0.2642 0
(8,0) 0.2642 0.2524 0.2191 0.7357 1
(9,0) 0.2643 0.2643 0
(9,10) 0.2642 0.2524 0.2191 0.7357 1
9,11) 0.2642 0.2524 0.5166 1
(10,0) 0.2524 0.2524 0
(10,11) 0.2643 0.2643 0
(10,12) 0.2643 0.2642 0.2524 0.2191 1.0000 1
(12,0) 0.2643 0.2642 0.5285 1
(13,00 0.2524 0.2191 0.4715 0
(13,14) 0.2643 0.2642 0.2524 0.2191 1.0000 1
(14,0) 0.2643 0.2642 0.5285 1

It is important to observe the effect of this weighting on the resulting
solutions. As previously intimated, the least cost solution S, has the largest
weight in the combination. Also, note that both edges (5,12) and (5,13)
appear in two solutions, though only the variable x5,5 is considered for the
resulting solution.
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A new solution can now be created using the edges associated with
variables x; = 1. Nevertheless, the set of these edges does not necessarily
(and usually doesn’t) represent a feasible graph structure for a VRP solution.
Instead, it produces a subgraph containing vertices with a degree different
than two. Such subgraphs can be viewed as fragments of solutions (or partial
routes). For example, the previous linear combination produced the following
solution fragments: (1,8,0), (2,0), (0,3,4) (0,6,5,13,14,0), (0,11,9,10,12,0), and
(7,0). To create a feasible solution subgraph we can simply link vertices 1, 2,
4, and 7 (which have a degree equal to 1) directly to the depot. This has the
advantage that the algorithm always deals with feasible structures. However,
it is also possible that the subgraph resulting from a linear combination
contains vertices of degree greater than two. In these cases, a very
straightforward technique consists of successively dropping edges with the
smallest scores, from among those incident at these vertices, until the degree
of each vertex becomes equal to two. By doing so, the subgraph obtained will
be either feasible or fall into the case where some of the vertices have degree
1, which can be handled as already indicated.

Improvement Method

Even though the solution combination method creates feasible subgraphs
for the VRP, the solution may still not be feasible in relation to the other
problem constraints. Therefore, the improvement method must be able to deal
with infeasible solutions. As already noted, the solution combination method
has generated 33 new solutions (one per each subset). Let Cy, ...,Cj3 denote
these solutions indexed by the order they appear in Table 1.7. In the whole
set, combinations Cy, ..., C3;. and Cs; repeat previously generated solutions,
so we first drop these solutions before applying the improvement method.
The relatively high rate of repeated solutions results from the fact that the
example deals with a very small instance. However, some number of repeated
solutions may still be expected to appear when solving more realistic
problems. Thus, it is valuable to have a fast procedure to identify repeated
solutions which can be achieved in this context by using an appropriate hash
function.

Table 1.9 shows an example of the improvement method applied to
solution C;, where the local optimum Cj, is found after 3 iterations. This is
the same improvement method used in the initial phase of the scatter search
algorithm, though the illustration shows how the method deals with infeasible
solutions.
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Table 1.9. Improving Method

Solution
Iteration k Ry, O  CRy) C(Cp)
Initial 1 071119100 28 19.58
Solution 2 020 20 21.63
Ci2 3 013143480 35 37.00

4 0560 19 9.36

5 0120 3 17.02  104.60%
Iteration 1 Drop vertex 14 from R;. and insert it into Ry,

1 071119100 28 19.58

2 02140 27 32.32

3 0133480 28 29.94

4 0560 19 9.36

5 0120 3 17.02  108.23
Iteration 2 Drop vertex 12 from R and insert it into Ry

1 071119100 28 19.58

2 02140 27 3232

3 0133480 28 29.94

4 012560 22 18.37  100.21
Iteration 3 Drop vertex 13 from R, and insert it into Ry:
Final 1 071119100 28 19.58
Solution 2 02140 27 32.32
Cio 3 03480 24 2072

4 01256130 26 2279 9541

t infeasible solution, Q5. =35 = @ =30

The method works in two stages. The first stage is concerned with making
the solution feasible while choosing the most favorable move (relative to the
objective function cost), and the second stage is the improvement process that
operates only on feasible solutions. In general, several variants can be used to
deal with infeasible solutions. These techniques are usually based on varying
certain penalty factors associated with the problem constraints. Some
constraints are potentially “less damaging” when violated than others, and
usually the choice of penalty values should take this into consideration. Also,
the way these penalties are modified can make the search more or less
aggressive for moving into the feasible region. High penalty values are
usually employed for an intensification strategy, and lower values for a
diversification approach that allows the search keep going longer in the
infeasible region. An interplay between intensification and diversification can
be carried out by changing penalties according to certain patterns. For
example, such patterns can be based on critical event memory within a
strategic oscillation approach as suggested in tabu search. As previously
noted, different balances between intensification and diversification of the
search can also be controlled in the construction of the reference set, and in
the solution combination method (as by considering non-convex linear
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combinations to extrapolate to solutions outside the convex hull of a subset).
Our illustrative method, however, doesn’t use a penalty factor but rather
identifies the most violated route and makes the best (cost reducing) move
that consists of removing a vertex from this route and feasibly inserting it in
another route. It is possible that an additional route will be created if such a
move is not possible or if all routes are over their capacity.

A graphic representation of the procedure is illustrated in Figure 1.2.

Figure 1.2. Graphical illustration of the improvement method

In our example, we apply the improving method to all the remaining (non-
repeated) solutions to obtain a set of improved solutions. The best solution
results from the improvement of C¢ associated with a combination involving
subset (S;,52,83) . Cys is the solution (0, 1, 8, 0,2, 0, 3,4, 0,6, 5, 13, 14, 0, 7,
0, 12, 10, 9, 11, 0) with cost C(C;)=115.94, which is transformed by the
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improvement method into the solution S;¢ with cost C(S;s)=91.01. We have
also solved the problem using an exact method (which requires substantially
greater computation time, even for this simple example, an verify that S;5 is
in fact the optimal solution. This solution is illustrated in Figure 1.3.

CiR,)=21,63
=

C(R,)=20.92
Q=30

C(R,)=20,44
Q=25

Figure 1.3. Final solution

In the absence of external confirmation that an optimal solution has been
found, the method could continue to iterate in the scatter search phase by
updating the reference set in the same way as in the initial phase. In this
succeeding phase, however, the current reference set and the solutions
produced by the improving method are all considered together before
determining the new B and D sets that will form the updated reference set for
the next iteration. The method stops when no elements in the current
reference are replaced (i.e. when the reference set has not changed in two
successive iterations).

S. Summary and Conclusion

We have developed a scatter search template for circuit-based graph
problems and have shown its application to the classical vehicle routing
problem under capacity restrictions.

Our intention was not to provide a computational exploration of scatter
search. Rather, the numerous recent studies demonstrating the computational
and practical efficacy of the approach provided one of the key motivations for
the present paper. Another primary motivation for this tutorial paper was the
fact that, in spite of its growing applications, scatter search has not yet been
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described in a step by step manner in application to the routing context,
accompanied by a detailed numerical illustration. For this reason, the access
to applying the method to routing problems is undoubtedly somewhat less
than it might otherwise be, and the amount of effort to launch a new scatter
search study in this domain is also accordingly somewhat greater than would
be necessary, due to the need to digest the elements of the method apart from
an illustrated presentation of their nature and relevance.

The illustrative example used to demonstrate the scatter search provides a
new evolutionary approach and a general framework for designing scatter
search algorithms for vehicle routing. Moreover, because the problem
constraints are handled separately from the solution generation procedures,
and are therefore independent of the problem context, our scatter search
design can be directly used to solve other classes of vehicle routing problems
by applying any domain-specific (local search) heuristic that is able to start
from infeasible solutions.

Finally, our illustrative approach affords various possibilities for using
adaptive memory programming as a basis for creating effective scatter search
algorithms for solving practical instances. In particular, we show the
relevance of using memory to dynamically modify weights in the solution
and to introduce an appropriate balance between intensification and
diversification of the search.

Appendix

Table 1.10 shows the data of the problem used along this tutorial. The
corresponding spatial distribution is depicted in Figure 1.4. The depot is
represented by index 0, therefore g, is set to be zero.

Table 1.10. Problem data for the VRP instance

v; X; Yi *H
0 11.5 14.4 0
1 5.8 9.0 6
2 5.5 23.4 20
3 3.5 12.7 9
4 2.3 11.3 8
5 14.9 11.4 9
6 14.3 13.0 10
7 7.6 11.1 8
8 6.5 10.4 7
9 6.8 8.5 5
10 8.6 8.7 S
11 5.5 7.3 4
12 14.4 6.4 3
13 16.0 15.4 4
14 18.2 18.7 7
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Figure 1.4. Spatial distribution of the problem vertices
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Abstract: The algorithm described here, called OptQuest/NLP or OQNLP, is a
heuristic designed to find global optima for pure and mixed integer
nonlinear problems with many constraints and variables, where all problem
functions are differentiable with respect to the continuous variables. It uses
OptQuest, a commercial implementation of scatter search developed by
OptTek Systems, Inc., to provide starting points for a gradient-based local
NLP solver. This solver seeks a local solution from a subset of these
points, holding discrete variables fixed. The procedure is motivated by
our desire to combine the superior accuracy and feasibility-secking
behavior of gradient-based local NLP solvers with the global optimization
abilities of OptQuest. Computational results include 144 smooth NLP
and MINLP problems due to Floudas et al, most with both linear and
nonlinear constraints, coded in the GAMS modeling language. Some are
quite large for global optimization, with over 100 variables and many
constraints.  Global solutions to almost all problems are found in a small
number of NLP solver calls, often one or two.

Keywords:  Global Optimization, Multistart Heuristic, Mixed Integer Nonlinear
Programming, Scatter Search, Gradient Methods
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1. Introduction

This paper describes a multistart beuristic algorithm designed to find
global optima of smooth constrained nonlinear programs (NLPs) and
mixed integer nonlinear programs (MINLPs). It uses the widely used
scatter search software OptQuest (Laguna and Marti, 2000) to generate
trial points, which are candidate starting points for a local NLP solver.
These are filtered to provide a smaller subset from which the local solver
attempts to find a local optimum. Our implementation uses the
generalized reduced gradient NLP solver GRG (Smith and Lasdon, 1993),
but in principle any local NLP solver can be used, including ones that do
not require derivatives. However, we focus on gradient-based solvers
because they are by far the most widely used, and currently are the only
ones capable of solving NLPs with hundreds or thousands of variables
and constraints.

¢ Problem Statement
The most general problem this algorithm can solve has the form

minimize f{x,y) (1.1)

subject to the nonlinear constraints

gl <G y)< gu (1.2)

the linear constraints

ISAx+A,y<u 13)

xeS,yeY (1.4)

where x is an »-dimensional vector of continuous decision variables, y is a
p-dimensional vector of discrete decision variables, and the vectors g/, gu,
I, u, contain upper and lower bounds for the nonlinear and linear
constraints respectively. The matrices 4, and 4, are m, by »n and
m, by p respectively, and contain the coefficients of any linear
constraints. The set S is defined by simple bounds on x, and we assume
that it is closed and bounded, i.e., that each component of x has a finite
upper and lower bound. This is required by the OptQuest procedure.
The set Y is assumed to be finite, and is often the set of all p-dimensional
binary or integer vectors y. The objective function f and the m, -
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dimensional vector of constraint functions G are assumed to have
continuous first partial derivatives at all points in § x Y. This is needed
in order that a gradient-based local NLP solver be applicable to relaxed
NLP subproblems formed from (1)-(3) by allowing the y variables to be
continuous.

e Multi-start Algorithms

In this section, which reviews past work on multi-start algorithms, we
focus on unconstrained problems where there are no discrete variables,
since to the best of our knowledge multi-start algorithms have been
investigated theoretically only in this context. These problems have the
form

minimize f{x) (1.5)

subjectto xS (1.6)

where all global minima of f are assumed to occur in the interior of S.
By multi-start we mean any algorithm that attempts to find a global
solution to (1.5)-(1.6) by starting a local NLP solver, denoted by L, from
multiple starting points in S. The most basic multi-start method
generates uniformly distributed points in S, and starts L from each of
these. This is well known to converge to a global solution with
probability one as the number of points approaches infinity--in fact, the
best of the starting points converges as well. This procedure is very
inefficient because the same local solution is located many times. A
convergent procedure that largely overcomes this difficulty is called
multi-level single linkage (MLSL) (Rinnooy Kan and Timmer, 1987).
This uses a simple rule to exclude some potential starting points. A
uniformly distributed sample of N points in S is generated, and the
objective, f, is evaluated at each point. The points are sorted according
to their f values, and the gN best points are retained, where q is an
algorithm parameter between 0 and 1. L is started from each point of
this reduced sample, except if there is another sample point within a
certain critical distance which has a lower f value. L is also not started
from sample points which are too near the boundary of S, or too close to a
previously discovered local minimum. Then, N additional uniformly
distributed points are generated, and the procedure is applied to the union
of these points and those retained from previous iterations. The critical
distance referred to above decreases each time a new set of sample points
is added. The authors show that, if the sampling continues indefinitely,
each local minimum of f will be located, but the total number of local
searches is finite with probability one. They also develop Bayesian
stopping rules, which incorporate assumptions about the costs and
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potential benefits of further function evaluations, to determine when to
stop the procedure.

When the critical distance decreases, a point from which L was
previously not started may become a starting point in the next cycle.
Hence all sample points generated must be saved. This also makes the
choice of the sample size, N, important, since too small a sample leads to
many revised decisions, while too large a sample will cause L to be
started many times.  Recently, Locatelli and Schoen (1999) introduce a
class of “Random Linkage” (RL) multi-start algorithms that retain the
good convergence properties of MLSL, and do not require that past
starting decisions be revised. Uniformly distributed points are generated
one at a time, and L is started from each point with a probability given by
a nondecreasing function @(d), where d is the distance from the current
sample point to the closest of the previous sample points with a better
function value. Assumptions on this function that give RL methods the
same theoretical properties as MLSL are derived in the above reference.

Recently, Fylstra et al. have implemented a version of MLSL which
can solve constrained problems (Frontline Systems, Inc., 2000). See also
www.frontsys.com. Limited to problems with no discrete variables y, it
uses the L, exact penalty function, defined as

Pe,w) = £(x)+ S wyviol(g,(x) (L7

where the w, are nonnegative penalty weights, m =m, + m,, and the
vector g has been extended to include the linear constraints (1.4). The
function viol(g,;(x))is equal to the absolute amount by which the ith
constraint is violated at the point x. It is well known (see (Nash and
Sofer, 1996) that if x* is a local optimum of (1.1)-(1.4), u' is a
corresponding optimal multiplier vector, and the second order sufficiency
conditions are satisfied at (x",u"), then if

w, > abs(u;) (1.8)

x" is a local unconstrained minimum of P,. If (1.1)-(1.4) has several
local minima, and each w; is larger than the maximum of all absolute
multipliers for constraint i over all these optima, then F, has a local
minimum at each of these local constrained minima. Even though P
is not a differentiable function of x, MLSL can be applied to it, and when
a randomly generated trial point satisfies the MLSL criterion to be a
starting point, any local solver for the smooth NLP problem can be started
from that point. The local solver need not make any reference to the
exact penalty function F, whose only role is to provide function values
to MLSL. We will use P, in the same way in our OQNLP algorithm.
We are not aware of any theoretical investigations of this extended MLSL
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procedure, so it must currently be regarded as a heuristic. Comparative
testing of this extension of MLSL and OQNLP is planned.

2. Scatter Search and the Optquest Callable Library

We provide only a brief description of Scatter Search and its
implementation in the OptQuest callable library here, since it is discussed
in Laguna and Marti (2001) and in Laguna and Marti (2000). See also
www.opttek.com. Like genetic algorithms (GAs) and other meta-
heuristics, scatter search operates on a set of solutions, called the
population in the GA literature and the reference set in scatter search
papers, that is maintained and updated from iteration to iteration. Scatter
search (SS) is a novel instance of evolutionary methods, because it
violates the premise that evolutionary approaches must be based solely on
randomization. SS is also novel, in comparison to GAs, by being
founded on strategies that were proposed as augmentations to GAs more
than a decade after their debut in scatter search. Scatter search embodies
principles and strategies that are still not emulated by other evolutionary
methods, and that prove advantageous for solving a variety of complex
optimization problems. ,

Scatter Search is designed to operate on a set of points, called
reference points, which constitute good solutions obtained from previous
solution efforts. Notably, the basis for defining “good” includes special
criteria such as diversity that purposefully go beyond the objective
function value. The approach systematically generates combinations of
the reference points to create new points, each of which may (optionally)
be mapped into an associated feasible point. The underlying combination
mechanism uses linear combinations.

OptQuest is available as a callable library written in C, which can be
invoked from any C program, or as a dynamic linked library (DLL) which
can be called from a variety of languages including C, Visual Basic, and
Java. The callable library consists of a set of functions which (a) input
the problem size and data, (b) set options and tolerances, (c) create an
initial reference set, (d) retrieve a trial solution to be evaluated and, (e)
communicate these objective and constraint values back to OptQuest,
which uses them as the input to update the reference set. For a complete
description, see Laguna and Marti (2001).

3. Gradient-Based NLP Solver and GRG

There are many papers and texts discussing gradient-based NLP
solvers, e.g., Nash and Sofer (1996), Nocedal and Wright (1999), Edgar,
Himmelblau and Lasdon (2001). These solve problems of the form
(1.1)-(1.4), but with no discrete (y) variables. They require a starting
point as input, and use values and gradients of the problem functions to
generate a sequence of points which, under fairly general smoothness and
regularity conditions, converges to a local optimum. The main classes
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of algorithms in widespread use today are Successive Quadratic
Programming (SQP) and Generalized Reduced Gradient (GRG)-see
Edgar, Himmelblau and Lasdon (2001), Chapter 8. The algorithm
implemented in the widely used MINOS solver (Murtagh and Saunders,
1982) is similar to SQP. If there are nonlinear constraints, SQP and
MINOS generate a sequence of points that usually violate the nonlinear
constraints, with the violations decreasing to within a specified feasibility
tolerance as the sequence converges to a local optimum. GRG
algorithms have a simplex-like phase l-phase 2 structure. Phase 1
begins with the given starting point and, if it is not feasible, attempts to
find a feasible point by minimizing the sum of constraint violations. If
this effort terminates with some constraints violated, the problem is
assumed to be infeasible. However, this local optimum of the phase 1
objective may not be global, so a feasible point may exist. If a feasible
point is found, phase 2 uses it as its starting point, and proceeds to
minimize the true objective. Both phases consist of a sequence of line
searches, each of which produces a feasible point with an objective value
no worse (and usually better) than its predecessor.

There are several parameters and options that strongly influence the
reliability and efficiency of a GRG implementation. The feasibility
tolerance, ft, (default value 1.e-4) determines when a constraint is
satisfied. If the constraint has the form g(x)>/, it is considered
satisfied in the GRG code used here if

abs(g(x) = 1) = - f(1.0 + abs()).

The optimality tolerance, of, (default value 1.e-4) and a number of
consecutive iterations, nstop, (default value 10) determine when the
current point is declared optimal. This occurs when

kterrnorm < ot

where kterrnorm is the infinity norm of the error in the Kuhn-Tucker
conditions, or when

abs(f(x,) = f(xp,)) <0t(1.0+ abs(f(x,))

for nstop consecutive values of the iteration index, k.

Several good commercially available implementations of GRG and
SQP solvers exist—see Nash (1998) for a review. As with any
numerical analysis software, a local NLP solver can fail to find a local
solution from a specified starting point. The problem may be too badly
conditioned, badly scaled, or too large for the solver, causing it to
terminate at a point (feasible or infeasible) which is not locally optimal.
While the reliability of the best current NLP solvers is quite high, these
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difficulties occurred several times in our computational testing, and we
discuss this in more detail later.

Let L be a local NLP solver capable of solving (1.1)-(1.4), and assume
that L converges to a local optimum for any starting pointx, € S. Let
L(x,) be the locally optimal solution found by L starting from x,, and
let x: , i =1,2,...,nloc be all the local optima of the problem. The basin
of attraction of the ith local optimum relative to Z, denoted by B( x: ), is
the set of all starting points in S from which the sequence of points
generated by L converges to x: . Formally:

B(x:)= {xy | x4 € S,L(x,) =x:}. 3.1

One measure of difficulty of a global optimization problem with
unique global solution x; is the volume of B( xl‘ ) divided by the volume
of the rectangle, S, the relative volume of B( x; ). The problem is trivial
if this relative volume is 1, as it is for convex programs, and problem
difficulty increases as this relative volume approaches zero.

4, Comparing Search Methods and Gradient-Based
NLP Solvers

For smooth problems, the relative advantages of a search method like
OptQuest over a gradient-based NLP solver are its ability to locate an
approximation to a good local solution (often the global optimum), and
the fact that it can handle discrete variables. Gradient-based NLP solvers
converge to the “nearest” local solution, and have no facilities for discrete
variables, unless they are imbedded in a rounding heuristic or branch-and-
bound method. Relative disadvantages of search methods are their limited
accuracy, and their weak abilities to deal with equality constraints (more
generally, narrow feasible regions). They find it difficult to satisfy many
nonlinear constraints to high accuracy, but this is a strength of gradient-
based NLP solvers. Search methods also require an excessive number of
iterations to find approximations to local or global optima accurate to
more than 2 or 3 significant figures, while gradient-based solvers usually
achieve 4 to 8-digit accuracy rapidly.

The motivation for combining search and gradient-based solvers in a
multi-start procedure is to achieve the advantages of both while avoiding
the disadvantages of either. Surprisingly, we have been unable to locate
any published efforts in this direction, besides the Frontline extended
MLSL method discussed in Section 2.
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S. The OQNLP Algorithm
A pseudo-code description of the simplest OQNLP algorithm follows:

¢ INITIALIZATION
Read Problem_Parameters (n, p, m,, m,, bounds, starting point);
Setup_OptQuest Parameters (size, iteration limits, population,
accuracy, variables, bounds, constraints);
Initialize_OptQuest_Population;

¢ STAGE 1. INITIAL OPTQUEST ITERATIONS AND FIRST GRG
CALL
WHILE (unevaluated trial points from initial population remain) DO

Get (trial solution from OptQuest);
Evaluate (objective and constraint values at trial solution,);
Put (trial solution , objective and constraint values to OptQuest
database);
}
ENDDO
Get_Best_Point_from_OptQuest_database (starting point);
Call_GRG (starting point, local solution);
threshold= F, value of local solution;

o STAGE 2: MAIN ITERATIVE LOOP

WHILE (stopping criteria not met) DO

{
Get (trial solution from OptQuest);
Evaluate (objective and constraint values at trial solution,);
Put (trial solution, objective and constraint values to OptQuest
database);

Calculate_ Penalty_ Function (trial solution, £, );

IF (distance and merit filter criteria are satisfied) THEN

{
Call_GRG (trial solution, local selution);
Analyze Solution (GRG Terminating Condition);
Update_Local_Solutions_Found;
Update_Largest Lagrange Multipliers Found;

}

ELSE IF (P, > threshold for waifcycle consecutive iterations)
increase threshold

)
ENDDO

After initialization, there are two main stages. In the “initial
OptQuest iterations” stage, the objective and constraint values at all trial
points generated by the initial OptQuest population (including the
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population points themselves) are evaluated, and these values are returned
to OptQuest, which computes its penalty function, P, at each point. The
point with the best P value is selected, and GRG is started from this point.
If there are any discrete variables, y, they are fixed at their current values
during the GRG solution. In general, the trial points are scattered within
the rectangle defined by the bounds on the variables, so choosing the best
corresponds to performing a coarse search over this rectangle. If the
best point falls inside the basin of attraction of the global optimum
relative to the GRG solver (as it often does), then if the subsequent GRG
call is successful, it will find a global optimum. This call also determines
optimal Lagrange multiplier values, u", for the constraints. These are
used to determine initial values for the penalty weights, w;, satisfying
(1.8), which are used in the exact penalty function, P, defined in (1.7).
All local optima found are stored in a linked list, along with the associated
Lagrange multipliers and objective values. Whenever a new local
optimum is found, the penalty weights are updated so that (1.8) is
satisfied over all known local optima.

The main iterative loop of stage 2 obtains trial points from OptQuest,
and starts GRG from the subset of these points determined by two filters.
The distance filter helps insure that the GRG starting points are diverse, in
the sense that they are not too close to any previously found local
solution. Its goal is to prevent GRG from starting more than once within
the basin of attraction of any local optimum, so it plays the same role as
the rule in the MLSL algorithm of Section 2, which does not start at a
point if it is within a critical distance of a better point. When a local
solution is found, it is stored in a linked list, ordered by its objective
value, as is the Euclidean distance between it and the starting point that
led to it. If a local solution is located more than once, the maximum of
these distances, maxdist, is updated and stored. For each trial point, #, if
the distance between ¢ and any local solution already found is less than
distfactor *maxdist, GRG is not started from the point, and we obtain the
next trial solution from OptQuest.

This distance filter implicitly assumes that the attraction basins are
spherical, with radii at least maxdist. The default value of distfactor is
0.75, and it can be set to any positive value. As distfactor approaches
zero, the filtering effect vanishes, as would be appropriate if there were
many closely spaced local solutions. As it becomes larger than 1, the
filtering effect increases until eventually GRG is never started.

The merit filter helps insure that the GRG starting points have high
quality, by not starting from candidate points whose exact penalty
function value P, (see (1.7)) is greater than a threshold. This threshold is
set initially to the P, value of the best candidate point found in the first
stage of the algorithm. If trial points are rejected by this test for more
than waitcycle consecutive iterations, the threshold is increased by the
updating rule:
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threshold € threshold +thfact*(1.0-+abs(threshold)) 4.2)

where the default value of thfact is 0.2 and that for waiftcycle is 20. The
additive 1.0 term is included so that threshold increases by at least thfact
when its current value is near zero. When a trial point is accepted by the
merit filter, threshold is decreased by setting it to the P, value of that
point.

The combined effect of these 2 filters is that GRG is started at only a
few percent of the OptQuest trial points, yet global optimal solutions are
found for a very high percentage of the test problems. Some insight is
gained by examining Figure 2.1, which shows the stationary point at the
origin and the 6 local minima of a 2 variable unconstrained function
(called the six-hump camelback function) as dark squares, labeled with
their objective value. The ten points from which OQNLP starts GRG
are shown as white diamonds. The local minima occur in pairs with equal
objective value, located symmetrically about the origin. There were 144
trial points generated in stage 1, and 10 points in the initial population.
The best of these 154 points is the population point (0,0), so this becomes
the first starting point for GRG. This happens to be a stationary point of
F, so it satisfies the GRG optimality test (that the norm of the gradient of
the objective be less than the optimality tolerance), and GRG terminates
there. The next GRG start is at iteration 201, and this locates the global
optimum at (0898, -.7127), which is located two times. The other global
optimum at (-.0898, .7127) is found first at iteration 268, and is located 6
times.

The limit on total OQNLP iterations in this run was 1000. GRG was
started at only 9 of the 846 OptQuest trial points generated in the main
iterative loop of stage 2. All but 2 of the starting points are in the basin of
attraction of one of the two global optima. This is mainly due to the
merit filter. In particular, the threshold values are always less than
1.6071,s0 no starts are ever made in the basin of attraction of the two
local optima with this objective value. The merit filter alone rejected
498 points, the distance filter alone 57, and both rejected 281.

Figure 2.2 illustrates the dynamics of the merit filtering process for
iterations 155 to 407 of this problem, displaying the objective values for
the trial points as white diamonds, and the threshold values as dark lines.
All objective values greater than 2.0 are set to 2.0.

The initial threshold value is zero, and it is raised twice to a level of
0.44 at iteration 201, where the trial point objective value of -0.29 falls
below it. GRG is then started and locates the global optimum at  (.0898,
-.7127), and the threshold is reset to —0.29. This cycle then repeats. Nine
of the ten GRG starts are made in the 252 iterations shown in the graph.
In this span, there are 12 points where the merit filter allows a start and
the threshold is decreased, but GRG is not started at three of these
because the distance filter rejects them.
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Figure 2.3 shows the same information for iterations 408 to 1000.
There is only one GRG start in this span. This is not due to a lack of
high quality trial points: there are more good points than previously, many
with values near or equal to —1.0310 (the global minimum is —1.0316),
and the merit threshold is usually —-1.0310 as well. Every time this
threshold is raised, the merit filter accepts one of the next trial points, but
51 of the 52 accepted points are too near one of the 2 global optima, and
they are rejected by the distance filter.
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Figure 2.1. Local Optima and 10 GRG starting points for Six-Hump Camelback function

This simple example illustrates a number of important points:

1. Setting the bounds on the continuous or discrete variables to be too
large in magnitude is likely to slow the OQNLP algorithm (or any
search algorithm) and may lead to a poorer final solution. In the
above example, if the variable bounds had been [-2,2] rather than
[10,10], the trial points generated by the initial population would have
had much lower objective values. OptQuest can overcome this when
the initial population is updated.

2. GRG found a highly accurate approximation to the global solution of
this unconstrained problem at its second call. OptQuest alone would
have taken many more iterations to achieve this accuracy.

3. The best trial point generated by the initial reference set may not have
as good an objective value as those generated from the second or
succeeding ones, especially if the variable bounds are too large. Using
the best “first generation” point as the initial GRG starting point may
not lead to as good a local solution as if some “second generation”
points had been considered. For this reason our base case
computational results use a first stage of 200 OptQuest trial points,
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which in this example would include all 144 first generation points
and 56 from the second generation.

;
£
i
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Figure 2.2. Objective and threshold values for Six-Hump Camelback function for

iterations 155 to 407

Figure 2.3. Objective and threshold values for Six-Hump Camelback function:
iterations 408 to 100
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Filtering Logic for Problems with Discrete Variables

The filtering logic described above must be extended when there are
discrete variables (the y variables in the problem statement (1.1)-(1.4)).
When a trial point (x¢, y¢) provided by OptQuest passes the two filtering
tests and is passed to GRG, x7 acts as a starting point and is changed by
GRG, but the yf values are fixed and are not changed. Each new set of yt
values defines a different NLP for GRG to solve, say NLP(y#), with its
own set of local minima in x space, so both filters must be made specific
to NLP(y1). For the distance filter, it is irrelevant if x¢ is close to any local
minima (in x space) previously found which correspond to problems
NLP(y) with y different from y2. Hence the distance filter is based on the
distance from xt to local minima of NLP(y?) only. Similarly, the tests and
threshold values in the merit filter must be specific to the problem
NLP(yf) currently being solved. However, the weights w in the exact
penalty function P, (x,y,w) used in the merit filter are based on the
maximum absolute multipliers over all local optima for all vectors yt,
because these weights are large enough to ensure that this function is
exact for all problems NLP(y).

Therefore, in stage 2 of the algorithm, the exact penalty
function, P, (xt,yt,w), is calculated at each trial point (x#,yf), and GRG is
started at (xt,yf) if P, is smaller than the current threshold for NLP(y7).
This threshold is initialized to plus infinity, so if the values y7 have not
occurred in a previous stage 2 trial point, GRG will be called at this point.
This leads to many more GRG calls in problems with discrete variables,
as we show later in the computational results sections.

This OQNLP algorithm should be regarded as a base case from which
extensions will be explored and compared. The most significant of these
involves the return of information from GRG to OptQuest, which is
absent in the above procedure, i.e. local solutions found by GRG are not
returned to OptQuest. Such solutions are generally of very high quality,
and might aid the search process if they were incorporated into the
OptQuest population, because at least a subset would likely be retained
there. However, this should be done so as to preserve the diversity of
the population. We discuss this option further in Section 9.

6. C Language Implementation, Games Interface, and
the Floudas Test Problem Set

The algorithm described in the previous section has been implemented
as a callable C-language function. In this form, the user supplies a C
function that evaluates the objective and constraint functions, an optional
routine that evaluates their first partial derivatives (finite difference
approximations are used otherwise), and a calling program that supplies
problem size, bounds, and an initial point, and invokes the algorithm.
Algorithm parameters and options are in an options text file. We have
developed an interface between this C implementation and the GAMS
algebraic modeling language (see www.gams.com), using C library
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routines generously provided by GAMS Development Company. The
user function routine is replaced by one that calls the GAMS interpreter,
and a special derivative routine accesses and evaluates expressions
developed by GAMS for first derivatives of all nonlinear problem
functions. GAMS identifies all linear terms in each function, and
supplies their coefficients separately, thus identifying all linear
constraints. This enables us to invoke the OptQuest option which maps
each trial point (generated as described in Section 2) into a point which
satisfies the linear constraints. This is done by solving a linear program
that minimizes the L, distance between the trial point and the feasible
region defined by the linear constraints. The derivative information
supplied by GAMS also significantly enhances the performance of
gradient-based NLP solvers, since only non-constant derivatives are re-
evaluated, and these are always available to full machine precision.

Part of the motivation for developing this GAMS interface was the
existence of a large set of global optimization test problems coded in
GAMS, described in Floudas et al. (1999). This text describes some
problems that cannot be represented in GAMS, but there are many that
can, and these can be downloaded from http://titan.princeton.edu/
TestProblems/ or from www.gams.com, linking to gams world and then
global. Characteristics of 142 of these problems (excluding the 8 6 1
and 8 6 2 sets) are contained in Table 2.1.

Most of these problems arise from chemical engineering, but some are
from general problem classes. Most are small, but a few have over 100
variables and comparable numbers of constraints, and some have both
continuous and discrete variables. Almost all of the problems without
discrete variables have local solutions distinct from the global solution,
and the majority of problems have constraints. Sometimes all constraints
are linear, as with the concave quadratic programs of series EX2 1 x, but
many problems have nonlinear constraints, and these are often the source
of the nonconvexities. For example, there are many problems arising from
pooling and blending applications with bilinear constraints. The best
known objective value and (in most cases) the corresponding variable
values are provided in Floudas, et al. (1999). The symbol N in the rows
for the series EX8 6 1 and EX8 6 2 is the number of particles in a
cluster whose equilibrium configuration is sought via potential energy
minimization. Each particle has 3 coordinates, so there are 3N variables.
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Table 2.1. Characteristics of Floudas GAMS test problems

z
Z
al 8|3 g
4 2 S z
EX2 1 x 14 241 0] 10 0 concave QP (min)
EX3 1 x 4 8101 4 6 quadratic obj and constraints
EX4 1 x 9 2 10| 0 2 obj or constraints polynomial
EX5 2 x 2 32 0] 8 bilinear-pooling
EX5 3 x 2 62| 0 19 distillation column sequencing
EX5 4 x 3 2710113 heat exchanger network
EX6 1 x 4 1210} 3 gibbs free energy min
EX6 2 x 10 91013 gibbs free energy min
EX7 2 x 4 8 0 3 generalized geometric prog
EX7 3 x 6 171 0] 10 robust stability analysis
EX8 1 x 8 6 0 0 small unconstrained, constrained
EX8 2 x 5 551 0 6 batch plant design-uncertainty
EX8 3 x 14 141] 0 | 43 reactor network synthesis
EX8 4 x 8 62101 0 constrained least squares
EX8 5 x 6 610 2 2 min tangent plane distance
EX8 6 1 N from4to147 |3N]|] 0] O 0 Lenard-Jones energy min
EX8 6 2 N from 5 to 80 3N| O] O 0 Morse energy min
EX9 1 x 10 291 01271 5 bilevel LP
EX9 2 x 9 161 0] 11 6 bilevel QP
EX12 2 x 6 11] 81 9 4 MINLP
EX14 1 x 9 10 0] 4 17 infinity norm solution of equations
EX14 2 x 9 710 1 10 infinity norm solution of equations
Total 142

7. Computational Results on the Floudas Set of Test

Problems

This section describes the results obtained when the OQNLP
algorithm described in Section 6 is applied to the Floudas GAMS test
problems. The main algorithm parameters and options used are shown in

Table 2.2 below.
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Table 2.2. OptQuest, GRG, and OQNLP parameters and options used

OptQuest and OQNLP Parameters GRG Parameters

Use linear constraints = yes Feasibility tolerance = l.e-4, except
series 8 3 x uses 1.e-6

Total iterations = 1000 Optimality tolerance = l.e-4, except
series 8 3 xuses l.e-6

Total stage 1 iterations = 200 Consecutive iterations for fractional

change termination = 20

Waitcycle =20

Thfact=10.2 see (5.2))

Distfact = 0.75
OptQuest search type = boundary

Boundary search parameter = 0.5

OptQuest Variable Precision = 1.e-4

Check for duplicates in database = yes

As discussed in Section 6, OptQuest can insure that all trial points
satisfy any linear constraints, and we use this option in our tests below.
The boundary search strategy is the OptQuest default, as is its parameter
value of

As discussed in Section 6, OptQuest can insure that all trial points
satisfy any linear constraints, and we use this option in our tests below.
The boundary search strategy is the OptQuest default, as is its parameter
value of 0.5. This strategy directs the trial points generated towards the
boundary of the region defined by the variable bounds and general linear
constraints 50% of the time. For the problem series 8 3 _x, the largest of
the group with 9 of 10 problems having over 100 variables, we used GRG
optimality and feasibility tolerances of 1.e-6 because the default values of
1.e-4 led to GRG termination significantly short of local optimality.

Table 2.3, found in the Appendix, contains the results for 120 of the
131 problems with no discrete variables, sorted by increasing number of
variables, with averages for six groups of problems. We exclude the
8 6_1 and 8_6_2 series, which are described separately below. We also
exclude eleven problems which were either extremely large, or for which
GRG could not find local solutions from most or all starting points. This
was almost always due to failure to find a feasible solution, due to
termination at a local minimum of the phase one objective. These
computations used a 1.3 ghz Dell Optiplex GX400 PC with the Windows
2000 OS. The “fcn call” columns record the total number of times all
problem functions are evaluated. The column headed “% gap” is the
percentage difference between the best feasible objective value found by
OQNLP and the best known value, i.e., the ratio gap = 100*(OQNLP obj
— bestobj)/(1+abs(bestobyj)).

For minimization problems, and its negative for maximization. Hence
a negative gap indicates that OQNLP found a feasible point with better
objective value than the “best known” value provided in Floudas, et al.
(1999). All but 6 of the 120 problems have gaps less than 1%, most much
smaller. These 6 are solved to very small gaps using 5000 iterations
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and, for 2 problems, increasing the boundary parameter, as is discussed
shortly. There are 2 problems with sizeable negative gaps, indicating that
OQNLP found a better value than the best reported. The column headed
“max abs x” is the largest absolute component of the decision vector, x, in
the best solution found. Large values indicate a more difficult problem,
in the sense that the rectangle defined by the variable bounds is larger, so
the search must cover a larger volume.

This “base case” OQNLP algorithm finds its best solution very
quickly. The best OQNLP solution is found by the first GRG call in 88
of the 120 problems, and in the second GRG call in 7 more, confirming
the effectiveness of stage 1 of the algorithm in finding an initial GRG
starting point within the basin of attraction of the global optimum. This
happens most often in the smaller problems, but occurs 11 times in the 20
largest.

Table 2.4 aggregates the averages for the six groups of problems in
Table 2.3, and includes the following ratios: GRG ratio = average GRG
calls to best/average total GRG calls with similar definitions for
iterations, function calls, and computation time.

The groups are ordered in terms of increasing number of variables,
and the number of local optima found increases with problem size, with
an average of 22.6 for the largest group. The measures of computational
effort to find the best solution (iterations to best, grg calls to best, function
calls to best, and time to best) are all gratifyingly small, and most increase
slowly with problem size. Function calls are much higher for the largest
group (110 to 141 variables), reflecting the GRG effort required to solve
these problems, which have many nonlinear constraints.

Table 2.4. Average performance statistics for 6 groups of problems

[e] 2 ]
wy [ =
3 3 a E O o § a z o § g1 ¢
Z gl = |3 3 E =13 2 E|l of E| &
& | 5| 2|3 |29 3| 32 |24 2822
x= | 2 gleglEz el Slzgls3|z|yls
S |2l E|B &8RS 58] 8|8 ales| B E|le| E
1to4 | 31{2139] 1.3] 92| 014 23| 2817 15828} 0.18] 05| 24| 021
507 | 31/2125] 13| 110] 012] 30| 3610/ 3827.5) 0.09{ 03] 11| 028
8to12 | 212933} 32| 172| 019 6.1| 8415 3416.6) 025 05| 1.5 035
141021 | 17/2128] 1.8] 256| 007 68 446.8 5030.7] 0.09| 1.7] 44| 038
22t078 | 11/3102] 73] 340| 021] 124} 1423.4] 105283] 0.14] 1.5| 44| 033
110to 141|  9(3924] 93| 267 035 22.6| 20654.7| 55580.3] 0.37|23.6| 54.4| 0.43
Overall | 120/ 272.5| 40| 206 018 88| 400L5| 133277 0.19] 4.7[114] 0.33

Average total GRG calls are fairly stable at between 17 to 34 over the
last four groups, and do not increase rapidly with problem size. This
further demonstrates the effectiveness of the distance and merit filters
described in Section 5.
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The ratio columns provide additional evidence that the best solution is
found early in the iterative process. The smallest of these is the GRG
ratio, which varies from 0.07 to 0.35, meaning that the best solution is
found in the first 7% to 35% of GRG calls. This ratio is highly correlated
with the function call ratio, because function calls due to GRG (all those
over 1000) dominate as problem size increases. This implies that, for
these problems, a criterion that stops OQNLP when the fractional change
in the best feasible objective value found thus far is below a small
tolerance for some (reasonably large) number of successive iterations,
would rarely terminate before the best solution was found.

Table 2.5 shows the results of using 5000 iterations to solve the 6
problems whose gaps in Table 2.3 are greater than 1%.

All problems are solved to within very small gaps. To achieve an
essentially zero gap for problems 2 1 6 and 2 1_7 5, we had to change
the OptQuest boundary strategy parameter from its default value of 0.5 to
1.0. This causes a strategy that drives trial points towards the boundary
of the feasible region defined by the bounds and linear constraints to be
used 100% of the time, rather than 50% (see the OptQuest User guide,
page 32). These two problems are quadratic programs with concave
objectives (to be minimized), so all locally optimal solutions are at
extreme points of the feasible region. One would expect a strategy that
generates points near the boundary of the feasible region 100% of the
time to be most effective on such problems.

Table 2.5. Solving previously unsolved problems in 5000 iterations

1] v
3 a 3
o <
AR S lal e >
2142|224 z | 8| 2 2
o 0@ O g4 & o = <
a g | B 1E 2] 2|3 2 | 5] 2 =
g S| 2lcidls|8lzg 5 | 2| 5] 2 | 8
-9 > | = g al 2| 98 o = = e ¥} I
EX8 3 7 126§ 308 12(164| 92| 7125 505273} 15.4; 436.3( 0.0009
EX2 11 5 893 2| 14| 12| 896 5055| 0.12 0.85] 0.0000
EX2 1 6 11 253 2] 8 4] 256 5042| 0.73 8.17| 15.0000 0.5
EX2 1.6 11| 2591 18| 271 12| 2703 5171] 5.64 8.921 0.0000 1
EX2 18 24| 2318 32} 44| 11| 3411 6270 6.8 16.91| 0.0000
EX2 175 21 362 9 361 22| 975 73601 3.7 37.71 1.0866 0.5
EX2 175 21 520 231 90| 15| 2397 11341 7.18] 5223 0.0002
EX14 1 7 11 299 91220| 64| 6518] 119049| 0.51 11.1] 0.0000

Selving Problems with Discrete Variables

Table 2.6 contains results of solving the 11 problems in the Floudas
test set which have discrete variables, using 1000 total and 200 stage one
iterations. The problems are sorted first by number of discrete variables,
then by number of all variables.
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Table 2.6. Solution statistics for 13 problems with discrete variables
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EX12 2 2 i 2 1 201 1 1 2 1| 209] 1008| 0.53(2.04| 0.0000
EX12 2 1 6 3 3 2 249 6 18 8| 7| 296/ 1164 0.54(1.25| 0.0000]
EX12 2 6 6 3 4 1 201 1 7 6 2| 202| 1045 0.31| 0.4{ 0.0000
EX9 2 9 13 31 11 1 201 1 3 8 31 202F 1010} 0.42)1.73] 0.0000|
EX12_2 3_N 8 4 S 4 441 17| 20! 16 10| 1004 1667 0.85|1.25; 0.0000
EX12 2 3 120 4 9 4 390[ 11 20 16 10{ 1016{ 1761 1.11;1.96| 0.0000
EX9 1.9 18, 51 16 1 201 1 21 32 18] 202 1069 2.41/8.01| 0.0024
EX12 2 5 9 6 9 1 201 1 6| 25 1} 202| 1136] 0.91(2.65 0.0000)
EX9_1_6 21 6| 19 1 201 1 32 64 27| 202 1097 1.53|6.73] 0.0000
EX9 1 7 24| 6 21 1 204; 4 41 64 311 256) 1328 419.64 0.0000
EX9 1.3 30 6] 27 1 207 2 42 64 23] 214] 1212| 2.49|11.1} 0.0000]
EX12 2 4 12 8 4 3 924 78 88! 256 16| 2145 2501| 3.67|4.06] 5.4320
EX12_2 4N 12 8| 4 3 207 3 40| 256 13| 218| 1191 0.87[2.96| 7.1918|

averages| 13.5] 4.8'10.3 1.8 294.5( 9.8 26.1] 26.1 12.5(489.8 1322 1.5{ 4.1 l.O]

All problems are solved to very small gaps except 12 2 4 and its
reformulation, 12_2 4N, which have the same optimal solutions, and
have final gaps of 5.4% and 7.2% respectively. Increasing the number
of iterations to 5000 or 10,000 does not yield better solutions for these 2
problems. For the other 11 problems, 7 are solved on the first or second
GRG call. The column headed “total enum” contains the number of
GRG calls needed to solve the problem by complete enumeration of all
integer combinations. The total number of GRG calls used by OQNLP
is larger than this value in 3 of the 13 problems, and the two averages are
about the same. However, the number of GRG calls to find the best
solution is larger than that for complete enumeration in only one instance,
and the average is 9.8 versus 26.1 for complete enumeration. As with
the continuous variable problems, the best solutions are found in roughly
the first 30% of the 1000 iterations on average.

Clearly, the number of discrete variables in these problems is too
small to infer whether or not this “base-case” OQNLP algorithm will be
competitive with alternative MINLP solvers like DICOPT (interfaced to
GAMS) or branch-and-bound (Biegler, et al., 1997, Floudas, 1995). We
believe that OQNLP performance with discrete variables can be
significantly enhanced by sending information on GRG solutions back to
OptQuest. For example, an option that begins by calling GRG to solve a
relaxed MINLP (with all discrete variables allowed to be continuous),
could terminate immediately if all discrete variables had discrete values in
the GRG solution. Otherwise, the discrete variables could be rounded,
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and the resulting high quality solution could be returned to OptQuest,
influencing the generation of successor trial points.

In 12_2 3 and 12_2_4 the discrete variables appear linearly. (This is
required by the widely used DICOPT MINLP solver.) Since OQNLP
allows discrete variables to appear nonlinearly, we reformulated these
problems into 12_2 3N and 12 2 4N, respectively, where the discrete
variables appear nonlinearly. The resulting models have the advantage
that when the discrete variables are fixed for the NLP solver, the
continuous variables appear linearly. That is why all measures of
computational effort are much smaller for the reformulated versions.

For comparison purposes we ran the 11 MINLP problems from the
Floudas problem set using DICOPT, with CONOPT2 as the NLP solver
and CPLEX as the MILP solver. It solves a NLP and a MILP at each
major iteration. The only changes to the models were slight adjustments
to lower bounds on some variables to avoid numerical problems
encountered otherwise. The statistics are shown in Table 2.7 below,
with some OQNLP data repeated for easier comparison. DICOPT
solved all but one of the problems to the best-known solution. In the
case of EX 12 2 1 the DICOPT NLP Solver was unable to find a
feasible solution for the relaxed NLP, and the problem was incorrectly
diagnosed as infeasible. Five of the problems are MILP’s, and DICOPT
simply invokes CPLEX to solve them. For the other five problems,
DICOPT found the optimum in 2 or 3 major iterations. Its runtimes are
much shorter than OQNLP, and the number of NLP solver calls is much
less. Termination was caused by the NLP solver objective worsening,
an infeasible MILP, and the relaxed NLP having an integer solution.

It is difficult to infer much from such small problems. However, we
expect that DICOPT will be much faster than OQNLP when it succeeds.
As a primal method, OQNLP has the potential to find a good solution in
cases where DICOPT fails to find a feasible integer solution, and it may
sometimes be useful to study the multiple integer feasible solutions that
OQNLP can provide.

Varying the Length of Stage One

We have solved the 120 Floudas problems with no discrete variables
with three values for the number of stage one iterations: 200 as described
above, 300, and as many as are required to generate all “first generation”
trial points (those created from the initial population), called the “lgen”
strategy. With 1gen and 200 stage one iterations, there were 1000 total
iterations, while with 300 we used 1100 total, in order to provide at least
800 iterations in stage 2 for all strategies. The averages for various
measures of computational effort and achievement over all 120 problems
for these three stage one strategies are shown in Table 2.8 below. The
column headed “probs < 1%”, shows the number of problems solved to a
gap of 1% or less by the strategy, while the last column gives the number
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of these successful runs where the best solution was found at the first or
second GRG call.

Table 2.7. OQNLP and DICOPT results for MINLP problems
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EX9 17 411 9.64 4, 0.00 0 milp 0.28 0.00
EX9 13 42} 11.1] 249/ 000 O milp 0.11 0.00
EX12 2 4 88 4.06] 3.67; 543 3 worsen 0.45 0.00

Table 2.8. Effects of varying the number of stage one iterations
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Examining this table, we see that the iterations and function calls to
find the best solution increase with the number of stage one iterations.
This is as expected, since the first GRG call comes at the end of stage
one, whose purpose is to provide a high quality starting point for GRG.
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However, several other effort measures show a minimum at 200 initial
iterations: grg calls to best, total grg calls, time to best, and total time.
The number of problems solved in one or two GRG calls is also
maximized for 200 initial iterations, although the differences between the
three strategies are small. Since both the “Igen” and “200” strategies
have the same number of problems solved to within a 1% gap, these
results imply a mild preference for the (200,1000) strategy.

The benefits of starting stage 2 earlier are: (1) the best solution is often
found earlier, since the first GRG call usually finds the best solution, and
(2) trial points which would be skipped in a longer stage one are eligible
to be GRG starting points, and can lead to good GRG solutions. Since the
population loses diversity as it is updated by the aggressive update
currently used in OptQuest, these missed opportunities may not recur
before the population is reinitialized. The advantages of a longer stage
one are: (1) The best point found by OptQuest in a longer stage one
should, on average, have higher quality than in a shorter one, which leads
to somewhat better results on the first GRG call, and (2) these higher
quality best points should have lower values for the exact penalty
function, F,, which becomes the initial value for the merit filter
threshold. This lower value leads to fewer GRG calls in stage 2, as
shown in Table 2.8. The number of GRG calls is also influenced by
other factors, so the effect is not monotonic. We believe that the superior
performance of the (200,1000) strategy is due to its achieving a best
balance between these competing effects.

8. Minimizing the Potential Energy of a Cluster of
Particles

The Floudas set of test problems includes two GAMS models that
minimize the potential energy of a cluster of N particles, using two
different potential energy functions. The decision variables are the x, y,
and z components of each particle. For the Lennard-Jones family of
potential energy minimization problems the objective is the summed
difference between the sixth and third powers of the reciprocal of the
squared Euclidean distance between each distinct pair of particles, where
the sixth power term arises from a strong short-range repulsive force and
the other term from a longer-range attractive force. Nonlinear constraints
are included to avoid objective function singularities where the distance
between one or more pairs of points is very small. If they are not
included, GAMS encounters many thousands of domain violations-these
still occur in the above formulation, but are less frequent. Particle 1 is
located at the origin, and three position components of particles 2 and 3
are fixed, so this family of problems has N-6 variables and N(N-1)
nonlinear constraints.

The second set of problems uses the Morse potential, where the
Euclidean distance appears in the argument of an exponential function.
There is no need to protect against domain violations here, so there are no
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constraints except for upper and lower bounds of 5 and -5 on the
coordinates of each particle, as in the Lennard-Jones case. According to
Floudas (1999), pp. 186-194, these problems have a large number of local
minima, and this number increases rapidly with problem size. Thus they
are a rigorous test for global optimization algorithms.

Results of applying OQNLP to these two problem classes using 200
stage one and 1000 total iterations for several values of N are shown in
Tables 2.9 and 2.10 below.

Table 2.9. Minimizing the Lennard-Jones potential function
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Table 2.10. Minimizing the Morse potential function
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OQNLP finds the Morse potential easier to minimize, and solves the 7
smallest instances to essentially zero gaps and the N=50 case to a .14%
gap. The 4 smallest instances of the Lennard-Jones problems are also
solved to near-zero gaps, but the two largest have gaps of 2.7% and 1.7%
respectively. We attribute this partially to the occurrence of many
domain violations during the GRG runs. The N=25 run had 93,926
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divides by zero and 6717 integer power overflows, while the
corresponding figures for N=30 were 133,490 and 9551.

The computational effort needed to achieve these excellent results is
quite modest.  As before, the ratio columns are the effort to find the best
solution divided by total effort, and these ratios are generally less than 0.3
for the Morse potential, but occasionally above 0.5 for the Lennard-Jones.
Both function calls and GRG calls to achieve the best solution are quite
small, and, for the Morse function, they do not increase rapidly with N.
The number of local minima found increases rapidly with N, and is
around 60 for N=30 or above. This number is usually equal to the
number of GRG calls, so GRG almost always finds a different local
solution at each start.

Results of solving the two Lennard-Jones problems with gaps larger
than 1% using 200 stage one and 5000 total iterations are shown in Table
2.11 below

Table 2.11. Solving with 5000 iterations
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The N=25 problem is solved to a near-zero gap, but the gap for the
N=30 problem (row 2 of the table) actually increases from 1.71% with
1000 iterations to 3.18% with 5000. This is because some aspects of the
OptQuest solution strategy depend on the iteration limit, so the two runs
use a different sequence of trial points in their first 1000 iterations. The
search is more aggressive when there are only 1000 iterations allowed,
and this aggressiveness leads to a better final solution in the shorter run,
However, if the parameter bnd (each variable has bounds of (-bnd,bnd)) is
decreased from 5 to 3, the gap for 5000 iterations decreases to 0.67%,
showing the benefits of searching within a smaller rectangle. The
computational effort to achieve these improved outcomes, compared to
the shorter runs, increases roughly by factors of 5 to 8.

9. Comparison with Random Starts

OptQuest was chosen as the provider of starting points because we felt
it would find good points quickly. As a first step to investigating this,
we selected the Morse and Lenard_jones potential functions described in
section 8, generated either 100 or 200 independent uniformly distributed
starting points, started CONOPT2 from each of these, and observed how
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many calls found the best known solution, as well as how many distinct
local solutions were found. This was done with a LOOP statement in the
GAMS models discussed in section 8, and compared with the number of
OQNLP calls required before CONOPT2 found the best solution. The
results provide a crude estimate of the relative volume of the basin of
attraction of the global optimum, as the ratio f=nglob/ncalls, where nglob
is the number of NLP solver calls leading to the global solution. The
expected number of calls before the global solution is first located is
simply 1/f. Results are shown in Tables 2.12 and 2.13 below. Since
CONOPT?2 is used rather than LSGRG2, the number of OQNLP calls to
find the best solution differ from those in Tables 2.9 and 2.10.

Table 2.12. Morse potential function, random starts
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5 9 200 13 17 154 1
10 24 200 1 107 200 1
15 39 200 9 161 22.2 1
20 54 200 10 189 20 2
25 69 200 2 185 100 4
30 84 200 2 188 100 17
40 114 200 3 191 66.7 7
50 144 200 3 181 66.7 20
Table 2.13. Lennard-Jones potential, random starts
- A o
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5 9 100 99 2 1.0 1
10 24 100 4 27 25.0 21
15 39 100 3 85 333 6
20 54 200 2 167 100 67

For both problems, OQNLP finds the best solution in fewer solver
calls than the expected number of calls to the best solution for random
starts, much fewer for the Morse potential function. For both problem
sets, the relative volume estimate f decreases quickly as problem size
increases, and many more than 200 solver calls are needed to estimate it
accurately. For the larger numbers of atoms, almost every solver call
leads to a different local minimum.
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10. Summary and Future Research

While the performance of this “base case” OQNLP algorithm on
problems with only continuous variables is quite good, there are options
which promise improvements. OptQuest’s search is usually more efficient
when the initial population contains high quality solutions. No such
solutions are supplied in the computational experiments described here.
A way to provide one good solution is to call GRG at the start of stage
one, communicating the local optimum found to OptQuest as a possible
member of its initial population. GRG’s starting point could be either
user-provided, or the best point found in some initial set of OptQuest
iterations (perhaps a few hundred as in the current stage one). The latter
option is equivalent to adding a new stage one consisting of these initial
OptQuest iterations, calling GRG from the best stage one solution (stage
2), and doing a stage 3 by placing the GRG solution as a candidate point
in a newly initialized population, before performing another set of
OptQuest iterations. In our computational experiments, the GRG solution
resulting from a start at the best point from 200 or so OptQuest iterations
is globally optimal in about 75% of the problems solved. Hence the
initial stage 3 population would often contain the global optimum, plus
points diverse from it. The final stage (4) would be the current stage 2,
where GRG is called repeatedly at points which are accepted by the
distance and merit filters. We are currently implementing this option.

The above idea is naturally extended by communicating other GRG
solutions to OptQuest during (the current) stage 2, but this must be done
in a way that maintains enough diversity in the population. Hence only
unique local solutions should be sent to OptQuest, and these should not be
too close to one another. Some distance threshold must be devised, and
OptQuest would receive only local solutions whose distance from the
nearest previously found local solution is greater than the threshold.

In problems with discrete variables, high quality points for OptQuest’s
initial population can be determined by solving the relaxed MINLP,
where all discrete variables are allowed to be continuous within their
bounds. If all discrete variables take on allowed values, this solution is
at least locally optimal. If not, various rounding procedures can be
applied to it to generate one or more high quality discrete solutions. We
are currently implementing this option as well.

Another promising option for MINLP’s is to “hide” the continuous
variables from OptQuest, which searches only over the space of discrete
variables. It is aware only of the constraints involving only discrete
variables. This allows it to focus its attention on these key variables,
which GRG cannot vary. That is, OptQuest is applied to the projection
of the problem (1.1)-(1.4) onto y-space. This projected problem is to
minimize

F(y)=min (f(x,y)| gl <G(x,y) < gu,l < 4x+ Ay <u,x € S)
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over all constraints involving only y. GRG is then applied to the x sub-
problem on the right hand side of the above equation. As is done
currently, GRG would fix the discrete variables at values specified by
OptQuest, and optimize over the continuous variables. If GRG finds a
feasible solution, its optimal objective value is returned to OptQuest. If
not, the exact penalty function value of this solution is returned, using
some set of sufficiently large penalty weights. These GRG solutions
should be of much higher quality than the continuous variable values
generated by OptQuest in the current algorithm, where the continuous
variables are nowhere near locally optimal for the associated discrete
variables.

Comparative tests of OQNLP and alternative global optimization
methods are also needed. GAMS Development Company has interfaced
several global and MINLP solvers, including OQNLP, to GAMS, and this
will make the comparison process much easier by providing a common
computing environment and model base. The model base has been
expanded by a website recently introduced by GAMS Development
Company called “GAMS World” at www.gamsworld.org (see ad on the
back cover of ORMS Today, Aug 2001). This is divided into “MINLP
world” and “Global world”. MINLP world currently contains a set of
MINLP test problems coded in GAMS, facilities for converting models in
several other algebraic modeling languages to GAMS models, and other
information on MINLP. Global world contains similar information for
global optimization. We also plan comparative tests with the global
optimizers in Frontline Systems Premium Excel Solver.

Appendix

Detailed computational results for 120 Floudas test problems.

Table 2.3. Results for Floudas GAMS problems with no discrete variables
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Table 2.3. Results for Floudas GAMS problems with no discrete variables (cont’d)
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Table 2.3. Results for Floudas GAMS problems with no discrete variables (cont’d)
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Table 2.3. Results for Floudas GAMS problems with no discrete variables (cont’d)
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Table 2.3. Results for Floudas GAMS problems with no discrete variables (cont’d)
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Abstract The Covering Tour Problem (CTP) is a generalization of the Traveling Salesman
Problem (TSP) which has several practical applications in the area of distribu-
tion network design. Given an undirected graph, the problem asks to identify a
minimum cost cycle passing through a subset of vertices such that every vertex
not in the cycle lies within a given distance from at least one node in the cycle.
Being a generalization of the TSP, CTP is NP-hard. This paper presents three
original Scatter Search heuristic algorithms for the CTP. Computational results
are reported.

Keywords:  Covering Tour Problem, Cutting Planes, Scatter Search Algorithms

1. The Covering Tour Problem

The Covering Tour Problem (CTP) is a generalization of the Traveling Sales-
man Problem (TSP) and is defined as follows.

Let G = (N, E) be an undirected graph, where N = V U W is the vertex set
and F is the edge set. V is the subset of n vertices that can be visited, T C V
is the subset of vertices that must be visited, while W is the subset of vertices
that must be covered. Let c;; and d;;, {, j} € E, be the non-negative cost and
the distance associated with the edge connecting vertices ¢ and j, respectively.

*Corresponding author
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Figure 3.1. Example of CTP instance

W mustbe visited

can be visited
O mustbe covered
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Figure 3.2. Example of CTP tour

The CTP asks for a minimum cost cycle connecting vertices in V such that each
vertex i € W is covered by the cycle. A vertex ¢ € W is covered if there exists
at least one vertex j € V in the cycle for which d;; < Dj;, where D; is the
covering distance associated with vertex j. Figure 3.1 shows a CTP instance
where |T'| = 1, |V| = 9 and |W| = 15. Figure 3.2 shows a feasible CTP tour
of the CTP instance of Figure 3.1.

The CTP is NP-hard as it reduces to the TSP when D; = 0, Vj € V, and

V=Ww.
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Current and Schilling, (1989), describe some real world routing problems
that correspond to the CTP. An application is the routing of rural health care
delivery teams in developing countries, where medical services can only be
delivered to a subset of villages, but individuals at villages not directly on the
route must be able to reach a visiting medical team at their nearest stop (on
this subject, see also Oppong and Hodgson, 1994). Another application is
the design of bilevel transportation networks where the tour corresponds to a
primary vehicle route and all points not on that route are within easy reach from
it (see also Current and Schilling, 1994). For example, this problem arises in
the routing of aircraft for overnight delivery system where rather than visit each
city directly, it is sufficient for the route to include a stop within some maximal
travel distance from each city to be served. Demand at cities not directly on
the route would be served by ground transportation linking them to the nearest
city on the air route. Another problem is the location of post boxes in a subset
of candidate sites in such a way that all users are located within a reasonable
distance from a post box and that the cost of a collection route through all post
boxes is minimized Labbe and Laporte, (1986). In ReVelle and Laporte, (1993),
the CTP is the problem to plan the stops of a circus at a number of locations
during a season so that it is always accessible by unvisited populations and it is
referred to as the Traveling Circus Problem. In this case, any unvisited location
may generate a penalty.

Similar but different problems are the Shortest Covering Path Problem Cur-
rent and Schilling, (1994), and the Tour Cover of a Graph Arkin et al., (1993),
in which weights are on vertices rather than on edges. Moreover, the CTP is
related to the Prize Collecting Traveling Salesman Problem (PTSP) (see Balas
1989 and Fischetti and Toth, 1988), and to the Selective Traveling Salesman
Problem (STSP) Laporte and Martello, (1990). Both problems have a non-
negative profit p; associated with each vertex ¢ € NV and consist of constructing
a tour through vertex ¢ € N and a subset of V' \ {i}. The PTSP consists of
minimizing the length of a tour, which has an associated total profit at least
equal to a certain value p. The STSP consists of maximizing the total profit of
a tour of length not exceeding a preset value r. A continuous version of our
problem is the Geometric Covering Salesman Problem (GCSP) (see Arkin and
Hassin, 1994) in which the vertex set a priori specified for the covering tour is
not discrete, but a region of the plane. Applications of the GCSP include the
design of robot routes in polygons under limited visibility restrictions (Ntafos
1992), and aerial forest fire detection (Kourtz 1987).

In the literature, only two heuristic algorithms and one exact method have
been presented so far for solving the CTP. Both heuristic procedures, proposed
in Current and Schilling, (1989), and Gendreau et al., (1995), are based upon
solution procedures for the Set Covering Problem (SCP) and the TSP. In partic-
ular, Gendreau et al., (1995), combines the GENIUS heuristic for the TSP (see
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Gendreau et al., 1992), with the PRIMALI set covering heuristic (see Balas
and Ho, 1980). The exact method, proposed in Gendreau et al., (1995), is a
branch and cut algorithm where at a generic node of the enumeration tree, a
linear program containing a subset of valid constraints is solved, a search for
violated constrains is made, and some of these constraints are introduced into
the current program which is then reoptimized. This process is repeated until a
feasible or dominated solution is reached, or until it becomes more promising
to branch on a fractional variable.

The CTP can be formulated, with suitable definitions, as a Generalized Trav-
eling Salesman Problem (GTSP) (e.g. see Fischetti et al., 1997).

The paper is structured as follows. Section 2 presents the GTSP. In Section 3
we describe a well known mathematical formulation of the CTP and a new one
based on a two-commodity network flow approach. Section 4 introduces the
scatter search metaheuristic technique, while Section 5 presents its adaptation
to the CTP. Computational results are given in Section 6 and conclusions are
reported in Section 7.

2. The Generalized Traveling Salesman Problem

The GTSP is a variant of the TSP where vertices are clustered and it is asked
to find a minimum cost cycle which visits at least a vertex of each cluster.

Let B/ = {(i,5) : i,5 € N,i < j} and let (C,...,Cp,), with C, C V,
1 < h < m, be a collection of clusters which induces a partition on V' such that
C1U...UCy, = V. Moreover, foreach S C V1etd(S) ={(3,5) € F :i €
S,j¢ SorjeS,i¢ S} Inthe following we will use 9(j) as a shorthand of

I({7})-

(F1) 2(Fl)=Min »  cijzi; (3.1)
(i,4)EE"
s.t. Z Tij = 2Yk, keV (3.2)
(i) €6 (k)
> yi>1, h=1,..,m (3.3)
JECH
ScV,
> w2ty —1),82<|S|<n-2, (34
(hk)E(S) icS,jeV\S
x5 € {0,1}, (i,5) € E (3.5)

y; € {0,1}, jeEV 3.6)
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Let z;; be a (0 — 1) binary variable which is equal to 1 if and only if edge
(i,7) € E' is in the optimal cycle and let y; be a (0 — 1) binary variable equal
to 1 if and only if vertex ¢ € V is visited. A mathematical formulation of the
GTSP is as follows Fischetti et al., (1997).

Constraints (3.2) require that the number of edges incident on a vertex k be
equal to 2 if k is a visited vertex, 0 otherwise. Constraints (3.3) impose that at
least one vertex of each cluster must be visited. Inequalities (3.4) are the subtour
elimination constraints, while (3.5) and (3.6) are integrality constraints.

A different version of the problem, called Equality GTSP (E-GTSP), arises
when imposing the additional constraint that exactly one node of each cluster
must be visited. The E-GTSP is obtained by replacing constraints (3.3) with
the following equality constraints:

Y yi=1 h=1.,m (3.7)

JECH

Notice that GTSP and E-GTSP are equivalent when the costs satisfy the
triangle inequality: ¢; < ¢, + cxj, Vi, j,k € N.

To improve the quality of the linear relaxation of F1, denoted LF1, several
valid inequalities have been proposed, among which the following Generalized
Subtour Elimination Constraints (GSEC) Fischetti et al., (1997):

> w=2 if 4(S) # 0, u(V \ 8) # 0 (3.8)
(.4)€5(5)

> @i > 2uk, if u(S)=0,u(V\S)#£0,ke S (3.9)
(1:4)€6(5)

Z Tij > 2(yh"i"yk —1)7 lf”(S) =O,/L(V\S) = Oah € Sak € V\S
(1.5)€5(S)
(3.10)

where u(S) =| {h: Cr C S} |.

3. Mathematical Formulations of the CTP

In this section we present two mathematical formulations of the CTP. The
first one has been proposed by Gendreau et al., (1995), while the second is a
new integer programming formulation based on a two-commodity approach.
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3.1 The Formulation of Gendreau, Laporte and Semet
(1995)

The CTP can be formulated as a GTSP as follows. It is possible to define
the clusters as follows Gendreau et al., (1995):

Ci={jeV:d;<D;}, VieWw 3.11)
Cy = {t}, VieT (3.12)

Solving a GTSP on these clusters is equivalent to finding a minimum covering
tour on graph G. Note however that this transformation can result in a node
being replicated in more clusters. Let m be the number of clusters. Assuming
| C; [> 2,Vj € W, and that a degenerate solution consisting of a single node
is not feasible, CTP can be formulated as follows:

(F2) 2(F2)=Min Y cijzy (3.13)
(i,4)ER’
st. Y w=2, kEV (3.14)
(6.5)€3(k)
Sz, h=1,...m (3.15)
JECH
scv,
> w2y, (2<181<n-2,  (3.16)
(h,k)€5(S) i€ S, T\S#D
yj = 1, jET (3.17)
y; € {0,1}, jEVA\T (3.18)
zij € {0,1}, {i,j}eV (3.19)

In this formulation, constraints (3.14) require that exactly two edges are
incident on each active vertex, while constraints (3.15) ensure that each vertex
of W is covered. Inequalities (3.16) are subtour elimination constraints, while
(3.17), (3.18) and (3.19) force binary integrality on the variables associated
with the edges and with the vertices.

Let A = [§;5] bea |W| x |V \T| (0—1) matrix where entry §;; = 1,i € W,
Jj € V\T,ifand only if d;; < D;.

Sets W and V can be reduced by iteratively applying the following reduction
rules:
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(i) remove from W any vertex i for which 6;; = 1,Vj € V \ T;

(ii) remove from W any vertex i for which exists a vertex j # ¢, j € W, such
that 0y < ;x, Yk € V\ T

(iii) remove from W any vertex ¢ for which exists a vertex j € T with d; <
Dj;
7

(iv) remove from V' \ T any vertex ¢ for which d;; = 0,Vj € W.

Let LF2 denote the LP-relaxation of formulation F2, obtained by linearly
relaxing constraints (3.18) and (3.19), and with RF2 the problem obtained from
LF2 by removing constraints (3.16). The optimal solution cost of RF2 is a valid
lower bound to the CTP, which can be improved by means of valid inequali-
ties, for example those proposed by Gendreau et al., (1995), which are in turn
extensions of those proposed for the GTSP.

3.2 A Two-Commodity Formulation

In this section we describe a new integer programming formulation of the
CTP based on the two-commodity flow formulation originally proposed by
Finke et al., (1984), for the TSP. This formulation is interesting in many ways.
It can be shown that its LP-relaxation satisfies a weak form of the subtour
elimination constraints. The formulation can also be modified to accommodate
different constraints, and it is therefore possible to extend it to different routing
problems.

The two-commodity formulation has been used by Lucena, (1986), to derive
new lower bounds for the Vekicle Routing Problem (VRP) and by Langevinetal.,
(1993), for solving the TSP and the Makespan Problem with Time Windows.
Recently, the two-commodity formulation of the TSP has been improved by
Baldacci, (1999), and has been used by Baldacci et al., (1999), to derive a new
integer programming formulation of the VRP.

The idea behind the two-commodity formulation of the CTP is to associate
two flow variables, z;; and z;;, to each edge {i,j} € E .

Let us suppose, for instance, that the salesman starts his tour from a vertex
s € T. If the salesman travels from ¢ to j, then ;; represents the number of
vertices that can still be visited and z;; represents the number of vertices that
have already been visited. Thus, the flow variables z;; define two flow circuits
for any feasible solution that represent a tour. One circuit is defined by the
flow variables representing the number of vertices that can still be visited while
the second circuit is defined by the flow variables representing the number of
already visited vertices.

Figure 3.3 shows a feasible two-commodity CTP tour of the example of
Figure 3.1, where the vertices of the set W have been removed for ease of



W st be visited

@ canbe visited

Figure 3.3. Example of Two-Commodity CTP tour

understanding. Circuit C* is formed by the variables representing the number
of vertices that can be visited: the flow z,, = 8 indicates that n — 1 = 8 vertices
can be visited along the tour, z,; = 7 indicates the number of vertices that can
be visited after visiting vertex a, etc. Circuit C° is formed by the variables
representing the number of vertices visited in the tour. Thus, 2,; = 5 indicates
that the tour has already visited 5 vertices, 7, = 4 represents the number of
vertices visited by the tour before vertex h, etc. Note that every edge of the tour
has z;; + x5 =n — 1.

Let &;; bea (0 — 1) binary variable equal to 1 if and only if edge (¢,5) € E
is in the solution. Let z;; be the flow value of arc (%, j), 4,5 € V, i # j, and let
y; be a (0 — 1) binary variable equal to 1 if and only if vertex ¢ € V is visited.
The new formulation F3 of the CTP is as follows.

Constraints (3.21) and (3.25) define a feasible flow for variables z;;. Con-
straints (3.22) and (3.24) force the degree of each vertex ¢ that must be visited
(i.e. y; = 1) to be equal to 2. Constraints (3.23) ensure that each vertex of W
is covered and constraints (3.26) that each vertex of T is visited. Constraints
(3.27) and (3.28) are the integrality constraints.

The supply-demand pattern involved, ensure that there are both paths from
vertex s to any vertex in V that must be visited and back from any vertex in
V that must be visited to vertex s. Hence (3.20)-(3.28) characterize exactly a
CTP tour.

Formulation F3 can be written in term of variables {z;;} only, since each
&i; can be replaced by (z;; + x;;)/(n — 1) (see equations (3.24)). Hence, the
number of variables of the formulation F3 is n? and the number of constraints
is 2n + m.
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A valid lower bound to the CTP can be obtained from the LP-relaxation
of formulation F3, denoted with LF3. The value of the lower bound can be
improved by adding valid inequalities that are satisfied by any feasible integer
solution but not necessarily verified by LF3.

(F3) 2(F3)=Min > c;y (3.20)

(i,5)€E’
s.t. Z Tij — Z Zj; = —2y;, 1€V 3.2D)

Jjev jEV
> (@i +zp) =2yin—1), i€V (3.22)
JEV
>z, h=1,..,m (3.23)
JECH
Tij + g = (n — 1)&;j, G,j) € E (3.24)
zi; > 0, i,jeEVii#£j (3.25)
y; =1, jeT (3.26)
y; € {0,1}, JEVA\T (3.27)
Eij € {Oa l}a (7',.7) € E (328)

The valid inequalities described in Section 2 can be easily adapted for for-
mulation F'3. Moreover, other valid inequalities, the so-called flow inequalities
(see Baldacci 1999) can be considered to improve the lower bound provided by
LF3. These inequalitics are derived from the observation that in any feasible
integer solution, if §; = 1, (4,j) € E',i # s,j # s,thenz;; > land zj; > 1.
Therefore, x;; > &;; and x;; > §;;, are valid inequalities.

4. Scatter Search

Scatter Search algorithms were first proposed by Glover, (1977), Glover,
(1995). The underlying idea is the use of a set R of solutions, or representative
points, called Reference Set. Recombination operators are applied on the points
in R to generate new solutions, each of which is then used as an input to a local
search procedure to obtain improved solutions. Linear combinations of solu-
tions are the favored means to recombine solutions. The best solutions among
those obtained by this recombination-improvement process will be inserted into
the reference set. The whole process is then repeated for a number of iterations.
A very general template of Scatter Search methods is the following:

1. Generate an initial set of solutions R (Reference Set) by heuristic procedures
designed for the problem considered.
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2. Create new solutions by applying recombination operators to subsets of K.
3. Modify the solutions obtained in step 2 in order to obtain feasible solutions.
4. Add a subset of good solutions among those produced in step 3 to the set R.

5. Repeat steps 2-5 until a termination condition is met.

4.1 Scatter Search for Integer Programming

The general template can be presented considering a generic integer program
IP defined on the variables &, i = 1,...,n. Let LP be the problem obtained
from IP by relaxing the integrality constraints on variables § and let £(0) be
an extreme point of the convex polytope defined by the LP constraints. Each
extreme point adjacent to £(0) can be represented as £(h) = £(0) — G,Ap,
h € NB = {k : £(k) is currently a nonbasic solution}, where A, denotes the
direction to follow and &), the step necessary to reach the new extreme point
§(h).

In order to detail the algorithm, it is important to define some fundamental
components, which are:

(1) Diversification procedure
Generates a set of candidate solutions starting from a seed solution.

(ii) Local search procedure
Improves the quality of input solution. In case it is accepted that the input
solution can be infeasible, this procedure also acts as a repair operator.

(iii) Subset generation
Defines subsets of solutions from the reference set which will be later
recombined.

(tv) Recombination Procedure
Constructs new solutions from subsets of previously stored ones.

(V) Reference set update
Defines how current reference set solutions should be replaced by newly
generated ones.

When these elements are defined, the general framework algorithm becomes
the following:

Scatter Search Algorithm

Step 1. (Initialization)
Initialize the Reference Set R by means of the diversification procedure.



Scatter Search Method for the Covering Tour Problem 69

Step 2. (Local Search)
Use a local search procedure to improve the quality of the solutions
generated at Step 1, obtaining feasible enhanced solutions which are
added to the reference set.

Step 3. (Subset Generation)
Generate a collection of subsets of the reference set.

Step 4. (Recombination)
For each subset of reference set solutions, generate one or more new
solutions.

Step 5. (Local Search)
Create new enhanced trial solutions by means of local search applied
to each solution produced at Step 4.

Step 6. (Reference Set Update)
Update the reference set by adding all or the best solutions found in
Step 5 end possibly expunging the worst ones present in the set.

Step 7. Repeat Steps 3 to 7 until a termination condition is met.

A possible specification of this framework, leading to an operational algo-
rithm definition, could use the following subroutines.

Diversification procedure: This procedure is used to initialize the reference
set. A possible method for this is to generate a sequence of solutions, in such
a way that each new solution maximizes its distance from the set of already
generated ones, according to some metric.

Glover and Laguna, (1997), propose the following sequential diversification
procedure for (0 — 1) vectors. It is assumed that a solution Z complements x
overaset Jifz; =1—x;Vj€ J,andZ; =z, Vj ¢ J.

Sequential Diversification Algorithm

Step 1. Arbitrarily define an initial solution z and its complement %.

Step 2. Let n be the number of variables. Partition the set N = 1,...,n into
P’ and P”, each of cardinality as close as possible to n/2. From vector
x define two solutions =¥ and ¥ such that zF' complements z over
P’ and zF" complements z over P".

Step 3. Define each subset generated at the last partitioning step as key subset. If
no key subset contains more than one element, the procedure terminates.
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Otherwise, partition each key subset S C N into S and S”, each of
cardinality close to |S|/2. If there exists a key subset S containing a
single elements, then set S = S and S” = 0.

Step 4. Let N’ be the union of all subsets S’ and N” the union of all subsets
S". Generate solutions V' and ¥ as in Step 2 and goto Step 3.

Local search procedure: Local search procedures are greatly problem-dependent.
A possible local search algorithm for the CTP is presented in Section 5.

Subset generation: This procedure generates four different types of subsets,
differing in the number and quality of the elements they contain.

Subset type 1: subsets of two elements, one of which is the best solution in the
reference set.

Subset type 2: subsets of three elements, containing the two best solutions of
the reference set.

Subset type 3: subsets of four elements, containing the three best solutions of
the reference set.

Subset type 4: subsets consisting of the best ¢ elements of the reference set,
i=5,...,|R|.

After having constructed the subsets, the new solutions are generated com-
bining only elements of the same subset type.

Recombination procedure: For each subset .S obtained by the subset genera-
tion procedure, new solutions are generated as recombinations of elements of S.
This operator can be problem dependent, however Glover, (1995), suggests, in
the case of integer programming, of using a linear combination to generate new
offspring, possibly generating points outside of the convex hull of the parent
solution set.

Reference set update: This procedure is called after each local search step.
The reference set contains the best 1,4, solutions found, ordered by decreasing
quality. The new local optimum is inserted if it is of sufficient quality and if
it does not duplicate an already stored solution. A hashing function is used to
facilitate the ordering/retrieval operations.
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The general framework of the resulting algorithm is the following.

SS1 Algorithm

Step 1. (Initialization)
Initialize the Reference Set R by means of the diversification procedure.

Step 2. (Local Search)
Carry each seed solution to the corresponding local optimum, obtaining
an enhanced solution. Update R with the update procedure.

Step 3. (Subset Generation)
Generate a collection =1, . .., = of subsets of the reference set.

Step 4. (Recombination)
Apply to each subset =, ¢ = 1,.. ., k, the recombination procedure to
obtain one or more combined solutions.

Step 5. (Local Search)
The solutions obtained in Step 4 are carried to their local optimum
obtaining new enhanced trial solutions.

Step 6. (Reference Set Update)
Update the reference set with the best solutions found in Step 5.

Step 7. Repeat Steps 3 to 7 until a termination criterion is met.

4.2 Scatter Search and Cutting Planes

A second version of Scatter Search makes a more prescriptive use of con-
siderations derived from the analysis of the problem feasibility region Glover,
(1995). The general scheme is the same as in SS1, but it suggests to integrate
cutting planes in this framework, using extreme points of the induced problem
polytope as seed points for a rounding procedure that yields feasible integer
solutions. Specifically, using the notation introduced at the beginning of this
section, each point £(h) obtained from £(0) is a new element to use during the
search process as seed for obtaining feasible solutions for IP.

Moreover, new points can be also obtained as non-convex combinations of
elements of R, thus creating solutions containing information which is not
represented in the points of the current reference set.

The general framework of the resulting algorithm is the following.
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SS95 Algorithm

Step 1. (Initialization)
Initialize the Reference Set R with feasible solutions of problem IP.

Step 2. (Generation of New Solutions).
Let £(0) be the optimal LP solution. Set H = {£(h) = £(0) — OpAp :
h € NB, 6 > 0}.

Step 3. (Parent Set Definition)

Define the subsets =;,..., =, such that =,,...,=,, s < k, contain
only elements of H, =, 1,...,=Z;, t < k, contain only elements of R
and Z;4441, - . . , 2k contain both elements of H and of R.

Step 4. (Recombination)
Construct the sets Q(E;), 1 <

Jj<
combination of points in =;, 1 < 5

, with points obtained from linear
k

AT

Step 5. (Local Search)
The solutions in Q(Z;), 1 < j < k, are carried to their local optimum.

Step 6. (Reference Set Update)
Update R with the best solutions obtained.

Step 7. (Cutting Planes)
Find a violated valid inequality for problem IP. If no violated inequality
can be identified or the maximum number of iterations is reached then
STOP, otherwise add the inequality to LP and go to Step 2.

The same subroutines introduced above should be specified also in this case.

Initial generation: Can be made in any suitable way, for example by sequential
diversification.

New solutions: The most effective way to explore the whole solution space by
means of linear combination of seed solutions is to use as seeds the extreme
points of the convex hull of the polytope associated with the LP-relaxation of
the problem to solve. In particular, an effective strategy is to start with the LP
optimal solution and use as seed points extreme points which are adjacent to
the LP optimal solution.

Local search: While local search is strictly problem-dependent, a related ac-
tivity of interest in the case of linear combination of integer solutions is the
recover of integer feasibility from fractional solutions. A procedure proposed
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in Glover, (1995), to this end is the directional rounding, which is as follows.
Let X(0,1) be a unit hypercube in the space R*, where z € X(0,1) stands
for0 < z; <1, forall0 < j < n,and let V(0,1) denote the vertices of the
hypercube, thus z € V(0, 1) indicates z; € {0,1}, forall 0 < j < n. A direc-
tional rounding ¢ is a mapping from the continuous space X (0,1) x X(0,1)
onto V (0, 1) defined as follows:

§(z*,z') = (0(x%,2Y), - .., 0(zh, 2},))

with
01f:1: <:L‘;‘
5z 2 = 11fa:>x;‘ < <1 R™.
(25,25) = 01fa: =zrand 2’ < 0.5 0 xj,a:]_ I]’xje
J J :
11f:E —x;‘anda:;fZO.S

Point z* is called base point and point 2 focal point. The directional rounding
between a vector z* and the set X C V(0, 1) is then defined to be:

§(z*, X) = {6(z*, ) : 2’ € X}

The integer solutions so obtained may be still infeasible because of con-
straints other than the integrality ones. In this case directional rounding is not
enough and other problem-specific repair procedures are in order.

Reference set update: This procedure is the same as in SS1.

Cutting planes: Each iteration of the scatter search main loop terminates with
the separation of new valid inequalities. It is thus possible to add new constraints
to the current LP formulation and to identify new extreme points of the redefined
polytope which act as seed solutions for the subsequent iteration.

5. Scatter Search for the CTP

We designed and implemented three Scatter Search algorithms for the CTP.
The first one, SS-CTP1, follows the guidelines of algorithm SS95 and uses the
cutting planes obtained by means of the GSEC inequalities to define the points
£(0), which in turns initialize each iteration of the algorithm main loop. The
second algorithm, SS-CTP2, differs from SS-CTP1 in the use of a star path
solution generation technique, which will be detailed in the presentation of the
algorithm. Finally, the third algorithm SS-CTPB is designed according to the
template SS1 presented in Glover, (1997), and does not use cutting planes. All
algorithms share a number of problem-dependent procedures, which will be
introduced in the following.
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Figure 3.4. Layered Network

Generation of seed points: We used a random seed point generation, combined
with a sequential diversification procedure. The working is as follows. We
generate I'J%l] seed solutions, where | R| is the reference set cardinality. Each is
generated as a feasible CTP solution, and then modified by means of sequential
diversification.

The generation of good initial feasible solution is a nontrivial task in the
case of CTP. We propose the following procedure, adapted from Fischetti et al.,
(1997). Consider the Covering Tour Problem with formulation F2.

Let (Co(1)s - - s Com)s Copm+1)) be a permutation of the clusters, where
Co(m+1) is the duplicate of Cy(yy. It is possible to construct a Layered Net-
work (LN) sequencing all clusters plus one, containing a dummy vertex
duplicating each w € Cy ;). The edges of the network are all edges (3, j), ¢ €
Co(x)rJ € Cor+1), L < k < m, see Figure 3.4 for an example. Each path in
LN from a vertex w € Cpy(y) to the associated vertex w/ identifies a feasible
CTP solution. The best solution derived from the sequence Cy(y), - - - , Com+1)
can be obtained computing the shortest path from each vertex w € Gy(p) to the
associated vertex 1/. If the shortest paths are computed by means of a Dijkstra
algorithm, the complexity for obtaining the best solution, given a cluster order-
ing, is O(|Cy(1) |n?) and it is obviously minimized by using as first the lowest
cardinality cluster.

In the case, quite common in the CTP, where the clusters are not disjoint the
paths are not guaranteed to be feasible solutions, as they could contain dupli-
cates of one same node. We patched this situation by modifying the Dijkstra
procedure as follows. Each vertex ¢ € V can have multiple labels: one for
each cluster Cy, where it appears. Each of these labels specifies which is the
predecessor of vertex ¢ when it is considered as a member of cluster G, l;c,,
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and the minimum cost toreach it, f;c, . The algorithm goes through two phases:
in the first one we compute a structure specifying all different labellings, in the
second phase the path of interest is made explicit.

The main difference with the standard shortest path algorithm is that, when
a node is identified to enter a path, first a test is made to check whether it is
not already present in that path. In case it is, it is discarded and the nearest
node of its same cluster is considered, then possibly the third best one and
so on. More specifically, the algorithm for identifying a path from a vertex
w € Cyqy) to w € Co(m+1) 1 as follows. Active is a vector of Booleans, such
that Active(i) = False if and only if node ¢ is uncovered.

CTP Heuristic Algorithm

Step 1. Let Cy(1), - . ., Cp(m+1) be a sequence of clusters. Initialize i, ,,, the
label associated with vertex 7 in cluster C};(k), to 0 and f'ice(k)’ the
minimum cost for reaching i in cluster Gy, to oo, for each vertex
i # w and for each cluster Cy(x) containing vertex .

Setk = 1 and fuc,,, = oo for each cluster Cy(x) containing w. Let

M= V\C’g(l) and P = {w}
Step 2. Find i € Cypy1)( | M and let M = M\{i}.

Step 3. Foreachvertexp € Psuchthat fic, .., > fpCop) +Cpi S€t fiCypeqn, =
prQ(k) + cpi and l’ng(k+1) - p'
If p = w/, i.e. a solution has been found, go to Step 5.

Step 4. If Cg(k+1) (M =0thensetk =k+1land P = P|J Cg(k) Go to
Step 2.

Step 5. Set Active(i) = False for each vertex 1 € V. Set S = 0, r = /,
k=m+1lands= lrc,,(,c)-

Step 6. Setk =k —1,S = S|J{r} and Active(r) = True.
Step 7. If Active(s) = True, then k = k — 1, otherwise goto Step 9.

Step 8. Find the node u € Cy(,) closesttor and set s = u. If k > 1setr = s,
s = lsc,, and goto Step 7, otherwise goto Step 6.

Step 9. If k > 1 then goto Step 6, otherwise Stop.

Local search procedure: The local search procedure is applied to improve
the quality of the solutions obtained by the recombination operator. It has the
double objective of getting low cost solutions and of ensuring the feasibility
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of all solutions in the reference set, feasibility that is not guaranteed by the
recombination procedure alone. The local search algorithm we propose is based
on the observation that knowing the right sequence of clusters would make it
possible to easily find a good solution. Specifically, the local search procedure
consists of three phases: the first phase analyzes the solution proposed by the
recombination and find its cluster sequence, the second phase finds a good
solution given that sequence and the third phase applies a 2-opt or a 3-opt
heuristic to the cluster sequence in order to improve the solution quality.

The three phases have been implemented as follows. Let (2%, y*) be the
current solution, where z* is the vector of the variables associated to the edges
and y* is the vector of the variables associated to the vertices. Let L, initially
empty, be a list containing the cluster sequence and Active() be a flag which is
False if cluster i is uncovered in the solution, T'rue otherwise. The algorithm
for the identification of the cluster sequence is:

1. Let j be the vertex with highest y value. Set Active(i) = False for each
1.

2. For each cluster Cj, containing node j set L = L|J Cy and Active(k) =
True. Compute node 5’ such that the edge (7, 5') has the highest ; ;s value
and that j' is contained in at least one cluster G, such that Active(h) =
False.

3. Ifno 5/ node exists, then STOP, list L contains the desired sequence; other-
wise set 7 = j' and goto step 2.

The second phase finds a good CTP solution given a cluster sequence. It
works by first producing a feasible solution by means of the CTP heuristic
algorithm presented in the previous section and then it tries to improve it by
eliminating nodes that cover already covered clusters. The third phase finally
tries to swap the positions of two or three clusters in the sequence, then phase
1 and 2 are repeated.

Subset generation procedure: This procedure implements a linear combina-
tion of elements of the reference set. It is essential to be able to effectively
select subsets of solutions to be later combined. The strategy we used in the
CTP context is the same as in algorithm SS1, generating four different types of
subsets. The subsets are:

Subset type 1: subset of two elements containing the best reference set solution
and another randomly chosen one.

Subset type 2: subset of three elements containing the two best reference set
solutions and a randomly chosen one.
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Subset type 3: subset of four elements containing the three best reference set
solutions and a randomly chosen one.

Subset type 4: subset of K elements, where K = [M}l] specifies how many
subsets of type 4 will be generated and and J is a parameter,
5 < J < |R| quantifying the number of elements to be included
in each subset.

Recombination procedure: The recombination operator follows the convex
combination operator proposed in Glover, (1995). Each point i of a subset X
is associated with a weight w; related to its objective function value, 2(p;). The

weight w; is determined as the ratio Z,_l%‘ After generating all weights,
eX

a new point p,, is obtained by the convex combination p, = ) .. x w;ip;.

If generic linear combination are used instead of only convex ones, it is
possible to obtain points outside of the convex hull of the points in X. This
permits an improved diversification, at the price of possibly extending too much
the search space.

Reference set update procedure: This is the same already described for al-
gorithm SS1.

Cutting plane procedure: Asmentioned in the previous section, cutting planes
have been proposed as a means to generate promising seed points for the ref-
erence set. This in fact permits the effective search techniques implemented in
the procedure as described so far to take advantage of insights into the search
space, specifically as provided by the polytope of the linear relaxation of the
CTP.

The cutting procedure is much similar to that of standard branch and cut
methods. Given the linear relaxation of the problem, defined over a constraint
set 2, the process starts by solving a relaxation using only a subset T C 2
of constraints. If the solution (z*,y*) satisfies all constraints in 2 then stop,
otherwise identify (separate) the most violated constraints, add them to Y and
repeat the procedure.

A critical element is the separation procedure. In our application, starting
from formulation F2, we relaxed constraints (16) and used generalized subtour
elimination (GSEC) constraints (8), (9) and (10) in the cutting phase. The
separation procedure were borrowed from Fischetti et al., (1997), where they
were proposed for the GTSP.

Two procedures were used. The first, called GSEC.SEP, is an exact proce-
dure which can identify the most violated constraints, while the second one,
GSEC_H2, is heuristic and can quickly identify some violated constraints, with
no guarantee on the degree of violation.
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The separation algorithm we used starts from a solution (z*,y*) and ap-
plies GSEC_H2. If violated constraints are found, than they are added to the
constraint set and scatter search continues, otherwise GSEC_SEP is applied.

5.1 Algorithm SS-CTP1

Given the elements described in the previous section, it is now possible to
provide the step-by-step description of the first scatter search algorithm applied
to CTP, i.e., SS-CTPI.

SS-CTP1 Algorithm

Step 1. Initialize the Reference Set R with the sequential diversification proce-

dure Glover, (1997), and build an initial feasible solution (%, y') with
the local search procedure described above.
Let J, = {i : y; = 1}, X, be the set of the k least-cost edges inci-
dent in i and having the other vertex in J, and let U = | J, J, Xi. Let
Je = {(4,7) : argj = 1} U U. Finally, let T = 0 be the set of GSEC
inequalities currently in use.

Step 2. Compute the optimal solution (z*, y*) of the LF2 problem defined by
the constraints in T but using only variables y, ¢ € Jy, and z;5, (¢, 5) €
Jz. By means of a sequential diversification procedure construct p
feasible solutions and add them to R.

Step 3. Identify the » most violated GSEC constraints, to be introduced in LF2,
and the negative reduced cost variables whose indices are to be added
to J; and Jy,.

Step 4. Apply the subset generation and the recombination operators on the
points in R.

Step 5. If (end condition) then STOP; otherwise go to Step 2.

5.2 Algorithm SS-CTP2

The second algorithm we tested is based on the idea of Star Paths, also
proposed in Glover, (1995). It is a technique based on the directional round-
ing operator applied to the extreme points adjacent to the optimal LP solution
identified after the cutting phase.

__Let 2™ be the current optimal LP solution of a generic integer problem. Let
X be a set of extreme points adjacent to z*. The star path procedure starts with
the definition of a continuous path P(2/,z") = {z : ¢ = A&’ + (1 — \)z"'}
connecting two points 2/, 2" € X. Successively, this path is turned into a Star
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Path by means of the directional rounding operator 6(z*, P). The trajectory
obtained after rounding is not continuous, and represents in fact the projection
of path P on the unit hypercube V(0,1).

The procedure we used to produce the Star Path points follows the directives
given in Glover, (1995). Let §(\) be a point of 6(z*, P) identified as a function
of the parameter A\. For each A a point z = Az* + (1 — A2/, with 2’ € X
is identified. Notationally, 6(A) = 6(z", z) and ;(\) = 6(z}, z;) is the j-th
component of 5(A). Vector z can be alternatively identified as x = £ + A\A,
where A = z’ — z*. Itis possible to define the sets I(0) = {j : A; =0}, I(+) =
{5: A; >0} andI(-) = {j: Aj < 0}.

Moreover, for each j € I(+) and for each j € I(~) let \(§) = (2} — 27)/A;.
The star path generation procedure is based on Lemma 4 in Glover, (1995),
which states that the elements of J()), given A, are:

55(N) = 8(z5,5), j € 1(0)

0if A < A(j)andj € I(+)
Lif A > A(j) and § € I{+)
1if A < A(j) and § € I(=)
0if A > A(j) and j € I(=)

0i(A) =
6;(A) =

Given this, the star path generation procedure is the following.

Star Path Generation Procedure

Step 1. Letz* and 2’ be the two extreme points of the star path. Let6(1), ..., 0(u)
be a permutation of the indices in I(+)|J I(—) such that A(6(1)) <
AO(2)) < ... < X(O(uw)), where u = |I(+) U I(-)|.

Step 2. Set A = Astart < A(6(1)) and generate a solution 2° = §(A) as dictated
by Lemma 4.1

Step 3. Generate point &° by setting 2 = 1 — zp and leaving 27 = z3Vj # .

Step4. Seth = h+ 1. If b > u or A(O(h)) > Aeng, With Agpart < Aendg <
A(6(u)), then STOP, else set p = #(h) and go to Step 1.

This algorithm is a subroutine of the second scatter search algorithm we
tested on the CTP, which is as follow.
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SS-CTP2 Algorithm

Step 1. Initialize the Reference Set R with the sequential diversification proce-

dure Glover, (1997), and build an initial feasible solution (%, y) with
the local search procedure described above.
Let J, = {i : ¥, = 1}, X; be the set of the & least-cost edges inci-
dent in i and having the other vertex in J, and let U = | J,. J, X;. Let
Jr = {(4,7) : :c;j = 1} U U. Finally, let T = { be the set of GSEC
inequalities currently in use.

Step 2. Compute the optimal solution (z*, y*) of the LF2 problem defined by
the constraints in T but using only the variables in J; and J,. Let X be
the set containing extreme points adjacent to (z",y*). Construct one
or more Star Paths using the points in X. Use the points in the Star
Paths to generate seed solutions, to be made feasible and improved by
means of local search, and add them to the reference set.

Step 3. Identify the » most violated GSEC constraints, to be introduced in LF2,
and the negative reduced cost variables whose indices are to be added
to J and J,,.

Step 4. Apply the subset generation and the recombination operators on the
points in R.

Step 5. If (end condition) then STOP; otherwise go to Step 2.

6. Computational Results

In this section we present the computational results of the algorithms SS-
CTPB, the basic Scatter Search algorithm presented in Glover, (1997) SS-CTP1
and SS-CTP2 presented in the previous section.

The algorithms were coded in Fortran 77 and run on a Pentium III 750 Mhz
machine. We used CPLEX 6.5, as the LP-solver.

The CTP test instances were generated by means of the procedure proposed in
Gendreau et al., (1995), as follows. The vertex set was obtained by generating
|V| + |W]| points in the [0,100] x [0,100] square, according to a uniform
distribution. The sets T" and V were defined by taking the first |T'| and | V| — |T|
points, respectively, and W was defined as the set of the remaining points.
Tests were generated for n = 50, 75,100, |T| = 1, [.25n], [.50n], [.75n] and
|W| = n,2n,4n,5n. For each combination of the parameters, five instances
were generated.

The costs {c;; } were computed as integer values equalto | e;; + .5 |, where e;; is
the Euclidean distance between points ¢ and j (see Reinelt 1991). The threshold
values Dj, j = 1,...,n, were all set equal to d, where d was determined
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as d = max (maxgey\7 minew {dix }, maxjew {di=(1)}), where 7(l) is the
index of the vertex of V' \ T that is the second closest to [. This ensures that
each vertex of V' \ T covers at least one vertex of W and each vertex of W is
covered by at least two vertices of V' \ T'.

The computational results we present refer to the three versions of scatter
search applied to CTP introduced in the previous section, which are SS-CTPB
(scatter search with no cutting planes), SS-CTP1 (scatter search with cutting
planes) and SS-CTP2 (scatter search with cutting planes and star paths). Each
algorithm has a number of parameters, their union gives the following set:

k : number of arcs to introduce in set J;;

P . number of heuristic solutions to be constructed by means of the cutting-
based approach;

T : number of violated constraints to be introduced at each iteration;

q :  number of times the recombination operator is applied on the points in the
reference set R;

Tmaz . maximum number of solutions in the reference set;

tmaez : maximum CPU time.

We carried out a number of runs to define an efficient parameter settings for
each algorithm. We used a coeteris paribus approach, based on sets of three or
four values for each parameter. The resulting setting is the following.

The number of solutions 7,,,,, Was set to §|V| for the problems with |V| =
100, and to 40 for the other ones.

The number of subsets generated included all subsets of types 1, 2 and 3,
while subsets of type 4 included only 5 elements.

The number of heuristic solutions p was set to [z |. The same value was
also used as the number of extreme points utilized to generate the star paths.

At each iteration of the algorithm, we inserted in the current linear relaxation
40% of the constraints identified by the separation algorithm.

Finally, ¢,,,,, Was set to 1500 CPU seconds for all problems.

Table 3.1 shows the details of the problem reductions. In Table 3.2 we
compare the results obtained by algorithm SS-CTP1 and SS-CTPB. The com-
parison was made on a subset of 80 difficult CTP instances selected among the
240 instances generated. Table 3.3 reports the results obtained by algorithm SS-
CTP1 and SS-CTP2 compared against the results published in Gendreau et al.,
(1995). Finally, Table 3.4, shows the results obtained by algorithm SS-CTP1
using the two mathematical formulations of the CTP presented in Section 3.
For this comparison we selected 18 difficult CTP instances among the instances

generated.
Under the heading Dimension, Tables 3.1 to 3.4 show the following columns:
[Vl : cardinality of the set V;
|T| @ cardinality of the set T';
[W1] : cardinality of the set W.

Table 3.1 shows the following columns:



82

[Vl : average number, over the five instances, of the cardinality of the set V' after
the problem reductions;

I . average number, over the five instances, of the vertices belonging to more
than one cluster;

C . average number, over the five instances, of clusters generated.

Tables 3.2 and 3.3 show, under the SS-CTP1 and SS-CTPB headings, the fol-
lowing columns:

RIS : number of problems solved to optimality among the five instances;
GAP : average gap computed over the five instances between the final upper and
lower bounds (0 if the all the five instances were solved to optimality);
CPU : average cpu time in seconds needed to obtain the best solution.
Tables 3.3 shows, under the Gendreau et al. heading, the following columns:
RIS : number of problems solved to optimality among the five instances;
GAP : average gap computed over the five instances between the upper bound

provided by the heuristic and the optimal solution value;
Table 3.4 shows the following columns:

LBOPT : best lower bound obtained either by formulation LF2 or LF3 after the
addition of all valid inequalities;

LBO . LP-relaxation value of formulation LF3 and LF2;

GAP : gap between the upper bound and the lower bound LBOPT;

CPU :  cpu time in seconds needed to obtain the best solution.

It is evident from Table 3.1 that the number of mandatory nodes in T has a
big impact on the effectiveness of the reduction procedures. In fact, in all three
cases of |[V| = 50, |V| = 75 and {V| = 100, very few problem groups with
|T'| # 1have a significant number of vertices belonging to more than one cluster,
thus increasing the number of decision alternatives to consider. Moreover, the
increase of the cardinality of 7" entails a reduction of V' that makes the two sets
usually coincident in almost all problem instances for which |T'| = 0.75 x [V].
The problems with high T cardinality are therefore actually deprived of their
covering component, leaving just the tour definition problem. This is not true
for small T cardinalities, for which the value of I is consistently different from
0.

Table 3.2. Comparison of the algorithms SS-CTP1 and SS-CTPB
Dimension SS-CTP1 SS-CTPB
|Vl |T| |W||GAP CPU | GAP CPU
75 1 75 0.3 3484 39 7.5

75 1 150 | 0.0 634.1 37 143
75 1 300} 3.1 8266 34 119
75 1 375 02 7745 2.9 6.3
100 1 100 92 909.1 109 276
100 1 200 | 105 8944 12.7 411
100 1 300 | 168 8762 | 36.6 341
100 1 500 | 165 8752 | 255 432

Avg 71 7673 | 1245 232
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Table 3.1. Problem reduction
Vi 7| wl| V'] I ¢C
50 1 50 46.0 344 19.4
50 1 100 46.4 38.0 24.4
50 1 150 476 414 28.6
50 1 200 38.0 246 23.6
50 13 50 28.6 0.8 16.0
50 13 100 274 4.6 17.6
50 13 150 23.0 32 16.4
50 13 200 38.0 204 254
50 25 50 25.0 0.0 25.0
50 25 100 26.2 0.0 252
50 25 150 26.2 0.0 252
50 25 200 26.2 0.0 25.2
50 38 50 38.0 0.0 38.0
50 38 100 38.0 0.0 38.0
50 38 150 42.6 54 404
50 38 200 38.0 0.0 38.0
75 1 75 69.8 55.8 36.2
75 1 150 728 674 432
75 1 300 742 63.8 56.0
75 1 375 73.6 692 59.0
75 19 75 39.8 5.0 24.0
75 19 150 324 34 21.8
75 19 300 37.0 3.8 23.6
75 19 375 38.6 3.6 23.0
75 38 75 40.6 0.8 354
75 38 150 40.4 0.0 384
75 38 300 40.4 0.0 38.4
75 38 375 40.4 0.0 384
75 56 75 56.0 0.0 56.0
75 56 150 56.0 0.0 56.0
75 56 300 56.0 0.0 56.0
75 56 375 56.0 0.0 56.0
100 1 100 97.8 82.0 48.8
100 1 200 99.8 958 79.4
100 1 300 99.8 958 93.6
100 1 500 | 1000 956 1068
100 25 100 42.6 5.8 29.0
100 25 200 474 8.6 30.2
100 25 300 53.0 106 35.8
100 25 500 54.0 13.0 37.2
100 50 100 51.0 0.0 50.2
100 50 200 50.0 0.0 50.0
100 50 300 50.0 0.0 50.0
100 50 500 51.0 0.0 50.2
100 75 100 75.0 0.0 75.0
100 75 200 75.0 0.0 75.0
100 75 300 75.0 0.0 75.0
100 75 500 75.0 0.0 75.0
Avg 516 178 42.7

&3
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Table 3.2 shows a comparison of the basic scatter search approach, as pro-
posed in Glover, (1997), and implemented in SS-CTPB, with the cutting planes
based one of Glover, (1995), implemented in S-CTP1. The comparison was
made only on a subset of hard instances, in order not to dilute the differences
with a number of results on easy problems, for which both approaches are ef-
fective. On all tested problems the two approaches follow a consistent pattern:
SS-CTP1 is slower but more effective. The high CPU time is mainly due to
the LP solver, which is given to solve a number of progressively more complex
problems, but the indications which can be derived from the redefinition of the
problem polytope prove to be an effective search guidance.
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Table 3.3. Comparison of SS-CTP against Gendreau et al.

Dimension SS-CTP1 SS-CTP2 Gendreau et al.
VI |T| |[W| | RIS GAP CPU | RIS GAP CPU RIS  GAP
50 1 50 5 0.0 229 5 0.0 28.3 5 13
50 1 100 4 0.0 85.5 4 0.0 93.5 4 0.7
50 1 150 5 0.0 48.1 5 0.0 512 2 0.8
50 1 200 5 0.0 241 5 0.0 327 4 0.3
50 13 50 5 0.0 1.6 5 0.0 20.6 3 0.3
50 13 100 4 0.0 1.9 4 0.0 15.4 4 0.6
50 13 150 5 0.0 1.2 5 0.0 3.0 3 0.1
50 13 200 5 0.0 11.7 5 0.0 119 | 4 0.5
50 25 50 5 0.5 1.6 5 0.5 1.6 2 0.3
50 25 100 5 0.5 1.9 5 0.5 42 2 0.6
50 25 150 5 0.2 1.6 5 0.2 3.0 2 0.4
50 25 200 5 0.2 1.6 5 0.2 49 3 0.4
50 38 50 5 0.3 4.7 5 0.3 7.9 2 13
50 38 100 5 0.5 4.7 5 0.5 8.2 2 1.6
50 38 150 5 0.2 8.6 5 0.2 9.3 2 1.4
50 38 200 5 0.2 49 5 0.2 6.5 2 1.5
75 1 75 4 0.3 3484 4 03 4278 3 0.8
75 1 150 5 0.0 634.1 5 0.0 6745 4 0.3
75 1 300 1 3.1 8266 1 3.1 8299 5 1.5
75 1 375 3 0.2 7745 3 0.2 799.1 1 2.0
75 19 75 2 0.5 6.3 2 0.5 20.6 1 0.3
75 19 150 3 03 23 3 03 37 1 0.1
75 19 300 3 0.6 4.7 3 0.6 5.6 1 0.1
75 19 375 4 03 5.1 4 0.3 8.9 2 0.5
75 38 75 1 0.5 5.8 1 0.5 6.5 2 2.1
75 38 150 2 0.3 4.9 2 0.3 6.1 2 1.0
75 38 300 2 0.3 5.4 2 03 7. 3 2.1
75 38 375 1 0.3 5.1 1 0.3 7.0 3 1.6
75 56 75 1 0.9 21.7 1 0.9 23.8 0 2.5
75 56 150 1 0.9 22.0 1 0.9 28.3 0 33
75 56 300 1 0.9 22.0 1 0.9 28.5 0 3.5
75 56 375 1 0.9 22.2 1 0.9 27.1 1 3.1
100 1 100 0 9.2 909.1 0 9.2 93438 2 1.3
100 1 200 0 105 8944 0 105 9327 1 2.0
100 1 300 0 168 8762 0 168 8843 0 23
100 1 500 0 165 8752 0 165 8829 1 33
100 25 100 3 0.6 11.9 3 0.6 12.4 1 0.6
100 25 200 2 0.7 259 2 0.7 31.5 1 0.0
100 25 300 1 0.8 13.8 1 0.8 15.2 0 0.5
100 25 500 1 13 28.0 1 1.3 30.1 0 0.3
100 50 100 0 0.6 75.0 0 0.6 93.7 1 2.5
100 50 200 0 0.6 75.0 0 0.6 82.9 0 2.9
100 50 300 0 0.6 48.6 0 0.6 56.3 0 2.7
100 50 500 0 0.6 73.8 0 0.6 91.6 0 2.7
100 75 100 0 1.2 3537 0 1.2 3755 0 2.5
100 75 200 0 1.2 3584 0 1.2 3764 0 2.6
100 75 300 0 1.2  356.1 0 1.2 3977 0 3.1
100 75 500 0 1.2 3603 0 12 3715 0 3.1
Sum 120 120 82
Avg 1.6 1724 1.6 1829 1.4
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Table 3.3 permits us to compare the effectiveness of the scatter search ap-
proach with the tailored approach presented in Gendreau et al., (1995). We
report only the results of SS-CTP1 and SS-CTP2 because, as it appears from
Table 3.2, SS-CTPB is dominated by these two methods. Two different trends
can be identified among the results presented in the table. The first, in accor-
dance with the insight obtained from Table 3.1, discloses that larger |T| values
produce easier problems. This can be verified from the results obtained for
problems with the same |V|. The second observation is that problems with
higher |V| values are harder, in fact almost all problems with |V| = 50 could
be solved to optimality (i.e., at the end of the run we had an identical value
for upper and lower bound), while this is true for only a few problems with
|V| = 100. A further observation is that SS-CTP2 could never improve the
values of SS-CTP1, despite the increased computational effort due to the star
path generation. It appears therefore that in this case, the generation of star
paths is not worth the resources allocated to it. Finally, we want to point out
that the comparison with Gendreau et al.’s heuristic is incomplete, as these au-
thors do not report CPU times for their heuristic: we must however emphasize
that their heuristic is much faster than scatter search, since in several cases they
have been able to solve to optimality a problem in less time than we used in our
scatter search.

Table 3.4 compares the results obtained by SS-CTP1 making use of the lower
bound derived from F2 and of the two-commodity based one of F3. The two
columns labelled LBO, reporting the bound value with no cuts added, show that
the two commodities bound is better than Gendreau et al.’s, as it consistently
produced higher values. We must however notice that the bound quality is in
general very poor, and that SS-CTP1 obtained better results when using the
worse LF2 bound. This is because cutting planes and separation procedures
have been studied specifically for F2, and little effort has been devoted for
doing the same for F3. Better valid inequalities will surely improve the results
obtainable by SS-CTP1 using LF3.
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Figure 3.5. Execution Trace

Finally, Figure 3.5 presents the trace of a run on a sample instance (75-1-
200). We report for each iteration the LF2 solution value, the SS-CTP1 solution
and the best solution obtained by rounding the optimal LF2 solution (UB-CTP).
Two observations are in order. The first testifies the effectiveness of generating
reference sets and recombining solutions (in fact SS-CTP1 is always below
UB-CTP). The second observation is the possibility inherent to SS-CTP1 to
detect the optimality of a solution: when LF2 becomes equal to SS-CTP1 (as
in Figure 3.5), then the current best solution can be defined to be optimal. This
is a possibility still uncommon in current metaheuristic approaches.

7. Conclusions

This paper presents a study on the possibility of applying the scatter search
approach to the covering tour problem. Despite its reported practical relevance,
the CTP has received little attention from the metaheuristic community, while
significant results have been obtained by more mathematically oriented meth-
ods. We identified scatter search, with special reference to the method proposed
in Glover, (1995), as a highly promising means to encompass polyhedral results
in a metaheuristic framework.

Following Glover’s two more normative publications on scatter search, Glover,
(1995), and Glover, (1997), we designed three scatter search algorithms for the
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CTP: one which makes no use of cutting planes, one which uses them and the
third one which uses both cutting planes and star paths.

Further contributions of this work include a new mathematical formulation
for the CTP, based on a 2-commodity approach as proposed in Baldacci, (1999),
and Baldacci et al., (1999), which is the basis for obtaining a new lower bound
for the problem, and new simple but original problem reduction rules.

We tested all contributions on a problem testset previously proposed in Gen-
dreau et al., (1995). The problem reductions proved to be more effective
for problems with larger numbers of mandatory nodes in the solutions, the
2-commodity bound proved to be tighter than the LP relaxation used in previ-
ous studies. More work needs to be done on this new model, however, in order
to improve the effectiveness of the valid inequalities which can be added to the
basic LP-relaxation.

As for the scatter search approaches, we find that both cutting plane-based
algorithms outperform the primal-only approach, and that star paths add no
contribution to the generate-and-recombine SS-CTP1 algorithm. Again how-
ever, we must point out that to the best of our knowledge this is the first time the
two approaches have been combined, thus more work needs to be done before
claiming definitive results about the superiority of one technique over another.
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SOLUTION OF THE SONET RING ASSIGNMENT
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Abstract Synchronous Optical Network (SONET) in North America and Synchronous
Digital Hierarchy (SDH) in Europe and Japan are the current transmission and
multiplexing standards for high speed signals within the carrier infrastructure.
The typical topology of a SONET network is a collection of rings connecting all
the customer sites. We deal with a design problem in which each customer has
to be assigned to exactly one ring and these rings have to be connected through
a single federal ring. A capacity constraint on each ring is also imposed. The
problem is to find a feasible assignment of the customers minimizing the total
number of rings used. A Tabu Search method is proposed to solve the problem.
The key elements are the use of a variable objective function and the strategic
use of two neighborhoods. We have also implemented other techniques such as
Path Relinking, eXploring Tabu Search and a Scatter Search. Extensive compu-
tational experiments have been done using two sets of benchmark instances. The
performances of the proposed algorithms have also been compared with those
of three multistart algorithms involving greedy methods previously proposed for
the problem, and of the CPLEX solver. The computational experiments show the
effectiveness of the proposed Tabu Search.

Keywords:  Metaheuristics, SONET, Graph Partitioning

1. Introduction

Synchronous Optical Network (SONET) in North America and Synchronous
Digital Hierarchy (SDH) in Europe and Japan are the current transmission and
multiplexing standards for high speed signals within the carrier infrastructure.

A typical topology of a SONET network is a collection of local rings or
simply rings directly connecting a subset of customer sites or nodes. Each
node sends, receives and relays messages through a device called add-drop-
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multiplexer (ADM). In bidirectional rings the traffic between two nodes can be
sent clockwise or counterclockwise, and the volume of traffic is limited by the
ring capacity, which is equal in both directions. The capacity of the bidirectional
ring has to accommodate the sum of bandwidth requests between all pairs of
nodes connected by the ring. Finally, all rings are connected together by a
special ring called federal ring through an expensive device, the digital cross
connect (DXC), which joins each ring to the federal ring.

With this topology, the traffic between two customers may use up to three
rings. A different design choice imposes that the traffic between two nodes is
always transmitted using only onering. Inthis case, a customer may be assigned
to several rings. A design problem requiring this topology has been considered
in Laguna, 1994, where a mathematical model and Tabu Search algorithm are
presented.

local rings ‘

-~ customers

Figure 4.1. A SONET network

In this paper we deal with a basic design problem using the first topology
and requiring that: i) each customer has to be assigned to exactly one local ring;
and ii) the maximum capacity of each ring is bound by a common value. We
want to minimize the number of local rings, that is the cost of DXCs installed.
This problem is called SONET Ring Assignment Problem (SRAP) with capacity
constraints. An example of SONET network is given in Figure 4.1.

Fixing the number & of rings required, we derive a parametric version of the
problem called k-SRAP. Goldschmidt, Laugier and Olinick (Goldschmidt et al.
2003) have shown that SRAP is N/P-complete by reducing the 3-Regular Graph
Bisection Problem to a special case of SRAP and proposed three randomized
greedy algorithms to solve it.

Mathematical formulations for SRAP are presented in Section 2. In Section 3
we briefly describe the greedy algorithms proposed in Goldschmidt et al. 2003.
In Section 4 we introduce a basic Tabu Search (BTS) for solving the problem.
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BTS is then improved implementing several intensification and diversification
strategies. The strategic use of two neighborhoods leads to a Tabu Search with
Strategic Oscillation (TSSO) which is reported in Section 5. Path Relinking,
eXploring Tabu Search and Scatter Search approaches are reported in Section 6.
Extensive computational results are reported in Section 7, and some conclusions
are presented in Section 8.

2. Mathematical Formulations

We introduce the following notation: let n be the number of nodes, B the
common capacity bound, d, the symmetric traffic demand between the pair
of nodes v and v (u,v = 1,...,n, u # v) and W,, = Zv#u dyy the total

traffic on node u (u = 1,...,n). Let us define the binary variables: py,, =1
(w,v=1,...,n,u#v,r=1,...,n)if nodes u and v belong both to ring r,
Puwr = 0 otherwise; zy = 1(u=1,...,n,r =1,...,n)if node i is assigned
to ring 7, - = 0 otherwise; y, = 1 (r = 1,...,n) if ring r is used, y» = 0

otherwise. A model for SRAP derived from that presented in Goldschmidt et al.
2003, is the following:

SRAP :min Zy’

n
s.. ZxWWu Z Z Purduy < B, =1,.,n  (4.1)

u=1v=u+1
n n—-1 n

=1
DA NP SEINES. @

u=1 r=1u=1v=u+1

n
Zzw= 1, u=1,.,n (4.3)
r=1

Duvr < Tyry, T=1,..,n, {u,v=1 . njlu<v} @4
Puvr < Zyr, T=1,.,n, {u,v=1,.,nlu<v} (45)
Tyr <Yr, u,r=1,.,m, (4.6)
Tur, Puor € {0,1}, 7=1,.,n, u,v=1,..,n

Constraints (4.1) and (4.2) assure, respectively, that the bounds on the total
traffic through each ring and through the federal ring are satisfied. Constraints
(4.3) assure that each node is assigned to exactly one ring. Constraints (4.4)-
(4.6) impose the congruence of the sets of variables. The objective function is
to minimize the number of rings.

It is worth noting that this formulation is not useful for solving the problem
with a commercial and general purpose code (e.g. CPLEX), due to the enormous
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computing times. A model with only constraints (4.1)-(4.5) and no objective
function can be used for checking the feasibility of an instance. We adopted
this method in Section 7.

A graph theory model for SRAP can be defined as follows. Let G = (V, E)
be the graph representing the SONET network (V' is the set of customer’s nodes)
and d;; the cost of edge (¢, j) € E. The problem of finding a solution for SRAP
corresponds to finding a partition Vi, V3, ... V. of V into disjoint sets such that
k is minimized and

Y > dw<B, i=1,..,k (4.7)

ueV; veVu#u
k—1

> ij > > dw<B (4.8)

i=1 j=i+1u€V; veV;

where (4.7) and (4.8) assure, respectively, that the bounds on the total traffic
through each ring and through the federal ring are satisfied.

3. Previous Work

Goldschmidt, Laugier and Olinick (Goldschmidt et al. 2003) have proposed
three different greedy heuristics for solving SRAP: the edge-based, the cut-
based and the node-based heuristics. Both the edge-based and the cut-based
heuristics start their computation assigning each node to a different ring, and, at
each iteration two different rings are merged if the resulting ring is feasible. In
the edge-based heuristic, the edges are ordered by non decreasing weight and
the pair of rings connected by the maximum weight edge is chosen. In the cut-
based heuristic the pair of rings sharing the maximum traffic is chosen. Both
the edge-based and the cut-based heuristics start their computation assigning
each node to a different ring.

Finally, the node-based heuristic receives a tentative number of rings & as
input, then assigns to each of the % rings a node randomly chosen. At each
iteration the heuristic selects the ring with the the largest unused capacity, say
r, then, the unassigned node with largest traffic toward ring r is chosen and
added to the ring. The node-based heuristic is repeated ten times and every
time a feasible solution is computed the value of k is decreased by one.

These heuristics are applied by the authors to a set of benchmark instances. A
feasible k is computed by running the edge-based and cut-based heuristics and
given as input to the node-based heuristic. Note that both the edge-based and
cut-based heuristics may have different behavior if different tie break rules are
used. Therefore the authors propose to repeat these procedures ten times and
to choose randomly how to break ties. When the heuristic solution is feasible
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with a value greater than the simple lower bound

dm)
b = [————Z“ 22; 1 , (4.9)

a tentative to prove the optimality of the heuristic solution is performed by
means of CPLEX.

4. Basic Tabu Search

We propose a solution algorithm based on a Tabu Search (TS) scheme which
explores the space of the possible partitions of graph G looking for a partition
associated with a feasible solution of SRAP with a minimum number of rings.

In order to simplify the presentation we introduce the following notation.
Let r be a ring index. The traffic values with respect to ring r are:

I, = Z dyy (total internal traffic)
wVET,UEV

E, = Z dyy (total external traffic)
uET,VET

T.=I.+ E, (total traffic on the ring r)

Note that a ring r is feasible if 7, < B. Given a node u define:

War = Z dyy  (total traffic toward node u from the ring )

vETVEU
Wy = Z duyy (total traffic toward node w)
vEU
Observe that
Wu=3Y Wur
Finally define:
5, Br |
F= = (total traffic through the federal ring)
BN = max( F, max T,) (network bottleneck) (4.10)
T

4.1 Neighborhood INV; and Traffic Value Update

The basic Tabu Search (BTS) uses a node improvement neighborhood, say
Nj, which, starting from a given solution (feasible or unfeasible), moves in turn
each node from its ring to a different one or to a new ring, such that the resulting
ring (existing or new) is feasible.
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In Figure 4.2 an example of move generated by /V; is depicted: the node u
is moved from the ring s to the ring ¢; the dotted region represents the federal
ring and r is a generic ring such that » # s,t. We observe that moving « from

_ Federal ring

Figure 4.2. Neighborhood N;: u is moved from s to ¢

s to t modifies the following traffic values: T, T, ' and possibly BN.
In Figure 4.3 we depict the traffic values before and after moving node u
from ring s to ring ¢.

@ ' ur/,.
PR

Federal rmg s

/

Figure 4.3. Neighborhood Ny : traffic values
Note that traffic 7 decreases by

Wu,t + Z Wu,r = Wu - Wu,s-

r#8,t

Analogously traffic T; increases by
Wu,s + Z Wu,r = Wu - Wu,t-

T#8,t

Further note that the traffic F* on the federal ring F' varies by W, s — Wy, .
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Therefore the modified traffic values after moving u from s to ¢ are:

Ty =T, — Woy + Wy (4.11)
Ty =Ty + Wy — Wy (4.12)
F=F—Wy:+ Wy, (4.13)

where the hat symbol denotes the modified values.

Using the updated values (4.11)-(4.13) we can compute the new bottleneck
and evaluate the new solution.

After selecting the best move in Vj, it is necessary to update the data struc-
tures. Considering again Figure 4.3, we observe that W,, , is decreased by d,
while W, , is increased by d,,,. Instead traffic W, , with v # u and r # s,¢
does not change, hence

Wyr—dyy T=85, vESs
Wyr=SWyr+dy r=t wvet. (4.14)
Wyr otherwise

4.2 Tabu Lists

We have used two tabu lists to avoid visiting, for a certain period, already
visited solutions.

The first list called node-list stores the nodes visited in the last iterations.
A node contained in node-list is not taken into account when exploring the
neighborhood.

The second list called node-from-list stores the moved nodes within the iden-
tifier of the original ring from which the node has been removed. During the
exploration of the neighborhood we avoid inserting a node stored in this list
into its original ring.

We maintain the length /; of node-list smaller than the length & of node-
from-list in order to fix a node for [; iterations (node-list) and then to forbid its
return to the original ring for } other iterations (node-from-list).

The list length varies during the search (see e.g. Dell’ Amico and Trubian,

1 3 .
1998) between — and 2 of a given tabu-tenure value. We decrease |; and I to

intensify the search within promising regions, whilst we increase them to speed
up the leaving from not promising regions. We define an improving phase a
set of Aip consecutive iterations which lower the objective function. On the
contrary, a worsening phase is a set of Awp consecutive iterations such that the
objective function value does not improve. The initial values of § and Iy are
respectively equal to tabu-tenure; and tabu-tenure; and vary as follows:

1
l; = max(l; — 1, §tabu-tenure,-), i=1,2 4.15)
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after an improving phase and
. 3 .
l; = min(l; + 1, Etabu—tenurei), 1=1,2 (4.16)

after a worsening phase. On the basis of a set of preliminary experiments, we
set the parameter values as reported in Table 4.1.

Table 4.1. Tabu List: values of parameters controlling the length of tabu lists

values 2 2
tabu-tenure 5 10
Aip 5 5
Awp 3 3

4.3 Objective Functions

In order to drive the search toward feasible and good solutions we have to
take into account both the number of rings k£ and the value of the bottleneck
BN. We have defined the following tentative objective functions:

z1 = k +max{0, BN — B},

b

kT, if a new ring c has been created
Zo =21+ .
0 otherwise

z3 =kB + BN.

Function z; leads the search toward solutions with a small number of rings
while penalizing unfeasible solutions. Function z modifies z; by strongly
penalizing moves creating a new ring. Finally, function 2 leads the search
toward solutions with a minimum value of k, and among these toward solutions
with minimum bottleneck value..

We observed that the expected solution improvement depends on the fea-
sibility status of the current solution. For example, if the current solution is
feasible and a move creates a new feasible solution, then we are interested in
minimizing k. On the contrary, if the current solution is unfeasible and a move
creates a new unfeasible solution, then we would like to minimize BNN. There-
fore we have studied a further multiobjective function which drives the search

taking into account these different cases. Denoting with BN the bottleneck



Solution of the SRAP with Capacity Constraints 101
values associated with unfeasible solutions, we define:

(k B+ BN if the move starts from a feasible solution
and generates a feasible one

(k+ I)EJVV if the move starts from a feasible solution
and generates an unfeasible one

24 = . .
4 kB if the move starts from an unfeasible solution
and generates a feasible one
n BN if the move starts from an unfeasible solution

and generates an unfeasible one

Since for a feasible solution k B+ BN < (k+1)B, (k+1)B < (k+ 1)3\1/\1
and k B < n BN, then z4 drives the search from unfeasible solutions to feasible
ones. Note that z4 is a sort of extension of z3.

4.4 Procedure BTS

After reading the input instance and initializing the main data structures, the
Basic Tabu Search BTS starts a main cycle which is repeated until MaxTime
seconds have elapsed.

At each iteration, the best move M owve is selected by the function BestMove.
If Move # {, the current solution Sol is modified (Update( M ove, Sol )) and
the best solution Best is updated if 2(Sol) < z(Best).

The update phase concerns both the parameters controlling the length of tabu
lists and the traffic values: the parameters are updated with respect to the ob-
jective function improvement (z(Sol) < z) while the traffic values are updated
according to the equations (4.11)-(4.14) by procedure UpdateTrafficValues.

The tabu lists are updated by the UpdateTabuList procedure: if Move # {,
M ove is inserted in the node-list and node-from-list, otherwise a dummy move
is inserted. Then, if ip = Aip or wp = Awp, the length of the tabu lists are
updated as in (4.15) and (4.16).

The pseudo-code of the BTS algorithm is as follows.

BTS( Instance, MaxTime ) {

GetData( Instance );
Init( Move, Sol, Best ),
Compute( W, ., W, T, F, BN );
Elapsed = 0; Starting := Now( );
while ( Elapsed < MaxTime ) {

M ove := BestMove( Sol, N; )

if (Move #0) {

z = z(Sol);
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Sol := Update( Move, Sol);
if (z(Sol) < z(Best) ) Best:=Sol;
if (z(Sol) <z){ip:=ip+ 1, wp:=0;}
else {wp:=wp+1;ip:=0; }
UpdateTrafficValues( Move, Wy, T\, F, BN );
|5
UpdateTabuList( Move, ip, wp );
Elapsed = Now( ) - Starting;
|5

return( Best );

.

At the end of the computation the best solution computed is returned as
output of the procedure.

4.5 Complexity of Neighborhood Evaluation

The neighborhood evaluation is the most time consuming component of the
whole algorithm. We observe that in the worst case each of the n nodes can
be moved into n — 1 rings. Since the computation of the best move requires
the assessment of all the possible moves, the neighborhood evaluation of
needs to generate O(n?) moves. We also observe that all the objective functions
proposed in §4.3 require the computation of BIN. As described in §4.1, moving
u from s to ¢ can increase or decrease the BN value.

Figure 4.4. Neighborhood Ny: variation of BN value

We illustrate this case in Figure 4.5 where the node u, which is connected
only with v/ € s, v” € t and v" € r, is moved from s to ¢. Suppose that:
F =280,T; = 85,17, =100, T, = BN = 110, dy,y = 15, dy,v = 5 and
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duyr = 7. Applying the equations (4.11)-(4.13), we obtain

T\s = Ts — (duv” + duv’”) = 98
j\-'t = Tt -+ (duv” + du,v///) = 97
1/:1\ =F + (du’u/ - du,vn) =90

and 7. is not modified. The new value of BN is now equal to 7. = 100, hence
it is decreased. On the other side, if 7; = 100 the new value of BN increases
to 112. N

As shown in the above example, the computation of BN involves not only7};
and F', but also all the T;. values with r # s, ¢, hence an O(n) time is required
to compute BN after each node movement and the neighborhood evaluation is
done in O(n?) in the worst case.

This complexity can be reduced to O(n? logn) maintaining a heap data
structure to order the 7, values. Some special cases (e.g. when BN = T;)
can be also considered to reduce the average computation time. However, in
the practical application (see Section 7), the number of rings is small and no
special implementation is required.

S. Tabu Search with Strategic Oscillation

The computational experiments performed (see Section 7, Table 4.4) show
that procedure BTS is not very effective to solve SRAP hence we have tried to
improve it by means of a simple variable neighborhood strategy consisting in a
further neighborhood N, and a switching rule to substitute /V; to Na and vice
versa.

Employing only the neighborhood N;, BTS often terminates its computation
returning a solution containing £ large rings and a single ring, say r, containing
few nodes. In these cases, we expect that a local optimal solution with & rings
can be obtained spreading the nodes belonging to r over the remaining & rings.
However BTS is not able to find this solution since moving all but one nodes
belonging to r increases the bottleneck while it mantains the same number of
rings.

The introduction of the empty minimum cardinality ring neighborhood, say
Na, is aimed at dealing with this kind of solution: a node belonging to r is
compulsively moved to one of the remaining rings without taking into account
the feasibility of the new solution.

The switching of N; to Ns is controlled by two conditions:

condition C}: a number i,; of consecutive not improving iterations has been
performed;

condition Cy: the current solution is feasible.
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At each iteration we check condition C;, C» or both (see Section 7 for
implementation details) and, if necessary, we transform the current solution
into a new one through neighborhood N, (NewSol()).

We insist with neighborhood N; until the minimum cardinality ring has a
single node. At this point, /V; is applied once again and we return to /V; for the
next iterations.

This is a particular implementation of the strategic oscillation technique in
which we have only two neighborhoods and the second one is applied for a
fixed number of iterations, namely the cardinality of the minimum cardinality
ring.

A possible pseudo-code of our TS with Strategic Oscillation (TSSO) algo-
rithm is as follows.

TSSO( Instance, MaxTime ) {
GetData( Instance );
Init( Move, Sol, Best ),
Compute( W, ., W,,, Tr., F', BN );
Elapsed = 0; Starting := Now( ),
switch = FALSE;
while ( Elapsed < MaxTime ) {
Move = BestMove( Sol, N; )
if (Move #0){
z:=z(Sol);
Sol := Move( Move, Sol ),
if (2(Sol) < z(Best) ) Best:=Sol;
if (z(Sol) < 2){
ip:=ip+ L;wp:=0; i, :=0; }
else {
wp=wp+1;ip=0; iy =ip +1;}
UpdateTrafficValues( Move, T, ,, T, F', BN );
¥
UpdateTabuList( M ove, ip, wp, in; );
if( Check( Ci, Cg ))
Sol ;= NewSol( Sol, N3 ),
Elapsed = Now( ) - Starting;
b

return( Best);

}

Note that procedure NewSol() consists of a number of moves with neighbor-
hood N> which spread the nodes belonging to the minimum cardinality ring to
the remaining rings.
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feasible or unfeasible

e
( ./\C r e e
local optima

Figure 4.5. Switching N, and Nz: exploration of the solution space

A typical exploration of the solution space obtained by switching M and
Ny is depicted in Figure 5 where a black circle is a solution, a solid arc is a
set of moves generated by N} and a dashed arc is a set of moves generated by
Na. After some moves, the search reach = and the neighborhoods are switched;
a new solution is obtained by spreading the nodes belonging to r over the
remaining & rings.

The technique of switching V; and N is similar to the strategic oscillation
described in Glover and Laguna, 1997, which operates by orienting moves in
relation to a critical level. A critical level usually identifies a solution such that
the normal search would not be able to improve. For example, a desired or
undesidered form of a graph structure. When the critical level is reached, the
strategic oscillation changes the rules of selecting moves in such a way that the
critical level is crossed, that is the solution should be improved. In Figure 5, the
critical level can be represented by the dotted region around the local optima
TL.

Finally, we note that all the possible moves generated by Ny are O(n?),
hence also the evaluation of N, has computational complexity O(rn3).

6. Other Intensification and Diversification Strategies

Path Relinking (PR) (Glover, 1999), eXploring Tabu Search (XTS)
(Dell’Amico et al. 1999) and Scatter Search (SS) (Glover, 1997, Glover,
1999, Glover et al. 2000) are strategies aimed to intensify the search into
promising regions or to diversify it generating new restarting solutions. They are
successfully applied to several optimization problems. We have implemented
all these techniques to compare their results to those obtained by TSSO.

‘We use the main ingredients of PR and XTS to differentiate the search within
our tabu search when necessary. More precisely, we use the same framework of
TSSO by replacing procedure NewSol with a method for generating a diverse
solution based on PR or XTS.
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We implemented SS along the guidelines of Laguna, 2001. SS can be in-
tended as a general methodology in which the intensification and diversification
phases are driven by a set of solutions. These solutions are then combined to
generate further solutions. Our main concern is to exploit the techniques em-
bedded in SS to improve the quality of the solution computed by BTS.

This Section is organized in three subsections describing the proposed algo-
rithms: PR (§6.1), XTS (§6.2) and SS (§6.3).

6.1 Path Relinking

A relinking path is a set of moves connecting two different solutions. It can
be defined as the more direct route or the fewest number of moves to connect
two different solutions. Clearly, a relinking path is also a sequence of solutions.

An example is reported in Figure 4.6: the original path is shown by the solid
line while the relinking one is shown by the dashed line.

Figure 4.6. PR: example from Glover et al. 2000

The basic idea of PR is to generate a new solution by choosing one of those
along the relinking path.

We consider two different assignments 2/ and z” of nodes to rings. The
hamming distance

VW
H(, o) = Z Mixu_rl 4.17)

2 T

returns the minimum number of moves required to get 2’ from z’. Let Mpg
be this set of moves. Looking at Figure 4.6, Mppg contains all the four moves
denoted by the dashed line.

We propose two PR implementations. The first one, say PRI, generates
the set Mpp, relinking the current solution to the best one. Then, | Mpgr;/2]
moves have been selected from Mpg; in such a way that the objective function
is minimized.
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The second PR implementation proposed, say PR2, try to augment the di-
versification by considering more paths at the same time. Instead of relinking
the current solution to the best one, we maintain an elite solution set, say A,
containing a fixed number of best solutions computed during the search and
we generate all the paths from the current solution to the solutions in A. This
implementation has been proposed in Laguna et al. 1999.

An example of PR2 is depicted in Figure 4.7 where two different relinking
paths are generated by two solutions belonging to A.

best solutions local optima
[, o)
f\‘ '/ \ ‘-;‘T .
E X N
b, o R
e ® b
\

current solution

Figure 4.7. PR2: relinking paths

6.2 eXploring Tabu Search

The N; evaluation can generate many solutions which have quite similar
objective function values. The basic idea of XTS is to adopt a long term memory
structure to record them. Then, any of these solutions can be used to restart the
search.

//"‘\./"0-___—'.—‘
\’Q
*- .\w
\\._\ \
X

Figure 4.8.  XTS: restarting and exploration with two stored solutions

An example of XTS is given in Figure 4.8: the dashed lines represent the
solution space explored restarting the search from two different recorded solu-
tions.

As already done in Dell’ Amico and Trubian, 1998, our XTS implementation
stores the second best not-tabu solution computed during each M evaluation.
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These solutions are collected in a fixed length list called second-list (S L) with
a copy of the tabu lists and the search parameters in order to restart the search
with the same conditions encountered when the solution was inserted in the list
SL.

local optima
Xsecond

~ - - PR 8
,\ ~( \ “ \‘//’ .
. " S.

M
current solution

Figure 4.9. XTS: expected behavior of the search

Figure 4.8 reports an example of restarting phase employing XTS. Exploring
N; from z we reach Zyirg and Tgecong: solution xyirs is selected whereas
solution Zgeconq is stored in SL. When we reach Z, condition C) and Cs tell
us to diversify the search so we restart the search from Zyecong.

6.3 Scatter Search

SS is a general methodology in which the intensification and diversification
phases are driven by a set of solutions called Reference Set which is composed
of a subset of high quality solutions (H@)) and by a subset of diverse solutions
(DV).

Let:

Du(z,z) = 0 if u belongs in the same ring both in x and =
" }1 otherwise ’

The function measuring the diversity of x with respect to the best solution Z is
n

D(z,z*) = > Du(z,z"). (4.18)
u=1

Our implementation traces the general scheme proposed in Laguna, 2001.
We report only the methods which are specific for SRAP:

m Diversification Generation Method. We iteratively generate pairs of ran-
dom solutions with h = 2,... k; + 10 rings. In the first solution, we
randomly assign each node to one of the h rings. The second solution
is built from the first one by moving each node to a randomly chosen
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different ring (when h = 2 a node is moved to the other ring with 0.5
probability).

»  Solution Combination Method. We combine the solutions belonging to
the Reference Set to obtain a new, possibly better, solution by means of
the following score function:

3 jes #(@)ehr
Sygp = —om————
v > jes # (7)
where 2(z7) denotes the objective value of the j-th solution 2/ belonging

to a subset S of the Reference Set. Then, the new solution Z is equal to
Ty = 1if 8y = max, Sy, Tu,r = 0 otherwise.

(4.19)

» Improvement Method. We tested two different techniques to enhance the
quality of the solutions generated: the first is a pure Local Search (LS)
based on neighborhood N ; the second one is our procedure BTS.

The objective functions used with SS are z and a modified version of z:

zZ4 =

. k B+ BN if the solution is feasible
n BN otherwise.

Note that the original 2z, cannot be used with SS since it is based on the concept
of move, but it is used within the improvement method.

Each new solution Z is inserted in H Q) if its objective function value is better
than that of the worst solution in H(). On the other side, a new solution is
inserted in DV if

Irél}{% D(z,z) > i‘éiB {xlél}{lb D(y,x) } .

At the beginning, procedure Init initializes the reference set with the feasible
or unfeasible solutions computed by the diversification generation method. Dur-
ing each iteration, the solution combination method (CombineSol) generates
some new solutions which could be inserted in the reference set (InsertRefSet)
after have being improved by ImproveSol procedure. The iteration terminates
when none of the new combined solutions is inserted. Before starting a new iter-
ation, SS tries to insert in the reference set some new solutions generated by the
diversification generation method (UpdateRefSet). A possible pseudo-code of
our SS is as follows.

SS( Instance, MazIters) {
GetData( Instance );
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Init( RefSet, HQ, DV );
Elapsed = 0, Starting .= Now(); Iters = 0;
for ( Iters 1 to MazIters)do {
Inserted := TRUE;
while ( Inserted ) {
Inserted .= FALSE;
for(h=2to5)do
for each (h-upla z1,...,z, € HQ U DV )do {
NewSol = CombineSol( z1,...,xp );
ImproveSol( NewSol );
Inserted := InsertRefSet( NewSol ),

b
b

if (Iters < MaxlIters)
UpdateRefSet( RefSet, HQ, DV );
|5

return{ HQ );
1

7. Computational Results

The algorithms described in the previous Sections were implemented in
ANSI C language and tested on a Linux PC Pentium IT1I/600 with 524 Megabytes
of main memory. Computational experiments have been made using two sets
of benchmark instances, referred to as B1 and B2.

71 Benchmark Instances B1

The set B1 has been generated by Goldschmidt et al. 2003, and used to
test their greedy algorithms. It contains 160 instances separated in two sets of
instances:

s 80 geometric instances representing natural cluster, that is the fact that
customers try to communicate more with their close neighbors than with
their distant ones;

m 80 random instances.

The traffic demand between two nodes is determined by a discrete, uniform
random variable indicating the equivalent number of T1 lines (a T1 line has
a capacity of 1.544 Mbs) required for the estimated traffic. Each set contains
both high and low demand graphs. The 40 high demand graphs have the ring
capacity B set to 622 Mbs and demand generated in [11, 17] while the 40 low
demand instances have B = 155 Mbs and demand generated in [3, 7]. Finally,
the dimension of the instances is 15, 25, 30 and 50 nodes (10 instances each).
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The reported results concern only the 118 instances proved to be feasible by
optimally solving SRAP using CPLEX (the remaining 42 instances are unfea-
sible). The feasible instances have been solved by CPLEX within an average
computing time of 20 minutes (with a maximum of 23 hours) whereas the
unfeasibility of an instance has been proven within 57 hours, on average.

We have also implemented the greedy randomized procedures of Gold-
schmidt et al. 2003, and run each procedure with 1(° restarts. With these
algorithms 110 out of 118 instances are solved. Note that the three greedy
algorithms with 10° restarts run for about 1 minute to solve an instance with 15
nodes and more than 1 hour for an instance with 50 nodes.

The maximum running time has been set to 3 seconds for all algorithms,
except SS which terminates after 5 iterations for the version with LS and 1
iteration for the version with BTS.

In Table 4.2 we report the average computation time in milliseconds (avg. ms)
and the number of instances optimally solved by TSSO (#). Procedure TSSO
was tested using both conditions C; and C5, one of them or none. Parameter
in; in Cy was set to 10. Using the multiobjective function z, all the feasible

Table 4.2. TSSO: avg. computation time in milliseconds and # of instances optimally solved

Z1 22 23 24

C1,C2 avg. ms # avg. ms # avg. ms # avg. ms #
YY 58.0 116 676 112 433.8 8 96.4 118
Y, N 334 99 374 96 - 6 41.7 100
N Y 54.1 116 533 113 — 1 604 118
N,N 98.6 98 110.1 98 3933 88 286.1 90

instances are solved setting both conditions (j and C; or only Cs. Using only
C5 TSSO has the best average computation time.

Table 4.3 highlights the results concerning the instances not solved with the
greedy algorithms. We report the simple lower bound value ky (defined by
(4.9)) and the optimal solution value k* (obtained with CPLEX). The results
show the effectiveness of 2 and z4 to drive the search while 2 fails to find a
feasible solution for two instances and one is not optimal; z fails to solve all
the instances proposed.

The results reported in Table 4.4 highlights the effectiveness of the diversifi-
cation method based on neighborhood /N, to improve the quality of the solutions
computed by BTS: BTS solves the 84,5% and the 76,3% of instances solved by
TSSO with only condition C; when the objective function used is z and zg4,
respectively.

Table 4.5 reports the results obtained running PR1, PR2 and XTS. The param-
eters of these procedures have been defined through preliminary experiments
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Table 4.3. TSSO: instances not solved by the greedy algorithms

21 22 &z
instance n m kip k” k ms k ms k ms
RH.15.3 15 53 2 3 3 0 - - 3 0
RH.30.10 30 64 3 3 3 280 4 10 3 60
RH.50.3 50 89 4 4 4 1240 4 1950 4 280
RH.50.4 50 89 3 4 4 240 4 330 4 250
RH.50.7 50 90 4 5 5 270 5 320 5 260
RL.25.1 25 51 3 4 4 30 - - 4 30
RL.30.3 30 58 3 4 4 20 4 10 4 10
RL.30.6 30 56 3 4 4 20 4 20 4 20
Table 4.4. Comparison of the performances of BTS and TSSO

21 22 23 %4
avg. ms # avg. ms # avg. ms # avg. ms #
BTS 98.6 98 110.1 98 3933 88 286.1 90
TSSO 541 116 533 113 - 1 60.4 118

as follows. Only condition (; is tested, i,,; = 50, 75 and 150 for PR1, PR2
and XTS, respectively. The cardinality of the elite set of PR2 was fixed to 15
and the length of the second-list was set to n. Algorithm PR2 dominates the
other methods, but the performances of the three algorithms are similar. Also
note that, in contrast with the behaviour observed for TSSO and BTS, method
PR and XTS has significantly better performances with 2 rather than z4 and
without checking condition (5. We observe also that PR1, PR2 and XTS solves

Table 4.5. Performances of PR1, PR2 and XTS.

PR1 PR2 XTS
z avg. ms # avg. ms # avg. ms #
z1 94.2 102 114.4 106 152.9 103
22 84.8 99 127.7 104 191.5 98
23 412.5 97 537.9 102 368.2 88
24 388.0 97 2455 97 273.8 87

less instances than the greedy algorithms.

Table 4.6 reports the gaps, in terms of rings, for the instances not optimally
solved by PR1, PR2 and XTS employing objective function 2. It is interesting
to observe that the maximum gap for PR2 is one, whereas PR1 and XTS have
gaps up to 5. As expected, PR2 exhibits superior performance.
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Table 4.6. Gaps for instances not optimally solved by PR1, PR2 and XTS using 2,

Gap (# of rings) PR1 PR2 XTS
E+1 11 12 9
E 42 2 0 3
k" +2 3 0 3
Total 16 12 15

Table 4.7 reports the results obtained by SS using LS (SS-LS) or BTS (SS-
BTS) as improvement method.

Table 4.7.  SS: results of SS using as improvement methods LS or BTS.

SS-LS SS-BTS
z avg. ms # avg. ms #
21 566.1 87 1468.2 116
24 1100.4 84 8593.1 113

For procedure SS-LS we set the number of high quality solutions and the
number of diverse solutions to 15 and we gave a limit of 5 iterations. For SS-
BTS, the cardinality of the two sets was fixed to 20, one iteration was performed
and a limit of 20 milliseconds was given to each run of BTS.

Using SS-LS we obtain very poor performances with a significant computing
effort. Procedure SS-BTS has better performances than the pure BTS, but with
very high computing times. This confirms the effectiveness of the intensification
and diversification strategies embedded in SS.

7.2 Benchmark Instances B2

We have generated further benchmark instances in order to provide more
computational results for our algorithms. The main idea is to generate harder
instances with respect to those belonging to B1. We define as hard a feasible
instance such that the greedy algorithms are not able to find the optimal solution,
within a reasonable computing time.

We have generated 230 instances by taking the 42 unfeasible instances of
B1 and randomly eliminating traffic demands until we reduce the total traffic
of an amount greater than or equal to the difference between the value of the
bottleneck ring in the (unfeasible) solution computed by TSSO and the bound
B. We insert an instance in B2 if 103 restarts of the greedy algorithm determine
a solution worse than the best one computed by CPLEX.
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The distribution of the new instances among geometric and random graphs,
high or low demand and the various values of n, are reported in tables 4.8a
and 4.8b. Note that all the 230 instances are feasible. We tried to solve these
instances giving the greedy algorithm a limit of 1(P restarts, but we obtained
only 46 feasible solutions.

Table 4.8a. Set B2: Distribution of geo- Table 4.8b. Set B2: Distribution of the
metric and random instances in B2 instances by cardinality
High Low Total 15 25 30 50 Total
Geometric 70 70 140 n 50 40 50 90 230
Random 20 70 90
Total 90 140 230

Table 4.9 reports the results obtained by TSSO algorithm with objective
functions z; and 24 and the same parameter values used for the instances in B1.

Table 4.9. TSSO: results for instances in B2

z TSSO
C1 and Cs only C2
avg. ms # BTS avg. ms # BTS
z1 1375 230 12 117.3 230 15
22 121.8 190 13 112.5 190 15
z3 409.4 16 - - 0 -
z4 1358 225 14 110.7 225 17

We report the average computation time in milliseconds, the number of fea-
sible solutions obtained and the number of solutions with fewer rings than those
computed by BTS.

Although TSSO with z4 solves all the instances in B1, it does not find a
feasible solution for 5 instances in B2. However, TSSO with z always finds
a good feasible solution for all the instances in B2. We note that the average
computation time is increased with respect to that of Table 4.4 but this is mainly
due to the larger number of instances with 50 nodes.

Table 4.10 reports the results obtained by PR1, PR2 and XTS on set B2 using
the same parameter adopted for solving the instances in B1 again. The results
confirm the effectiveness of PR2 with respect to PR1 and XTS.

Table 4.11 reports the performances of SS obtained adopting the same pa-
rameter values used to solve the instances in B1l. The results confirm the
effectiveness of SS with BTS as improvement method.
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Table 4.10. Performances of PR1, PR2 and XTS.

PR1 PR2 XTS
z avg. ms # BTS avg. ms # BTS avg. ms # BTS
z1 1294 228 14 198.7 230 17 2243 227 2
22 127.1 195 20 1749 193 23 2209 198 13
23 180.3 222 10 22577 223 27 2414 220 8
24 138.8 229 22 2019 230 26 200.7 226 13

Table 4.11.  SS: performances of SS on set B2

SS-LS SS-BTS
z avg. ms # BTS avg. ms # BTS
21 1022.9 118 0 2638.7 229 22
24 2432.6 165 2 3602.1 229 32

8. Conclusions

‘We have considered a basic problem arising in the designing of SONET net-
works, which can be formulated as a graph partitioning problem with capacity
constraints. We first introduced a Basic Tabu Search, then we improved it by
including diversification strategies based on Strategic Oscillation, Path Relink-
ing and eXploring Tabu Search. A pure Scatter Search algorithm has been also
implemented. The six resulting procedures have been tested through extensive
computational experiments using benchmark instances both from the literature
and new ones. As competitors we considered the only methods available in
the literature, namely three greedy algorithms, which have been executed with
10° restarts. The computational experiments show the superiority of the Tabu
Search method enhanced with a strategic oscillation. Moreover comparisons
of the different diversification methods are outlined.
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Abstract This paper deals with the classic job-shop scheduling problem with makespan
criterion. Some new properties of the problem associated with blocks are pre-
sented and discussed. These properties allow us to propose a new, very fast
local search procedure based on a tabu search approach. The central concepts
are lower bounds for evaluations of the moves, and perturbations that guide the
search to the more promising areas of solution space, where "good solutions" can
be found. Computational experiments are given and compared with the results
yielded by the best algorithms discussed in the literature. These results show
that the algorithm proposed solves the job-shop instances with high accuracy in
a very short time. The presented properties and ideas can be applied in many
local search procedures.

Keywords:  Job-Shop Scheduling, Makespan, Heuristics, Tabu Search

1. Introduction

The paper deals with the job-shop problem, which can be briefly presented
as follows. There is a set of jobs and a set of machines. Each job consists of
a number of operations, which are to be processed in a given order, each on
a specified machine for a fixed duration. The processing of an operation can
not be interrupted. Each machine can process at most one operation at a time.
We want to find the schedule (the assignment of operations to time intervals on
machines) that minimizes the makespan.

The job-shop scheduling problem, although relatively easily stated, is NP-
hard, and is considered one of the hardest problems in the area of combinatorial
optimization. This is illustrated by the fact that a classical benchmark problem
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(FT10) of 10 jobs and 10 machines, proposed by Fisher and Thompson (1963),
remained unsolved (to optimality) for more than a quarter of a century. Many
various methods have been proposed, ranging from simple and fast dispatching
rules to sophisticated branch-and bound algorithms. For the literature on job-
shop scheduling, see Carlier and Pinson (1989), Morton and Pentico (1993),
Nowicki and Smutnicki (1996b), Vaessens, Aarts and Lenstra (1996), Aarts
and Lenstra (1997), Balas and Vazacopoulos (1998), and Pezzela and Merelli
(2000), and their references. In this paper, we present new properties and
techniques which allows us to solve the large-size job-shop instances with high
accuracy in a relatively short time

The paper is organized as follows. In Section 2, the notations and basic
definitions are introduced. Section 3 presents the new properties of the problem,
moves and neighbourhood structure, methods to evaluate the moves, search
strategy, dynamic tabu list, perturbations, and algorithm based on a tabu search
approach. The central concepts are lower bounds for evaluations of the moves,
and perturbations used during the performance of the algorithm. Computational
results are shown in Section 4 and compared with those taken from the literature.
Section 5 gives our conclusions and remarks.

2. Problem Formulation and Preliminaries

The job-shop problem can be formally defined as follows, using the notation
by Nowicki and Smutnicki (1996b). There are: a set of jobs J = {1,2, ...,n},
a set of machines M = {1, 2,...,m}, and a set of operations O = {1, 2, ..., 0}.
Set O decomposes into subsets (chains) corresponding to the jobs. Each job
J consists of a sequence of o; operations indexed consecutively by (};_1 +
1,...,1j-1 + 0;), which are to be processed in order, where [; = >J_,oi,isthe
total number of operations of the first j jobs, j = 1,2, ...,n, ( = 0),and 0 =
> i=1 0i. Operation x is to be processed on machine y, € M during processing
time p;, £ € O. The set of operations O can be decomposed into subsets
My, = {z € O|uy; = k}, each containing the operations to be processed on
machine k, and my = | M|, k € M. Let permutation 7 define the processing
order of operations from the set M;, on machine k, and let T be the set of all
permutations on M. The processing order of all operations on machines is
determined by m-tuple 7 = (w1, T, ..., T ), Where m € Ij x Il X ... x II,,.

It is useful to present the job-shop problem by using a graph. For the given
processing order 7, we create the graph G(7) = (N, R U E(r)) with a set of
nodes NV and a set of arcs R U E(), where:

= N = OU{s,c}, where s and care two fictitious operations representing
dummy “start” and “completion operations, respectively. The weight of
node z € N is given by the processing time p;, (ps = p. = 0).
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0;—1

= R= ,Gl [ ful {1+, +i+ DYU{(s, Lo + 1)}
Jj=1i=
U {(lj-1+ 05,9}

Thus, R contains arcs connecting consecutive operations of the same job,
as well as arcs from node s to the first operation of each job and from the
last operation of each job to node c.

= B = 0 "0 (). muli+ ).

Thus, arcs in E(7) connect operations to be processed by the same ma-
chine.

Arcs from set R represent the processing order of operations in jobs, whereas
arcs from set F/() represent the processing order of operations on machines.
The processing order 7 is feasible if and only if graph G(7) does not contain a
cycle.

Let C(xz,y) and L(z,y) denote the longest (critical) path and length of this
path, respectively, from node z to y in G(7). It is well-known that makespan
Crnaz () for 7 is equal to length L(s, c) of critical path C(s, ¢) in G(). Now,
we can rephrase the job-shop problem as that of finding a feasible processing
order 7 € II that minimizes Ciy,,,(7) in the resulting graph.

¥(x)
(@]

Blx) Q== — — —— >0 )

o

a(x)

—  arcsfrom R
— > arcs from E(n)

Figure 5.1. Operation predecessors and successors.

We use a notation similar to the paper of Balas and Vazacopoulos (1998).
For any operation z € O, we will denote by a(z) and y(z) the job-predecessor
and job-successor (if it exists), respectively, of z, i.e. (a(z),z) and (z,v(z))
are arcs from R. Further, for the given processing order 7, and for any operation
z € O, we will denote by 3(x) and §(x) the machine-predecessor and machine-
successor (if it exists), respectively, of z, i.e. the operation that precedes z, and
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succeeds z, respectively, on the machine processing operation z. Inother words,
(B(z), ) and (x, 6(x)) are arcs from E(), see Figure 5.1.

Denote the critical path in G(7) by C(s,c) = (s,u1, ug, . .. , Uy, ), where
u; € 0,1 < ¢ < w, and w is the number of nodes (except fictitious s and
¢) in this path. The critical path C(s, c) depends on , but for simplicity in
notation we will not express it explicitly. The critical path is decomposed into
subsequences By, By, ..., By called blocks in 7 on C(s, ¢) (Grabowski, 1979;
Grabowski, Nowicki, and Smutnicki, 1988), where

1 Bk = (ufk’ufk-f'la '-'7ulk—-1:ulk)a 1< fk < lk <w, k= L2,..,r

2 By contains operations processed on the same machine,

k=1,2,...,r.
3 two consecutive blocks contain operations processed on different ma-
chines.
k-th block
N
~ ™~

< ©) =>0>0>0->0>0>0>e
Cls TGS U, N /W
ical path " " I '
o ert

k-th internal biock
s c

Figure 5.2. Block on critical path.

In other words, the block is a maximal subsequence of C(s,c) and contains
successive operations from the critical path processed consecutively on the
same machine. In the further considerations, we will be interested only in non-
empty block, i.e. such that |By| > 1, or alternatively fi < li. Operations uf,
and u;, in B, are called the first and last ones, respectively. The k-th block,
exclusive of the first and last operations, is called the k-th internal block, see
Figure 5.2.

A block has advantageous so-called elimination properties, introduced orig-
inally in the form of the following theorem (Grabowski, 1979; Grabowski,
Nowicki, and Smutnicki, 1988).

THEOREM 5.1 . Let G(w) be an acyclic graph with blocks By, k = 1,2, ..., 7.
If acyclic graph G(w) has been obtained from G() through the modifications
of 50 that Craz (W) < Craz (), then in G(w)

(i) atleastone operationx € Byprecedesjobuy, , forsomek € {1,2,...,7},
or

(ii) atleastoneoperationx € By succeedsjobu,, forsomek €{1,2,...,r}.
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3. Tabu Search Algorithm (TS)

Currently, TS is one of the most effective methods using local search tech-
niques to find near-optimal solutions to combinatorial optimization problems,
see Glover (1989, 1990). The basic idea in our context involves starting from
an initial basic job processing order and searching through its neighbourhood,
for the processing order with the lowest makespan (in our case, the processing
order with the lowest lower bound on the makespan). The search then repeats
using the chosen neighbor as a new basic processing order.

The neighbourhood of a basic processing order is generated by the moves. A
move changes the location of some operations in the basic processing order. In
order to avoid cycling, becoming trapped at a local optimum, or continuing the
search in a too narrow region, the mechanisms of a tabu list and a perturbation
are utilized. The tabu list records the performed moves, for a chosen span of
time, treating them as forbidden for possible future moves, i.e. it determines
forbidden processing orders in the currently analyzed neighbourhood. The list
content is refreshed each time a new basic processing order is found: the oldest
elements are deleted and new ones added. The search stops when a given
number of iterations has been reached without improvement of the best current
makespan, the algorithm has performed a given total number of iterations,
time has run out, the neighbourhood is empty, or a processing order with a
satisfying makespan has been found, etc. In practice, the design of the particular
components of a search algorithm is considered an art. The construction of
the components influences the algorithm performance, speed of convergence,
running time, etc.

3.1 Moves and Neighbourhood

In the literature are many types of moves based on interchanges of operations
(or jobs) on a machine. The intuition following from Theorem 5.1 suggests that
the “insertion* type move is the most proper for the problem considered. In
general, the insertion move operates on a sequence of operations by remov-
ing an operation from its position in a sequence and inserting it in to another
position in the same sequence. More precisely, let v = (z,y) be a pair of
operations on a machine, z,y € O, x # y. With respect to graph G(n),
the pair v = (z,y) defines a move that consists in removing operation z
from its original position and inserting it in the position immediately after
(or before) operation y if operation y succeeds (or precedes) operation z
in G(r). This move v generates a new graph G(m,) from G(7). All graphs
G(my), which can be obtained by performing moves from a given move set U,
create the neighbourhood N (U, 7) = {G(m,) | v € U} of graph G(r).

The proper definition of the move and selection of U, i.e. the neighbourhood
N(U,r), is very important in constructing an effective algorithm. The set U
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should be neither too “big* nor too “small“. The large set requires a great com-
putational effort for the search of N (U, 7) at a given iteration of the algorithm,
whereas the small one needs a large number of iterations for finding a “good*
solution.

For the job-shop problem there are several definitions of moves based on the
interchanges of adjacent and non-adjacent pairs of operations on a machine.

The interchange moves of the adjacent pairs have been used earlier by
Balas (1969), while the non-adjacent ones by Grabowski (1979), Grabowski
and Janiak, (1987), and Grabowski, Nowicki and Smutnicki (1988). The lat-
ter moves were widely employed for the flow-shop problem by Grabowski
(1980, 1982), and Grabowski, Skubalska and Smutnicki (1983), and for the
one-machine scheduling by Carlier (1982), Grabowski, Nowicki and Zdrzalka
(1986), Adams, Balas and Zawack (1988), and Zdrzalka and Grabowski (1989).
All these moves were applied in branch-and-bound procedures.

Recently, in the heuristics for the job-shop problem, the adjacent moves have
been employed by Matsuo, Suh and Sullivan (1988), Laarhoven, Aarts and
Lenstra (1992), and Nowicki and Smutnicki (1996b), while the non-adjacent
ones by DellAmico and Trubian (1993), Balas and Vazacopoulos (1998), and
Pezzela and Merelli (2000). Besides, the latter moves were used by Nowicki
and Smutnicki (1996a), Smutnicki (1998), and Grabowski and Pempera (2001)
in the tabu search algorithms for the flow-shop problem.

The second component of the local search algorithms is a selection (con-
struction) of “effective” neighbourhood N (U, 7). Amongst many types of
neighbourhoods considered (and connected with the chosen definition of the
move), two appear to be very interesting.

The first is that proposed by Nowicki and Smutnicki (1996b). In point of the
computational results, it seems that their neighbourhood used in the tabu search
procedure with built-in block properties (and based on interchanges of some
adjacent pairs only) is “optimal“. However, we believe this neighbourhood
is “too small“, that is, their TS needs too many iterations. Despite out criti-
cism, the computational results obtained by Nowicki and Smutnicki (1996b)
are excellent. Their spectacular success encourages further explorations in that
area.

The second neighbourhood (based on interchanges of non-adjacent pairs),
presented by Balas and Vazacopoulos (1998), is employed in their local search
(tree search) algorithm, denoted GLS. This algorithm is based on the branch-
and-bound procedure with an enumeration tree whose size is bounded in a
guided manner, so that GLS can be treated as an approximation algorithm. It is
clear that the largest size of the neighbourhood is at the root of the tree, and while
searching, the size decreases with increasing levels of the tree. Additionally,
GLS consists of several such procedures (each of them starting with various
initial solutions). As a consequence, it is difficult to compare the neighbour-
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hood size of GLS with those given in the literature. However, with regard to the
neighbourhood at the root of the tree, GLS investigates a considerably larger
neighbourhood than the heuristics based on interchanges of adjacent pairs of
operations. Computational results obtained by GLS confirm an advantage over
other heuristics for the job-shop problem. In our algorithm TS, the neighbour-
hood is larger than that at the root of the tree in GLS, and is based on the block
approach. Besides, in order to reduce calculations for the search of neighbour-
hood, we propose to use a lower bound on the makespan instead of calculating
the makespan explicitly, as a basis for choosing the best move.

For any block By, in G() (acyclic), let us consider the set of moves W (7)
which can be performed inside this block, i.e. on operations wuy, 11,..., U, —1,
k=1,2,...,r. Precisely, each Wy (w) is defined by the formula

Wi(m) = {(z,9) | z,y € {ug+1, - u -1}, = # y}

All these moves create the set W(m) = LTJ Wi(r).
k=1

Immediately from Theorem 5.1 we ol=>tain the following Corollary which
provides the basis for elimination (Grabowski, 1979; Grabowski, Nowicki, and
Smutnicki, 1988).

COROLLARY 1 . If acyclic graph G(r,) has been generated from acyclic
graph G() by a move v € W (7), then Cpgq(7y) > Criaa (7).

This Corollary states that the moves from the set W () defined above are not
interesting, taking into account the possibility of an immediate improvement of
the makespan after making a move.

Next, we will give a detailed description of the moves and neighbourhood
structure considered in this paper. Let us consider the sequence of operations on
critical path C'(s, ¢) in G() and blocks By, By, . . ., B, determined for C(s, c).
For each fixed operation z belonging to the critical path C(s, ¢), we consider at
most one move to the right and at most one to the left. Moves are associated with
blocks. Let us take the block By = {uf,, us,+1, -, Ut —1, U1, ), k = 1,2, ..., 7.
Then, we define the sets of candidates (Grabowski, 1979; Grabowski, Nowicki,
and Smutnicki, 1988).
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Exa = {ug, Upit1s - u-1} = B — {ug, },
By = {u,fk+1, oy Ugy —1, Ulk} = By — {U'fk}'

Each set Ey, (or Eyp) contains the operations in the k-th block of G() that are
candidates for being moved to a position after (or before) all other operations
in the k-th block. More precisely, we move operation &, ¢ € Fj,, to the right
in to the position immediately after operation 1, , and this move takes the form
v = (x, uy, ), so Corollary 1 can not be applied to this move, i.e. v ¢ W;. By
symmetry, operation z, € Ejp, is moved to the left in the position immediately
before operation uy, , and this move takes the form v = (z,uy, ), so v ¢ Wx.
Note that after performing a move v = (z,%, ), ¢ € Eg, (0rv = (z,uy,),
x € Eyp), operation z, in G(7,) , is to be processed as the last (or first) operation
of the k-th block of G(7). It is easy to observe that in order to obtain the graph
G(my) by performingamovev = (z,u, ), & € Egq(0rv = (z,uy,), ¢ € Exp),
we should remove the arcs (3(z), =), (z, 6(z)) and (v, , 6(uy, ) from G() and
add to G() the arcs (5(z), é(z)), (w,,x) and (x,d(uy, ) (or remove the arcs
(B(z), z), (z,6(x)) and (6(uy, ), uys, ), and add the arcs (5(x), 6(z)), (z,uy,)
and (6(uy, ), x)). For illustration, performing the move v = (x, 1, ) is shown
in Figure 5.3.

e

o T~
/./ . \,\ 5(x) Blu, ) &(u; )
= 20-=-X-2>0--%X-30>: : : 30---->@0--%-->0
Bex) Rl PR A

~ .-
. -
e et

— =X~ => arcs removed from G(r)

— - > arcs added to G(n)
Figure 5.3. Move performance.

According to the description given, forany block B, inG(w),k = 1,2,...,r,
we define the following set of moves to the right

ZRk(W) = {(x)ulk”m € Eka}
and the set of moves to the left
ZLg(r) = {(z,up, )|z € Ep}-

Set Z Ry () contains all moves of operations of Ej, to the right after the last
operation v;, of the k-th block. Similarly, set Z Ly(7) contains all moves of
operations of Ejy, to the left before the first operation uy, of the k-th block. Of
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course, Corollary 1 does not hold for moves from the sets Z Ry () and Z Ly (7).
For illustration, the moves performed to the right and left are shown in Figure
5.4.

ZL (™)

k-th block
in G(r)

Figure 5.4. Operation movements.

Note that if |By| = 2, for some k € {1,2,...,r}, then Ep, = {uy.},
Eyp = {w, },and ZRy(m) = Z Ly(r), and one of these sets can be eliminated.
If we assume that Fy, = {uj, 1} in ZRy(7) and Epp = {ug, 11} in ZLg(7)
then Z Ry (7) U Z Li(w) is similar to that presented by Nowicki and Smutnicki
(1996b), denoted as Vi ().

As a consequence of the above considerations, in TS, we should take the set
of moves .

M(r) = | J (ZRi(r) U ZLi(m))
k=1
and the resulting neighbourhood N (M (7), 7).

A set of moves similar to M (7) has been proposed by Grabowski (1980,
1982) and Grabowski, Skubalska and Smutnicki (1983) for the flow-shop prob-
lem. However, for the job-shop problem, the neighbourhood N (M (), )
contains processing orders which can be infeasible. It should be noticed that
if amove v = (x,u,) € ZRy(7), (or v = (z,uy,) € ZLg(m)) contains an
adjacent pair of operations, i.e. © = w,_1 € Eg,, (0r z = uj, 41 € Epp),
then the resulting graph G(7,) is acyclic (Balas, 1969; Laarhoven, Aarts, and
Lenstra, 1992).

In sequel, we consider conditions under which performing a move v =
(x,u,) € ZR(), x # ug—1, (orv = (z,uy,) € ZLg(m),  # up 41) inan
acyclic G(r), generates the acyclic graph G(7,).

THEOREM 5.2 For each acyclic G(r), if G(m,) has been generated by a move
v=(x,u,) € ZRi(7), z # uy—1, k=1,2,...,7, and ifin G(7)

L(uy,,c) + min(pa(u,k),pu,kq) + Py(@) > L(v(z), ©), G.1)

and y(x) # a(w, ), then G(my) is acyclic.
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Proof (by contradiction).

For simplicity, the index & will be dropped. Foramove v = (z, ), z € E,,
x # uj—1, we suppose that there is created a cycle C in G(m,). It is obvious
that C contains some arcs that are added to graph G() (see Figure 5.5).

If (3(x),6(x)) € C, then G(r) contains a path from §(z) to 3(z), which
contradicts the assumption that G() is acyclic. Therefore, C' can contain
(z, 6(up)) or (uy, z). If C contains both these arcs, then there is a path in G()
from &(u;) to uy, contrary to the assumption that G() is acyclic. Hence, C'
contains either (z,d(vw)), or (ug, z). If (z,8(w;)) € C, then there is a path in
G(r) from 6(w;) to x, again contrary to the assumption. Finally, if (y,z) € C,
then C contains

a) apath dl(x’ ul) = ((1'77(3:)’(1(7(3;)7 a(ul))a (a(ul)a ul))’ or
b) apath dy(z,u) = ((z,v(z), d(v(2), wi—1), (wi—1, w)),

(a) In this case if C contains path d; (z, u;), then this path is in G(7) and, since
v(z) # o(u;), we obtain

L(v(z), ) > L, €) + Pa(u;) + Py(z)- (5.1a)

(b) But if C contains path dp(z,u;), then this path is in G(7), and now we
obtain
L(v(z),¢) 2 L(ug, ¢) + pyy—1 + Pry(a)- (5.1b)
Together (5.1a) and (5.1b) imply
L(v(z), ¢) > L(w, ¢) + min(Pouy)> Puy—1) + Pry(z)s

which contradicts the assumption 5.1.

Y(X) O d,(x,u;)
/ O a(ll, )
Be) 7 l'

. '\46(/\‘) k} 6(\161)
®- > OX>0>0 >0---->0-~->->@--%->0
> 7 u A

u, LR SR u

f'/ !
T~ -t
"‘*--..-...4_.—.....--"

Figure 5.5. Paths dy (z, ) and d2(z,w;) in G(x).
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The considerations in the proof of Theorem 5.2 suggest the following property.

PROPERTY 1 For each acyclic G(r), if G(m,) has been generated by a move
v=(z,w,) € ZRg(n), k = 1,2,...,r and if x has no job-successor (x),
then G(m,) is acyclic.

By symmetry, we have

THEOREM 5.3 For each acyclic G(r), if G(m, ) has been generated by a move
v={(z,uf) € ZL(m), z #up 41, k=1,2,...,7, and ifin G(7)

L(s, 'u'fk) + min(p'y(ufk)’pufk-i-l) + Pa(z) > L(s, afz)), (5.2)
and o(x) # v(uy, ), then G(my) is acyclic.

The proof of Theorem 5.3 can be obtained by using similar considerations to
Theorem 5.2, but with the set of moves Z L (7).
By analogy, we have

PROPERTY 2 For each acyclic G(r), if G(m,) has been generated by a move
v=(z,uf) € ZLg(m), k =1,2,...,r, andif z has no job-predecessor (),
then G(my) is acyclic.

Note that the conditions 5.1 and 5.2 are both less restrictive than those given
by Balas and Vazacopoulos (1998) for procedure GLS, so that our neighbour-
hood is larger than that proposed by Balas and Vazacopoulos (1998), but it is
slightly smaller than that of DellAmico and Trubian (1993).

Let

ZRi(m) = {v € ZRy(m)|v satisfies 5.1 and v(z) # a(w, ), or & = ug, 1},
ZLi(m) = {v € ZLg(r)|v satisfies 5.2 and a(x) # v(ug, ), or x = ug 41},
be the sets of the moves from Z Ry (7) and Z L (), the performance of which

generates acyclic G(m,) from acyclic G(). Finally, in our TS, we will employ
the set of moves

-
M*(r) = | J (ZRi(m) U ZLi(x)),
k=1
which creates the neighbourhood N (M*(r), 7).
As a consequence of the above considerations, let
Epo =A{z € Bra | (z,w,) € ZRE(m)},
EI:b = {7; € Egp , ($7ufk) € ZLZ(’”)}»

be the sets of operations whose movement generates acyclic G(r, ) from acyclic

G(x).
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In order to decrease the total computational effort for the search, we pro-
pose calculation of a lower bound on the makespans instead of computing the
makespans explicitly for use in selecting the best solution, though doing so
can increase the number of iterations in TS. The makespan resulting from per-
forming a move can be calculated by using the standard Bellman’s algorithm
in O(o) time, however, doing this for every solution becomes too expensive, so
that we propose a less costly lower bound. In fact, this lower bound is used for
evaluating and selecting the “best* move.

Next, we present a method to indicate a move to be performed, i.e. an
operation which should be moved after the last operation u, (or before the first
operation uy, ) of the k-th block. According to the search strategy in TS, we
want to choose a move v which will generate graph G(m,) with the smallest
possible makespan Ly (s, c). To evaluate all moves from the sets ZR; () and
ZLy(m), (i.e. all operations from Ej, and E;) we introduce the formula

Age(z) = maz(L], Ly, L3, Ly, L§), z € Ey,,
where:
L({l = Pz
L3 = L(y(z),¢) — L(uy, ) + pu,, »
L§ = L(s,a(é(x))) — L(s, z),
Ly = Ly+ L3+ ps,
I§ = LOMBGE)-LEd,  otu,
And
— b b b b b *
Akb(x) - max(Lla LZ’ L37 L47 L5)7 TE Ekba
where:
LI]’. =  —DPux,

LY = L(s,a(z)) — L(s,uy,) + Puy,

L} = L(y(B(z)),c) — L(z,0),
L = Li+Li+ps,
Lg = L(s,a(d(x))) — L(s, ), x #uy,.

The complexity of Agy(z), A € {a, b}, having the components L(s, ) and
L(i,c), i € N, is O(1). Note that these components are obtained during the
calculation of the makespan L(s,c) in G(w). Here, if there does not exist
¥(z) (or a(z)) for some z, then y(x) = c and L(y(z),c) = 0 (or az) = s
and L(s,a(z)) = 0). Further, if there does not exist a(d(z)) (or v(5(x))
for some z, then a(d(z)) = s and L(s, a(6(z))) = 0 (or v(B(z)) = c and
L(v(6(z)),c) = 0). Note that if z = uy, (or z = uy, ), then L§ (or LY)
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is not used during the calculation of Ag,(x) (or Agp(x)). The usefulness of
these values Agy(z), A € {a, b}, for the choice of a move is illustrated by the
following Theorems.

THEOREM 5.4 For each acyclic G(r), if G(m,) has been generated by a move
v=(z,uy) € ZRi(m), k=1,2,...,r, then

Ly(s,c) > L(s,c) + Ape(z)
where L, (s, c) is the length of a critical path in G(m,).

Proof.
For simplicity, the index & will be dropped, then we have

L(s,c) + Da(z) = L(s,c) + maz(Ly, L3, L3, Ly, L)

= L(s, ¢) + maz(—pg, L(’Y($), c¢) — L(u,c) + Puys L(s, a(d(x)))
_L(s’z)) L('Y(x)’ c) - L(ulvc) + Py, + L(37a(5(x))) - L(s’z)
+pz, L(v(B(z)), ¢) — L(z, c)).

Since G() is acyclic, then there exists a critical path. And for eachnodei € N
which belongs to the critical path, we have

C(s,c) = (C(s,1),C(i,c)),
and
L(s,c) = L(s,%) + L(3,¢) — p;. (5.3)

Further, since the nodes 3(z), z, 6(x) and vy belong to the critical path C'(s, ¢),
then, using 5.3, we get

L(s,c) + Ag(z) = maz(L(s,c) — pg, L(s,c) + L(y(z),c)

—L(uy, ¢) + pu,, L(s,c) + L(s,a(é(z))) — L(s,z), L(s,c) + L(v(z),c)
—L(w, ¢) + pu, + L(s, a(6(z))) — L(s,z) + pz, L(s,c) — L(z,c)
+L(v(B(z)),c)) = maz(L(s,z) + L(z, c) — 2py, L(s,u;) + L{uy,c)
+pu, + L(v(z), ¢) — L(wi, ¢) + py,, L(s,z) + L(6(z),c)

+L(s,a(d(z))) — L(s, z), L(s,z) + L(6(z),u;) + L{us, ¢) — py,
+L(v(z), ) — L(w, ¢) + pu, + L(s,a(3(z))) — L(s, z)

+pz, L(s, 8(z)) + L(z, ) + L(v(8(x)), ¢) — Lz, ¢))

= maz(L(s,z) + L(z, ¢) — 2pg, L(s,w;) + L(v(z),c), L(6(x),c)
+L(s, a(d(x))), L(s, a(d(z))) + L(6(x), u) + pz

+L((z), ), L(s, 8(z)) + L(v(B(x)), c))- (5-4)
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Now, let us consider certain paths dj (s, c), da(s, ¢), ds(s,c), da(s,c) and
ds(s, ¢) from s to ¢ in G(m,) generated by the move v = (z,y) € ZRj ()

(see Figure 5.6),

di(s,c) =
da(s,c) =

d3(s,c) =
dy(s,c)

ds(s,c) =

(C(s, B(z)), (B(=), 6(x)), C(d(), c)),

(C(s, B(x)), (B(x), 6(x)), C(8(z),wy), (ur, ), (z,v(x)),
C(y(z),c)),

(C(s, a(5(@), (@(5(2)),5(2)), C(3(2), ),
(C(s,2(d(2))), (a(d(x)), 6(z)), C(8(z), w), (w, z),
(@,7(2)), C(v(x),0)),

(C(s, B(z)), (B(z), 7(B())), C(v(B()), c))-

Cr(Bx)), ©)

Figure 5.6.

Paths d1(s, ), d2(s, ¢), ds(s, ¢), da(s, c) and d5(s, ¢) in G(7y).

The lengths of these paths are

li(s,e) =

L(s, B(z)) + L(5(x), c) = L(s,x) — pz + L(z,¢) = ps

= L(s,z)+ L(z,c) — 2pz,

lg(s, C)

=+

I3(s, c)
l4(s, C)
I5(s, )

{

L(s, B(x)) + L(6(x),w) + ps + L(y(x), ¢) = L(s,uy)
L(v(z),0),

L(s, a(6(2))) + L(6(z), ),

L(s, a(d(2))) + L(8(x), ) + pz + L(v(x), o),

L(s, B(z)) + L(v(B(2)), ¢)-

Since G(m,) is acyclic, then there exists a critical path G, (s, c), the length of
which can not be shorter than the length of any path from s to ¢ in G(7w,).
Therefore, we have

Lv(S,C) Z l1(37 C), L’v(sa C) 2 lZ(sa C)) Lv(s) C) Z 13(3, C)’

Ly(s,c)

> l4(S,C), Lv(S,C) 2 l5(8,C).
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Hence, using 5.4, we get

LU(S, C) 2 ma’m(ll(s’ C)’ 12(5’ C), l3(3a C)a 14(8, C)a l5(sa C))
= maz(L(s,z) + L(z,¢) — 2pz, L(s,u;)

+L(v(z),c), L(5(z),¢) + L(s, a(6(x))), L(s,a(5(x)))
+L(8(z), w) + pz + L(v(2), ¢), L(s, B(z)) + L(v(8(z)), c))
= L(s,c) + Ag(2).

An analogous result holds for moves from the set Z L3 ().

THEOREM 5.5 For each acyclic G(r), if G(my) has been generated by a move
v=(x,uyp,) € ZLi(m), k=1,2,...,r, then

Ly(s,¢) > L(s,c) + App(2),

where L, (s, c) is the length of the critical path in G(m,).

Proof. Parallels that of Theorem 5.4.

Hence, by moving operation z € E, (or x € Ej,) after operation v, (or
before operation uy, ) in G(), a lower bound on value L, (s, c) of acyclic
graph G(m,) is L(s,c) + Agqa(z) (or L(s,c) + Agp(z)). Thus, the values
Apa(z), A € {a,b}, can be used to decide which operation should be moved,
i.e. the operation should have the smallest value of Agy(x). The smallest
value of Ay (z) corresponds to the “best move v = (z,u, ) € ZRj(7), (or
v = (z,up,) € ZLj(m)) if Age(z) (or Agp(x)) reaches this value. From
Theorems 5.4 and 5.5 it follows that if Ay (z) > 0, then in the resulting graph
G(my) we have Ly(s,c) > L(s,c).

Generally, in our TS, for the given graph G(7), we calculate the critical path
C(s, ¢) (if there is more than one critical path, any one of them can be used),
and the length of this path Ce.(7) (= L(s, ¢)). We then identify the blocks
By, Bs, ..., B, create the set of moves M*(7), compute the values Ay (z),
z € Efy, X € {a,b},k=1,2,...,7,choose the “best* move v (corresponding
to the smallest value of Ag)(x)) from set M*(7) and create the graph G (7, ) by
removing some arcs from G(7) and adding other ones to G(7) (see beginning
of this section). Next, the search process of TS is repeated for the resulting
graph G(m,) until Maziter of iterations is reached. Of course, according to
the philosophy of TS, there are some exceptions while choosing the “best*
move:

A. If the chosen move has a status tabu (see next section for details), the move
is not allowed.
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B. If MazretP (MaxretP < Maxiter) of the consecutive non-improving
iterations pass in TS, then, instead of a single (“best*) move, we choose
several ones to be performed simultaneously (see section Perturbations
for details).

Exception (B) gives assistance in addition to the tabu list to avoid being trapped
at a local optimum.

3.2 Tabu List and Tabu Status of Move

In our algorithm we use the tabu list defined as a finite list (set) T with
dynamic length LengthT containing ordered pairs of operations. The list is
initiated by introducing LengthT empty elements. If a move v = (z,u, ) €
ZRy(m), (or move v = (z,up) € ZLy(m)) is performed on graph G(r)
generating graph G(, ), then the pair of operations (6(x), z) (or pair (z, 3(z)),
representing a precedence constraint, is added to 7". Each time before adding a
new pair to T, we must delete the oldest one.

With respectto graph G(7), amove (z, 1y, ) € ZR; (), (oramove (x, uy, ) €
Z Ly (m)) has the tabu status (it is forbidden) if A(z)N B, # 0 (or B(z)N By, #
), where:

A(x)={y€ O] (=,y) €T},
B(z)={y€O|(y,z) € T}

Set A(z) (or set B(z)) indicates which operations are to be processed after (or
before) operation x with respect to the current content of the tabu list T".

Length T
A

4/3n

2/3n

An Q) — O

W)

Figure 5.7. Dynamic tabu list.

As mentioned above, our algorithm uses a tabu list with dynamic length.
This length is changed, as the current iteration number iter of TS increases.
The length change is used as a “pick* intended to carry the search to another



A Very Fast Tabu Search Algorithm for Job Shop Problem 133

area of the solution space. LengthT is a cyclic function shown in Figure 5.7
and defined by the expression

20|, W) <iter <W(Q)+H(Q),
LengthT =
[4n], W@+ HQ) < iter <W (1) + H({) +h,

where: | = 1,2, ... is the number of the cycle, W(l) =Y\ H(s — 1)+ (I —
1) * h, (here H(0) = 0), and h is the width of the pick equal to n. Interval H ()
is the parameter which is not constant, but it depends on the structure of graph
G(m) currently considered. More precisely, let G(7) be the graph obtained at
the beginning of the interval H(l), i.e. in W(I) + 1 iteration (see expression on
LengthT'). Then the next pick is begun when H(l) = 2 x |C| iterations pass
in TS, where |C| is the number of nodes in the critical path of G(). The one
exception is for the first cycle when we take H(1) = 3 x |C].

If LengthT decreases then a suitable number of the oldest elements of tabu
list T' is deleted and the search process is continued.

3.3 Search Strategy

We employ a specific searching strategy which yields very good computa-
tional results. A move v = (z,u,) € M*(7) (orv = (z,up ) € M*(7))
is unforbidden (UF), if it does not have the tabu status. For a given graph
G(m), the neighbourhood is searched in the following manner. First, the sets
of unforbidden moves are defined

URy = {v € ZRy(n) | move v is UF},

ULy = {v € ZL{(m) | move v is UF}.

For the k-th block, the “best” moves vp(x) € U Ry and vy, (x) € U Ly are chosen
(respectively):

Sy

—
»
3

DELT A(vg)) = mily—(zu, )cUR, Aka(2),
DELTA(vy)) = minv=(z,ufk)6ULk App(z), k=1,2,..,71.
Next, the following sets of moves are created
RB = {vgg) | k=1,2,...,7},
LB ={vy) | k=1,2,...,7},

and
BB=RBULB = {’Ul, Uy ueey ’Uzr}.
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Note that the move vy, € BB belongs either to RB or to LB. The move
v to be performed is selected amongst those in BB with the lowest value of
DELTA(v), i.e. DELTA(v) = min,, cpp DELT A(vg), and which gives
the lowest bound on value Cp,q.(7y), that is Cpee(7) + DELT A(v) (see
Theorems 5.4 and 5.5). If the move v is selected, then the resulting graph
G(m,) is created, and a pair of operations corresponding to the move v is added
to the tabu list 7" (see section Tabu list and tabu status of move for details).
If set BB is empty, then the oldest element of tabu list T" is deleted, and the
search is repeated until non-empty set BB is found.

34 Perturbations

The main handicap of a local search procedure is its myopic nature: it looks
only one single move ahead, and any move can lead to a “bad* solution where the
search becomes trapped in a local optimum that may be substantially “worse*
than the global optimum, even in the tabu search approach where a tabu list is
used. In this paper, we use a certain perturbation technique in addition to the
tabu list for overcoming this drawback of traditional local search algorithms.

The generic key idea of a perturbation is to consider a search which allows
us several moves to be made simultaneously in a single iteration and carry the
search to the more promising areas of solution space.

In our algorithm, the set of promising moves can be found as follows

BB = {v;, € BB | DELT A(w) < 0} = {v1,v9,...,v,}, z<2r.

The intuition following from Theorems 5.4 and 5.5 suggests that each move
v € BB(-) can provide a graph G(m, ) that is “better than G(r). Therefore, as
a perturbation, we decided to perform simultaneously all moves from BB ™) in
G(), obtaining the resulting graph, denoted G(7y), where v = (v1, v, ..., Vz).
While performing simultaneously all moves from BB(), the different moves of
BB() operate in different blocks of G(r). Therefore, graph G(7) is acyclic
(it follows from the proofs of Theorems 5.2 and 5.3).

Note that if |[BB(~)| = 1, then the perturbation is equivalent to the selection
from BB the single (“best”) move to be performed, thus, in this case, it is
not treated as a perturbation. Furthermore, if set BB(™) is empty then the
perturbation can not be performed. Therefore, in both cases, the search process
is continued (according to the description given in section Search strategy)
until the graph with | BB(7)| > 1 is obtained, and then the perturbation can be
made.

If a perturbation is performed, then a pair of operations corresponding to
the move v with the smallest value of DELT A(v) is added to tabu list T (see
section Tabu list and tabu status of move for details).

A perturbation is used when at least M azret P consecutive non-improving
iterations pass in the algorithm. More precisely, if graph G(7) is obtained after
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performing a perturbation, then the next one is made when MazretP of the
iterations will pass in TS. In other words, the perturbation is made periodically,
where M azret P is the number of the iterations between the neighbouring ones.

35 Algorithm TSGW

In the algorithm, the asterisk (*) refers to the best values found, the zero su-
perscript (°) refers to initial values, and its lack denotes the current values. The
algorithm starts from a given initial graph G(7°) (7° can be found by any al-
gorithm). The algorithm stops when M aziter iterations have been performed.

INITIALISATION.

Set G(7) = G(n°), C* 1= Cinaz(n°), 7* 1= 7°, T := {, iter := 0,
retp := 0.

SEARCHING.

Set iter := iter + 1, modify (if it is appropriate) LengthT of the tabu
list according to the method described earlier, and for graph G(7) create
a set of representatives BB.

SELECTION.

If BB = {, then remove the oldest element of the tabu list and go to
SEARCHING.

Find the “best”“ move v € BB, i.e.

DELTA(v) = min DELT A(v),
Vi

create the graph G(m,), calculate Cy,q.(7,), and modify the tabu list
according to the method described earlier. If G4 (7,) < C*, then
save the best values C* := Ciaz(7y), and 7 := my. If Crpge(my,) >
Cmaz (), then set retp := retp + 1, otherwise set retp := 0.

Next set G(m):= G(my).

STOP CRITERIA
If iter > Maxiter then STOP.
If retp < MazretP then go to SEARCHING.

PERTURBATION

For graph G() create the sets BB and BB(™), If BB = {, then remove
the oldest element of the tabu list and go to SEARCHING. Perform the
perturbation according to the method described earlier generating graph
G(75), and calculate Cpqq(75). If Crpaz(75) < C*, then save the best
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values C* := Cpag(75), ™ := 7y and set retp := 0. If |BB(‘)i <1
and Caz (75) > Crugz (), then set retp := retp + 1. IleB(‘)l <1
and Cruag(m5) < Crnae(T), then set retp := 0. If |[BB(7)| > 1, then
set retp := 0. Modify the tabu list according to the method described
earlier. Next set G(7) := G(73), and go to SEARCHING.

Algorithm TSGW has one tuning parameter M axretP which is to be chosen
experimentally.

4. Computational Results

Algorithm TSGW was coded in C++, run on a personal computer Pentium
333 MHz, and tested on benchmark problems taken from the literature. The
results obtained by our algorithm were then compared with results from the
literature.

So far, the best approximation algorithms for the job-shop problem with
the makespan criterion were proposed in papers by Matsuo, Suh and Sullivan
(1988), Laarhoven, Aarts and Lenstra (1992), DellAmico and Trubian (1993),
Nowicki and Smutnicki (1996b), Balas and Vazacopoulos (1998), and Pezzela
and Merelli (2000). Pezzela and Merelli reported that their algorithm, denoted
as TSSB, provides better results than the ones proposed by other authors. There-
fore we compare our algorithm TSGW with TSSB, which is also based on the
tabu search approach.

Algorithm TSGW, similarly as TSSB, was tested on 133 commonly used
problem instances of various sizes and difficulty levels taken from the OR-
Library.

(a) Five instances denoted as ORB1-ORBS5 with n x m = 10 x 10 due to
Applegate and Cook (1991), three instances FT6, FT10, FT20 with n x m =
6 x 6, 10 x 10, 5 x 20 due to Fisher and Thompson (1963), and five instances
ABZ5-ABZ9 withn x m = 10 x 10, 20 x 15 due to Adams, Balas and Zawack
(1988).

(b) Forty instances of eight different sizes LAO1-LA40 withn xm = 10 x5,
15 x 5,20 x 5,10 x 10, 15 x 10, 20 x 10, 30 x 10, 15 x 15 due to Lawrence
(1984). The optimal solution of the instance LA29 is thus far unknown.

(c) Eighty instances of eight different sizes TA1-TA80 with n xm = 15x 15,
20 x 15, 20 x 20, 30 x 15, 30 x 20, 50 x 15, 50 x 20, 100 x 20 due to Taillard
(1993). Forthis class, the optimal solution is known only 32 out of 80 instances.

The effectiveness of our algorithm was analysed in both terms of CPU time
and solution quality. There are some complications involving the speed of
computers used in the tests. Algorithm TSGW was run on Pentium 333 MHz,
whereas TSSB was run on Pentium 133 MHz. Regarding the speed of the per-
formance, it is becoming very difficult to compare the CPU times of algorithms
tested on different computers. An attempt is made to compare the CPU times
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for different algorithms using conversion factors for different machines given in
areport by Dongarra (2004). Although, the benchmark results reported in Don-
garra tests can be used to give a rough estimate on the relative performance of
different computers, these results refer to floating-point operations and therefore
may not be representative when computations are essentially with integers, as
in the case of our algorithms. Besides, the architecture, configurations, cache,
main memory and compilers also affect the CPU times. Therefore, in order
to avoid discussion about the conversion factors and speed of computers used
in the tests, we enclosed for each compared algorithm the original name of
computer on which it has been tested, as well as the original running time.

Algorithm TSGW needs an initial solution, which can be found by any heuris-
tic method. In our tests, we use the procedure INSA which is based on an
insertion technique, see Nowicki and Smutnicki (1996b). The computational
complexity of this heuristic is O(n*m?).

At the initial stage, TSGW was run several times, for small-size instances in
order to find the proper value of tuning parameter M axretP. This was chosen
experimentally as a result of the compromise between the running time and
solution quality and we set MazretP = 3.

For each test instance, we collected the following values:
C4 — the makespan found by the algorithm A € {TSGW, TSSB }.

Time — CPU in seconds.

Then two measures of the algorithms quality were calculated

PRD(A) = 100(C4 — LB)/LB - the value (average) of the percentage rel-
ative difference between makespan C4 and the best known lower bound
LB (or the optimum value O PT, if it is known).

CPU(A) — the computer time (average) of algorithm A.

For TSSB, there are some problems concerning the interpretation of the
results in CPU times for the instances of class (c). In the paper of Pezzela and
Merelli (2000), it is reported that for each instance, TSSB performs Maziter
iterations equal to 100n. So that, the average CPU for the instances with size
n x m = 20 x 20 should be shorter than for the ones with n x m = 100 x 20,
whereas in Table 6 of the paper we have found that for the former instances,
the CPU is, in approximation, 150 times longer than for the latter ones. Similar
problems are in Table 3 of the paper for the instances of class (b).

Therefore, we conclude that for the instances of classes (b) and (c), M axiter
is not equal to 1007, but it is different for different instances. Instead, the analy-
sis of the results in Table 5.1 for class (a) suggests that there these inconveniences
are avoided. Hence, we have assumed that the CPU times of TSSB obtained for
both classes (b) and (c) are those for which the G4, values (or PR.D values)
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presented in the paper of Pezzela and Merelli (2000) are reached. And, since
these values are reported for each instance, it is possible to detect Maziter
and/or CPU time to be correspondent to the G4, value produced by TSSB,
for an individual instance.

As a consequence of the above, while testing our algorithm, for each instance
of classes (b) and (c), we detect the CPU time at which TSGW has reached the
Crmaz value not greater than that obtained by TSSB. Then it was possible to

compare the CPU times of the algorithms.

In Table 5.1, we present the results obtained for the test problems of class
(a) ORB1-ORBS, FT6, FT10, FT20, and ABZ5-ABZ9. For these instances,
TSGW was tested for Maxiter equal to 300n.

Table 5.1. Detailed results for the problem instances of class (a)
TSGW TSSB

Problem n xm OPTor Maxiter =300xn CPUtoopt | Maxiter = 100 x n
(LB-UB) Crmaz PRD CPU (ortobest) [ Crnaz PRD CPU

ORB1 10 x 10 1059 1059 0.00 0.9 0.6 1064 0.47 82
ORB2 10x 10 888 888 0.00 0.9 0.6 890 0.23 75
ORB3 10x 10 1005 1005  0.00 1.1 0.7 1013 0.80 87
ORB4 10x 10 1005 1005 0.00 0.8 0.6 1013 080 75
ORBS 10x 10 887 887 0.00 0.9 0.2 887 0.00 81
FTé6 6x6 55 55 0.00 0.1 0.0 55 0.00 -
FT10 10 x 10 930 930 0.00 1.2 0.2 930 000 80
FT20 20x 5 1165 1165 0.00 23 0.7 1165 0.00 115
ABZ5 10x 10 1234 1236 0.16 1.1 0.2) 1234 000 75
ABZ6 10x 10 943 943  0.00 1.0 0.2 943 000 80
ABZ7 20 x 15 656 656 0.00 148 3.8 666 1.52 200
ABZ8 20 x 15 (647-669) 671 371 146 (CN))] 678 512 205
ABZ9 20 x 15 (661-679) 682 3,18 149 (3.9) 693 484 195
all 0.54 1.06
CPU represents the CPU time:
TSGW on Pentium 333MHz,

TSSB on Pentium 133MHz (Pezzella and Merelli 2000)

Our algorithm finds an optimal solution to ten out of thirteen problems in
relatively very short times. For very famous FT10 with n x m = 10 x 10,
it finds an optimal solution in 0.2 second. Nevertheless, for ABZS5, we could
not find any optimal solution reported in the literature, equal to 1234. Besides,
note that for Maxiter equal to 300n, TSGW needs a very small amount of
CPU times. The longest CPU time of TSGW is equal to 14.9 seconds (on
computer Pentium 333), whereas TSSB needs 205 seconds (on Pentium 133)
for Mazxiter equal to 100n. Finally, note that in the terms of PRD values,
TSGW produces significantly better results than TSSB.
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Table 5.2. Detailed results for the problem instances of class (b)

LA OPT or TSGW TSSB LA OPT or TSGW TSSB
(LB-UB) Ciax PRD CPU|Cmax PRD (LB-UB) Cmax PRD CPU|[Crax PRD
10x5 15x10

1 666 666 0.00 0.0 666 0.00] 21 1046 1046 0.00 3.4 1046 0.00
2 655 655 0.00 0.0 655 0.00] 22 927 927 0.00 2.7 927 0.00
3 597 597 0.00 02 597 0.00|23 1032 1032 0.00 0.2 1032 0.00
4 590 590 0.00 0.0 590 0.00]24 935 936 0.10 0.9 938 0.32
5 593 593 0.00 0.0 593 0.00|25 977 978 0.10 3.7 979 020
15x5 20x 10
6
7
8

926 926 0.00 0.0 926 0.00| 26 1218 1218 0.00 1.0 1218 0.00

890 890 0.00 0.0 890 0.00| 27 1235 1235 0.00 3.9 1235 0.00

863 863 0.00 0.0 863 0.00| 28 1216 1216 0.00 44 1216 0.00
9 951 951 0.00 0.0 951 0.00| 29 1142-1153 1160 1.57 0.9 1168 2.28
10 958 958 0.00 0.0 958 0.00| 30 1355 1355 0.00 0.2 1355 0.00
20x5 B30x 10
11 1222 1222 0.00 0.0 1222 0.00] 31 1784 1784 0.00 0.0 1784 0.00
12 1039 1039 0.00 0.0 1039 0.00] 32 1850 1850 0.00 0.0 1850 0.00
13 1150 1150 0.00 0.0 1150 0.00| 33 1719 1719 0.00 0.0 1719 0.00
14 1292 1292 0.00 0.0 1292 0.00| 34 1721 1721 0.00 0.0 1721 0.00
15 1207 1207 0.00 0.0 1207 0.00| 35 1888 1888 0.00 0.1 1888 0.00
10x10 15x15
16 945 945 0.00 0.6 945 0.00| 36 1268 1268 0.00 0.1 1268 0.00
17 784 784 0.00 0.0 784 0.00| 37 1397 1411 1.00 24 1411 1.00
18 848 848 0.00 3.2 848 0.00| 38 1196 1198 0.17 2.4 1201 0.42
19 842 842 0.00 2.1 842 0.00| 39 1233 1233 0.00 3.4 1240 0.57
20 902 902 0.00 0.5 902 0.00] 40 1222 1225 025 4.5 1233 0.90
all 0.08 0.14

CPU represents the CPU time on Pentium 333MHz.

Table 5.3. Average results for the instance groups of class (b)

Problem nxm TSGW TSSB
PRD (aver.) CPU (aver.) PRD (aver.) CPU (aver.)

LAO01-05 10 x5 0.00 0.1 0.00 9.8
LA06-10 15x 5 0.00 0.0 0.00 -
LAI11-15 20 x5 0.00 0.0 0.00 -
LA16-20 10 x 10 0.00 1.3 0.00 61.5
LA21-25 15 x 10 0.04 2.2 0.10 115
LA26-30 20 x 10 0.31 22 0.46 105
LA31-35 30 x 10 0.00 0.0 0.00 -
LA36-40 15 x 15 0.28 2.6 0.58 141

all 0.08 0.14
CPU represents the CPU time:

TSGW on Pentium 333MHz,

TSSB on Pentium 133MHz (Pezzella and Merelli 2000)
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Table 5.4. Detailed results for the problem instances of class (c)

TA OPT or TSGW TSSB TA OPT or TSGW TSSB
(LB-UB) Cmax PRD riptsize CPU|Cmax PRD (LB-UB) Cmax PRD CPU |Cmax PRD
15x15 B0x20
1 1231 1239 0.649 7.9 1241 0.812] 41 1859-2023 2033 9.359 3.9 2045 10.005
2 1244 1244 0.000 7.2 1244 0.000; 42 1867-1961 1976 5.839 3.2 1979 5.999
3 1218 1218 0.000 4.7 1222 0.328] 43 1809-1879 1898 4.920 8.2 1898 4.920
4 1175 1175 0.000 6.6 1175 0.000( 44 1927-1998 2031 5.397 44.1 2036 5.656
5 1224 1228 0.327 9.6 1229 0.408] 45 1997-2005 2021 1.202 7.1 2021 1.202
6 1238 1238 0.000 9.4 1245 0.565| 46 1940-2029 2046 5464 6.6 2047 5.515
7 1227 1227 0.000 4.5 1228 0.081} 47 1789-1913 1937 8.272 4.4 1938 8.329
8 1217 1218 0.082 9.1 1220 0.246| 48 1912-1971 1986 3.870 9.2 1996 4.393
9 1274 1287 1.020 9.7 1291 1.334] 49 1915-1984 2007 4.804 6.9 2013 5.117
10 1241 1249 0.645 7.1 1250 0.725| 50 1807-1937 1971 9.076 5.7 1975 9.297
20x15 0x15
11 1321-1364 1370 3.709 7.5 1371 3.785| 51 2760 2760 0.000 1.7 2760 0.000
12 1321-1367 1376 4.164 3.9 1379 4.391] 52 2756 2756 0.000 3.2 2756 0.000
13 1271-1350 1355 6.609 4.7 1362 7.160, 53 2717 2717 0.000 5.7 2717 0.000
14 1345 1345 0.000 7.6 1345 0.000, 54 2839 2839 0.000 3.1 2839 0.000
15 1293-1342 1355 4.795 10.1 1360 5.182 55 2679 2681 0.075 5.3 2684 0.187
16 1300-1362 1369 5.307 11.9 1370 5.385{ 56 2781 2781 0.000 7.6 2781 0.000
17 1458-1464 1477 1.303 4.7 1481 1.578 57 2943 2943 0.000 3.8 2943 0.000
18 1369-1396 1418 3.579 6.9 1426 4.164) 58 2885 2885 0.000 2.8 2885 0.000
19 1276-1341 1350 5.800 9.1 1351 5.878[ 59 2655 2655 0.000 4.1 2655 0.000
20 1316-1353 1361 3.419 4.8 1366 3.799 60 2723 2723 0.000 3.6 2723 0.000
2020 0x20
21 1539-1645 1658 7.739 12.0 1659 7.797 61 2868 2868 0.000 3.9 2868 0.000
22 1511-1601 1620 7.213 13.9 1623 7.412| 62 2869-2872 2937 2.370 3.4 2942 2544
23 1472-1558 1567 6.454 18.8 1573 6.861} 63 2755 2755 0.000 5.8 2755 0.000
24 1602-1651 1656 3.371 11.9 1659 3.558 64 2702 2702 0.000 10.7 2702 0.000
25 1504-1597 1604 6.649 14.0 1606 6.7820 65 2725 2725 0.000 2.7 2725 0.000
26 1539-1651 1666 8.252 16.7 1666 8.252] 66 2845 2845 0.000 4.6 2845 0.000
27 1616-1687 1693 4.765 22.1 1697 5.012| 67 2825 2861 1.274 46.1 2865 1.416
28 1591-1615 1622 1.948 32.2 1622 1.948 68 2784 2784 0.000 7.3 2784 0.000
29 1514-1625 1635 7.992 57.0 1635 7.992 69 3071 3071 0.000 4.8 3071 0.000
30 1473-1585 1602 8.758 5.9 1614 9.572 70 2995 2995 0.000 2.7 2995 0.000
30x15 100x20
31 1764 1769 0.283 11.1 1771 0397} 71 5464 5464 0.000 4.8 5464 0.000
32 1774-1803 1836 3.495 17.3 1840 3.7200 72 5181 5181 0.000 3.0 5181 0.000
33 1778-1796 1831 2.981 25.2 1833 3.0931 73 5568 5568 0.000 3.6 5568 0.000
34 1828-1832 1842 0.766 46.9 1846 0.985 74 5339 5339 0.000 4.3 5339 0.000
35 2007 2007 0.000 7.9 2007 0.000{ 75 5392 5392 0.000 5.8 5392 0.000
36 1819 1820 0.055 14,7 1825 0.3301 76 5342 5342 0.000 7.1 5342 0.000
37 1771-1784 1808 2.089 23.3 1813 23720 77 5436 5436 0.000 3.0 5436 0.000
38 1673-1677 1694 1.255 17.6 1697 1.435 78 5394 5394 0.000 2.8 5394 0.000
36 1795 1812 0.947 19.2 1815 1.114/ 79 5358 5358 0.000 3.5 5358 0.000
40 1631-1686 1724 5.702 17.2 1725 5.763] 80 5183 5183 0.000 6.5 5183 0.000
all 2.30 243

CPU represents the CPU time on Pentium 333MHz.



A Very Fast Tabu Search Algorithm for Job Shop Problem 141

Tables 5.2 and 5.3 report the computational results for the Lawrence’s test
problems (LA01-LA40) of class (b). Table 5.2 shows the detailed results ob-
tained for each instance tested. Instances LAO1-LA15 and LA31-LA35 are
“easy” because the number of jobs is several times larger than the number of
machines. They were solved to optimality by TSGW in less than 0.4 seconds.
The more difficult instances LA16-L.A30 and LA36-LA40 were solved in less
than 4.5 seconds.

Table 5.3 lists the average results for each size (group) n x m of the instances.
For all groups, CPU times of TSGW are very small (on the average). And so,
for group with the largest instances LA36-LA40, TSGW needs 2.6 seconds (on
Pentium 333), whereas TSSB needs 141 seconds (on Pentium 133). While, for
group with the smallest instances LA01-LAOS5, the respective CPU times are
0.1 and 9.8 seconds. Besides, note that in the terms of PRD values, TSGW
produces substantially better results than TSSB.

Tables 5.4 and 5.5 present the results on 80 test problems of class (c) proposed
by Taillard (TA01-TA80). It is reported that for 32 out of 80 instances optimal

solutions are not known.

Table 5.4 lists detailed results for TAO1-TA80. Instances TA51-TA80 are
“easy” because the number of jobs is several times larger than the number of
machines. Most of them (i.e. 28 out of 30) were solved to optimality by TSGW
in less than 10 seconds. For more difficult instances TA31-TA40 and TA41-
TAS50, the best Cy,,, values of TSSB were produced by TSGW in less than 50
seconds. While, for the most difficult instances TA21-TA30 the values were
produced in less than 60 seconds. Most of them (i.e. 8 out of 10) were obtained
in less than 25 seconds. The longest CPU is reached for TA29 and is equal to
57 seconds.

Table 5.5. Average results for the instance groups of class (c)

Problem nXxXm TSGW TSSB
PRD (aver.) CPU (aver.) PRD (aver.) CPU (aver.)

TAO01-10 15 x 15 0.27 7.6 045 2175
TA11-20 20 x 15 3.87 7.1 4.13 2526
TA21-30 20 x 20 6.31 204 6.52 34910
TA31-40 30 x 15 1.75 20.1 1.92 14133
TA41-50 30 x 20 5.82 9.9 6.04 11512
TAS1-60 50 x 15 0.01 4.1 0.02 421
TA61-70 50 x 20 0.36 9.2 0.39 6342
TA71-80 100 x 20 0.00 4.4 0.00 231

all 2.30 243
CPU represents the CPU time:

TSGW on Pentium 333MHz,

TSSB on Pentium 133MHz (Pezzella and Merelli 2000)
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Finally, Table 5.5 shows the average results for each size (group) n x m
of instances. For all groups, CPU times of TSGW are extremely small (on
the average). And so, for group with the smallest instances TAO1-TA10, our
algorithm needs 7.6 seconds (on Pentium 333), whereas TSSB needs 2175
seconds (on Pentium 133). While, for the most difficult group TA21-TA30, the
respective CPU times are 20.4 and 34910 seconds. Besides, It is noteworthy
that in the terms of PRD values, TSGW produces slightly better results than
TSSB.

All these results confirm the favorable performance of TSGW in the terms
of CPU times and PRD values as well.

5. Conclusions

In this paper we have presented and discussed some new properties of blocks
in the job-shop problem. These properties allow us to propose a new, very fast
algorithm based on the tabu search approach. In order to decrease the compu-
tational effort for the search in TS, we propose calculation of the lower bounds
on the makespans instead of computing makespans explicitly for use in select-
ing the best solution. These lower bounds are used to evaluate the moves for
selecting the “best” one. Also, we propose a tabu list with dynamic length
which is changed cyclically as the current iteration number of TS increases,
using a “pick® in order to carry the search to another area of the solution space.
Finally, some perturbations associated with block properties are periodically
applied. Computational experiments are given and compared with the results
yielded by the best algorithms discussed in the literature. These results show
that the algorithm proposed provides much better results than the recent modemn
approaches. A particular superiority of our algorithm is observed for so-called
“hard* problems for which the number of jobs is close to the number of ma-
chines. Nevertheless, some improvements in our algorithm are possible. For
instance, attempts to refine the lower bounds and perturbations may induce a
further reduction of the computational times.

The results obtained encourage us to extend the ideas proposed to other hard
problems of sequencing, for example, to the flow-shop problem.
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Abstract This article reviews some of the most important tabu search heuristics for the
vehicle routing problem. Some ofthe main tabu search features are first described:
neighbourhood structures, short term memory, long term memory, intensification.
The tabu search algorithms are then described, followed by computational results
and the conclusion.

Keywords:  Vehicle Routing Problem, Tabu Search, Heuristics

1. Introduction

The classical Vehicle Routing Problem (VRP) is defined on an undirected
graph G = (V,E) where V. = {w,v1,...,v,} is a vertex set and E =
{(vi,v;) : vi,v; € V, i < j} is an edge set. Vertex vy represents a depot
at which are based m identical vehicles of capacity (), while the remaining
vertices are cities or customers. A non-negative cost, distance or travel time
matrix C' = (c;;) is defined on E. Each customer v; has a non-negative demand
¢; and a non-negative service time s;. The VRP consists of determining a set of
m vehicle routes i) of minimum total cost; ii) starting and ending at the depot;
and such that iii) each customer is visited exactly once by exactly one vehicle;
iv) the total demand of any route does not exceed (); v) the total duration of
any route does not exceed a preset bound D. The number of vehicles is either
an input value or a decision variable. In the latter case vehicle fixed costs are
sometimes incorporated in the objective function. Most authors in the field
work with a fixed number of vehicles. It should be noted, however, that the best
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solutions reported (in terms of distance) do not always use the least possible
number of vehicles.

The VRP is an important combinatorial optimization problem. It also occu-
pies a central place in distribution management. Toth and Vigo (2002) report
that the use of computerized methods in distribution processes often results
in savings ranging from 5% to 20% in transportation costs. Golden, Assad
and Wasil (2002) and Barker (2002) describe several case studies where the
application of VRP algorithms has led to substantial cost savings.

The VRP was introduced by Dantzig and Ramser (1959) more than four
decades ago. Since then there has been a steady evolution in the design of
solution methodologies, both exact and approximate, for this problem. Yet, no
known exact algorithm is capable of consistently solving to optimality instances
involving more than 50 customers (Golden et al., 1998; Naddef and Rinaldi,
2002). Heuristics are usually used in practice.

Heuristics include constructive heuristics (e.g., Clarke and Wright, 1964)
which gradually build a feasible solution while attempting to keep solution cost
as low as possible, two-phase heuristics in which customers are first clustered
into feasible routes and actual routes are then constructed (e.g., Gillett and
Miller, 1974; Fisher and Jaikumar, 1981), and improvement methods which
either act on single routes by the application of a Traveling Salesman Problem
(TSP) heuristic, or on several routes by performing customer reallocations or ex-
changes. The best known intra-route moves are the classical r-opt interchanges
(Croes, 1958; Lin, 1965) and several variants such as Or-opt (Or, 1976), 2-opt*
(Potvin and Rousseau, 1995), and 4-opt* (Renaud, Boctor and Laporte, 1996).
Inter-route exchanges include those of Fahrion and Wrede (1990), Thompson
and Psaraftis (1992), Van Breedam (1994), and Kinderwater and Savelsbergh
(1997). As reported by Laporte and Semet (2002), classical heuristics such as
the savings method (Clarke and Wright, 1964) and the sweep algorithm (Gillett
and Miller, 1974) usually have a high execution speed but often produce solu-
tions having a large gap with respect to the best known solution value (typically
between 3% and 7%).

In the last fifteen years, several metaheuristics have been put forward for
the solution of the VRP. These typically perform a thorough exploration of
the solution space, allowing deteriorating and even infeasible intermediate so-
lutions. A number of methods maintain a pool of good solutions which are
recombined to produce even better ones. Gendreau, Laporte and Potvin (2002)
have identified six families of metaheuristics for the VRP: simulated anneal-
ing, deterministic annealing, tabu search, genetic algorithms, ant systems, and
neural networks. While the success of any particular method is related to its
implementation features, it is fair to say that tabu search (TS) has been highly
successful when applied to the VRP. For comparative computational results ob-
tained by means of classical and metaheuristics over the Christofides, Mingozzi
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and Toth (1979) (CMT) fourteen benchmark instances, see Gendreau, Laporte
and Potvin (2002), and Laporte and Semet (2002).

Our purpose is to compare and analyze some of the best TS implementations
for the VRP. We will first describe in Section 2 four important features of TS
algorithms. This will be followed in Section 3 by an analysis of the individual
TS heuristics with respect to these features and by an assessment and conclusion
in Section 4.

2. Tabu search features

Tabu Search was proposed by Glover (1986) and has quickly become one
of the best and most widespread local search methods for combinatorial opti-
mization. It performs an exploration of the solution space by moving from a
solution z; identified at iteration ¢ to the best solution z;11 in a subset of the
neighbourhood N(z;) of z;. Since z;4+1 does not necessarily improve upon
Z¢, a tabu mechanism is put in place to prevent the process from cycling over
a sequence of solutions. A naive way to prevent cycles is to forbid the pro-
cess from going back to previously encountered solutions, but doing so would
typically require excessive bookkeeping. Instead, some attributes of past so-
lutions are registered and any solution possessing these attributes may not be
considered for & iterations. This mechanism is often referred to as short term
memory. Other features such as diversification and intensification are often
implemented. The purpose of diversification is to ensure that the search pro-
cess will not be restricted to a limited portion of the solution space. A possible
way to implement diversification is to keep track of past solutions and penalize
frequently performed moves. This mechanism was first applied to the VRP by
Taillard (1992), and is often called long term memory. Intensification consists
of performing an accentuated search around the best known solutions. Several
survey papers and books have been written on TS, among which Hertz and
de Werra (1991), Glover and Laguna (1993, 1997), and Gendreau (2003). In
what follows, we examine neighbourhood structures, short term and long term
memory strategies, and intensification methods in the VRP context.

2.1 Neighbourhood structures

There are two main ways to define neighbourhood structures in TS algorithms
for the classical VRP. The first, termed A-interchanges by Osman (1991, 1993)
consists of exchanging up to A customers between two routes. The second,
called ejection chains (Rego and Roucairol, 1996) typically acts on more than
two routes at the same time.

In A-interchanges, the value of A is often restricted to 1 or 2 in order to limit the
number of possibilities. Such operations are best described by couples (X, A2)
(with A; < Aand A2 < A) to represent an operation where )y customers are
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moved from route 1 to route 2, and )y customers are moved from route 2 to
route 1. Thus, disregarding symmetries, the following moves are possible in 2-
exchanges: (2,2),(2,1), (2,0), (1,1), (1,0). Note that A-interchanges include
swaps (1, 1) and shifts (1,0). Several variants of this scheme are possible, such
as limiting the set of routes or vertices considered for a A-interchange, or per-
forming a local reoptimization of the routes in which removals or insertions take
place. Some of the classical improvement procedures described in Section 1
could be applied in this context. Note that A-interchanges do not encompass
intra-route moves but could be generalized to allow for this possibility.

Ejection chains (Xu and Kelly, 1996; Rego and Roucairol, 1996; Rego, 1998)
consist of first identifying a set of routes and then moving vertices in a cyclic
manner from route & to route ko, from route ks to route k3, etc. Because the k;s
are not necessarily different, ejection chains in fact allow for both intra-route
and inter-route moves.

Designing efficient TS algorithms entails striking a good balance between the
quality of the neighbourhood and computational efficiency. More complicated
neighbourhoods yield an enriched search since more solutions are considered
at each iteration, but at the same time there is a risk that the computational effort
will become excessive. This can be circumvented if sparse data structures are
used, as in the granular tabu search algorithm (Toth and Vigo, 2003), or if the
level of an ejection chain is limited, as in Rego and Roucairol (1996) or Rego
(1998) where the complexity of each step is reduced from O(r#) to O(n?).

Another issue related to neighbourhoods is whether intermediate infeasible
solutions are considered during the search process. One advantage of allowing
such moves is that they enable sequences of the type (%, Zs41, Tt4+2) Where 4
and ;9 are both feasible, but ;4 is infeasible and x5 is better than ;.
One way of handling infeasibilities, proposed by Gendreau, Hertz and Laporte
(1994), is through the use of a penalized objective function of the type

d(z) = c(z) + aQ(z) + BD(x),

where c¢(z) is the routing cost of solution z, Q(z) and D(z) measure the total
excess demand and total excess duration of all routes, respectively, and « and
B are self-adjusting parameters. Initially set equal to 1, these parameters are
periodically reduced (increased) if the last i solutions were all feasible (all
infeasible), and y is a user-controlled parameter. The advantage of considering
infeasible moves is greater in contexts where simple neighbourhood structures
are used, such as (1,0) moves. When sophisticated neighbourhood schemes
are employed, like ejection chains, the search process may be able to proceed
from x; to x4 9 directly, without going through the infeasible solution ;.
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2.2 Short term memory

To prevent cycling, it is common to prohibit reverse moves for 0 iterations.
Thus a customer moved from route r to route s at iteration ¢ may be prohibited
from being reinserted in route r until iteration ¢ + 8, or it may not leave route s
until iteration ¢ + 6. The first documented application of this now common
rule can be found in Osman (1991). In Osman (1991, 1993) a fixed value of
0 is determined through regression analysis. In his study on the Quadratic
Assignment Problem Taillard (1991) suggested varying the value of 6 during
the search. This idea was applied to the VRP by Taillard (1992, 1993) and
Gendreau, Hertz and Laporte (1994) who suggest selecting, at each iteration,
the value of @ in a given interval [¢, 6] according to a uniform distribution.
Other authors, e.g., Cordeau, Laporte and Mercier (2001) use the same value
of 6 throughout the search.

It is also common to use an aspiration criterion to revoke the tabu status of a
move if this causes no risk of cycling, for example if this yields a better overall
incumbent feasible solution, or a better incumbent among the set of solutions
possessing a certain attribute.

23 Long term memory

To diversify the search, most TS implementations penalize frequently used
solution attributes or frequently performed moves (Glover, 1989). This can
be done by adding to the routing cost ¢(zz11) of z;11 a penalty term equal to
the product of three factors: 1) a factor measuring the past frequency of the
move; 2) a factor measuring instance size (such as /n); 3) a user-controlled
scaling factor. In practice, implementing such a mechanism is both effective and
computationally inexpensive. This idea was first proposed by Glover (1989)
and later fine tuned by Taillard (1992, 1993, 1994) and by Gendreau, Hertz and
Laporte (1994).

2.4 Intensification

Intensification consists of accentuating the search in promising regions. Pe-
riodic route improvements by means of TSP algorithms may be classified as
intensification techniques. Another way of performing intensification is to con-
duct a search using a wider neighbourhood structure around some of the best
known solutions.

The concept of Adaptive Memory is probably the most powerful intensi-
fication tool for TS. An adaptive memory is a population of good solutions
encountered during the search procedure. It was applied to the VRP for the
first time by Rochat and Taillard (1995). Similar to what is done in genetic
algorithms, these authors combine solution elements from the population to
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construct new solutions. If their value is less than those of some solutions in
the population, they are retained and the worst solutions are discarded from the
population. In the VRP context, a new solution is initialized from a number of
non-overlapping routes extracted from good solutions. Typically these routes
do not cover all vertices for otherwise there would be overlaps. The search is
then initiated from the selected routes and the unrouted vertices.

3. An overview of TS algorithms

We now present an overview of some of the most popular TS algorithms for
the VRP, with an emphasis on the most innovative features of each algorithm.

3.1 Osman’s algorithm

It was Osman (1991, 1993) who proposed the concept of A-interchanges. In
his implementation he uses A = 1 to generate an initial feasible solution and
A = 2 in the descent phase. The value A = 2 allows a mix of single and double
vertex moves, and single and double vertex swaps between vehicle routes.
Osman tested two strategies for selecting a neighbour solution. In the first,
called best admissible (BA), the best non-tabu solution is selected. Inthesecond,
called first best admissible (FBA), the first admissible improving solution is
selected if one exists, otherwise the best admissible solution is retained. Osman
shows through empirical testing that with the same stopping criterion FBA
produces slightly better solutions, but this variant is much slower than BA.
Osman’s TS implementation uses fixed tabu tenures, no long-term memory
mechanism and no intensification schemes.

3.2 The Gendreau, Hertz and Laporte Taburoute
algorithm

In Taburoute (Gendreau, Hertz and Laporte, 1994) neighbour solutions are
obtained by moving a vertex from its current route r to another route s containing
one of its closest neighbours. Insertion into route s is performed concurrently
with a local reoptimization, using the GENI mechanism for the TSP (Gendreau,
Hertz and Laporte, 1992). This may result in creating a new route or in delet-
ing one. To limit the neighbourhood size, only a randomly selected subset of
vertices are considered for reinsertion in other routes. The concept of a penal-
ized objective ¢ (z) was introduced in Taburoute. The parameters « and 3 are
adjusted every 10 iterations: if the ten previous solutions were feasible with
respect to capacity (route duration), then «((3) is divided by 2; if they were all
infeasible, then a () is multiplied by 2; otherwise, o(/3) remains unchanged.
Any vertex removed from route r at iteration ¢ is prevented from being reinserted
in that route until iteration ¢ + 6, where 6 is randomly selected in [5, 10], unless
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of course such a move would yield a new incumbent solution. A continuous
diversification scheme is also applied. Routes are periodically updated using
the US post-optimization heuristic for the TSP (Gendreau, Hertz and Laporte,
1992). Two types of intensification features are used. False starts are employed
to perform a limited search from several starting solutions, and then running
the main search procedure starting from the best solution obtained. In addition,
after a given number of iterations without improvement, a more intense search
is performed starting with the incumbent, but allowing this time more vertices
to be moved from their current route.

33 Taillard’s algorithm

While it was published one year earlier then Taburoute, Taillard’s (1993)
algorithm was developed during the same period. It uses a 1-interchange mech-
anism without local reoptimization, and without allowing infeasibilities. This
scheme is much simpler than that used in Taburoute and allows for more it-
erations to be performed during the same running time. The tabu mechanism
and the long-term memory policy are the same as in Taburoute. Periodically,
routes are reoptimized using the exact TSP algorithm of Volgenant and Jonker
(1983). The search procedure developed by Taillard employs a decomposition
scheme that lends itself to the use of parallel computing. In planar problem,
the set of customers is first partitioned into sectors centered at the depot, and
also into concentric circles. Search is performed in each subregion by a differ-
ent processor. The subregion boundaries are updated periodically to provide a
diversification effect. In non-planar problems, regions are defined through the
computation of shortest spanning arborescences rooted at the depot. Taillard’s
algorithm remains to this day one of the TS heuristics for the VRP yielding the
best solution values. On the fourteen CMT instances, it has produced twelve
of the best known solutions.

34 The Rochat and Taillard Adaptive Memory Procedure

The Adaptive Memory Procedure (AMP) implemented by Rochat and Tail-
lard was presented under the title “Probabilistic Diversification and Intensifi-
cation”. The method should not be regarded as a VRP heuristic per se, but
rather as a general procedure applicable to several contexts and in conjunction
with several heuristic schemes. For example, it was applied by Bozkaya, Erkut
and Laporte (2003) to postoptimize political districts obtained by means of a
TS heuristic. Its application to the VRP has helped improve two of the solu-
tions generated by Taillard on the CMT instances, thus yielding the best known
incumbent for thirteen of the fourteen instances.
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35 The Xu and Kelly algorithm

In their TS algorithm, Xu and Kelly (1996) define neighbours by oscillating
between ejection chains and vertex swaps between two routes. The ejection
chains are determined by minimizing a flow on a network of the type depicted
in Figure 6.1. Level 2 and level 3 arcs have a flow of 1 or 0 to indicate whether
a customer is removed from a route (level 2) or reinserted in a route (level 3).

Route nodes Customer modes Route nodes

Level 1 Level 2 Level 3 Level 4

Figure 6.1. Network flow problem for the Xu and Kelly algorithm.

Since several customers can be removed from the same route or reinserted
into the same route, all arc costs are approximations only. As in some of the
previous algorithms, individual routes are periodically reoptimized by means
of 3-opt and 2-opt operations. Intermediate infeasible solutions with respect to
capacity are allowed (with o = 1), fixed tabu tenures are used, and a long-term
frequency based memory is applied.

A pool of best known solutions is maintained and the search procedure is
periodically applied to the solutions of this pool in the hope of generating even
better ones. Overall, this algorithm has produced several good solutions on
the capacity constrained VRP but is rather time consuming and complicated
because it requires the setting of several parameters.

3.6 The Rego and Roucairol Tabuchain algorithm

The Rego and Roucairol Tabuchain algorithm (1996) uses ejection chains
involving ¢ levels, or routes, to define neighbourhoods. Basically an ejection
process bumps a vertex from one level to the successive level, starting at level 1
and ending at level £ — 1. At any level of the ejection chain, the last bumped
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vertex may possibly be relocated in the position of the vertex removed from
level 1, but also possibly elsewhere (Figure 6.2).

—_—r ) — @ —> - —_— > —

1 2 3 /

Figure 6.2. An {-level ejection chain. Three vertices are shown for each route. The middle
one is ejected.

An ejection chain is considered only if no arc (edge) appears more than once
in the solution, but routes that violate capacity or duration constraints are ac-
cepted. A sequential and a parallel version of this algorithm were implemented
by the authors.

3.7 Rego’s Flower algorithm

The Flower algorithm described by Rego (1998) applies an ejection pro-
cess to move from a VRP solution made up of several blossoms (or routes) to
another solution by suitably deleting and introducing edges. Applying these
operations create intermediate structures consisting of one path, called stem,
emanating from the depot, and several blossoms attached to it. Thus a blossom
may be transformed into a stem (Figure 6.3a) or divided into a blossom and a
stem (Figure 6.3b). During this process, the number of active vehicle routes
may vary. Candidate solutions consisting only of blossoms are obtained by
performing ejection moves that maintain the flower structures. This is done by
suitably deleting edges from the structure and inserting new ones. This process
is embedded within a TS mechanism by declaring tabu the reintroduction of
an edge that has just been deleted. As in some of the previous algorithms,
variable tabu tenures are used and a long-term diversification strategy based on
move frequencies is applied. Here, the penalty term is randomly generated in
an interval whose length is related to /7.

3.8 The Toth and Vigo granular tabu search algorithm

The granularity concept proposed by Toth and Vigo (2003) does not only
apply to the VRP or to TS algorithms, but to discrete optimization on the whole.
Like AMP, itis a highly portable mechanism. The idea is to permanently remove
from consideration long edges that have only a small likelihood of belonging
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a) Transforming a blos- b) Transforming a blos-

som into a stem by remov- som into a blossom and a

ing an edge incident to the stem by deleting an edge

depot. and introducing another
one.

Figure 6.3. Two ejection chain rules in the Flower algorithm. In both cases the depot is
represented by the black vertex.

to an optimal solution. More specifically, a threshold is defined and the search
is performed on the restricted edge set E(v) = {(u,v;) € E : ¢ S v} U,

where I is a set of important edges defined as those incident to the depot. The
value of v is set equal to J¢, where 3 is called a sparsification parameter,
and ¢ is the average edge cost in a good feasible solution quickly obtained, for
example, by the Clarke and Wright (1964) algorithm. In practice, selecting 3 in
the interval [1.0, 2.0] results in the elimination of 80% to 90% of all edges. Toth
and Vigo have applied this idea in conjunction with some of the main concepts
proposed by Taillard (1993) and by Gendreau, Hertz and Laporte (1994).

3.9 The Unified Tabu Search Algorithm of Cordeau,
Gendreau, Laporte and Mercier

The Unified Tabu Search Algorithm (UTSA) was first developed in the con-
text of the Periodic VRP and of the Multi-Depot VRP (Cordeau, Gendreau and
Laporte, 1997) for which it produced highly competitive results. It was later
applied to the Site Dependent VRP with time windows (Cordeau and Laporte,
2001), to the Periodic VRP with and the Multi-Depot VRP with time windows
(Cordeau, Laporte and Mercier, 2001) and, finally, to the classical VRP with
capacity and route length constraints (Cordeau et al., 2002). UTSA uses several
of the features of Taburoute, namely the same neighbourhood structure, GENI
insertions, long-term frequency based penalties. It also differs from Taburoute
in a number of ways. The search is applied to a single initial solution, fixed
tabu durations are used and no intensification phase is applied. In other words
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an efficiency gain was achieved by sacrificing some of the sophistication of
Taburoute.

While UTSA also allows intermediate infeasible solutions, it either divides
or multiplies @ and by a factor 1 + ¢ at each iteration according to whether
the previous solution was feasible or not with respect to either capacity or route
duration. The tabu mechanism operates on an attribute set B(z) = {(i,k) : 4
is visited by vehicle k in solution x}. Neighbour solutions are obtained by
removing (i, k) from B(z) and replacing it with (i, k'), where &’ # k. Attribute
(¢, k) is then declared tabu for a number of iterations, and the aspiration criterion
is defined relative to attribute (3, k).

Two interesting features of UTSA are its relative simplicity (it operates with
very few parameters) and its flexibility. It has been successfully applied to a
large variety of VRP variants by always keeping its parameters at the same
value.

4. Assessment and conclusion

Tabu search clearly stands out as one of the best heuristics for the VRP.
Over the last fifteen years several implementations have been developed and
tested. It is fair to say they have been highly successful in tackling this difficult
problem. This success is due in part to a number of key ideas contained in
several implementations: efficient neighbourhood evaluation through proper
data structures, the allowance of infeasible solutions during the search, the
use of self-adjusting parameters, continuous diversification, ejection chains,
adaptive memory, and granularity. More than any other feature, these ideas
have contributed to the success of TS heuristics and have withstood the test of
time.

We present in Table 6.1 comparative computational results for the implemen-
tations described in Section 3, over the fourteen CMT benchmark instances.
While a proven optimum is known for the first instance only, the best known
solutions obtained by Rochat and Taillard (1995) and by Mester and Baysy
(2005) are believed to be near-optimal and are used to assess the degree of
accuracy of other heuristics. Most TS implementations used in the comparison
yield average deviations of less than 1% from the best known. Computation
times are difficult to compare since they are not always reported, different com-
puters are used, some implementations use parallel computing (Taillard, 1993;
Rego and Roucairol, 1996), and it is not always clear how many runs were
made. For example, Taillard (1993) and Rochat and Taillard (1995) only report
the time required to reach a solution whose value is within a given percentage
of the best known. In the case of parallel implementations, an upper bound on
the running time of an equivalent sequential algorithm can be found by adding
up the time taken by each processor. It is worth mentioning that the recent
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study by Dongarra (2004) can help compare, to some extent, the relative speed
of computers.

We believe there is little scope for major accuracy improvements in the future
for the CMT instances. Instead, some effort should be devoted to developing
leaner implementations, using fewer parameters and simpler design, even if
accuracy deteriorates slightly as a result. Also, algorithms should be easily
adaptable to handle the multiplicity of side constraints that arise in practical
contexts. As noted by Cordeau et al. (2002) the research community is used to
assessing heuristics with respect to accuracy and speed alone, but simplicity and
flexibility are often neglected. Yet these two attributes are essential to adoption
by end-users and should be central to the design of the next generation of
algorithms.
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Chapter 7

SOME NEW IDEAS IN TS FOR JOB SHOP
SCHEDULING
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Abstract This paper deals with a classic job-shop scheduling problem with the makespan
criterion. Some properties of the fast algorithm TSAB of Nowicki and Smutnicki,
as well as properties of the solution space, have been discussed and examined.
Next, by introducing the original method of diversification, TSAB has been em-
bedded in more advanced algorithmic framework i-TSAB, which has far analogy
to path relinking technique. Newly proposed algorithm is faster and has better
accuracy than TSAB, runs within time of minutes on a PC and already in pre-
liminary tests provides 23 new upper bounds among 35 unsolved yet common
Taillard’s benchmarks.

Keywords:  Job-Shop Scheduling, Tabu Search, Path Relinking

1. Introduction

The job shop scheduling problem is known as the particularly hard combi-
natorial optimization case. It is also considered as the permanent indicator of
practical efficiency of advanced scheduling algorithms, thus manifest indirectly
the power of scheduling theory. The problem follows from OR practice, has
relatively simple formulation, excellent industrial applications, finite but huge
number of solutions and unfortunately is strongly NP-hard. That’s why, a lot
of various methods have been designed to solve the problem in a quick time.
The job-shop problem has been studied by many authors and quite a lot of opfi-
mization algorithms and approximate algorithms have been already proposed.
Skipping consciously the long list of particular papers, we refer to only few,
very recent, excellent state of art reviews performed in Blazewicz et al. (1996);
Cheng et al. (1996); Jain and Meeran (1999); Vaessens et al. (1996).
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In early nineties, after a series of works dealing with optimization algo-
rithms (chiefly of Branch-and-Bound type), it became completely clearly for
everybody, that pure optimization methods reached a limit. They cannot solve
instances with more than 200 operations in a reasonable time (hours, days,
weeks), although considerable progress had been made in B&B approach.

Since that time, research effort has focused on approximate approaches.
Made works improved significantly algorithms efficacy, measured by the accu-
racy as opposing to the running time. The way of development has long, rich
history, and takes a walk from dispatching priority rules, through the widely
studied variants of shifting bottleneck approach, geometric approach, job in-
sertions, local neighborhood search, neural networks, to modern simulated an-
nealing, constraint satisfaction, tabu search, and evolutionary search.

New era started when few job-shop algorithms proposed in Taillard (1993),
Nowicki and Smutnicki (1996), DellAmico and Trubian (1993) had appeared
- algorithms are based on TS approach of Glover (1989, 1990, 1997). Simply
and almost ascetic algorithm TSAB, Nowicki and Smutnicki (1996), designed
originally in 1993, found optimal solution of the notorious job-shop instance
FT10 (100 operations) in a few seconds on a PC; this instance had waited 26
years, since 1963, to be solved by an optimization algorithm. TSAB is the
first one, which enabled to solve, in a very short time on a PC, instances of
size up to 2,000 operations with unprecedented accuracy below 4% on average,
which is and so considerably better than approximately 20% for special insertion
technique, 35% for standard priority rules and over 130% for random solutions.
Just after TSAB had appeared, it received enthusiastic as well as skeptical
opinions. Enthusiasts tried to examine and enrich TSAB phenomena, chiefly
in order to improve further its numerical results - TS was a drug on notorious
hardness of the job-shop problem. Skeptics questioned measurement of the
computer speed, reported running time, complexity of finding the starting point,
etc. — all submitted doubts will be dispelled in the sequel.

Further exploration of TSAB idea evolves into two independent directions:
speed acceleration and more sophisticated diversification mechanism. Al-
though a few papers have dealt with these subject, from various points of view,
we propose new one, which embeds proposed earlier algorithm TSAB in more
general framework with far analogy to the path relinking philosophy. Results
of research accompanying to the creation of new algorithm provide new look
on TSAB as well as on properties of the solution space. As the immediate
practical result of our new approach, we have found 23 better upper bounds
among 35 unsolved yet instances from the common benchmark set of Taillard,
Taillard (1993), attacked by all job-shop algorithms designed over the world.
The proposed algorithm still runs on a standard PC with moderate speed in a
time of minutes.



Some New Ideas in TS for Job Shop Scheduling 167

The paper is organized as follows. After the problem formulation, in Section
2, with the help of introduced by us the convenient permutation-graph model,
we provide in Section 3 the brief characteristics of fundamental properties,
used for the construction of TS algorithms. Section 4 reminds these elements
of the classical TSAB algorithm, which are necessary for understanding our
new proposals. Section 5 presents several new theoretical properties of TSAB,
which increase only TSAB speed, preserving its accuracy. Equipped with
better tools, obtained this way, in Section 6 we analyze more precisely TSAB
search trajectories and solution space topology. After the strategy aspects of
the search discussed in Section 7, we introduce in Section 8 new diversification
mechanism, which leads to algorithm i-TSAB of high accuracy, presented in
Section 9. Numerical tests discussed in Section 10 completes the paper.

2. Problem, Models, Denotations

The job-shop problem is defined formally as follows. There are a set of
jobs J = {1,...,r}, a set of machines M = {1,...,m} and a set of oper-
ations O = {1,...,0}. Set O is decomposed into subsets corresponding to
the jobs. Job j consists of a sequence of o; operations indexed consecutively
by (I;—1 +1,...,l;_1 + o;) which should be processed in that order, where
l; =3>2_, 0, is the total number of operations of the first j jobs, j = 1,...,7
(o = 0),and }_7_, 0; = o. Operation i must be processed on machine y; € M
during an uninterrupted processing time p; > 0, i € O. We assume, without
loss of generality, that any successive operations of the same job are going to
be processed on different machines. Each machine can process at most one
operation at a time. A feasible schedule is defined by start times .§ > 0,7 € O,
such that the above constraints are satisfied. The problem is to find a feasible
schedule that minimizes the makespan max;co(.S; + p;)-

In the analysis we use the permutation-graph model introduced first time
in Nowicki and Smutnicki (1996). Set of operations O can be naturally de-
composed into subsets My = {i € O : u; = k} each of them correspond-
ing to operations which should be processed on machine k, k € M. The
processing order of operations on machine k£ can be defined by permutation
e = (mg(1),. .., 7x(|Mg|)) on Mg, k € M; mi(i) denotes the element of
M), which is in position i in 7,. Let II; be the set of all permutations on
M. The processing order of operations on machines is defined by m-tuple
7= (m1,...,Tm), where m € [I =TI x Iy X ... x IL;,.

For the processing order 7, we create the digraph G(7) = (O, RUE (7)) with
a set of nodes O and a set of arcs RU E(m), where R =), Ufgl{(lj_l +
i,lj_1 +i+ 1)} and E(r) = UL, Uy:‘ll_l{(wk(i), k(i +1))}. Arcs from
set R represent the processing order of operations in jobs, whereas arcs from
set E(7) represent the processing order of operations on machines. Each node
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¢ € O in the digraph has weight p; and each arc has weight zero. The processing
order 7 is feasible if the graph G(7) does not contain a cycle. It is well-known
that any feasible processing order 7 generates a feasible schedule §, i € O.
Moreover, start time .S; equals the length of the longest path going to the vertex
i (but without p;) in G(7), i € O; if a node has no predecessors then the
length is zero. Makespan Cpax (1) for the processing order 7 equals the length
of the longest path (critical path) in G(7). Now we can rephrase the job shop
problem as that of finding the feasible processing order 7 € II which minimizes
Crmax(7).

Let u = (uy,...,uy), where u; € O, be the critical path in G(7) (w
is the number of nodes in w). This path can be naturally decomposed into
b < w subsequences Dy, . . . , By called blocks in 7 on u, where: (i) B; contains
operations processed on the same machine, 1 < j < b, (if) two consecutive
blocks contain operations processed on different machines; see among others
Grabowski et al. (1988) for detail.

3. Moves, Neighborhoods, Properties

In this section we discuss essential job-shop properties in the context of TS
applications, taking account of efficacy of the algorithm.

The neighborhood (a basic element of local search procedures) of the given
solution 7 is a subset of solutions “close” to 7, generated by the application of
various types of moves. For solutions derived from permutations, thus also for
processing order 7, there are commonly used: A-move (swap a pair v = (z,y)
of two adjacent operations z, y processed on a machine), S-move (swap a pair
v = (z,y) of two operations x, y processed on the same machine), I-move (for a
pair v = (z, y) of operations z, y processed on the same machine k = 1, = iy,
cut out operation z from its original position and then insert it immediately
after operation y if = precedes y in the permutation 7, or immediately before
operation y otherwise). Let 7,y denote the processing order obtained after the
move v. The set of all moves of type Z performed from 7 will be denoted
by VZ(r), whereas the obtained neighborhood by N%(7) = {rw) @ v €
VZ(m)}, Z € {A,S,I}.

There are two main problems with neighborhoods generated by such moves:
size and feasibility. To resolve both problems, partially or completely, all
known algorithms for job-shop with the makespan criterion employ, directly
or indirectly, at least special elimination properties followed from the critical
path, Balas (1969), Laarhoven et al. (1992), and/or blocks, Grabowski et al.
(1988). The general aim of these properties is to eliminate from the consider-
ations some selected moves, for which it is known a priori, without computing
the makespan, that they will not immediately improve Cpax(7). These ad-
visable moves will be called next useless moves. The elimination of useless
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moves correlates with feasibility (a non-useless move can lead to 7, with a
cycle in the graph G(7(,))) and connectivity (for any starting solution, there
exists search trajectory leading to optimal solution). Note that the check of
feasibility is so expensive as the explicit makespan calculation. An incom-
plete (non-exhaustive) reduction leaves connectivity and sometimes unfeasible
moves, whereas too deep reduction eliminates all useless moves but also loses
connectivity. A reasonable balance between these extreme techniques is wel-
come.

All known and these newly designed neighborhoods for the job-shop prob-
lem apply moves to operations from a critical path only; other moves can be
reduced due to elimination property of this path. We will refer to two such
neighborhoods, both generated by subsets of moves from VA(r). The first
neighborhood follows from the paper Laarhoven et al. (1992), is generated
by move set VAl(r) C VA(r), where v = (z,y) € VAl(r) if only z and y
belongs to the critical path u in G(7). All these moves are feasible but some
of them are useless. The second neighborhood is generated by the move set
VA2(1r) C VAL(r), obtained from VA1(r) by elimination of all useless moves
with the help of block property, Grabowski et al. (1988); this technique is
also known as “interchanges near the borderline of blocks on a single critical
path”. More precisely, we build V42(7) on the base of the critical path » in
G() and blocks By, ..., By defined for this u. We accept only these moves
from VA1(r), that swap the first two and last two operations in every block
B, ..., By_1, each of which contains at least two operations. In the first block
B; we accept move that swap only the last two operations, and via symme-
try in the last block — that swap only the first two operations. It was shown
that, if VA2() is empty, then the processing order 7 is optimal, Nowicki and
Smutnicki (1996). Neighborhood N4!(7) is connected, whereas N4%(r) is
not connected.

4. Algorithm TSAB

In this section we briefly outline algorithm TSAB, which constitutes the
foundation for the whole analysis carried out next.

TSAB works on the move set V42(r). For simplicity of denotation the move
set V42(7) and the neighborhood A2 (7) will be denoted frequently by H ()
and H (), respectively. In TSAB, the single neighborhood H(7) is searched
using Neighborhood Searching Procedure (NSP), see Figure 7.1. It uses tabu
list T = (T, .., Trazt) of a fixed length maxt, which stores forbidden moves
v = (z,y). Operator & adds the move to the list in standard way. For a move
v = (z,y) performed, an inverse move v = (y,z) becomes forbidden and
will be added to T'; this provides new form of tabu list 7' := T & v'.
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Algorithm NSP

Starts with a processing order 7, a non-empty H(7), a current tabu list ', a
best known makespan C*, and returns move v/, the new processing order =’
and the modified tabu list 7".

Step 1. Findsets U = H(m)\T and FP = {v € H(m)NT : Cpax(7(v)) <
C*}. HUUFP # () then select v' € U U FP s0 that Crax(7(v)) =
min{Crax(T(w)) : v € U U FP} and goto 3.

Step 2. If | H(m) |= 1 then select Y € H(w). Otherwise repeat T :=
T @ Traqt until H(m) \ T # 0. Then select v € H(w) \ T.

Step 3. Setn’ :=rmyand T :=T & V.

Figure 7.1. Neighborhood Searching Procedure (NSP)

NSP searches using three categories of moves: unforbidden U = H(7w)\ T,
forbidden but profitable FP = {v € H(m) N T : Cuax(7(r)) < C*} and
forbidden but nonprofitable FN = H(w)\ (U U F P). We select the best move
v’ among those in the set U U F'P. If all moves are in F'N (i.e. UUFP =
@) and |[FN| > 1, we modify the tabu list accordingly to the recipe “repeat
T :=T & Tynazt until H(7) \ T # 0”. After this eventual modification, the set
H(7) \ T contains one move which is being chosen next.

The basic TS algorithm, called TSA, simply iterates NSP. It has no diversifi-
cation, it works fast due to small neighborhood and owns quite good numerical
properties. The advanced TS algorithm called Tabu Search Algorithm with
Back Jump Tracking (TSAB) has some diversification elements, related to a
strategy that resumes the search from unvisited neighbors of solutions previ-
ously generated, see Figure 7.2.
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Algorithm TSAB

Begins with the processing order 7* (found by any heuristic algorithm), 7 =
™, C* = Coax(7*),T = 0, L = O (i.e. | = 0), iter = 0and save := true.
The flag save controls the process of storing on the list L = (L, ... L;).
TSAB returns the best processing order 7* and C* = Cpyax(7*).

Step 1. Set iter := iter + 1. Find the set of moves H(7).
If H(7) = () then STOP; 7* is optimal.

Step 2. Find the move ' € H (), the neighbor 7’ = 7,/ and the modified
tabu 7" by applying NSP.
If save = true and H(w) \ v/ # 0 then set L :=shift(L), | =
min{l + 1, mazl}, Ly = (m, H(w) \ v/, T).
Setm := 7/, T := T and save := false.

Step 3. If Cipax(m) < C* then set 7* := 7, C* := Cpax(7),
iter := 0, save := true and go to 1.

Step 4. If (iter < maxziter) and (not IsCykle(iter)) then go to 1.

Step 5. If | # O then set (w, H(n),T) := Lj, | := | — 1, iter := 1,
save := true and go to 2; otherwise STOP.

Figure 7.2. Tabu Search Algorithm with Back Jump Tracing (TSAB)

During the run of TSAB we store, on the list L = (L,,...,L;), the last
I < mazl best processing orders, where mazxl is a parameter. The element
L; = (m, V,T) of this list is a triple: a processing order, set of moves, and a
tabu list, 1 < j < [. If we have found, in some iteration iter, the processing
order 7 such that Cpax(7) < C* (see Step 3)and H (7)) \v/ # 0, then we add do
the list the element L; = (7, H(7) \ v/, T), | = min{l + 1, mazl}, where v’ is
a move which will be performed from 7. (Note that H(7) and ¢/ will be found
in iteration iter + 1, see Step 1 and 2.) In order to prevent overloading, the
operator “shift” is processed on the list before new list element will be added;
shift(L) = L if | < mazl, otherwise operator shift(L) moves list elements
to the left, i.e. L; := Lj;1, 7 = 1,...,mazl — 1. Just after maziter non-
improving iterations has been performed, TSAB continues search starting with
the processing order, set of moves and the tabu list located in the last position
in list L. TSAB is stopped if list L is empty. In order to detect and break
cycles that can occur during the search, TSAB refers to originally designed
cycle detector. Boolean function I'sCykle(iter), see Step 4, returns true at
iteration iter if there exists the period 6, 1 < § < max6, such that C*—% = C*,
i = iter + 1 — mazc - mazd, ..., iter, where C* is the makespan found at



172

iteration ¢, and maxd, maxc are given parameters. Parameters maxzcand maxd
are set experimentally as a compromise between the amount of computations
and "certainty" of a cycle existence.

5. Advances in TSAB

In this section we provide some advanced, unpublished yet, theoretical ele-
ments, which improve only running time of TSAB without any change of its
accuracy — the algorithm provides the same solutions but significantly faster.
We refer here to two of them: INSA advanced implementation and accelerators.

INSA ADVANCED IMPLEMENTATION. In the paper of Nowicki and Smut-
nicki (1996) we recommended to link TSAB with dedicated starting algorithm
INSA, designed with the use of so called insertion technique. Many our tests
have shown that this combination “fits well”, which means that INSA generates
relatively good starting solutions, which enables TSAB to pass quickly to the
exploration of promising regions of the solution space. It does not mean, how-
ever, that INSA solutions are excellent; the average relative error to the lower
bound (ARE) over the benchmarks from Taillard (1993) is about 20%, see col-
umn ARE in Table 7.1. Next, these solutions are effectively and significantly
improved by TSAB. We made also some tests with other starting algorithms.
Poor starting solution, for example random solution, forces TSAB to make an
additional number of iterations just before it reaches the makespan value com-
parable to that obtained by INSA, see Figure 7.6 (right). The final search result
does not depend significantly on starting solution, however, the application of
INSA allow us to go quicker to good solutions. From Figure 7.6 (right) and
7.7 (left) one can observe that the best solutions found are close in terms of
the makespan value, but are distant in the sense of the distance measure. In
these figures “distance to the best” means the distance D* (see Section 6) to a
fixed good reference solution — the best one found during 10,000 iterations of
TSAB started from INSA. This good opinion about INSA suggests everybody
to increase its speed rather than to modify its fundamental structure. We did so.

An ad hoc implementation of INSA has the computational complexity O(c?
maxgep | Mg|), which suggests that it can take a significant part of TSAB
running time, particularly for large-size instances. In fact, INSA can be im-
plemented as O(o?) procedure, which will be shown in the sequel. Thus, its
running time is comparable to any standard priority algorithm with dynamic pri-
orities. The implementation with smaller complexity is non-trivial and needs
some auxiliary explanations. To this order we remain briefly the INSA structure.

The algorithm constructs the processing order starting from a primal partial
order, inserting in each step a single operation, Figure 7.3. In detail, we start
from the order containing only all operations of single job, the one with the
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Algorithm INSA

INSA returns the approximate processing order o = (01, ..., 0m).

Step 0. Find initial partial processing order o by scheduling only job 1
having operations {1,...,4}.

Step 1. Find permutation w of the remain operations {4 + 1,...,0}

according to non-increasing their processing times.
Step 2. For s = 1to o — I3 perform Step 3.

Step 3. For partial processing order o, operation z = w(s) and machine
a =y find z = |oa] + 1 processing orders o7, where ai = oy,
k # a,and 0 = (04(1),...,0.(J — 1),2,04(4),--.,0a(loal)),
j = 1,...,z Find the best order o’ such that d.(c') =
minj<j<,{dz(c?) : G(07) does not contain a cycle}. Seto :=
a.

Figure 7.3. INSertion Algorithm (INSA)

greatest sum of processing times (one can assume that this job has index 1).
Next, we successively insert operations of remaining jobs in the sequence of
non-increasing operation processing times. Denote by o = (a1, . ..,0m,) the
partial processing order, where o = (ok(1),...,0k(|ok])), ok < |Mg]isa
partial processing order of operations on k-th machine, k£ € M (by analogy to
7). For o we define the analogous partial graph G(c) = (O, RU E(0)). Let
d;(o) denote the length of the longest path passing through vertex ¢ in G(0).
Denote by z the operation which is inserted into o (obviously z is not in o) and
by @ = p, the machine on which inserted operation x should be processed. We
generate set of z = |o,| + 1 permutations obtained from o, by the insertion of
operation z on consecutive positions, i.e., immediately before operation ¢, (%),
i=1,...,|0,| and after the operation o,(|o,|). This set corresponds to z new
partial processing orders o7, j = 1,..., z on machines, having fixed order o},
on k-th machine, k € M\ {a}, and varied on a-th machine. We skip unfeasible
processing orders (with cycle in the graph G(¢? )) and calculate for each feasible
partial solution the length of the longest path d,(c7) passing through vertex z;
the processing order which yields the minimum length is taken as the partial
processing order for the next step.

Observe that the value d;(c7) need not to be calculated expensively as the
path in the graph G(07) in a time O(o), but can be be found in a time O(1)
on the base of some paths from G(c). More precisely, let 7; (¢;) denote the
length of the longest path in G(o) going to the node ¢ (going out from the node
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Table 7.1. Speed and accuracy tests of INSA

instance INSA time [s] speed ARE
group r m o old new increase [%]
ta0l - tal0 15 15 225 0.12 0.01 18.3 14.6
tall - ta20 20 15 300 0.26 0.01 255 20.7
ta21 - ta30 20 20 400 0.46 0.02 24.8 235
ta3l - ta40 30 15 450 0.85 0.03 34.1 214
ta41 - ta50 30 20 600 1.48 0.04 34.4 27.9
taS1 - ta60 50 15 750 3.73 0.07 54.0 16.4
ta61l - ta70 50 20 1000 6.56 0.12 54.7 20.1
ta71 - ta80 100 20 2000 64.63 0.51 127.8 133

1, respectively), including this node weigth. It has been proved (see Appendix
A) that

d;,;(O']) = max{R, Tga(j—l)} + pz + max{Qana(j)}a (7.1)

where R = r;_; if = is not the first operation of a job and R = 0 other-
wise, @ = ¢z41 if = is not the last operation of a job and Q = 0 other-
wise. Moreover, there are no needs to check whether G(o?) has a cycle.
In Appendix B it has been proved the nontrivial fact, that among process-
ing orders o7, j = 1,...,z, checked by INSA, the one which corresponds
to the minimal value of right hand-side of expression (7.1) is always feasible.
This allows us to replace complex condition “d;(0) = minj<;<,{dz(07) :
G(07?) does not contain a cycle}” in Step 3 of INSA, see Figure 7.3, by the
simple formulae “d,(¢c’) = min;<;<, d;(c7)”. Immediately from these two
properties we get the smaller computational complexity of INSA, O(c).

A numerical property of the proposed INSA implementation has been tested
experimentally. We provide, in Table 7.1, the average running times per instance
(on a PC with Pentium III 900MHz processor), of old and new INSA, for 80
Taillard’s benchmarks instances. For the largest group with 2,000 operations
(100 jobs, 20 machines) the INSA efficient implementation is more than 100
times faster with respect to the old one.

ACCELERATORS. Accelerators mean the special class of algorithmic com-
ponents, which allow TSAB to run faster, without any loss of accuracy. From
this point of view, INSA efficient implementation is a case of accelerator. Since
INSA can also act as an independent algorithm, one can consider this acceler-
ator as not dedicated strictly for TSAB. One of the first accelerators, designed
by us and dedicated specially for TSAB, is called Tabu Status accelerator and
allows us to check tabu status of a move in a time O(1) instead of O{maxzt).
Since the length of tabu list in TSAB is small, of order 10, the acceleration of
TSAB calculations is unnoticeable, thus we skip its presentation.
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Figure 7.4. Convergence of TSAB+C and TSAB+L on instances ta41 — ta50.

The second, more interesting, accelerator has been designed for the most
time consuming part of TSAB. One can check that the very expensive element
of TSAB consists in calculation of makespans for neighbors performed dur-
ing a single neighborhood search - it consumes more than 95% of time. To
reduce calculation cost, many authors have proposed to evaluate neighbors by
inexpensive lower bound rather than by the makespan. In order to check the im-
pact of such approach on the behavior of TSAB we compared two algorithms,
TSAB+C (original) and TSAB+L (equipped with Taillard’s lower bound, see
for example Eikelder et al. 1999), on Taillard’s benchmark instances, assum-
ing maziter = 50,000 (maziter = 10,000 if back jump tracking has been
performed). Results for the hardest group ta41 — ta50 are shown in Figure 7.4,
where the average relative errors to the lower bound (ARE) are drawn in itera-
tions. From Figure 7.4 one can observe that TSAB+C provides better solutions
than TSAB+L; ARE for TSAB+C is 6.43%, whereas for TSAB+L is 6.83%.
Moreover, TSAB+C needs less iterations than TSAB+L to get the comparable
level of makespan value. Unfortunately, time per iteration for TSAB+C is more
than ten times longer than that of TSAB+L.

To resolve the speed problem, we designed for TSAB dedicated NSP-Ac
accelerator, which modifies classical NSP procedure by using the skilful de-
composition and aggregation of makespan calculations performed for the sin-
gle (whole) neighborhood. NSP-Ac uses advanced analysis of paths in graphs
G(m), G(7(y)), its description and formal proof exceed the size of this paper
thus, we only direct the reader to the more elaborated paper with NSP-Ac and
its numerical studies, Nowicki and Smutnicki, (2001). Application of NSP-Ac
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Table 7.2. Behavior of TSAB depending on maziter on instances ta41 — ta50

maziter 10,000 20,000 40,000 80,000 120,000 160,000
ARE [%] 7.70 6.73 6.29 5.82 5.68 5.64
AV ITER [10] 0.32 0.80 1.15 2.07 2.69 3.30
AV CPU [s] 11.1 275 39.5 714 92.6 114.0

in TSAB+C implies that time per iteration of TSAB+C is only 30% longer than
that of TSAB+L. Hence, NSP-Ac constitutes an interesting alternative for the
approximate evaluation of neighbors applied, for example, in Eikelder et al.
(1999).

The acceleration of TSAB allow us to explore, at the same time, solution
space more intensively, for example by the increase of parameter maziter.
Computer tests confirmed, that going this way we can really get better solu-
tions. Unfortunately, we frequently observed the stagnation effect for the ap-
propriately large number of iterations. In Table 7.2 we show the behaviour
of TSAB on hard instances ta41 — ta50. Algorithm was run for selected
maziter = k = 10 000,20 000, ..., 160 000 (maziter = k/2 if back jump
tracking has been performed). AV ITER is the average number of iterations
per instance, in millions, with original TSAB stop criterion, see Figure 7.2. AV
CPU is the average CPU time per instance on a PC with Pentium III 900MHz
processor. One can observe the saturation effect for maziter over 120,000.
Although stagnation effect has appeared, obtained results are very good, com-
paring them to the best other recent studies, Balas and Vazacopoulos, (1998),
Pezzella and Merelli, (2000). In the paper Pezzella and Merelli, (2000), ARE
for ta41 — ta50 is equal 6.04%,; it has been obtained on a PC with Pentium
133MHz processor in a time greater than 11,500 seconds per instance on av-
erage. The nearest ARE value 5.82% algorithm TSAB generates already after
71.4 seconds. The ARE value 5.68% generated by TSAB after 92.6 seconds is
close to the value 5.71% obtained by the algorithm SB-RGLS10 from Balas and
Vazacopoulos (1994), which is the best construction recommended in the paper
Balas and Vazacopoulos, (1998) (running time is not given precisely there).
Thus, the further improvement of TSAB accuracy we expect in a proper diver-
sification method, which in order needs certain knowledge about the structure
of the solution space.

6. Landscapes, Distances, Valleys

This section aim is to analyze topological properties of the solution space of
the problem considered.
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Landscape means the relation between goal function value and the distance
in the solution space. The fundamental aim of the landscape analysis is to de-
tect regularity of the space, especially the big valley, which can play the role
of an attractor in the space. The presence of big valley means that distances
between good locally optimal solutions and the global one are significantly
positively correlated with goal function values of these solutions. It also means
that majority of very good local optima concentrates in a relatively small area of
the solution space. “Regularity” is too powerful qualification since combinato-
rial problems frequently have the huge number of local optima (usually poor),
whereas solutions close in the space may have significantly different goal func-
tion value. (For example, in Figure 7.6 (left) there is shown makespan value
for the sequence of successive solutions generated in first 10,000 iterations of
TSAB algorithm.)

Theoretically, the big valley justifies well philosophy of the path relinking
method, Glover (1997), designed on the basis of the belief, that going along
trajectory linking two local optima we are able to find new local optimum or
even global one. In practice, solution space may have much more complicated
nature. The big valley can also explain amazing efficacy of Back Jump Tracking
method used in TSAB.

Existence of a big valley has been experimentally confirmed already for
several combinatorial problems, for example, the symmetric TSP, a class of
bipartition of nodes in a graph, the permutation flow shop problem with the
makespan criterion, see Boe et al. (1994), Reeves (1998). Encouraging con-
clusions from the landscape analysis inclined us to carry out the similar research
for the job shop problem, as the preparing study for path relinking application.
In our case, the solution space contains processing orders m € II, the goal
function is the makespan Cpax (7).

The distance between processing orders should be adjusted to the algorithm
type, in this sense, that the distance denotes the minimal number of moves (those
available in the neighborhood) necessary to transform one solution into another.
The definition assumes, by default, that such transformation exists, which im-
plies the strong connectivity of the neighborhood. Because such analysis would
be too difficult to perform and to make a generalization, we made a broader
study of measures associated with three types of moves enumerated in Section
3. We define the distance D?(, o) between processing orders 7, o € ILin the
natural way, as the minimal number of Z-moves necessary to transform 7 into
o,Z € {A, S, I}. Because each single analyzed move (of any type) relocates
operations on single machine (moves are disjoin), we have

D¥(r,0) = 3" DE(nk, 7v), (1.2)
k=1
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Table 7.3. Basic properties of distance measures.

move A S I

measures D4(a, B) D%(a, B) DY (o, B)

recipe number of inversions in n minus the number of  n minus the length of
a"lop cyclesinatog the maximal increasing

subsequenceina~!og

mean nno n— Hn n—2vn"
variance ﬂ% H, - H® @(n%)
complexity o(n?) O(n) O(nlogn)

*) —asymptotically, H, = E::l %’ H"(’Z) = n %

i=1 i

where D (7, o) is the minimal number of Z-moves necessary to take a walk
between permutations 7, oy associated with the machine &k, k € M, Z ¢
{4, S,I}.

From (7.2) it follows, that in order to analyze D?(, o) there is enough
to focus attention on measures D,f (7k, ok ) for a fixed machine k. Moreover,
instead of making analyses of these measures on permutations 7, oy defined

on the set My C {1,...,0}, we can carry out analyses on permutations c,
3 defined on the set {1,...,n}, n = |Mg|. Indeed, let f be any mapping
function from Mj, onto {1,...,n}. From the definition of measures, we have

Df(ﬂ'k, og) = D,f(a, (), wherea = fomy, B = fooy are permutations on the
set {1,...,n}; o denotes the superposition of mappings. In the sequel, index k
will be skipped for simplicity. Measures D? (c, 3) (Z € {A, Z, I}) have been
already studied in the literature, see the review in Knuth (1997). Their selected
properties, fundamental for our applications, have been collected in Table 7.3
(! is the inverse permutation to ).

To check experimentally the existence of big valley we used 50 benchmark
instances ta01-ta50 from the library, OR Library. For each instance we generate
1 + c local optima by running TSAB from random but feasible initial solution
(c = 200) and fix the best solution found with its makespan as the reference
values (without loss of generality we can assume that the reference solution has
index 0). Then we calculate three experimental measures: (1) distanceto the ref-
erence optimum X; (i) = DZ (7, 70), = 1, ..., ¢, (2) the average value of dis-
tances to other local optima X5 (%) = % G=1; ki DZ(r*,79),i=0,...,¢c,(3)
difference to reference makespan Y (i) = Cpax(7?) — Cmax(7°),i =0, ...,,¢;
Z € {A, I}. For each combination X (z),Y (3),7 = 1,...,cand X»(%), Y (i),
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Table 7.4. Distribution of local minima for various metrics.

A-moves I-moves
Average k Average k

instance Pmax Pav Pmaz Pav Pmaz Pav Pmaz Pav
ta0l —tal0 0.64 0.58 8 9 0.65 0.62 9 9
tall —ta20 0.58 0.53 10 10 0.53 0.57 10 10
ta21 —ta30 0.57 0.65 10 10 0.53 0.67 10 10
ta31 - tad40 0.51 0.61 9 10 0.46 0.67 10 10
tadl —ta50 0.52 0.65 10 10 0.48 0.68 10 10
all 0.56 0.60 47 49 0.53 0.64 49 49

i1 =0,...,cthe correlation coefficient has been found, denoted next by pnqx

and pg,. For each of five groups, we found the average values from sample
of ten values of pp,q and pgy, respectively. Significance of the correlation
has been checked with the help of a randomized statistical test (standard tests
cannot be applied because of unfulfilled assumptions), Manly (1991). Resuits
are given in Table 7.4, where k denotes the number of instances (among sample
of 10) for which correlation coefficient is statistically significant on the level
0.1%.

From the second column of Table 7.4 it follows that there exist essential cor-
relation between the distance (measured from local to the best-known optimum)
and makespan value; less distance implies less makespan. Values of correla-
tion coefficients are statistically significant on the level 0.1% for 47 among 50
tested instances, which confirms this thesis. The similar observations one can
perform for column 3. Surprisingly, the choice of measure has no meaning for
conclusions made.

To show this relation in more accurate way, we plot points Xj (¢), Y (z),
i=1,...,c, Figure 7.5 (left) and points X»(i),Y (i),% = 0,...,c, Figure 7.5
(right) for the instance tad45 (r = 30jobs, m = 20 machines, |My| = r,k € M)
and the measure D, The most distant local optimum found in the experiment
is 1454 far from the reference solution (7). Theoretically, the average value
between any solution and 70 is 4350, the standard deviation is 125.3, see Table
7.3. Since the distribution of measure D4 is strongly concentrated around its
average value, the area with solutions far less than 1454 from 7 with detected
local minima, constitutes only a very small part of the solution space ((4350-
1454)/125.3=23.1 standard deviations). Moreover, Figure 7.5 (right) suggests
that best solution (7°) is located in the center of local optima. Analogous
conclusions has been made for other instances, so one can incline to hypothesis
that big valley typically exists.
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Figure 7.5. Quality of local minima for the instance ta45: (a) distance to the best-known
minimum, (b) the average distance to other minima.

7. Intuitions, Analogies, Shocks

This section aim is to discuss strategy aspects of the search technique, refer-
ring to some surprising analogies.

The first shock was already happened — Algorithm TSAB, even though ascetic
in its structure, was able to break the hard optimization problem like the job
shop. The second shock follows from the surprising fact shown in the previous
section — the attractive valley is of very small size but attracts TSAB well.

The third shock follows from an approximate analysis of sizes of the solution
space and searched areas. We would like to discuss the possibility of making
the projection of the solution space on a 2D surface. Let us take the oldest
historically instance FT10 (10 jobs, 10 machines, 100 operations), one of the
smallest now. Because this is a hypothetical analysis, the used 2D transforma-
tion need not be specified here — we only assume that it preserves the distance,
i.e. distant solutions in the space correspond to distant points on 2D plane and
close solutions to close points, at least in statistical sense.

Among few known representation of solutions (disjunctive graph, sequence
of permutations, single permutation) the representation used by us has the small-
est redundancy, although enables unfeasible solutions. For FT10 we have

7 .(IM;)1) &~ 4 - 105 solutions, including unfeasible ones. Evaluation of
the fraction of feasible solutions generally can be a problem, because the result
strongly depends on the job structures. Indeed, assuming identical job routes
we get a special case well known as non-permutation flow shop problem, where
all solutions are feasible. Thus fraction can be extremely equal to 1. On the
other hand, for FT10 with its original job structure, we are failed in finding any
feasible solution in the sample of 10° (billion) random solutions. Therefore,
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we only approximated this fraction using an auxiliary test. To this order we
consider a sequence of relaxed instances obtained from FT10, each of which
has the original job routes, the same number of machines, and the number of
jobs equal r = 2,3,4,.... By random sampling, we found these fractions
equal approximately 1.5-1071,3.2-1073,3.2-1075,2.6-10~7,2.8-10~°, for
r = 2,3,4,5,6, respectively. These results allow us to approximate fraction
for the whole FT10 on the level 10717.

Next, the remain 4 - 108 feasible solution we transform one-to-one on 2D
plane, single solution into single point, setting its altitude equal to the makespan
value. Finally, we print figure using 2400dpi printer, in which single black dot is
of size 0.01 x0.01 mm. Hence, we will obtain completely filled surface, without
blank spots, which illustrates the landscape and has area of order 4 - 16°*2 km?.
For comparison the biggest known planet Jupiter has only 6.4 - 1019 km?.

Further observations we will make using analogy to the Earth surface. Sup-
pose that our aim is to reach the highest Himalayas top, starting from certain
place on the Earth and walking or jumping across the surface. In fact, “jump” is
the better analogy since from properties of, for example, measure D* it follows,
that any place on the Earth surface can be reached in at most mrjr2;12 = 450
steps. Generally, information about regularity of the surface is necessary to
find the proper orientation. However, if only we can start the track close to
Himalayas, it is undoubtedly advantageous. Note, that after we will found
Himalayas we will need a great additional effort to select the highest top. Al-
though Himalayas is unique, big and promising, there are relatively small in
the Earth scale. It means that the path between two selected places need not
go through it or even pass by these mountains. Search by random sampling
and quasi-stochastic method without any special problem properties seems to
be too poor. The shock becomes evident when we’ll try to draw a local search
trajectory. It takes the form of almost invisible spider web (0.01 mm width)
covering very slightly very small surface parts. Indeed, 1 (billion) solutions
generated during the search covers only 0.1 m?. Such pure intuitive interpre-
tations allow us to formulate a few hypotheses. Starting from a solution, it is
much easier to generate a search trajectory without cycle than with a cycle; the
latter case is simply bad luck. Single good starting point is much better that
several worse starting points. Valley may be of too small size to be detected
by relinking paths. Single, even good, solution found on the relinking path can
be useless for the accuracy improvement, its desirable fundamental aim should
be to provide alternatively certain reasonable diverse starting point for the new
search process. All these facts agree with intuitions “it is not enough to search,
one should know where to search”.

To verify some of stated hypotheses we made few experimental tests. TSAB
was equipped with memory, which registered all visited solutions and frequency
ofits visitation. To make the implementation efficient we used the hashing table
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Figure 7.6. Instance tal3: 10,000 first iterations of TSAB started from INSA and RANDOM
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Figure 7.7. Instance tal3: distances to the best-known solution during 10,000 first iteratons of
TSAB with INSA and RANDOM (left), zoom of second 5,000 iterations (right).

technique, derived from Woodruff and Zemel (1993), with hashing function
h{m) = 3%, ZL’;”I z;jm;(j) mod h and disjoin lists to resolve collisions.
Here, z;; are pre-defined random numbers, A is the size of hashing table and
mod is operator modulo. Each visited solution m was stored as the list element
(Cmax(m), ™, ¢(m)), where c() is counter of repetitions. TSAB was run on
100,000 iterations with mazl = 0 on a few selected Taillard’s benchmarks.
Generally, two cases have been observed: (a) Cycle detector does not indicate
the occurrence of the cycle (b) Cycle detector indicates the cycle occurrence.
In case (a) an infinitesimal number of repetitions (below 0.01%) of accidental
solutions have been observed, which is fully justified, since TS does not forbid
repetitions of solutions but strongly prohibits repetitions of the same fragments
of the search trajectory (cycling). Case (b) has been observed very rarely,
frequency of its occurrence decreases with the increase of parameter maxt.
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The similar behavior of TSAB has been observed if maz! > 0. This inclines
us to the thesis that TSAB searches disjoin areas of the solution space.

Figure 7.7 (left) shows that searched area are also distant, although, from
time to time, TSAB focuses on a narrow (small) part of the space, performing
intensive search of this region, see distinguished part of the search trajectory in
Figure 7.7 (left) zoomed in Figure 7.7 (right). Figure 7.8 shows that TSAB does
not wonder around because the best known makespan still decreases; TSAB
simply visits a local, relatively small sub-valley. In these figures the “distance
to the best” means the distance D4 to a fixed reference solution — the best found
during 10,000 iterations of TSAB started from INSA.

8. Paths, Goals, Viewpoints

In two successive sections we show a concept of search diversification for
TSAB. It is based on so called s-step goal oriented path and milestones, which
marked out centers of local search areas.

Let we have two different, feasible processing orders 7 and o, the former
called source and the latter target. We would like to generate the completely
deterministic, oriented path in the solution space from 7 towards o. As the dis-
tance measure D we take D*(r, o), the proper one for neighborhoods based on
A-moves. The neighborhood N42(7) employed originally in TSAB, does not
have connectivity, therefore should not be applied to this aim. We use N1 (7),
similar in the structure and type of moves performed, having connectivity prop-
erty. Note that, N'41(r) has the advantageous small-step property

DA(py, ) = DA(p,0)| =1 (73)

for any v € VA41(p), p € II. We introduce s-step goal oriented path from T to-
wards o (s-GOP) as a sequence of feasible processing orders m = 70, w1, ..., 75,
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which starts from 7° and chooses ateach step i (i = 0, ..., s — 1) the processing
order *+! = mf, , for some w € VAL(7%). Selection of move w is being made
with the help of two criteria. The former prefers these moves which decrease
the distance to o, whereas the latter — those leading to the processing orders
with the least makespan. Precisely, formulated conditions can be written as
follows

Crmax (7)) = min{Crax(mfyy) : v € VAN (), DA(nly), 0) = diyin}
7.4)
where d¢ ;= min{DA(va), o) : v € VA(x?)} is the minimal distance
reachable from A4 (7%) towards 0. From (7.3), we have d ;,, € {D4(n*,0) -
1, D4(n% o) 4+ 1}. The minimal number s under which o is reachable (i.e.
7% = o) equals D4(m,o); this occurs only if for each step ¢ there exist in
VAL(7%) at least one move that decreases the distance to . Theoretically, the
desired move need not exist, thus o can be reachable in more than DA(r, o)
steps or can be unreachable (a cycle occurs). In practice, the desired move can
be found in the neighborhood A41 (%) almost every time, which means that
DA(nt,0) = DA(m,0) — .
s-GOP concept is close to the path relinking philosophy, Glover (1997),
however, in our application, its fundamental role consists in providing disperse
solutions. Each solution from s-GOP we call the viewpoint on the route. s-GOP
is a special case of the search trajectory, hence the best-known solution can be
updated along this path. Nevertheless, this is not its basic aim and occurs very
rarely in practice. We would like to find a viewpoint, heedless of its makespan,
relatively distant from both the source and target. Therefore, we propose to
use the terminal viewpoint (7°) from s-GOP as the starting solution for more
intensive space penetration, made next by TSAB. We propose to generate s-
GOP with s = mazxd DA(7r, 0), where 0 < mazd < 1 is a control parameter.
If we have no preferences, we can set this value to 0.5, which means that the
terminal viewpoint is placed approximately in the middle between 7 and o.

9, Diverse Search

Broad solution space with the chaotic structure justifies well a dispersion in
the search process. Even though valley exists, is of very small size and attracts
ideally TSAB in the search process — it still contains a huge number of solutions,
has local sub-valleys and deception local extremes. Thus, any intelligent search
process is especially welcome.

Let we have the subset of e + 1 elite solutions P = {0, 7!,..., 7°} called
next milestones. Milestones mark out local centers of search areas. Without loss
of generality one can assume that 7° has the smallest makespan and represent
the best-known up to now solution. Presuming that big valley exists and elite
solutions follow from this valley, we restrict the search area roughly to the
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hypersphera with center in 7° and radius max; <j<e D*(n?,70). Our aim is
to move step-by-step milestones toward the center, to lessen the search area.
We realize this scenario by replacing the most distant solution from the center
of P by a new promising solution found during the auxiliary run of TSAB
from alternative starting solution. More precisely we perform as follows. First,
we find the most distant solution 7% with respect to the center, i.e. such that
DA(r*, m0) = maxj<j<. DA(n%, 7%). Next, using s-GOP with source 7°
and target 7 we generate a terminal viewpoint, denoted by 7%, which is
the starting point for TSAB. The best solution 7%*%* found during this run of
TSAB replaces (unconditionally) target solution 7* in P. Theoretically, newly
obtained solution 7%%* can be worse and/or more distant from 70 than 7¥,
however, in computer tests, we observe convergence of the hypersphere radius
to zero. Process finishes when the radius of the hypersphere is less than the
given threshold value maz R. '

A small problem exists with primal milestones, since they should be dis-
persed and located relatively close to big valley. To this aim we use the special
procedure, which creates with the help of TSAB, step-by-step, the initial set P.
We begin with P = {n, 7!}, where n° is provided by INSA, whereas ! is
the best solution found during the run of TSAB started from 7. Let ¢ denotes
the index of last milestones introduced to P,7 = 1,...,e — 1. The milestone
i + 1-st is the best result of TSAB started from the terminal viewpoint found
on s-GOP from 7 towards 7°. Process of the milestone generation is repeated
until |P| = 1 + e. We checked experimentally that distances between all pairs
of primal milestones in P are almost equal.

10. Preliminary Computational Results

By embedding TSAB in the structure MILESTONES of diverse search with
technique of s-GOPs we obtain more complex algorithmic structure called next
i-TSAB. Algorithm {-TSAB has been implemented in Delphi and run on a
PC with Pentium III 900MHz processor. Algorithm i-TSAB has several own
tuning parameters, besides those derived from TSAB, namely e (the number
of milestones), mazxd (location of viewpoint), maz R (minimal radius of hy-
phersphere). It is clear that their proper selection influences on final numerical
properties of :-TSAB and requires broad computational studies.

Nevertheless, before the precise study of :-TSAB properties, we decided to
check whether the proposed ideas are really promising enough. To this order,
we set running parameters in an approximate way, without precise tuning exper-
iments, and then we run ¢-TSAB on the benchmark set, Taillard (1993). These
instances has been attacked, since 1993, by all job-shop algorithms designed
over the world, frequently not seeing on the running time. The best known re-
sults follow from many various studies and have been obtained during long-time
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Table 7.5. Improved reference makespans for Taillard’s instances

number OXTXm instance LB-UB new UB decrease
1 300 x 20 x 15 tall 1323 - 1364 1361 3
2 tal3 1282 - 1349 1345 4
3 tal9 1297 - 1341 1335 6
4 ta20 1318 — 1353 1351 2
5 400 x 20 x 20 ta22 1511 - 1601 1600 1
6 ta23 1472 — 1558 1557 1
7 ta24 1602 — 1651 1648 3
8 ta27 1616 — 1687 1680 7
9 ta30 1473 - 1585 1584 1
10 450 x 30 x 15 ta32 1774 - 1803 1798 5
11 ta34 1828 — 1832 1829 3
12 ta37 1771 - 1784 1779 5
13 ta40 1631 - 1686 1674 12
14 600 x 30 x 20 tadl 1859 — 2023 2021 2
15 ta42 1867 - 1961 1956 5
16 tad43 1809 — 1879 1870 9
17 tad4 1927 - 1998 1992 6
18 ta45 1997 — 2005 2000 5
19 tad6 1940 - 2029 2025 4
20 ta47 1789 - 1913 1911 2
21 ta48 1912 - 1971 1963 8
22 ta49 1915 - 1984 1973 11
23 ta50 1807 — 1937 1928 9

tests, which means that most of instances were run several hours or even days
for many variants of each algorithm, Home page of Eric Taillard. Although a
great effort has been done, 35 among 80 instances still remain unsolved (the
optimal solution has not been found).

In this preliminary test we set the following values of parameters: mazd =
0.5, mazR = 5. Algorithm TSAB, a component of -TSAB, run with NSP-Ac
and parameters maxt = 8, mazl = 5, maxd = 100, mazxc = 2 set as recom-
mended in Nowicki and Smutnicki (1996). Parameter maziter was adjusted
to a more intensive search by setting maziter = 50,000 if improvement of
the makespan has occurred and maxiter = 10,000 if back jump tracking has
been performed. Each run of i-TSAB was limited to 10 min per instance. Runs
were repeated for a few selected values of parameter e, 5 < e < 16. In this
test --TSAB found 23 better upper bounds among 35 unsolved yet ta- instances,
see Table 7.5. Note, it improved upper bounds for all 10 instances from the
unsolved hardest group ta41 — ta50 with o = 600 operations.
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Although exhaustive computer tests have been completed, presentation of
these results exceeds the size of this study — they are provided in separate paper,
Nowicki and Smutnicki, (2001). Based on these research we mention here only
that ~-TSAB is competitive for the best known job-shop algorithms, taking
account of the speed as well as the accuracy. For the mentioned already hardest
group of instances ta41 — ta50, algorithm i-TSAB run one time per instance
on 10 minutes with e = 8 provides ARE equal 4.88%, which is significantly
better than the result 5.71% from the paper Balas and Vazacopoulos, (1998)
and 6.04% from the paper Pezzella and Merelli, (2000), already mentioned in
Section 5. It is clear that the proposed approach can be applied also to other
scheduling problems.

Research was supported by Grant T11A 01624 of the State Committee for
Scientific Research executed in 2003-2006.

Appendix: A. Fast evaluation of d,(o7) in INSA

This section aim is to prove the equality (7.1). Assume that G(¢?) does not
contain a cycle. Analyze the differences between graphs G(¢/) and G(o). Trial
insertion of operation x between o, (j — 1) and 0,4(5), a = p,, does not change
the length of longest path going to the node ¢, (7 — 1) and to the node = — 1 (if
z has a job predecessor, i.e. is not the first operation of the job). This insertion
does not change also the length of longest path going out of node ¢,(j) and
z + 1 (if  has a job successor, i.e. is not the last operation of the job). Since
04(j — 1) becomes the machine-predecessor of operation z and g, (j) becomes
the machine-successor of z, the path d,(c7) passing through the node x takes
the form given in right hand-side of formula (7.1). This completes the proof.

Appendix: B. Fast checking of feasibility in INSA

This section aim is to prove that among partial processing orders ¢, j =
1,...,2, z = |0g| + 1, generated by INSA for operation z, the one which
minimizes right-hand of formula (7.1) provides feasible processing order. Proof

consists of two parts: (A) we show that among o7, j = 1,..., 2, exists at least
one feasible processing order, (B) we show that the advisable insertion ensures
feasibility.

Part A. Inserted operation z follows from the machine a = 4, thus we
define two positions for the partial permutation o,

e = max{l < i < |o,|; exists path from 0,(¢) to z in G(o)}  (7.B.1)

f=min{l <i < |o,|; exists path from z to 0,(3) in G(¢)}  (7.B.2)

If sets in (7.B.1) or (7.B.2) are empty, we set e = Qor f = |d,|+1, respectively.
Since G(o) does not contain a cycle, we have e < f. Insertions of operation
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x in positions e < j < f in o, provides graph without a cycle. Indeed, graph
G(0?) can be obtained from G(c) by adding at most two arcs (d,(j — 1), z) and
(z,04,(7)). Thus, cycle in the graph G(0?) may have one of two forms: (a) it
goes from a node o, (j — 1) to node z by the newly introduced arc (g,(j — 1), x)
and next comes back from the node z to 0, (7 — 1) by some path, which existed
already in G(0), (b) it goes from a node z to node 0, () by the newly introduced
arc (z,0,(7)) and next comes back from the node d,(j) to = by some path,
which existed already in G(o). From definitions (7.B.1) and (7.B.2), required
paths do not exist in G{c). It completes the proof of this part.

Part B. For the operation z, inserted in position 7,1 < j < z, in permutation
o4 denote the right hand-side part of formula (7.1) by

Lj = max{R,7,,(j-1)} + Ps + max{Q, 4o, () }- (7.B.3)

The proof will be made by contradiction. Assume that L, forsome 1 < h < z,
is the minimal but G(c") hasa cycle. Thus,ithastobe0 < h < eorf < h < 2.
Consider both cases separately.

“Case: 0 < h < e From the definition of e, there exist in G(co) a path W
from o,4(€) to z. Then, we have

R>75.(e)s  Gou(h) > Max{Q, qs,(e+1)}- (7.B.4)

The first inequality follows from the fact that path W must go through node
x— 1 (because operation z in G(0) is not inserted in o, yet), whereas the second
is obvious. From (7.B.4) we obtain Ly, > R+py+q,,(n) > max{R, 7o, (¢)} +
Pz + max{Q, g, (e+1)} = Le+1 Which contradicts that L, is minimal.

“Case: f < h < 2.” This case can be proved by analogy.

Both cases contradict assumption 0 < A < eor f < h < 2, thus it has to be
e < h < f, which means that G(c") does not contain a cycle. This completes
the proof.
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Chapter 8

A Tabu Search Heuristic for the Uncapacitated
Facility Location Problem

Minghe Sun
College of Business, The University of Texas at San Antonio, San Antonio, TX 78249, USA,
msun@Ilonestar.utsa.edu

Abstract: A tabu search heuristic procedure is developed to solve the uncapacitated
facility location problem. The heuristic procedure uses tabu search to guide the
solution process when evolving from one solution to another in order to search
for an optimal solution. A move is defined to be the closing or opening of a
facility. The net change in the total cost resulting from a move is used to
measure the attractiveness of a move. Searching only a small subset of the
feasible solutions that contains the optimal solution, the procedure is
computationally very efficient. A computational experiment is conducted to
test the performance of the procedure and computational results are reported.
The procedure can easily find optimal solutions for test problems with known
optimal solutions from the literature. Solutions obtained with this tabu search
procedure completely dominate those obtained with the Lagrangian method for
randomly generated test problems.

Keywords:  Facility Location, Tabu Search, Heuristics, Optimization

1. Introduction

Due to their strategic nature, facility location problems have attracted the
attention of researchers and practitioners for many years (Chan, 2000;
Daskin, 1995; Mirchandani and Francis, 1990). The success or failure of
businesses and public facilities depends in a large part on their locations.
Effective supply chain management has led to increased profit and increased
market share for many companies. One strategic decision in supply chain
management is facility location (Simchi-Levi, Kaminsky and Simchi-Levi,
2000). Because of the variety of facility location problems, there are a
variety of facility location models to represent these problems (Brandeau and
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Chiu, 1989; Chhajed, Francis and Lowe, 1993; Daskin, 1995; Ghosh and
Harche, 1993; Krarup and Pruzan, 1983, 1990). Most of these problems are
combinatorial in nature and are hard to solve. Exact algorithms exist only for
small problems and heuristic procedures have to be used for large practical
problems. This study addresses the uncapacitated facility location (UFL)
problem by developing a tabu search heuristic procedure to solve it. In this
problem, a fixed cost is associated with the establishment of each facility and
another fixed cost is associated with the opening and using of each road from
a customer to a facility.

This heuristic procedure employs the short term and long term memory
processes of the tabu search meta-heuristic (Glover, 1989, 1990a, 1990b;
Glover and Laguna, 1997; Glover, Taillard and de Werra 1993) and searches
only a small subset of the feasible solutions that contains the optimal solution.
Therefore, the procedure is computationally very efficient. The performance
of the procedure is tested through a computational experiment using both test
problems from the literature and test problems randomly generated.
Computational results show that the tabu search procedure can find optimal
solutions for all test problems with known optimal solutions from the
literature. With randomly generated test problems, the tabu search procedure
can find solutions better than those found by the Lagrangian method without
any exception though using slightly more CPU time.

The rest of this chapter is organized as follows. The UFL problem is
briefly discussed in Section 2. The tabu search heuristic procedure is
developed in Section 3. Computational results are reported in Section 4.
Conclusions and further remarks are given in Section 5.

2. The Uncapacitated Facility Location Problem

A UFL problem with m customer locations and » candidate facility
location sites can be represented by a network with a total of m+» nodes
and mn arcs (Cornuéjols, Nemhauser and Wolsey, 1990; Daskin, 1995).
Among the m+ n nodes, m of them represent the m customers and the other

n represent the »n candidate facility location sites. In the UFL model, f; is
used to represent the cost of opening a facility at site j and c; is used to
represent the cost of serving customer i from facility site j or the cost of

assigning customer i to facility site j. We assume that c; 20 for all
i=1,.,m and j=1,..,n and fj >0 for all j=1,..,n. A binary decision
variable y; is associated with each facility j in the UFL model. Facility site

Jj will be open only if y; =1 in the solution. A binary decision variable x;
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is associated with the road from customer i to facility j in the model.
Customer i will be served by facility j only if x; =1 in the solution.

However, x; can be treated as a continuous variable in the model and will

have a binary value in the solution. The solution process of the UFL problem
is to find an optimal solution that satisfies all customer demand and
minimizes the total cost.

The UFL problem can be formally stated as (Cornuéjols, Nemhauser and
Wolsey, 1990)

min ‘Zf%xy +Zn:ijj 1)
i=1 j=1 j=1

st Zn:x,-j =1 fori=1,...m 2
j=1
x; Sy for i=1,...,m and j=1,..,n €))
x; 20 for i=1,..,m and j=1,...,n ()
y;j=0o0rl for j=1,..,n. )

In the literature, the UFL problem is also called the simple facility location
problem, the simple (or uncapacitated) warehouse location problem and the
simple (or uncapacitated) plant location problem. Many successful
applications of the UFL model have been reported. Many practical problems
without facilities to locate can also be modeled as UFL problems, such as
cluster analysis, machine scheduling, economic lot sizing and portfolio
management problems (Cornuéjols, Nemhauser and Wolsey, 1990). A real
life application of the UFL model is Star LAN design in information
technology (Gen, Tsujimura and Ishizaki, 1996). In this application,
workstations and terminals are connected to servers. In the design process,
location sites for the servers need to be selected so that the total cost of
installing the servers and connecting the workstations and terminals is
minimized.

Developing solution methods for the UFL problem has been a hot topic of
research for the last 40 years. Kuehn and Hamburger (1963) developed the
first heuristic method that has two phases. The first phase is a greedy
method, called the ADD method, that starts with all facilities closed, keeps
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adding (opening) the facility that gives the maximum decrease in the total
cost, and stops if adding one more facility will no longer reduce the total cost.
The second phase is a local search method in which an open facility and a
closed facility are interchanged as long as such an interchange reduces the
total cost. Another greedy heuristic is the DROP method that starts with all
facilities open, keeps dropping (closing) the facility that gives the maximum
decrease in the total cost, and stops if dropping one more facility will no
longer reduce the total cost (Cornuéjols, Fisher and Wolsey, 1977; Daskin,
1995; Nemhauser, Wolsey and Fisher, 1978). These early heuristics provided
the basis for many more sophisticated heuristic methods and provided an
initial incumbent for many exact solution algorithms (Cornuéjols, Fisher and
Wolsey, 1977; Nemhauser, Wolsey and Fisher, 1978). Erlenkotter (1978)
developed a dual approach for the UFL problem. Although this dual method
is an exact algorithm, it can also be used as a heuristic method to find good
solutions. One effective and widely used heuristic method is the Lagrangian
method (Beasley, 1993) that is based on Lagrangian relaxation and
subgradient optimization (Daskin, 1995). More recently Gen, Tsujimura and
Ishizaki (1996) and Vaithyanathan, Burke and Magent (1996) used artificial
neural network approaches to solve UFL problems.

Although the tabu search meta-heuristic has been successfully applied to
many complicated practical combinatorial optimization problems (Glover,
1989, 1990a, 1990b; Glover and Laguna, 1997; Glover, Taillard and de
Werra 1993), not much research has been reported in using tabu search to
solve UFL problems. However, tabu search procedures have been developed
to solve more complicated facility location problems, such as the procedures
by Delmaire, Diaz, Fernandez and Ortega (1998) and by Tuzun and Burke
(1999).

In addition to heuristics, there are a variety of exact algorithms for UFL
problems although most of these exact algorithms were developed over a
decade ago. Because the UFL problem is NP-hard (Cornuéjols, Nemhauser
and Wolsey, 1990), exact algorithms may not be able to solve large practical
problems. Krarup and Pruzan (1983) and Cornuéjols, Nemhauser and
Wolsey (1990) gave excellent surveys and reviews of applications and
solution methods of UFL problems.

Some UFL test problems used by other researchers and reported in the
literature are collected, stored and updated in the OR-Library (Beasley,
1990). The test problems in the OR-Library provide a means for researchers
to test their algorithms or heuristic procedures using the same set of test
problems with known optimal solutions. Therefore, the performances of
different heuristic procedures, especially their effectiveness in finding good
solutions, become comparable even they are not directly compared.
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3. The Tabu Search Heuristic Procedure

In this section, the details of the development of the tabu search heuristic
procedure are discussed. We start with a discussion of the solution space
being searched by the procedure and then describe the components of the
heuristic procedure. We also discuss how the net changes in total cost are
computed when the procedure evolves from one feasible solution to another
within the solution space. After discussing the components, we give a step-
by-step outline of the tabu search heuristic procedure.

3.1 The Solution Space

Let J denote the index set of all candidate facility location sites. For a
given feasible solution, J is partitioned into two subsets J, and J;, where

Jo consists of the indices of those facilities that are currently closed and J;
consists of the indices of those facilities that are currently open, i.e.,

Jo={jeJly; =0} andle{jelejzl}. ©6)

We use ny and n; to denote the number of closed and the number of open
facilities, respectively, of a given solution, i.e., ny =|J, | and n =|J;|.

Le I denote the index set of customers. For each customer i€/, d} is
defined to be the index of the facility location, such that

cid,-l = min{cxj ]] € Jl} ’ (7)

i.e., the cost of assigning customer i to facility location d! is the lowest
among all facility locations that are currently open. If there is a tie, i.e., if
more than one j satisfies (7), any one of them can be designated as dil.
Because the facilities are uncapacitated, the solution obtained by assigning

each customer i to the corresponding facility d; is a feasible solution
(Comuéjols, Nemhauser and Wolsey, 1990). Such a solution also has the
lowest total cost among all feasible solutions for the given partition of J into
Jo and J;. Therefore, we only need to evaluate one solution for each
partition of J into J, and J;. Given a partition of J into J and J;, the

total cost in (1) of the corresponding solution can be computed using (8) in
the following
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Z=Z]cf,;;+2fj- 8)

jedy

The objective of the UFL problem is to find a partition of J with a
corresponding solution that satisfies the demands of all customers at the
minimum total cost. The strategy of this tabu search heuristic procedure is to
search for an optimal partition of J among all these different partitions. The
best solutions corresponding to these partitions constitute the solution space.
An optimal solution can be found if an optimal partition of J is found.

There are other strategies to construct the solution space. One strategy is
to search all feasible solutions, resulting in a larger solution space. Under this
strategy, a customer i is allowed to be assigned to any facility j, such that

j€J;. Because assigning customer i to facility d,.1 results in the minimum
cost among all feasible solutions for the given partition, searching such a
larger solution space is not necessary and inefficient. Another strategy is to
search both feasible and infeasible solutions, resulting in even a larger
solution space. Under this strategy, a customer i is allowed to be assigned to
any facility j, whether je J, or jeJ,. This strategy is not efficient because
infeasible solutions will never be chosen as the final solution.
When #, > 1, we also define d? to be the facility location, such that

cidi2=min{c,;,-|jeJ1/\j¢d,.‘}, )

i.e., the cost of assigning customer i to facility location di2 is the second
lowest among all facilities that are currently open. If facility d! is closed,

customer i will be reassigned to facility a’,-2 . When n =1, a',-2 is not needed
and is not defined.

3.2 Move

A move is defined to be the status change of one facility from open to
closed or from closed to open. Thus a move leads to a new solution from the
current solution. A solution is feasible if at least one facility is open. Any
facility may change its status at a given solution as long as the resulting
solution is feasible. Therefore, the only restriction on a move is that a facility
cannot be closed if it is the only facility that is currently open. At each
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feasible solution, there are n different candidate moves when » >1 and
n—1 candidate moves when n; =1.

We use Az; to represent the net change in total cost as a result of the
move switching the status of facility j. The value of Az; is used to measure
the attractiveness of this move. The lower the value of Az;, the more
attractive the move switching the status of facility j. The value of Az; is

computed before a move is selected.
Thus, a move is a transition from one partition of J to another by taking

one element from J;;, and putting it into J; or by taking one element from J;
and putting it intoJ,. Each partition determines one solution. The two

solutions before and after a move are adjacent because one can be reached
from the other within one move. We use £ to count the number of moves
made since the start of the searching process.

3.3 Computation of the Net Changes in the Total Cost

Given the current partition of J into J, and J;, each customer i is

assigned to facility d,-1 in the corresponding solution. If facility j, such
that j € J;, is opened, then a customer i will be reassigned to facility j only

id,
represent the set of indices of customers who will be reassigned to facility j

ifc; <c . Otherwise, customer 7 will stay with facility d'. We use P; to

after it is opened, i.e.,
Pj={ieI|cij<cid}}. (10)

If facility j is opened, then Az; is given by

Azj=fy+ ) (e =cy)- (11)

15Pj

To keep the resulting solution feasible, a facility j, such that j € J;, cannot

be closed if it is the only facility that is currently open. In this case, we let

Az; = . If two or more facilities are currently open, then a facility may be

closed and the resulting solution is still feasible. If facility j is closed, a

customer i needs to be reassigned to facility d,-z only if d,-1 = j for the
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resulting solution to be feasible and to have the minimum cost among all
feasible solutions for the resulting partition. We use Q; to represent the set

of indices of all customers who are currently assigned to facility j, i.e.,
Q;={iel|d; =j}. (12)

The net change in total cost Az; if facility j is to be closed is given by

Azjz—fj-k.zg(cidiz—cij). (13)
l€j

If Az; <0, the total cost will decrease after making the move that opens
or closes facility j. A solution is a local optimal solution if Az; >0 for all

j=1,...,n. However, it is sometimes necessary to make moves switching the
status of facility j with Az, >0 in order to move out of local optimal

solutions. After a move is made, the values of the Az,’s are recomputed
using (11) and (13).

3.4 The Short Term Memory Process

A vector teR” is used to implement the recency based memory. For
each facility j, ¢; represents the move number, i.e., the value of k£, at which
facility j changed status the last time. The total cost of the best solution
found during the current short term memory process is denoted by z, and z,
is updated each time a better solution is found. The move at which a better
solution is found is denoted by %, and k, is updated when z, is updated.
We use [ to represent the tabu size, i.e., each facility is kept at its new status
for at least / moves after its status has been changed unless the aspiration
criterion is satisfied. In this procedure / is variable and is allowed to vary
between its lower limit /; and upper limit /,, i.e., ; </<[,. However, the
value of / does not change in the duration of the short term memory process
and is reset only when the short term memory process restarts each time after
the long term memory process finishes. A move switching the status of
facility j is imposed the tabu status if facility j changed status within the
last / moves.

For each move, we select a facility } to switch status, such that,



Tabu Search for the Uncapacitated Facility Location Problem 199

Az; =min{Az; | j =1,...,n and facility j is not flagged}.  (14)

Then the following tabu condition of the move is checked

k—t; <1 (15)

If the tabu condition in (15) is satisfied, the move is tabu. The move will be
made if it is not tabu, otherwise, the aspiration criterion in (16) is checked,

z+Az; <z, (16)

i.e., the resulting solution is better than the best solution found since the
current short term memory process has started. Aspiration criteria used by
Sun (1998), by Sun, Aronson, McKeown and Drinka (1998) and by Sun and
McKeown (1993) are similar to the one used in this study and have been
proven to be successful. If this aspiration criterion is satisfied, the move will
be made even it is tabu. Otherwise, if it is tabu and this aspiration criterion is
not satisfied, the move will not be made and facility j is flagged. In this
case, another facility is selected according to (14), the tabu status of the
newly selected move is checked, and so on. This process is repeated until a
move that is not tabu, or tabu but satisfies the aspiration criterion, is found
and the move is made.

Let a >0 be such a coefficient that the short term memory process will
stop if no solution better than z;, can be found after an moves have been

made, i.e., the short term memory process stops once the following condition
in (17) is satisfied

k—ky>an. (17)

The value of o is chosen by the user of the heuristic procedure before the
solution process starts.

3.5 The Long Term Memory Process

In the long term memory process, a different criterion is used to choose a
move among all candidate moves. The strategy used in the long term
memory process is similar to those used by Sun, Aronson, McKeown and
Drinka (1998) and by Sun and McKeown (1993). The procedure allows the
long term memory process to be invoked C times and c¢ is used to count the
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number of times the long term memory process has been invoked. The value
of C is chosen by the user before the solution process starts. After the long
term memory process is invoked the ¢” time, ¢ moves are made in the
current long term memory process before the short term memory process is
restarted. For each move, a facility j is chosen to switch status according to

the following criterion

t; =min{t;| j=1,...n}. (18)

Given the tabu condition specified in (15), each of the c¢ facilities
switching status in the long term memory process will be kept at its new
status for at least / moves. By doing so, the search is led to a new region in
the solution space to achieve the diversification purpose.

After the short term memory process is terminated, the procedure checks
if the long term memory process has been invoked C times. If not, the long
term memory process is invoked, otherwise, the tabu search procedure
terminates with the best solution found as the final solution. A new round of
the short term memory process starts each time after the long term memory
process is finished. This process is continued until the long term memory
process has been invoked C times.

We call @ and C the parameters of the tabu search heuristic procedure.
By varying the values of these parameters, we can control the thoroughness
and extensiveness of the searching process. The searching period from the
invoking of the long term memory process through the short term memory
process is called a search cycle.

3.6 The Tabu Search Procedure

The search process starts from a local optimal solution. A local optimal
solution can be obtained with any greedy method. The DROP method
(Comuéjols, Nemhauser and Wolsey, 1990; Daskin, 1995) is used in the
implementation of this tabu search procedure. No differences in performance
were noticed when the ADD method (Kuehn and Hamburger, 1963), instead
of the DROP method, was used in the procedure. The best solution found
since the search started is denoted by zy and z, is updated each time when

a solution better than z, is found. In the procedure, ¢, is used to count the

number of moves made in the long term memory process each time the long
term memory process is invoked.
The following is a step-by-step description of the tabu search procedure.
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Step 1. Use a greedy method to find a local optimal solution. Let z
represent the total cost of the current solution. Let z, =z and
Zy =z . Determine /; and /, and determine the initial tabu size /,
such that /; <I<l,. Let ¢;<-I for all j=1..,n to initialize the
vector t. Determine the value of the coefficient & and determine

the number of times that the long term memory process is invoked,
i.e., the value of the integer C . Let k=0, k; =0, ¢, =0 and ¢=0.

Step 2. Compute Az; with (11) or (13) for each facility j=1,...,n and mark
each facility j as unflagged.

Step 3. If k -k, <an, go to Step 4; otherwise go to Step 8.

Step 4. Select a move switching the status of facility location j according to
(14).

Step 5. Check the tabu status of the selected move according to (15). If (15)
is satisfied, go to Step 6; otherwise, go to Step 7.

Step 6. Check the aspiration criterion of the selected move as specified in
(16). If (16) is satisfied, go to Step 7, otherwise, mark facility j as

flagged and go to Step 4.

Step 7. If y; =1, let m =n —1, otherwise let m =n +1. Let y; =1-y5,
z=z+Az;, t; =k and k=k+1. If z<zp, let zy=2z and k; =k.
If z < zy,, let zyy =z. Go to Step 2.

Step 8. If ¢=C, Stop. If ¢y <c, go to Step 9; otherwise, go to Step 10.

Step 9. Let ¢y =cy+1. Select a location j according to (18) and go to Step
7.

Step 10.Let ¢y =0, c=c+1, zy,=z and ky =k . Reset the value of / such
that J; </ </, and go to Step 4.

4. Computational Results

The proposed tabu search procedure was implemented in Fortran. For
comparison purpose, a Lagrangian method (Beasley, 1993; Daskin, 1995) is
also coded in Fortran. In addition to serving as a benchmark, the Lagrangian
method also provides a lower bound on the value of the objective function of
the optimal solution if the final solution obtained cannot be proven to be
optimal. The Fortran codes were all compiled with the f77 compiler at
optimization level 3 under the UNIX operating system. The computational
experiments were conducted on a SUN Enterprise 3000 computer and the
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computational results reported in this section reflect the performances of the
tabu search procedure and the Lagrangian method on this computer.

4.1 Test Problems

Test problems both from the literature (Beasley, 1990) and randomly
generated are used to conduct the computational experiment. Problems from
the literature provide a benchmark to measure the performance of the tabu
search heuristic procedure relative to other existing procedures. Because the
optimal solution of each of these problems is known, the results of these
problems can be used to verify the validity of the implementations of the
Lagrangian method and the tabu search heuristic.

There are a few reasons for using randomly generated test problems. One
reason is that not many test problems are available in the OR-Library and,
therefore, these problems may not represent a large variety of real life
problems. Another reason is that test problems in the OR-Library are
possibly relatively easy to solve because of their relative small size. Even
larger problems are relatively easy because their optimal solutions could be
easily verified. Randomly generated test problems provide a much wider test
bed. These randomly generated test problems vary along the following three
dimensions, problem size, problem shape and ranges of cost coefficients.
These three dimensions may be called the properties of the test problems.
Each set of the given problem properties defines a problem category. Results
of totally 18 problem categories are reported. For each given problem
category, 15 randomly generated test problems are used. Therefore, results
of 270 randomly generated test problems are reported in this section. The
results of one problem category appeared in all the tables reporting results for
randomly generated test problems.

4.2 Results of Test Problems from the Literature

Currently there are 15 UFL test problems in the OR-Library (Beasley,
1990). Among these 15 test problems, 12 of them are relatively small in size
ranging from mxn=50x16 to mxn=50x50 and the other 3 test problems
are relatively large with mxn =1000x 100. All these 15 test problems were
used in this study.

Results of these problems are shown in Table 8.1. Each row of the table
gives the results of a single test problem. The names of these test problems as
used in the OR-Library are listed in Column 1. The size of each test problem,
measured by mxn, is listed in Column 2.

For the tabu search heuristic procedure, the solutions were obtained with
the parameters 10<7/<20, C=5 and ¢ =2.5. The numbers in the column
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of ¢ are the number of search cycles in which the optimal solution was

found with the tabu search procedure. Given C =5, the maximum possible

value for ¢ is ¢® =6. From this column we can see that the optimal

solution was found multiple times for each test problem. The numbers in the
column of ¢° are the number of times the long term memory process was

invoked before the optimal solution was found the first time. A ¢® =0 means
that the optimal solution was found before the long term memory process was
invoked the first time. From this column we can see that the optimal solution
had been found for all, but one, of the 12 small test problems even before the
long term memory process was invoked once. Optimal solutions were also
easily obtained when different ranges of / and different values of C and o

were used in the tabu search procedure. The Lagrangian method that we
implemented for this study found optimal solutions for all, but the last one, of
these test problems.

Table 8.1. Computational Results of Test Problems from the Literature

Problem Tabu Search Lagrangian

Name Size 0 oot CPU Time CPU Time
(seconds) (seconds)
Cap71 50x 16 0 6 0.07 0.07
Cap72 50x 16 0 5 0.06 0.08
Cap73 50x 16 0 6 0.06 0.08
Cap74 50x 16 0 6 0.06 0.07
Capl01 50x25 0 5 0.10 0.07
Capl02 50x25 0 6 0.09 0.12
Capl103 50x25 0 6 0.12 0.10
Capl04 5025 0 6 0.09 0.06
Capl31 5050 0 2 0.28 0.20
Capl132 50x 50 0 4 0.28 0.19
Cap133 50x 50 0 5 0.30 0.28
Capl134 50x 50 2 2 0.27 0.20
Capa 1000 x 100 0 4 24.14 797
Capb 1000 x 100 3 2 24.34 8.69
Capc 1000 x 100 2 2 23.89 9.19

The two procedures took approximately the same amount of CPU time for
the smaller test problems as shown in the table. For larger problems, the tabu
search heuristic took more CPU time than the Lagrangian method. However,
the CPU time used by the tabu search heuristic procedure could be
substantially reduced and the optimal solution of each problem could still be
found. From the results in the ¢® column of Table 8.1, we can see that the
optimal solution of each test problem was found early in the searching
process. Therefore, by reducing the value of C, the tabu search procedure
would use much less CPU time without sacrificing solution quality. We are
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more concerned with the quality of the final solution than with the
computation time if a problem can be solved within a reasonable amount of
CPU time and, therefore, a C =5 was used for all these test problems in the
computational experiment.

Grolimund and Ganascia (1997) reported computational results on the first
12 relatively small test problems (problems Cap71-Capl34) of their tabu
search procedure although they did not report computational results on the
last 3 relatively large test problems. Using several CPU hours for each test
problem, their most effective procedure obtained solutions 14% worse than
the optimal solutions on the average while their least effective procedure
obtained solutions 34% worse than the optimal solutions on the average. As
noted in Table 8.1 and discussed above, the tabu search procedure developed
in this study found optimal solutions for 11 out of these 12 small test
problems even before the long term memory process was invoked once. In
fact, the greedy method implemented in this tabu search procedure found
optimal solutions for 6 out of these 12 small test problems.

4.3  Results of Randomly Generated Test Problems

For randomly generated test problems we report statistical results for
problems with similar properties instead of reporting the results for each
individual problems. Because the optimal solution of a randomly generated
test problem is unknown, our focus will be put on the solution quality. Let z

denote the lower bound obtained with the Lagrangian method on the value of

the objective function of the optimal solution. Let z’ and z’ respectively
denote the total cost of the best solution found by the tabu search heuristic
procedure and the Lagrangian method. Then g defined in (19) in the

following is used to measure the relative quality of the solutions obtained
with the two methods

I—
g=="%2x100. 19)

zZ -z

If 2/ =2, then ¢ =100. For a given test problem, the larger the value of
q , the better the solution obtained with the tabu search procedure than that

obtained with the Lagrangian method. The average, minimum and maximum
of the values of g of the 15 test problems in each problem category are
reported under the heading Cost Ratio in the following tables.

In addition to the relative solution quality, we also reported the CPU time
taken by these methods to solve these problems. In the following tables, the
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average CPU time in seconds of the 15 test problems in each problem
category is reported.

As for test problems from the literature, the results reported in the
following tables were obtained with parameter values 10</<20, C=35 and
a =2.5 in the tabu search procedure. For each and every test problem, the
tabu search heuristic procedure found a solution better than that found by the
Lagrangian method without any exception. We also tried different ranges for
I and different values for C and «. Each time the tabu search heuristic
procedure found a solution better than that found by the Lagrangian method
for each and every test problem. As for test problems from the literature,
with C=5 and a=2.5 we purposely conducted a thorough search for a
better solution for each problem with the tabu search procedure. When the
value of C was reduced, however, the tabu search heuristic procedure used
much less CPU time and still found a solution better than that found by the
Lagrangian method for each test problem.

4.3.1 Effect of Problem Sizes

Results of test problems with different sizes are reported in Table 8.2.
Problem size is measured with mxn. We started with test problems with
mxn=500x50. Then we increased the value of m at an interval of 500 and
increased the value of » at an interval of 50. Four test problem categories are
used with the sizes varying from 500x 50 to 2000x 200. For all these test
problems, the cost coefficients are in the following ranges 1000 < ¢;; <2000

S
and 10000 < f; <20000 .

Table 8.2. Results of Problems with Different Sizes

Cost Ratio CPU Time (seconds)
mXxn
Average  Minimum Maximum |Tabu Search Lagrange
mxn=1500x50 120.51 105.64 144.04 2.78 1.88
mxn=1000x 100 117.53 100.94 134.47 21.25 7.62
mxn=1500x 150 119.81 110.49 131.82 90.97 17.92
mx n=2000x 200 117.92 109.29 130.24 242.51 40.99

The average value of ¢ as defined in (19) is about 120 for all four

problem categories, which means that the tabu search procedure found much
better solutions than the Lagrangian method on the average. The minimum
value of ¢ of all these test problems is over 100, which means that the tabu

search procedure found a better solution for each individual test problem
without any exception. Because similar values of ¢ were obtained for all
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four problem categories, there is not evidence to show that problem size
affects the relative effectiveness of the two solution procedures.

With the values of C and o used in the computational experiment, the
tabu search procedure took more CPU time than the Lagrangian method did.
As expected, larger problems took more CPU time than smaller problems
with both the tabu search procedure and the Lagrangian method.

4.3.2 Effects of Problem Shape

Problem shape is measured by the relative values of m and n. First by
fixing the value of » at »=100, we increased the value of m from 500 to
2000 at an interval of 500. The results of these four problem categories are
reported in Table 8.3. Then by fixing the value of m at m=1000, we
increased the value of » from 50 to 200 at an interval of 50. Results of these
four problem categories are reported in Table 8.4. The cost coefficients are in

the ranges 1000<c; <2000 and 10000< f; <20000 for all these test

problems.

Table 8.3. Results of Problems with Different m

Cost Ratio CPU Time (seconds)
X
mn Average Minimum Maximum [Tabu Search Lagrange
mxn=7500x 100 122.69 105.75 135.30 11.53 3.95
mx n=1000x 100 117.53 100.94 13447 21.25 7.62
mxn=1500x 100 119.65 106.58 129.58 43.51 11.63
mx n=2000x 100 116.99 103.73 127.42 5347 15.25

As for problems with different sizes, the average value of ¢ as defined in

(19) of each test problem category is about 120 indicating that the tabu search
heuristic found much better solutions on the average than the Lagrangian
method. The minimum value of ¢ is also over 100 which means that the
solutions of the tabu search heuristic completely dominate the solutions of the
Lagrangian method.

The tabu search heuristic again used more CPU time than the Lagrangian
method due to the values of C and o used in the tabu search heuristic. The
average CPU time increased faster for problems with a fixed m when n
increased than for problems with a fixed » when m increased. Problems
with a relatively larger » take more CPU time because the CPU time needed
is more closely related to » than to m as indicated in (17), the stopping
criterion of the short term memory process of the tabu search heuristic.
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Table 8.4. Results of Problems with Different »n

Cost Ratio CPU Time (seconds)
X
mn Average Minimum Maximum |Tabu Search Lagrange
mxn=1000x 50 118.04 107.61 130.81 7.06 3.55
mxn=1000x 100 117.53 100.94 134.47 21.25 7.62
mxn=1000x 150 120.11 107.43 133.51 60.43 11.78
mx n=1000x 200 120.20 113.56 13031 106.90 16.28

4.3.3 Effects of Cost Coefficient Ranges

Ranges of cost coefficients are measured by the lower and upper limits of
c; and f; within which the cost coefficients were generated. We first fixed

f; in the range 10000 < f; <20000 and varied the ranges of c; from

500<c; <1000 to 8000<c; <16000. The values of the lower and upper

limits of ¢; are both doubled from one problem category to the next,

resulting in a total of 5 problem categories. The computational results of
these test problems are reported in Table 8.5. We then fixed the range of ¢;

at 1000 <c; <2000 and varied the ranges of f; from 1250 < f; <2500 to

20000< f; <40000. The lower and upper limits of f; are also doubled from
one problem category to the next, resulting in a total of 5 problem categories.

The computational results of these test problems are reported in Table 8.6.
For all these test problems, the problem size is fixed at mxn=1000x100.

Table 8.5. Results of Problems with Different Cyi Ranges

. Cost Ratio CPU Time (seconds)

v Average Minimum  Maximum (Tabu Search Lagrange
500 <c; <1000 114.62 106.69 121.65 23.77 7.82
1000 < ¢; <2000 117.53 100.94 134.47 21.25 7.62
2000 < c; <4000 122.18 114.68 135.83 2691 7.59
4000 < c; < 8000 129.54 120.64 141.83 27.00 8.49
8000 < c; < 16000 138.51 124.55 166.71 29.01 9.57

For problems with a fixed range of f;, the average value of g as defined
in (19) increases as the values of c; increase as shown in Table 8.5. For

problems with a fixed range ofc;, the average value of g decreases as the

ij o
values of f; increase as shown in Table 8.6. These trends may indicate that
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the tabu search heuristic is relatively more effective than the Lagrangian
method for problems with relatively large values of ¢; and relatively small

values of f; . The average value of g is between 115 and 150 for all these

problem categories, indicating that the tabu search heuristic found much
better solutions than the Lagrangian method on the average. Once more, the
minimum value of g is over 100, indicating that the tabu search heuristic

found a solution better than that found with the Lagrangian method for each
individual test problem without any exception. In fact, the minimum value
100.94 of g is obtained on one test problem in the problem category with

1000 < ¢ < 2000, 10000 < fJ <20000 and mxn=1000x 100 and the results

for this problem category appeared in all tables for randomly generated test
problems.

The tabu search heuristic again used more CPU time than the Lagrangian
method for these test problems because we purposely conducted a thorough
search with the tabu search heuristic. No dramatic differences in average
CPU times are observed for problems with different ranges of ¢; or different

ranges of f;, indicating that the values of m and n are determinants of CPU

time while the values of cost coefficients are not.

Table 8.6. Results of Problems with Different f; Ranges

Cost Ratio CPU Time (seconds)

Ji Average Minimum  Maximum [Tabu Search Lagrange
1250 < f; < 2500 147.52 128.66 174.92 28.62 10.44
2500< f; < 5000 131.27 113.29 150.18 28.53 9.30
5000 < f; < 10000 124.75 110.40 151.26 26.97 7.52
10000 < £; < 20000 117.53 100.94 134.47 21.25 7.62
20000 < f; < 40000 115.50 107.52 125.59 24.72 8.25

For all randomly generated test problems, the best solution was found
very early in the solution process. In fact, the best solution was found before
the long term memory process was invoked even once for over 90% (251 out
of 270) of these randomly generated test problems. However, to be on the
safe side, the long term memory process was invoked C =5 times for all the
test problems in the computational experiment. Therefore, much less CPU
time is needed than listed in the tables to reach the best solution and the tabu
search heuristic works much better than it looks.
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3. Conclusions

A tabu search heuristic procedure for the UFL problem is developed,
implemented and tested. The procedure is tested against the Lagrangian
method with test problems with known optimal solutions used by other
researchers and test problems randomly generated. The tabu search heuristic
found optimal solutions within a single run for all test problems from the
literature. For each randomly generated test problem, the tabu search
procedure found a solution in a single run better than that found by the
Lagrangian method without any exception. The CPU time taken by the tabu
search procedure is reasonable although it uses more CPU time than the
Lagrangian method. We believe that solution quality is more important than
solution time given that a problem can be solved within a reasonable amount
of CPU time. Therefore, the extra CPU time taken by the tabu search
heuristic procedure was well spent.

In addition to applying the UFL model and the tabu search procedure to
real life problems, developing more effective and efficient heuristic solution
procedures appears to be a research direction. Future research in this
direction may focus on the selection of the parameters in the tabu search
procedure to improve its effectiveness and efficiency. Another possibility is
to use a candidate list approach when selecting a move to make so as to
reduce CPU time needed. In this way, the net changes in the total cost are
computed for only a subset of the facility locations for each move.
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Satisfiability problems (SAT) are capable of representing many important real-
world problems, like planning, scheduling, and robotic movement. Efficient
encodings exist for many of these applications and thus having good solvers for
these problems is of critical significance. We look at how adaptive memory and
surrogate constraint processes can be used as search guidance for both
constructive and local search heuristics for satisfiability problems, and how
many well-known heuristics for SAT can be seen as special cases. We also
discuss how adaptive memory learning processes can reduce the customary
reliance on randomization for diversification so often seen in the literature.
More specifically, we look at the tradeoff between the cost of maintaining extra
memory search guidance structures and the potential benefit they have on the
search. Computational results on a portfolio of satisfiability problems from
SATLIB illustrating these tradeoffs are presented.

Adaptive Memory, Local Search, Satisfiability Problems

1. Introduction

Many important real-world problems can be represented as satisfiability
problems. These include planning, scheduling and robotic movement, and
efficient encodings exist for many of these. Efficient solvers for these
problems are thus of critical significance. SAT has thus received substantial
attention in recent years, and efficient SAT solvers exist.

What sets SAT apart from other combinatorial optimization problems is
that SAT is basically a feasibility problem. Once a variable assignment is
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found that satisfies all the clauses (see Section 2), the problem is solved, and
this condition is readily detected. In SAT there is thus no guidance from the
normal objective function. Guidance is customarily instead based on the
amount of infeasibility, usually by counting the number of unsatisfied clauses
for a given solution, possibly modified by the clause length.

There are many approaches to solving the SAT problem. Constructive
methods range from complete tree-search (DPL - Davis-Putnam-Loveland ,
see Davis , Logemann and Loveland, 1962, Davis and Putnam, 1960), to
constructive heuristics like GRASP (Resende and Feo, 1996) and surrogate
constraint based learning heuristics (Lekketangen and Glover, 1997). Most
heuristic solvers for SAT are based on local search starting from randomly or
otherwise constructed starting solutions. For a nice overview of many of the
heuristics for SAT, see Hoos (1998). See also Section 4.

The work presented in this paper is based on previous work by the authors
on the satisfiability problem, where the basic framework and search
mechanisms was developed . For details, see Lokketangen and Glover (1997).

We will show how the judicious use of surrogate constraint based local
search guidance, with the augmentation of adaptive memory structures for
short and long-term learning and forgetting, provides superior search
guidance, at an extra computational cost per iteration. Many of the popular
heuristics for SAT can be derived as special cases, and we show that
additional heuristic power results by considering more general forms of this
guidance framework. We also discuss how adaptive memory processes can
reduce the customary reliance on randimazation for diversification so often
seen in the literature.

We report computational tests that compare solution attempts both in
terms of execution time and number of local search steps, using a set of state-
of-the-art local search heuristics that are augmented by varying degrees of
search guidance, and adaptive memory capabilities. The tradeoffs between
the increased solution time required by fuller reliance on adaptive memory,
and the reduced numbers of iterations that are required to obtain feasible
solutions, are illustrated on a portfolio of satisfiability problems taken from
SATLIB (see SATLIB).

The layout of this extended abstract is as follows. This introduction is
followed in Section 2 by a description of the SAT problem. In Section 3 we
look at surrogate constraints, while a brief outline of SAT solvers is presented
in Section 4. Our choice of search guidance mechanisms is described in
Section 5, and the computational results in are in Section 6, followed by the
conclusions in Section 5.
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2. The SAT Problem

The Satisfiability problem originates from the realm of logic theorem
proving, and was the first problem proven to be NP-Complete (Cook 1971).
All other NP-Complete problems can be reduced to SAT in polynomial time.
The SAT problem can be defined as follows. Given the logical function,
consisting of combinations of disjunctions, conjunctions and negations of a
set of variablesals (xj, ..., xn), then the SAT problem is to find a set of truth
assignments to the literals that will make ®( x ) true (or false):

true

false

The logical function ®(x) is usually represented in CNF, Conjunctive
Normal Form. ®(x) then consists of a set of conjunctions of clauses c(x),
written @ =c Ac,---Ac, , where each clause is a disjunction of
complemented and uncomplemented variables, called literals, with M being
the number of clauses. As a simple example, let ®(x) be the following
formula containing 3 variables and 5 clauses:

SAT: O(x) = D(x,,...,xy) ={

DOX)=(x1 VX)) A1 VX)) A X2V X3) A(XV 2 X)) A (X V1 X3)

2.1 Mathematical Formulation

To get to the more customary mathematical formulation, replace true/false
with 1/0, disjunction with +, representing each conjunction as a separate
constraint row. Let literals be represented by x; and their complements by 1 -
x;. This gives us:

Ax>b

x binary

where A is an m*n matrix of 0’s, 1’'sand -1"s
and b and x are n*1 column vectors.

The i® constraint of the system,

has the property that the number of —1s in the row vector A; equals
1 — b,, where b; is an integer < 1.
To get a more convenient representation, we split each variable x; into its
complemented and uncomplemented occurrences, we get the following
constraint set for the example, with the variable pair z; and z;, represents x;:
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z; + 2z, > 1 (wy)
Z; + z3 > 1 (wy)
Zy + z3 > 1 (w3)

zy + Zs =1 (wyg)

Z3 + z2 1 (ws)

(The w’s are weights used for learning purposes in surrogate constraint
evaluations, see the next section):
Our final model is then

Dz>1 @.1)
z,+2, =1 (22)

where D is the 0-1 matrix obtained by substituting the z’s for the x;’s. The
last constraint (2.2) is handled implicitly in the search heuristics we describe.

3. Surrogate Constraints

A Surrogate Constraint (SC) is a weighted linear combinations of the
original problem constraints (Glover, 1977), and provides a powerful way to
capture constraint information to be used for search guidance. The basic use
of SC methods for both constructive and local search heuristics for SAT is
described in Lokketangen and Glover (1997).

Given the transformed constraint set of (2.1), we introduce a nonnegative
vector w of weights w;, to generate a surrogate constraint

§Z28,

where s = wD and s, = Zw. The surrogate constraint therefore results by
weighting each constraint row j by w; and summing. Assuming (as is the case
initially in our searches) that all the w;’s are 1, we get the following surrogate
constraint from the example (other weightings will of course result in a
different SC):

3z, + 2z, + 2z3 + z4 + Zs + 2z 25

This surrogate indicates that the best would be to set z; to 1, and thus
select x; to be true. If one also considers that the pair (z;, z4) really represents
the same variable, x;, and both cannot simultaneously be set, we can form a
derived surrogate constraint by replacing s; with 5; — Min(s;s;») in the
surrogate constraint evaluation. We then get:
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2z; + z, + z3 =2 2

indicating even stronger that x; should be set to true. In the event of ties,
we choose the variable with the maximum s; — 5;4 value.

We will use (derived) surrogate constraint based search guidance for the
local searches, augmented by various levels of adaptive memory capabilities.

4. On Solving SAT

In this section we will look briefly at the most common constructive and
iterative local search paradigms for solving SAT, and some of the existing
solvers. For a nice overview of many of the heuristics for SAT, see Hoos
(1998), and the bibliography at SATLIB. There are myriads of different
solvers for SAT, but most falls into one of the broader categories, and shares
most features with other solvers.

4.1 Constructive Methods

Within the constructive solver class, there is a big distinction between
complete methods, guaranteeing to prove that a formula is satisfiable or not,
and heuristic methods designed to try to find a solution if one exists. The best
known complete method for SAT is DPL — Davis-Putnam-Loveland (Davis,
Logemann and Loveland, 1962, Davis and Putnam, 1960). This is a
deterministic tree-search with backtracking. The problem with this approach
is the limited size of the problem instances that can be solved in reasonable
time.

A constructive search usually contains the following elements and search
flow:

1. All variables initially unassigned

2. Construct solution by assigning a truth-value to one variable at the time.
(Neighborhood is the set of remaining unassigned variables).

3. When no feasible assignments can be made:
— Full Backtrack (complete method - DPL)
— Limited backtracking with restart - (DPL with restarts)

4. Finish construction and: ‘

— Submit to (limited) local search and restart — (GRASP, SC-Leam)

5. Need move evaluation guidance. This is usually based on change in
feasibility..
6. For restart-methods, guidance should be modified by history (SC-Learn)

Among constructive heuristic methods are GRASP (Resende and Feo,
1996), DPL with restarts (Gomes, Selman and Kautz, 1998), and SC-Learn, a
surrogate constraint based learning heuristics (Leokketangen and Glover,
1997).
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DPL with restart (Gomes, Selman and Kautz, 1998) is a DPL-based tree-
search with limited backtracking, and only in the bottom of the search tree.
This work is inspired by the phenomenon of heavy-tailed cost distributions, in
that at any time during the experiment there is a non-negligible probability of
hitting a problem that requires exponentially more time to solve than any that
has been solved before (Gomes et. al. 1998). Instead of risking spending such
a long time futilely searching, the search is restarted, but different, controlled
randomized choices are made in the new search.

GRASP - Greedy Randomized Adaptive Search Procedure (Resende and
Feo, 1996),. This is a constructive heuristic followed by a short greedy local
search, trying all combinations of improving flips. It can be called a shotgun
method, as its aim is generate a diverse set of solutions quickly, some of
which might be the solution. The basic heuristic for assigning one variable
value is:

— For each unassigned variable, count the number of clauses that are
satisfied by assigning it True (and similarly for False).
— Sort the values. Select randomly among the top half evaluations (or max

50).

This corresponds to a basic Surrogate Constraint using uniform
weighting,, and no normalization. There is also no learning, or use of
memory, between restarts.

SC-Learn (Lokketangen and Glover, 1997) uses adaptive memory
structures to learn between runs. More specifically, it gives added focus on
the clauses that have been difficult to satisfy so far. Surrogate constraints are
used for move evaluations.

4.2 Iterative Local Search Methods

All of the iterative local search methods for SAT are incomplete methods,
in that the non-existense of a solution can not be proven. An iterative local
search usually contains the following elements and search flow:

1. All variables are assigned a truth-value at all times

2. The starting solution (or starting point) is usually based on a random
assignment to the variables or based on a construction heuristic.

3. A move is the flip of a variable. A flip means assigning the opposite value

to a variable. (i.e. change 1 > 0or0— 1).

4. The search neighborhood is either the full set of variables, or just those
that appear in unsatisfied clauses.

5. Move evaluation is based on changes in feasibility. L.e. select moves that
reduce the number of unsatisfied clauses. This measure can be modified
by history.
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6. The move selection is greedy (i.e. take the best move according to the
move evaluation).

7. A random restart is applied after a certain number of moves, to diversify
the search after stagnation

8. The stopping criterion is a simple time limit, a cutoff on the number of
allowable flips or the identification of a solution.

There are extremely many iterative local search methods for SAT. Among
the first,and most well-known, are GSAT (Selman, Levesque and Mitchell,
1992), and the whole family of search methods derived from it. (Walksat,
GSAT+Tabu, Novelty,...). For an overview, see Hoos (1998). These
methods are generally very simple and have fast iterations. Random restarts
are usually employed when restarting.

GSAT starts from a randomly generated starting solution. The moves are
variable flips. Move evaluation is based on the change in the number of
satisfied clauses. (Choose randomly among ties). Don’t allow downhill
(worsening) moves. Do a random restart after a certain number of flips.This
corresponds to using the derived surrogate constraint, without the SC choice
rule (for ties).

Novelty (McAllester, Selman and Kautz, 1997). This is considered one of
the best local search heuristics for SAT. Each iteration a violated clause is
selected randomly. Then the best (in terms of improved infeasibility) variable
to flip in this clause is identified. (In the case of ties, select the least recently
flipped variable). If this variable is not the most recently flipped, flip it.
Otherwise select the next best variable with probabibility p, and with
probability 1-p select the best variable. This heuristic works very well on
random 3-sat.

SC-Learn (Lekketangen and Glover, 1997) starts from a randomly
generated starting solution. The moves are variable flips. A simple tabu
search is added to avoid move reversals. Diversification is with the
modification of clause weights used in the surrogate constraint based move
evaluations.

5. Search Guidance Structures and Mechanisms

In this section we will look at enhancements to the iterative SC-Learn
heuristics (Lokketangen and Glover, 1997). More specifically we will look at
adding forgetting to the learning, sensitivity to learning weights and the
introduction of controlled randomization in the move selection. We will also
look at examples of how the different search mechanisms are far from
independent, and that when adding a new search mechanism, the already
implemented ones can change behaviour.
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All the gathering of information about the search development during the
search process, updating of the adaptive memory structures, and the
processing of the gathered information takes additional computing time. The
purpose of this is to provide better search guidance, thus needing fewer
iterations to get to the solution. (Note that the solution can be reached in at
most N steps, where N is the number of variables. The actual number of flips
needed by many of the local search methods are often several orders of
magnitude larger). It is therefore of interest to look at this trade-off between
randomization and use of adaptive memory structures for search guidance and
diversification. A new heuristic, SC-RN is developed, and will be described
below.

5.1 Learning

We use frequency based information to modify the clause weights in a
judicious way. Given the current solution vector, we know that at least one of
the variables in one of the violated clauses has the wrong value, and hence
place an emphasis on changing values of these variables. We do this in the
SC framework by increasing the weights of the violated clauses every
iteration. (This was also used in Lekketangen and Glover, 1997, and a
different weighting scheme was tried in Frank, 1996). We have found that the
increment used is not important, and a value of 1 is used in the tests.
Preliminary testing has also shown that resetting these weights at fixed
intervals has no discernible effect.

5.2  Forgetting

The accuracy of the information embedded in the clause weights vanes
over time, and should have decreasing impact. This is accomplished by
increasing the weight used in the learning process slightly every iteration.
This leads to a discounting of the oldest values. Preliminary testing have
shown that the value of the forgetting (or discounting) increment likewise is
not important as long as it is significantly smaller than the actual weights.

5.3  Tabu Tenure and the Non-independence of Search
Mechanisms

Our search uses the basic tabu criterion of not to flip a variable that has
recently been flipped. (A good treatment of tabu search is in Glover and
Laguna, 1997). One problem is to determine the optimal, or best, tabu tenure
in terms of some problem parameter, like the number of variables. Mazure,
Sais and Grégoire (1997) added a simple tabu criterion as described above to
GSAT (naming the new method TSAT). One of their findings was a linear
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relationship between the optimal tabu tenure and problem size, according to
the following formula:

TTopr=0.01875 * N +2.8125

with N being the number of variables for random hard 3-SAT instances.

We similarly tried different values of TT combined with the basic learning
scheme on the test instance gim-50-2 (-yes-2 taken from SATLIB. This
problem has 50 variables, and is not very difficult. Table 9.1 shows the rate of
success for 5 runs from random starting positions with a maximum of 5000
flips, and varying TT, using a weight increment of 1. The table indicates a
best TT of 10.

Avg. no. of iterations

0 f——— —t——
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tabu Tenure

Figure 9.1. Search performance for TT with discounted learning

When rerunning the same test, but with discounting of the learning
weights (using an increment of 0.1), we get the results of Table 9.1. The
solution is now found for all values of TT between 2 and 16. In Figure 9.1 is
shown the average search effort (in terms of flips) for each of the TT’s where
a solution was found for all runs. This graph shows clearly that even though
the search always finds the optimal solution for a TT value in the range 2 to
17, it uses far more iterations for the larger values of the TT. The best values
for the TT are 2 or 3, while without discounting this value is much larger. The
addition of the discounting mechanism clearly changes the effective TT
values, and . has a great stabilizing effect.
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Table 9.1. Effect of TT with simple learning

TT Rate of Success

5 2/5

10 5/5

15 4/5

20 3/5

Table 9.2. Effect of TT with discounted learning

TT Rate of success Avg. no of iterations
1 9/10 -

2 10/10 599
3 10/10 584
4 10/10 664
5 10/10 946
6 10/10 1189
7 10/10 1082
8 10/10 1372
9 10/10 1606
10 10/10 2367
11 10/10 1832
12 10/10 3152
13 10/10 2095
14 10/10 4040
15 10/10 2041
16 10/10 3996
17 8/10 -

20 6/10 -

For the tests in Section 6 a short, fixed tabu tenure of value 4 was used.
This choice avoids stumbling back in the previously visited search path, given
that the local neighborhood evaluations typically consist of many equal
values and forms a local plateau, even when learning and forgetting is
employed. The value of the tabu tenure does not appear sensitive to changes
within a modest range. The tabu mechanism thus has a very local function,
while the learning and forgetting provides the necessary diversification.

5.4  Probabilistic Move Acceptance

The only diversification present in our SC guided search is the random
selection between the moves that tie for the best evaluation. More than one
move may tie for this, but many fewer ties occur when the learning and
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forgetting mechanisms are employed than when only the SC evaluations are
used. This leads to less diversification in the search.

Since our guidance is not perfect, there is no guarantee that the actual best
move gets the best evaluation. Assuming our move evaluations have some
merit, we select probabilistically among the best moves, disproportionately
favoring those with higher evaluations (see Lokketangen and Glover, 1996).
The process selects the best move with probability p, and if the move is
rejected then applies the same selection rule to the next best, etc. This gives
rise to an exponentially decreasing move acceptance.

5.5 Choice of Starting Solution

We ran preliminary tests comparing starting from randomly generated
truth assignments to the variables, and the best solution found after 10
iterations of the constructive search with learning as described in
Loekketangen and Glover (1997). With 10 runs on each problem, we did not
find any significant difference between the results. One reason why the
constructed starting point did not yield better results might be that the
different solutions from the constructive phase for the same problem tend to
be similar, such that bad trends might be amplified.

5.6 A New Method — SC-RN

Our full method with learning and forgetting spend a lot of time in
maintaining the adaptive memory structures.

Move evaluation is very costly in the SC Learn method with added
forgetting. The problem is the “forgetting” part, as this increments the
learning weights. This requires a full evaluation of the SC’s are after every
flip. (Preliminary testing using incremental update, ignoring the slightly
changed weight values, gave very bad results).

Considering that in every unsatisfied clause at least one of the variables
has the wrong value, we form a reduced neighbourhood consisting only of the
variables in the unsatisfied clauses. The new method can be labelled
SCLFPRN - Surrogate Constraint based move evaluation with Learning and
Forgetting, Probabilistic move acceptance and Reduced Neighborhood. For
short we call it SC — RN.

6. Computational Results

We investigate the tradeoff issues when applying different levels of
adaptive memory mechanisms, and also when using guidance based on
surrogate constraints for various neighborhood sizes. The testing reported in
this section is intended to illustrate these tradeoffs. For purposes of
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comparison we chose three heuristics. As a representative for a method using
rather myopic search guidance, but with very fast iterations, we chose
Novelty (McAllester, Selman and Kautz, 1997), hereafter called NOV. The
iterative SC-Learn heuristic (Lgkketangen and Glover, 1997) was augmented
with forgetting and probabilistic move acceptance and called SC-W. As an
intermediary we used the method described in Section 5.6, SC-RN, as it uses a
smaller neighbourhood than SC-W, thus basing its decisions on less
information.

6.1  Test Setup

Testing has been done on benchmark SAT-problems, both structured and
randomized, taken from SATLIB (see SATLIB). The problem sizes range
from 48 variables * 400 clauses to 4713 variables * 21991 clauses.

As all the methods include a probabilistic parameter, p, we chose one of
the simpler test cases from SATLIB, jnh, to tune this parameter individually
for each heuristic, and keep it fixed for all subsequent tests. The best values
(and thus the values used) for p are shown in Table 9.3.

Table 9.3. Best values for p

r
SC-w 0.8
SC-RN 0.6
NOV 0.8

We tested each heuristic from random starting solutions, using different
random seeds, with 10 runs per test case. We allowed in general up to 10
iterations for Novelty, 10° for SC-RN and 10° for SC-W. Restarts were not
used. A fixed TT of 4 was used. The results are both in term of flips and time.
The tests have been run on a 300 MHz Pentium III running Windows 98 (The
sub-second timing is thus somewhat inaccurate).

6.2 Test Results

The results are shown in Tables 9.4, 9.5 and 9.6. For each test case is
shown the size (in terms of variables and clauses), and the average number of
flips and the corresponding time used for each of the three heuristics.

A dash in the flips column indicates that the heuristic failed to find a
solution for at least on of the tries, with the actual number of successful runs
are shown in the flips column.

Table 9.4 shows the results for some of the smaller test cases. Not
surprisingly NOV is very good on the random 3-SAT instance uf100-100,
spending virtually no time in finding the solution. SC-RN spends more flips
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and time, while SC-W is comparable with NOV in terms of flips, but not on
time. ‘

The rest of the test cases in the table are structured, par-8-1 is a parity
problem encoding, and par-8-1-c is a compressed version of he same
problem. The ais test cases are taken from a problem in music theory (all
interval series). On these problems SC-W is clearly most successful, only
having 2 unsuccessful runs, while NOV does rather badly.

Table 9.4. Smaller test-cases

Problem vars clauses NOV NOV SC-RN SC-RN SC-w SC-w

f t f t f t
max-flips 107 10° 10
uf100-100 100 430 371 0 1090 0.1 397 0.01
par8-1-c 64 254 1149 0 4484 0.5 1070 13
par-8-1 350 1149 1/10 - 8/10 - 9/10 -
ais6 61 581 0/10 - 3326 0.1 465 0.1
ais8 265 5666 0/10 - 187850 9.5 6269 1
ais12 1141 10719 0/10 - 0/10 - 9/10 -
Table 9.5. Intermediate test-cases
Problem vars clauses NOV NOV SC-RN SC-RN SC-W SC-W

f t f t f t
max-flips 10 10° 10
uf200-100 200 860 8860 02 64608 0.1 397 0.1
flat100 3 0 300 1117 9060 0.2 5/10 - 3882 1.5
sw100-10-p4 500 3100 2/10 - 89502 3.7 11075 10
sw100-10-p6 500 3100 2/10 - 5/10 - 4/10
anomaly 48 261 124 0 164 0 135 0
medium 116 953 852 0.1 331 0 445 0.1

Table 9.5 shows the next set of results, for small to intermediate test cases.
Interestingly, SC-W uses many fewer flips on the random 3-SAT instance
uf200-100 than NOV, even being faster. In general SC-W needs fewer flips
on most of the instances. NOV does reasonably well on these instances, while
SC-RN is slightly worse.
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Table 9.6. Large structured test-cases

Problem vars clauses NOV NOV SC-RN SC-RN SC-W SC-W

f t f t f t
max-flips 10 10° 10°
bw_large.a 459 4675 60299 14 5571 1 5132 6.5
bw _largeb 1087 13772 479M 105 31048 104 56611 198
logistics.a 828 6718 0/10 - 2/10 - 18922 50
logistics.b 843 7301 0/10 - 102465 14 23565 50
logistics.c 1141 10719 0/10 - 91739 59 21248 103
logistics.d 4713 21991 0/10 - 88091 26 72600 470

In Table 9.6 are results for the runs on large structured instances. SC-W
seems very good on these, while NOV fails on the logistics instances. SC-RN
does quite well, only failing on logistics.a.

As can be seen from the results, SC-W solves most test cases, but spends a
long time per iteration. It seems particularly good on the large structured
instances. This is according to expectations, as the learning mechanisms learn
Structure.

SC-RN needs more flips, and is more unstable. It solves most structured
instances, while showing bad performance on some random problem classes.
Each iteration is much faster than SC-W. This is the behaviour we would
expect, as it bases its search guidance on a smaller neighbourhood, and thus
less information, than SC-W

NOV fails on bigger instances, and on instances having a lot of structure.
This is not very surprising, as NOV does not have any memory mechanisms
to capture structure. It does use recency information, but only within a clause,
and then only to choose between the two (locally) best variables. In clauses
with only 3 variables, this seems to work very well, but NOV clearly has
problems with problems having longer clauses and problems with structure.

7. Conclusions

The heuristics we describe rely on a set of advanced mechanisms for their
working. Testing clearly shows that care should be taken when combining
mechanism, often necessitating changes in their customary settings.

The computational testing clearly illustrates that the use of surrogate
constraints provides good guidance. The addition of simple learning gives
greatly improved results. Discounted learning (forgetting) is effective, and
has a stabilizing effect. As is expected, best results are obtained for the
structured test cases. The extra cost in maintaining memory and guidance
structures thus seems well spent on several classes of test instances.
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Appropriate guidance structures based on surrogate constraint evaluations,
incorporating adaptive memory guidance based on recency, frequency,
learning and forgetting — thus yield results that compare favourably with
state-of-the-art randomized local search heuristics for SAT.
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Scatter search is an evolutionary method that has been successfully applied to
hard optimization problems. The fundamental concepts and principles of the
method were first proposed in the 1970s and were based on formulations, dating
back to the 1960s, for combining decision rules and problem constraints. The
method uses strategies for search diversification and intensification that have
proved effective in a variety of optimization problems. This paper presents a
number of findings (lessons) from the application of scatter search to
combinatorial optimization problems (e.g., production scheduling and the linear
ordering problem) and nonlinear optimization problems (e.g., multi-modal
functions and neural network training). We describe our findings and the
context in which we have learned each lesson. We believe that some of our
findings are not context specific and therefore may benefit future applications
of scatter search.

Scatter Search, Metaheuristics, Optimization

1. Introduction

Scatter search (SS) was first introduced in 1977 (Glover 1977) as a
heuristic for integer programming and it was based on strategies presented at
a management science and engineering management conference held in
Austin, Texas in September of 1967. The scatter search methodology has
evolved since it was first proposed and hence we devote the rest of this
section to discuss this evolution.
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1.1  Original Description (1977)

The following is a slightly modified version of the description of scatter
search in Glover (1977), which is the first published description of this
methodology. Scatter search uses a succession of coordinated initializations
to generate solutions. The solutions are purposefully (i.e., non-randomly)
generated to take into account characteristics in various parts of the solution
space. Scatter search orients its explorations systematically relative to a set
of reference points. Reference points may consist, for example, of the
extreme points of a simplex obtained by truncating the linear programming
basis cone, or of good solutions obtained by prior problem solving efforts.

The approach begins by identifying a convex combination, or weighted
center of gravity, of the reference points. This central point, together with
subsets of the initial reference points, is then used to define new sub-regions.
Thereupon, analogous central points of the sub-regions are examined in a
logical sequence (e.g., generally sweeping from smaller objective function
values to larger ones in a minimization problem). Finally, these latter points
are rounded to obtain the desired solutions. (Rounding, for any problems
other than those with the simplest structures, should be either an iterative or a
generalized adjacency procedure to accommodate interdependencies in the
problem variables.)

The 1977 scatter search version is depicted in Figure 10.1. Each of the
points numbered 1 through 16 is the central point of an apparent sub-region
of the simplex A, B and C. Point 8 is the center of (A, B, C) itself. In this
example, A, B and C may not constitute the original reference points (which
could, for example, have been 6, 7 and 11 or 4, 5, 12 and 13). The choice
depends on the distribution of the points relative to each other and the
feasible region generally. Thus, for example, it can be desirable to use
envelopes containing derived reference points, and to use weights that bias
central points away from central points. When scatter search is carried out
relative to reference points that lie on a single line, then it is reduced to a
form of linear search.

In general, to keep the effort within desirable limits for larger dimensions,
the points generated according to the example pattern may be examined in
their indicated numerical sequence (or in an alternative sequence dictated by
the slope of the objective function contour) until a convenient cutoff point is
reached. Or one may examine a less refined collection of points.

The description terminates indicating that because scatter search may be
applied to reference points obtained from a historical progression of solutions
attempts and may also be used to influence this progression; the approach is
conveniently suited to application with learning strategies.
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Figure 10.1. Illustrative example of the 1977 scatter search proposal
The following comments apply to this description of scatter search:

1. The approach focuses on combining more than two solutions to generate
central points. In fact, finding the central point of all the reference points
is considered a focal part of the search.

2. Generating solutions in a line, which is the most common strategy in
modern scatter search implementation, is considered a reduced form of the
more general method

3. There is no reliance on randomization, but no guidelines are given to
select “appropriate weights” to find biased central points.

4. Combinations are described to be convex, although non-convex
combinations are implicit in the illustrative example to make it possible to
generate all the points in Figure 10.1 starting from points 6, 7 and 11

5. The distribution of points relative to each other is considered important
but no mechanism is discussed to encourage such dispersion.

To the best of our knowledge, scatter search was never applied or
discussed again until 1990, when it was presented at the EPFL Seminar on
Operations Research and Artificial Intelligence Search Methods (Lausanne,
Switzerland). An article based on this presentation was published later in
1994 (Glover 1994).
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1.2 Scatter / Tabu Search Hybrid (1990-1994)

This description of scatter search provides implementation details that
were not given in the original proposal. Also in Glover (1994), the range of
application is expanded to nonlinear (continuous) optimization problems,
binary and permutation problems. The procedure is coupled with tabu
search (TS), using forms of adaptive memory and aspiration criteria to
influence the selection of points in a reference set consisting of several
subsets. The method is described as one that generates “systematically
dispersed set of points from a chosen set of reference points.” The concept
of weighted combinations is introduced as the main mechanism for
generating new trial points on lines that join reference points. This version
of scatter search emphasizes line searches and the use of weights to sample
points from the line. The following specific elements are introduced:

1. The method starts from a set S of initial trial points from which all other
sets derive. The generation of S is not proposed to be random.

2. The current reference set is defined as R=H U S", where H* consists of
h" best solutions in H-T and S” consists of the s~ best elements of S. H is
the set of the best 4 solutions generated historically throughout the search.
T is a subset of solutions in H that are excluded from consideration.

3. An iteration consists of first generating the center of gravity for all the
solutions in S and also the centers of gravity for all the subsets of size s -
1in §°. These trial points are then paired with solution in R to create
search lines for generating additional trial points. Elements of §” are also
paired with each other for the same purpose. Finally, the following
solutions are also paired H x D(S") and R x D(S-S"), where D(X) denotes
a diverse subset of set X.

4. When two solutions x and y are paired, trial solutions are generated with
the line z(w) = x + w(y — x), for w=1/2, 1/3, 2/3, -1/3 and 4/3.

5. When the quality of a trial solution z exceeds the average quality of the
solutions in §", the search intensifies around z. The intensification
consists of generating mid points of lines that join z with its nearest
neighbors (i.e., trial points found during the line search that generated
point z).

6. Adaptive memory of the recency and frequency type is used to control the
admission of solutions to H and 7.

This version of scatter search relies on line searches that start from central
points. That is, the central points are generated as anchor points to initiate
line searches using current and historical best solutions. The concept of
combining high quality solutions with diverse solutions is also introduced.
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The method includes an intensification component, consisting of sampling
more solutions from a line that has produced a “better-than-average” solution.
The concept of structured weighted combinations is also introduced to
handle discrete optimization problems directly. This allows the
representation of solutions that is natural to specific problems, such as
permutations used in the context of traveling salesperson and job sequencing
problems. Binary problems, like the knapsack, can be handled also with
structured weighted combinations that are based on three properties:

1. Representation property — Each vector represents a set of votes for
particular decisions (e.g., the decision of putting element j after element i
in a permutation).

2. Trial solution property — A well-defined process translates a set of votes
prescribed by a vector into a trial solution to the problem of interest.

3. Update property — If a decision is made according to the votes of a given
vector, a clearly defined rule exists to update all vectors for the residual
problem so that both the representation property and the trial solution
property continue to hold.

Several voting mechanisms with the aforementioned properties are
suggested in connection with permutation problems as well as an adaptive
procedure to dynamically change the associated weights. Although all these
ideas were illustrated with several examples, including permutation and
binary problems as well as a graph-partitioning problem, this version of
scatter search has been implemented and tested only in the context of
scheduling job on identical parallel machines in order to minimize total
weighted tardiness (Mazzini 1998). We discuss some of the lessons from
this application in Section 2.

The scatter/tabu search hybrid discussed in this section has served as the
foundation for the search strategies that can be found in many of the recent
scatter search implementations.

1.3 Scatter Search Template (1997)

This version of scatter search (Glover, 1997) is in some ways a
simplification of the method proposed in Glover (1994) and discussed in the
previous subsection. The template employs five procedures:

1. A diversification generation method to generate a collection of diverse
trial solutions, using an arbitrary trial solution (or seed solution) as an
input.
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2. An improvement method to transform a trial solution into one or more
enhanced trial solutions. (Neither the input nor output solutions are
required to be feasible, though the output solutions will more usually be
expected to be so. If no improvement of the input trial solution results,
the “enhanced” solution is considered to be the same as the input
solution.)

3. A reference set update method to build and maintain a reference set
consisting of the b best solutions found (where the value of b is typically
small, e.g., approximately 20), organized to provide efficient accessing by
other parts of the method.

4. A subset generation method to operate on the reference set, to produce a
subset of its solutions as a basis for creating combined solutions.

5. A solution combination method to transform a given subset of solutions
produced by the subset generation method into one or more combined
solution vectors.

The template is summarized as follows:
Initial Phase

1. (Seed Solution Step) Create one or more seed solutions, which are
arbitrary trial solutions used to initiate the remainder of the method.

2. (Diversification Generation Method) Use the diversification generation
method to generate diverse trial solutions from the seed solution(s).

3. (Improvement and Reference Set Update Methods) For each trial solution
produced in Step 2, use the improvement method to create one or more
enhanced trial solutions. During successive applications of this step,
maintain and update a reference set consisting of the b best solutions
found.

4. (Repeat) Execute Steps 2 and 3 until producing some designated total
number of enhanced trial solutions as a source of candidates for the
reference set.

Search Phase

5. (Subset Generation Method) Generate subsets of the reference set as a
basis for creating combined solutions.

6. (Solution Combination Method) For each subset X produced in Step 5, use
the solution combination method to produce a set C(X) that consists of one
or more combined solutions. Treat each member of C(X) as a trial
solution for the following step.
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7. (Improvement and Reference Set Update Methods) For each trial solution
produced in Step 6, use the improvement method to create one or more
enhanced trial solutions, while continuing to maintain and update the
reference set.

8. (Repeat) Execute Steps 5-7 in repeated sequence, until reaching a
specified cutoff limit on the total number of iterations.

More algorithmic details associated with this template can be found in
Laguna and Marti (2003). The diversification generation methods suggested
in this template emphasize systematic generation of diversification over
randomization. This theme remains unchanged since the original proposal.
In this version, however, an explicit reference to local search procedures is
made. The improvement method expands the role of the mapping procedure
originally suggested to transform feasible or infeasible trial solutions into
“enhanced” solutions. Another change is the updating of the reference set,
which is greatly simplified when compared to the SS/TS version in Glover
(1994). The reference set in the template simply consists of the b best
solutions found during the search. The subset generation method is a
departure from the original proposal. The method emphasizes the linear
combination of two solutions. Combining more than two solutions is also
suggested, but the lines searches are not “anchored” at the central points of
sub-regions (as suggested in the previous two versions).

The publication of this template for scatter search triggered the interest of
researchers and practitioners, who translated these ideas into computer
implementations for a variety of problems. Refer to Glover, Laguna and
Marti (2000) for a list of scatter search implementations based on this
template. These implementations have modified the template in a number of
ways and offer lessons for future implementations. The remaining of this
paper discusses changes and additions to the scatter search methodology and
the lessons we have learned when developing procedures based on this
framework.

2. Diversification Generation

The first set of lessons relate to the method for generating diversification
within scatter search. The diversification generation method is typically
used to initialize the reference set and also to rebuild the reference set during
the search.

Lesson 1: Consider the use of frequency memory to develop effective
diversification generation methods
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Campos et al. (2001) developed 10 diversification generators for a scatter
search implementation tackling the linear ordering problem (LOP).
Solutions to the LOP can be represented as permutations. The first six
generators (labeled DGO01-DGO06) were based on GRASP constructions.
Therefore, these methods use a greedy function to measure the attractiveness
of selecting an element for a given position in the permutation. The
selection is random among a short list of attractive choices. The seventh
procedure (DG07) is a hybrid combination of the first six. The eighth
procedure (DGO8) simply constructs random permutations. The ninth
(DGO09) is an implementation of the systematic generator for permutations in
Glover (1997). The last procedure (DG10) constructs permutations using a
penalized greedy function. The penalties are based on a frequency memory
that keeps track of the number of times an element has occupied a position in
the permutations previously generated.

To test the merit of each diversification generator, two relative measures
were used: 1) a measure of relative diversity Ad and 2) a measure of relative
quality AC. Figure 10.2 shows the performance of the diversification
generators as measured from the point of view of creating diversity while
maintaining solution quality.

We can observe in Figure 10.2 that DG10 has the best balance between
quality and diversity. The pure random method DGO0S, on the other hand, is
able to generate highly diverse solutions (as measured by Ad) but at the
expense of quality. The use of frequency memory and a guiding function
provides the desired balance exhibited in DG10.

DGO5 DG04 DG02 DGO1 DG08 DG06 DGO3 DGO7 DG10
Procedure

Figure 10.2. Diversity vs. quality for alternative diversification generation methods
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We have found that even those diversification methods that include
random elements benefit from the use of frequency memory. Glover,
Laguna and Marti (2000) implemented scatter search for unconstrained non-
linear optimization problems with bounded variables. The diversification
generator uses frequency memory and controlled randomization as follows.
The range of each variable is divided into 4 sub-ranges of equal size. Then,
a solution is constructed in two steps. First a sub-range is randomly
selected. The probability of selecting a sub-range is inversely proportional
to its frequency count. Then a value is randomly generated within the
selected sub-range. The number of times a sub-range has been chosen to
generate a value for a given variable is accumulated in an array. This
frequency-based generator was also shown superior to alternative designs
tested in the same context.

Lesson 2: Consider initializing the reference set from a large set of
solutions generated with the diversification generation method

The initial phase of the scatter search template suggests a dynamic
building of the first reference set. In other words, the diversification
generation method is applied (followed by the improvement method) until b
distinct solutions are generated. Unfortunately, this procedure does not fully
exploit the benefits of a diversification generation method that is based on
frequency memory. To take advantage of such a method, we suggest
building a large set of solutions first. Refer to this set as P and to its
corresponding size as p. The set is built by applying the diversification
generation method followed by the improvement method until p solutions are
generated. The reference set R is built by choosing b solutions from P.
(We discuss selection rules for choosing solutions for R in the lessons related
to the reference set update method.) Typically the size of the set P is such
that p > 10*5.

3. Improvement Method

Most improvement methods in the context of scatter search consist of a
simple local search. One should keep in mind that the improvement method
must be capable of starting its descent (in the case of minimization) from an
infeasible solution. The improvement method is typically applied to trial
solutions generated with either the diversification generation method or the
combination method. These methods could operate in a way that the
resulting trial solutions might be infeasible and hence the need for an
improvement method capable of starting from an infeasible solution. Key
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issues related to the improvement method are the frequency of its application
and the depth of the associated search.

Lesson 3: Investigate the selective use of the improvement method instead
of applying it to every trial solution

Ugray, Lasdon and Plummer (2000) develop a solution procedure for
large-scale constrained nonlinear optimization problems. The procedure is
based on combining a scatter search with a large-scale GRG optimizer.
LSGRG uses solutions generated with scatter search as the initial points for
finding local optima. The initial solution may not be feasible (with respect
to linear or nonlinear constraints), but LSGRG is designed to initiate the
search from either infeasible or feasible points. Because an application of
LSGRG could be computational expensive, this optimizer is not applied to
every solution generated during the scatter search. In this context, the
scatter search must be calibrated to generate diverse initial points for a
LSGRG exploration in order to avoid visiting the same local optima
repeatedly.

Mazzini (1998) found, in the context of scheduling jobs on parallel
identical machines, that an improvement method consisting of searching for
the best move from either all possible swaps or insertions is computationally
costly. To reduce the complexity, the improvement method was limited to
examining a reduced list of candidate moves. Even with this limitation, the
computational effort was only reduced when the improvement method was
selectively applied. In particular, the improvement method to the trial
solutions generated every 10 iterations to solutions in D(H U S). More
sophisticated selection rules were also tried without significantly improving
the results.

Lesson 4: The application of the improvement method to all trial solutions
accelerates the convergence of the reference set

In some situations, such as the scatter search implementations of Campos
et al. (2001), Corberan et al. (2002), and Laguna and Marti (2000, 2002), the
improvement method is such that it can be feasibly applied to all trial
solutions. Although this is a desirable feature from the point of view of
finding high quality solutions quickly, the reference set might “prematurely
converge” (where convergence here means reaching a state in which no new
solutions are admitted to the set). This quick convergence is not a limitation
and in fact it might actually be desirable when the allotted searching time is
short (e.g., in the context of optimizing simulations). Reference set
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convergence can also be resolved by rebuilding the set as described in lesson
7.

In Campos et al. (2001) the improvement method is used to enhance every
trial solution. Because of the premature convergence, a reference set size
that is larger than customary was tried. In particular, two instances of
scatter search were used for experimentation, one with 4 =20 and p =100
and the other one with 5 =40 and p=400. The procedure stops when no
new solutions are admitted into the reference set and therefore the length of
the search depends on the size of the reference set. This design resulted in
superior outcomes when compared to one where a small (b = 10) reference
set was rebuilt several times. The best solutions were found with b =40 at
the expense of additional computational time.

Lesson 5: Perform experiments to find the right balance between the
computational time spent generating trial solutions and the time spent
improving such solutions

This is one of the most difficult issues in the design of scatter search
procedures that include an improvement method. Most improvement
methods consist of a local search procedure that stops as soon as no more
improving moves are found. The selection rule for choosing an improving
move typically varies between selecting the first improving move and
selecting the most improving move. In general no mechanism for breaking
out of local optima is used, but this an ideal place to hybridize scatter search
with procedures such as a simple short-term memory tabu search.

4. Reference Set Update Method

Some of the most important lessons that we have learned relate to the way
the reference set is initialized, updated, and rebuilt. We have experienced
significant changes in the level of performance depending on the strategies
used to update the reference set. These are our lessons.

Lesson 6: Initialize the reference set with half of the set consisting of high
quality solutions and the other half with diverse solutions

The right balance between intensification and diversification is a desired
feature of search procedures in general and scatter search in particular. The
updating of the reference set can be used to incorporate an appropriate
balance in scatter search implementations. In lesson 2 we discussed the use
of a set P to initialize the reference set. If the initialization of the reference
set were made solely on the basis of solution quality, the set would be
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constructed selecting the best (in terms of quality) b solutions from P. If
instead, we want to balance quality and diversity, we can use the following
initialization procedure for a reference set R of size b = b,+b,:

1. Start with P = @. Use the diversification generator to construct a
solution s . Apply the improvement method to s to obtain the
enhanced solutions”. If s" ¢ P then, add s to P (i.e,P= PuUs’),
otherwise, discard s”. Repeat this step until |P| = p.

2. Order the solutions in P according to their objective function value (where

the best overall solution is first on the list).

Select the first b; solutions in P and add them to R.

4. For each solution x in P-R, calculate the minimum dissimilarity d(R,x) to
all solutions in R.

5. Select the solution x with the maximum dissimilarity d(R,x") of all x in P-
R.

6. Add x" to R and delete x” from P. If |R| = b stop, otherwise go to 4.

w

This initialization procedure uses a max-min criterion to select diverse
solutions to be added to the reference set. In particular, it selects the
solution that maximizes the minimum value of a dissimilarity measure
between the candidate solution and the solutions currently in the reference
set. The dissimilarity measure d depends on the problem context. For
example, the Euclidean distance can be used in problems whose solution
representation is a vector of continuous variables.

Lesson 7: Rebuild the reference set with the diversification generation
method

The search might reach a point where the reference set converges, that is,
it does not change anymore because no trial solution has better quality than
the worst solution in R. At this point the search could be terminated or the
reference set rebuilt. The diversification generator is a useful method for
rebuilding the reference set. Assume that the reference set is ordered in such
a way that the first solution is the best in terms of quality. In order to
rebuild it, we can keep the first b; solutions and use the diversification
generation method to add b, solutions to the reference set. The solutions are
added using the max-min criterion described in the previous lesson.

Lesson 8: Solution quality is more important than the diversity of the
solutions when updating the reference set
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During the search phase, the reference set is updated according to the
quality of trial solutions. If the quality of a trial solution exceeds the quality
of the worst solution in the reference set, then the trial solution is added to R
and the worst solution is deleted from R. Laguna and Marti (2000)
experimented with a reference update method that essentially carried to
reference sets: 1) R, consisting of the best (according to quality) b, solutions
and 2) R, consisting of the b, most diverse solutions. The diversity of the
solutions in R, was measured with the max-min criterion presented in lesson
6, with R=R; U R;. This updating mechanism did not yield good outcomes
because it places similar importance to both quality and diversity. If the
initialization and rebuilding mechanisms from lessons 6 and 7, respectively,
are used, then there does not seem to be a need for additional diversification
at the expense of quality during the updating of R.

Laguna and Marti (2000) also tested a reference update method that
divides R into three subsets: a “quality” subset, a “diverse” subset and a
“historically good generator” subset (R;). This three-tier reference set has a
similar structure to the one proposed in Glover (1994). The update is such
that solutions that are deleted from the quality set R, are tested for admission
in R;. This reference set configuration and updating method was shown
inferior to the one that updates the reference set with “quality” solutions only
and rebuilds half of it with diverse solutions if necessary.

Lesson 9: Compare the merit of static versus a dynamic updating method

There are basically two ways of updating the reference set: static and
dynamic. The static update operates as follows. The combination method
is applied to all the subsets generated with the subset generation method in
order to create the set X of all trial solutions. The new reference set then
consists of the best b solutions from R U X. This updating mechanism
guarantees that a reference solution is used at least once in the combination
method.

Alternatively, the reference set may be dynamically updated. The
dynamic update consists of testing trial solutions for admission to R as these
solutions are generated. Let R = { x;, x5, x; } be the initial reference set,
where x, is the best solution and x; is the worst. Suppose that x; and x; are
combined and that this combination generates a trial solution z. If the
quality of z is better than the quality of xs;, under the dynamic updating
method, x; is immediately eliminated from R and z is added to R. This
means that x; is not given the opportunity to generate trial solutions. The
dynamic updating is more aggressive in terms of incorporating high quality
solutions into R faster. However, this aggressiveness may not necessarily
translate into improved outcomes.
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The appealing feature of the dynamic updating is that at the beginning of
the search, low quality solutions are immediately replaced with higher quality
solutions and thus making the method more aggressive. Starting the search
with a reduced reference set size and using a static update has similar effects.
Suppose that the desired reference set size is b = 15. To make the search
more aggressive within a static updating method, the procedure could start
with & = 10. The number of trial solutions generated with the initial
reference set is reduced and the poor solutions in the reference set are
replaced faster. After an initial phase, the size of the reference set can be
increased when no new solutions are admitted to the set. This monotonic
increase could stop after reaching the target size of 15.

5. Subset Generation Method

This procedure consists of creating different subsets X of R, as a basis for
applying the combination method. The procedure seeks to generate subsets
that have useful properties, while avoiding the duplication of subsets
previously generated. The most common approach for doing this is
organized to generate four different collections of subsets of R with the
following characteristics:

— all 2-element subsets

— 3-clement subsets derived from the 2-element subsets by augmenting each
2-element subset to include the best solution not in this subset

— 4-clement subsets derived from the 3-element subsets by augmenting each
3-element subset to include the best solutions not in this subset

— the subsets consisting of the best i elements, fori=5to b

Lesson 10: Most of the searching power can be attributed to the
combination of 2-element subsets

Campos et al. (2001) describe an experiment designed to assess the
contribution of the different types of combinations embedded in an
implementation of scatter search for the linear ordering problem. The goal
of the experiment was to determine whether the best solution was generated
from the combination of 2, 3, 4 or all b reference solutions. That is, the
experiment attempted to identify how often, across a set of benchmark
problems, the best solutions came from various combinations of k reference
solutions. The experiment showed that at least 80% of the solutions that
were admitted to the reference set came from combinations of 2-element
subsets.
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Our observations and the results of the experiments in Campos et al.
(2001) should not be interpreted as a justification for completely disregarding
the use of combinations other than those from 2-element subsets. What we
learned from this experience is that 2-element subsets do most of the work;
however, we also observed that these percentages could change if the subset
types were generated in a different sequence.

6. Combination Method

The solution combination method is an element of scatter search that is
context-dependent. Although it is possible to design “generic” combination
procedures, it is generally more effective to base the design on specific
characteristics of the problem setting.

Lesson 11: The best solutions are often generated by the combination of
other high quality solutions

Campos et al. (2001) performed an experiment to identify the ranks of the
reference solutions that generate the best solutions during the search. The
experiment considered that the reference set was ordered with the solution in
the first rank being the best overall solution. For this experiment, a b x b
matrix Source(i,j) was created, where Source(i,j) counted the number of times
a solution of rank j was a reference point for the current solution with rank i.
The experiment showed that solutions of rank 1 are more often generated by
combinations that involve other solutions of rank 1.

This lesson tells us that we should consider generating more trial solutions
when combining the best solutions in the reference set than when combining
the worst solutions. The following combination method illustrates this in
the context of nonlinear optimization:

Let x and y be two solutions in the reference set that are used to perform
three types of combinations to generate a trial solution z:

Cliz=x-d
Ciz=x+d
C3:z=y+d

where d = 0.5r(y — x) and r is a number between 0 and 1. The combination
rules are:

— If both x and y rank among the first b, solutions in R, then generate 4
solutions by applying C1 and C3 once and C2 twice.
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— If either x or y ranks among the first b, solutions in R, then generate 3
solutions by applying C1, C2 and C3 once.

— If neither x nor y ranks among the first b; solutions in R, then generate 2
solutions by applying C2 once and either C1 or C3 once.

Note that when a combination is applied twice, different values for r must
be selected.

Lesson 12: Combination methods that include some randomness can be
effective

The combination mechanism illustrated in the previous lesson contains a
parameter r that determines the combination weight and that ranges between
0 and 1. This combination method is similar to the one suggested in Glover
(1994) and listed as the fourth element in the Scatter/Tabu Search Hybrid
description in Section 1. The difference between the procedure above and
the one suggested in Glover (1994) is that Glover prescribes five values for
the weight parameter w, making the method completely deterministic. By
allowing r to be a random number between 0 and 1, the combination method
can be applied to the same solutions with different outcomes. This
flexibility can be used for intensification purposes, where more solutions can
be sampled from a promising line with the same mechanism.

Lesson 13: The use of multiple combination methods can be effective

Genetic algorithms (GA) have been particularly good at exploiting this
lesson. Most GA implementations use several “operators” to combine
parents and generate new trial solutions. The rules to select from the set of
available operators vary from one implementation to another. An analogous
process can be implemented within the scatter search framework. In
Chapter 12, Marti, Laguna and Campos have used this notion within a scatter
search implementation for permutation problems, where 7 ways of combining
permutations are used.

Adaptive structured combination methods provide a mechanism for
implementing multiple forms of combinations within a single framework.
In this approach, each reference solution proposes votes for a particular
attribute to be incorporated in the new trial solution. The voting scheme is
adaptive because a new ftrial solution is constructed with the sequential
addition of the attributes that have obtained the most votes. Variations of
the voting scheme result in different ways of combining solutions (which in
itself can be considered as creating multiple combination methods or
“operators”). Adaptive structured combinations have been implemented in
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scatter search procedures for production scheduling (Mazzini 1998; Laguna et
al. 2000), project scheduling (Valls et al. 1998) and linear ordering problems
(Campos et al. 2001), among others.

7. Conclusions

In this paper, we first discussed the evolution of the scatter search
methodology from its original proposal published in 1977 to the detailed
template published 20 years later. Following the structure of this template,
we presented lessons associated with each of the five methods that typically
appear in scatter search implementations. The lessons summarize our most
relevant experiences and those of others in relation to implementing scatter
search. During the preparation of this manuscript, we came to the
realization that the most important lesson may be that there is still much to be
learned about developing effective scatter search implementations.
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Chapter 11

TABU SEARCH FOR MIXED INTEGER
PROGRAMMING
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Rua do Campo Alegre, 823 4150-180 Porto, Portugal. jpp@ncc.up.pt

Abstract This paper introduces tabu search for the solution of general linear integer prob-
lems. Search is done on integer variables; if there are continuous variables,
their corresponding value is determined through the solution of a linear program,
which is also used to evaluate the integer solution. The complete tabu search pro-
cedure includes an intensification and diversification procedure, whose effects
are analysed on a set of benchmark problems.

Keywords:  Tabu search, Linear Integer Programming, Mixed Integer Programming

1. Introduction

In this work we focus on a tabu search for the problem of optimizing a linear
function subject to a set of linear constraints, in the presence of integer and,
possibly, continuous variables. If the subset of continuous variables is empty,
the problem is called pure integer (IP). In the more general case, where there are
also continuous variables, the problem is usually called mixed integer (MIP).

The mathematical programming formulation of a mixed integer linear pro-
gram is

= i . > 7 p
z Iglyn{c:v—i-hy.Ax—l-Gy_b,x€Z+,y€R+} (11.1)

where Z7} is the set of nonnegative, integral n-dimensional vectors and R—L
is the set of nonnegative, real p-dimensional vectors. A and G are m X n
and m x p matrices, respectively, where m is the number of constraints. The
integer variables are z, and the continuous variables are y. We assume that
there are additional bound restrictions on the integer variables: { < z; < w;,
fori=1,...,n.
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The strategy proposed consists of fixing the integer variables x by tabu search,
and obtaining the corresponding objective z and continuous variables y by
solving a linear programming (LP) problem (this idea has been introduced
in Pedroso (1998), Pedroso (2002), Neto and Pedroso (2003)). We are therefore
using tabu search to fix only integer variables, as the continuous ones can be
unambiguously determined in function of them.

In the process of evaluation of a solution, we first formulate an LP by fixing
all the variables of the MIP at the values determined by tabu search:

z=min{cz + hy: Az + Gy > b,z =,y c RY} (11.2)
y

We are now able to solve this (purely continuous) linear problem using the
simplex algorithm. If it is feasible, the evaluation given to 7 is the objective
value z; as the solution is feasible, we set the sum of violations, ¢, to zero. Ifthis
problem is infeasible, we set ¢ equal the total constraint violations (obtained at
the end of phase I of the simplex algorithm). Notice that for IPs, after fixing the
integer variables the remaining problem has no free variables; some LP solvers
might not provide the correct values of z or ¢ for the fixed variables.

We say that a solution structure i is better than another structure j if ¢ < (7,
or (* = ¢J and 2* < 27 (for minimization problems).

The initial solution is obtained by rounding the integer variables around
their optimal values on LP relaxations. Tabu search starts operating on this
solution by making changes exclusively on the integer variables, after which
the continuous variables are recomputed through LP solutions.

Modifications of the solution are made using a simple neighborhood struc-
ture: incrementing or decrementing one unit to the value of an integer variable
of the MIP. This neighborhood for solution x is the set of solutions which differ
from z on one element x;, whose value is one unit above or below z;. Hence
' is a neighbor solution of z if 2} = z; + 1, or x = z; — 1, for one index i,
and z; = z; for all indices j # i.

Moves are tabu if they involve a variable which has been changed recently.
An aspiration criterion allows tabu moves to be accepted if they lead to the best
solution found so far. This is the basic tabu search, based only on short term
memory, as described in Glover (1989).

As suggested in Glover (1990), we complement this simple tabu search with
intensification and diversification. Intensification allows non-tabu variables to
be fixed by branch-and-bound (B&B). Diversification creates new solutions
based on LP relaxations, but keeping a part of the current solution unchanged.

We have tested the tabu search with a subset of benchmark problems that
are available, in the MPS format, in the Bixby et al. (1998), MIPLIB (1996).
Results obtained by tabu search are compared to the solution of B&B. We have
used a publicly available implementation of this algorithm, the GLPK software
package. This was used also as the LP simplex solver on tabu search, as well as
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the B&B solver on the intensification phase, thus allowing a direct comparison
to GLPK in terms of CPU time required for the solution.

Various libraries provide canned subroutines for tabu search, and some of
these can be adapted to integer programming applications. However, such
libraries operate primarily as sets of building blocks that are not organized to
take particular advantage of considerations relevant to the general MIP setting.
A partial exception is the tabu search component of the COIN-OR open source
library (see COIN-OR (2004)). However, this component is acknowledged to
be rudimentary and does not attempt to encompass many important elements
of tabu search.

2. A Simple Tabu Search

In this section we introduce a simple tabu search, based only on short term
memory (Algorithm 1). This procedure has one parameter: the number of
iterations, NV, which is used as the stopping criterion. The other arguments are
a seed for initializing the random number generator, and the name of the MPS
benchmark file.

The part of the MIP solution that is determined by tabu search is the subset of
integer variables z in Equation 11.1. The data structure representing a solution
is therefore an n-dimensional vector of integers, Z = (. .. Zp).

Algorithm 1: Simple tabu search.

SIMPLETABU(N, seed, MPSfile)

Q) read global data A, G, b, ¢, and h from MPSfile
) initialize random number generator with seed
(3)  z:= ConsTRUCT()

“) Tf =z

5) = (-n,...,—n)

(6) fori=1to N

@) Z := TABUMOVE(Z, Z*, i, t)
®) if Z is better than Z*

C)) ' =Z

(10) return z*

2.1 Construction

Construction is based on the solution of the LP relaxation with a set of
variables F fixed, as stated in equation 11.3 (empty F leads to the LP relaxation
of the initial problem).

miyn{cz+hy Az + Gy > bz eRY, yeRE, oy =3, Vie F} (11.3)
T,
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The solution of this problem is denoted by /¥ = (z1%,... zLP); these val-
ues are rounded up or down with some probabilities and fixed, as shown in
Algorithm 2, were we denote by r a continuous random variable with uniform
distribution within [0, 1].

Algorithm 2: Semi-greedy solution construction.
CONSTRUCT()

1 F={}

@) C:=1{1,...,n}

3) forj=1ton

“4) solve Equation 11.3

3) randomly select index ¢ from C
(6) if r <zl — |2l

Q) i = [z1F]

(8) else

® z; = |zF]

(10) Fi=FU{i}
(1) C :=C\{i}

(12) returnz

This semi-greedy construction is inspired in an algorithm provided in Lengauer
(1990). It consists of rounding each variable ¢ to an integer next to its value on
the LP relaxation, 2. For all the indices i € {1,... ,n}, the variable ; is
equal to the value z-ffp rounded down with probability

P(z; = |o{7]) = [[7] - 27,

or rounded up with probability 1 — P(z; = |z/¥]) (lines 6 to 9 of the Algo-
rithm 2).

2.2 Candidate Selection

At each tabu search iteration, the neighborhood of the current solution is
searched and a neighbor solution is selected, as presented in Algorithm 3. The
arguments of this algorithm are the current solution Z, the best solution found
Z*, the current iteration 4, and the tabu vector ¢. Tabu information is kept in
vector t; t. holds the iteration at which variable ¢ has been updated.

Lines 1 to 5 prevent the case where the search is blocked, all moves being
potentially tabu. In this case a random move is taken: an index is selected
randomly, and a value for that variable is drawn within its bounds, with uniform
distribution. (We denote by R[1, n] a random integer with uniform distribution
within 1,...,n.)
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Algorithm 3: Search of a candidate at each tabu search iteration.
TABUMOVE(Z, T*, k, t)
1) ifk—t;>n Vi

) c:= R[1,n]

3) Te := Rll¢, u

)} te:=k

4) return

©) vi=F

0 fori=1ton

®) s=x

) d := R[1,n]

(10) foreach 0 € {—1,+1}

(1) 8 =T; +9

(12) if s; € [l;, u;] and s better than v
(13) if £k — t; > d or s better than Z*
(14) vi=38

(15) ci=i

(16) zZ:=w

a7n t.=k

(18) returnZz

The neighborhood is searched by adding a value 6 = F1 to each of the
variables 1, ... ,n, as long as they are kept within their bounds. We have tested
two search possibilities: breadth first and depth first. With breadth first all
the neighbor solutions are checked, and the best is returned (lines 7 to 15).
With depth first, as soon as a non-tabu solution better than the current solution
is found, it is returned. Results obtained for these two strategies are rather
similar, but there seems to be a slight advantage to breadth-first, which is the
strategy that adopted is this paper. More sophisticated ways of managing choice
rules by means of candidate list strategies are an important topic in tabu search
(see, e.g., Glover and Laguna (1997)), and may offer improvements, but we
elected to keep this aspect of the method at a simple level.

The tabu tenure (the number of iterations during which an changed variable
remains tabu) is generally a parameter of tabu search. In order keep simplify the
parameterization, we decided to consider it a random value between 1 and the
number of integer variables, n. Such value, d, is drawn independently for each
variable (line 9); this might additionally lead to different search paths when
escaping the same local optimum, in case this situation arises.
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2.3 Results

The set of benchmark problems and the statistical measures used to report
solutions are presented in appendix 11.A.3.

Results obtained by this simple tabu search, presented in table 11.1 are en-
couraging, as good solutions were found to problems which could not be easily
solved by B&B (please see next section for B&B results). Still, for many prob-
lems the optimal solution was not found. This simple tabu search is many times
trapped in regions from which it cannot easily escape, wasting large amounts
of time. As we will see in the next section, this can be dramatically improved
with intensification and diversification procedures.

problem best best %above %feas Feasibility %best Best sol. %opt Optimality
name z ¢ optimum runs (E[t/] (s)) runs (E[tf] (s)) runs (E[t’] (s))
bell3a 878430.32 0 0 100 0.23 75 5032 75 50.32
bell5 9011612.98 0 050 30 21201 5 1688.15 0 >1764.32
egout 568.1007 0 0 100 047 100 7.56 100 7.56
enigma 0 0.0278 n/a 0 >>1638.69 5 1559.63 0 >1638.69
flugpl 1201500 0 0 30 19.54 15 4285 15 42.85
gt2 23518 0 11.11 100 0.67 5 4506.53 0 >4659.14
Iseu 1218 0 875 45 95.75 5 144124 0 >1512.53
mod008 307 0 0 100 0.17 5 10751.22 5 10751.22
modglob  20757757.11 0 0.08 100 0.18 5 26546.63 0 >27873.20
noswot -41 0 4.65 95 13.06 20 928.09 0 >4667.98
p0033 3347 0 8.35 20 55.55 15 78.70 0 >27296
pkl 17 0 54.54 100 0.03 5 2009.57 0 >>2046.81
pp08a 7350 0 0 100 0.11 25 143924 25 1439.24
pp08aCUT 7350 0 0 100 0.15 20 309042 20 3090.42
gn 82.1999 0 0 100 0.03 100 6.13 100 6.13
stein27 18 0 0 100 0.01 100 0.05 100 0.05
steind5 30 0 0 100 0.06 80 66.39 80 66.39
vpml 20 0 0 100 0.52 5 12149.37 5 12149.37

Table11.1. Simple tabu search: best solution found, percent distance above optimum; expected

CPU time required for reaching feasibility, the best solution, and optimality. (Results based on
20 observations of the algorithm running for 5000 iterations.)

3. Intensification and Diversification

We now introduce intensification and diversification procedures to comple-
ment the simple tabu search presented in the previous section. These are es-
sential to the performance of the algorithm; in many situations they can save a
large amount of computational time, both by speeding up the search in case of
being far from a local optima, or by moving the tabu search to different regions
when it is trapped somewhere it cannot easily escape.
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3.1 Intensification

The complete intensification strategy is presented in Algorithm 4. It consists
of fixing all the variables which are tabu (those belonging to set F, determined
in line 1 of Algorithm 4), releasing all the non-tabu variables, and solving the
remaining MIP on these:

min{cz + hy: Az + Gy >breZ}, yc RE, 2 =3, Vk € F} (11.4)
z,y

The rationale behind this procedure is the following: most of the difficult MIP
became easy to solve (or at least much easier than the original problem) if a set
of important variables are fixed (a fuller development of this type of strategy
can be found in Glover (1977), and a related discussion appears in Fischetti and
Lodi (2003)). What we are doing here is to say that important variables at a
given point of the search are those which are tabu (i.e., those which have been
updated recently).

Algorithm 4: Intensification.
INTENSIFY(z,t, 1)

1 F=A{k:i—tx>n}

(2) while Equation 11.3 is not feasible
3) randomly select index & from F
@  Fi=F\{k}

4) solve Equation 11.4 (allow search for n seconds, max.)
(6) if no integer solution was found

U return

(8)  let 2’ be the solution of Equation 11.4
(9)  return z’

For some strongly constrained instances, the problem 11.4 might have no
feasible LP relaxation. In this case, we randomly remove variables from the
set F, until the LP relaxation becomes feasible (lines 2 to 4). On the other end,
the MIP problem of Equation 11.4 might still be very difficult to solve; in order
to avoid wasting too much time on its solution, we limit the time spent on it.
This limit could be parameterized; but, in order to keep the discussion of results
free of parameters, we decided to allow an amount of time equal to the number
of integer variables, 7, in seconds. (Actually, this is a rather poor choice: in
our machine, in most of the cases either a good solution is found in about one
second, or it is not found in n seconds; but let us keep it as proposed for the
sake of simplicity. Notice also that a way of improving this parameterization
would be to use a dynamic strategy, allowing more time to intensification when
it appears to be rewarding, as is current practice in tabu search.)
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3.2 Diversification

The diversification procedure is similar to construction, but it keeps a part
of the current solution structure unchanged. This procedure, presented in Al-
gorithm 5 starts by drawing a random integer [, between 1 and the number of
integer variables n. It will then randomly select [ variables to remove (lines 4
to 7), and fix them (in a random order), by means of the rounding technique
described in section 2.1 (lines 8 to 16).

Algorithm 5: Diversification: partial solution destruction and recon-
struction.

DIVERSIFY(x)
1) F:={1,...,n}
@ C:={}

3 l=R[,n
“) fork=1¢to!

) randomly select index k from F
(6) F = F\{k}

©) C:=CU{k}

®) fork=1tol

©) solve Equation 11.3

(10) randomly select index k from C
11 if r < zff — |2P|

(12) z = [z

(13) else

(14) ) = |z ]

(15) F :=FU{k}
(16) C :=C\{k}
(17) returnZz

With this procedure, on average 50% of the current solution structure will
be kept after diversification; additionally, the reconstructed part will still have
the high quality provided by the rounding procedure.

33 The Complete Tabu Search

Diversification and intensification have to be carefully combined in order to
do a good team work inside tabu search. The main procedure, presented in
Algorithm 6, starts with a construction (as in the case of simple tabu). This
initiates the first “diversification stream”. A simple, short term memory tabu
search starts with this solution (lines 15, 16), and pursues until, at a certain point
of the search on this stream, there will be an intensification (lines 9, 10). After
doing at least one intensification, and having no improvements for a certain
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number of tabu search iterations, there will be a diversification (lines 11 to 14);
this starts the next diversification stream.

Algorithm 6: A complete tabu search.
TABUSEARCH(N, seed, MPSfile)

(1) read global data A, G, b, ¢, and h from MPSfile
2) initialize random number generator with seed
(3) % := ConsTRUCT()

4 =7
6 7=z
6 g¢=0

™  t=(-n,...,—n)
®) fori=1to N

©)} ifg=n

(10) Z := INTENSIFY(Z, t,17)
(11) elseifg>n

(12) Z := DIVERSIFY(Z)
(13) =z

(14) ¢=0

(15) else

(16) Z := TABUMOVE(Z, %, i, t)
Qa7n if Z is better than 7*

(18) =7

19) if T is better than 7/

(20) 7=z

@1 q=0

(22) else

(23) g:i=q+1

(24) return z*

In order to do this search in a “parameter-free” fashion, we propose the fol-
lowing: do an intensification after n (the number of integer variables) iterations
with no improvement on the best solution found on the current diversification
stream. An intensification starts with the best solution found on the current di-
versification stream, not with the current solution. After n + 1 non-improving
tabu search iterations (hence after doing at least one intensification), do a di-
versification. On Algorithm 6, the number of iterations with no improvement
on the current stream’s best solution is computed as variable g, in lines 14 and
17 to 23.
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34 Results

We present results obtained by the complete tabu search algorithm, in ta-
ble 11.2. Comparing these with the results of simple tabu the importance of
intensification and diversification becomes clear; the solution quality is consid-
erably improved, and the CPU time required to solving the problems is much
reduced.

problem best best %above %feas Feasibility %best Best sol. %opt Optimality
name z ¢ optim. runs (E[t'](s)) runs (E[tY](s)) runs (E[t7](s))
bell3a 878430.32 0 0 100 0.24 100 4.38 100 4.38
bell5 896640649 0 0 100 8.60 100 38.24 100 38.24
egout 568.1007 0 0 100 047 100 6.76 100 6.76
enigma 0 0 0 35 18751 20 376.66 20 376.66
flugpl 1201500 O 0 100 1.52 100 1.55 100 1.55
gt2 21166 0 0 100 0.65 15 221695 15 2216.95
Iseu 1120 0 0 100 147 10 77045 10 770.45
mod008 307 0 0 100 0.17 40 1119.57 40 1119.57
modglob 20740508.1 0 0 100 0.16 100 1404.29 100 1404.29
noswot 41 0 465 100 8.38 95  239.96 0 >15653.99
p0033 3089 0 0 100 0.17 90 410 90 4.10
pkl 15 0 3636 100 0.03 10 1111.96 0 >>2357.09
pp08a 7350 0 0 100 0.11 45 431638 45 4316.38
pp08aCUT 7350 0 0 100 0.15 70 76659 70 766.59
rgn 82.1999 0 0 100 0.03 100 0.73 100 0.73
stein27 18 0 0 100 0.02 100 0.05 100 0.05
steind5 30 0 0 100 0.06 80 66.65 80 66.65
vpml 20 0 0 100 0.48 95 393.73 95 393.73

Table 11.2. Complete tabu search: best solution found, percent distance above optimum; ex-
pected CPU time required for reaching feasibility, the best solution, and optimality. (Results
based on 20 observations of the algorithm running for 5000 iterations.)

Theresults obtained utilizing the B&B implementation of GLPK onthe series
of benchmark problems selected are provided in the Table 11.3. The maximum
CPU time allowed is 24 hours; in case this limit was exceeded, the best solution
found within the limit is reported. GLPK uses a heuristic by Driebeck and
Tomlin to choose a variable for branching, and the best projection heuristic for
backtracking (see Makhorin (2004) for further details).

The analysis of tables 11.2 and 11.3 shows that for most of the benchmark
instances, tabu search requires substantially less CPU for obtaining the optimal
solution than B&B (though the times reported for B&B are for the complete
solution of the problem, not only finding the optimal solution). Two of the
problems for which B&B could not find an optimal solution in 24 hours of CPU
time (gt2 and modglob) were solved by tabu search in a reasonable amount of
time.
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problem name bestz  CPU time (s) remarks
bell3a 878430.32 134.7
bell5 8966406.49 143.3
egout 568.1007 3.6
enigma 0 14.1
flugpl 1201500 1.3
gt2 30161* 93822.3 stopped, >24h CPU time
Iseu 1120 96.6
mod008 307 51.0
modglob 20815372.17" 93839.7 stopped, >24h CPU time
noswot -41* 137.9 stopped, numerical instability
p0033 3089 1.1
pkl 11 49713.9
pp08a 7350 93823.4 stopped, >24h CPU time
pp08aCUT 7350 93822.3 stopped, >24h CPU time
20 82.12 4.1
stein27 18 3.9
stein45 30 269.3
vpm] 20 10261.8

Table 11.3. Results obtained by branch-and-bound, using GLPK - version4.4: solution found
and CPU time. (" indicates non-optimal solutions.)

We also present the results obtained utilizing the commercial solver Xpress-
MP Optimizer, Release 13.02, again limiting the CPU time to 24 hours maxi-
mum. Although there are some exceptions, this solver is generally much faster
than our implementation of tabu search, but, as the code is not open, we do not
know why. A part of the differences could be explained by the quality of the LP
solver. Another part could be due to the use of branch-and-cut. Finally, some
differences could be due to preprocessing; in our opinion, this is probably the
improvement on tabu search that could bring more important rewards.

4. Conclusion

The literature in meta-heuristics reports many tabu search applications to
specific problems. In this paper we present a version to solve general integer
linear problems. In this domain, the most commonly used algorithm is branch-
and-bound. This algorithm converges to the optimal solution, but might be
unusable in practical situations due to the large amounts of time or memory
required for solving some problems.

The tabu search proposed in this paper provides a way for quickly solving
to optimality most of the problems analyzed. In terms of time required for
reaching the optimal (or a good) solution, comparison with the branch-and-
bound algorithm implemented in the GLPK favors tabu search. Comparison
with the commercial solver Xpress-MP Optimizer in general is not favorable
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problem name bestz  CPU time (s) remarks
bell3a 878430.32 87
bell5* 8988042.65" >24h  stopped, >24h CPU time
egout 568.1007 0
enigma 0 0
flugpl 1201500 0
gt2 21166 0
Iseu 1120 0
mod008 307 0
modglob 20740508.1 0
noswot* -41* >24h  stopped, >24h CPU time
p0033 3089 0
pkl 11 937
pp08a 7350 31
pp08aCUT 7350 5
rgn 82.1999 0
stein27 18 1
stein45 30 142
vpml 20 0

Table 11.4. Results obtained by the commercial Xpress-MP Optimizer, Release 13.02: solution
found and CPU time reported by the solver. (* indicates non-optimal solutions.)

to tabu search, although there are some exceptions. Probably, preprocessing
is playing an important role in Xpress-MP’s performance; actually, we believe
that preprocessing is the most promising research direction for improving tabu
search performance.

Our tabu search implementation, utilizing the GLPK routines, is publicly
available Pedroso (2004); the reader is kindly invited to use it. The implemen-
tation with GLPK is very simple: tabu search routines are just a few hundreds of
C programming lines, which can be easily adapted to more specific situations.

The strategy proposed in this work makes it straightforward to apply tabu
search to any model that can be specified in mathematical programming, and
thus opens a wide range of applications for tabu search within a single frame-
work. Tabu search can be used to provide an initial solution for starting a
branch-and-bound process; it can also be used for improving an integer solution
found by a branch-and-bound which had to be interrupted due to computational
time limitations.

We emphasize our implementation is not the only one possible. Three types
of procedures for applying tabu search to MIP problems are discussed in Glover
(1990), utilizing strategies somewhat different than those proposed here. To our
knowledge, none of these alternatives has been implemented and tested. Ad-
ditional considerations for applying tabu search to mixed integer programming
are discussed in Glover and Laguna (1997), including tabu branching proce-
dures and associated ideas of branching on created variables that provide an
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opportunity to generate stronger branches than those traditionally employed. It
is hoped that the present work, which appears to mark the first effort to inves-
tigate tabu search in the general MIP setting, will spur additional explorations
of this topic.

Appendix
1. Benchmark Problems

The instances of MIP and IP problems used as benchmarks are defined in
the Bixby et al. (1998) and are presented in Table 11.A.1. They were chosen to
provide an assortment of MIP structures, with instances coming from different
applications.

Problem Application Number of variables ~ Number of Optimal
name total integer binary  constraints solution
bell3a fiber optic net. design 133 71 39 123 878430.32
bellS fiber optic net. design 104 58 30 91 8966406.49
egout drainage syst. design 141 55 55 98 568.101
enigma unknown 100 100 100 21 0
flugpl airline model 18 11 0 18 1201500
gt2 truck routing 188 188 24 29 21166
Iseu unknown 89 89 89 28 1120
mod008 machine load 319 319 319 6 307
modglob heating syst. design 422 98 98 291 20740508
noswot unknown 128 100 75 182 -43
p0033 unknown 33 33 33 16 3089
pkl unknown 86 55 55 45 11
pp08a unknown 240 64 64 136 7350
pp08acut unknown 240 64 64 246 7350
gn unknown 180 100 100 24 82.1999
stein27 unknown 27 27 27 118 18
stein45 unknown 45 45 45 331 30
vpml unknown 378 168 168 234 20

Table 11.A.1. Set of benchmark problems used: application, number of constraints, number of
variables and optimal solutions as reported in MIPLIB.

2. Computational Environment

The computer environment used on this experiment is the following: a Linux
Debian operating system running on a machine with an AMD Athlon processor
at 1.0 GHz, with 512 Gb of RAM. Both tabu search and GLPK were imple-
mented on the C programming language.
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3. Statistics Used

In order to assess the empirical efficiency of tabu search, we provide measures
of the expectation of the CPU time required for finding a feasible solution, the
best solution found, and the optimal solution, for each of the selected MIP
problems.

Let ti be the CPU time required for obtaining a feasible solution in iteration
k, or the total CPU time in that iteration if no feasible solution was found. Let
t¢ and ¢} be identical measures for reaching optimality, and the best solution
found by tabu search, respectively. The number of independent tabu search
runs observed for each benchmark is denoted by K. Then, the expected CPU
time required for reaching feasibility, based on these K iterations, is:

while

is the expected CPU time for finding the best tabu search solution, and the
expected CPU time required for reaching optimality is

K

Eit°] = i—%

k=1

For rf = 0 and r° = 0, the sums provide respectively a lower bound on the
expectations of CPU time required for feasibility and optimality.
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Abstract:

Keywords:

The purpose of this work is to compare the performance of a scatter search (SS)
implementation and an implementation of a genetic algorithm (GA) in the
context of searching for optimal solutions to permutation problems. Scatter
search and genetic algorithms are members of the evolutionary computation
family. That is, they are both based on maintaining a population of solutions
for the purpose of generating new trial solutions. Our computational
experiments with four well-known permutation problems reveal that in general
a GA with local search outperforms one without it. Using the same problem
instances, we observed that our specific scatter search implementation found
solutions of a higher average quality earlier during the search than the GA
variants.

Scatter Search, Genetic Algorithms, Combinatorial Optimization, Permutation
Problems
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1. Introduction

Scatter search (SS) and genetic algorithms (GA) were both introduced in
the seventies. While Holland (1975) introduced genetic algorithms and the
notion of imitating nature and the “survival of the fittest” paradigm, Glover
(1977) introduced scatter search as a heuristic for integer programming that
expanded on the concept of surrogate constraints. Both methods fall in the
category of evolutionary optimization procedures, from the point of view that
they build, maintain and evolve a set (population) of solutions throughout the
search. Although the population-based approach makes SS and GA part of
the so-called evolutionary methods, there are fundamental differences
between these two methodologies. One main difference is that genetic
algorithms were initially proposed as a mechanism to perform hyperplane
sampling rather than optimization. Over the years, however, GAs have
morphed into a methodology whose primary concern is the solution of
optimization problems (Glover 1994a).

In contrast, scatter search was conceived as an extension of a heuristic in
the area of mathematical relaxation, which was designed for the solution of
integer programming problems: surrogate constraint relaxation.  The
following three operations come from the area of mathematical relaxation and
they are the core of most evolutionary optimization methods including SS and
GAs:

1. Building, maintaining and working with a population of elements (coded
as vectors)

2. Creating new elements by combining existing elements.

3. Determining which elements are retained based on a measure of quality

Two of the best-known mathematical relaxation procedures are
Lagrangean relaxation (Everett 1963) and surrogate constraint relaxation
(Glover 1965). While Lagrangean approaches absorb “difficult” constraints
into the objective function by creating linear combinations of them, surrogate
constraint relaxation generate new constraints to replace those considered
problematic. The generation of surrogate constraints also involves the
combination of existing constraints using a vector of weights. In both cases,
these relaxation procedures search for the best combination in an iterative
manner. In Lagrangean relaxation, for example, the goal is to find the “best”
combination, which, for a minimization problem, is the one that results in the
smallest underestimation of the true objective function value. Since there is
no systematic way of finding such weights (or so-called Lagrangean
multipliers) in order to produce the smallest (possibly zero) duality gap,
Lagrangean heuristics iteratively change the weights according to the degree
of violation of the constraints that have been “brought up” to the objective
function.
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Scatter search is more intimately related to surrogate relaxation
procedures, because not only surrogate relaxation includes the three
operations outlined above but also has the goal of generating information
from the application of these operations. In the case of surrogate relaxation,
the goal is to generate information that cannot be extracted from the “parent
constraints”. Scatter search takes on the same approach, by generating
information through combination of two or more solutions.

Similarities and differences between SS and GAs have been previously
discussed in the literature (Glover 1994b, 1995). Hence, our goal is not to
elaborate on those discussions and further analyze the fundamental
differences of these two approaches. Instead, our main goal is to provide a
direct performance comparison in the context of a class of combinatorial
optimization problems. Specifically, we make our comparison employing
four classes of problems whose solutions can be represented with a
permutation. Our SS and GA implementations are based on a model that
treats the objective function evaluation as a black box, making the search
procedures context-independent. This means that neither implementation
takes advantage of the structural details of the tests problems. We base our
comparisons on experimental testing with four well-known problems: linear
ordering, traveling salesperson, matrix bandwidth reduction and a job-
sequencing problem. The only information that both the SS solver and the
GA solver have with respect to these problems is the nature of the objective
function evaluation with regard to the “absolute” or “relative” positioning of
the elements in the permutation. In other words, we differentiate between
two classes of problems:

A-permutation problems for which absolute positioning of the elements is
more important (e.g., linear ordering problem)

R-permutation problems for which relative positioning of the elements is
more important (e.g., traveling salesperson problem)

We will see later that not all problems can be fully characterized as
“absolute” or “relative”, however, this does not render our implementations
useless.

2. Scatter Search Implementation

Our scatter search implementation is summarized in Figure 1 and operates
as follows. A generator of permutations, which focuses on diversification
and not on the quality of the resulting solutions, is used at the beginning of
the search to build a set P of PopSize solutions (step 1). The generator,
proposed by Glover (1998), uses a systematic approach for creating a diverse
set of permutations. As is customary in scatter search, an improvement
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method is applied to the solutions in P in order to obtain a set of solutions of
reasonable quality and diversity. The improvement method consists of the
local search (LS) procedure described in the following section.

The reference set, RefSet, is a collection of b solutions that are used to
generate new solutions by way of applying a solution combination method.
The construction of the initial reference set in step 3 starts with the selection
of the best b/2 solutions from P. These solutions are added to RefSet and

d(p,q)= Y |p; - ai

i=1

deleted from P. The minimum distance from each improved solution in
P-RefSet to the solutions in RefSet is computed. Then, the solution with the
maximum of these minimum distances is selected. This solution is added to
RefSet and deleted from P and the minimum distances are updated. This
process is repeated b/2 times. The resulting reference set has b/2 high-quality
solutions and /2 diverse solutions. The distance between two permutations p
= (v p2 -, Pn) and g = (q1, 42, ..., g») depends on the type of problem being
solved. For A-permutation problems, the distance is given by:

The distance for R-permutation problems is defined as:

d(p,q) = number of times p;.; does not immediately follow p; in g,

fori=1,...,n-1

The combination procedure is applied in step 5 to all pairs of solutions in
the current RefSet. Since the reference set consists of b solutions, the number
of trial solutions generated with the combination method is b(b-1)/2 when
applied to the initial reference set. Note that only pairs with at least one new
solution are combined in subsequent executions of this step and therefore the
number of combinations varies after the initial reference set. The combined
solutions are improved in the same way as mentioned above, that is, with the
application of the LS procedure. The reference set is then updated by
selecting the best b solutions from the union of RefSet and the improved trial
solutions. Steps 5, 6 and 7 in the outline of Figure 12.1 are performed as long
as at least one new trial solution is admitted in the reference set.
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1. Generate solutions — Apply the diversification generation method to
generate a set of PopSize solutions.

2. Improve solutions — Apply the LS method to improve solutions
generated in Step 1.

3.  Build the reference set — Choose the “best” b solutions to build the

initial RefSet.
4,  Initialize — Make BestSol the best solution in the current RefSet
do {
while ( new solutions in RefSer and objective function evaluations <
MaxEval ) do {
5. Combine solutions — Generate trial solutions from pairs of

reference solutions where at least one solution in the pair is new.

6. Improve solutions — Apply the local search method to improve
the solutions generated in step 5.

7. Update reference set — Choose the best b solutions from the
union of the current RefSet and the set of improved trial solutions.

00 =~

Update the best — Set CurrentBest as the best solution in the
RefSet.
if( CurrentBest improves BestSol )
BestSol = CurrentBest
9. Rebuild RefSet — Remove the worst 5/2 solutions from the
RefSet. Generate PopSize improved solutions applying steps 1 and
2. Choose b/2 “diverse” solutions and add them to RefSet.
} while (objective function evaluations < MaxEval )

Figure 12.1. Scatter Search outline

When no new solutions qualify to be added to the RefSet, step 9 performs
a partial rebuilding of the reference set. We keep the best 5/2 solutions in the
RefSet and delete the other b/2. As in step 1, a set P of PopSize improved
solutions is generated and the b/2 with maximum diversity are added to
complete the RefSet. The procedure stops when MaxEval objective function
evaluations have been performed.

Since the SS and GA implementations will share the combination and
improvement methods, we first provide the details for the GA procedure and
then describe the mechanisms to combine solutions and the local search used
for improving trial solutions.

3. GA Implementation

Just as in the case of the scatter search, we have implemented a standard
genetic algorithm for the purpose of comparing performance. Our description
of scatter search in the previous section is more detailed, because SS is not as
known in the literature as GAs, even though they both date back to the mid
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seventies. The GA implementation follows the scheme of Michalewicz
(1996) and is summarized in Figure 12.2.

1. Generate solutions — Build P by randomly generating PopSize
permutations.
2. Improve solutions — Apply the LS method to improve solutions

generated in Step 1.

while (objective function evaluations < MaxEval ) do
{

3. Evaluate solutions — Evaluate the solutions in P and update the
best solution found if necessary.

4. Survival of the fittest — Calculate the probability of surviving
based on solution quality. Evolve P by choosing PopSize solutions
according to their probability of surviving.

5. Combine solutions — Select a fraction p, of the solutions in P to
be combined. Selection is at random with the same probability for
each element of P. The selected elements are randomly paired for
combination, with each pair generating two offspring that replace
their parents in P.

6. Mutate solutions — A fraction p,, of the solutions in P is selected
for mutation. The mutated solution replaces the original in P.

Figure 12.2. GA outline

Offspring generated with the combination procedure in step 5 and
mutations generated in step 6 are subjected to the improvement method
referred to in step 2. The improvement method is the same as the one used in
the scatter search implementation and described in the following section.

4. Improvement Method

r (pl""’pi—-l’pj’pi""’pj—l’pjﬂ’“"pn) fori<j

(pl,...,pj_l,pjﬂ,...,pi,pj,pm,...,pn) for i>j
Insertions are used as the primary mechanism to move from one solution
to another in our improvement method. We define MOVE(p;, i) to consist of
deleting p; from its current position j in p to be inserted in position i (i.e.,
between the current elements p;; and p; if i < j and between the current
elements p; and py, if i > j). This operation results in the ordering p’ as

follows:

Since the local search method is context independent, the only available
mechanism for computing the move value is submitting p' for evaluation and
comparing its value with the value of p. In order to reduce the computational
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effort associated with evaluating moves for possible selection and to increase
the search efficiency, we define INSERT(p;) as the set of promising insert
positions for p,, We consider inserting p; only in those positions in
INSERT(p)). Then, the neighborhood N of the current solution is given as:

N={p’: MOVE(p; i), forj=1,..,n and i € INSERT(p))}

We partition N into » sub-neighborhoods Nj associated with each element
D as:

N, = {p’: MOVE(p, i), i € INSERT(p))}

The set INSERT(p;) depends on whether the problem is an A-permutation
or a R-permutation problem. In A-permutation problems we accumulate in
Freqlns(ij) the number of times that element i has been inserted in position j
improving the current solution. Then, given an element i, we compute m(i) as
the position j where the value of Freqlns(i,j) is maximum. We consider that
m(i) and the positions around it are desirable positions for inserting element i.
This information is used to assign INSERT(p;) the following values:

INSERT(p;) = [ m(p;) - RANGE, m(p,) + RANGE ]

The value of RANGE is an additional search parameter. In R-permutation
problems we accumulate in Freqlns(i,j) the number of times that element i
has been inserted in the position immediately preceding element j. Then we
compute m(i) as the element j with maximum Freqlns(i,j) value. We define
pp(e) as the previous position of element e in the current solution. Then we
can consider that pp(m(i)) is a desirable position for inserting element i. In
this case, INSERT(p,) is assigned the following values:

INSERT(p;) = { pp(e) / Freqlns(p,e) > o. m(p;) }

where the value of o is dynamically adjusted to obtain a set with
2*RANGE elements. The implementation is such that we avoid ordering all
the elements in Freqlns(i,j), so we are able to construct the set INSERT(p;)
with a low computational effort.

The rule for selecting an element for insertion is based on frequency
information. Specifically, the number of times that element j has been moved
resulting on an improved solution is accumulated in freq(j). The probability
of selecting element j is proportional to its frequency value freg(y).

Starting from a trial solution constructed with either the diversification
generator or any of the combination methods, the local search (LS)
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procedure chooses the best insertion associated with a given element. At
each iteration, an element p; in the current solution p is probabilistically
selected according its freq(j) value. The solution p’ with the lowest value in
N; is selected. The LS procedure executes only improving moves. An
improving move is one for which the objective function value of p’ is better
(strictly smaller for minimization problems or strictly larger for maximization
problems) than the objective function value of p. The LS procedure
terminates when NTrials elements are consecutively selected and the
exploration of their neighborhood fails to find an improving move.

5. Combination Methods

The combination methods, as referred to in scatter search, or operators, as
referred to in genetic algorithms, are key components in the implementation
of these optimization procedures. Combination methods are typically adapted
to the problem context. For example, linear combinations of solution vectors
have been shown to yield improved outcomes in the context of nonlinear
optimization (Laguna and Martf 2000). An adaptive structured combination
that focuses on absolute position of the elements in solutions to the linear
ordering problem was shown effective in Campos et al. (2001). (This
combination method is labeled #7 below.) In order to design a context-
independent combination methodology that performs well across a wide
collection of different permutation problems, we propose a set of 10
combination methods from which one is probabilistically selected according
to its performance in previous iterations during the search.

In our implementation of scatter search, solutions in the RefSet are ordered
according to their objective function value. So, the best solution is the first
one in RefSet and the worst is the last one. When a solution obtained with the
combination method i (referred to as cm;) qualifies to be the / member of the
current RefSet, we add b-j+1 to score(cm;). Therefore, combination methods
that generate good solutions accumulate higher scores and increase their
probability of being selected. To avoid initial biases, this mechanism is
activated after the first Inititer combinations, and before this point the
selection of the combination method is made completely at random.

In the GA implementation, when a solution obtained with combination
method cmy; is better than its parent solutions, score(cm;) is increased by one.
If the combination method is a mutation operator, then the score is increased
by one when the mutated solution is better than the original solution.
Preliminary experiments showed that there was no significant difference
between using this scheme from the beginning of the search and waiting
Initlter combinations to activate it. Therefore, the probabilistic selection
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procedure is activated from the beginning of the GA search. A description of
the ten combination methods follows, where we refer to the solutions being
combined as “reference solutions” and to the resulting solution as the “trial
solution” (although in the GA literature reference solutions are known as
“parents” and trial solutions as “offspring”).

Combination Method 1

This is an implementation of a classical GA crossover operator. The
method randomly selects a position & to be the crossing point from the range
[1, n/2]. The first k elements are copied from one reference solution while the
remaining elements are randomly selected from both reference solutions. For
each position i (i =k+1, ..., n) the method randomly selects one reference
solution and copies the first element that is still not included in the new trial
solution.

Combination Method 2
This method is a special case of 1, where the crossing point & is always
fixed to one.

Combination Method 3

This is an implementation of what is known in the GA literature as the
partially matched crossover. The method randomly chooses two crossover
points in one reference solution and copies the partial permutation between
them into the new trial solution. The remaining elements are copied from the
other reference solution preserving their relative ordering.

Combination Method 4

This method is a case of what is a mutation operator referred to in the GA
literature as partial inversion. The method selects two random points in a
chosen reference solution and inverts the partial permutation between them.
The inverted partial permutation is copied into the new trial solution. The
remaining elements are directly copied from the reference solution preserving
their relative order.

Combination Method 5

This combination method also operates on a single reference solution and
is known as scramble sublist. The method scrambles a sublist of elements
randomly selected in the reference solution. The remaining elements are
directly copied from the reference solution into the new trial solution.
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Combination Method 6

This is a special case of combination method 5 where the sublist always
starts in position 1 and the length is randomly selected in the range [2, n/2].
This method is known as scramble initial sublist.

Combination Method 7

The method scans (from left to right) both reference solutions, and uses
the rule that each reference solution votes for its first element that is still not
included in the new trial solution (referred to as the “incipient element”). The
voting determines the next element to enter the first still unassigned position
of the trial solution. This is a min-max rule in the sense that if any element of
the reference solution is chosen other than the incipient element, then it
would increase the deviation between the reference and the trial solutions.
Similarly, if the incipient element were placed later in the trial solution than
its next available position, this deviation would also increase. So the rule
attempts to minimize the maximum deviation of the trial solution from the
reference solution under consideration, subject to the fact that other reference
solution is also competing to contribute. A bias factor that gives more weight
to the vote of the reference solution with higher quality is also implemented
for tie breaking. This rule is used when more than one element receives the
same votes. Then the element with highest weighted vote is selected, where
the weight of a vote is directly proportional to the objective function value of
the corresponding reference solution.

Combination Method 8

In this method the two reference solutions vote for their incipient element
to be included in the first still unassigned position of the trial solution. If both
solutions vote for the same element, the element is assigned. If the reference
solutions vote for different elements but these elements occupy the same
position in both reference permutations, then the element from the
permutation with the better objective function is chosen. Finally, if the
elements are different and occupy different positions, then the one in the
lower position is selected.

Combination Method 9

Given two reference solutions p and g, this method probabilistically
selects the first element from one of these solutions. The selection is biased
by the objective function value corresponding to p and q. Let e be the last
element added to the new trial solution. Then, p votes for the first unassigned
element that is position after e in the permutation p. Similarly, ¢ votes for the
first unassigned element that is position after e in ¢g. If both reference
solutions vote for the same element, the element is assigned to the next
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position in the new trial solution. If the elements are different then the
selection is probabilistically biased by the objective function values of p and

q.

Combination Method 10

This is a deterministic version of combination method 9. The first
element is chosen from the reference solution with the better objective
function value. Then reference solutions vote for the first unassigned
successor of the last element assigned to the new trial solution. If both
solutions vote for the same element, then the element is assigned to the new
trial solution. Other wise, the “winner” element is determined with a score,
which is updated separately for each reference solution in the combination.
The score values attempt to keep the proportion of times that a reference
solution “wins” close to its relative importance, where the importance is
measured by the value of the objective function. The scores are calculated to
minimize the deviation between the “winning rate” and the “relative
importance”. For example, if two reference solutions p and ¢ have objective
function values of value(p) = 40 and value(q) = 60, then p should contribute
with 40% of the elements in the new trial solution and ¢ with the remaining
60% in a maximization problem. The scores are updated so after all the
assignments are made; the relative contribution from each reference solution
approximates the target proportion. More details about this combination
method can be found in Glover (1994b).

6. Test Problems

We have used four combinatorial optimization problems to compare the
performance of the scatter search and GA implementations. Solutions to
these problems are naturally represented as permutations:

= the bandwidth reduction problem
. the linear ordering problem
) the traveling salesman problem
. a single machine-sequencing problem.

We target these problems because they are well known, they are different
among themselves and problem instances with known optimal or high-quality
solutions are readily available. Existing methods to solve these problems
range from construction heuristics and metaheuristics to exact procedures.
We now provide a brief description of each problem class.

The bandwidth reduction problem (BRP) refers to finding a configuration
of a matrix that minimizes its bandwidth. The bandwidth of a matrix
A= {aij} is defined as the maximum absolute difference between i and j for



274

whicha; # 0. The BRP consists of finding a permutation of the rows and
columns that keeps the nonzero elements in a band that is as close as possible
to the main diagonal of the matrix; the objective is to minimize the
bandwidth. This NP-hard problem can also be formulated as a labeling of
vertices on a graph, where edges are the nonzero elements of the
corresponding symmetrical matrix. Metaheuristics proposed for this problem
include a simulating annealing implementation by Dueck and Jeffs (1995)
and a tabu search approach by Mart{ et al. (2001).

The Linear Ordering Problem (LOP) is also a NP-hard problem that has a
significant number of applications. This problem is equivalent to the so-
called triangulation problem for input-output tables in economics and has
generated a considerable amount of research interest over the years, as
documented in Grétschel, Jinger and Reinelt (1984), Chanas and Kobylanski
(1996), Laguna, Marti and Campos (1999) and Campos et al. (2001). Given a
matrix of weights the LOP consists of finding a permutation of the columns
(and simultaneously the rows) in order to maximize the sum of the weights in
the upper triangle, the equivalent problem in graphs is that of finding, in a
complete weighted graph, an acyclic tournament with a maximal sum of arc
weights. For a complete description of this problem, its properties and
applications see Reinelt (1985).

The Traveling Salesman Problem (TSP) consists of finding a tour (cyclic
permutation) visiting a set of cities that minimizes the total travel distance. A
incredibly large amount of research has been devoted to this problem, which
would be impossible and impractical to summarize here. However, a couple
of valuable references about the TSP are Lawler et al. (1985) and Reinelt
(1994).

Finally, the fourth problem is a single machine-sequencing problem
(SMSP) with delay penalties and setup costs. At time zero, » jobs arrive at a
continuously available machine. Each job requires a specified number of
time units on the machine and a penalty (job dependent) is charged for each
unit that job commencement is delayed after time zero. In addition, there is a
setup cost s; charged for scheduling job j immediately after job i. The
objective is to find the schedule that minimizes the sum of the delay and setup
costs for all jobs. Note that if delay penalties are ignored, the problem
becomes an asymmetric traveling salesman problem. Bames and Vanston
(1981) reported results on three branch and bound algorithms of instances
with up 20 jobs and Laguna, Barnes and Glover (1993) developed a TS
method that is tested in a set of instances whose size ranges between 20 and
35 jobs.
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7. Computational Experiments

For our computational testing, we have employed the following problem
instances:

= 37 BRP instances from the Harwell-Boeing Sparse Matrix Collection
found in  http://math.nist.gov/MatrixMarket/data/Harwell-
Boeing. This collection consists of a set of standard test matrices
arising from problems in linear systems, least squares, and eigenvalue
calculations from a wide variety of scientific and engineering
disciplines. The size of these instances ranges between 54 and 685
rows with an average of 242.9 rows (and columns).

= 49 LOP instances from the public-domain library LOLIB (1997) found
in http://www.iwr.uni-heidelberg.de/groups/comopt/software/
LOLIB. These instances consist of input-output tables from economic
sectors in the European community and their size ranges between 44
and 60 rows with an average of 48.5 rows (and columns).

= 31 TSP instances from the public-domain library TSPLIB (1995) found
in http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsp
lib. These instances range in size between 51 and 575 cities with an
average of 159.6 cities.

= 40 SMSP instances from Laguna, Barnes and Glover (1993) available
upon request from laguna@colorado.edu. The best solutions
available for these instances are not proven optimal, however they are
the best upper bounds ever found. These instances range in size
between 20 and 35 jobs with an average of 26.0 jobs.

In order to apply the different strategies described above, we have
classified the BRP and SMSP as A-permutation problems and the LOP and
TSP as R-permutation problems. Note that the objective function in the
SMSP is influenced by both the absolute position of the jobs (due to the delay
penalties) and the relative position of the jobs (due to the setup costs). Our
classification is based on the knowledge that the delay penalties in the tested
instances are relatively larger when compare to the setup cost. In cases when
this knowledge is not available, it would be recommended to run the
procedure twice on a sample set of problems in order to establish the relative
importance of the positioning of elements in the permutation.

The solution procedures were implemented in C++ and compiled with
Microsoft Visual C++ 6.0, optimized for maximum speed. All experiments
were performed on a Pentium III at 800 MHz. The scatter search parameters
PopSize, Maxlter, b and Initlter were set to 100, 2, 10 and 50 respectively, as
recommended in Campos et al. (1999). The parameters associated with the
local search procedure were set after some preliminary experimentation
(RANGE = 3 and Ntrials = 25). The GA parameters were set to PopSize =
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100, p. = 0.25 and p,, = 0.01, as recommended in Michalewicz (1996). Both
procedures used the stopping criterion of 1 million objective function
evaluations.

In our experiments we compare the SS implementation with two versions
of the GA procedure: 1) without local search (GA) and 2) with local search
(GALS). SS always uses local search by design. The two GA versions
complement each other in that one uses part of its objective function
evaluation “budget” to perform local searches and the other uses its entire
budget to apply the combination operators and evolve the population of
solutions. In our first experiment we restrict the use of combination methods
in such a way that both GA versions use combination methods 1-6 and SS
uses combination methods 7-10. Recall that combination methods 1-3 are
crossover operators and combination methods 4-6 are mutation operators.
Combination methods 7-10 are more strategic in nature and one is completely
deterministic.

Table 12.1 shows the average percent deviation from the best-known
solution to each problem. The procedures were executed once with a fixed
random seed and the average is over all instances. It should be mentioned
that in the case of LOP and TSP the best solutions considered are the optimal
solutions as given in the public libraries. In the case of the BRP the best
solutions are from Marti et al. (2001) and the best solutions for the SMSP
instances are due to Laguna et al. (1993).

Table 12.1. Percent deviation from best

Method BRP LOP SMSP TSP

GA 59.124% 6.081% 4.895% 95.753%
GALS 55.500% 0.005% 0.832% 143.881%
SS 58.642% 0.000% 0.291% 43.275%

Table 12.1 shows that SS has a better average performance than GA in all
problem types but is inferior to GALS when solving BRP instances. The
three methods are able to obtain high quality results for the LOP and the
SMSP instances. The results for the TSP are less desirable, but it should be
pointed out that these problems are on average larger than the LOP and
SMSP instances. Table 12.2 presents the average percent improvement of SS
over the two GA versions. The largest improvement occurs when solving
TSP instances and the negative improvement associated with GALS shows
the better average performance of this method when compared to SS.

Table 12.2. Percent improvement of SS over GA and GALS
Method BRP LOP SMSP TSP
GA 0.3% 6.5% 4.4% 26.8%
GALS -2.0% 0.0% 0.5% 41.3%
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Table 12.2 shows that in general the use of local search within the GA
framework results in improved outcomes, with the TSP as a notable exception
to this general rule. For the TSP, the performance of the GA implementation
deteriorates when coupled with the local search procedure. The SS vs. GALS
in the case of BRP instances deserves a closer examination, because it is the
only case in which either GA implementation outperforms SS. Figure 12.3
shows the trajectory of the average percent deviation from the best-known
solution as the SS and GALS searches progress.
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Figure 12.3. Percent deviation from best known solutions on BRP

The percent deviation value trajectory in Figure 12.3 shows that while SS
results are better than or at least as good as GALS results before 600 thousand
evaluations, GALS keeps improving while SS stagnates. Our explanation for
this behavior is as follows. In the BRP, the change in the objective function
value from one solution to another does not represent a meaningful guidance
for the search. In particular, the objective is a min-max function that in many
cases results in the same evaluation for all the solutions in the neighborhood
of a given solution. Since SS relies on strategic choices, it is unable to obtain
information from the evaluation of this “flat landscape” function to direct the
search. GALS, heavily relying on randomization, is able to more effectively
probe the solution space presented by BRP instances.

Figure 12.4 depicts the trajectory of the percent deviation from the best-
known solution to the SMSP as the search progress. The average values of
the three methods under consideration are shown.
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Figure 12.4 shows that the SS procedure is able to obtain high quality
solutions from the very beginning of the search. The use of local search
coupled with GA gives this procedure a significant advantage. At the end of
the search, the percent deviation associated with GA is not as lows as the
deviation achieved by GALS before 100,000 evaluations. Also note that after
100,000 objective function evaluations, the percent deviation from the best-
known solutions for the SS method is 0.7 while after 1 million evaluations the
GA and the GALS methods are still at 4.8 and 0.8, respectively.

In our second experiment, we compare SS, GA and GALS when allowed
to use all the combination methods described in section 3. The results of
these experiments are summarized in Tables 12.3 and 12.4. These tables are
equivalent to Tables 12.1 and 12.2 in that they shows the percent deviation
from the best known solution values and the percent improvement of SS over
GA and GALS, respectively.

Table 12.3. Percent deviation from best

Method BRP LOP SMSP TSP

GA 58.244% 6.722% 4.940% 101.689%
GALS 55.102% 0.004% 0.268% 133.792%
SS 52.587% 0.000% 0.207% 54.321%

Table 12.4. Percent improvement of SS over GA and GALS
Method BRP LOP SMSP TSP
GA 3.57% 7.21% 4.51% 23.49%
GALS 1.62% 0.00% 0.06% 33.99%
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A direct comparison of tables 12.1 and 12.3 shows the advantage of using
all combination methods within both GA and SS. Tables 12.3 and 12.4
indicate that when all combination methods are used, SS has a superior
average performance than GA and GALS. The performance is only
marginally better in the case of LOP and SMSP, but it continues to be
significantly better in the case of TSP. When using all operators, including
those that incorporate a fair amount of randomization, SS is able to
outperform GALS in the BRP instances, as shown in Figure 12.5.
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Figure 12.6 shows the trajectory of the percent deviation from the best-
known solutions to the SMSP as the search progress. The average values
shown in Figure 12.6 correspond to the second experiment, where all
combination methods are made available to SS, GA and GALS.
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A comparison of figures 12.4 and 12.6 reveals that while SS shows a
minor improvement when solving SMSP with using all combination methods,
the improvement associated with GALS is significant. GALS achieves a
deviation of 1.14% at the 100,000 evaluation mark when using the 10
combination methods, which compares quite favorably with a deviation of
4.8% at the same stage of the search when using a fraction of the available
combination methods.

8. Conclusions

We have implemented a scatter search and a GA procedure for a class of
combinatorial problems whose solutions can be represented as permutations
with the purpose of comparing performance of these competing
metaheuristics. The implementations are standard and share 10 combination
methods. They also share the improvement method based on a simple hill-
climbing procedure. The procedures are context-independent in the sense
that they treat the objective function evaluation as a black box. To allow for
the use of key search strategies, both implementations require that the
problems being solved be classified as either “absolute” or “relative” in terms
of the relevant factor for positioning elements in the permutation.

The performance of the procedures was assessed using 157 instances of
four different permutations problems. SS can claim superiority when solving
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TSP instances but only a modest improvement over GAs with local search
when solving LOP, BRP or SMSP instances. We are certain that this won’t
be the last time SS will be compared against GAs and that in any given
setting one could outperform the other. Our main finding is that both
methodologies are capable of balancing search diversification and
intensification when given the same tools for combining and improving
solutions.
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Abstract We present strategies to design parallel tabu search algorithms and survey de-
velopments and results in the area. In the second part of the paper, we focus
on multi-search strategies. We discuss general design and implementation prin-
ciples, point out a number of challenges and pitfalls, and identify trends and
promising research directions.

Keywords:  Parallel Computation, Parallelization Strategies, Co-operative Search, Tabu Search,
Scatter Search, Path Relinking

1. Introduction

Parallel computation is increasingly acknowledged as a natural complement
to problem solving strategies, particularly when applied to large-scale, hard
formulations and instances. The field of meta-heuristics is no exception to this
trend and the last ten to fifteen years have witnessed a continuously stronger
stream of important developments, most of which targeted tabu search, genetic
algorithms, and simulated annealing methods (e.g., the surveys of Crainic and
Toulouse 1998, 2003, Cung et al. 2002, Holmqvist, Migdalas, and Pardalos
1997, Pardalos et al. 1995, and Verhoeven and Aarts 1995). While a number
of these efforts addressed particular problem instances and yielded tailor-made
procedures, most proposed strategies of a more general nature, at least within the
framework of the underlying sequential search methodology. These strategies
are the object of this paper.

Parallel computing methods aim to solve a given problem quicker than the
corresponding sequential method. In meta-heuristic terms, this goal may be
stated as either “accelerate the search for a comparable solution quality” or
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“broaden the search”, that is, obtain better solutions for a comparable compu-
tation effort or, at least, for the same wall-clock time. Parallel meta-heuristic
search methods should also be more robust than sequential methods with re-
spect to the characteristics of the problem instances they encounter. Parallel
implementations are thus expected not only to identify better solutions but also
to do it consistently over diverse sets of problem instances without excessive
calibration efforts.

The review of the literature reveals that, beyond the idiosyncrasies of each
implementation that follow from the particular problem instance addressed,
there are only a limited number of general strategies that may be used to build
parallel meta-heuristics. A number of these strategies are well-understood by
now, others are still a fertile ground for research. Together, they enhance our
ability to address hard and large-scale problems. In this paper we focus on tabu
search. The objectives are to briefly review parallel strategies and developments
for tabu search, to discuss in somewhat more details co-operative methods that
are the subject of most contemporary efforts, and to identify promising research
directions.

The paper is organized as follows. Section 2 describes parallel strategies and
reviews parallel tabu search methods proposed in the literature. Section 3 de-
scribes the main multi-search strategies and discusses the challenges associated
to the development of successful co-operative methods. It also presents a num-
ber of ideas on how parallel strategies could be applied to some advanced tabu
search methods, particularly path relinking and scatter search. Section 4 sums
up the paper with a number of interesting challenges and research directions
for parallel tabu search.

2. Parallel Tabu Search

Meta-heuristics have been defined as master strategies (heuristics) to guide
and modify other heuristics to avoid getting trapped in local optima or sequences
of visited solutions (cycling), produce solutions beyond those normally identi-
fied by local search heuristics, and provide reasonable assurance that the search
has not overlooked promising regions (Glover 1986, Glover and Laguna 1993).

Tabu search, similarly to most meta-heuristics, is an improving iterative pro-
cedure that moves from a given solution to a solution in its neighbourhood that is
better in terms of the objective function value (or some other measure based on
the solution characteristics). Thus, at each iteration, a local search procedure
(the “original” heuristic) identifies and evaluates solutions in the neighbour-
hood of the current solution, selects the best one relative to given criteria, and
implements the transformations required to establish the selected solution as
the current one. Inferior quality solutions encountered during neighbourhood
explorations may be accepted as a strategy to move away from local optima. In
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theory, the procedure iterates until no further improvement is possible. In actual
implementations, a more restrictive stopping criteria is used: total number of
iterations, relative improvement over a number of iterations, etc.

Memory and memory hierarchy are major concepts in tabu search, as memory-
based strategies are used to guide the procedure into various search phases,
possibly exploring different neighbourhoods. Short-term tabu status memories
record recent visited solutions or their attributes to avoid cycling due to the
repetition or inversion of recent actions. The tabu status of a move may be
lifted if testing it against an aspiration criterion signals the discovery of a high
quality solution (typically, the best one encountered so far). Medium to long-
term memory structures record various informations and statistics relative to the
solutions already encountered (e.g., frequency of certain attributes in the best
solutions) to “learn” about the solution space and guide the search. Intensifica-
tion of the search around good solutions and its diversification towards regions
of the solution space not yet explored are two main ingredients of tabu search.
These two types of moves are based on medium and long-term memories, are
implemented using specific neighbourhoods, and may involve quite complex
solution transformations. More details on the basic and advanced features of
tabu search may be found in Glover (1986, 1989, 1990, 1996) and Glover and
Laguna (1993, 1997).

Tabu search has proved a fertile ground for innovation and experimentation
in the area of parallel meta-heuristics. Most parallel strategies encountered in
the literature have been applied to tabu search for a variety of applications and
a number of interesting parallelization concepts have been introduced while
developing parallel tabu search methods (Crainic and Toulouse 2003).

Crainic, Toulouse, and Gendreau (1997) introduced in 1993 what is still the
most comprehensive taxonomy of parallel tabu search methods. The classifi-
cation has three dimensions (Figure 13.1). The first dimension, Search Control
Cardinality, explicitly examines how the global search is controlled: either by
a single process (as in master-slave implementations) or collegially by several
processes that may collaborate or not. The two alternatives are identified as
1-control (1C) and p-control (pC), respectively. The classes of the second di-
mension indicate the Search Differentiation: do search threads start from the
same or different solutions and do they make use of the same or different search
strategies? The four cases considered are: SPSS, Same initial Point, Same
search Strategy; SPDS, Same initial Point, Different search Strategies; MPSS,
Multiple initial Points, Same search Strategies; MPDS, Multiple initial Points,
Different search Strategies (see also VoB 1993). Finally, the dimension relative
to the type of Search Control and Communications addresses the issue of how
information is exchanged.

In parallel computing, one generally refers to synchronous and asynchronous
communications. In the former case, all processes have to stop and engage in
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some form of communication and information exchange at moments (number
of iterations, time intervals, specified algorithmic stages, etc.) exogenously
determined, either hard-coded or determined by a control (master) process.
In the latter case, each process is in charge of its own search, as well as of
establishing communications with the other processes, and the global search
terminates once each individual search stops. To reflect more adequately the
quantity and quality of the information exchanged and shared, as well as the
additional knowledge derived from these exchanges (if any), we refine these
notions and define four classes of Search Control and Communication strategies,
Rigid (RS) and Knowledge Synchronization (KS) and, symmetrically, Collegial
(C) and Knowledge Collegial (KC). Crainic, Toulouse, and Gendreau (1997)
detail the taxonomy and use it to analyze the parallel methods proposed in the
literature up to that time.

Search differentiation

MPDS |
MPSS |
SPDS
T Search control and
SPSS | communications
1 Iv } t —>
P RS KS C KC

Search control
cardinality

Figure 13.1. Method-oriented Taxonomy

Typically, 1-control strategies implement a classical master-slave approach
that aims solely to accelerate the search. Here, a “master” processor executes a
synchronous tabu search procedure but dispatches computing-intensive tasks to
be executed in parallel by “slave” processes. The master receives and processes
the information resulting from the slave operations, selects and implements
moves, gathers all the information generated during the tabu exploration, up-
dates the memories, and decides whether to activate different search strategies
or stop the search.
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In the context of tabu search, the operation most widely targeted in such ap-
proaches is the neighbourhood evaluation. Ateach iteration, the possible moves
in the neighbourhood of the current solution are partitioned into as many sets as
the number of available processors and the evaluation is carried out in parallel
by slave processes. This 1C/RS/SPSS strategy yielded very interesting results
for problems with large neighbourhoods and relatively small computing efforts
required to evaluate and perform a given move, such as the quadratic assign-
ment (QAP: Chakrapani and Skorin-Kapov 1992, 1993b, 1995, Taillard 1991,
1993b), travelling salesman (TSP: Chakrapani and Skorin-Kapov 1993a) and
vehicle routing (VRP: Garcia, Potvin, and Rousseau 1994) problems. For the
same quality of solution, near-linear speedups are reported using a relatively
small number of processors. Moreover, historically, this approach permitted
improvements to the best-known solutions to several problem instances pro-
posed in the literature.

Implementations of the sequential fan candidate list strategy (Glover, Tail-
lard, and de Werra 1993, Glover and Laguna 1997), also known as look ahead
or probing approaches, allow slave processes to perform a number of iterations
before synchronization and the selection of the best neighbouring solution from
which the next iteration is initiated. Probing strategies thus belong to the 1-
control, knowledge synchronous (1C/KS) class and may use any of the four
search differentiation models identified earlier on. The only parallel implemen-
tation of this strategy the author is aware of is to be found in the comparative
study of several synchronous tabu search parallelizations performed by Crainic,
Toulouse, and Gendreau (1995a) for the location-allocation problem with bal-
ancing requirements. In this study, the authors implemented and compared a
1C/RS/SPSS and a 1C/KS/SPSS method. The second performed marginally
better. However, both methods were outperformed by p-control implementa-
tions that attempt a more thorough exploration of the solution space. These
results also emphasize that performance is less interesting for the low-level
parallelism offered by single control, synchronous parallel strategies when the
time required by one serial iteration is relatively important compared to the total
solution time and only a few hundred moves may be executed in a reasonable
computing time (compared to the tens of thousands performed by a typical VRP
tabu search procedure).

Domain decomposition is another major parallelization strategy. The funda-
mental idea is simple: Partition the feasible domain of the problem in several
(disjoint) sets and execute the contemplated meta-heuristic on each subset, thus
accelerating the global search. Two cases may then be encountered. Either the
solution of each search thread is a complete solution to the problem in hand
or a partial solution only, in which case a complete solution has to be recon-
structed. In both cases, however, each search process has had access to a part
of the domain only (especially when the partition is strictly enforced during
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the search). Then, to somewhat increase the thoroughness of the search, the
partition is modified and the search is started anew. This process is repeated a
number of times.

The “natural” implementation of domain decomposition is through a 1C/KS
master-slave scheme with any of the search differentiation strategy. (Notice
that different meta-heuristics may be applied to different sets and that, by def-
inition, each search starts from a different initial point.) The master deter-
mines the partition, synchronizes slave processes, reconstructs solutions (when
required), and determines stopping conditions. Slave processes perform the
search on their assigned partitions. Such approaches have proved successful
for problems for which numerous iterations may be performed in a relatively
short time and restarting the method with several different partitions does not
require unreasonable computational efforts (e.g., Fiechter 1994 for the TSP,
Porto and Ribeiro 1995, 1996, and Porto, Kitajima, and Ribeiro 2000 for the
task scheduling problem on heterogeneous systems).

The same idea may also be implemented in a pC/KS framework, however.
In this case, processors stop at pre-determined moments to exchange partial
solutions and build whole ones, modify the partition, verify the stopping con-
ditions. From a computer programming point of view, one of the processors
may assume co-ordination tasks, but this does not change the particular nature
of the algorithmic design. Taillard’s (1993a) early tabu search for VRP fol-
lows this pC/KS/MPSS paradigm. The domain is partitioned and vehicles are
allocated to the resulting regions. Once the initial partition is performed, each
subproblem is solved by an independent tabu search. All processors stop after
a number of iterations that varies according to the total number of iterations
already performed. The partition is then modified by an information exchange
phase, during which tours, undelivered cities, and empty vehicles are exchanged
between adjacent processors (corresponding to neighbouring regions).

Partition approaches did allow to address successfully a number of problem
instances. The synchronization inherent in the design of the strategy hinder
its performance, however. Indeed, in most cases, results obtained by using
partition strategies have been improved by methods that launch several search
threads to simultaneously explore the solution space with various degrees of
co-operation. In fact, enjoying the benefit of hindsight, the main contribution
of the Taillard (1993a) paper is to mark the evolution towards one of the most
successful sequential meta-heuristics for the VRP, the adaptive memory tabu
search (Rochat and Taillard 1995, Glover 1996).

According to an adaptive memory approach applied to the VRP, cities are
initially separated into several subsets, and routes are built using a construction
heuristic. Initial routes are then stored in a structure called an adaptive memory.
Then, a combination procedure builds a complete solution using the routes in
the memory and the solution is further improved using a tabu search method.
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The routes of “good” solutions are then deposited into the same memory, which
thus adapts to reflect the current state of knowledge of the search. The process
then re-starts with a new solution built from the routes stored in the adaptive
memory. The method stops when a pre-specified number of calls to the adaptive
memory have been performed. This approach clearly implements the principles
of decomposition using a serial procedure and has now been successfully applied
to other problem classes. However, interestingly, most parallel applications of
this approach are now found in co-operative multi-thread strategies.
Multi-thread or multi-search parallelizations for tabu search follow the same
basic pattern: p threads search through the same solution space, starting from
possibly different initial solutions and using possibly different tabu (or other)
search strategies. Historically, independent and synchronous co-operative multi-
thread methods were proposed first. Currently, asynchronous procedures are
being generally developed. One also observes an increased interest in issues
related to the definition and modelling of co-operation (Section 3).
Independent multi-searches belong to the pC/RS class of the taxonomy. Most
implementations start several independent search processes from different, ran-
domly generated, initial configurations. No attempt is made to take advantage
of the multiple threads running in parallel other than to identify the best overall
solution once all processes stop. This definitively earns independent search
strategies their Rigid Synchronization classification. (Note that, in general,
the implementations designate a processor to collect the information and verify
stopping criteria.) Battiti and Tecchiolli (1992, for the QAP), Taillard (the main
study is found in his 1994 paper on parallel tabu methods for job shop scheduling
problems), and others studied and empirically established the efficiency of such
procedures when compared to the best heuristics proposed at the time for their
respective problems. This parallelization of the classic sequential multi-start
heuristic is easy to implement and may offer satisfactory results. Co-operative
strategies often offer superior performance, however (e.g., Crainic, Toulouse,
and Gendreau 1995b, Crainic and Gendreau 2002).
pC/KS strategies are also generally implemented in a master-slave setting but
attempt to take advantage of the parallel exploration by synchronizing proces-
sors at pre-determined intervals. The master process than collects information
and usually restarts the search from the best solution (Malek et al. 1989 for the
TSP, Rego and Roucairol 1996 for the VRP using ejection chains). De Falco et
al. (1994 for the QAP), and De Falco, Del Balio, and Tarantino (1995 for the
mapping problem) attempted to overcome the limitations of the master-slave
setting. When each search thread terminates its local search, they synchronize
and best solutions are exchanged between processes that run on neighbouring
processos. Good performance and results were reported by all authors.
Asynchronous co-operative multi-thread search methods belong to the pC/C
or pC/KC classes of the taxonomy according to the quantity and quality of
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the information exchanged and, eventually, on the “new” knowledge inferred
based on these exchanges. Most such developments use some form of memory
for inter-thread communications (the term blackboard is also used sometimes).
Each individual search thread starts from (usually) a different initial solution and
generally follows a different search strategy. Exchanges are performed asyn-
chronously and through the memory. Memories recording the performance of
individual solutions, solution components, or even search threads may be added
to the pool and statics may be gradually built. Moreover, various procedures
may also be added to the pool to attempt to extract information or to create new
informations and solutions based on the solutions exchanged. Co-operative
multi-thread strategies implementing such methods belong to the pC/KC class.

One may classify co-operative multi-thread search methods according to the
type of information stored in the central memory: complete or partial solutions.
In the latter case, one often refers to adaptive memory strategies, while central
memory, pool of solutions, solution warehouse or, even, reference set are terms
used for the former. These methods have proved extremely successful on abroad
range of problem types: real-time routing and vehicle dispatching (Gendreau
et al. 1999), VRP with time windows (Taillard et al. 1997, Badeau et al. 1997,
Schulze and Fahle 1999, Le Bouthiller and Crainic 2004), multicommodity
location with balancing requirements (Crainic, Toulouse, and Gendreau 1995b),
fixed cost, capacitated, multicommodity network design (Crainic and Gendreau
2002), and partitioning of integrated circuits for logical testing (Andreatta and
Ribeiro 1994, Aiex et al. 1996, 1998, and Martins, Ribeiro, and Rodriguez
1996). One must notice, however, that the selection and the utilization of the
information exchanged significantly impacts the performance of co-operating
procedures. Co-operation mechanisms have to be carefully designed (Toulouse,
Crainic, and Gendreau 1996, Toulouse, Thulasiraman, and Glover 1999). We
return to these issues in the next section.

Although introduced for tabu search, the classification used in this paper
applies to many other classes of meta-heuristics and refines the criteria based on
the impact of parallelization on the search trajectory (e.g., Crainic and Toulouse
2003). Thus, it may form the basis for a comprehensive taxonomy of parallel
meta-heuristics. This task, however, is beyond the scope of this paper.

3. Co-operation, Path Relinking, Scatter Search

A trend emerges from the collective efforts dedicated to parallel meta-heuristics
in general and tabu search in particular. The main methodological focus moved
from the low-level parallelism (e.g., the 1C/RS methods) of the initial develop-
ments, through a phase of domain decomposition approaches, on to independent
search methods and co-operation (and hybridization). Of course, each type of
parallelization strategy may play an important role given the particular problem
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class and instance. In this section, we focus on co-operation, however, since
it appears to offer both the most promising avenues for superior performances
and the biggest challenges in terms of algorithm design.

Co-operative multi-thread tabu search methods launch several independent
searches and implement information-exchange mechanisms among these threads.
The general objective is to exchange meaningful information in a timely man-
ner such that the global parallel search achieves a better performance than the
simple concatenation of the results of the individual methods. Performance is
measured in terms of computing time and solution quality (Barr and Hickman
1993, Crainic and Toulouse 2003).

As mentioned already, independent search methods implement multi-start
sequential heuristics and, therefore, cannot achieve both performance objec-
tives. Computation time is indeed reduced, but the same solution is reached.
To overcame this limitation, Knowledge Synchronous pC strategies have been
implemented where information is exchanged once all threads have completed
their searches. The best overall solution is the only information exchanged
and it serves as departure point for a new round of independent searches. The
method is simple to implement and authors report good results. Computing
times soar, however, and it would be interesting to thoroughly compare solu-
tion quality performance with co-operative methods. The limited evidence to
this effect comes from applications to vehicle routing formulations and seem
to indicate that co-operative strategies perform better in general.

Two other issues should be investigated in relation to these pC/KS strategies.
First, the implementations reported in the literature start new searches following
synchronization, cleaning up all memories. Given the importance of memories
for tabu search, one wonders whether precious information is lost in the process.
An investigation into what information to pass from one independent search
phase to the next, how to use it, and its impact on performance might prove
very interesting. The second issue has to do with the fact that, up to now, the only
information exchanged when processes synchronize is the best solution. Yet,
it has been shown that for co-operative methods this strategy may be counter-
productive by concentrating most (all) threads on the same region of the solution
space. This is an issue for further study as well.

Co-operation strategies require careful design as well as resources to manage
the exchanges and process the data. A number of fundamental issues have to be
addressed when designing co-operative parallel strategies for meta-heuristics
(Toulouse, Crainic, and Gendreau 1996):

= What information is exchanged?
= Between what processes it is exchanged?

s When is information exchanged?
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= How is it exchanged?

= How is the imported data used?

It is beyond the scope of this paper to address in detail all these issues. The
reader may refer to the papers mentioned in this section for a more thorough
description. It may be of interest, however, to sum up some of the pitfalls and
less-than-winning strategies that have been identified in the literature so far.

Synchronous co-operative implementations tend to show a poorer perfor-
mance compared to asynchronous and independent searches, especially when
synchronization points are pre-determined (as in most current implementa-
tions). Such strategies display large computation overheads and a loss of ef-
ficiency. This is due to the obligation to wait for all processes to reach the
synchronization point. The pre-definition of synchronization points also makes
these strategies much less reactive to the particular problem instance and the
progress of the search than asynchronous approaches and methods.

Asynchronous strategies are increasingly being proposed. Notall approaches
offer the potential for success, however. To illustrate some of the issues, con-
sider the following generic “broadcast and replace” strategy. When a search
thread improves its local best solution, a message is sent to all other processes
to stop their own exploration and import the broadcast solution. Then, if the
imported solution is better than the local one, the search is restarted with the
new solution. Several variants of this approach may be found in the literature. It
has been observed, however, that interrupting the “local search” phase does not
yield good results. The main reason is that one no longer performs a thorough
search based on the local observation of the solution space. Rather, one trans-
forms the tabu search into random search. This phenomenon is particularly
disruptive if one permits the initial local search phase to be interrupted.

Stated in more general terms, the previous observation says that co-operative
meta-heuristics with unrestricted access to shared knowledge may experience
serious premature “convergence” difficulties, especially when the shared knowl-
edge reduces to one solution only (the overall best or the new best from a given
thread). This is due to a combination of factors: There is no global history or
knowledge relative to the trajectory of the parallel search and thus each process
has a (very) partial view of the entire search; Threads often use similar criteria
to access the (same) “best” solution; Each process may broadcast a new best
solution after a few moves only and thus disseminate information where only
part of the solution has been properly evaluated. The contents of shared data
tend then to become stable and biased by the best moves of the most performing
threads and one observes a premature convergence of the dynamic search pro-
cess. Moreover, the phenomenon may be observed whether one initializes the
local memories following the import of an external solution or not (Toulouse
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et al. 1998, Toulouse, Crainic, and Sanso 1999, 2004, Toulouse, Crainic, and
Thulasiraman 2000).

Toulouse, Thulasiraman, and Glover (1999; see also Toulouse, Glover, and
Thulasiraman 1998) proposed a new co-operation mechanism that attempts to
address these challenges. The mechanism is called multi-level co-operative
search and is based on the principle of controlled diffusion of information.
Each search process works at a different level of aggregation of the original
problem (one processor works on the original problem; the aggregation scheme
ensures that a feasible solution at at level is feasible at the more disaggregated
levels). Each search communicates exclusively with the processes working
on the immediate higher and lower aggregation levels. Improved solutions
are exchanged asynchronously at various moments dynamically determined by
each process according to its own logic, status, and search history. Anincoming
solution will not be transmitted further until a number of iterations have been
performed. The approach has proven very successful for graph partitioning
problems (Ouyang et al. 2000, 2000a). Significant research is needed, however,
to explore the various possibilities of the mechanisms, including the role of local
and global memories.

Adaptive and central memory strategies also aim to overcome the limitations
of straightforward co-operation by implementing mechanisms to build knowl-
edge regarding the global search. This knowledge is then used to guide the
exchange of information and, thus, to impact the trajectory of each individ-
ual process. The two approaches have much in common. In both approaches,
there is no communication among the individual search processes: communica-
tion takes place exclusively between the memory process and individual search
threads. Both approaches control when communication takes place (not very
often and not during local search phases) and assign this responsibility to the
individual searches. Based on the implementations reported in the literature,
differences are mainly at the level of the information stored in the memory and
its use.

As indicated in the previous section, adaptive memory implementations fol-
low the general principles of the sequential adaptive memory strategy (Rochat
and Taillard 1995) and store the elements of the best solutions found by the in-
dividual threads together with, eventually, memories counting the frequency of
each element in the best solutions encountered so far. Processes communicate
their best solutions at the normal end of their search. New starting solutions
are built out of the elements in the memory. When frequency memories are
implemented, they are used to bias the selection of the elements during the
construction phase.

The central memory approach has less limitations. In theory at least since,
in our opinion, the potential of this method has not been fully explored yet. As
far as we can tell, Crainic, Toulouse, and Gendreau (1997) proposed the first
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central memory strategy for tabu search. A more fully developed implementa-
tion is reported by Crainic and Gendreau (2002) for the fixed cost, capacitated,
multicommodity network design problem. In both studies, the individual tabu
search threads communicate the vector of design variables each time the lo-
cal solution is improved, but import a solution from the central memory only
before undertaking a diversification phase. Then, if the imported solution is
better than the current best, the diversification proceeds from the new solution.
Otherwise, the imported solution is discarded and the procedure proceeds as
usual. Memories are never re-initialized. The authors compared five strategies
of retrieving a solution from the pool when requested by an individual thread.
The strategy that always returns the overall best solution displayed the best per-
formance when few (4) processors were used. When the number of processors
was increased, a probabilistic procedure, based on the rank of the solution in the
pool, appears to offer the best performance. The parallel procedure improves
the quality of the solution and also requires less (wall clock) computing time
compared to the sequential version, particularly for large problems with many
commodities.

Recently, Le Bouthiller and Crainic (2004) took this approach one step further
and proposed a central memory parallel meta-heuristic for the VRP with time
windows where several tabu search and genetic algorithm threads co-operate. In
this model, the central memory constitutes the population common to all genetic
threads. Each genetic algorithm has its own parent selection and crossover
operators. The offspring are returned to the pool to be enhanced by a tabu
search procedure. The tabu search threads and the central memory follow the
same rules as in the work of Crainic and Gendreau (2002). Experimental results
show that without any particular calibration, the parallel meta-heuristic obtains
solutions whose quality is comparable to the best meta-heuristics available,
and demonstrates almost linear speedups. These results indicate that central
memory approaches apply equally well whether complex constraint structures
complement the combinatorial characteristics of the problems studied or not.

Many enhancements could be added to these co-operation mechanisms and
should be studied further. One such enhancement, proposed but not yet tested
in the literature, concerns performance measures that could be attached to each
individual search. Then, processes that do not contribute significantly nei-
ther to the quality of the solutions in the pool, nor to their diversity could be
discarded. The computing resources thus recuperated could either be simply
released or assigned to more productive duties (e.g., speed up computations of
some critical search steps or initiate new search threads modeled on the most
successful ones). A second possibility concerns performance statistics attached
to individual solutions (or parts thereof) measuring, for example, the relative
improvement of solutions generated by individual threads when starting from
them. Another open question concerns the global search memories that could
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be inferred from the records built by individual searches and how the global
search trajectory could then be inflected to yield superior results.

It has been noted that the pool of solutions constitutes a population. Then,
other than the usual construction heuristics, population-based methods may be
used to generate new solutions and improve the pool. Crainic and Gendreau
(1999) report the development of such a hybrid search strategy combining their
co-operative multi-thread parallel tabu search method with a genetic engine.
The genetic algorithm initiates its population with the first elements from the
central memory of the parallel tabu search. Asynchronous migration (migra-
tion rate = 1) subsequently transfers the best solution of the genetic pool to the
parallel tabu search central memory, as well as solutions of the central memory
towards the genetic population. Even though the strategy is not very elabo-
rate, the hybrid appears to perform well, especially on larger problems. It is
noteworthy that the genetic algorithm alone was not performing well and that
it was the parallel tabu search procedure that identified the best results once the
genetic method contributed to the quality of the central memory.

This combination of individual tabu search threads and population-based
methods that run on the set of solutions in the central memory appears very
promising and should be investigated in depth. (In more general terms, this
strategy applies equally well to many meta-heuristic classes and is the object
of research in the genetic and simulated annealing communities.) Different
population-based methods could be used, path relinking and scatter search
(Glover 1997, Glover and Laguna 1997, Glover, Laguna, and Mart 2000, La-
guna and Marti 2003) being prime candidates. Both methods have proved highly
successful on a wide spectrum of difficult problems. Moreover, the close re-
lationships displayed by the two methods would facilitate the exchanges with
co-operating tabu search threads. This topic must be thoroughly investigated.

This brings forth the issue of the parallelization of path relinking and scatter
search. In their sequential versions, both methods make use of an initialization
phase to generate “good” solutions, as well as of a reference or elite set of
solutions continuously updated during the search. A path relinking method
will select two solutions, a starting solution and a target one, and use a tabu
search to move from the starting to the target solution. Moves are biased to
favor gradually entering “good” attributes of the target solution into the current
one. Scatter search, selects a number of solutions from the reference set and
combines then to yield a new solution that may be improved by a local or tabu
search algorithm. Solutions with “good” attributes, including overall best ones,
are included by each method in the corresponding reference set.

Research on parallel path relinking and parallel scatter search is very scarce,
yet. Of course, the strategies already presented for tabu search may be applied
to path relinking and scatter search. Low level, 1-control, strategies, as well
as multi-search approaches involving several path relinking or scatter search
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threads, are straightforward. Co-operative strategies offer a greater challenge.
Indeed, the reference set corresponds to a central memory co-operation mech-
anism that may be used by several path relinking or scatter search threads.
Issues to be studied concern the initialization of the reference set and of each
thread, as well as the particular definition of each thread. Thus, for example,
one could consider the main algorithmic parts of scatter search — the selection
of candidates, the generation of new solutions (different searches could com-
bine a different number of solutions), and their possible improvement by a tabu
search procedure — as “separate” procedures. A large number of co-operation
designs become possible and should be investigated thoroughly. Also worthy
of serious research is the role of memories in co-operation settings involving
path relinking and scatter search methods, as well as the strategies that have the
two methods co-operate through a unique reference set.

4. Perspectives and Research Directions

We have presented strategies to design parallel tabu search algorithms and
surveyed developments and results in the area. Parallel tabu search methods of-
fer the possibility to address problems more efficiently, both in terms of comput-
ing efficiency and solution quality. Low-level parallelization strategies appear
often beneficial to speed up computation-intensive tasks, such as the evalua-
tion of potential moves in the neighbourhood of a given solution. Moreover,
such strategies may be advantageously incorporated into hierarchical parallel
schemes where the higher level method either explores partitions of the solution
domain or implements a co-operating multi-thread search.

Co-operation and multi-thread parallelization appear to offer the most inter-
esting perspectives for tabu search, as for meta-heuristics in general. Asyn-
chronous co-operative multi-thread strategies constitute probably the strongest
trend in parallel meta-heuristics, the results reported in the literature indicating
that they offer better results than synchronous and independent searches. They
also seem to offer the most interesting development avenue for advanced tabu
search methods, including path relinking and scatter search. More theoretical
and empirical work is still required in this field, however. Consequently, in
the second part of the paper, we focussed on multi-search strategies. We dis-
cussed general design and implementation principles, pointed out a number of
challenges and pitfalls, and identified trends and promising research directions.

Hybridization is another important trend in sequential and parallel meta-
heuristics and recent studies tend to demonstrate that combining different meta-
heuristics yields superior results. This opens up an exciting field of enquiry.
What meta-heuristics to combine with tabu search? What role can each type of
meta-heuristic play? What information is exchanged and how it is used in this
context? How important a role path relinking and scatter search may play for
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parallel meta-heuristics in general? These are only a few of the questions that
need to be explored.

It has been often noticed that co-operating parallel mechanisms bear little, if
any, resemblance to the initial meta-heuristic one attempts to parallelize. This
remark is true whether the individual search threads belong to the same class of
meta-heuristics or not. A natural question then is whether co-operating multi-
thread parallel methods should form a “new”, very broadly defined, class of
meta-heuristics.

Is co-operative multi-thread parallelization a “new” meta-heuristic? Almost
certainly, even though we face the challenge to properly define it. Is it a “new”
tabu search class? Not as currently used. Indeed, the method misses a global
search control mechanism and, especially, the memories that would guide this
mechanism are a central component of tabu search. The development of such
memories and mechanisms is one of the most interesting challenges we face.

Acknowledgments

Funding for this project has been provided by the Natural Sciences and
Engineering Council of Canada and by the Fonds F.C.A.R. of the Province
of Québec. While working on the project, Dr. T.G. Crainic was Adjunct
Professor at the Département d’Informatique et de Recherche Opérationnelle
of the Université de Montréal (Canada).

References

Aiex, RM., S.L. Martins, C.C. Ribeiro and N.R. Rodriguez (1996) Asyn-
chronous Parallel Strategies for Tabu Search Applied to the Partitioning of
VLSI Circuits, Monografias em ciéncia da computagio, Pontificia Universi-
dade Catolica de Rio de Janeiro.

Aiex, R.M., S.L. Martins, C.C. Ribeiro and N.R. Rodriguez (1998) "Coop-
erative Multi-Thread Parallel Tabu Search with an Application to Circuit
Partitioning," In Proceedings of IRREGULAR 98 - 5th International Sympo-
sium on Solving Irregularly Structured Problems in Parallel, Lecture Notes
in Computer Science, Springer-Verlag, 1457:310-331.

Andreatta, A.A. and C.C. Ribeiro (1994) " A Graph Partitioning Heuristic for the
Parallel Pseudo-Exhaustive Logical Test of VLSI Combinational Circuits,"
Annals of Operations Research, 50:1-36.

Badeau, P, F. Guertin, M. Gendreau, J.Y. Potvin and E.D. Taillard (1997) "A
Parallel Tabu Search Heuristic for the Vehicle Routing Problem with Time
Windows," Transportation Research C: Emerging Technologies, 5(2):109-
122.



298

Barr, R.S. and B.L. Hickman (1993) "Reporting Computational Experiments
with Parallel Algorithms: Issues, Measures, and Experts Opinions," ORSA
Journal on Computing, 5(1):2—18.

Battiti, R. and G. Tecchiolli (1992) "Parallel Based Search for Combinatorial
Optimization: Genetic Algorithms and TABU," Microprocessors and Mi-
crosystems, 16(7):351-367.

Chakrapani, J. and J. Skorin-Kapov (1992) "A Connectionist Approach to
the Quadratic Assignment Problem," Computers & Operations Research,
19(3/4):287-295.

Chakrapani, J. and J. Skorin-Kapov (1993) "Connection Machine Implemen-
tation of a Tabu Search Algorithm for the Traveling Salesman Problem,"
Journal of Computing and Information Technology, 1(1):29-36.

Chakrapani, J. and J. Skorin-Kapov (1993). "Massively Parallel Tabu Search
for the Quadratic Assignment Problem," Annals of Operations Research,
41:327-341.

Chakrapani, J. and J. Skorin-Kapov (1995) "Mapping Tasks to Processors to
Minimize Communication Time in a Multiprocessor System," In The Impact
of Emerging Technologies of Computer Science and Operations Research,
Kiluwer Academic Publishers, Norwell, MA, 45-64.

Crainic, T.G. and M. Gendreau (1999) "Towards an Evolutionary Method - Co-~
operating Multi-Thread Parallel Tabu Search Hybrid," In S. Vo8, S. Martello,
C. Roucairol and LH. Osman, Editors, Meta-Heuristics 98: Theory & Appli-
cations, Kluwer Academic Publishers, Norwell, MA, 331-344.

Crainic, T.G. and M. Gendreau (2002) "Cooperative Parallel Tabu Search for
Capacitated Network Design," Journal of Heuristics, 8(6):601-627.

Crainic, T.G. and M. Toulouse (1998) Parallel Metaheuristics, In T.G. Crainic
and G. Laporte, Editors, Fleet Management and Logistics, Kluwer Academic
Publishers, Norwell, MA, 205-251.

Crainic, T.G. and M. Toulouse (2003) Parallel Strategies for Meta-heuristics,
In F. Glover and G. Kochenberger, Editors, State-of-the-Art Handbook in
Metaheuristics, Kluwer Academic Publishers, Norwell, MA, 475-513.

Crainic, T.G., M. Toulouse and M. Gendreau (1995) "Parallel Asynchronous
Tabu Search for Multicommodity Location-Allocation with Balancing Re-
quirements," Annals of Operations Research, 63:277-299.

Crainic, T.G., M. Toulouse and M. Gendreau (1995) "Synchronous Tabu Search
Parallelization Strategies for Multicommodity Location-Allocation with Bal-
ancing Requirements," OR Spektrum, 17(2/3):113-123.

Crainic, T.G., M. Toulouse and M. Gendreau (1997) "Towards a Taxonomy
of Parallel Tabu Search Algorithms," INFORMS Journal on Computing,
9(1):61-72.

Cung, V.D., S.L. Martins, C.C. Ribeiro and C. Roucairol (2002) "Strategies
for the Parallel Implementations of Metaheuristics," In C. Ribeiro and P.



Parallel Computation, Co-operation, Tabu Search 299

Hansen, Editors, Essays and Surveys in Metaheuristics, Kluwer Academic
Publishers, Norwell, MA, 263-308.

De Falco, I, R. Del Balio and E. Tarantino (1995) Solving the Mapping Problem
by Parallel Tabu Search. Report, Istituto per 1a Ricerca sui Sistemi Informatici
Paralleli-CNR.

De Falco, 1., R. Del Balio, E. Tarantino and R. Vaccaro (1994) "Improving
Search by Incorporating Evolution Principles in Parallel Tabu Search," In
Proceedings International Confonference on Machine Learning, 823-828.

Fiechter, C.N. (1994) "A Parallel Tabu Search Algorithm for Large Travelling
Salesman Problems," Discrete Applied Mathematics, 51(3):243-267.

Garcia, B.L., J.Y. Potvin and J.M. Rousseau (1994) "A Parallel Implementation
of the Tabu Search Heuristic for Vehicle Routing Problems with Time Win-
dow Constraints," Computers & Operations Research, 21(9):1025-1033.

Gendreau, M., F. Guertin, J.Y. Potvin and E.D. Taillard (1999) "Tabu Search
for Real-Time Vehicle Routing and Dispatching," Transportation Science,
33(4):381-390.

Glover, F. (1986) "Future Paths for Integer Programming and Links to Artificial
Intelligence," Computers & Operations Research, 1(3):533-549.

Glover, F. (1989) "Tabu Search— Part," ORSA Journal on Computing, 1(3):190—
206.

Glover, F. (1990) "Tabu Search — Part IL," ORSA Journal on Computing, 2(1):4—
32.

Glover, F. (1996) "Tabu Search and Adaptive Memory Programming — Ad-
vances, Applications and Challenges," In R. Barr, R. Helgason and J. Ken-
nington, Editors, Interfaces in Computer Science and Operations Research,
Kluwer Academic Publishers, Norwell, MA, 1-75.

Glover, F. (1997) "A Template for Scatter Search and Path Relinking," In J.
Hao, E. Lutton, E. Ronald, M. Schoenauer and D. Snyers, Editors, Artifi-
cial Evolution, Lecture Notes in Computer Science, Springer Verlag, Betlin,
1363:13-54.

Glover, F. and M. Laguna (1993) "Tabu Search," In C. Reeves, Editor, Mod-
ern Heuristic Techniques for Combinatorial Problems, Blackwell Scientific
Publications, Oxford, 70-150.

Glover, F. and M. Laguna (1997) Tabu Search. Kluwer Academic Publishers,
Norwell, MA.

Glover, F., M. Laguna and R. Marti (2000) "Fundamentals of Scatter Search
and Path Relinking," Control and Cybernetics, 39(3):653-684.

Glover, F., E.D. Taillard and D. de Werra (1993) "A User’s Guide to Tabu
Search," Annals of Operations Research, 41:3-28.

Holmgvist, K., A. Migdalas and P.M. Pardalos (1997) "Parallelized Heuristics
for Combinatorial Search," In A. Migdalas, P. Pardalos and S. Storoy, Editors,



300

Parallel Computing in Optimization, Kluwer Academic Publishers, Norwell,
MA, 269-294.

Laguna, M. and R. Marti (2003) Scatter Search: Methodology and IMplemen-
tations in C. Kluwer Academic Publishers, Norwell, MA.

Le Bouthillier, A. and T.G. Crainic (2004) "A Cooperative Parallel Meta-
Heuristic for the Vehicle Routing Problem with Time Windows," Computers
& Operations Research.

Malek, M., M. Guruswamy, M. Pandya and H. Owens (1989) "Serial and Par-
allel Simulated Annealing and Tabu Search Algorithms for the Traveling
Salesman Problem," Annals of Operations Research, 21:59—-84.

Martins, S.L., C.C. Ribeiro and N.R. Rodriguez (1996) Parallel Programming
Tools for Distributed Memory Environments, Monografias em Cincia da
Computagdo , Pontificia Universidade Catolica de Rio de Janeiro.

Ouyang, M., M. Toulouse, K. Thulasiraman, F. Glover and J.S. Deogun (2000)
"Multi-Level Cooperative Search: Application to the Netlist/Hypergraph Par-
titioning Problem," In Proceedings of International Symposium on Physical
Design, ACM Press, 192-198.

Ouyang, M., M. Toulouse, K. Thulasiraman, F. Glover and J.S. Deogun (2002)
"Multilevel Cooperative Search for the Circuit/Hypergraph Partitioning Prob-
lem," IEEE Transactions on Computer-Aided Design, 21(6):685-693.

Pardalos, P.M., L. Pitsoulis, T. Mavridou and M.G.C. Resende (1995) "Paral-
lel Search for Combinatorial Optimization: Genetic Algorithms, Simulated
Annealing, Tabu Search and GRASP," In A. Ferreira and J. Rolim, Editors,
Proceedings of Workshop on Parallel Algorithms for Irregularly Structured
Problems, Lecture Notes in Computer Science 980, Springer-Verlag, Berlin,
317-331.

Porto, S.C.S., JP.F.W. Kitajima and C.C. Ribeiro (2000) "Performance Evalu-
ation of a Parallel Tabu Search Task Scheduling Algorithm," Parallel Com-
puting, 26:73-90.

Porto, S.C.S. and C.C. Ribeiro (1995) "A Tabu Search Approach to Task
Scheduling on Heteregenous Processors Under Precedence Constraints," In-
ternational Journal of High-Speed Computing, 7:45-71.

Porto, S.C.S. and C.C. Ribeiro (1996) "Parallel Tabu Search Message-Passing
Synchronous Strategies for Task Scheduling Under Precedence Constraints,"
Journal of Heuristics, 1(2):207-223.

Rego, C. and C. Roucairol (1996) "A Parallel Tabu Search Algorithm Using
Ejection Chains for the VRP," In 1. Osman, and J. Kelly, Editors, Meta-
Heuristics: Theory & Applications, Kluwer Academic Publishers, Norwell,
MA, 253-295.

Rochat, Y. and E.D. Taillard (1995) "Probabilistic Diversification and Intensifi-
cation in Local Search for Vehicle Routing," Journal of Heuristics, 1(1):147—
167.



Parallel Computation, Co-operation, Tabu Search 301

Schulze, J. and T. Fahle (1999) "A Parallel Algorithm for the Vehicle Routing
Problem with Time Window Constraints," Annals of Operations Reseach,
86:585-607.

Taillard, E.D. (1991) "Robust Taboo Search for the Quadratic Assignment Prob-
lem," Parallel Computing, 17:443-455.

Taillard, E.D. (1993) "Parallel Iterative Search Methods for Vehicle Routing
Problems," Networks, 23:661-673.

Taillard, E.D. (1993) Recherches itératives dirigées paralléles. PhD thesis,
Ecole Polytechnique Fédérale de Lausanne.

Taillard, E.D. (1994) "Parallel Taboo Search Techniques for the Job Shop
Scheduling Problem," ORSA Journal on Computing, 6(2):108-117.

Taillard, E.D., P. Badeau, M. Gendreau, F. Guertin and J.Y. Potvin (1997) "A
Tabu Search Heuristic for the Vehicle Routing Problem with Soft Time Win-
dows," Transportation Science, 31(2):170-186.

Toulouse, M., T.G. Crainic and M. Gendreau (1996) "Communication Issues
in Designing Cooperative Multi Thread Parallel Searches," In I.H. Osman
and J.P. Kelly, Editors, Meta-Heuristics: Theory & Applications, Kluwer
Academic Publishers, Norwell, MA, 501-522.

Toulouse, M., T.G. Crainic and B. Sans6 (1999) "An Experimental Study of Sys-
temic Behavior of Cooperative Search Algorithms," In S. Vo8, S. Martello,
C. Roucairol and I.H. Osman, Editors, Meta-Heuristics 98: Theory & Appli-
cations, Kluwer Academic Publishers, Norwell, MA, 373-392.

Toulouse, M., T.G. Crainic and B. Sansé (2004) "Systemic Behavior of Coop-
erative Search Algorithms," Parallel Computing, 21(1):57-79.

Toulouse, M., T.G. Crainic, B. Sans6 and K. Thulasiraman (1998). "Self-
Organization in Cooperative Search Algorithms," In Proceedings of the 1998
IEEE International Conference on Systems, Man, and Cybernetics, Omni-
press, Madisson, Wisconsin, 2379-2385.

Toulouse, M., T.G. Crainic and K. Thulasiraman (2000) "Global Optimization
Properties of Parallel Cooperative Search Algorithms: A Simulation Study,"
Parallel Computing, 26(1):91-112.

Toulouse, M., F. Glover and K. Thulasiraman (1998) "A Multi-Scale Cooper-
ative Search with an Application to Graph Partitioning," Report, School of
Computer Science, University of Oklahoma, Norman, OK.

Toulouse, M., K. Thulasiraman and F. Glover (1999). "Multi-Level Cooper-
ative Search," In P. Amestoy, P. Berger, M. Daydé, 1. Duff, V. Frayssé, L.
Giraud and D. Ruiz, Editors, 5th International Euro-Par Parallel Processing
Conference, Lecture Notes in Computer Science, Springer-Verlag, Berlin,
1685:533-542.

Verhoeven, M.G.A. and E.H.L. Aarts (1995) "Parallel Local Search," Journal
of Heuristics, 1(1):43-65.



302

Vo8B, S. (1993) "Tabu Search: Applications and Prospects,” In D.Z. Du and P.
Pardalos, Editors, Network Optimization Problems, World Scientific Pub-
lishing Co., Singapore, 333-353.



Chapter 14

USING GROUP THEORY TO CONSTRUCT
AND CHARACTERIZE METAHEURISTIC
SEARCH NEIGHBORHOODS

Bruce W. Colletti and J. Wesley Barnes

Graduate Program in Operations Research and Industrial Engineering, The University
of Texas at Austin, Austin TX 78712, beolletti@compuserve.com,
wbarnes@mail.utexas.edu

Abstract:

Keywords:

Over the past four years, a Consortium composed of The University of
Texas at Austin, the Air Force Institute of Technology and the US Air
Force Air Mobility Command has been remarkably successful in
developing the theoretical foundations of group theoretic tabu search
(GTTS) and applying it to a set of complex military logistics problems.
This paper briefly recounts some of those accomplishments and describes
the underlying mathematical framework that supported them. The
symmetric group on n letters, S, can be used to build and solve equations
whose coefficients and variables are permutations, i.e., elements of S,.
These equations efficiently describe search neighborhoods for
combinatorial optimization problems (COPs) whose solutions can be
modeled as partitions, orderings, or both (P{O problems). Following the
introduction, the second section describes neighborhoods that preserve a
cycle solution structure and recounts examples of how group theory has
been used to provide new and useful insights into search neighborhoods.
The third section describes neighborhoods for multiple cyclic solution
structures. Section 4 considers a hybrid move neighborhood that borrows
from Sections 2 and 3. The fifth section overviews some highly successful
applications of the GTTS approach. The final section contains concluding
remarks and offers suggestions for future work. The paper’s goals are:
(1) to illustrate that move neighborhoods can be cast into a group theoretic
context and that new powerful neighborhoods can be easily “hand tailored”
using group theory; and (2) to motivate others to consider how the unifying
mathematical framework of group theory could be further exploited to gain
powerful new understandings of direct search move neighborhoods.

Metaheuristics, Group Theory, Traveling Salesman Problem (TSP), Tabu
Search, Combinatorial Optimization
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1. Introduction

Group theory, the "algebra of permutations", can powerfully enhance
the study, understanding and application of metaheuristic search
neighborhoods. This statement is abundantly illustrated in the documents
referenced in Table 14.1. In the following sections, each of these papers
will be summarized in appropriate detail.

Table 14.1 Papers associated with group theory & metaheuristic neighborhoods

Colletti and Barnes (1999) Group Theory & Metaheuristic
Neighborhoods

Colletti, Barnes and Dokov (1999) Characterizing the k-OPT Neighborhood
Via Group Theory

Colletti and Barnes (2000) Linearity in the Traveling Salesman
Problem

Colletti and Barnes (2001) Local Search Structure in the Symmetric
TSP

Colletti, Barnes and Neuway (2000) Group theory & Transition Matrices of
Metaheuristic Neighborhoods

Bames, Wiley, Moore and Ryer (2002) Solving the Aerial Fleet Refueling Problem
using GTTS

Crino, Moore, Bames and Nanry (2002) Solving The Military Theater Distribution
Problem Using GTTS

While the final two papers listed in Table 14.1 present the use of
GTTS in the efficient and effective solution of much more complex COPs
occurring in compelling and important real-world scenarios, for
simplicity and clarity of explanation, we will initially focus our
consideration on the special case of the classical m-TSP where the agents
do not share a common base or depot city (Gilmore, Lawler, Shmoys
1985). Rather, each agent is based at one of the cities in the subtour, or
cycle, assigned to that agent. Let us stipulate an associated arbitrary
zero-diagonal real distance matrix and denote this problem as the “cyclic”
n-city, m-agent traveling salesperson problem (m-CTSP). (Whenm = 1,
and presuming the depot city is one of the n cities, the m-CTSP becomes
identical to the classical 1-TSP.) Some agents may be idle but no more
than m cycles are allowed. In this paper, we will use this problem as our
illustrative foundation. Colletti and Barnes (1999) show how the m-
CTSP results may easily be adapted for use with more general P[O
problems such as the classical m-TSP where all agents have a common
base.

Although group theory is the foundation of several exact methods of
integer and mixed-integer programming (Glover 1969; Gomory 1958,
1965, 1969; Salkin 1975; White 1966; Wolsey 1969), it has found limited
use in heuristic and metaheuristic methods. In classical integer
programming approaches, the parent group is abelian (commutative).
The flexibility of that parent group’s many associated factor groups
provided a readily available path for the construction of such things as
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Gomory cuts. However, the parent group for heuristics applied to P|O
problems, the symmetric group on n letters, S, is nonabelian possessing a
single unprofitably small factor group. This lack of factor groups
associated with S,, forces markedly different group theoretic approaches
from those employed for exact techniques. (For completeness, an
appendix briefly sketches the group theoretic concepts essential to the
understanding of the body of the paper.)

Section 2 provides a general description of the class of conjugative
rearrangement neighborhoods that preserve the cycle structure of the
incumbent solution, i.e., all candidate neighbor solutions must possess the
same number of cycles and each cycle must possess the same number of
cities as in the incumbent solution. This description is followed by an
overview of Colletti and Barnes (2000, 2001) and Colletti, Barnes and
Neuway (2000) to illustrate how group theory can be used to provide new
and useful insights into the character of metaheuristic neighborhoods. In
the remainder of Section 2, three other specific types of rearrangement
neighborhoods are presented in their equivalent group theoretic form.

Section 3 considers neighborhoods that do not preserve the cycle
structure of the incumbent solution and presents a general class of group
theoretic search neighborhoods achievable through the application of
splitting and welding templates. The k-Or neighborhood is given as a
specific example of this class and two other representative move
neighborhood types are presented in their equivalent group theoretic form.

Section 4 uses group theory to present a hybrid neighborhood that uses
ideas from Sections 2 and 3. This hybrid neighborhood reveals a very
compact representation of a k-arc exchange neighborhood for arbitrary
values of k.

Section 5 presents overviews of Bamnes et al. (2002) and Crino et al.
(2002) where the problems attacked, the neighborhoods developed and
used, and the relative effectiveness and efficiencies of the solution
methodologies are discussed. The sixth and final Section provides
concluding remarks and a glimpse of future research goals

2. Neighborhoods that Preserve Cycle Structure

Group theory may be directly applied to P|O problems by using S,,
whose elements make up all possible partitions and orderings of the n
objects composing the solution representation. For example, one group
element, or permutation, of S, is the partition of the 11 objects onto four
subsets, p = (2,3,7)(1,6,5,4)(9,8,11)(10) = (2,3,7)(1,6,5,4)(9,8,11), where,
by convention, unit cycles are not explicitly written. p has four subtours
or cycles in which each letter is mapped into its successor.
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g . Y . 24
- Swap cities 2 & 4 in p = (1,2,3,4,5,6) to yield q = p™ = p®¥ = (1,4,3,2,5,6)

' & 3
- Cyclically rearrange 2,4,& 6 inp = (1’2’3l4i523) to yield

q=p"=p**9=(1,43,652)
- Similarly, q=p™=p®*=(1,6,3,2,5,4)
Figure 14.1. 'Three examples of rearrangement moves

Letter rearrangement moves are often used to build TSP
neighborhoods. For example, the 2-letter swap neighborhood of tour p is
composed of all tours obtained by swapping all letter pairs in p. Such
moves are described via conjugation, ie., if p, q € group G, then
p= q'pq is the conjugate of p by q. Conjugation partitions a group into
mutually exclusive and exhaustive conjugacy classes. For S,, a conjugacy
class consists of all permutations that share a common cycle structure.
Figure 14.1 gives three examples of simple rearrangement moves for a six
city TSP.

When G = S,,, p and p% have the same cycle structure. In addition to
computing p? = ¢ pq, pimay also be found by replacing each letter in p
by its image under q. Hence conjugation corresponds to letter
rearrangement moves. For example, [(1, 2) (3, 4] 76> V&9 = (6 2) (7,
5).

2.1 Letter Rearrangement Moves

The neighborhood of all possible k-letter rearrangements on
derangement p € S, is given by p®, where C is the union of all conjugacy
classes in S, whose cycle structures move k letters (any permutation in S,
that moves all n letters is called a derangement). For example, all letter
pair swaps correspond to C = the conjugacy class of all transpositions. All
6-letter rearrangements correspond to C = the union of conjugacy classes
whose cycle structures are (X,X,X,X,X,X), (X,X)(X,X,X,X) and (X,x,X)(X,X,X).

We now recount the results of some recent research associated with
letter rearrangement moves (Colletti and Barnes 2000, 2001; Colletti,
Barnes and Neuway 2000) to provide examples that substantiate the
relevance of applying group theory to the study of metaheuristic
neighborhoods.

Colletti and Barnes (2000) study the class of general letter
rearrangement neighborhoods for the asymmetric TSP under conjugation
by a union of conjugacy classes. They use S, to show that the
incumbent tour's neighborhood weight (the neighbors' summed
tourlengths) is linear in the tourlengths of the incumbent and its inverse (it
is important to note that any duplicate neighbors are retained in these
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computations). If one is concerned about the symmetric TSP, this result
confirms that the summed tourlengths of neighborhood solutions is a
linear function of the tourlength of the incumbent tour. The coefficients of
the tourlengths of the incumbent and its inverse are only dependent upon
the elements of C and value of n. The fact that the linear coefficients are
not dependent upon the particular distance matrix at hand is enticing.
There may very well be deeper knowledge present in this observation that
will yield even more powerful general structure between search
neighborhoods and metaheuristic methods. Many search strategies are
based on the presumption that an incumbent tour’s length will directly
reflect its neighborhood weight, i.e., a good tour will be found in a
neighborhood of good tours. The above relationship brings to light a
counterintuitive fact. Under some letter rearrangement neighborhood
types, the neighborhood’s weight is inversely related (has a negative
slope) to the incumbent tourlength, i.e., a very inferior solution (with a
relatively large tourlength) could have a small neighborhood weight,
which implies the existence of short tours in the neighborhood.
Interestingly, the swap neighborhood possesses the most positive slope of
all such rearrangement neighborhoods. This may explain why so much
success has been seen in the application of the swap neighborhood in the
literature. The ramifications of this linearity property remain largely
unexplored. (One associated result, as described later, is that this
property has led to the confirmation of an extended conjecture regarding
the quality of local optima in rearrangement neighborhoods (Colletti and
Barnes 2001). It is now known that for the general asymmetric m-TSP
over derangements, linear coefficients are unaffected by the cycle
structure of the solution space, a somewhat surprising result. When
solutions are not derangements, the linearity is "setwise linear" over
solutions that move common letters (regardless of sequencing and cycle
structure).

There are other observations. First, with respect to the symmetric m-
TSP over derangements, when two rearrangement move methods yield
very different neighborhoods, each may still "reach" the global optimum
at the same rate. That is, if the methods’ linear equations share a common
slope, then both have the same rate of change with respect to incumbent
tourlength. If so, the larger neighborhood method may offer little
advantage.

The second observation is that it is highly likely that other
fundamental properties of rearrangement move methods remain to be
found using group theory. For example, does the linearity property
persist when the rearrangement move is defined in terms of a conjugacy
class of a subgroup of S, instead of an entire conjugacy class of S,?
If so, what is the advantage of using such a smaller conjugacy class?
This line of questioning has already led to the study of neighborhoods
defined as orbits of group actions, some of whose results appear herein.
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A final observation is that the weight of a rearrangement
neighborhood can now be swiftly computed (directly) without having to
add neighbor tourlengths. In turn, this suggests that group theory may
reveal a move neighborhood's macroscopic properties free from the
piecemeal evaluation of individual neighbors.

Codenotti and Margara (1992) and Grover (1992) reveal four specific
simple symmetric 1-TSP neighborhoods that satisfy Grover’s
homogeneous linear difference wave equation and so have no arbitrarily
poor local optima, i.e., no local optimum will exceed the average
tourlength of all feasible solutions.

Colletti and Barnes (2001) use the perspective of group theory to
extend these results to a general theory that embraces the above four
symmetric 1-TSP neighborhoods as special cases. Indeed, Colletti and
Barnes (2001) use group theory to prove that any conjugative letter
rearrangement neighborhood for the symmetric 1-TSP has the property of
no arbitrarily poor local optima. Colletti (1999) generalizes the above 1-
TSP results to the symmetric m-TSP whose solution space is any
conjugacy class of derangements (n-cycles are one type of derangement).

This property is as surprising as it is useful: surprising because it
simply depends upon the move definition — distance matrix and feasible
solution space properties have no influence. The property always exists
for symmetric m-TSP rearrangement neighborhoods over derangements,
an unintuitive result. Instead, intuition wrongly suggests that there may
well be some extremely lengthy incumbent whose neighbors’ tourlengths
are well above average. Thus, if a move strategy ends up with an
incumbent whose tourlength is longer than the average, then an improving
tour will always be found among the 2-city swap neighbors. Finally, as
noted before, this property leads to questions about what other
fundamental "invariant” properties are possessed by rearrangement
neighborhoods and how they can be revealed by group theory.

Without the unifying overview structure provided by group theory,
this same result could only be provided by deriving the result one
neighborhood at a time. Thus, in Colletti and Barnes (2000, 2001), the
use of group theory reveals two insights into metaheuristic neighborhoods
that would be difficult, if not impossible, to obtain in other ways.

Colletti, Bames and Neuway (2000) study rearrangement
neighborhood transition matrices. For example, consider swap moves
(all possible rearrangements of two cities) on a 5 city 1-TSP. In this
case solutions are made up of the conjugacy class of 5-cycles, i.e., single
agent tours, where the agent visits all five cities (and we assume the agent
is based at one of the cities). In this case there are 4! = 24 tours indexed
in dictionary order as:
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nz=240

Figure 14.2. The “Raw” swap neighborhood for 5 city 1-TSP

Each of the 24 tours has ten one step neighbors, as pictured in the
uninformative schematic transition matrix given in Figure 14.2. However,
by using group theory to find the orbits of a group action of the
alternating group, A,, acting upon all 24 tours, we can use the orbits to
partition the tours into two essential classes of the same size. Identically
permuting the rows and columns of the transition matrix in accordance
with this partition (with some minor reordering) yields the periodic
transition matrix of order 2 presented in Figure 14.3.

This means that a swap move neighborhood on a 5 city TSP
“communicates”, i.e., we can get to any other tour starting at an arbitrary
tour, However, in one step you can move only from one essential class to
the other..

Figure 14.4 presents the transition matrix, viewed through the
perspective of group theory, for the rearrangement neighborhood of order
3, i.e., all possible 3-city rearrangements. This nonintuitive result shows
that the 3-city rearrangement neighborhood does not communicate! You
can never depart the essential class in which you started. Half the tours
are unreachable from any specific tour. If n is an odd number, this
surprising structure is present for any n city 1-TSP when the 3-city
rearrangement neighborhood is used!
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Figure 14.4. The transition matrix for the order 3 rearrangement neighborhood

If your starting solution is not in the same essential class with an
optimal tour, you can #ot find an optimal solution. However, we may
view this structure from a more favorable perspective. If we are aware of
this structure, the search for the optimum may be attacked as two
independent subproblems with communicating solution neighborhoods of
dimensionality ® '/, by ™'/, For larger values of n, this is considerably
less formidable than the original solution neighborhood with dimension
(n-1)! by (n-1)!
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Using group theory, Colletti, Barnes and Neuway (2000) prove that
for any n-city 1-TSP, if you are using conjugative rearrangement moves
with a single conjugacy class defining the move, you either will have a
single communicating essential class, or 2 essential classes. If you have 2
classes they will either communicate with period 2 or they will form two
noncommunicating classes. They also derive the detailed, specific
conditions on the defining conjugacy class and the values of n that lead to
each of these structures. (It may be shown that very similar structures are
present for the m-TSP with n cities.)

Using group theory greatly facilitated both the direct discovery of
these general structures and proof of their validity for the general n city
problem.

2.2  Special Rearrangement Neighborhoods

We now turn our attention to the development of other specific
rearrangement moves from the group theory perspective.

2.2.1 Reversal Neighborhoods

Given an m-CTSP tour p, suppose there are specified disjoint subpaths
to reverse, e.g., [2,3,4, 5,6]and [9, 10, 11]inp=(1,2,3,4, 5, 6, 7)(8, 9,
10, 11, 12) to obtain (1, 6, 5, 4, 3, 2, 7)(8, 11, 10, 9, 12). Lin and
Kernighan (1973) consider such reversals in their classical heuristic for
the symmetric 1-TSP. Group theory allows us to algebraically describe
the neighborhood of p, which reverses all combinations of specified

subpaths.
Reversing the p-subpath [a,,...,an] requires two steps: first, construct
the contracting endpoints permutation, T = (a;,an)(a2,am1)(23,8m

2)...(8i,ami-1)...» 50 named because we start at the extreme ends of the
subpath, form a transposition on these letters, and then repeat as we move
towards the center of the subpath. Second, compute q = p".

Let R be the set of disjoint subpaths to reverse and let (i) be the
contracting endpoints permutation of subpath(i). The R-reversal
neighborhood of p are the tours that reverse all subpath combinations in p.
For example, p"®@"® simultaneously reverses subpaths 2 and 4, and in

Miat® . .
general P . simultaneously reverses the indexed disjoint subpaths.

By construction, the disjoint t(i)'s commute, and each t(i) is an
involution. Thus if T is the set of all 1(i)'s, then the subgroup generated
by T, denoted <T>, consists of all their possible products. In turn, the
reversal neighborhood of p is p~".

2.2.2 Conjugative Elite Paired Solution Neighborhoods

Suppose the feasible solutions of an n-city m-CTSP must satisfy a
specific cycle structure, i.e., feasible permutations are elements of a single
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conjugacy class in S;. Let p and q be elite feasible tours, where
tourlength(q) < tourlength(p). The conjugative equation p~ = q has
solution space X = [Centralizer(S,,p)lr, where 1 is any specific solution
(note that X is a right coset). This fact suggests two neighborhoods which
may have superior solutions to both p and q.

The first is p>™¥™), where o is any element of X. Since q = p*, we
know the neighborhood has at least one shorter tour than p and perhaps
others as well. Note that the o with fewest letters yields the most easily
built symmetric group.

For the second neighborhood, g%, a small mov(qp™) is preferred. In
this case, p and q will be very similar and since p* = q is a shorter tour
than p, ¢* may include other attractive tours.

2.2.3 Conjugative Path Relinking

Conjugative moves provide a useful way to represent the path
relinking metastrategy used to intensify and diversify a tabu search.
Glover, Kelly and Laguna (1995) say each intermediate solution in the
path from p to q arises from its predecessor in a way that leaves fewest
remaining moves to q. As before, we presume p and q share a common
cycle structure.

Each solution in S,, to q = p* represents a "direct move" from p to q.
We break down a direct move in order to build the diversification paths of
path relinking. That is, if x has multiple disjoint cyclic factors
{M(i)}i=t_m, then one path is {p, p™¥, pMV®@ & pMD-MmD px = gy,
However, the disjoint A(i) commute and so there are at most (m-1)! such
paths. The above remarks by Glover, Kelly and Laguna favor the
solution x with fewest cyclic factors.

When x is a k-cycle, then express it as a product of transpositions, x =
ITt; where i takes on values from 1 to k-1. The associated path {p, p*®,
p W@ p®-kD X = g} s strictly determined since the t(i) don't
commute. However, each of the k equivalent representations of x
determines a different path.

Thus, either use the x with fewest cyclic factors or the k-cycle x with
fewest letters, comparing (m-1)! and k. Although we have assumed the
solution space is a conjugacy class, Colletti (1999) describes template-
based path relinking when p and q do not share a common cycle structure.

very

ceey

3. Template Based Neighborhoods

In Section 3.1, we describe a group theoretic process that can
transform any permutation in S, into any other permutation.
Specializing the results of Section 3.1, Section 3.2 presents a compact and
efficient method to construct neighborhoods that preserve stipulated
directed subpaths between cities. A special case of that group theoretic
method is then shown to yield a very simple construction of the classical
k-Or neighborhood for arbitrary k. Section 3.3 proposes a new
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neighborhood which seeks to preserve the common properties of two elite
solutions.

3.1 Templates

Templates are elements of S,.. Postmultiplying a permutation, p, with
the inverse of a splitting template tv will partition p into fragmentary
cycles. The resulting permutation, q = pt”, will have more cycles than
p. Postmultiplying q by a welding template, ®, will recombine 2 or
more of q’s cycles to form another permutation, r, with fewer cycles than
q. Templates algebraically describe and generalize the classical cross
exchange (Taillard et al. 1997) and subtour patching methods (Gilmore,
Lawler and Shmoys 1985; Karp 1979; Bartalos, Dudas and Imreh 1995).

For example, consider the 12-cycle, p=(1, 2, 3,4, 5, 6,7, 8, 9, 10, 11,
12) € Sy, and the splitting template T = (1, 3, 6, 10, 12). q =pt." yields q
=(1,2)(3,4,5)(6,7,8,9) (10, 11). This is the same as removing the
arcs {[2, 3], [5, 61, [9, 10], [11, 12], [12, 1]} from p and then looping each
resulting fragmentary subpath upon itself. T is the cycle formed from
the p-ordered tails of the subpaths of p that survive the cuts.
Alternatively, 1 is the cycle formed by the p-ordered heads of arcs deleted
inp.

In general, if the {A;} are the disjoint cyclic factors of p, and if 7; is a
splitting template of A;, then

a=[Trt =TT = o T = o[ T 5]

Thus, if T is the product of the splitting templates, then q=pt™. The
above steps use the fact that disjoint permutations commute: the 1;'s are
disjoint and when k > i, 1; and Ay are also disjoint. We also know that
for any pair of group elements, x"'y". = (yx).".

A welding template, ®, is an m-cycle that unites m disjoint cycles
according to the template's letter sequence. Template letters come from
distinct cycles, which may include 1-cycles. For example, {(1. 2, 3), (4,
5,6,7),(8.9)} are united by © = (1, 4, 8) to create (1, 2.3) 4, 5,6, 7) (8,
Do =(1,2,3,4,56,7,8.9).Ifo=(52,9)then (1,2,3) (4,5, 6, 7)(8,
No=(56,7,4,23. 1,9, 8). Note that in the resulting cycle, each
factor appears as a subpath with the tail specified in the template.

A joining template is a product of disjoint welding templates. Using
P, A and 1; defined earlier, suppose {®y} are disjoint welding templates
on the fragmentary cycles. If T is the product of the t;'s and if © is the
product of the w,'s, then the m-CTSP tour q created by fragmenting p and
then uniting specified fragments is q = pt.' .

As a special case whose derivation involves splitting and welding
templates, consider the classical k-Or neighborhood (Carlton and Barnes
1996). Inany m-CTSP tour p € S, the k-Or move repositions a k-letter
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subpath [t,...,h] after letter x to obtain the new tour q. If {t,h”x"} are
distinct (where y”. denotes the p-image of letter y) and x is not in subpath
[t,..,h], then q = pr where r is the 3-cycle (thP,xP). The k-Or
neighborhood is obtained by computing all such q where x satisfies the
stated conditions.

For example, consider p = (1, 2, 3, 4, 5, 6, 7, 8) (9, 10, 11) and its
subpath 3,4, 5,6]. Sincere R={(3,7,1),(3,7,2),3,7,8),3,7,9),
3, 7, 10), (3, 7, 11) }, the full 4-Or neighborhood obtained by
repositioning the subpath throughout p is pR:
{1,2,7,8,3,4,5,6)(9,10,11),(1,3,4,5,6,2,7,8) (9, 10, 11), (1,2, 7,
3,4,5,6,8)(9,10,11),(1,2,7,8) (3,4,5,6,9, 10, 11),(1,2,7,8) (3, 4,
5,6,10,11,9),(1,2,7,8)(3,4,5,6,11,9,10) }

3.2  Elite Subpaths Neighborhoods

Suppose that an elite set of directed disjoint subpaths, X, have been
identified, i.e., these subpaths are considered so favorable that their
integrity should be preserved during the metaheuristic search process.
As shown below, group theory makes construction of such a
neighborhood straightforward, i.e., the neighborhood is simply a left coset
of a subgroup, S(T) < S,.

Suppose T = N = {1,...,n}, and let S(T) be the symmetric group on the
letters in T. It is well-known that S(T)can be generated by any
transposition in S(T) and some appropriate |T|-cycle, where |T| denotes
cardinality of T. We now tie these concepts to templates and the elite
subpath neighborhood construction.

If 7 is a splitting template on p and if ® is a joining template on the
fragmentary cycles of pt”’, where mov(®) € mov(t), then permutation
pt @ contains the fragmentary subpaths. For example, ifp=(1, 2, 3, 4,
5,6,7,8,9, 10, 11, 12, 13, 14, 15) € Sis and T = (1, 4, 8, 13), then
q=pv"=(1,2,3)4,5,6,7) (8,9, 10, 11, 12) (13, 14, 15) and X = {[1,
2,31,[4,5,6,71,18,9, 10, 11, 12], [13, 14, 15]}.

If o is (1, 8) or (4, 13, 1), then pr,'lm is respectively (1, 2, 3, 8, 9, 10,
11,12) (4, 5, 6, 7)(13, 14, 15) and (4, 5, 6, 7, 13, 14,15, 1, 2, 3) (8, 9, 10,
11, 12). Ifo=(4, 8) (13, 1), then pt'o =4, 5, 6,7, 8, 9, 10, 11, 12)
(13, 14, 15, 1, 2, 3). Thus, any ® whose letters come from the fragmentary
tails, T = {1, 4, 8, 13}, is a joining template on the cycles of pt’.

In general, given a specific set of disjoint subpaths X, let T be the
fragmentary tails of the subpaths in X and let q be the product of the
fragmentary cycles. Then S(T) consists of joining templates (on these
fragmentary cycles) which preserve the fragmentary subpaths. In turn,
all permutations in S, which preserve the subpaths in X are given by the
left coset qS(T U [N - mov(q)]). The reason for N — mov(q) is that q
may not move all letters in N, e.g., when a splitting template isolates
cities by cutting adjacent arcs.
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For our current example, the neighborhood of p that preserves

subpaths in X is the left coset qS(T):
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In summary, Section 3.2 algebraically characterizes the neighborhood
that results when we "build all tours preserving given subpaths." The
resulting equations can be combined with those representing other
metaheuristic concepts and by so doing, reveal insights difficult to obtain
via narrative descriptions of algorithms.

3.3 Template-Based Elite Paired Solution
Neighborhoods

Suppose that a metaheuristic search has produced elite m-CTSP tours
p and q, i.e., p and q are among the most attractive yet found. In the
spirit of the path relinking metastrategy (Glover, Kelly and Laguna 1995),
intuition suggests p and q may guide us to other attractive tours. One
method is to use cosets to mix the inherent properties of the attractive
solutions.

Without loss of generality, let tourlength(q) < tourlength(p). It is
straightforward to show that M =mov(qp™) are the tails of the non
common arcs between p and q, a result used to efficiently compute m-
TSP tour length difference (Colletti and Barnes 1999). Thus qp”’ € S(M)
and so q € S(M)p, a right coset which may contain other tours shorter
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than p. Since [S(M)|=|M}!, this ancillary neighbor may often merit
investigation when M is acceptably small.

As fully detailed in Colletti (1999), group theory may be used to
describe many other useful neighborhood construction methods that do
not necessarily preserve the cycle structure of the incumbent solution.

4. A Hybrid Move

Arc exchange moves combine template and conjugative moves to
create 1-TSP neighborhoods. In the k-arc exchange considered here, k
arcs are cut from a 1-TSP tour p and replaced by k arcs to recover a new
1-TSP tour q. All subpaths in p that survive the cut will appear unchanged
in g. A neighborhood of p on a specific arcs cut set consists of all tours
that can be recovered in this way.

Although conceptually straightforward, building such neighborhoods
becomes more challenging as k grows modestly, both in programming
effort and run time. Using group theory greatly simplifies the
description of this neighborhood construction process. The insights
provided by group theory, joined with the tools of computational group
theory (Schonert et al. 1995), make neighborhood construction
straightforward. Although Colletti, Barnes and Dokov (1999) describe
this exchange method using a dihedral group action, here we describe it
more elegantly using templates and the simpler cyclic group action.

Let the splitting template T represent the given arc cut set, where pt™.
is the product of the fragmentary cycles. Although S(mov(t)) are
welding templates which preserve the fragmentary subpaths, not all return
a 1-TSP tour. The welding templates that do yield a tour are in ©5 @@,
where S"(mov(7)) is the symmetric group on any |mov(t)| - 1 letters of
mov(t). Thus, the k-arc exchange neighborhood of p determined by the
splitting template 1 is E.. = pt’[t> @],

Now let splitting template A represent a different k-arc cut. Since A
and t have the same cycle structure, there is an r € S, where A = 7',
Colletti (1999) shows that the k-arc exchange neighborhood given by A is

Ey, = [i(r_l )(pul)r} E!

This states E,. in terms of the already known E.. We may obtain
any E, (given E. has been obtained) while avoiding construction of
S"(mov(1)). Furthermore, r can be chosen to have the fewest letters of all
elements in the right coset that is the solution space of A =1*. These
useful but non-intuitive results are possible by viewing these
metaheuristic concepts from the group theory viewpoint.

We could build all possible k-arc exchanges by taking the union of all
splitting template neighborhoods. However, there is a more effective way
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that reduces the overlap among neighborhoods. Let W[t] = 111%™V
and let T be all ,Cx k-cycle splitting templates on p. Let V be a
transversal on the orbits of the group action «,.T, and let R be a
transversal on the solution spaces of ©*=v, Vv e V. Thus, p's full k-
arc exchange neighborhood is

<p>

Ny =p U(Wrm)

reR

Finally, suppose we seek the full k-arc exchange neighborhood for a
new 1-TSP tour q. Since p and ¢ have the same cycle structure, there
exists z € S, where p” = q (as before, choose the element (of the right
coset solution space) having the fewest letters). Colletti (1999) proves
Ny :le,. This expresses the full neighborhood for q in terms of the
already computed full neighborhood for p. Thus, the effort expended to
build a full k-arc exchange neighborhood need only be done once during
the metaheuristic search. All subsequent neighborhoods can be directly
computed via conjugation on the inmitial tour's neighborhood.
Furthermore, if the full neighborhood is built for p=(1,...,n), then this
canonical neighborhood can be stored for use in all subsequent searches
which build k-arc exchange neighborhoods for the n-city 1-TSP. This
reduction in effort holds great promise for improved computational
efficiency in evaluating such neighborhoods. Initial very compelling
indications of the fulfillment of this promise are demonstrated by Jones
(2002).

5. Example Applications of GTTS

The last two papers referenced in Table 14.1 were outgrowths of the
research proposed by Barnes et al. (1999) and are representative of past
and current work in employing GTTS to large complex COPs.

Barnes et al. (2002) describe a GTTS approach to the Aerial Fleet
Refueling Problem (AFRP). A much more detailed treatment is given
by Wiley (2001). The AFRP is concerned with the efficient and
effective use of a heterogeneous set of tanker (refueling) aircraft, located
at various geographical locations, in the required operations associated
with the deployment of a diverse fleet of military aircraft (originating in
the continental United States) to a foreign location or theater of activity.
Typically, the “receiving” aircraft must traverse great distances over large
bodies of water and/or over other inhospitable environs where no ground
based refueling resources exist. Lacking the ability to complete their
flights without refueling, each receiving aircraft must be serviced one or
more times during their deployment flights by means of in-flight refueling
provided by one of the available tanker aircraft. The receiving aircraft,
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aggregated into receiver groups (RGs) that fly together, have stipulated
departure and destination bases and each RG’s arrival time is bounded by
a stated desired earliest and latest time. The excellence of a suggested
solution to this very challenging decision making problem is measured
relative to a rigorously defined hierarchical multicriteria objective
function.

Given a deployment scenario, examples of overview questions that
require answers are (1) How many tankers are required to meet the air
refueling requirements? (2) How quickly can all the receivers be deployed
to their final destinations? (3) How far do the tankers and receiver aircraft
have to travel? (4) How much fuel is bumed by both tankers and by
receiver aircrafi?

In order to meaningfully answer upper level questions like these, as
well as more probing questions relating to efficient planning operations, a
great many detailed operational aspects must be addressed.

The following information is assumed to be given: (1) a known set of
tankers and their associated original beddown (starting) bases, (2) a
known set of RG's, (3) a known set of RG starting and ending bases and
tanker beddown bases, (4) a known set of flight characteristics for each
aircraft including flight speed, altitude, take-off weight, fuel capacity and
fuel-burn rates, and (5) a known set of tanker specific characteristics
including fuel-offload capacity and fuel-offload rates.

For a given deployment, the following decisions compose the solution
to the AFRP: (1) the waypoints (WPTs), i.c., the physical locations
(latitude, longitude and altitude) and start times where each refueling of
all RGs will take place, (2) the tanker(s) that will serve each WPT, and (3)
how much fuel the assigned tanker(s) should deliver to a WPT. We
further assume that the decision maker has the authority to (a) stipulate
the departure times of all RGs and tankers and (b) to require both tankers
and RGs to "orbit" at specified locations to satisfy WPT requirements in
terms of timing and location.

As discussed in detail in Barnes, Wiley, Moore and Ryer (2002), the
AFRP objective function is multicriteria and hierarchical where the
hierarchical ordering of the criteria depends on mission priorities. The
solution to the AFRP is composed of a complex set of interrelated
decisions involving time, space and amounts of fuel. Usually, the effect of
changing any individual decision will "ripple" through the AFRP
structure forcing multiple associated changes in the solution.

The AFRP solution is constrained by a large number of limiting
factors. The safety of the crews and aircraft associated with the
deployment is dominant, i.e., no tanker or receiver aircraft should have to
divert from its flight path due to lack of fuel. Many other constraints must
also be satisfied. For example, a tanker has limited fuel capacity and its
crew has flight duration restrictions which affect the crew-tanker ability to
travel long distances and to provide fuel. A tanker requires time to fly
between any two locations and time to perform midair refueling. Hence,
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all tanker WPT assignments must be limited to those where the tanker is
physically capable of being present at the specified WPT time.

The AFRP is unique, complicated and extremely difficult to model
and solve when viewed in its full practical context. As is discussed in
Wiley (2001), the AFRP can be related to other classical combinatorial
optimization problems by relaxing specific constraints or by fixing
selected decision variables. Perhaps the most closely associated classical
problem is a variation of the multi-vehicle, multi-depot Vehicle Routing
Problem (VRP).

However, there are several additional considerations present in the
AFRP that are not present in VRP. Among these added considerations
are that the AFRP “customers” (RGs) are not fixed in space but rather
have multiple time dynamic locations. These time and locations and the
amount of product to be delivered must all be determined as part of the
solution. In addition, all RGs must be supplied with fuel in a timely
manner to prevent “untimely” flight diversions. Directly associated with
the WPT decisions are the decisions on the takeoff time of each RG and
the possibly multiple takeoff times of each tanker.

The primary objective of the research documented in Barnes, Wiley,
Moore and Ryer (2002) was to develop methods for producing an
"ensemble" of excellent solutions to any instance of the AFRP. To
achieve this objective a Group Theoretic Tabu Search (GTTS) approach
was created. A solution to the AFRP was represented as an element of S,
and move neighborhoods were also represented by elements of S, acting
under conjugation or multiplication. To address the issue of reusability
and portability, the GTTS approach was implemented using the Java
programming language. The implementation makes extensive use of
Wiley’s (2000) Java class library for S,.

In the S, solution depiction, each tanker’s deployment activity was
represented as a single cycle in the associated symmetric group
permutation. Letter or “node” types were associated with tankers, WPTs
and airbases in such a way that 8 specifically tailored dynamic
neighborhoods could be used to search the complex solution space. The
construction of such dynamic neighborhoods, which were essential to the
efficient and effective solution of the AFRP, would not have been
practical without the group theoretic perspective that was employed.

Using this GTTS-AFRP methodology, a number of deployment
scenarios were attacked. The computational results show that the
GTTS-AFRP is effective, providing good results with no parameter
tuning. The solutions that were obtained were superior to all known
benchmark problem solutions and the procedures were sufficiently robust
to allow diverse objective functions and constraints to be considered with
no additional difficulty. In particular, a practical sized (typical) Middle
East deployment scenario was attacked. This problem consisted of 99
aircraft within 26 RGs originating at bases within the Continental US
utilizing 6 tanker origination/beddown bases with 120 available tankers.
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The best solution, found in two hours and 16 minutes (on a AMD
Athlon 950 Mhz machine with 256 MB RAM), employed 95 tankers
flying 326,968 miles and allowed the latest RG to arrive in 55 hours.
The tanker assignments in this solution were obtained at the detailed asset
operational level (individual tankers or receivers) and yielded excellent
assignments in terms of such metrics as minimizing tanker usage, tanker
travel and total deployment time. In general, depending on the desire of
the user, the GTTS-AFRP method can provide either a single “best”
solution to a particular problem or a set of robust, comparable solutions to
a problem instance. The fact that the best previous method available to
the US Air Force would require several analysts weeks, or months, to
achieve a single feasible solution strongly underscores the power of the
GTTS-AFRP. Thus, with this new tool, analysts and decision makers
not only can have the flexibility and added insight provided by multiple
solutions, they also can make critical decisions in a tremendously
shortened planning horizon.

The last paper referenced in Table 14.1 (Crino et al. 2002) presents a
GTTS approach to the Theater Distribution Vehicle Routing and
Scheduling Problem (TDVRSP). The TDVRSP is associated with
determining superior allocations of required flows of personnel and
materiel within a defined geographic area of military operation. A
theater distribution system is comprised of facilities, installations,
methods and procedures designed to receive, store, maintain, distribute
and control the flow of materiel between exogenous inflows to that
system and distribution to end user activities and units within the theater.
An automated system that can integrate multi-modal transportation assets
to improve logistics support at all levels has been characterized as a major
priority and immediate need for the US military services.

Crino et al. (2002) describes both the conceptual context, based in a
flexible group theoretic tabu search (GTTS) framework, and the software
implementation of a robust, efficient and effective generalized theater
distribution methodology. The concepts and results are presented in much
greater detail in Crino (2002). This unprecedented methodology, for the
first time, evaluates and determines the routing and scheduling of multi-
modal theater transportation assets at the individual asset operational
level to provide economically efficient time definite delivery of cargo to
customers.

Modeling requirements for the TDVRSP extend well beyond those of
the typical VRP. Within a typical theater, there are multi-modal vehicles
with differing characteristics such as cruising speed, capacity, cruising
length, fixed and variable costs, route type (air, ground, water) and
service times. Vehicle modeling requirements include the ability to
make one or more trips during the planning horizon, the ability to perform
direct delivery from outside the theater, and the ability to refuel at
customer locations. Scheduling considerations include vehicle
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availability, service times, load times and unload times. All vehicles
operate from a depot or a hub.

The theater distribution network nodes are depots, hubs and
customers. Depots, aerial ports of debarkation (APODs) and seaports of
debarkation (SPODs) are the supply nodes. The hubs, or support areas
(SAs) which occur at corps, division and brigade levels, are transshipment
nodes, which receive, store and distribute cargo. Customers are sink
nodes that receive cargo. All nodes have time window constraints, fuel
storage capacity and maximum on the ground (MOG) constraints. Hubs
have cargo storage constraints and customers have cargo demand
requirements and time definite delivery requirements.

A TDVRSP has three types of time window constraints: early time
definite delivery (ETDD), time definite delivery (TDD) and multiple time
windows for non-departure and non-arrival times (MTW). An ETDD
stringently defines a customer service starting time but does not constrain
vehicle arrival or departure times. A TDD defines when a customer
service should be complete but does not constrain service occurrence, or
vehicle arrival and departure times. MTWs restrict vehicle arrival and
departure at a node but do not stipulate when vehicles are loaded or
offloaded.

The TDVRSP has a tiered distribution architecture. The first order
tier contains the depots and customers/hubs served by the depots.
Middle tiers consist of hubs that service customers/hubs. The last order
tier consists of end customers served by a hub. Each tier is a self-
contained distribution network and lower ordered tiers are dependent on
higher ordered tiers.

Hubs distribute cargo after it is received and processed. Cargo,
characterized by the amount delivered and time of delivery, is processed
and prepared for delivery to its next customer. Cargo is either loaded
directly onto available vehicles or stored for later delivery.

The TDVRSP primary objectives are to minimize unmet customer
demand (demand shortfall), late deliveries (TDD shortfall), vehicle fixed
costs and vehicle variable costs. Late delivery times are weighted by the
amount of demand delivered late. A fixed cost is charged for each
vehicle used in the solution and variable vehicle costs are associated with
vehicle travel.

Applying GTTS to the TDVRSP requires that solutions be represented
as elements of §,,. For a TDVRSP solution, each cycle in the solution’s
disjoint cyclic structure represents a vehicle trip where the first letter in
the cycle represents a vehicle. Subsequent letters represent the customers
serviced by that vehicle. A unit cycle represents either a vehicle letter not
leaving the depot/hub or a customer letter not serviced. Since vehicles
can make multiple trips and customers can receive multiple services
within a time period, a unique letter is allocated for each vehicle trip and
each customer service.
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In addition to yielding an efficient and effective solution methodology
for the TDVRSP, the research documented in Crino et al. (2002) also
provided significant advances in the development of GTTS applied to
vehicle routing and scheduling problems. These GTTS advances,
described in detail in Crino (2002), included, for the first time, the
formulation of move neighborhoods defined using groups to generate
orbits. These orbits were used as a means to efficiently search the solution
space. They eliminated cycling, prevented solution reevaluation and
avoided entrapment in local optima. This methodology prevents the
search from being trapped in a subset of the solution space topology and
eliminates the need for a restart mechanism. This technique allowed
exhaustive non-repetitive search of each partition and, by placing a
utilized orbit on an orbit tabu list, prevented reevaluation.

A unique solution space partition hierarchy was developed using the
symmetric group on n-letters. Conjugacy classes, cyclic form structures,
orbital planes and orbits were defined that partition the solution space.
Solution space partitions were exploited in the diversification and
intensification process. In addition, neighborhoods were constructed to
intelligently traverse the partitions and enable a potential search of the
entire space. Group move neighborhoods steered the search between
different orbits. And swap move neighborhoods traversed the search
between different orbital planes. Insert and extraction move
neighborhoods moved the search to different conjugacy classes and cyclic
form structures.

Orbital planes were defined and used as a primary search mechanism
of the GTTS. Orbital planes are orbits partitioned by orbits. They provide
a more atomic partitioning of the solution space permitting partial or
exhaustive search. Using orbital planes is a highly efficient special case of
Colletti’s (1999) orbital transversal method because the search may re-
examine an orbit (orbital plane) without reevaluating solutions within the
orbit (orbital plane).

Details on the TDVRSP modeling assumptions and algorithmic
solution procedures are discussed in detail in Crino (2002) and Crino et
al. (2002). Prior to Crino’s (2002) research, no benchmark problems
existed for the TDVRSP. Crino (2002) used valid experimental design
methodology to construct a set of 39 problems that effectively test the
robustness of the GTTS-TDVRSP algorithm. The problems are composed
of three TDVRSP types: the Air Force multiple trips multiple services
(MTMS) without hub, the Joint MTMS without hub, and the Joint MTMS
with hub and other defining constraints. The 39 problems were further
categorized by problem size (small, medium and large), delivery
restriction density (low, medium and high), demand to capacity ratio
(low, medium and high).

Results from Crino’s benchmark problem 37, one of the /arge Joint
MTMS problems with hub and other defining constraints is indicative of
the timely, effective and robust results provided by the GTTS-TDVRSP
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approach for all 39 benchmark problems. The total run time was 110
minutes, where the best solution was found at iteration 709 (62.8
minutes). However, competitive satisfactory solutions, where all
customer demands were satisfied, were found much earlier in the search
process. The GTTS-TDVRSP method has clearly displayed its ability to
solve the multiple objective TDVRSP problem.

The development of an automated solution methodology to the
TDVRSP problem has been characterized as a major priority and
immediate need for the US military services. Many software programs
are available that “perform” theater distribution modeling. However, all,
but the technique presented in Crino et al. (2002), are simulation models
and simulations can provide neither total asset visibility (TAV) nor in-
transit visibility (ITV). Therefore, this model is the first of its kind to
offer this functionality.

In a recent study funded by HQ USAF (HQ USAF/ILA, 2002), a
number of recommendations were made to the Air Force on types of
models that could support an automated theater distribution management
system. The purpose of the system is to “optimize” the entire theater
distribution system, from the number of bases and vehicles, down to the
vehicle routes and schedules. They concluded that vehicle routing and
scheduling was very difficult to optimize, and development of an
optimization approach was considered a high-risk methodology.
Therefore, they proposed a low risk method using simulation.
Unfortunately, they lose the functional requirements of providing TAV
and ITV when using simulation. The HQ USAF study validates the
importance and magnitude of this research. What was regarded as foo
difficult has been successfully created, developed and demonstrated in
this TDVRSP research.

6. Concluding Remarks

Group theory provides a unifying mathematical framework in which to
study metaheuristic neighborhoods and search methods applied to P|O
problems. This algebra allows us to build and solve equations whose
coefficients and variables are permutations and sets of permutations. By
manipulating these equations using the comprehensive structure provided
by group theory, we can obtain significant understanding of important
concepts that are more difficult or impossible to glean using more
customary approaches.

Of equal or greater importance, the understanding and structure
provided by the group theoretic perspective can also lead directly to more
powerful solution methodology applied to complex practical COPs.

We are continuing our ongoing investigations into the structure and
character of several classes of metaheuristic search neighborhoods. We
hope that the first steps described in this paper will motivate other
researchers to consider how the unified framework of group theory could
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be further exploited to gain powerful new insights into move
neighborhoods and other metaheuristic concepts.

We are also continuing to develop approaches to provide solutions to
other complex military logistics problems. As documented in Bames,
McKinzie and Gomes (2002) and in the recently funded Phase II
continuation proposal (Barnes et al. 2002) of the efforts proposed by
Barnes et al. (1999), five additional military logistics problems are being
approached using GTTS methodology.

We hope that future researchers will join us in this exciting new area
of theoretical and applied work.
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Appendix

The pure mathematics of group theory (Gaglione 1992, Isaacs 1994)
has many practical uses. A group is any set and operation which together
satisfy the properties of closure, associativity, right-identity and right-
inverse (g is the inverse of group element g). For example, the set of
all n-by-n invertible real matrices is a group: multiplying any two such
matrices produces another matrix (closure); multiplication is associative;
right-multiplying a matrix by the identity matrix produces the given
matrix; and right-multiplying a matrix by its inverse produces the identity
matrix. Another familiar group is the integers under addition.

Group theory may be directly applied to the m-CTSP by using S,,
whose elements make up all possible partitions and orderings of the n
cities. For example, one group element, or permutation, of S;;. is the
partition of the 11 cities onto four agents, p=(2, 3, 7) (1, 6, 5, 4) (9, 8,
11)(10)=(2,3,7) (1, 6, 5, 4) (9, 8, 11), where, by convention, unit cycles
are not explicitly written. p has four subtours or cycles in which each
letter is mapped into its successor (denoted 2° = p(2) =3, 3*.=p(3) =7,
7P.= p(7) =2, 10°.=p(10) = 10). mov(p) are the letters contained in the
disjoint non-unit cycles of p, i.e., for p=(2, 3, 7) (1, 6, 5, 4) (9, 8, 11)
(10), mov(p) = {1, 2,3,4,5,6,7,8,9, 11}. If q is also a permutation
then the product pq is the composite function produced by applying p and
then q, i.e., for letter x, x*1 = (x")%. For example, if q= (3, 7, 8, 10) (4,
9) then 37 =(3P)1=71=8, and so under pg, 3 is mapped into 8.
Permutation multiplication need not be commutative since
3% =(3%)P =7P =2, and so pq # qp. Since a permutation represents a 1-1
mapping from the letters {1,...,n} onto itself, multiplication (i.e., function
composition) is associative and closed.

The inverse of a permutation simply reverses each cycle, and the
identity permutation is that which maps each letter into itself, i.e., is
composed of n unit cycles. Thus, the four properties of a group are
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satisfied and the set of all n! permutations under multiplication is called
the symmetric group on n-letters, denoted S,,.

The components of a permutation are cycles and an m-cycle has m
letters. A 2-cycle is also called a transposition and an n-cycle is a
permutation with a single cycle equivalent to a I-TSP tour. Every
permutation is a unique product of disjoint cycles, i.e., cycles sharing no
common cities. The number of cycles and the cycle sizes define the
permutation's cycle structure and every cycle is a non-unique product of
transpositions. For example, (1,2,3,4)=(2,3,4,1)=(1,2)(1,3)(1,4)
while (2, 3,4, 1)=(2,3) (2,4) (2, 1). If p*> = pp is the identity, then p is
an involution.

Here are other key concepts, where G is an abstract group:

If group H — G then H is a subgroup of G, denoted H < G

IfH<Gand g e G, then Hg= {hg: h € H} is a right coset of H in G,
and gH = {gh: h € H}is a leff cosetin G

fHcGandg e G, theng” = {g": he H}

All left (right) cosets of H exclusively and exhaustively partition G

IfH <G and g € G, the Centralizer of g in H is the set of all elements
in H that commute with g, i.e., Cent(H,g) = { heH: h'gh =g} = { heH:
gh=hg}

A transversal on disjoint sets is a collection of elements, precisely one
from each set

The last overview item is the group action T, a concept that uses a
group G to partition a set T into mutually exclusive and exhaustive cells
called orbits. Regarding group elements as "moves" between elements of
T, the elements in the partition of x € T are those reachable from x by any
series of moves. If g € G, then x& denotes the element in T reached in
one step from x via g.

The group action operator is the rule that assigns value to x5, e.g.,
conjugation if T — G, the mapping operator if T are letters and G is a
permutation group, or similarity products if T and G are n by n matrices.
Finally, a group action must satisfy certain properties in order to be valid
(Isaacs 1994), i.e., one cannot freely match any group G with any set T.
Colletti (1999) uses group actions to escape the chaotic attractors of
reactive tabu search (Battiti and Tecchiolli 1994).
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In today’s highly competitive global marketplace, the pressure on organizations
to find new ways to create value and deliver it to their customers grows ever
stronger. In the last two decades, the logistics function has moved to center
stage. There has been a growing recognition that effective logistics management
throughout the firm and supply chain can greatly assist in the goal of cost
reduction and service enhancement. The keys to success in Logistics
Management (LM) require heavy emphasis on integration of activities,
cooperation, coordination and information sharing throughout the firm and the
entire supply chain, from suppliers to customers. To be able to respond to the
challenge of integration, modern businesses need sophisticated decision support
systems based on powerful mathematical models and solution techniques,
together with advances in information and communication technologies. Both
industry and academia alike have become increasingly interested in using LM
as a means of responding to the problems and issues posed by changes in the
logistics function. This paper presents a brief discussion on the important issues
in LM and argues that metaheuristics can play an important role in solving
complex logistics problems derived from designing and managing logistics
activities within the supply chain as a single entity. Among several possible
metaheuristic approaches, we will focus particularly on Iterated Local Search,
Tabu Search and Scatter Search as the methods with the greatest potential for
solving LM related problems. We also briefly present some successful
applications of these methods.

Logistics Management, Metaheuristics, Iterated Local Search, Tabu Search and
Scatter Search
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1. Introduction

In today’s highly competitive global marketplace, the pressure on
organizations to find new ways to create value and deliver it to their
customers grows ever stronger. The increasing need for industry to compete
with its products in a global market, across cost, quality and service
dimensions, has given rise to the need to develop logistic systems that are
more efficient than those traditionally employed. Therefore, in the last two
decades, logistics has moved from an operational function to the corporate
function level. There has been a growing recognition that effective logistics
management throughout the firm and supply chain can greatly assist in the
goal of cost reduction and service enhancement.

The key to success in Logistics Management (LM) requires heavy
emphasis on integration of activities, cooperation, coordination and
information sharing throughout the entire supply chain, from suppliers to
customers. To be able to respond to the challenge of integration, modern
businesses need sophisticated decision support systems (DSS) based on
powerful mathematical models and solution techniques, together with
advances in information and communication technologies. There is no doubt
that quantitative models and computer based tools for decision making have a
major role to play in today’s business environment. This is especially true in
the rapidly growing area of logistics management. These computer-based
logistics systems can make a significant impact on the decision process in
organizations. That is why both industry and academia alike have become
increasingly interested in using LM and logistics DSS as a means of
responding to the problems and issues posed by changes in the area.

Many well-known algorithmic advances in optimization have been made,
but it turns out that most have not had the expected impact on decisions for
designing and optimizing logistics problems. For example, some optimization
techniques are of little help in solving complex real logistics problems in the
short time needed to make decisions. Also, some techniques are highly
problem-dependent and need high expertise. This leads to difficulties in the
implementation of the decision support systems which contradicts the trend
towards fast implementation in a rapidly changing world. In fact, some of the
most popular commercial packages use heuristic methods or rules of thumb.
The area of heuristic techniques has been the object of intensive studies in the
last few decades, with new and powerful techniques, including many
metaheuristic methods, being proposed to solve difficult problems. There is
therefore, on the one hand, the need for sophisticated logistics DSS to enable
organizations to respond quickly to new issues and problems faced in LM,
and, on the other, there are advances in the area of metaheuristics that can
provide an effective response to complex problems. This provides a fertile
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ground for the application of these techniques in LM and, subsequently, the
development of computer-based systems to help logistics decisions.

The objective of this paper is to provide an understanding of the role that
metaheuristics can play in solving complex logistics problem in an integrated
business processes environment such as optimizing routing distribution,
supply chain design, production scheduling and resource allocation.

Inventory
warchousing

Transportation Transportation
costs | costs

Reverse supply chain

Figure 15.1. An example of a supply chain

In the following section we present a brief discussion on the important
issues in LM. Next, we argue that metaheuristics can play an important role
in solving complex logistics problems derived from the important need to
design and manage the entire supply chain as a single entity. Among several
possible metaheuristic approaches, we will focus particularly on Iterated
Local Search, Tabu Search and Scatter Search as the methods with the
greatest potential for solving LM related problems. In Section 4 we will give
a brief presentation of some successful applications of metaheuristics in the
solving of real supply chain problems; finally, we present some conclusions
and directions for future research.
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2. Logistics Management

The Council of Logistics Management defines Logistics as follows:
“Logistics is part of the supply chain process that plans, implements, and
controls the efficient, effective flow and storage of goods, services, and
related information from the point of origin to the point of consumption in
order to meet customers’ requirements” (http://www.clml.org). However,
there is no clear consensus in literature on the definition of LM. Many authors
refer to Logistics Management as Supply Chain Management (SCM), i.e.
they considered that LM is logistics taken across inter-organizational
boundaries; and use these terms interchangeably. Simchi-Levi, Kaminski and
Simchi-Levi (2000) gave the following definition: “Supply Chain
Management is a set of approaches utilized to efficiently integrated suppliers,
manufactures, warehouses, and stores, so that merchandise is produced and
distributed at the right quantities, to the right locations, and at the right time,
in order to minimize system wide costs while satisfying service level
requirements.

Johnson et al. (1999) also presented the following definitions. They
maintained that “Logistics define the entire process of materials and products
moving into, through, and out of a firm. Inbound logistics covers the
movement of materials received by the suppliers. Material management
describes the movements of materials and components within a firm. Physical
distribution refers to the movement of goods outwards from the end of the
assembly line to the customer. Finally, supply-chain management is a
somewhat larger concept than logistics, because it deals with managing both
the flow of materials and the relationships among channel intermediaries
from the point of origin of raw materials through to the final consumer.”

Recently, however, there has been some convergence towards accepting
SCM as a larger concept than logistics management. Cooper, Lambert and
Pagh (1997) clearly described the differences between the two concepts. They
claimed that the integration of business processes across the supply chain is
what they called Supply Chain Management, therefore, SCM covers more
functions than just logistics being integrated across firms. One of the key
components of SCM is, of course, Logistics Management, but it also includes
Customer Relationship Management and Product Development and
Commercialization.

In this paper, following the above definitions, we define LM as the
management of all logistics activities throughout a firm and supply chain. We
give special emphasis to relationships with other functions of the
organization, such as marketing and finance, and to the integration of the
logistics activities in the entire supply chain, including those with suppliers
and customers. We consider, like Cooper, Lambert and Pagh (1997), that,
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SCM covers a wider area than LM, but that LM is also of major importance
to efficient SCM. In LM, the planning, coordinating and controlling of all
logistics activities must be done by taking into account the remaining
elements of the supply chain. Every firm, whether involved in manufacturing
or services, belongs to at least one supply chain. The key success of LM, may
lie in the system’s integration, i.e. requiring emphasis on integration of
logistics activities, cooperation, coordination, and information sharing
throughout the entire supply chain.

The supply chain encompasses all activities associated with the flow and
transformation of goods from raw material stages to the end users, as well as
the associated information flows. Material and information both flow up and
down the supply chain. A supply chain consists, basically, of the following
elements: suppliers, manufacturing centers, warehouses, distribution centers,
transportation systems, retail outlets and customers; raw material, work-in
process inventory, finished goods and information that flows between the
different elements (see Figure 15.1). One important aspect in a supply chain
is the integration and coordination of all logistics activities in the chain, since
decisions in one element directly affect the whole supply chain. Firms must
avoid sub-optimization by managing the logistics activities on the entire
supply chain as a single entity. This integration aspect obviously significantly
increments the complexity of any logistics problem. To respond to this
challenge there is the need for powerful and robust techniques, as we will
discuss in the following section.

We will consider the following key issues in LM:

Logistics integration.

Facility location and network design

Transportation and vehicle routing

Material handling and order picking

Customer service

Product design

Logistics of production and operations

Warehouse management and distribution strategies.

Inventory management.

Information systems and DSS

E-commerce and e-logistics

Reverse and green logistics

These areas interact to a large degree with other functions of the firm, and
with other elements of the supply chain. They can therefore benefit a great
deal from efficient management based on information and optimization
systems. For each issue, we offer a brief description and discuss aspects that
can increase the complexity when optimizing the logistics activities within a
firm or the entire supply chain. The idea is not to discuss the issues in detail,



334

interested readers who are refereed to Simchi-Levi, Kaminsky and Simchi-
Levi (2000), Ballou (1998), Johnson et al. (1999). We also refer to Tayur,
Ganeshan and Magazine (1998) where several quantitative models for SCM
are presented and a broad taxonomy review research is described.

2.1  Logistics Integration and Coordination

Logistics coordination and integration within a supply chain has become a
core issue in LM, not just integration within the organization but integration
upstream with suppliers and downstream with distributors and customers.
Coordination and integration means many different things, but basically all
authors agree that it refers to collaborative working and implies joint
planning, joint product development, mutual exchange of information and
integrated information systems, cross coordination on several levels in the
companies on the network, long term cooperation, fair sharing of risks and
benefits, etc., Skoett-Larsen (2000). One enormous advantage of an
integrated supply chain is the reduction of the so-called bullwhip-effect, Lee,
Padmanabhan and Whang (1997), where small changes or decisions, on one
level of the network, may result in large fluctuations, large amounts of stock,
and/or increased lead times on other levels of the supply chain. However, as
the process becomes more integrated within a supply chain, the complexity of
the logistics decisions also increases.

There are two main aspects involved in the integration of logistics
decisions. The first of these are the information systems. Without integration
of information systems between the different players, there can be no
translation or sharing of information, which is the basis for any possible
integration between departments or firms. With today’s technology, the
integration of information systems is possible and has been implemented by
many firms. The second aspect is the use of optimization systems to achieve
an integrated management of the logistics activities. As more and more
industries decide to integrate their information systems, the need for
sophisticated tools to help the decision makers to evaluate possible
alternatives, decisions and their impact in the whole supply chain also
increases.

2.2 Facility Location and Network Design

The firm must balance the costs of opening new warehouses with the
advantages of being close to the customer. Warehouse location decisions are
crucial determinants of whether the supply chain is an efficient channel for
the distribution of the products.
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In OR literature, there are several research projects dedicated to location
issues, such as warehouse location. See, for example, the web page of the
European Working Group on Locational Analysis - EWGLA (http:// www.
vub.ac.be/EWGLA/homepage.htm) and the one for the Section on Location
Analysis within INFORMS-SOLA (http://www. uscolo. edw/ sola/ sola.html),
as well as the following references Miller (1996), Drezner (1995) and Daskin
(1995). It seems that some of these models are quite simple when
representing real problems in the design of an actual supply chain. For
example, most of them do not take into account warehouse capacity,
warehouse handling and operational costs (most of them just take into
account the initial fixed cost of the warehouse) or warehouse service level
requirements, which can be connected to inventory issues. Also, when
designing a supply chain that involves several countries, import and export
taxes, different transportation options, cultural and legal issues and several
others must be taken into consideration. Another important aspect is the
relationship between network design and demand management. Aspects such
as the seasonal nature of demand has never been taken into account, as far as
we know. However, it could be an interesting research area since many firms
are interested in designing their supply networks in partnership with other
firms that have products with completely different seasonal behavior, e.g. air
conditioning and heating equipment. The incorporation of all the aspects
mentioned above into a location or network design model can make a
significant difference to the analysis of the logistics on a supply chain and the
decisions with respect to location and supply chain design.

2.3  Transportation and Vehicle Routing

One of the central problems of supply chain management is the
coordination of product and material flows between locations. A typical
problem involves bringing products located at a central facility to
geographically dispersed facilities at minimum cost. For example, the product
supply is located at a plant, warehouse, cross-docking facility or distribution
center and must be distributed to customers or retailers. The task is often
performed by a fleet of vehicles under the direct control, or not, of the firm.
Transportation is an area that absorbs a significant amount of the cost in most
firms. Therefore, methods for dealing with the important issues in
transportation, such as mode selection, carrier routing, vehicle scheduling and
shipment consolidations are needed in most companies.

One important aspect in transportation management is coordination with
the remaining activities in the firm, especially within warehouse and
customer service. In some cases transport is the last contact with the customer
and companies should therefore take care to meet the customer expectations
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and use this relationship to improve their sales. The transport coordination
within the different elements of a supply chain, involving different
companies, can be of great strategic importance, since all of them most likely
benefit by offering fast delivery to a specific customer. Therefore, many
issues in the integration of transportation with other activities in the network
can be a challenge to academic and industrial communities.

One basic and well-known problem in transportation is vehicle scheduling
and routing. A vehicle scheduling system should output a set of instructions
telling drivers what to deliver, when and where. An “efficient” solution is one
that enables goods to be delivered when and where required, at the lowest
possible cost, subject to legal and political constraints. The legal constraints
relate to working hours, speed limits, regulations governing vehicle
construction and use, restrictions for unloading and so on. With the growth in
Internet sales, this problem is gaining momentum, since delivery times are
usually very short, customers can be dispersed in a region, every day there is
a different set of customers and with very short product delivery time-
windows. For a review on the area see Crainic and Laporte (1998).

2.4  Warehouse Management and Distribution Strategies

Warehousing is an integral part of every logistics system and plays a vital
role in providing a desired level of customer service. Warehousing can be
defined as the part of a supply chain that stores products (raw materials, parts,
work-in-process and finished goods) at and between points of production and
points of consumption, and also provides information to management on the
status and disposition of items being stored. The basic operations at a
warehouse are receiving, storage-handling, order picking, consolidation —
sorting and shipping. The main objectives are to minimize product handling
and movement and store operations as well as maximize the flexibility of
operations. Given the actual importance of the activities related to order
picking we dedicate a subsection to it.

Traditional warehouses are undergoing enormous transformations due to
the introduction of direct shipment and cross-docking strategies. The latter
may be more effective in distributing the products among retailers or
customers. However, in order to be successful, these strategies require a high
level of coordination and information systems integration between all
elements in the supply chain: manufacturers, distributors, retailers and
customers, a definite volume of goods to be transported and a fast and
responsive transportation system, to give just the most important
requirements. Deciding which is the best distribution strategy for a particular
product of a company can make an enormous impact on the success of that
company. Therefore, there is the need for a DSS that helps executive
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managers to select the best distribution strategies and, at the warehouse level,
to exercise decisions to make the movement and storage operations more
efficient.

2.5 Inventory Management

The importance of inventory management and the relationship between
inventory and customer service is essential in any company. As for the
location issues, inventory management has been well studied in OR literature;
however, the use of inventory systems in helping decision-making processes
has been less widespread. Most of the well known models in literature are
simple and do not, for example, consider multi-product inventory
management that requires the same resources, or, in some cases, do not treat
all the complexities involved in inventory management such as demand
uncertainty, returns and incidents. So far, the better known inventory models
and systems consider a single facility managing its inventories in such a way
as to minimize its own costs. As we have mentioned, one major challenge in
LM is the integration and coordination of all logistics activities in the supply
chain, a particularly important issue being inventory management within the
whole supply chain in order to minimize systemwide costs. This requires
models and DSS that are able to aid decisions and suggest policies for
inventory management in the whole supply chain. To solve such a complex
issue, we will argue that DSS which combine simulation and metaheuristics
techniques can be of great help.

2.6  Product Design

Products are a main element in the supply chain, which should be
designed and managed in such a way as to enable efficient flow of these
products. This approach is known as “design for supply chain” and is likely to
become frequently used in the future. The characteristics of the product, such
as weight, volume, parts, value, perishability, etc., influence the decisions
made in relation to a supply chain, since the need for warehousing,
transportation, material handling and order processing depend on these
attributes. Products designed for efficient packaging and storage obviously
make an impact on the flow in the supply chain and cost less to transport and
store. During the design process of a new product, or changes to an existing
one, the requirements of the logistics relating to product movements should
be taken into consideration. Also, the need for short lead times and the
increased demand from customers for unique and personalized products put
pressure on efficient product design, production and distribution.
Postponement is one successful technique that can be applied to delay
product differentiation and also lead to an improvement in the logistics of the
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product, Lee, Billington and Carter (1993). The use of information systems
and simulation techniques that help to analyze the impact on the supply chain
of a certain design of a specific product can be of great help to managers.

2.7 Material Handling and Order Picking

Material handling is a broad area that basically encompasses all activities
relating to the movement of raw material, work in process or finished goods
within a plant or warechouse. Moving a product within a warehouse is a no
value-added activity but it incurs a cost. Order processing or picking basically
includes the filling of a customer order and making it available to the
customer. These activities can be quite important since they have an impact
on the time that it takes to process customer orders in the distribution channel
or to make supplies available to the production function. They are cost
absorbing and therefore need attention from the managers. Packaging is
valuable both as a form of advertising and marketing, as well as for protection
and storage from a logistical perspective. Packaging can ease movements and
storage by being properly designed for the warehouse configuration and
material handling equipment.

The major decisions in this area include many activities, such as facility
configuration, space layout, dock design, material-handling systems selection,
stock locator and arrangement, equipment replacement, and order-picking
operations. Most of the models and techniques available these days consider
the above decision processes as activities independent of the remaining ones
in the whole system. Therefore, DDS that analyze the impact of material
handling and order picking activities on the logistics system and enable the
decision-maker to make the best decision for the whole network, are an
important and essential tool.

2.8  Logistics of Production and Scheduling

The most common definition of production and operations management
(POM) is as follows: the management of the set of activities that creates
goods and services through the transformation of inputs into outputs, Chase,
Aquilano and Jacobs (2004), Stevenson (1999). The interaction between
POM and LM is enormous, since production needs raw materials and parts to
be able to produce a commodity, and then this commodity must be
distributed, Graves, Rinnoy Kan and Zipkin (1993). Therefore, coordination
between both areas is fundamental to an efficient supply chain. The
techniques required to plan and control the production in an integrated supply
chain go beyond the MRP (Material Requirement Planning) so popular in
industries. The need to take into consideration manufacturing or service
capacity, labor and time constraints has given importance to the Scheduling
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area. This field is extremely wide; however research at a scientific level has
focused mainly on the formalization of specific problem types, leading to
standard problems like the flow-shop scheduling problem, job-shop
scheduling problems, etc. A significant amount of research has been
dedicated to the classification of problem difficulty by deriving complexity
results for a large variety of problem variants and the development of
efficient solution techniques for standard scheduling problems, Pinedo
(1995). Research efforts in the latter area have shown that in the case of many
problems, the use of heuristic algorithms, which cannot guarantee optimal
solutions, but were able, in a large number of experiments, to find extremely
high quality solutions in a short time, are currently the most promising
techniques for solving difficult scheduling problems. Despite efforts in
academic scheduling research, there is still a considerable gap in the
application to practical problems of the techniques developed on the
academic side. Scheduling problems are already quite hard to solve per se,
and their extension to include aspects of the whole supply chain significantly
increases their complexity. Moreover, in many supply chains, the bottleneck
activity is production, therefore efficient planning and managing of
production and scheduling activities within the coordination of the supply
chain is of great importance to an efficient supply chain. The development of
production and scheduling models and solving techniques that consider the
logistics activities related are a challenge for both academia and industry.
Some ERP providers have already incorporated metaheuristics for solving
complex scheduling problems, such as SAP (www.sap.com) with its product
APS (Advanced Planning and Scheduling). We do believe that in the future
many more Information Technology companies will make use of
metaheuristic techniques to solve those very difficult problems, such as those
relating to integrated logistics and production scheduling.

2.9 Information Systems and DSS

Computer and information technology has been utilized to support
logistics for many years. Information technology is seen as the key factor that
will affect the growth and development of logistics, Tilanus (1997). It is the
most important factor in an integrated supply chain, also playing an important
role in the executive decision-making process. More sophisticated
applications of information technology such as decision support systems
(DSS) based on expert systems, simulation and metaheuristics systems will
be applied directly to support decision making within modern businesses and
particularly in LM. A DSS incorporates information from the organization’s
database into an analytical framework with the objective of easing and
improving the decision making. A critical element in a DSS for logistics
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decisions is the quality of the data used as input for the system. Therefore, in
any implementation, efforts should me made to ensure the data is accurate.
Consequently, modeling and techniques can be applied to obtain scenarios
and analysis of the logistics situations within the environment of the company
and, can be used to support the managers and executives in their decision
processes.

We believe that metaheuristics, when incorporated into a DSS for LM, can
contribute significantly to the decision process, particularly when taking into
consideration the increased complexity of the logistics problems previously
presented. DSS based on metaheuristics are not currently widespread, but the
technique appears to be growing as a potential method of solving difficult
problems such as the one relating to LM.

2.10 E-commerce and E-logistics

In just a few short years, the Internet has transformed the way in which the
world conducts business and business partners interact between themselves.
E-business and electronic commerce are some of the hottest topics of our
days, Deitel, Deitel and Steinbuhleral (2001), Chaffey (2001). In e-
commerce, business partners and customers connect together through Internet
or other electronic communication systems to participate in commercial
trading or interaction. We will not discuss e-commerce in detail at this stage,
but it certainly makes new and high demands on the company’s logistics
systems, calling in, in same cases, completely new distribution concepts and a
new supply chain design. Companies are looking for DSS, such as the one
relating to e-commerce and e-business that help them to make the best
decisions in an uncertain and rapidly changing world. Many of the problems
can be seen as extensions of the ones described above, such as, for example,
transportation management, while others are completely new with some
added complexities such as the uncertainties associated with the evolution of
commerce on the web. An example of new problems that can appear relate to
home distribution, generated by business-to-consumer (B2C), during non-
labor hours and the search for a solution which will allow an efficient
distribution. An example of this is the inclusion of 24-hour dropping-points,
where transportation companies can leave a package that will be collected
later by the customer, thus avoiding the need for distribution during nighttime
or on Saturdays and Sundays. Questions as to the location and size, for
example, of these dropping-points, frequency of visits, partnership with
stores, etc. are issues that have not yet been dealt with in metaheuristics and
logistics literature.
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2.11 Reverse and Green Logistics

Concern over the environment has never been as strong as today. Also,
strict regulations regarding removal, recycling and reuse are on the increase,
especially in Europe. This will bring Reverse Logistics and Green Logistics
into the main focus in the near future, Rogers and Tibben-Lembke (1998).
Reverse logistics are related to the process of recycling, reusing and reducing
material, i.e. goods or materials that are sent “backwards” in the supply chain.
The issues faced in reverse logistics are not just the “reverse” issues of a
traditional supply chain, they can be more complex, such as, for example,
aspects relating to the transportation and disposal of dangerous materials.
Manufacturers in Europe will soon be held responsible for the total cost of
recycling or disposal of all materials used in their product. This legislation
will put an enormous emphasis on efficient reverse logistics decisions that
will need to be optimized. Green logistics is generally understood as being
activities relating to choosing the best possible means of transportation, load
carriers and routes and reducing the environmental impact of the complete
supply chain. Some of the areas clearly affected are product packaging,
transportation means and product development, as well as many others.
Logistics is also involved in the removal and disposal of waste material left
over from the production, distribution or packaging process, as well as the
recycling and reusable products.

All the above points make the relevance of the reverse and green logistics
area clear, since many companies have to re-organize their supply chains and
even extend them in order to be able to return, reuse or dispose of their
product and materials. This poses many new and challenging questions to the
area of LM.

2.12 Customer Service

Customers have never before been taken so seriously. The successful
fulfillment of customer expectations is a task pertaining to LM, and deciding
the level of customer service to offer customers is essential to meeting a
firm’s profit objective. Customer service is a broad term that may include
many elements ranging from product availability to after-sales maintenance.
In brief, customer service can be seen as the output of all logistics activities,
that also interact with other functions in the firm, especially with marketing.
Since all the elements in the supply chain interact and a decision on one
element affects all the others, any logistic decision within the supply chain
can affect the customer service. Therefore, systemwide DSS that help the
decision maker at a strategic, tactical and operation level, to evaluate,
simulate and analyze different options and scenarios, and the interaction
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between the players in a supply chain are being requested more and more by
many companies.

We have briefly reviewed some actual issues and aspects of the logistics
management of an integrated supply chain. The problems, in general, are
complex and the decision maker will benefit from having a DSS that can
generate several scenarios and what-if analyses in a short time, allowing him
to analyze the impact of one decision on the whole system. In the next
chapter we will argue that metaheuristics can be an excellent tool to be
included in such a DSS for LM.

3. Metaheuristics for LM

As we have seen in previous sections, the supply chain is a complex
network of facilities and organizations with interconnected activities, but
different and conflicting objectives. Many companies are interested in
analyzing the logistics activities of their supply chain as an entire and unique
system in order to be able to improve their business. However, in most cases,
the task of designing, analyzing and managing the supply chain has been
carried out based on experience and intuition; very few analytical models and
design tools have been used in the process. This means that finding the best
logistics strategies for a particular firm, group of firms or industry poses
significant challenges to the industry and academia. We argue that
metaheuristics can be an important aid to managers and consultants in the
decision process.

Optimization literature focuses on algorithms for computing solutions to
constrained optimization problems. An exact or optimal algorithm in the
optimization context refers to a method that computes an optimal solution. A
heuristic algorithm (often shortened to heuristic) is a solution method that
does not guarantee an optimal solution, but, in general, has a good level of
performance in terms of solution quality or convergence. Heuristics may be
constructive (producing a single solution) or local search (starting from one
or given random solutions and moving iteratively to other nearby solutions)
or a combination of the two (constructing one or more solutions and using
them to start a local search). A metaheuristic is a framework for producing
heuristics, such as simulated annealing and tabu search. To develop an
heuristic for a particular problem some problem-specific characteristics must
be defined, but others can be general for all problems. The problem-specific
may include the definition of a feasible solution, the neighborhood of a
solution, rules for changing solutions, and rules for setting certain parameters
during the course of execution. For a general discussion on heuristics see
Corne, Dorigo and Glover (1999), Aarts and Lenstra (1997) and Glover and
Kochenberger (2001).
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Well-designed heuristics packages can maintain their advantage over
optimization packages in terms of computer resources required, a
consideration unlikely to diminish in importance so long as the size and
complexity of the models arising in practice continue to increase. This is true
for many areas in the firm, but especially for LM related problems.

Metaheuristics have many desirable features making them an excellent
method for solving very complex LM problems: in general they are simple,
easy to implement, robust and have been proven highly effective in solving
difficult problems. Even in their simplest and most basic implementation,
metaheuristics have been able to effectively solve very difficult and complex
problems. Several other aspects are worth mentioning. The first one is the
modular nature of metaheuristics giving rise to short development times and
updates, a clear advantage over other techniques for industrial applications.
This modular aspect is especially important given the current times required
for implementing a DSS in a firm and the rapid changes that occur in the area
of LM.

The next important aspect is the amount of data involved in any
optimization model for an integrated logistic problem, which can be
overwhelming. The complexity of the models for LM and the inability to
solve the problems in real time using traditional techniques, necessitate the
use of the obvious technique for reducing this complex issue: data
aggregation, Simchi-Levi and Kaminsky (2000). However, this approach can
hide important aspects that have an impact on decisions. For example,
consider the aggregation of customers by distance, customers located near to
another can be aggregated, but suppose they require a totally different level of
service? Therefore, instead of aggregating data so as to be able to obtain a
simple and solvable model, but one which is not a good reflection of the
reality, maybe we should consider the complex model but using an
approximation algorithm.

The last aspect that we would like to mention in favor of using
metaheuristics is the estimation of costs, such as transportation and inventory
costs. Why spend time on an optimal solution to a model when the data in
hand consists solely of estimations? Maybe we should use the time to produce
several scenarios for the same problem. For example, various possible
scenarios representing a variety of possible future demand patterns or
transportation costs can be generated. These scenarios can then be directly
incorporated into the model to determine the best distribution strategy or the
best network design. The scenario-based approaches can incorporate a
metaheuristic to obtain the best possible decision within a scenario. The
combination of the best characteristics of human decision-making and a
computarized model and algorithmic based systems into interactive and
graphical design frameworks have proven to be very effective in LM, since
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many integrated logistic problems are new, subject to rapid changes and,
moreover, there is no clear understanding of all of the issues involved.
Hax and Candea (1984) proposed a two-stage approach to solving LM
problems and take advantage of the system dynamics:
1. Use an optimization model to generate a number of least-cost solutions at
the macro level, taking into account the most important cost components.
2. Use simulation models to evaluate the solutions generated in the first
phase.
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Figure 15.2. A DSS scheme for Logistics Management

In Figure 15.2, we present a scheme for a DSS combining simulation and
optimization techniques. We argue that the user can analyze more and better
scenarios within the same time framework if metaheuristics techniques are
used as the solution method instead of the exact method or other heuristics
techniques. We use the laboratory to study the application of metaheuristics
to well-known models, with the objective of providing guidelines for real
applications. Moreover, upgrades of the DSS can be easily developed and
also implementing for a specific firm with specific logistic problems.
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Metaheuristics will help users to take system decisions within certain
parameters and environments and then simulation techniques can be applied
to analyze the system behavior in the presence of uncertainties. Simulation-
based tools take into account the dynamics of the system and are capable of
characterizing system performance for a given design (or decisions). The
limitations of the simulation models are that they only represent a pre-
specified system, i.e. given a particular configuration, a simulation model can
be used to help estimate the costs associated with operating the configuration
(simulation is not an optimization tool). Therefore the combination
metaheuristics-simulation can provide a very interesting approach to the
solving of complex logistic problems. The use of simulation has produced
widespread benefits in the decision process within firms, however,
simulation-based tools have not been good in proposing the optimal or near
optimal solution of several possible solutions. On the other hand,
mathematical programming models and techniques are able to find the best
solutions, but not able to simulate the behavior and effects of a particular
decision in the presence of uncertainties. Recent developments are changing
this, and the decision making process can benefit enormously by having a
system that is able to identify and evaluate the optimal or near optimal
solution in the presence of uncertainties. These advances have been made
possible by the developments in heuristic research, particularly in
metaheuristics. The OptQuest computer software, by Glover, Kelly and
Laguna, of OptTeck Systems, Inc. (http://www.opttek.com/) already offers
this innovation, Laguna (1997, 1998), Glover, Kelly and Laguna (2000).
OptQuest replaces the inaccuracy of trial-and-error usual in simulation
systems by using a potent search engine that can find the best decisions that
fall within a domain that the simulation or other evaluation model
encompasses. Actually, the OptQuest has been integrated with several
commercial simulation packages.

We believe that in the future more combinations of simulation and
optimization techniques will be developed. Metaheuristics techniques play a
very important role in this direction since they can obtain very good solutions
within a small time framework, which can be easily adapted and developed to
solve very complex logistic problems.

Next, we focus on three metaheuristics: iterated local search, tabu search
and scatter search. Many others have similar features and are also potential
methods that could be applied to LM problems. We discuss these ones
because, in their simple form, they present quite good results and are
somehow representative of the latest developments in modern heuristic
research. At the end of the chapter we will comment on common aspects of
these metaheuristics that can be relevant in solving LM problems, Lourengo,
Martin and Stiitzle (2001).
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Iterated Local Search (ILS) is a simple, yet powerful metaheuristic to
improve the performance of local search algorithms. Its simplicity stems from
the underlying principle and the fact that only a few lines of code have to be
added to an already existing local search algorithm to implement an ILS
algorithm. ILS is currently one of the best performing approximation
methods for many combinatorial optimization problems.

To apply an ILS algorithm to a given problem, three “ingredients” have to
be defined. One is a procedure called Perturbation that perturbs the current
solution s (usually a local optimum) giving rise to an intermediate solution
s'. Next, a Local Search is applied taking s’ to a local minimum s” .
Finally, one has to decide which solution should be chosen for the next
modification step. This decision is made according to an Acceptance
Criterion that takes into account the previous solution s, the new candidate
solution s” and possibly the search history. For an extended reference on ILS
see Lourengo, Martin and Stiitzle (2001). An algorithmic outline for the ILS
is given in Figure 15.3.

Iterated Local Search Procedure:
s, = GeneratelnitialSolution;
s =LocalSearch (So ) ;
Repeat
s' = Perturbations (s', history);
s" = LocalSearch (s');
5= AcceptanceCriterion (S' , 8", history);

Until termination criterion met

*
end return s .

Figure 15.3. Iterated local search

Tabu Search is an adaptive procedure originally proposed by Glover
(1986). Recently, this metaheuristic has been gaining ground as a very good
search strategy method for solving combinatorial optimization methods. For a
survey, see Glover and Laguna (1997). We sketch a simplified version of the
approach, as follows.

The basic idea of tabu search is to escape from a local optimum by means
of memory structures. Each neighbor solution is characterized by a move and
in the illustrated simplified formulation short term memory is used to
memorize the attributes of the most recently applied moves, incorporated via
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one or more tabu list. Therefore, some moves are classified as tabu and, as a
result, some neighbor solutions are not considered. To avoid not visiting a
good solution, an aspiration criterion can be considered. At each iteration, we
choose the best neighbor to the current solution that is neither tabu nor
verifies an aspiration criterion. The aspiration criterion used here was the
most common one; the tabu status is overruled if the neighbor solution has an
objective function value smaller than the best value found up to that iteration.
The algorithm stops when a certain stopping-criterion is verified. The best
solution found during the search is then the output of the method. The main
steps of the tabu search algorithm are given in Figure 15.4.

Tabu Search Procedure
X = GeneratelnitialSolution;
repeat

Let x'=neighbor( x ), not tabu or satisfying an
aspiration criteria, with minimal value of the
objective function;

Set x = x' and update the tabu list and
aspiration criteria;

until termination criterion met

end return the best solution found.

Figure 15.4. Short term tabu search procedure

Scatter search, from the standpoint of metaheuristic classification, may be
viewed as an evolutionary (also called population-based) algorithm that
constructs solutions by combining others. It derives its foundations from
strategies originally proposed for combining decision rules and constraints (in
the context of integer programming). The goal of this methodology is to
enable the implementation of solution procedures that can derive new
solutions from combined elements in order to yield better solutions than those
procedures that base their combinations only on a set of original elements.
As described in tutorial articles (Glover 1998 and Laguna 1999) and other
implementations based on this framework (Campos, Laguna and Marti 1998),
the methodology includes the following basic elements:
¢ Generate a population P.

e Extract a reference set R.
e Combine elements of R and maintain and update R.
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Scatter search finds improved solutions by combining solutions in R. This
set, known as the reference set, consists of high quality solutions that are also
diverse. The overall proposed procedure, based on the scatter-search
elements listed above, is as follows:

Generate a population P: Apply the diversification generator to generate
diverse solutions.

Construct the reference set R: Add to R the best #; solutions in P. Add
also r; diverse solutions from P to construct R with |R| = r, + r, solutions.

Maintain and update the reference ret R: Apply the subset generation
method (Glover 1998) to combine solutions from R. Update R, adding
solutions that improve the quality of the worst in the set.

Since the main feature of the scatter-search is a population-based search,
we believe it will be an adequate technique for solving difficult and large-
scale multi-objective problems by finding an approximation of the set of
Pareto-optimal solutions. Therefore, the inclusion of scatter search methods
on scenario-based DSS software can have an important impact, since several
good scenarios can be obtained in just one run. Several applications have
already been completed, Marti, Lourengo and Assigning (2000) and Corberan
et al.(2000), and we believe more will appear in literature in the near future.

All the above metaheuristics have this in common: even the simpler
implementations are able to solve difficult problems in a short amount of
running time. Moreover, the inclusion of new features, constraints, objective
functions can be relatively simple, which is quite important in the rapidly
changing world of LM.

Given a description of the problem and the necessary data, the above
metaheuristics have the following modules in common:

e Generate an initial solution or a population of solutions;

e Obtain the objective value of a solution;

¢ Obtain the neighborhood of a solution;

e Perform a perturbation on a solution or obtain a subset of combined
solutions;

Perform an acceptance test;

Stopping criteria.

All of the above modules can be developed for complex problems,
regardless of the specific mathematical characteristics of the problem, as
linear or non-linear functions, and for the specific characteristics of the
logistic problem within a firm. The integration aspects of a logistic problem
can be implemented by adapting the objective function, or the multi-objective
functions, and by taking this into account in the neighborhood definition. For
example, if a metaheuristic has been developed to solve the logistic problem
of a firm, and the consulting company needs to solve a similar problem, but
with different aspects, for another firm, the adaptation can be relatively
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simple since many modules can be the same. This gives metaheuristics a great
advantage. Moreover, since the methods share modules, it would be easy to
implement several metaheuristics for the same problem in hand. As
mentioned, the logistics decision-makers are experiencing enormous changes
every day and challenges that need a quick response. The consideration of
these changes can be quickly incorporated into a metaheuristics-based DSS
without the need for modification of the complete software, which is an
enormous advantage for software and consulting companies.

Problems in the LM area can also benefit from the vast amount of
successful applications of metaheuristics in combinatorial optimizations and
other well-known difficult problems. From this list, the DSS developer can
learn what can be the best approach to a specific LM problem by studying the
combinatorial optimization problem that has the most aspects in common
with the specific real problem, such as, for example, the best metaheuristics,
the best neighborhood, etc. Research on metaheuristics should give insights
and guidelines for future implementations of metaheuristics into other similar
problems, so commercial producers of software and consulting companies
could develop the most adequate solution method to a specific problem. The
excellent results, modularity and flexibility of metaheuristics are the major
advantages of this technique for solving LM problems. As we have discussed,
there is enormous potential in LM for applications of metaheuristics.
Research academia and industry should both benefit from these applications.

Next, we will present some applications that exemplified the advantages
of using a metaheuristic in an LM decision process and their role in the
logistics management of an integrated supply chain.

4. Applications

We can already find several applications of metaheuristics in LM
problems and incorporation of metaheuristics in DSS into LM, however, they
are not yet as widespread as might be expected given the potential of the
technique. We will now review some successful logistics applications,
ranging from vehicle routing to container operation problems. The objective
is not to make a survey on the applications of metaheuristics to LM, but to
give a few examples of the possibilities of metaheuristics in LM.

Weigel and Cao (1999) presented a vehicle-routing DDS to help the
decision process relating to the home-delivery and home-service business for
Sears, Roebuck and Company (www.sears.com). The system was developed
together with a software company ESRI (www.esri.com) and is based on a
combination of geographical information systems (GIS) and operations
research. More specifically, the main techniques used in the development of
the algorithms behind the DSS are local search and tabu search methods. The
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algorithms and their technical implementations have proven to be generic
enough to be successfully applied to other types of business. This generic
capability derives from using the OptQuest Engine (www.opttek.com) to
adaptively tune the parameter settings for different regions. The system has
improved the Sears technician-dispatching and home-delivery business
resulting in an annual saving of over $42 million. This is a clear example of
how metaheuristics integrated in a DSS for SCM can make a strong impact
on a company by helping them, within the decision process, to gain
understanding of the problem, use their resources more efficiently, give a
better customer service and finally, but of no less importance, to reduce costs.

Ribeiro and Lourengo (2001) presented a complex vehicle routing model
for distribution in the food and beverages industries. The main idea is to
design routes taking into consideration the varying responsibilities of
different departments in a firm. This cross-function planning is the basis for
obtaining integrated logistics. The authors propose a multi-objective multi-
period vehicle routing model, where there are three objective functions that
respond to three different areas; the usual cost function which is the
responsibility of the distribution department; a human resources management
objective which related to a fair work load, and, in the case of variable salary,
also relates to a fair equilibrium of possible percentages of sales; and finally a
marketing objective, which aims to always assign the same driver to the same
customer in order to improve customer service. To be able to solve such a
complex model in a short space of time, or integrate a solution method within
a DSS to help distribution logistics, the solution method must give a solution
in a very short time and allow simple updates and changes during the
installation process and future use. This, of course, advocates metaheuristics
techniques. In their report, Ribeiro and Lourengo (2001) proved the
importance of taking several functions and the difficulty of solving the model
even for very small instances of the problem. They propose an ILS method to
solve the problem.

Other applications of logistics relating to vehicle routing can be found in
literature, such as the inventory routing problem for vending machines, Kubo
(2001).

Ichoua, Gendreau and Potvin (2000) present a new strategy for the
dynamic assignment of new requests in dynamic vehicle routing problems
which include diversion. These dynamic vehicle routing problems are
common in organizations such as courier services, police services, dial-and-
ride companies and many others. In the dynamic context, each new request is
inserted in real time in the current set of planned routes, where a planned
route is the sequence of requests that have been assigned to a vehicle but not
yet served. A tabu search heuristic was used to make an empirical evaluation
of the new strategy. The results demonstrate the potential savings in total
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distance, total lateness and number of unserved customers when compared to
a simple heuristic where the current destination of each vehicle is fixed. This
application shows a potential use of metaheuristics, not only as a direct aid in
operational decisions, but, more relevantly, as an aid in the identification of
the best strategies for handling highly dynamic problems such as real-time
vehicle dispatching.

Bosé et al. (2000) describe the main processes at a container terminal and
the methods, based on evolutionary algorithms, currently used to optimize
these processes. They focus on the process of container transport, by gantry
cranes and straddle carriers, between the container vessel and the container
yard. The reduction in the time spent by the vessel in port, the time required
for loading and unloading the vessel and the increase in the productivity of
the equipment are main objectives for the management of a container yard.
The global increment in container transportation, the competition between
ports and the increase in multi-modal parks give rise to the need for improved
techniques to help the decision process of the senior management of a
container terminal. Bosé et al. (2000) proved that with a simple genetic
algorithm, combined with a reorganization of the process, the amount of time
in port for container vessels can be reduced, leading to a competitive
advantage for the container terminal. As future research, they expect to
develop a hybrid system using simulation and evolutionary methods which
will allow uncertainties to be taken into account. This report is a good
example of the direction LM is following in order to be able to solve the
complex problems in the area.

Fanni et al. (2000) describes the application of a tabu search to design,
plan and maintain a water distribution system. Since water is a sparse
resource, especially in some countries, and the design and maintenance of
pipe networks for water supply distribution involve high costs, achieving the
highest level of performance of existing networks at minimum cost is
mandatory. The complexity of a real water distribution network grows with
the necessity to consider non-smooth non-convex large-size problems and
discrete variables. This is a clear application in the continuous flow industry
that can be seen as an application in the area of green logistics.

In service industries, the logistics to produce a service are highly
dependent on the human resources. Therefore, in this firm the most important
problem can be the crew or personnel scheduling. Many authors have applied
metaheuristics to crew scheduling in airline industries, Campbell, Durfee and
Hines (1997), and bus and train companies, Cavique, Rego and Themido
(1998), Kwan et al. (1997), to mention just a few.

Scheduling is another area where a vast amount of metaheuristics
applications are to be found, see, for example, Vo et al. (1998) and Osman
and Kelly (1996). However, most of the applications focus on a specific
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scheduling problem and little attention has been given to the integration of
logistics into a supply chain. The main applications are for job-shop
scheduling problems or similar, however, these models pay little attention to
the integration of production scheduling with the rest of the elements in the
supply chain. However, efficient production scheduling is enormously
relevant to logistics integration within a supply chain, as discussed in the
previous chapter. So, aspects such as customer service and delivery times
must be integrated into the scheduling decisions, turning, in many cases, into
non-linear multi-objective problems.

For an extensive list of applications, many in the area of LM, we refer the
author to Glover and Laguna (1997). We believe that we have missed many
references on the applications of metaheuristics to supply chain problems.
However, our intention in writing this report, was not to carry out a complete
survey on the issue (something that we would like to do in the near future),
but to bring the reader’s attention to potential of metaheuristics in the field of
LM, especially when logistics integration has to be taken in account.

5. Conclusions

Logistics management in a supply chain offers significant benefits to the
elements across the chain, reducing waste, reducing cost and improving
customer satisfaction. However, this strategy is a challenging and significant
task for companies, decision-makers, consultants and academics. The process
of implementing and managing integrated logistics has been shown to be very
difficult. We have discussed several important logistics activities within a
supply chain and their interrelationships.

Many other issues and questions surrounding LM are not treated in the
paper, since this is a rapidly changing world with new challenges appearing
every day. We strongly believe that the recent developments in the area of
metaheuristics techniques will put them on the front page as regards solving
existing LM problems and new complex ones that arise due to the lack of any
integrated management. Their modularity, easy implementation, easy
updating and adaptation to new situations combined with simulation systems
and DSS can make a strong positive impact on the decision process in LM.
We have focused on Iterated Local Search, Tabu Search and Scatter Search as
being some metaheuristics that present characteristics for potential successful
application to LM. Developers can learn from the extensive applications of
these metaheuristics to well-known optimization problems, and consequently,
these methods have short development and implementation times.

With this paper, we hope to contribute to a better understanding of the
issues involved in integrated logistics and to encourage further research on
the applications of metaheuristics for solving complex LM problems.
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Metaheuristics can make an important contribution to coping with the
challenges posed by LM, especially with the new economy and electronic
business. Applications of metaheuristics-based DSS for LM are work-in-
process. In many companies, ambitious projects to implement DSS to
evaluate and help the decision process of the integrated logistics within a
supply chain have yet to be completed, and many others have not yet begun
serious initiatives in this direction. We believe that this work should be
updated sometime in the near future, as a large amount of successful
applications of metaheuristics-based DSS in LM problems will be developed.
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Abstract In a recent paper, Focacci, Laburthe and Lodi (2002) surveyed the integration
between Local Search and Constraint Programming which seems to be suitable
to address real-world combinatorial optimization problems. In this paper, we
focus on the integration of the machinery developed in the Tabu Search context
into incomplete global search algorithms based on CP. The main issue is to re-
interpret the techniques developed within Tabu Search for complete solutions so
as to apply them to internal nodes of a tree search, i.e., to partial solutions.

Keywords:  Local Search, Constraint Programming, Tabu Search, Global Optimization, Mate-
heuristics

1. Introduction

Local Search (LS) methods are based on the simple and general idea of:
(i) starting from a feasible solution, say s; (ii) defining a neighborhood of
such a solution, say N(s), as the set of solutions which can be reached from
s through a move (a simple manipulation of s whose effect is the transition
to another solution s' € N (s)), and finally; (iii) exploring this neighborhood
N{(s) in order to find another solution, say s*, which is better than s with
respect to the objective function. If such a s exists, the process is iterated by
using s* as starting solution. Otherwise (no solution better than s exists in the
neighborhood), s is a local optimum and several possible escape mechanisms of
metaheuristic flavor can be applied (see, Aarts and Lenstra 1997, for a complete
treatment of LS and metaheuristic algorithms).

Constraint Programming (CP) is a programming paradigm exploiting Con-
straint Satisfaction techniques (see, Mackworth, 1977), and in the following we
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restrict our attention to CP on Finite Domains (CP(FD)) which is the case of all
constraint tools for discrete optimization. In the next few paragraphs we briefly
discuss the CP terminology we will use in the paper. The reader is referred to
Marriott and Stuckey (1998) for a textbook on the subject or to Focacci et al.
(2001) for a basic introduction.

CP(FD) models combinatorial optimization problems with a set of variables
in the domain of integers, and a set of constraints on these variables. Constraints
are both mathematical and symbolic, where symbolic (or global) means that they
model well-defined subparts of the overall problem. The most classic example
of symbolic constraints is the all different(Xy,...,X,) constraint which
imposes that variables Xj, ..., X, must assume different values in a feasible
solution.

To each constraint is associated a propagation algorithm aimed at deleting
from variable domains the values that cannot lead to feasible solutions. Con-
straints interact through shared variables, i.e., as soon as a constraint has been
propagated (no more values can be removed), and at least a value has been elim-
inated from the domain of a variable, say X, then the propagation algorithms
of all the other constraints involving X are triggered (see again Mackworth,
1977).

Since in the general case a full propagation of the constraints is as difficult as
the problem itself, propagation algorithms are usually incomplete in the sense
that they are possibly stopped with some inconsistent values in the domains.
Therefore, a propagation phase is generally followed by a search one in which
the current problem is partitioned into smaller (easier) subproblems, e.g., by
instantiating a variable to a feasible value in its domain. An improvement of the
incumbent solution during the search resorts to the addition of a new constraint
stating that further solutions should have a better value. Thus, CP optimize the
objective function by solving a sequence of feasibility problems that improve
the solution value.

In arecent paper, Focacci, Laburthe and Lodi (2002) surveyed the integration
between LS and CP which seems to be suitable to address real-world combi-
natorial optimization problems. In real-world applications one can usually
recognize a ‘core’ problem whose structure is most of the times well known in
the literature, plus a set of complex constraints, often called ‘side’ constraints.
These side constraints are in general very much oriented to the application at
hand, and lead the overall problem to become much more difficult to solve.
Indeed, the union between the core problem and the side constraints usually
leads to (Mixed) Integer linear Programs (MIPs) whose size is huge and such
that the corresponding models present relevant gaps, i.e., poor linear program-
ming relaxations. In other words, the addition of heterogeneous side constraints
typically ‘destroy’ the pure structure of the core problems.
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Although the big improvements of the general-purpose MIP solvers in the
last fifteen years (see Bixby, 2002) these problems often remain out of practice
with respect to optimality, and heuristic and metaheuristic algorithms turn out
to be a conceivable choice.

Moreover, the side constraints of real-world applications change frequently,
thus it seems to be unlikely to spend too much time in studying the underline
structure of the problems (e.g., through a deep polyhedral analysis) since either
the addition of ‘new’ constraints or the update of ‘old’ ones can change this
structure in the short term.

This is one of the main reasons for which methods based on the integration
of LS and CP are interesting: CP tools provide modeling facilities and the
solving technique is based on ‘local’ reasoning (the propagation algorithms
incapsulated into the symbolic constraints), thus it is robust with respect to
the addition/update of constraints. Specifically, propagation algorithms are
usually designed to reduce the solution space through logical implications which
are local to a specific part of the overall problem, and these logical reasoning
typically remains valid when another part of the problem changes. The same
does not hold when the solving technique is based on the polyhedral analysis
since a polyhedron is defined by the overall set of constraints, thus the reasoning
on it is global.

In Focacci, Laburthe and Lodi (2002), two main directions for LS and CP
integration are investigated. From one side, the possibility of using constraint-
reasoning and techniques based on CP within a classical LS algorithm so as
to produce a constrained local search framework. From the other side, the
transformation of the classical global search algorithm provided by CP tools
into an incomplete global search one through the use of LS techniques. This
second direction seems to be very powerful and promising, typically leading to
flexible algorithms whose great advantage is moving through a decision tree.
Indeed, the classical exploration methods of a decision tree must be rigid enough
to guarantee optimality. However, in a heuristic context, relaxing this rigidity
but still remaining inside the tree allows using all the CP machinery in terms
of problem reductions and efficiency by obviously accelerating the process.
Moreover, as shown in Focacci, Laburthe and Lodi (2002), both classical and
recent LS techniques can be effectively incorporated in order to either limit the
size of the portion of the tree systematically generated/explored or iteratively
changing the exploration direction, thus leading to ‘jumps’ in the tree.

In this paper, we concentrate on the second direction discussed in Focacci,
Laburthe and Lodi (2002), and in particular, we focus on the integration of
the machinery developed in the Tabu Search (TS) context, and in particular
by Glover and Laguna (1997) in the TS book, into incomplete global search
algorithms based on CP. More precisely, in the TS framework one can logically
recognize two ingredients: from one side, the basic idea of escaping from a
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local optimum by allowing worsening moves and by using memory so as to
avoid cycling, while on the other side, the wide set of ‘strategic’ techniques
which are used to drive the search through the solution space or accelerate the
neighborhood exploration.

The basic idea of TS has been already considered and extensively used in
the CP literature (see, e.g., De Backer et al. 2000), while in this paper, we are
interested in some of the strategic techniques developed by Glover and Laguna
(1997) in the chapter 3 of the TS book, with the aim of integrating them into
incomplete global search algorithms based on CP.

The main issue of such an integration is the following. The techniques origi-
nating in T'S context usually have a complete solution at hand (most of the times
feasible, sometimes infeasible) and iteratively improve it (where ‘improving’
includes the fact of moving an infeasible solution toward feasibility). Within a
global search algorithm, instead, we want to apply LS techniques (and in partic-
ular TS techniques) to partial solutions, i.e., to internal nodes of the branching
decision tree. The aim of the paper is to re-interpret some of the techniques
developed in the former case to the latter one. The treatment is neither method-
ologically exhaustive nor provides a complete description of implementation
issues, but it represents a kick-off for the research into this promising area.

It is worth mentioning that incomplete global search algorithms do not nec-
essarily require an implementation by means of CP tools. There are several
effective ways of devising such kind of algorithms in the Integer Programming
context (e.g., GRASP by Feo and Resende 1995, recovering beam search by
Della Croce and T’kindt, 2002).

The paper is organized as follows. In Section 2 we discuss several TS tech-
niques that can be used for an ‘a priori’ limiting of the size of the search tree,
while in Section 3 the limiting based on the knowledge of the best solution(s)
found so far is considered. In Section 4 we discuss techniques that perform a
logical restructuring of the tree, i.e., ‘jump’ from an internal node to another,
possibly in a completely different part of the tree. Finally, in Section 5 some
conclusions are drawn and interesting areas for future research are pointed out.

2. Limiting the size of the tree ‘a priori’

The aim of this section is to show how the size of the decision tree can be
limited by using candidate list strategies, i.e., by an ‘a priory’ analysis of the
potential effect of either one decision or a set of them. In the general TS context,
this means that not all the possible ‘moves’ are taken into account where this
filtering is based on several criteria (see, Glover and Laguna 1997, chapter 3).
We re-interpret these criteria by keeping their flavor and applying them within
the decisions of a branching tree.



On the Integration of Metaheuristic Strategies in Constraint Programming 361

We consider the completely general case such that the CP branching (or
search) step consists of assigning a specific value, say v;, to a variable, say
X;, such that v; belongs to the domain of Xj: v; € D(X;). We denote this
variable/value decision with the pair (X;,v;). This means that at each node
of the decision tree the set of decisions is composed by all the variables which
have not yet been assigned and all the values in their domain. This is the most
general and easiest-to-handle situation in CP context and it is often the case in
practice.

The application of TS techniques to partial solutions instead of complete
ones can be easily seen in terms of the relation between moves and decisions.
Specifically, by considering only a subset of the possible moves in TS context we
can limit the size of the neighborhood explored, while within a tree search this
corresponds to taking into account only a subset of decisions, thus limiting the
tree itself. Obviously, the selection of a subset of the decisions is a crucial task
and we will often assume in the following that the selection method, heuristic in
nature, can be rather time-consuming since the accuracy is important. We call
evaluate() a general procedure that ranks with some criteria all the possible
decisions.

Our re-interpretation of candidate list strategies in this context leads to the
following four different techniques which turn out to be four different ‘imple-
mentations’ of procedure evaluate ().

Aspiration plus. This technique is based on the definition of a threshold on the
improvement of a decision: an evaluation procedure computes some ‘expected
improvement’ and the first decision for which this value is greater or equal to the
threshold is considered for possible selection. In order to be more accurate the
evaluation continues for the next plus decisions. All the ‘good’ decisions, i.e.,
the ones whose improvement is greater or equal to the threshold are stored in
a buffer associated with the node, and the one with the highest improvement is
taken. When a backtracking to the current node occurs the evaluation procedure
starts from the first decision which has not yet been evaluated and iterate the
above procedure by also re-evaluating the decision stored in the node-buffer,
whose expected improvement can be changed!. This technique does not require
to evaluate all the possible variable/value assignments. Its effectiveness can vary
with the ordering in which the decisions are considered. A problem-dependent
ordering, if any, can be used to sort the decisions accordingly before calling our
evaluating procedure.

Formally, a specific evaluation procedure, called evaluate plus(), is ex-
ecuted at each point a new decision must be taken. A scheme of the procedure

1Some of them cannot be feasible anymore after propagation.
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is as follows:

procedure evaluate_plus()
if (‘node-buffer is not empty’) then
re-evaluate the decisions in the node-buffer
endif
find next decision with improvement > threshold and store it
evaluate the next set P of ‘plus’ decisions
store the decisions of P with improvement > threshold
returnBest(X;, v;)

A stopping criterion can be the complete evaluation of the overall set of pairs
variable/value together with the emptying of the buffer. In this case, several
possible recovering/restart criteria can be used in order to continue the search,
e.g., the threshold can be changed (namely, reduced) in order to enlarge the set
of decisions classified as ‘good’.

Elite candidate list. As mentioned before, we assume that the evaluation
of the decisions is time-consuming, and in this case we do not want to run
evaluate() at each node of the tree. Thus, the evaluation procedure is run
as soon as a global-buffer of likely decisions is empty. More specifically, the
evaluation procedure ranks in this case all the variable/value assignments, then
the k best decisions involving different variables are stored in the global-buffer.
From this point, each time a new decision must be taken, the best feasible (to
be discussed later) one in the global-buffer is selected and performed until the
buffer is empty. A decision (X, v;) is considered still feasible after that some
others in the global-buffer have been taken if and only if y; € D(Xj), i.e., value
v; still belongs to the domain of variable X; after the previous decisions and
the corresponding propagations.

Formally, the specific evaluation procedure, called evaluate.elite(),can
be outlined as follows:

procedure evaluate_elite()
if (‘global-buffer is empty’) then
execute procedure evaluate()
store the k best decisions involving different variables
endif
returnBest(X;, v;)

Since in the case the global-buffer is empty a new buffer can be filled up, the
above implementation is complete, i.e., every possible branch is considered.
Thus, the interest of this technique would be to obtain a reduction in terms
of computational time since procedure evaluate () is executed only a limited
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number of times (depending on the value of k). However, it is easy to see that an
incomplete version can be devised if the number of times each node is allowed
to fill up the buffer is kept limited, say p times. In this way, together with the
reduction in the computational effort of evaluating the decisions, some of them
will never be considered according to the rank.
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Figure 16.1. decision tree generated with evaluate_elite(): computed buffers are under-
lined

In Figure 16.1 a buffer ) is computed at node 0 and it is used to generate
the descending nodes 1 and 2. When B, is emptied By is computed and used to
generate nodes 4, 5 and 6. When a backtracking to node 3 occurs the remaining
decisions of B, are used to generate the next sons, then a new buffer 3 is com-
puted and used to generate new sons. One can check that from decision node
3 (so as from all other nodes) the descending sons correspond to all possible
decisions and the method is indeed complete.

Successive filter strategy. In tree search algorithms sometimes not all the
variables have the same importance. Often, in the design of ad-hoc branching
schemes, one can prefer branching before on variables belonging to a specific
subset since they are considered more crucial.

With a similar flavor, one can reduce the size of the search tree, thus trans-
forming the overall algorithm into an incomplete one, by selecting at each node
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a subset of the possible variables, and for each of them only a subset of the
values in their domain. Without loss of generality we consider a partition of
the set of variables in two subsets, say A and B. At each upper node of the tree
a subset of the A variables is selected and a pruning on the possible values of
each of them is performed with some criteria. This means that in the conse-
quent subtree some of the decisions are missing, thus the tree is smaller and no
guarantee of optimality is given. The method is iterated until all the variables
in A has been assigned, and (possibly) repeated at the lower nodes of the tree
for the variables in B. This a priori filtering does not only reduce the size of
the tree but also allows to only evaluate a subset of the decisions.

Formally, the specific evaluation procedure, called evaluate filter(),
can be outlined as follows:

procedure evaluate_filter()
select a subset of the variables I
for each variable X; € I
select a subset of the values J
execute evaluate() on the subset defined by the pair (I, J)
returnBest(X;, v;)

It is easy to see that this method is not really concerned with multiple levels
of variables. However, the idea comes to mind mainly when different sets of
variables assume quite a different meaning, thus it seems to be easier to perform
an a priory (obviously, heuristic) pruning.

Sequential fan candidate list. Another classical way of transforming a com-
plete tree search into an incomplete one is the so-called truncated branch-and-
bound which is very well known in the Operations Research (OR) community.
There are obviously many ways to perform such a truncation among which the
easiest one is imposing a time limit, while more sophisticated ones impose for
example a limit in backtracking steps®.

A possible implementation of the idea requires to consider the tree by levels
in order to keep the number of nodes active in each level limited to a given value
k. This means that at the root node, level 0, all the decisions, i.e., pairs vari-
able/value, are evaluated, and the best k decisions (according to the evaluation
criterion) define k sons which are the only active at level 1. The process is then
iterated by considering at the same time the entire set of decisions that can be
taken in the k active nodes of level 1, selecting the best k£ ones, generating the
k nodes of level 2, and so on.

2 Actually, with an extension of the terminology almost all the methods we are concerned with in this section
and in the next one fall down into the ‘truncated branch-and-bound’ category.
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Formally, the specific evaluation procedure, called evaluate fan(), is ex-
ecuted at each node of the decision tree and can be outlined as follows:

procedure evaluate_fan(node, level)
if (‘level-buffer(level + 1) was never created’) then
for each active node in level
execute procedure evaluate()
update the (level + 1)-buffer containing the % best decisions
endfor
endif
returnFirst( (X;, v;) descending from node, if any )

3. Limiting the size of the tree ‘based on history’

In the previous section we have considered methods for limiting the search
tree ‘a priori’. In other words, one does not use explicitly any information
on the paths explored during the search for driving the algorithm through the
tree but only implicitly in the evaluation of the single decisions. This means
that the reduction of the tree is imposed in a rigid way from the beginning.
Conversely, it is conceivable that the reduction could be imposed dynamically
by exploiting the ‘history’ of the search which in particular translates in a more
flexible exploration of the tree.

In this section we consider a special way of exploiting the ‘history’. Specif-
ically, the pieces of information we exploit are the good solutions encountered
during the search and the idea is to use them within a path relinking framework.

The idea of path relinking is to search the solution space through paths
connecting good solutions. These paths can be more or less seen as greedy
explorations of the subspace induced by the set of variables assuming different
values in the set of good solutions. In other words, the feeling is that good
solutions generally share important parts, and the paths connecting them are
relevant optimization directions. Following these directions corresponds to
perform a local search in the subspace.

The same concept can be immediately applied within a tree search frame-
work. During the search good solutions are stored and at a given level of the
branching tree, instead of an exhaustive search, partial solutions are completed
through the generation of paths which take into account the stored solutions. In
Figure 16.2 the search is exhaustive from the root to level L, while partial solu-
tions are completed according to different techniques in the remaining levels.
Some ways of generating these paths are the following.

1 In order to keep the size of the tree small enough and the completion of
the partial solutions fast, a possibility is to only generate for each partial
solution the path to the best solution found so far, i.e., we instantiate
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Best Elite

Figure 16.2. possible completions of a partial solution

the free variables with the values they have in the best solution (see Fig.
16.2(2)). This method has two strong drawbacks, indeed the resulting
solution could be: (a) not feasible; (b) incomplete (due to the fact that
the free variables were assigned no specific values in the best solution).
Case (a) determines a failure, while we can solve case (b) by applying
a heuristic designed to complete a partial solution, or better, continuing
the search with CP from the current partial solution.

A more complete but still straightforward way is to generate a greedy path
to each solution in the set of stored (elite) ones (see Fig. 16.2(b)). This
technique works exactly as the previous one, but tests several solutions
instead of a single one.

In a more sophisticated way, one can generate a set of paths obtained as
combination of the elite solutions. This is a variant of case 2 in which
we extend the set of the elite solutions using them to generate additional
ones. The method used to combine the solutions and its effectiveness is
very problem dependent.

In our view, the most interesting way of completing each partial solution
is to explore a subtree induced by the set of elite solutions, namely the
subtree defined on the not instantiated variables, with domains restricted
to the only values appearing in the elite solutions (see Fig. 16.2(c)). The
subtree exploration can be speed up through discrepancy-based search
(xDS) (see, e.g., Harvey 1995, Harvey and Ginsberg 1995, Walsh 1997).
According to the xDS framework, a discrepancy in the search is intro-
duced each time the algorithm takes a decision which is different from
the best one suggested by an evaluation heuristic. The tree search can be
explored so as to keep the total number of discrepancies limited, say h.
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For example, if the heuristic always suggests the decisions in the greedy
path to the best solution found so far and h is set to 0, then we get again
case 1 above.

4. Restructuring the tree

The methods introduced in the previous sections use reductions of the number
of nodes visited on the search tree to speed up the search, thus transforming
a global search algorithm into an incomplete one. Roughly speaking, these
methods operate by smart cutting some branches of the tree. The main drawback
is that a bad decision taken at a certain node j is fixed for all the descending
nodes, i.e., a cut of a branch containing good solutions cannot be recovered.

In this section, instead, we propose the use of techniques from TS, that
hybridize the CP method by means of soft decisions that can be reverted or
removed in a descendent node. This gives an extreme flexibility to the search
that is allowed to move from a father to a son node either by adding a decision,
or removing some decision previously taken if it results to be an obstacle for
reaching good solutions. The net effect of such a deletion can be seen as a
“jump” from a node 7 to a new node not descendent from j. In other words, the
scheme we are proposing is an enhancement of an incomplete search algorithm
obtained by applying jumps to recover from bad branch cutting. A jump allows
to enter into a subtree that was previously eliminated by some cut, but that now
is recognized to contain promising solutions. This is a very appealing feature
that may lead to a significant improvement of the incomplete search methods
based only on tree reduction techniques. However, this powerful tool needs to
be managed carefully, since it could result in dangerous effects. Indeed, using
arbitrarily the jumps we could lose completely the control on the search and we
could experience the opposite of our goal: visiting a very restricted part of the
tree, in the limit, the same solutions in a cyclic manner.

The key ideas from TS that we use are the principle of congenial structures
and the method of logical restructuring (see Glover and Laguna 1997, sections
5.6 and 3.4 for a complete description).

The principle of congenial structures is based on the fact that in many com-
binatorial problems there are particular types of solution structures, or partial
solutions, that provide a great accessibility to solutions of highest quality. As
possible examples consider: a Bin Packing Problem and a subset of items that
well fit into some bins; a scheduling problem with sequence dependent setup
times and a subset of jobs organized in a subsequence with null or very small
setup time; a Vehicle Routing Problem and a feasible route that almost fills the
vehicle capacity and serves customers located in a restricted area.

The logical restructuring is a way to meet the combined concerns of quality
and influence of a given solution. The goal is to find how influence (structural,
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local or global) can discover improved paths to high quality solutions. Logical
restructuring is an implicit mechanism in other general techniques as strategic
oscillation, path relinking and ejection chains.

The proposed method consists of a search on a CP decision tree divided into
two regions: the strong-decision’s area and the soft-decision’s area. The first
one corresponds to the usual CP decision tree, whereas the latter is the region
in which we allow to jump from a part of the tree to another.

The simplest way to define the two regions is to fix a threshold level sepa-
rating them, but more sophisticated methods are possible, as multi-thresholds
(different thresholds for different branches) and dynamic-thresholds (thresholds
updated according to the search evolution). Here, we only consider a simple
fixed-threshold method operating as an usual CP method from the root to the
threshold level, and allowing soft decisions in the remaining levels.

In the soft-decision’s region the system must be free to look for good solu-
tions, using the two guiding principles above, without being restricted by the
problem constraints. To do this we propose to consider a relaxation of some
constraints, thus allowing the construction of infeasible solutions that are later
driven to feasible ones by changing or reverting decisions previously taken. To
see how this method induces a jump in the original tree let us suppose that we
have an infeasible solution by taking two sets of decisions, namely 5 and Ss.
Further suppose that S) N S3 # 0, each set alone determines a (partial) feasible
solution, and exists a set S C (S; U S) such that the decisions in ($; U S2) \ S
define an optimal solution. When we build an infeasible solution by taking
the decisions in .S; U Sy we can re-obtain a feasible solution by removing the
decisions in S. In a standard CP tree we have a decision-path R that includes
all the decisions in .51, a second path P including the decisions in .5 and the
optimal path P including (S U S2)\\S. Our method gives the algorithm more
alternative ways to reach the optimal solution: (i) a descent along R followed
by a jump to path P obtained removing the decisions in S N S; (ii) a descent
along P, followed by a jump to path P ; (iii) a descent along a new path
made by the concatenation of paths P and P, followed by the removal of the
decisions in S; etc.

b,3 c,3 8,2
OwmOmwOnmwO
AN N { . / ] P Ve
N I 7 1 7
\ | 8,2/ 1 h,2/

a5 s ally £.3,
? AN | 1 /
\\ I// | //

Figure 16.3. a spanning tree
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In Figure 16.3 we give an example where a min-cost spanning tree is required.
We have S; = {a,b, ¢, f, g} (continuous lines, cost = 12), S» = {a, d, e, f, h}
(dashed lines, cost = 13) and S = {c,d, f}. Set S1 U S2\S = {a, b, e,g,h}
with cost 10 is the optimum tree.

Soft decisions can be seen as constraint relaxation and can be implemented
in different ways. Here we propose two possible implementations: 1) apply
the constraints as usual and relax them when necessary to perform the jump; 2)
add the constraint immediately to the model, but not propagate it. A ‘constraint
check’ is then performed at a specific level, thus a jump to repair a possible
failure is adopted.

jump: —c

(@) (b)

Figure 16.4. managing the soft decisions

Figure 16.4 reports two possible partial decision trees for the min-cost tree
problem associated with the graph of Figure 16.3. At each node we may select
any variable (edge). We use a lexicographical ordering (alphabetical, in fact)
for the choice of the next decision to be applied.

Figure 16.4(a) shows a possible tree obtained by applying technique (1)
above. When we reach a leaf we consider soft all the decisions under level L.
Hence, we could remove the decision of selecting edge ¢, thus jumping to the
partial solution a, b, f, g, or, better, we could examine this solution and modify
it with a local reasoning, so jumping to the complete solution a, b, e, f, g, as
shown in the figure.

An example of application of technique (2) is given in figure 16.4(b). In
this case when we are below level L we do not perform the propagation, so we
construct the redundant solution a, b, ¢, €, f, g. Note that edge d is not included
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in this set since it creates a cycle with the two edges a, b selected in levels higher
than L. Performing the constraint check at this level we identify cycle a, c, e,
i.e., a violated constraint, and we can recover it by removing the heaviest edge
instantiated in the soft decisions region: edge c.

The second technique seems to be the simplest one for an immediate use
in CP, although it partially runs contrary to the CP paradigm by temporarily
avoiding propagation.

5. Conclusions

Despite the integration of LS ideas in CP has been explored in recent years,
no work has been devoted on integrating CP with techniques originating in
TS context. CP methodology is based on solution construction techniques,
while T'S mainly operates by iteratively modifying a complete solution (possibly
infeasible). The main issue of the paper was to re-interpret some of the strategic
TS techniques and to adapt them to be applied to partial solutions within a CP
tree search. The treatment is neither methodologically exhaustive nor provides
a complete description of implementation issues, but it represents a kick-off for
the research into this promising area.

Concerning further research directions, a lot must be done on the method-
ological side, and, in particular, hybrid methods allowing jumps on the tree,
such as recovering beam search (Della Croce and T’kindt 2002), incremental
local optimization (Caseau and Labuthe 1999), and incomplete dynamic back-
tracking (Prestwich 2002), seem to indicate a very promising area. However,
in order to obtain effective algorithms for practical problems the implemen-
tation issues play a crucial role, and we believe that they require a very deep
investigation.
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Chapter 17

GENERAL PURPOSE METRICS FOR SOLUTION
VARIETY

David L. Woodruff
Graduate School of Management, University of California at Davis. DLWoodruff@UCDavis.edu

Abstract When using optimization in the context of a decision support system, a deci-
sion maker would often be more interested in seeing a diverse collection of good
solutions rather than the one solution that is in some mathematical sense the
optimal solution to an approximate problem with imprecise data. A recent pa-
per (Glover, Lokketagen and Woodruff, 2000) describes a method for generating
diverse solutions using scatter search. However, very little research has been
done on general purpose methods to characterize solution variety. This paper
describes and explains desirable characteristics for general purpose methods for
characterizing diversity. Field research serves to demonstrate and compare var-
ious methods. We provide some fundamental research concerning methods that
are fully general and do not rely on any knowledge of the problem.

Keywords:  Decision Support, Optimization, Variety Metrics, Chunking

1. Introduction

The word “optimization” is cropping up in a wide variety of settings, es-
pecially advertisements for decision support and enterprise resources planning
software. The problems being addressed are extremely complex and conse-
quently the models being optimized can be at best an approximation of the
goals of the organization and its stakeholders. In such an environment, a de-
cision maker would often be more interested in seeing a diverse collection of
good solutions rather than the one solution that is in some mathematical sense
the optimal solution to an approximate problem with imprecise data.

The need for variety metrics also arises in the process of designing population
based algorithms such as scatter search (Glover 1995, Glover 1997, Glover and
Laguna, 1997). Solutions that are varied are required so various methods have
been proposed that can generate a diverse set of solutions. A metric in the space
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of solutions would be useful operationally and methods for putting an order
on the diversity of sets of solutions would be useful in research to compare
population generators.

However, very little research has been done on methods to characterize so-
lution diversity. For example, if the decision maker has been shown a few
solutions and there are a few more good solutions that could be shown, the next
solution to be displayed must be selected based on some criteria. The solu-
tion with the best objective function may well be extremely similar to one that
has already been displayed and hence would waste the time of the decisions
maker. It would be better to find a solution that would diversify the set that
has been displayed. An extensive study of issues related to diversification and
pool maintenance is provided by another chapter in this volume (Greistorfer
and Vo8, 2004).

A recent paper (Glover, Lekketagen and Woodruff, 2000) describes a method
for generating diverse solutions using scatter search and uses a dimension re-
duction technique known as chunking Woodruff (1998) to create a metric to
compare their method with branch and bound. Our interest here is in creation
of techniques that can be widely used by developers of decision support systems
(DSS) (see, e.g., Hoch and Schkade, 1996, Sharda, Barr and McDonnell, 1988)
and in population based metaheuristics such as scatter search. Toward that end,
we list characteristics that such an addition to the DSS implementer’s toolkit
should have. Further, we propose methods that have various of these properties.
We then describe samples collected via field research for comparison between
the Euclidean metric and a more sophisticated general-purpose metric that relies
on principal components as a generalization of chunking application.

If one has a particular problem to solve with a particular data instance, then
it would often be possible for a domain expert to compare a few solutions and
rank their pairwise distances. It might even be possible to construct an expert
system to do this. This could be worthwhile in some settings, but our interest
here is developing general methods that can be applied across a broad range of
problems and problem instances. Our work is based on the notion that there is
structure in good solutions that can be discovered at some level of abstraction
and used to construct a metric.

Our research is quite different from sensitivity analysis. For optimization
problems there is a rich literature conceming the sensitivity of the optimal
solution to changes in the problem data (Greenberg 1998, Wagner 1995). Our
work augments this by providing means to characterize the variety provided by
multiple solutions, but not necessarily the optimal solution.

There is somewhat stronger connection between this work and previous work
in the area of multiple criteria optimization (MCO); among the many works,
see, €.8., (Steuer 1986, Zeleny 1982). Readers familiar with the multi-criteria
optimization literature will notice this paper presents ideas that are potentially
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competitive with the basic idea of MCO, but potentially complimentary with
filtering, which is often discussed in the context of MCO. The potential com-
petition is strictly theoretical. If one could somehow capture all of the various
objectives of all decision makers and stakeholders for a problem and quantify
them all, then one could use the technology of MCO to map out all of the
undominated solutions on the so-called efficient frontier. In practice, decision
makers might be interested solutions close to the efficient frontier if they are
different enough from those on the frontier. The problem of identifying solu-
tions that “different enough” crops up. In this paper we propose metrics that
take covariances into account, which goes beyond the proposals of an I, metric
with univariate scaling that have been proposed.

The next section outlines some of the characteristics that would be desirable
for a metric on the space of solutions. In §3 we describe and justify a method
of obtaining a metric. The method is further motivated in §4, where we give
two examples that are the result of field research. These examples serve both to
motivate our metric and to provide a tractable testbed for other general purpose
metrics. The paper closes with some concluding remarks and directions for
further research.

2. Characterizing Solution Diversity

Although the objective function used for optimization might not exactly
match the objectives of the organization, it is designed expressly for the purpose
of giving a rough assessment the relative quality of solutions. Hence, if the user
of a DSS asked to see another solution that was good and different from the
solutions seen so far, it would be reasonable to use the objective function to
quantify the notion of “good.” We now turn to the question of characterizing
what is meant by “different.”

To discuss general methods, we assume that we have available a set of so-
lution vectors that we will refer to as .4. The composition of the set would
depend on the particular application. It might be a set of good solutions, the set
of solutions shown to the user so far, or some other population of solutions for
which diversity is an issue.

To be part of a general DSS toolkit, the following would be useful for diversity
measurement:

1 The methods should not be based on the presence of training data, which
is representative set of solution vectors for which the data for which the
user has indicated the correct metric. In many applications, there is no
way the user would be willing to spend enough time with the instance to
generate the training data, and if even if they did, the decision would have
to be made before they finished, rendering the training set worthless. This
is not to say that there are not situations where training data can be used,
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but a fully general-purpose method that does not assume the existence of
training data is also needed.

The methods should be based on a true metric, which means that for
metric d and all solution vectors x and y,

d(z,z) =0,

d(z,y) >0ifz # y,
d(z,y) = d{y,z), and
d(z,y) < d(z, z) + d(y, 2).

Confusing inconsistencies can crop up in a decision support system that
relies on a method without these properties. Although there has been
some psychometric research (Love 2000) questioning the importance of
symmetry requirement and the final requirement, which is often called
the triangle inequality.

It should be possible to characterize both tendency to diversify a set
of solutions and the distance between two points. This feature comes
automatically when a true metric is used because a metric induces a
topology, which enables computation of volumes. A volume corresponds
naturally to notions of size such as diversity. Hence, we can say that a
solution that would increase the volume spanned by a set of solutions
would increase its diversity. The amount of volume increase can even
be used to quantify the effect. If a true metric is not used, this feature
can be difficult to obtain. For example, an expert system can be created
that compares two solutions but this will not induce a topology unless it
results in a true metric.

Evidence concerning the structure of the solutions should affect the met-
ric. For example, correlation effects should be considered. Examine
Figure 17.1. Suppose all of the points shown have the equal objective
function values. The point labeled ’0’ would reasonably be considered
to be highly unusual even though the value in each of the two dimensions
considered in isolation is not at all unusual. The presence of a good so-
Iution with unusual correlations is typically very interesting to decision
makers.

The methods should be insensitive to changes in scale and it would be
better if they are affine equivariant, which means that stretching or rotating
measurement scales will either not alter the outcome. Column scaling to
improve the numerical stability of an optimization problem is an affine
transformation as is the standardization of a set of solution vectors to
have mean zero and unit variance. As a practical matter it can be very
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useful to have methods whose results are not qualitatively altered by such
transformations.

We will refer to this as the criteria list. Before proceeding, we pause to provide
the definition of affine equivariance for two types of functions: vector valued
and matrix valued. In both cases the functions take as arguments n column
vectors of length p in a matrix A .

Figure 17.1. A Small Set of Points in Two Dimensions

A vector valued function (e.g., location estimator) t € RP is affine equiv-
ariant if and only if for any vector b € R? and any non-singular p X p matrix
B

t(BA+b)=Bt(A)+b

and a matrix function (e.g., covariance estimator) C' € PDS(p) is affine equiv-
ariant if and only if for any vector b € RP and any non-singular p X p matrix
B

C(BA+b) = BC(A)BT,

where PDS(p) means positive definite and symmetric with dimension p.

We will not always be able to get all of these desirable features. For exam-
ple, two popular methods of measuring distance between solution vectors are
the Euclidean distance (or inner product of the differences) and the Hamming
distances, which is a count of the number of vector elements that differ. The
Euclidean metric generalizes to the family of L metrics, where it is referred to
as the Ly metric. These methods do not meet the desirable criteria in general
as noted in the following remark, which is easily verified.

REMARK 1 Euclidean distances fail on the last two items on the criteria list
and in general Hamming distances fail on all but the first.
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It is possible to mitigate scale dependencies by dividing each dimension by its
a measure of its univariate dispersion, such as the standard deviation or range.
This concept is generalized by the Mahalanobis distance.

3. Mahalanobis Distances

A p-vector x can be said to have a squared Mahalanobis distance from a
p-vector u under a p X p positive, definite symmetric matrix S that is given by

m?(p,7;8) = (x — ) S~z — p)

We use the notation m(-) to signify /m?2(-). Note that the Euclidean metric

is a special case that uses the identity matrix as .S. Mahalanobis distances are

scale invariant and take correlations into account if the matrix S is a covariance

matrix. An estimate of the covariance matrix for the population from which a
sample, A with a vectors is drawn is

1 Kt N N

> (A9 — A)(AD - T,

Jj=1

a—1

where A is the usual mean of the set of vectors. The set is indexed here by j.

The motivation for the Mahalanobis distance comes from multivariate prob-
ability theory. If a multivariate normal distribution is defined by mean y and
covariance S, then for points v governed by the distribution, the Mahalanobis
distances, m?(u,v; S), have a x? distribution (see e.g., Anderson 1984). The
use of the covariance estimate to parameterize the metric connects naturally
with a scalar measure of the diversity of a set of vectors, which is the determi-
nant of the covariance matrix of the set. The covariance matrix characterizes
the dispersion of the set and its determinant measures its volume. The assump-
tion of multivariate normality is not needed to use the covariance determinant
to measure the diversity of sets of vectors, although it does provide asymptotic
justification.

Figure 17.2 shows the influence of the shape (covariance matrix) of the
cluster on the distance calculation. Data points that are located on the same
ellipsoid have the same Mahalanobis distance to the mean of the cluster. The
Mahalanobis distances are parameterized by the covariance matrix of the data.

Adding points with large Mahalanobis distances will increase the covariance
determinant as noted by (distribution free) Remark 2 that adds some rigor to
the notion of “increasing the diversity.” The following remark is well known in
the statistics literature, so the proof is omitted.

REMARK 2 When there are multiple candidate points that can be added to a set
of points, the one with the greatest Mahalanobis distance under the covariance
estimate of the set from the mean of the set maximizes the resulting covariance
determinant.
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Figure 17.2. Data points located on the same ellipsoid have the same Mahalanobis distance to
the center of the data set.

Vector L.A. SF. Hamburg AJ8172
AD 1 0 0 0.94
AP 0 1 0 0.32
A® 1 0 1 0.04
AW 0 0 1 0.03
A® 1 0 1 0.13
Mean, 06, 02, 0.6, 0.29
Std.Dev. | 0.5 0.4 0.5 0.38

Figure 17.3. A Small Example of a Set of Solution Vectors

Note that Euclidean distances do not have this property in general.

We can use the covariance determinant to put an ordering on the diversity of
sets of solution vectors and the Mahalanobis distance to quantify the diversifying
effect of vectors on a set. The Mahalanobis distance based on the covariance
estimated from the data satisfies all four criteria on the list.

To illustrate the computations, we begin with an example shown in Fig-
ure 17.3, which is similar to the one given by (Glover, Lokketagen and Woodruft,
2000). In this contrived example, we label the fours columns as indicators for
the use of sub-contractors in L.A., S.F., and Hamburg and the in-house produc-
tion quantity of SKU AJ8172 (in thousands)

The addition of a vector B=(0,0,1,0.31) would seem to be much more diver-
sifying than C'=(0,0,1,0.04). The only variable that differs between B and C is
the production of AJ8172. Both values are within a standard deviation of the
mean for set .A so neither would be considered an outlier using only univariate
analysis. However, if one conditions the statistical analysis on the value of the
Hamburg column, a reasonable person would say that vector B does not seem
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to come from the same population as A. Le., its addition would be diversifying.
This is because for the other vectors, the production of AJ8172 is negatively
correlated with the Hamburg facility.

The Hamming distance does not distinguish. The Euclidean distance from
the mean of A to B is less than the distance to C. In other words, Euclidean
distances give the wrong answer. Scaling the elementwise contribution to the
distance by the range or standard deviation does not help (as an aside, note that
the range of binary elements that vary is always one.)

The Mahalanobis distances from the mean of A under its covariance matrix
correctly identifies B as being more distant. Unfortunately, the calculation of a
full-rank covariance matrix for a set of vectors of length p = n requires a set of
vectors that does not lie entirely in a subspace. This means that at a minimum
the set must contain n + 1 vectors and for most optimization problems, many
more vectors will typically be required to span the full n dimensions. For even
modest sized optimization problems this is not reasonable. In order to have
a working definition of diversity, thousands of solution vectors are needed.
Although it was not on our list of criteria, one would implicitly assume that a
general purpose method for measuring solution variety in a DSS would function
properly after a reasonable number of solutions having been found, with the
meaning of “reasonable” parameterizable. A remedy for this difficulty that also
increases the plausibility of normality is the use of principal components (PC).

PC is a standard statistical technique for dimension reduction. Given g,
which is the reduced dimension, we project the data vectors onto vectors in
dimension ¢ selected so that the fraction of the variance represented by the
lower dimensional vectors is as high as possible. The projection vectors used
are the first ¢ eigenvectors of the sample covariance matrix. Clearly, ¢ must
be less than the sample size used to estimate the covariance matrix, since this
bounds its rank. See, e.g., (Morrison 1990) for a detailed description. A
geometric interpretation of interest here, is that PC results in a projection on to
the principal axes of the ellipsoids of equal Mahalanobis distance. A drawback
is that the process of computing the projection vectors is not affine equivariant.

4. Fieldwork

Ultimately the long run success of topological manipulations in a DSS en-
vironment is a matter of having metrics that do a reasonable job of matching
human perceptions. This creates a need for field research.

We collected data from two different examples, each of which is small enough
to be reproduced in this paper but real examples that are large enough to be of
interest to the planners. In both cases we asked for a set of good solutions from
one or more domain experts and then asked other domain experts to provide
topological statements about the solutions.
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Pair Expert | Euclidean ¢=1 ¢=2
AL AR 273 1.15
AD A close 217 0.84
AD A | far 437 1.99

zZW 4 2488 0.32 1.1
20 4 far 2692 484 223
z2® 4 close 1105 2.12 5.1

Figure 17.4. Cisco planning example

4.1 Production Planning

Production planners at Cisco Systems, Inc. were asked to generate a varied
set of good production plans for a particular product. This planning problem
has 10 decision variables. They produced the following three plans, given in

vector form:
AD = (1060, 1040, 1200, 950, 950, 1100, 950, 950, 1100, 950);

A = (1200, 1050, 1050, 1000, 1000, 1000, 1000, 1000, 1000, 1000);
A® =(920, 920, 1160, 920, 920, 1160, 920, 920, 1160, 920).
Using the CISCO spreadsheet to produce good plans, we produced the fol-
lowing three plans
2™ = (1580, 0, 1720, 0, 1525, 1675, 0, 1600, 0, 1650);
Z® =(1900, 0, 0, 1720, 1525, 1675, 0, 1600, 0, 1650);
23 = (1240, 550, 1160, 630, 1210, 590, 1280, 920, 620, 1450).

When considering the A set alone, Cisco personnel considered A" and A®)
to be the most similar pair; A® and .A®) were deemed the least similar. From
among the solutions in set Z, Z() was thought by Cisco planners to be the
most similar to the solutions in set .4 and Z(?) was said to be the least similar.

Table 17.4 summarizes the application of various metrics to the data. Within
each group, we see that both the Euclidean metric and PC coupled with Ma-
halanobis distances qualitatively matched the Cisco personnel with respect to
the most distant solutions, which in many DSS and scatter search applications
is more important than finding similar solutions. As an aside we note that the
g = 2 results are not presented for the within-4 because the Mahalanobis dis-
tances are all the same between a group of points with only one more member
than the dimension (in this case three points in dimension 2) based on a covari-
ance estimated from the same set. An important thing to note is that the most
distant point has a distance that is beyond the 95% point of a )¢ distribution in
both the ¢ = 1 and g = 2 cases.
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4.2 Course Scheduling

Personnel responsible for scheduling courses for an MBA program were
asked to generate five good schedules and the scheduling decision maker was
asked to assess their relative distances. Schedule pairs (2,3) and (3,4) were
thought to be far apart and schedule pair (2,4) was considered to be the closest
pair.

Course schedules are not generated by people or displayed to people as nu-
merical vectors, but rather as lists of courses with corresponding meeting times
and days of the week. In order to manipulate schedules as part of a DSS or a
metaheuristic such as scatter search, a vector representation is needed. Depend-
ing on the purpose (e.g.,optimized scheduling), a variety of representations are
possible (see, e.g., Burke and Ross, 1990 or Vigla and Karaboyas, 1998).

We tried two sensible vector representations for the solutions that we were
given. For all representations, we numbered the courses. The simplest represen-
tation is to represent the schedules as a permutation vector giving the sequence
of courses, but this is too simple since it discard information about the course
meeting times. Two representations that are more sensible for distance compar-
isons are referred to as the block representation and the center representation.
For the block representation we numbered the time blocks used by courses and
created vectors indexed by the course numbers with the block number for the
course as the data for the vector element (i.e., if the course numbered three
occupies the block numbered two, then 23 = 2). Here are the five solutions in
block representation:

AN =4, 15,23, 14,21, 19, 18, 1, 17, 2, 21, 20)
AP =6, 12,25, 19, 11, 10, 18, 24, 13, 20, 1, 5)
A®) =(4,9,23,16,17, 11, 10, 5, 8, 7, 26, 24)

A® =(20,22, 1, 17, 14, 16, 10, 26, 15,22, 3, 7)
A® =(1, 19, 20, 10, 15, 13, 16, 22, 14, 26, 7, 3)

The second representation is similar. For the center representation the aver-
age meeting time during the week is computed for each course and these are
sorted and given a number based on their position in the sorted list. The vectors
are indexed by the course numbers with the data for the element given by the
center number. Here are the five solutions in center representation:

AW =(4, 16,21, 14, 17, 23,22, 1,20, 2, 17, 15)
AD = (8,12, 25, 23, 10, 9, 22, 24, 13, 15, 1, 6)
AN =4,7,21, 18, 20, 10,9, 6, 5, 11, 26, 24)
AWM =(15,19, 1, 20, 14, 18, 9, 26, 16, 19, 3, 11)
AWM =(1,23,15,9, 16, 13, 18, 19, 14, 26, 11, 3)

Table 17.5 outlines the results and Table 17.6 summarizes them. The (3,4)
pair is fairly well identified as being a well separated pair and the (2,3) pair
seems to be identified by the center representation based metrics. While ¢ = 2
seemed to work a little better in the Cisco example, it didn’t seem to work as
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Block Representation Center Representation
Pair Expert | Euclidean ¢g¢=1 g¢=2 | Euclidean ¢=1 ¢g=2
AW 4@ 414 1.64 208 38.2 153 154
AW A® 18.6 0.01  0.08 30.6 023  1.83
AN A® 49.4 208 242 43.7 197 277
AD 45 40.4 1.65 195 36.8 151  1.58
AP A® far 40.8 1.65  2.04 413 1.77  2.63
AP A@D | close 31.7 044 256 31.7 044 213
AP A® 17.0 0.01 023 28.1 0.03  0.60
A® A@D far 49.8 209 247 453 220 221
A® 4B 41.0 1.66 192 403 174 221
AW A®) 29.8 043 232 29.5 046  1.56
Figure 17.5. Course scheduling example
Block Representation Center Representation
m(-, A) m(-, A)
Pair Expert | Euclidean ¢g=1 g¢=2 | Euclidean ¢g=1 g=2
ICRVICN B 4 3 6 3 2 2
AP AD | close 4 4 10 4 3 6
AP AD | 1 1 2 1 1 3

Figure 17.6. Course scheduling example summary giving the rank sorting by increasing or
decreasing distance, as appropriate
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well as ¢ = 1 here. The pairs that were thought to be similar were not well
identified by the metrics tested.

5. Conclusions and Directions for Further Research

We have described methods for inducing a metric for the space of solutions.
The use of principal components for dimension reduction comes at the cost of
some information loss but facilitates use of covariance information. Further-
more, we provide some fundamental research concerning methods that are fully
general and do not rely on any knowledge of the problem.

There are two potential uses for metrics in the space of solutions: 1) to
identify distant vectors to add to a population and 2) to induce a topology
for support of DSS development. The second is outside the normal paradigm
of metaheuristic research, but is potentially very important. This paper has
employed field research for basic research to shed some light on this topic.

It is encouraging that the Fuclidean metric worked pretty well given ap-
propriate solution representations. There is some evidence that Mahalanobis
distances might provide better results in some settings with the appropriate di-
mension reduction using PC. Unfortunately, none of the metrics did a good job
of identifying solutions that were considered by domain experts to be close to
one another or to a population. Happily, for many of the applications in DSS’s
or in algorithm design, identifying distant solutions is the more important.

Of course, the research presented here is not conclusive and since it is be-
havioral it can never be, but the results are encouraging. In addition to the
need for additional field work, additional computational and theoretical work
would be helpful. For example, it would be useful to have some indication of
the properties of solution representations that do and do not lead to effective
discrimination of distant solutions using the Euclidean metric. The importance
of affine equivariance is also worthy of further study.

As optimization methodologies are embedded in an increasing number of
application from Enterprise Resources Planning through intelligent agents for
web search, metrics in the space of solution vectors will become an major
issue. In many of these applications one would like to have a population based
method such as scatter search so that the user can be shown a variety of good
solutions. The objective function provides a reasonable way to quantify the
meaning “good.” It is hoped that this paper provides a first step in the direction
of computational viable means of quantifying the meaning of “variety.”
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Abstract Recent metaheuristic developments have proved to be successful especially in
cases where their fundamental concepts are complemented with pool-oriented
approaches such as scatter search. These algorithms maintain a reference set
of high quality solutions which are repeatedly used during the search in order to
guarantee a fruitful balance between diversification and intensification. However,
maintaining such a pool is not a trivial undertaking. The main problem is to find a
balance between the attempt to collect a number of high quality solutions, which
often results in similar solution properties, and the need to guarantee a certain
degree of diversity in the pool. In the present study we highlight the advantage of
pool-oriented design while focusing on controlled input and output operations.
We analyze the main pool components for metaheuristics and present a review
of the literature on relevant strategies in tabu search, scatter search, and path
relinking. Additionally, we provide a synthesis of the literature that highlights
the critical aspects of effective pool maintenance.

Keywords:  Pool, Population, Elite Solutions, Diversification, Intensification, Similarity, Dis-
tance, Tabu Search, Scatter Search, Path Relinking

1. Introduction

Recently, metaheuristics have been investigated to explain the behavior, the
success, and the relationships between various generic methods. One of the key
aspects regarding metaheuristics in general is the interplay between intensifi-
cation (concentrating the search into a specific region of the search space) and
diversification (elaborating various diverse regions within the solution space).
That is, it has very often been appropriate, on one hand, to explore promising



388

regions of the search space in a detailed manner (intensification) and, on the
other hand, to lead the search into new and yet unexplored regions of the search
space (diversification). Within intelligent search including the relationship be-
tween these two significant mechanisms the exploration of memory plays a
most important role in ongoing research.

In this context, developments, e.g., in scatter search (SCS) and path relinking
(PR), Campos et al. (1999), Glover (1998), have proved to be successful where
fundamental metaheuristic concepts are complemented with pool-oriented ap-
proaches. In those a reference set of solutions (e.g., high quality or elite so-
lutions) is built, maintained, and used either repeatedly or at least once during
the search in order to guarantee a fruitful balance between diversification and
intensification. Here, fruitful indicates an intelligent interplay where intensifi-
cation does not outweigh diversification and vice versa but to use them together.
However, maintaining such a pool is not a trivial undertaking.

In this paper we primarily focus on approaches that make use of a pool where
all elements, commonly designated as elite solutions or reference set members,
are directly encoded as phenotypical solution instances. We refer to a pool as
a data structure used to store a number of solutions which have turned out to
be potentially useful throughout the search. Members of a pool are called elite
solutions. Its well-known encoding counterpart is the genotypical encoding
based population of genetic algorithms (GA). In GA terminology (see, e.g.,
Reeves 1993) a genotype means the (encoded) chromosome and the phenotype
its physical (decoded) expression.!

The meaning and consequences of these different representations are not
obvious. All the more, the more effective computational schemes or data struc-
tures work with vectors of binary variables or with permutation vectors. The
main difference is not the encoding in a computer program, but the way solu-
tions are treated in the algorithm. Phenotypical algorithms directly work on
solution representations which need not be de-/encoded, whereas genotypical
algorithms work on encoded solution representations. To our belief, we assume
that phenotypical algorithms favor a direct information utilization, whereas the
genotypical algorithms put a risk of loss of information on the fly from iterative
genotypical processing to the final result which is — as a rule — always expressed
as a phenotypical solution.

As another distinction we point out that the number of elements in a pool,
following the designs of SCS and PR, is typically smaller than commonly used
GA population sizes. Further, it is noted that the creation of a pool may only
be performed step-by-step during the search procedure and that its use need
not be a permanent one like it is done in GAs. Therefore, while discussing the
role of pool architectures, it is an important distinction in which way a pool
maintenance corresponds to the time line suggested for a specific method.
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The aim of our paper is to provide a conceptual, yet unifying framework
for pool architectures. After providing a pool template in Section 2, Section 3
gives a survey of several options and ideas for elaborating such a framework.
While the metaheuristics community currently favors the idea of including elite
solutions into such a pool based on objective function values, we incorporate
different ideas that might have been overlooked such as pool solutions based on
structural properties (e.g., measured by means of diversity instead of objective
values). In Section 4 we put several concepts found in the literature into the
light of our framework. While the discussion includes famous exponents such
as SCS and PR we emphasize other ideas, too. The discussion is moderately
interleaved with some computational results as well as hints to related studies.
Finally, some conclusions and ideas for future research are provided.

2. A Pool Template

Various approaches in the literature have shown the advantage of applying
pool based methods as they use a pool to direct or redirect the search to explore
the search space. To date, however, a unifying framework has not yet been
provided and discussed throughout the literature. While SCS may be referred
to as a forerunner to such a framework there may be additional approaches that
are similar to SCS but do not fit exactly into the SCS framework. One example
in this respect with recent interest is PR. Instead of building and maintaining a
pool, PR often starts from a given pool.

The aim of this section is to propose new ideas of how a pool method may be
composed, which tasks are combined in main functions, and which evaluation
approaches have been neglected in the literature. In doing so, first, the main
focus lies on transfer functions and their detailed design with respect to the
relations that are contained in the aggregated information of solution subsets.

Based on the idea of a pool template, we have various optional processes to be
performed if a heuristic algorithm works in conjunction with a pool component.
While such a component may serve several aims, the most important aspect is to
collect high-quality information? These processes are directly reflected in some
components of the source code which describes a heuristic procedure. For the
sake of an easy explanation we call them input function and output function (I1F
and OF). Generally, an I F' decides upon the inclusion of a new potential elite
solution into the pool, whereas an OF refers to the generic output questions.
As pointed out above, an elite solution is any solution that has been accepted
for inclusion in the pool. Both, I F' as well as OF), are equipped with facilities
to incorporate intensification and diversification issues. The main algorithmic
settings to be clarified and, therefore, essential questions are the following,.

The basis of our further investigations is a pool template (PT), where the
following notations are used (cf. Figure 18.1). A pool of p > 1 solutions is
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denoted by P. Its input and output transfer is managed by two functions which
are called IF and OF, respectively. S is a set of solutions with cardinality
s > 1. A solution combination method (procedure SC M) constructs a solution
from a given set S, and /M is an improvement method.

1. [Initialize P by an external procedure
WHILE termination=FALSE DO BEGIN
2. S:=OF(P)
3. IFs>1THENS :=SCM(S)ELSES' ;=S5
4. 8" :=1IM(S")
5. P:=1F(S")
END
6. Apply a post-optimizing procedure to P

Figure 18.1. Pool Template

Depending on the method used, in Step 1 either a pool is completely (or
partially) built by a (randomized) diversification generator or filled with a single
solution which has been provided, e.g., by a simple greedy mechanism. Note
that a crucial parameter that deserves careful elaboration is the cardinality p
of the pool. The main loop, executed until a termination criterion becomes
true, consists of Steps 2 to 5. Step 2 is the call of the output function which
selects a set of solutions, S, from the pool. Depending on the kind of method
represented in the PT, these solutions may be assembled (Step 3) to a working
solution .S’ which is the starting point for the improvement phase of Step 4.
The outcome of the improvement phase, S”, is then evaluated by means of
the input function which possibly feeds the new solution into the pool. Note
that a post-optimizing procedure in Step 6 is for facultative use. Although it
is usually not contained in many heuristics, it is strongly recommended to do
so (see, e.g., Moscato 1993). It may be a straightforward greedy improvement
procedure if used for single-solution heuristics or a pool method on its own.
As an example we quote a sequential pool method, the tabu search with path
relinking in Bastos and Ribeiro (2000). Here a PR phase is added after a tabu
search (TS) has built the necessary pool. A parallel pool method on the other
hand uses a pool of solutions while it is constructed by the main or guiding
procedure (e.g., a GA or SCS).

Several heuristic and metaheuristic paradigms, which are more or less pool-
oriented or are not pool-oriented at all, can be summarized under the common
PT frame:3

a) Local Search: PT withp = s = 1.
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b) Simulated Annealing: p = 2,s = 1 incorporating its probabilistic ac-
ceptance criterion in IM 4

¢) Standard Tabu Search: p = 2, s = 1 incorporating adaptive memory in
IM.

d) Genetic Algorithms: p > 1 and s > 1 with population mechanism
(crossover, reproduction and mutation) in SCM of Step 3 and without the
use of Step 4.

€) Scatter Search: p > 1 and s > 1 with subset generation in OF of Step 2,
linear combination of elite solutions by means of SCM in Step 3,e.g.,a
tabu search for procedure IM and a reference set update method in I F'
of Step 5.

f) Path Relinking (as a parallel pool method): p > 1 and s = 2 with a path
relinking neighborhood in SC M. Facultative use of Step 4.

For excellent framework discussions in the spirit of our work the reader may
refer, e.g., to Vaessens, Aarts and Lenstra (1998), Hertz and Kobler (2000),
Taillard et al. (1998).5 It should be noted that the primary intention of this paper
is not to provide the PT as a new framework within the field of metaheuristics
(even if PT may be classified in this way) but to provide a discussion of options
for combining search intensification and search diversification by means of pool
oriented approaches. Furthermore, these important issues within metaheuristics
are not mutually exclusive but simultaneous features.

An early local search framework or template is given in Vaessens, Aarts and
Lenstra (1998). Some additional insights on a framework regarding evolution-
ary algorithms are provided in Hertz and Kobler (2000). According to them,
on a simplified scale many algorithms may be coined evolutionary if they can
be reduced to the following frame:

1 Generate an initial population of individuals
2 While no stopping condition is met do

(a) cooperation
(b) self-adaptation

Cooperation refers to an information exchange among individuals while self-
adaptation refers to the fact that individuals (solutions) evolve independently.
The phrase adaptive memory programming (AMP) emerged in connection
with TS to refer to a collection of general and flexible memory-based strategies
to enhance the power of heuristic search (Glover 1997). Considerations relevant
to incorporating adaptive memory within other metaheuristics are also described
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in Taillard et al. (1998). That is, iteratively constructing (new) solutions based
on the exploitation of some sort of memory (as we intend to do based on our pool
approach) may be viewed as AMP process, especially when guided by learning
mechanisms, that help to adapt the collection and use of the memory. Based on
the simple idea of initializing the memory and then iteratively generating new
solutions (utilizing the given memory) while updating the memory based on the
search, most metaheuristics can be subsumed by the AMP approach. This also
includes the idea to exploit provisional solutions in population based methods
that are improved by a local search approach. For an interesting empirical study
which may fit into the AMP frame as well as into our pool template, see Fleurent
and Glover (1999).

3. Options for Elaborating a Pool Template

In this section we discuss ideas for elaborating a framework as developed
above by means of the PT. Based on some key components for the mainte-
nance of a pool we show possible uses in the interplay of intensification and
diversification. Most importantly, we investigate quality measures to define,
incorporate, and use elite solutions.

31 Key Components for Pool Maintenance

Forboth, I F and OF, a basic design decision relates to the timing of the pool
changes, i.e., to the point in time when it is indicated to change the content,
and, in doing so, eventually the structure of the pool. Regarding an I'F' the
following questions need to be addressed?

= At which time should an I F' be called and applied ({ Fijpme)?
= How many solutions should be added into the pool (I Fyumper)?”

»  How is the quality of a solution and its potential input status determined
(I F, quality)?

®  Which element(s) should be removed (I Fr.epmope) from the pool to make
room for new arrivals?

Regarding an OF the following questions may be considered:
m When should a solution be taken from the pool (O Fjpe)?

®  How many solutions should be taken from the pool (O Fymper)?

»  How can these solutions be identified? This is again a question of quality
(OFyquaiity), even if it is seen from the other end of the quality spectrum.
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s In which way should these solutions be used to improve the search
(OFyse)?

The above description structures the main problematic nature of pool man-
agement but it can be easily seen that several questions directly refer to more
than one functional aspect such as I Fyqity and O Fyyqiity or O Fpymper and
OF,se. Table 18.1 summarizes the main pool functions and the next paragraphs
specify some more or less well-known approaches from the literature, which
can give an answer to the questions raised above.

Table 18.1. Summary about pool functions

IF OF
time 1 Fyime OFime
quality IFpaity OFgquality
removal IF cmove —
how many 1 OF, number
use — OF, ;e

IFiime and OFy;e: Answers to these are both, simple and complex. The
moment of a pool input (I Fi;y,.) can be easily recognized. Generally, this is
the case when it is advisable, due to an I Fy,q14, evaluation, to store the current
solution. Output times (O Fy;,) also may be uniquely given where the heuristic
method itself iteratively needs a set of solutions as it is the case for all SCMs. By
far more difficult is the decision when to make use of the pool if diversification
or intensification tasks should be performed. This may be triggered by adaptive
memory or running time and/or storage restrictions.

IFpuaiity and O Fgyqpity: The main aspect in evaluating a given solution
certainly is its associated objective value. In the literature the better-than-
worst (I Fgyaiity) and the best-of-the-pool approach (O Fgyqu4ty) are the most
frequently used techniques. Here a current solution is fed into the pool if it
improves on the current worst solution of the pool, whereas on the output side
always the best element of the pool, which is usually the current best solution, is
chosen to be reconsidered. Note that counterarguments against this proceeding
may easily be developed as the current best solution might not only diversify
the search but also lead it into a local optimum or a basin of attraction with only
local optima which need not be globally optimal.

Other settings for the input as well as the output side come from evolutionary
and/or genetic optimization. Well-known choice criteria in this context, all of
them based on randomization, are the use of uniformly distributed selections,
the roulette wheel criterio