


SYSTEM MODELING AND OPTIMIZATION 



IFIP - The International Federation for Information Processing 

IFIP was founded in 1960 under the auspices of UNESCO, following the First World 
Computer Congress held in Paris the previous year. An umbrella organization for societies 
working in information processing, IFIP's aim is two-fold: to support information processing 
within its member countries and to encourage technology transfer to developing nations. As 
its mission statement clearly states, 

IFIP's mission is to be the leading, truly international, apolitical organization 
which encourages and assists in the development, exploitation and application 
of information technology for the benefit of allpeople. 

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It operates 
through a number of technical committees, which organize events and publications. IFIP's 
events range from an international congress to local seminars, but the most important are: 

The IFIP World Computer Congress, held every second year; 
Open conferences; 
Working conferences. 

The flagship event is the IFIP World Computer Congress, at which both invited and 
contributed papers are presented. Contributed papers are rigorously refereed and the rejection 
rate is high. 

As with the Congress, participation in the open conferences is open to all and papers may be 
invited or submitted. Again, submitted papers are stringently refereed. 

The working conferences are structured differently. They are usually run by a working group 
and attendance is small and by invitation only. Their purpose is to create an atmosphere 
conducive to innovation and development. Refereeing is less rigorous and papers are 
subjected to extensive group discussion. 

Publications arising from IFIP events vary. The papers presented at the IFIP World Computer 
Congress and at open conferences are published as conference proceedings, while the results 
of the working conferences are often published as collections of selected and edited papers. 

Any national society whose primary activity is in information may apply to become a full 
member of IFIP, although full membership is restricted to one society per country. Full 
members are entitled to vote at the annual General Assembly, National societies preferring a 
less committed involvement may apply for associate or corresponding membership. Associate 
members enjoy the same benefits as full members, but without voting rights. Corresponding 
members are not represented in IFIP bodies. Affiliated membership is open to non-national 
societies, and individual and honorary membership schemes are also offered. 



SYSTEM MODELING 
AND OPTIMIZATION 
Proceedings of the 21'' IFlP TC7 Conference held in 
July 21"-25'" 2003, Sophia Antipolis, France 

Edited by 

John Cagnol 
P61e Universitaire Leonard de Vinci, 
Paris, France 

Jean-Paul Zolesio 
CNRS/INRIA 
Sophia Antipolis, France 

KLUWER ACADEMIC PUBLISHERS 



John Cagnol 
P81e Universitaire LConard de Vinci 
Courbevoie, FRANCE 

Jean-Paul Zolksio 
CNRSJINRIA 
Sophia Antipolis, FRANCE 

Library of Congress Cataloging-in-Publication Data 

A C.I.P. Catalogue record for this book is available from the Library of 
Congress. 

SYSTEM MODELING AND OPTIMIZATION / Edited by John Cagnol, 
John-Paul ZolCsio. 

p.cm. -(The International Federation for Information Processing) 
Includes bibliographical references.. 

ISBN: (HC) 1-4020-7760-21 (eBOOK) ISBN: 0-387-23467-5 
Printed on acid-free paper. 

Copyright O 2005 by International Federation for Information Processing. 
All rights reserved. This work may not be translated or copied in whole or in part 
without the written permission of the publisher [Springer Science+Business Media, 
Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in 
connection with reviews or scholarly analysis. Use in connection with any form of 
information storage and retrieval, electronic adaptation, computer software, or by 
similar or dissimilar methodology now know or hereafter developed is forbidden. 
The use in this publication of trade names, trademarks, service marks and similar 
terms, even if the are not identified as such, is not to be taken as an expression of 
opinion as to whether or not they are subject to proprietary rights. 

Printed in the United States of America. 

9 8 7 6 5 4 3 2 1  SPIN 11054290 (HC) 1 11333548 (eBook) 
springeronline.com 



Contents 

Foreword 

Organizing Institutions 

Contributing Authors 

Toward a Mathematical Theory of Aeroelasticity 1 
A. V. Balakrishnan 

1 The Wing Model 3 
2 The Aerodynamic Model 4 
3 Time-Domain Formulation of Control Problem 14 

Uniform Cusp Property, Boundary Integral, and Compact- 
ness for Shape Optimization 25 

Michel C. Delfour, Nicolas Doyon, Jean-Paul Zole'sio 
1 Preliminaries: Topologies on Families of Sets 26 
2 Extension of the Uniform Cusp Property 27 
3 Extended Uniform Cusp Property and Boundary Integral 30 
4 Compactness under the Uniform Cusp Property and a Bound 

on the Perimeter 3 7 

Interior and Boundary Stabilization of Navier-Stokes Equa- 
tions 4 l 

Roberto Triggiani 
1 Introduction 42 
2 The Main Results 45 
3 Introduction 48 
4 Main Results (Case d = 3) 54 

Matrix Rounding with Application to Digital Halftoning 59 
Naoki Katoh 

1 Introduction 59 
2 Mathematical Programming Formulations 63 
3 Geometric Families of Regions Defining Unimodular Hypergraphs 66 
4 Algorithms for Computing the Optimal Rounding 6 7 
5 Upper Bounds for the Lp-Discrepancy 68 
6 Application to Digital Halftoning 68 
7 Global Roundings 69 
8 Concluding Remarks 7 1 



vi SYSTEM MODELING AND OPTIMIZATION 

Nonlinear Programming: Algorithms, Software, and Appli- 
cations 73 

Klaus Schittkowski, Christian Zillober 
1 sequential Quadratic Versus Sequential Convex Programming 

Methods 76 
2 Very Large Scale Optimization by Sequential Convex Program- 

ming 84 
3 Case Study: Horn Radiators for Satellite Communication 88 
4 Case Study: Design of Surface Acoustic Wave Filters 93 
5 Case Study: Optimal Control of an Acetylene Reactor 9 7 
6 Case Study: Weight Reduction of a Cruise Ship 102 

Stochastic Modeling and Optimization of Complex Infras- 
tructure Systems 109 

P. Thoft-Christensen 
1 Formulation of the Cost Optimization Problem 110 
2 Bridge Networks 11 1 
3 Estimation of Service Life of Infrastructures 112 
4 Stochastic Modeling of Maintenance Strategies 114 
5 Design of Long Bridges 115 
6 Conclusions 120 

Feedback Robust Control for a Parabolic Variational In- 
equality 123 

Vyacheslav Maksimov 
1 Introduction 123 
2 Statement of the Problem 124 
3 The Algorithm for Solving Problem 1 127 
4 The Algorithm for Solving Problem 2 131 

Tracking Control of Parabolic Systems 
Luciano Pandolji, Enrico Priola 

1 Introduction and Preliminaries 
2 The Tracking Problem 

Modeling of Topology Variations in Elasticity 147 
Serguei A. Nazarov, Jan Sokolowski 

1 Problem Formulation 148 
2 Modeling of Singularly Perturbed Boundary Value Problem 150 
3 Modeling with Self Adjoint Extensions 151 
4 Modeling in Spaces with Separated Asymptotics 152 
5 How to Determine the Model Parameters 153 
6 Spectral Problems 156 

Factorization by Invariant Embedding of Elliptic Problems 
in a Circular Domain 159 

J. Henry, B. Louro, M.C. Soares 
1 Motivation 160 
2 Formulation of the Problem and a Regularization Result 161 
3 Factorization by Invariant Embedding 162 



Contents vii 

4 Sketch of the Proof of Theorem 2 164 
5 Factorization by Invariant Embedding: Dual Case 166 
6 Sketch of the Proof of Theorem 7 168 
7 Final Remarks 170 

On Identifiability of Linear Infinite-Dimensional Systems 171 
Yury Orlov 

1 Basic Definitions 172 
2 Identifiability Analysis 174 

An Inverse Problem For the Telegraph Equation 177 
A. B. Kurzhanski, M. M. Sorokina 

1 The Telegraph Equation and the Estimation Problem 178 
2 Some Properties of the Telegraph Equation 180 
3 Observability 181 
4 The Filtering Equations 184 
5 The Duality of Optimal Control and Observation problems 187 

Solvability and Numerical Solution of Variational Data As- 
similation Problems 191 

Victor Shutyaev 
1 Statement of Data Assimilation Problem 191 
2 Linear Data Assimilation Problem 193 
3 Solvability of Nonlinear Problem 196 
4 Iterative Algorithms 198 

Exist-ence of Solutio,ns to.Evolutiqn Second O r d ~ r  Hemivari- 
ational Inequalities with Multivalued Damping 203 

Zdzistaw Denkowski , Stanistaw Mzgdrski 
1 Motivation 205 
2 Preliminaries 207 
3 Existence Theorem 210 

Probabilistic Investigation on Dynamic Response of Deck 
Slabs of Highway Bridges 217 

Chul- Woo K i m ,  Mitsuo Kawatani 
1 Governing Equations of Bridge-Vehicle Interaction System 218 
2 Model Description 221 
3 Simulation of Impact Factor 224 
4 Concluding Remarks 227 

Optimal Maintenance for Bridge Considering Earthquake 
Effects 229 

Hitoshi Furuta, Kazuhiro Koyama 
1 Earthquake Occurrence Probability in Service Time 230 
2 Analysis of Required Yield Strength Spectrum 231 
3 Reliability Analysis of Steel Bridge Pier 233 
4 Life-Cycle Cost Considering Earthquake Effects 236 
5 Conclusion 237 



. . . 
vm SYSTEM MODELING AND OPTIMIZATION 

Uniform Decay Rates of Solutions to a Nonlinear Wave 
Equation with Boundary Condition of Memory Type 239 

Marcelo M. Cavalcanti, Vale'ria N. Domingos Caualcanti, Mauro L. Santos 
1 Notations and Main Results 243 
2 Exponential Decay 246 
3 Polynomial Rate of Decay 251 

Bayesian Deconvolution of Functions in RKHS using 
MCMC Techniques 

Gianluigi Pillonetto, Bradley M. Bell 
1 Introduction 
2 Preliminaries 
3 Statement of the Estimation Problem 
4 MCMC Deconvolution Algorithms in RKHS 
5 Numerical Experiments 
6 Conclusions 
Appendix: Proof of Theorem 6 

Modeling Stochastic Hybrid Systems 
Mrinal K. Ghosh , Arunabha Bagchi 

1 Stochastic Hybrid Model I 
2 Stochastic Hybrid Model I1 
3 Conclusion 

Mathematical Models and State Observation of the Glucose- 
Insulin Homeostasis 281 

A. De Gaetano, D. Di Martino, A. Germani, C. Manes 
1 Asymptotic State Observers 283 
2 The Minimal Model 285 
3 The Fisher Model 288 
4 Glucose Feedback Model 291 
5 Conclusions and Future Developments 293 

Convergence Estimates of POD-Galerkin Methods for 
Parabolic Problems 295 

Thibault Henri, Jean-Pierre Yvon 
1 Principle of Proper Orthogonal Decomposition (POD) 296 
2 Problem Formulation 298 
3 Estimates of the Error of POD-Approximation in a Regular Case299 
4 Choosing the Order of Approximation 303 
5 Conclusion 305 



Foreword 

This volume comprises selected papers from the 21st Conference on 
System Modeling and Optimization that took place from July 21st to 
July 25th, 2003, in Sophia Antipolis, France. This event is part of a series 
of conferences that meet every other year and bring together the seventh 
Technical Committee of the International Federation for Information 
Processing (IFIP). It has been co-organized by three institutions: In- 
stitut National de Recherche en Informatique et Automatique (INRIA), 
P d e  Universitaire Lkonard de Vinci and Ecole des Mines de Paris. It 
was chaired by Jean-Paul ZoEsio and co-chaired by John Cagnol. 

IFIP is a multinational federation of professional and technical or- 
ganizations concerned with information processing. The Federation is 
organized into the IFIP Council, the Executive Board, and the Techni- 
cal Assembly. The Technical Assembly is divided into eleven Technical 
Committees of which TC 7 is one. The TC 7 on system modeling and 
optimization aims to provide an international clearing house for compu- 
tational, as well as related theoretical, aspects of optimization problems 
in diverse areas and to share computing experience gained on specific 
applications. It also aims to promote the development of importants 
high-level theory to meet the needs of complex optimization problems 
and establish appropriate cooperation with the International Mathemat- 
ics Union and similar organizations. In addition, IFIP fosters interdis- 
ciplinary activity on optimization problems spanning the various areas 
such as Economics, including Business Administration and Management, 
Biomedicine, Meteorology, etc. in cooperation with associated interna- 
tional bodies. The technical committee is composed of seven working 
groups and is chaired by Irena Lasiecka. It was founded by A.V. Bal- 
akrishnan, J.L. Lions and M. Marchuk. 

System modeling and optimization are two disciplines arising from 
many spheres of scientific activities. Their fields include, but are not 
limited to: bioscience, environmental science, optimal design, transport 
and telecommunications, control in electromagnetics, image analysis, 
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multiphisics systems that are coupled by moving interfaces, free bound- 
ary problems, non cylindrical evolution control, etc ... The emergence of 
smart materials allows the existence of new actuators and new configura- 
tions, and thus we are required to revisit many classical settings. For ex- 
ample, the dynamical systems involved are often non autonomous. The 
uncertainty in the modeling and the robustness (or the lack thereof) re- 
sults in stochastic modeling. In addition, intrinsic geometry is increasing 
in control theory since the boundaries are moving and minimal regular- 
ity is sought. The coupling of fluid and structural mechanics leads to the 
superposition of Eulerian and Lagrangian representations. The coupling 
of several physical models such as fluid (wind, blood, solar flux,...), struc- 
tures (elastic shell, elasto-plastic crash, airfoils, arteries,...), electromag- 
netism (antennas, dynamical frequency assignations, nerves and heart 
control), thermal effects (rheology, boundary conditions, damping,. . .) , 
acoustics (supersonic plane, sound control, helicopter cabin noise reduc- 
tion.. .) , and chemical effects (climate, pollution, ionisation,. . . .) lead to 
hierarchical modeling associated with multiscale control theory and com- 
putation. Optimization and optimal control of such systems include in- 
verse problems and topological identification analysis for applications to 
non destructive control such as cracks and surface identifications. Many 
of these problems lead to non linear, non quadratic control problems. 

The editors would like to acknowledge the contributions of the many 
members of the IFIP Program Committee who have given valuable 
advice. They would like to thank George Avalos, Arunabha Bagchi, 
Francesca Bucci, Dan Dolk, Hitohsi Furuta, Irena Lasiecka, Catherine 
Lebiedzik, Guenter Leugering, Zdzislaw Naniewicz, Vyacheslav Maksi- 
mov, Luciano Pandolfi, Mike Polis, Hans-Jiirgen Sebastian, Irina Siver- 
gina, Jan Sokolowski, Marc Thiriet and Fredi Troeltzsch for accepting 
to organize minisymposia. 

The editors would also like to thank Michel Cosnard, head of INRIA- 
Sophia Antipolis who made possible the organization of the conference 
and Yves Laboureur head of the Sophia-Antipolis branch of the Ecole 
des Mines for hosting the conference. 

Finally, the chair and co-chair would like to thank their wives Monique 
and Bethany for their support and help during the organization of the 
conference. 

John Cagnol and Jean-Paul Zol6sio 



Organizing Institutions 

INRIA, the National Institute for Research in Computer Science and 
Control, was created in 1967 at Rocquencourt near Paris. INRIA is a 
public scientific and technological establishment under the joint super- 
vision of the Research Ministry and the Ministry of Economy, Treasury 
and Industry. INRIA's mission is to be a world player, a research in- 
stitute at the heart of the information society. INRIA aims to network 
skills and talents from the fields of information and computer science 
and technology from the entire French research system. This network 
allows scientific excellence to be used for technological progress, for cre- 
ating employment, and prosperity and for finding renewed applications 
in response to socio-economic needs. Its decentralized organization (six 
research units), small autonomous teams, and regular evaluation enable 
INRIA to develop partnerships with 95 research projects shared with 
universities, Grandes Ecoles and research organizations. 

P61e Universitaire Lkonard de Vinci is a private university founded 
in 1995, and located in Paris La Dkfense, France. It includes an ac- 
credited engineering school with several departments: Scientific Com- 
putation, Computer Science, Financial Engineering and Computational 
Mechanics. These programs have received very positive feedback from 
the industry. 

The Ecole des Mines de Paris was founded in 1783 by Louis XVI. 
It was originally a mining school. The exploitation and processing of 
raw materials formed the basis of the development of Europe's economy. 
The art of mining in particular was one area in which scientific thinking 
had to be applied. Naturally, the focus of the School closely followed 
industrial development and the Ecole des Mines now studies, develops 
and teaches a wide range of sciences and techniques of value to engineers, 
including economic and social sciences. Today the Ecole des Mines de 
Paris is split into four locations: Paris, Fontainebleau, Evry and Sophia 
Antipolis. 
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TOWARD A MATHEMATICAL THEORY 
OF AEROELASTICITY 

A.V. Balakrishnan* 
Flight Systems Research Center 
UCLA 
bal@ee.ucla.edu 

Abstract This paper initiates a mathematical theory of aeroelasticity centered 
on the canonical problem of the flutter boundary - an instability en- 
demic to aircraft that limits attainable speed in the subsonic regime. 
We develop a continuum mathematical model that exhibits the known 
flutter phenomena and yet is amenable to analysis - non-numeric the- 
ory. Thus we model the wing as a cantilever beam and limit the aero- 
dynamics to irrotational, isentropic so that we work with the quasi- 
linear Transonic Small Disturbance Equations with the attached flow 
and Kutta-Joukowsky boundary conditions. We can obtain a Volterra 
expansion for the solution showing in particular that the stability is de- 
termined by the linearized model consistent with the Hopf Bifurcation 
Theory. Specializing to linear aerodynamics, the time domain version 
of the aeroelastic problem is shown to be a convolution-evolution equa- 
tion in a Hilbert space. The aeroelastic modes are shown to be the 
eigenvalues of the infinitesimal generator of a semigroup, which models 
the combined aerostructure state space dynamics. We are also able to 
define flutter boundary in terms of the "root locus" - the modes as 
a function of the air speed U .  We are able to track the dependence 
of the flutter boundary on the Mach number - a crucial problem in 
aeroelasticity - but many problems remain for Mach numbers close to 
one. The model and theory developed should open the way to Control 
Design for flutter boundary expansion. 

Introduction 
To a mathematician specializing in the problems of stability and con- 

trol for partial differential equations, Aeroelasticity offers a fertile, if 
challenging, field of application. Currently, however, to a mathemati- 

'Research supported in part by NASA Grant NCC4-157 
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cian - even an applied mathematician - Aeroelasticity (to paraphrase 
Richard E. Meyer, in Introduction to Mathematical Fluid Dynamics [I]) 
"appears to be built on a quicksand of assorted intuitions" - plus nu- 
merical approximations. This paper is a first halting step toward a 
"mathematical theory of Aeroelasticity." 

The canonical problem of Aeroelasticity is flutter. It is an instability 
endemic to aircraft wings that occurs at high enough airspeed in subsonic 
flight and thus limits the attainable speed. The purpose of Control 
Design is to "expand" this "flutter boundary." 

Control Design, however, requires a mathematical model that is sim- 
ple enough for non-numeric analysis and yet displays the phenomena of 
interest - in this case flutter. In contrast almost all the extant work 
on this problem has been computational (see the review paper by Fried- 
mann [2]). Computational techniques despite their success and universal 
use, require that numerical parameters be specified and thus cannot con- 
tribute to Control Design. The lack of a faithful enough mathematical 
model is undoubtedly one reason why all attempts at flutter control 
have failed so far. As we shall show, the kind of models needed require 
crucially recent advances in boundary control of partial differential equa- 
tions. Even then many purely mathematical questions relating to the 
model are unanswered as yet. 

We begin in Section 2 with the wing model, incorporating in addi- 
tion a model for self-straining actuators. Section 3 is devoted to the 
aerodynamic model where we derive the TSD Equation from the Full 
Potential Equation clarifying the many assumptions made, and allowing 
for nonzero angle of attack. We linearize the TSD Equation and show 
it can be solved by the Possio Integral Equation, generalized to include 
nonzero angle of attack. We also develop a solution to the Linear Non- 
homogeneous TSD Equation for zero initial and boundary conditions. 
Using these results we show how to construct a power series expansion 
- actually a Volterra kernel series expansion for the solution of the 
nonlinear TSD Equation. We are then able to obtain what is perhaps 
the most significant result - that the stability of the system is deter- 
mined by the stability of the linear system - consistent with the Hopf 
Bifurcation Theory. 

In Section 4 we go on to the abstract or time domain formulation 
of the flutter control problem. It turns out to be convolution-evolution 
equation in a Hilbert Space for the structure state - which is not quite 
the full state for which we used to go to a Banach Space formulation, 
enabling us to identify the aeroelastic modes as eigenvalues of the in- 
finitesimal generator of the Banach Space semigroup. Of primary inter- 
est on the practical side is the calculation of these modes. This in turn 
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leads to the "root locus" - the modes as a function of U - and the 
definition of flutter speed. The dependence of the flutter speed on M is 
an important unresolved issue here. 

1. The Wing Model 
The wing is modelled as a flexible structure - the flexibility is of 

course the key feature - as a "straight" uniform rectangular plate. Iden- 
tifying the modes of the wing structure is one of the standard activities 
(vibration testing) in flight centers. The structure model must have the 
ability to conform to the first few measured modes at least. Following 
the model initiated by Goland [3] in 1954 we allow two degrees of free- 
dom - plunge (displacement) and pitch (angle) about the elastic axis. 
Let 

where .! is the wing span (one sided). Then the Goland model is: 

where K, is the differential operator 

and L(s, t ) ,  M ( s ,  t )  denote the aerodynamic lift and moment. We are 
thus modelling the structure as a beam which would imply that the 
spread 2b ("chord length") is "small" compared to the span e. Following 
Goland the beam is a cantilever clamped at the root s = 0 and free at 
the tip s = !, so that we have the end conditions: at the root: 
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where the super primes denote derivative with respect to s and the 
superdots denote time derivatives, in the usual notation. 

We will need to change the tip conditions to: 

if we wish to include a generally accepted model for self-straining actu- 
ators, with gh , go 2 0 being the gains. 

2. The Aerodynamic Model 

The aerodynamics is far the more complicated part. To comply with 
space limitation, the presentation will need to be quite compressed with 
minimal details of proofs. 

To begin with, we shall assume the flow to be non-viscous. Next we 
will assume that it is isentropic and that the Perfect Gas Law applies. In 
this case, as shown in [4], the flow can be described by a velocity potential 
q!J(x, y, z ,  t )  which satisfies the so-called Full Potential Equation given by: 

where q, is the free stream (far-field) velocity and a, is the free stream 
(far-field) speed of sound, V denotes gradients in the usual notation, and 

the far stream Mach number assumed 5 1, and y is the ratio of specific 
heats. 

This equation would appear to be complex but fortunately can be 
simplified since our primary concern is stability. Hence we go one level 
down to the Transonic Small Disturbance Equation - there are various 
versions [6], [lo] but we shall follow Nixon [5]  - see also [4]. Thus we 
assume that 0-003 c p = -  

U 
is "small" (see below for how it is used) where 4, is the undisturbed or 
far stream potential: 

4, = (xql + 942 + ~ 9 3 )  u, 
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2 - U - 14m12, 9: + 9; + 9; = 1. 

We have then the TSD Equation for cp (see [7, equation 2.221): 

Note that this is a quasi-linear equation with the right hand side neither 
elliptic nor hyperbolic, studied by Tricomi [6] ,  Bers [7], Guderley [8], 
extensively, specialized to the stationary case. 

2.1 The Aeroelastic Problem 
Our interests are different in that we need to go beyond Transonic 

Aerodynamics to Transonic Aeroelasticity, as reflected in our preoccu- 
pation with the boundary conditions: 

i) Flow Tangency Condition: 

where w,(x, y, t) the "downwash" is the normal velocity of the structure. 
For our structure model of zero thickness, with x(x, y, t )  denoting the in- 
stantaneous displacement of the wing along the x-axis, we can calculate 
that: 

where x = ab locates the elastic axis of the wing in the xy plane. 

ii) Kutta- Joukowsky Conditions: 

"Zero pressure jump off the wing and at the trailing edge" (10) 
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Now from [4] we have that pressure p(x, y, x, t )  can be expressed as 

where p(x, y, z, t )  is the density, and 

where $(x, y, x, t )  is the acceleration potential 

Now consistent with our small disturbance assumption, 

Lu2 - 
2 $(x, Y, x, t )  

can be approximated as 

Further 

as in [4] can be approximated: 

Hence finally 

Hence the pressure jump 
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Hence we may express the Kutta-Joukowsky condition as: 

where 

The lift L(s,  t )  in (1) is then given by 

and so the moment M(y, t )  in (1) is given by 

We have thus completed our aeroelastic model, simplified to "small 
disturbance" theory. As Nixon notes in his review paper: The TSD (7) 
is the "minimum complexity equation that should be used for transonic 
flow prediction ..." The first mathematical question is of course that of 
existence and uniqueness of solution for (7) subject to the stipulated 
boundary conditions. We may and do take the initial conditions to 
be zero, since we are interested only in the question of stability. Note 
that we have a "boundary-input" problem - the input being the nor- 
mal velocity of the wing w,(x, y, t )  and the "output" may be taken as 
4 (x, y, x, t )  . For arbitrary w, (x, y, t) , we have thus a pure aerodynamic 
problem which we need to solve first. For the aeroelastic problem the 
function w,(x, y, t) is linear in the structure state: 

Heuristically then, by invoking physical realizability or Duhamel's prin- 
ciple we would have 

L(., t )  = C(Z(.,  o), t - o) do It 
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where C(+ , t ) ,  M ( . ,  t )  are nonlinear operators. This would make (1) a 
nonlinear "integro-differential" equation. We are primarily interested in 
the stability properties as a function of U for fixed M ,  particularly in 
the transonic case for M > 0.8. 

2.2 The Incompressible Case 

Before we proceed to the general problem there is one special limiting 
case - the "incompressible flow" case, corresponding to M = 0 which 
is much the backbone of Aeroelasticity Theory. Thus we divide through 
by a& first in (7) and allow M, -+ 0, a, + oo but keeping 

finite. Then (7) (as well as in the Full Potential Equation ( 5 ) ! )  simplifies 
to 

so that the flow is incompressible and the field equation is stationary, 
but of course U enters via the boundary conditions (9) and (10). Un- 
fortunately this "3D problem for a finite wing" is still unsolved at this 
level of generality and we refer to [9] for a recent treatment. 

2.3 High-Aspect Ratio Wings: Typical Section 
Theory 

We now make a further simplifying assumption: 

which is the mathematical equivalent of "high" aspect ratio wing. Or, 
formulated another way, we drop the dependence on y so that we have 
a "typical section" theory. Thus (7) becomes 

at2 
+ s ina  - 

dzdt 

- - 1 - M& cos2 a - (1 + Y) M& cos a - 
dx dx2 "I 
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with the boundary conditions 

Note that as far as the aerodynamics is concerned, the span parameter 
s is fixed. And the Kutta-Joukowsky conditions: 

where 

There are as yet no general existence uniqueness results for this class 
of problems. This is typical for this area. Here we shall present a general 
solution technique. 

2.4 The Linear TSD Equation: Possio Integral 
Equation 

First however we need to consider the linear (or "linearized," as we 
shall show below) TSD which is obtained by eliminating the nonlinear 
or quasi-linear part - that is setting 

in (7a), but with the same boundary conditions, which would make the 
spatial part elliptic. Thus the linear TSD is 

d2 v 
a t2  

+ 2U cos a - ( axa t  
+ s ina  - 

Ozdt a2v 1 

Details of the function space or "abstract" formulation of this problem 
for a = 0 are given in [ll], and extended to the case a # 0 in [4]. The 
technique is to go to the equivalent formulation as an integral equation 
called the Possio Integral Equation after the initiator Possio [12], after 
taking Laplace Transforms - (actually Fourier Transforms in the early 
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work as in 1121). It is customary to do this in terms of the function 

Note that the Kutta condition requires 

Because of the primary interest in stability, we work with Laplace Trans- 
forms. Thus let 

A ( X , A )  = Lrn e-ht A(X,  t )  dt, Re X > o, 

and 
rco 

&,(x,X) = e-" ww,(x, t )  dt. 

We have (the Possio Integral Equation valid for nonzero-angle-of-attack) 
normalizing b to 1 and X to k = 8 (see [4]). 

where 

- - 
1 ~~k~ + 2 ~ ' k i w  cos a + w 2 ( 1  - M2 cos2 a) 

k + iwcosa M2k2 + 2M2kiw cos a + w2(1 - M2)  

and Mm is relaced by M ,  and 

For existence and uniqueness and abstract forulation of this problem 
see [ll]. Here we shall simply assume this, so that in turn the linear 
TSD has a unique solution calculated via A(., A)  - as in [ l l ] .  For the 
aeroelastic problem the solution A(.,  A)  suffices. 

Next we need to consider: 
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2.5 The Linear Nonhomogeneous TSD Equation 
In developing the solution to the nonlinear TSD Equation (7), we need 

to continue with the linear equation (7L) but now the nonhomogeneous 
case - nonzero right hand side. Thus we need to consider: 

+ s ina  - 
dzdt 

= f ( x , z , t ) ,  -w < x , z  < oo; 0 < t ,  (7LNH) 

with zero initial conditions: 

and zero boundary conditions 

and zero far-field conditions. In that case we can show that (7LNH) has 
a unique solution given in fact in terms of a Green's function: 

-03 < x ,z  < 00, 
for f in the same space as cp(.) .  We skip the details. 

Let us use the notation: 

where .L is a linear bounded transformation. 
Let us now return to the TSD (7). We shall outline a general technique 

of solution. The function space choices are described in [ll]. We assume 
first that we have a solution which is analytic in the input w, (., .), the 
initial conditions cp and (C7 being zero at t = 0. In other words we assume 
a solution cp(A) corresponding to the input X w,(., .) which is analytic 
in the complex variable A. From the physical point of view, where we 
assume that the model also is, this goes without saying. Then p(X) can 
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be expanded in a power series in X about X = 0 ,  valid for any X in the 
finite part of the plane: 

and 
$ ~ ( 4  

Y'k = k ! 

Now by (7), where p(X)  is more explicitly 

we have 

d2Y'(X) d2Y'(A) 
a t2  

+ 2U cosa --- ( axa t  
+ sina - 

dzd t  a 2 p ( x )  > 

and 

Hence differentiating with respect to X in (24):  

and in (23) 

+ sina - 
at2  dzd t  
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Hence, for k = 1 we see that (27) reduces to the linear TSD Equa- 
tion (7L) with the associated boundary conditions. The solution cpl is 
then uniquely determined via the corresponding nonzero-angle-of-attack 
Possio Integral Equation (17). 

Next we see that 992 satisfies 

with 1 = O ,  j x ( < l .  
825 ,=o 

(29) 

But this is the linear nonhomogeneous equation (7LNH) we have already 
treated. With f2 denoting the right side of (28), we have that 

More generally, with 

we have that 
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or, taking X = 1, the solution to ( 5 )  is given by 

Our main interest in (31) is that of stability. 

THEOREM 1 Suppose the linear solution cpl i s  stable. T h a t  is ,  denoting 
the dependence o n  t by cpl ( a ,  t )  suppose 

then  so does cp(.,  t ) .  Also  suppose PI(., t )  i s  periodic in t ,  then  so i s  
cp(. ,  t )  with the same  period. 

REMARK We note that these statements are consistent with the central 
result of the more general Hopf Bifurcation Theory - as treated for 
example in [14]. In particular stability or instability is determined by 
the linearized equation. 

PROOF These  results are easily deduced from the expansion ( 3 1 ) .  T h u s  
if cpl i s  stable so i s  L(fk)  for each tk. Similarly if cpl i s  periodic so i s  
each f k  and then  also L(fk)  with  the same  period. Q E D .  

REMARK We can show that the series (30) converges at a power series 
in X and that the function so defined satisfies (7). 

Since our primary interest is in stability as a function of U and by 
the Hopf Bifurcation Theory it is determined by the linear or linearized 
equation (7L) we shall now consider the linear problem in more detail, 
combining (1) and (7L). (It would appear that R. Triggiani in the paper 
presented at this conference (the 21st IFIP TC-7 Conference) pursues a 
similar idea.) 

3. Time-Domain Formulation of Control 
Problem 

We now turn to the time-domain formulation of (1) with the aero- 
dynamic lift and moment terms determined by the linearized equation 
(7L) (specializing to the typical section aerodynamics). We use the term 
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"time-domain formulation" because in the aeroelastic literature, going 
back to the classic treatises [15], [16] only the Laplace Transform (or 
actually the Fourier Transform) theory is considered consistent with the 
primary interest in stability. Moreover abstract formulation as here is 
totally new. 

We need first to calculate the lift L(., t )  and moment M (-, t ) ,  for which 
we use the solution to the Possion Equation (16). Here we take advantage 
of the speical form of w(., A)  in (18) and introduce the functions 

Let ai(., A )  denote the solution to the Possio Equation: 

and let 

fi(x) aj (x, A)  dx 

as in [13]. Then 

Correspondingly, the inverse Laplace Transforms may be expressed 
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where 

A minor complication in inverse Laplace Transforming is that we may 
have to allow for S function and its derivative in e(.) and m(.),  especially 
at t = 0. This is illustrated by the case M = 0 treated in [17]. Hence 
we shall write 

(which only proves the efficiency of Laplace Transforms!) where we may 
assume (in the absence of proof here!) that 

M = M - Ma > 0 (nonsingular and nonnegative definite) 

To proceed to the abstract formulation we need next to take care of 
the end conditions due to the possibility of self-training actuators. This 
means "including the boundary value as part of the state," initiated in 
[18], [19]. Thus let 

Define the linear operator 

with domain and range in 3-1. 
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Thus defined, As is self-adjoint, nonnegative definite with dense domain. 
Let x E V(As). Then 

and, in particular, we see that 

Asx = 0 implies 

(There are no rigid-body modes.) 
With fi denoting the positive square root, we can verify that if 

x E V (fi) we must have that 

Also, has a bounded inverse. 
Next we define the Hilbert space (energy space): 

with inner product 

where 
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where 
M  = ( M s  - Ma)  > 0. 

Define A, with domain and range in RE by: 

(The last condition implies in particular that 
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The defined As is closed with dense domain, and compact resolvent. 
Moreover 

REMARK The last relation allows extension to the "limiting" cases: 

gh = 0 by adding the condition hy(e) = 0 

= 0 by adding the condition $i( t )  = 0. 

Next we define the linear operators D and K  on 3CE into X E :  

Thus defined, D  and K  are bounded linear operators, their precise 
bounds being not of interest. Define 

A = As + U D  + U ~ K .  (38) 

Then A generates a Co-semigroup; denote it S( t ) ,  t > 0. Also 

Re [AY, Y] = Re [AsY, Y] + .rrp U' Re [$I , $21. (39) 

The semigroup S(.)  is thus not necessarily a contraction for nonzero U .  
But the resolvent of A, R(X, A), is compact and there are no eigenvalues 
in the half plane 

ReX > a, 

where a, is the growth bound of the semigroup generated by A, which 
of course depends on U .  

Next for each t 2 0, define the linear operators Lo(t) ,  Ll( t )  on 7 - l ~  
into 3tE by 

Lo(t) Y = 
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Then our abstraction version (or time domain formulation) is the evolu- 
tion-convolution equation in a Hilbert space: 

where 

where we shall need to impose some additional properties of the opera- 
tors Lo(.), L1 (-), such as 

v = 

and 

Ll (t) coverges strongly to Lo(m) ,  linear bounded as t + m 

h l  
61 
h2 
62 

Lo(t) coverges strongly to Ll(oo), linear bounded as t -+ m .  

' 

Equations like (42) have been discussed in the pure mathematics lit- 
erature (e.g., [20]) but unfortunately are much too abstract to provide 
answers to the questions of interest to us here. Following [17] we start 
by taking Laplace Transforms in (42). Defining 

Y(X) = lrn e-'l Y (t)  dt, Re X > o, 

we have 
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We shall refer to 

( X I  - A - i o ( X )  - A i l  ( A ) )  Y = Z (43)  

as the generalized resolvent equation and 

the generalized resolvent. We may then state: (cf [19]) without proof: 

THEOREM 2 For any  A, either 

has a bounded inverse.  

THEOREM 3 Call X such that 

a n  "aeroelastic mode." T h e  aeroelastic modes are countable i n  number  
for each fixed M ,  U and only a finite number  can have positive real part. 

We can show that the aeroelastic modes are precisely the eigenvalues 
of the infinitesimal generator of a semigroup. We can also view this 
another way. We make a state space formuation of the linear system 
represented by the evolution-convolution equation (42) .  By state space 
representation we mean the representation 

where A, is the infinitesimal generator of a Co-semigroup, B is linear 
bounded and C is closed linear. In the present case B = 0, and the 
controls are included already in "feedback" form. The state space needs 
to be a Banach Space. Such a representation for the case L o ( . )  = 0 is 
given in 1211, and is readily generalized to the present case. We should 
note that the representation (46)  allows us to check controllability and 
stabilizability for any given control scheme. Y ( . )  represents only the 
structure state and Z( . )  includes a "stand in" for the aerodynamic state. 
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3.1 Calculation of Aeroelastic Modes: Flutter 
Speed 

From the practical point of view perhaps the most important problem 
is to track the aeroelastic modes as a function of U, for fixed M ,  in 
order to determine stability. For a = 0 this is carried out in [13] and the 
extension to nonzero a is straightforward. 

Thus we need to start with "unwinding" (45), returning to the Laplace 
Transform version of (1). We show that the modes are the zeros of a 
function 

d(M, A ,  U) 

which is analytic in X except for a logarithmic singularity for X 5 0. We 
need to define the roots as a single-valued function of U - define the 
"root locus." For U = 0 we obtain the structure modes -two sequences 
- the "bending" modes and the "pitching" modes. We begin with: 

the structure modes, and we show that 

so that we can via the usual implicit function theory define the roots 
Xk(M, U) as a function of U with 

See [13] for the details. If, for example, 

is the the kth bending mode we keep calling &(M, U) the root locus of 
the kth bending mode. Let 

ak (M, U) = Re Xk (M,  U). 

Then 
a k ( M ,  0) = 0. 

The curve of ak (M,  U) is called the "stability curve." We show that 

d o ~ ( M , U ) I  = constant (2) 
dU .=, 
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for all k with the constant depending on whether it is a pitching mode 
or a bending mode. This enables us to define flutter speed UF(M) as 
the first time 

We are also able [13] to deduce a good many properties of UF(M) as a 
function of M ,  but not nearly enough! Much work still remains to be 
done especially for M close to 1, being in particular not continuous at 
M = 1. 

As shown in [4] the theory can help explain the occurrence of the 
Transonic Dip due to nonzero angle of attack - and should also explain 
that due to camber observed in computations [22], [23]. The point is 
that even though the system is nonlinear the stability as we have seen 
is still determined by the linearized model. 

The solution Yk of the modal equation corresponding to the kth aero- 
elastic mode Xk(M, U )  is called the "mode shape" and we can express 
the time-domain ( "unsteady" ) solution of the aeroelastic convolution- 
evolution equation in terms of the elements in Yk even though it is not 
an eigenfunction expansion - see [17], [19]. This is not of much use 
in application to the flutter problem except to indicate the nature of 
the instability, since the aerodynamic initial conditions can never be 
determined. It is nevertheless of mathematical interest. 
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This class forms a much larger family than the one of subsets verifying 
a uniform cone property. 

Keywords: Oriented distance function, signed distance function, compactness, cusp 
property, boundary integral, density perimeter, Hausdorff dimension 

Introduction 

In this paper we consider the family of sets verifying the uniform 
cusp property introduced in [2] and extended in [4] to cusp functions 
only continuous at the origin. In the latter case we show that to any 
extended cusp function, we can associate a continuous, non-negative, 
and monotone strictly increasing cusp function of the type originally 
introduced in [2]. Unlike sets verifying a uniform cone property, such 
sets do not necessarily have a locally finite boundary integral. This fact 
is illustrated by constructing an example of a bounded subset of RN 
with cusp function c181", 0 < a < 1, for which the boundary integral is 
infinite and the Hausdorff dimension of its boundary is exactly N - a. 

Even without a uniform bound on the perimeter a general compact- 
ness theorem was given in [4] for a family of subsets of a bounded hold-all 
verifying a uniform cusp property with a cusp function only continuous 
at the origin. In this paper we give compactness theorems for the family 
of subsets of a bounded open holdall verifying a uniform cusp prop- 
erty with a uniform bound on either the De Georgi [6] or the y-density 
perimeter of Bucur and Zol6sio [I]. We also give in § 4.3 their uniform 
local Co-graph versions following [4]. This class of subsets forms a much 
larger family than the one of subsets verifying a uniform cone property. 

1. Preliminaries: Topologies on Families of Sets 

We first introduce some notation. Given an integer N 2 1, m~ and 
HN-l will denote the N-dimensional Lebesgue and ( N  - 1)-dimensional 
Hausdorff measures. The inner product and the norm in RN will be 
written x . y and 1x1. The complement {x E RN : x 4 R) and the 
boundary 2 n CR of a subset R of RN will be respectively denoted by 
CR or RN\R  and by dR or r. The distance function dA(x) from a point 
x to a subset A # 0 of RN is defined as inf{ly - X I  : y E A). 

Recall a few results on metric topologies defined on spaces of equiv- 
alence classes of sets constructed from the characteristic function, the 
distance or the oriented distance functions to a set. Given R c RN, 
F # 0, the oriented distance function is defined as 
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It is Lipschitz continuous of constant 1, and V b n  exists and lVbnl < 1 
almost everywhere in R N .  Thus bn E w,b;P(RN) for all p,  1 < p < co. 
Recall that b; = dn ,  b; = dCn, and 1 bn 1 = d r ,  and that Xint 0 = IVdCn 1 ,  
xintc0 = I V d n ( ,  and Xr = 1 - lVdrl  a.e. in R N ,  where X A  denotes the 
characteristic function of a subset A of R N .  Given a nonempty subset 
D of RN, the family C6(D) = {bn : 0 C and I? # 0) is closed in 
WIJ'(D). The following theorem is central. It shows that convergence 
and compactness in the metric on C6(D) associated with WIJ'(~) will 
imply the same properties in the other topologies introduced in [2]. 

THEOREM 1 Let D C RN be bounded open and 1 5 p < co. The maps 

are continuous. 

Proof. - They are well-defined from [2] (Chapter 5, Theorem 2.1 (iii), 
p. 207) for the map (2) and [2] (Chapter 5, Thm 2.2 (iv)-(v), p. 210) 
for the map (3). They are continuous from [2] (Chapter 5, Thm 5.1). 

2. Extension of the Uniform Cusp Property 

The uniform cusp property introduced in [2] (Chapter 5, 5 11) was 
specified by a continuous function h : [0, p[+ R such that 

Recall that with h of the form h(0) = X (O/p)", 0 < a < 1, we recover 
the uniform cusp property for 0 < a < I and the uniform cone property 
for a = 1, p = X tanw and h(8) = O/ tanw which corresponds to an 
open cone in 0 of aperture w, height A, and axis eN. 

The uniform cusp property was extended in [4] to the family of cusp 
functions h in the larger space 

7-l {h : [O, co[+ R : h(0) = 0 and h is continuous in 0) ( 5 )  

by associating with h E X,  p > 0, and X the axi-symmetrical region 

around the axis e N  = (0,. . . ,0 ,1)  in R N .  Given X > 0, p > 0, h E X,  
and a direction d E RN, \dl = 1, the rotated region from direction eN to 



28 SYSTEM MODELING AND OPTIMIZATION 

d is defined as 

where Hd = {d)' is the hyperplane through 0 orthogonal to the direction 
d. Finally, the translation of C(X, h, p, d) to the point x will be denoted 

LEMMA 2 ([4],[5]) For all X > 0, p > 0, h E 31, and x E R ~ ,  the 
regions C(X, h, p) and C,(X, h, p, d) are nonempty and open. Moreover 
the segment (x, x + Ad) is contained in C,(X, h, p, d). 

The function h is referred to as a cusp function and the space 31 as 
the space of cusp functions. The definition of the uniform cusp property 
in [2] (Chapter 5, 5 11) can now be extended to the larger class 31. 

DEFINITION 3 Let R be a subset of RN such that dR # 0. 
(i) R satisfies the local uniform cusp property if 

Vx E d o ,  3h E 31, 3X > 0, 3p > 0, 3r > 0, 3d E RN, Id( = 1, 

such that Vy E B(x, r )  n n, Cy(X, h, p, d) c int 0 .  

(ii) Given h E 31, R satisfies the h-local uniform cusp property if 

Vz E dfl, 3X > 0, 3p > 0, 3r > 0, 3d E RN, /dl = 1, 

such that Vy E B(x,  r )  n n, Cu(X, h, p, d) c int R. 

(iii) R satisfies the uniform cusp property for ( r ,  A,  h, p) if 

3h E 31, 3X > 0, 3p > 0, 3r > 0, Vx E d o ,  3d E RN, Id1 = 1, 

such that Vy E B(x,  r )  n n, Cy(X, h, p, d) c int R. 

The three cases of Definition 3 only differ when dR is not compact. 

THEOREM 4 ([4]) If dR is compact, then the three uniform cusp prop- 
erties of Definition 3 coincide. 

In fact, when a local uniform cusp property is verified for some cusp 
function h E 31, it is verified for another cusp function which is contin- 
uous, non-negative, and monotone strictly increasing as in (4) .  

THEOREM 5 Assume that R satisfies the local uniform cusp property in 
x E dR for some (r ,  A,  h, p), h E 31. Then there exist (r ' ,  A', h', p'), 
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with h' E 3-1 continuous, non-negative, monotone strictly increasing, and 
A' = hl(p'), such that R satisfies the local uniform cusp property in 
x E dR for (r ,  A', h', p'). 

Proof. - By continuity of h E 3-1 in 0, 

At each step n 2 0 construct the continuous monotone strictly increasing 
and non-negative function k, : [O, 00] -+ R defined as follows 

By continuity of h at the origin and the fact that h(0) = 0, 0, -+ 0 
and k,(O) -+ 0. By construction, 0 5 lh(0)I < kn+l(0) < k,(O) in 

< A/2n+1. 10, 001, kn+1(8) = kn(0) in [8n+1, 001, and Ilkn+l - knll~[0,8,+~] - 
Therefore there exists a continuous non-negative and monotone strictly 
increasing function k t C[O, 801 such that k, -+ k in C[O, 00], k(0) = 0, 
and Ih(0)l 5 k(0) < A in [O, 801. Finally, if k(Oo) = A ,  choose p' such that 
k(pl) = A, A' = A,  and h' = k. If k(Oo) < A ,  choose p' = 00, A' = k(Oo), 
and h' = k. From the construction, p' 5 p, A' < A ,  h' 2 h, and hence 
C(A', h', p') c C(A, h, p). Therefore the local uniform cusp property of 
Definition 3 is verified with a non-negative, continuous, and monotone 
strictly increasing cusp function of the form (4). 0 

We now turn to the compactness theorem. Given a bounded open 
subset D of RN, p > 0, A > 0, r > 0, and h E 3-1, consider the family 

R satisfies the uniform cusp 
L(D,  A,  h, p, r )  

{R C 
: 

property for ( A ,  h, p, r )  

The compactness Theorem 11.1 ([2], Chapter 5 )  readily extends to X. 

THEOREM 6 ([4]) Let D be a nonempty bounded open subset of RN and 
1 5 p < co. For p > 0, A > 0, and h t 3-1 the family 

is compact in c(D) and w'J'(D). AS a consequence the families 
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are compact i n  c(D) and WIJ'(~), and the following families are com- 
pact in  LP(D) 

3. Extended Uniform Cusp Property and 
Boundary Integral (Perimeter) 

Domains R which are locally Lipschitzian epigraphs or, equivalently, 
satisfy the local uniform cone property enjoy the additional property 
that the ( N  - 1)-Hausdorff measure of their boundary dS2 is locally 
finite. In general, this is no longer true for domains which are locally 
Holderian epigraphs of exponent a, 0 < a < 1, but we have an upper 
bound on the Hausdorff dimension of dR. We first recall a definition. 

DEFINITION 7 Let R C RN be such that dR # 0. The set R is said to 
be locally a ~ ' > ~ - e ~ i g r a ~ h ,  0 5 ! 5 1, if for each x E dR there exist 

(a) an open neighborhood U(x) of x; 

(b) a direction e ~ ( x )  E R N 7  / ~ N ( x ) (  = 1; 

(c) a bounded open neighborhood VH(x)  of 0 i n  the hyperplane 
H(x)  = {eN(x)} '  through 0 such that 

where pH(,) is the orthogonal projection onto H(x);  and 

(d) a ~ ' j ' - m a ~ ~ i n ~  a,: VH(%) -+ R such that 

~ ( x )  n intR = ~ ( x )  n x + (' + CNeN (x) : 
c' E V ~ ( z )  

C N  > ax(<') 

THEOREM 8 If R in  R N  satisfies the uniform cusp property associated 
with the function h(0) = 0", 0 < a < 1 ,  then the Hausdorf dimension 
of dR is less or equal to N - a .  

Proof. - From Theorem 3.3 (i) in [4], 0 is locally a Co)"-epigraph and, a 
fortiori, a Co-epigraph. Let r > 0, p > 0, and A > 0 be the parameters, 
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eN(x) = d, the direction and H(x )  the hyperplane through 0 orthogonal 
to d, associated with the point x E dR. Then there exists 7, 

which is the largest radius such that 

The neighborhoods of Definition 3.2 in [4] or Definition 5.2 in Chapter 2 
of [2] that specify the local graph a, : VH(,) + R can be chosen as 

where BH(,) (0, F) is the open ball of radius p in the hyperplane H(x ) .  
For each <' E VH(x), there exists a unique yo E dR n U(x) such that 
pH(,) (yI/ - x) = (I and the function 

is well-defined, bounded, 

uniformly continuous in VH(,), and 

Since dR is compact there exists a finite number of points {xi E dR : 
1 5 i 5 rn) such that dR c U ~ ~ U ( X ~ ) .  Given E < /7, p as chosen in 
(12), let No(&) be the number of hypercubes of dimension N and side 
E required to cover dR and let be the number of hypercubes of 
dimension N and side E required to cover dR n U(xi). 

We have the following estimate 

Indeed the neighborhood 

can be covered by [rX/&IN-' ( N  - 1)-dimensional hypercubes of side E. 

On each ( N  - 1)-dimensional hypercube of side E the variation between 
the minimum and the maximum of the function a, is bounded by 
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So the number of N-dimensional hypercubes of side E necessary to cover 
the hypersurface above each ( N  - 1)-dimensional hypercube of side E is 

Finally 

As a result for all ,L? > N - a 

This means that, by definition, the Hausdorff dimension of dR is less or 
equal to N - a. 

It is possible to construct examples of sets verifying the uniform cusp 
property for which the Hausdorff dimension of the boundary is strictly 
greater than N - 1 and hence H N F l ( d 0 )  = +oo. 

E X A M P L E  9 This following two-dimensional example of an open domain 
satisfying the uniform cusp condition for the function h(0)  = 0", 0 < 
a < 1, can easily be generalized to  an N-dimensional example. Consider 
the open domain fl in R~ 

R S { ( x , y )  : - 1 < ~ < O a n d O < y < 2 )  

n { ( x ,  y )  : 0 < x < 1 and f ( x )  < y < 2 )  

n { ( x , y )  : 1 4 x < 2  a n d O < y < 2 )  

where f : [O,  11 -+ R is defined as follows 

f ( x )  g d c ( x ) " ,  0 5 2 5 1, 

and C is the Cantor set on the interval [0, 11. This function is equal to 0 
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Figure 1. 
h(0) = 8". 

domain R 

-1 0 1 2 

Domain R for N = 2,  0 < cu < 1, ez = (0, I ) ,  p = 116, X = (1/6)", 

Figure 2. f (z) = d ~ ( z ) l / ~  constructed on the Cantor set C for 2k + 1 = 3. 

on C .  Any point i n  [0, l]\C belongs to one of the intervals of length 3-k,  
Ic 2 I ,  which has been deleted from [ O , 1 ]  in  the sequential construction 
of the Cantor set. Therefore the distance function d c ( x )  is equal to the 
distance function to the two end points of that interval. In  view of this 
special structure it  can be shown that 

Denote by the piece of the boundary dR specified by the function f = 

dc.  On r the uniform cusp condition is verified with p = 116, X = 
(116)") and h ( 0 )  = 0". Clearly the number No(&) of hypercubes of 
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dimension N and side E required to  cover 80 i s  greater than  the number  
Nr(&) of hypercubes of d imension N and side E required to cover I'. T h e  
construction of the Cantor  set i s  done by sequentially deleting intervals. 
A t  step k = 0 the interval (113,213) of width 3-I i s  removed. A t  step 
k a total of 2k intervals of width 3-(k+1) are removed. T h u s  if we pick 
E = 3-(k+1) the interval [ O , 1 ]  can be covered with exactly 3(k+1) intervals. 
Here we are interested in finding a lower bound to  the total number  of 
of squares of side E necessary to  cover F. For this purpose we only keep 
the 2k intervals removed at step k .  Vertically it takes 

2-13-(k++1) (2-13-(k+l)) a [' ( k )  '"1 ' 3-(k+l) - 1 

T h e n  we have for P 2 0 

T h e  second t e r m  goes to  zero as k goes to  infinity.  T h e  first t e r m  goes 
to  infinity as k goes to  infinity if 3-(a+8)2 > 1, that  i s ,  0 < a + P < 
ln 21 In 3. Under this condition, H 1 + ~ ( d R )  = H1+4(l?) = +oo for all 
0 < a < ln2/ ln 3 and all 0 5 P < ln2/ ln3 - a. Therefore given 
0 < a < In2/1n3 

and the Hausdorfl  d imension of dR i s  strictly greater than  1 

Given 0 < a < 1, it is possible to construct an optimal example of a set 
verifying the uniform cusp property for which the Hausdorff dimension 
of the boundary is exactly N - a and hence HN-1 (dR) = +m. 

EXAMPLE 10 Optimal example of a set that verifies the uniform cusp 
property with h(8) = /81", 0 < a < 1, and whose boundary has Haus- 
dorff dimension exactly equal to N - a. 

For that purpose, we need a generalization of the Cantor  set. Denote  
by C1 the Cantor  set. Recall that each x, 0 5 x 5 1, can be wri t ten  
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uniquely (if we make  a certain convention) as 

where a j ( 3 , x )  can be regarded as the j t h  digit of x wri t ten  in basis 3. 
From this define the Cantor  set i s  characterized as follows 

Similarly for a n  arbitrary integer k 2 1, each x E [ O , l ]  can be uniquely 
writ ten i n  the form 

CC) 

x = C  
a j ( 2 k  + 1 ,  X )  

j=1 ( 2 k  + l ) j  

and we can define the set  Ck as 

I n  a certain sense, if k l  > k Z ,  Ck, contains more points than  Ck , .  W e  
now use  these sets to  construct the family of set D k  as follows 

and for k > 1 
X E D k  2 k S 1 ( ~  - 2 k )  E Ck. 

Note  that,  if k l  # k 2 ,  D k l  n D k z  = 0 since the Dl,  's  only contain points 
from the interval [I  - 2k-1,  1 - 2 k ] .  Consider n o w  the following set 

and go back to  Example 9 with the function f i s  replaced by the function 

f ( s )  d" dD(X)" .  

Again i t  can be shown that 

No te  that o n  the  interval [I  - 2k-1,  1 - 2" we have d D ( x ) "  = d D , ( x ) " .  
Denote by r the piece of boundary dR specified by the function f = do 

and rk the part of boundary dR specified by the  function f = d D  = do, 
o n  the  interval [I - 2k-1,  1 - 2 k ] .  Once again o n  F the  un i form CUSP 

property i s  verified with p = 116, X = ( 1 / 6 ) " ,  and h ( 6 )  = 6". 
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Clearly the number  N n ( & )  of hypercubes of d imension N and side E 

required to  cover 6'0 is  greater than  the number  Nr, ( E )  of hypercubes of 
d imension N and side E required to  cover rk .  T h e  construction of the 
set Ck i s  also done sequentially by deleting intervals. A t  step j = 0 the  
i n t e r v a l l k l ( 2 k  + I ) ,  ( k  + 1 ) / ( 2 k  + I ) [  of width ( 2 k f l ) - '  i s  removed. A t  
step j a total of 23 intervals of width ( 2 j  + 1 ) - ( j S 1 )  are removed. If we 
consider the intervals that remain at step j ,  a total of 2j+' nonempty  
disjoint intervals of width (&)j+' remain in the set  Ck.  Each  of these 

intervals contains a gap of length (&)j+'& created at  step j + 1. 
If we construct the set Dk in the same way, at step j a total of 2J 

nonempty  disjoint intervals of width ( & ) j + ' $  remain in the set Dk .  
Each of these intervals contains a gap of length (&)j+'&. Pick 

and look for a lower bound o n  the number  of squares of side E necessary 
t o  cover r k .  For this purpose, only consider the 2j+' nonempty  disjoint 
intervals remaining at  step j .  A s  they  each contain a gap of length 

vertically i t  takes 

&-cubes. T h e n  we have for ,!? > 0 
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and hence 

The second term goes to zero as j goes to infinity. The first term goes 
to infinity as j goes to infinity if ( & ) 0 + ~ 2  > 1 for any integer k ,  that 
is, i f  

log 2  
O < a + P <  

log ( (2k  + l ) / k )  ' 
A s  k  can be chosen arbitrarily large, the former inequality reduces to 
0 < a + ,B < 1. Under this condition there exists an integer k  for which 
H l + ~ ( d R )  = H1+p(rk )  = +oo for all 0 < a < 1  and all 0  5 ,L? < 1 - a. 
Therefore, given 0 < a < 1  VP, 0 5 ,8 < 1 - a, Hl+p(dR) = +m.. This 
implies that the Hausdorfl dimension of d R  is greater than or equal to 
2  - a which is the upper bound we obtained i n  Theorem 8. 

4. Compactness under the Uniform Cusp 
Property and a Bound on the Perimeter 

4.1 De Giorgi Perimeter of Caccioppoli Sets 

One of the classical notions of perimeter is the one introduced in the 
context of the problem of minimal surfaces for Caccioppoli sets. 

DEFINITION 11 Let R be a measurable subset of R N .  Given an open set 
D  i n  RN, R  is said to have finite perimeter with respect to D  if Xn E 
B V ( D ) .  This perimeter denoted by P D ( R )  is given by the expression 

where B V ( D )  is the space of functions of total bounded variation and 
M ' ( D )  is the space of bounded measures on D.  

Given a bounded open subset D  of R ~ ,  p > 0, X > 0, r > 0, c > 0, and 
h E X, consider the family 

R  satisfies the uniform cusp 

(17) 
and PD ( R )  5 c 
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The compactness Theorem 6 readily extends to this new family. 

THEOREM 1 2  Let  D be a n o n e m p t y  bounded open subset of R~ and 
1 5 p < oo. For p > 0, A > 0, c > 0, and h E 7L and assume  that  
L(D, A, h, p, r, c) i s  n o t  empty .  T h e n  the family 

i s  compact in c(D) and w'J'(D). A s  a consequence the families 

are compact in c(D) and WIJ'(D), and the following families are com- 
pact i n  Lp(D) 

Proof. - From Theorem 6 there exist fl in L(D, A ,  h, p, r )  and a sequence 
{a,) in L(D, A ,  h, p, r, c) such that ban -+ bR in W1sp(D) and PD(Rn) < 
c. In particular, from Theorem 1, Xnn -+ xn in L1(D). But, in view 
of the uniform bound PD(Rn) < c on the 0,'s (cf. [6]), there exist a 
subsequence { x n n k  } such that Xnnk -+ Xn, in L' (D) for some R' for 
which PD(R1) < c. But, as a subsequence of {R,}, 

bank -+ bn in w'J'(D) and Xnnk -+ Xn in L'(D) 

Hence Xnl = X n ,  PD (R) = PD(R1) 5 c, and R E L(D, A ,  h, p, r, c). This 
concludes the proof. 

4.2 Finite y-density Perimeter 

The y-density perimeter introduced by Bucur and Zol6sio [I] is a 
relaxation of the (N - 1)-dimensional upper Minkowski  content which 
leads to the compactness Theorem 14. We recall the definition and quote 
the compactness for the W1)P-topology under a uniform bound on the 
y-density perimeter as revisited in [3]. 

DEFINITION 13 Let  y > 0 be a fixed real and R a subset of R~ with 
n o n e m p t y  boundary I?. Consider the quotient  

def 
p,(r) = sup m ~ ( U k ( r ) )  

O<k<y 2k  ' 
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Whenever Py(r) is finite, we say that R has a finite y-density perimeter. 

It was shown in [l] that, when Py(l?) is finite, mN(l?) = 0. The compact- 
ness result of [I] can be revisited and established in the ~ ' > p - t o ~ o l o ~ ~  
from which convergence in all other topologies of Theorem 1 follows. 

THEOREM 14 ([3]) Let D # 0 be a bounded open subset of RN and 
{R,), I?, # 0, be a sequence of subsets of D. Assume that 

37 > 0 and c > 0 such that Vn, Py(rn) 5 C. (19) 

Then there exist a subsequence {a,,) and R, r # 0, of such that 

P,(r) 5 lim inf Py(rn) 5 c 
n+w (20) 

VP, 1 5 P < m, bonk -+ bn i n  w'~~(u-,(D)) -strong. (21) 

The proof of the next result combines Theorem 6 which says that the 
family L(D, A, h,  p, r )  is compact with Theorem 14 which says that the 
family of sets verifying (19) is compact in w'>~(D).  The intersection of 
the two families of oriented distance functions is compact in WIJ'(D). 

THEOREM 15 For fixed y > 0, Theorem 12 remains true when PD(R) 
is replaced by the y-density perimeter P,(r). 

4.3 Compactness via Local C"-graphs 

It was shown in [4] (Thm 3.3 and 3.4) that the uniform cusp property 
is equivalent to conditions on the local Co-graphs. Thus by adding a 
condition either on the De Giorgi or the perimeter y-density perimeter 
in Theorem 4.1 of [4] we get the analogues of the above Theorems 12 and 
15. Recall the definition of the orthogonal subgroup of N x N matrices 

where *A is the transposed matrix of A. A direction can be specified 
either by a matrix (of rotation) A E O(N) or the corresponding unit 
vector d = AeN E R ~ .  

THEOREM 16 Let p > 0 be given and assume that U is a bounded neigh- 
borhood of 0 such that 

Let R > 0 be such that B(0,2R) c U. Given a bounded nonempty 
subset D of R ~ ,  consider a family L(D,p ,  U )  of subsets R of D with 
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the following properties: for each R  E L ( D ,  p,  U )  and each x  E dR, 
there exist A R ( x )  E O(N) and a ~ ' - m a ~ ~ i n ~  a: : v"(x) -+ R, where 

def Q ~ " ( x )  = A (z)V and 24" ( Z ) % ~ X  + An ( x ) ~ ,  such that 

( i )  Assume that there exists h E ?L and c > 0  such that 

where ii: = a: o A" ( x )  : V -+ R. Each R  of L ( D ,  p, U )  satisfies 
the uniform cusp property for the parameters ( r R ,  A", pR,  h R )  = 
(R ,  R, p,  h ) .  Hence (from Theorem 12)  the family 

B ( D ,  p,  U ,  c )F{b"  : VR E L ( D ,  p, U )  and PD(R)  5 c)  

is compact i n  C ( D )  and W I J ' ( ~ ) ,  1 5 p < m. 

(ii) Given y > 0, the results of part (i) remain true with PD(R)  5 c 
i n  place of P y ( r )  5 C. 
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INTERIOR AND BOUNDARY 
STABILIZATION OF NAVIER-STOKES 
EQUATIONS 
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Abstract We report on very recent work on the stabilization of the steady-state 
solutions to Navier-Stokes equations on an open bounded domain R C 
Rd,  d = 2,3, by either interior, or else boundary control. 

More precisely, as to the interior case, we obtain that the steady- 
state solutions to Navier-Stokes equations on R C Rd, d = 2,3,  with 
no-slip boundary conditions, are locally exponentially stabilizable by a 
finite-dimensional feedback controller with support in an arbitrary open 
subset w C R of positive measure. The (finite) dimension of the feedback 
controller is minimal and is related to the largest algebraic multiplicity 
of the unstable eigenvalues of the linearized equation. 

Second, as to the boundary case, we obtain that the steady-state 
solutions to Navier-Stokes equations on a bounded domain R C Rd,  
d = 2,3, are locally exponentially stabilizable by a boundary closed- 
loop feedback controller, acting on the boundary 80, in the Dirichlet 
boundary conditions. If d = 3, the non-linearity imposes and dictates 
the requirement that stabilization must occur in the space (H;+'(R))~,  
E > 0, a high topological level. A first implication thereof is that, 
for d = 3, the boundary feedback stabilizing controller must be infi- 
nite dimensional. Moreover, it generally acts on the entire boundary 
dR. Instead, for d = 2,  where the topological level for stabilization is 
(H$-"(R))', the boundary feedback stabilizing controller can be cho- 
sen to act on an arbitrarily small portion of the boundary. Moreover, 
still for d = 2, it may even be finite dimensional, and this occurs if the 
linearized operator is diagonalizable over its finite-dimensional unstable 
subspace. 

Keywords: Internal stabilization, boundary stabilization, Navier-Stokes Equations. 
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We hereby report on recent joint work on the stabilization of steady- 
state solutions to Navier-Stokes equations on an open bounded domain 
R C R ~ ,  d = 2,3,  by either interior feedback control or else boundary 
feedback control. The case of interior control is taken from the joint work 
with V. Barbu in [4]. The case of boundary control is taken from the 
joint work with V. Barbu and I. Lasiecka in [3]. To enhance readability, 
we provide independent accounts of each case. 

Part  I: Interior Control [4] 

1. Introduction 

The controlled N-S equations. Consider the controlled Navier- 
Stokes equations (see [6, p. 451, [13, p. 2531 for the uncontrolled case 
u - 0) with the non-slip Dirichlet B.C.: 

Here, R is an open smooth bounded domain of R ~ ,  d = 2,3; m is 
the characteristic function of an open smooth subset w c R of positive 
measure; u is the control input; and y = (yl, y2, . . . , yd) is the state 
(velocity) of the system. The function v = mu can be viewed itself as 
an internal controller with support in Q, = w x (0, co). The functions 
yo, f e  6 ( ~ ~ ( 0 ) ) ~  are given, the latter being a body force, while p is the 
unknown pressure. 

Let (ye,pe) E ( ( H ~ ( R ) ) ~  n V) x H'(R) be a steady-state solution to 
equation ( I ) ,  i.e., 

The steady-state solution is known to exist for d = 2,3,  [6, Theorem 7.3, 
p. 591. Here [6, p. 91, [13, p. 181 

V = {y 6 (H; (R) )~ ;  V .  y = 0), with norm llyll,, E iiyll 
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Literature. According to some recent results of 0. Imanuvilov [9] 
(see also [I]) any such solution ye is locally exactly controllable on every 
interval [0, T] with controller u with support in Q,. More precisely, if 
the distance \lye - ~ ~ l l ~ 2 ( ~ )  is sufficiently small, then there is a soh-  
tion (y,p,  u) to (1) of appropriate regularity such that y(T) - ye. The 
steering control is open-loop and depends on the initial condition. Sub- 
sequently, paper [2] proved that any steady-state solution ye is locally 
exponentially stabilizable by means of an infinite-dimensional feedback 
controller, by using the controllability of the linear Stokes equation. In 
contrast, here we shall prove, via the state decomposition technique of 
[14], [15], and the first-order stabilization Riccati equation method de- 
veloped in our previous work [2] (see also [5] still in the parabolic case, 
as well as [ll] in the hyperbolic case), that any steady-state solution ye 
is locally exponentially stabilizable by a finite-dimensional closed-loop 
feedback controller of the form 

where RN E c ( v ( A ~ ) )  n C ( V ( A ~ ) ;  H) is the solution of the algebraic 
Riccati equation (18) below associated with the linearized system (14) 
below and {$'i)f51 is an explicitly constructed (in (3.3.5) of [4]) system 
of functions related to the space of eigenfunctions corresponding to the 
unstable eigenvalues of such linearized system. Here A is the Stokes 
operator defined by (6); H the space in (5); and ( .  , a ) ,  is the scalar 
product in ( ~ ' ( w ) ) ~ .  The present closed-loop feedback stabilization re- 
sult has two main features, besides being finite-dimensional: 

( I )  it is more precise and less restrictive concerning the vectors yo and 
ye than the open-loop version provided by the local exact controllability 
result established in [9], or the closed-loop stabilization in [2] (in that 
smallness of the distance between yo and ye is measured in the D ( A ~ ) -  
norm, i.e., the (H; (R) )~-norm,  see the set V,  in (21) below, rather than 
in the  norm, as recalled above, where A is defined in (6).); 

(2) it is independent of the Carleman inequality for the Stokes equa- 
tion, which is necessary for the proof of local controllability. 

There is a large literature on the stabilization problem of steady- - 
state solutions to Navier-Stokes equations. Here we confine ourselves 
to mention only a few of the papers ([2], [7]) which are more related 
to this present work. We also refer to the recent paper of Fursikov [8] 
for a study of a boundary-rather than interior-problem for the N-S 
equations, which, however, does not pertain to the topic of feedback 
stabilization in the established sense, as in the present paper. 
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Notation. Here we shall use the standard notation for the spaces 
of summable functions and Sobolev spaces on R. In particular, HS(R) 
is the Sobolev space of order s with the norm denoted by 1 1  . 1 1 , .  The 
following notation will be also used: 

H = { y  E ( ~ ~ ( 0 ) ) ~ ;  V y = 0, y n = 0 on 80) 16, p. 71; ( 5 )  
HI = { Y  E ( L ~ ( R ) ) ~  : = vp, E H ~ ( R ) ) ,  ( ~ ~ ( 0 ) ) ~  = H + HI, 

H I  being the orthogonal complement of H in ( ~ ~ ( 0 ) ) ~  [13, p. 151 with 
summation convention to be used throughout the paper, presently in 
i = 1 , .  . . , d, where n is the outward normal to the boundary dR of !2. 
We shall denote by P : ( L ~ ( R ) ) ~  + H the orthogonal Leray projector 
[6, p. 91, and moreover [6, p. 311, 

which is a self-adjoint positive definite operator in H with compact (re- 
solvent) A-' on H [6, p. 321. Accordingly, the fractional powers AS, 
0 < s < 1, are well-defined [6, p. 331. We have V = D ( A ~ )  16, p. 331. 
Furthermore, we define B : V + V' by [6, p. 47, p. 541, [13, p. 1621, 

where the trilinear form is defined by [6, p. 491, 113, p. 1611 

We shall denote by (., .) the scalar product in both H and ( ~ ' ( 0 ) ) ~ .  
Similarly, we shall denote by the same symbol I . I  the norm of both 
( L ~  ( R ) ) ~  and H ,  and by 1 1  . 1 1  the norm of the space V as defined in (3). 

Preliminaries. In the notation introduced above, Eqn. (1) can be 
equivalently rewritten in abstract form as 

since the procedure of applying P to (1) eliminates the pressure from 
the equations [6, p. 471, the orthogonal space H' to H being made up 
of ( L ~  (R)d-functions which are the gradients of H' (a)-functions by (5). 
Moreover, y E H for (1) implies P y t  = yt .  
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2. The Main Results 

Assumptions. (i) The boundary dR of R is a finite union of d - 1 
dimensional C2-connected manifolds. Moreover, the boundary dw of w 
is of class C2. 

(ii) The steady-state solution (ye,pe) defined in (2) belongs to 
( ( ~ ~ ( 0 ) ) ~  n V) x H1(R), where we recall from (6) that then ye E V(A). 
[For d = 2,3, this property is guaranteed by [6, Theorem 7.3, p. 591 on 
ye, for fe  E H ,  followed by [6, Theorem 3.11, p. 301 on p,, for sufficiently 
smooth 80.1 

Preliminaries. The translated problem. By the substitutions y -+ 
Ye + y, p -+ p, + p, we are readily led via ( I ) ,  (2) to the study of null  
stabilixation of the equation 

Y ( ~ 7  0) = YO (2) = YO(X)  - Y ~ ( x ) .  ( 1 0 4  

By use of (5) on H, ( 6 ) ,  (7) on A and B, we see that ( lo ) ,  after appli- 
cation of P, can be rewritten abstractly as 

(compare with (9) again Pyt = yt, since y E H by ( lo ) ) ,  where we have 
now introduced the operator A. E C(V; H ) ,  

or equivalently, recalling (7), 

( A ~ ~ , z ) = b ( ~ e , ~ , z ) + b ( ~ , ~ e , z ) ,  V Y E V ,  x E H .  (12b) 

The operator A. in (12) is well-defined H > V = D(Ao) 7' H .  This 
follows from the estimate 

which is obtained directly by use of the definition (12b). 

The linearized problem. Next, we consider the following linearized 
system of the translated model (10) or (11): 
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We have already noted below (6) that the operator -vA (v > 0, the 
viscosity coefficient) is negative self-adjoint and has compact resolvent 
on H. Thus, -vA generates an analytic (self-adjoint) Go-semigroup on 
H .  It then follows from here and from V(Ao) = V = v ( A ~ ) ,  as noted 
in (6) and in (13), that: the perturbed operator 

A = -(vA + Ao), with domain V(A) = V(A) = ( H ~ ( R ) ) ~  n V (15,) 
likewise has compact resolvent and generates an analytic Go-semigroup 
on H .  This is well-known. It follows from the above claim that the 
operator A has a finite number N of eigenvalues X j  with Re X j  2 0 
(the unstable eigenvalues). The eigenvalues are repeated according to 
their algebraic multiplicity ej. Let {cpj)y=l be a corresponding system of 
generalized eigenfunctions, cpj = cpf + icp;, j = 1, .  . . , N of A. (See 110, 
p. 41, 1811.) More precisely, we shall denote by M the number of distinct 
unstable eigenvalues, so that el + e2 +. . . + eM = N.  In order to state our 
first result, we finally need to introduce the following finite-dimensional 
real spaces XE, a = 1,2 as well as the following natural number K: 

Main results. Linearized problem (14). We first state the fol- 
lowing feedback stabilization result for the linearized system (14). 

THEOREM 1 Let E > 0 be arbitrary but fixed, and let yo = lReXN+ll - E .  

Then, for each A, 0 < X 5 yo, there are functions {$i)zK,l C x;, 
{$i)!fK+l C X; and a linear self-adjoint operator RN : V(RN) C H i 
H such that for some constants 0 < a1 < a2 < oo and C1 > 0, we have: 

(i) 
5 (RNY,Y) 5 v Y E D(Af ) ,  (174 

so that D ( A ~ )  c D(R;); 
(i i) 

RNYI < CilI~ll, v Y t V = D ( A ~ ) ;  (17b) 
(iii) RN satisfies the following algebraic Riccati equation: 

The vectors {$i)5c1 are explicitly constructed in (3.3.5) of Lemma 4 of 
[dl. Moreover, with 2K < N ,  the feedback controller, 
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once inserted i n  ( 1 4 ) ,  exponentially stabilizes the corresponding closed- 
loop sys t em ( 1 4 ) .  T h e  margin  of stability for such closed loop sys t em is  
A. [See Remark  3.3.1 of [4] for  the eflective number  of controls 2 K  5 N.]  
More specifically, this  means  that  the solution of 

Non-linear system ( 9 ) .  We next use the stabilizer in Theorem 1 
to the linearized system ( 1 4 )  of the translated problem ( l o ) ,  or ( l l ) ,  to 
obtain the sought-after closed loop, local, feedback stabilization of the 
steady state solution ye to the N-S equation ( 9 ) .  

THEOREM 2 W i t h  reference t o  Theorem 1, the feedback controller 

[where the vectors gi are defined in (3.3.5) of L e m m a  4 i n  [dl], once 
inserted in the N - S  sys t em ( 9 )  exponentially stabilizes the steady state 
solution ye to  ( 1 )  i n  a neighborhood 

o f  ye ,  for  suitable p > 0 .  More precisely, if p > 0 i s  su f i c i en t l y  small ,  
t hen  for  each yo E Vp there exists a weak solution y E LCO(O,T; H )  n 
L 2 ( 0 , ~ ;  V ) ,  2 E L Q ( o , T ; V ' )  for d = 3, and 2 E L ~ ( ~ , T ; V ' )  for 
d = 2 ,  b' T > 0,  t o  the closed loop sys t em 

obtained from inserting the control ( 2 0 )  i n  (9), such that  the following 
two properties hold: 
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We refer to [6, p. 711 for definition of weak solutions to equations of 
the form (22) and the asserted regularity. If d = 2 the solution to (22) 
is strong and unique [6, p. 831. 

The pressure p. Theorem 2 implies the following result giving cor- 
responding asymptotic properties of the pressure p. 

THEOREM 3 The solution y provided b y  Theorem 2 satisfies also the 
equation 

Moreover, the following relations hold true for the pressure p: 
( i )  for d = 2, we have 

(ii) for d = 3, we have 

Part  11: Boundary Control [3] 

3. Introduction 
Boundary controlled Navier-Stokes equations. We consider the 

controlled Navier-Stokes equations (see [6, p. 451, [13, p. 2531 for the 
uncontrolled case u = 0) with boundary control u in the Dirichlet B.C.: 



Interior and Boundary Stabilization of Navier-Stokes Equations 4 9 

Here, G = R x (0, oo); C = dR x (0, m) and R is an open smooth 
bounded domain of R ~ ,  d = 2,3; u E L2(0, T; ( ~ ~ ( 8 0 ) ) ~ )  is the bound- 
ary control input; and y = (yl, y2,. . . , yd) is the state (velocity) of 
the system. The constant va > 0 is the viscosity coefficient. The 
functions yo, f, E ( ~ ~ ( 0 ) ) ~  are given, the latter being a body force, 
while p is the unknown pressure. Because of the divergence theorem: 

V . y dR = Sr y . v d r ,  [I? = 80, v = unit outward normal to dR], we 
must require (at least) the integral boundary compatibility condition: 
Sr u - v d r  = 0 on the control function u. Actually, a more stringent 
condition has to be imposed, in our final results: u v = 0 on C, to 
sustain the pointwise boundary compatibility condition contained in the 
definition of the critical state space H in (28e) below. To summarize we 
shall then assume 

either u . v = 0 on C; or at least u . v d r  E 0, a.e. t > 0, (28e) 6 
as it will be specified on a case-by-case basis. 

Steady-state solutions and space V: sames as in (2), (3). 

Goal. Our goal is to construct a boundary control u,  subject to 
the boundary compatibility condition (c.c.) given by (28e) in the strong 
pointwise form u .v  E 0 on dR, and, moreover, in feedback form u = u(y) 
via some linear operator y + u, such that, once u(y) is substituted in 
the translated problem (28), the resulting well-posed, closed-loop system 
(28a)-(28c) possesses the following desirable property: the steady-state 
solutions ye defined in (2) are locally exponentially stable. In particu- 
lar, motivated by our prior effort [4] to be described below, we seek to 
investigate if and when the feedback controller u = u(y) can be chosen 
to be finite-dimensional, and, moreover, to act on an arbitrarily small 
portion (of positive measure) of the boundary I? = dR. 

Orientation. Use of the Optimal Control Problem and Al- 
gebraic Riccati Theory. (d = 3) We emphasize here only the more 
demanding case of d = 3. A preliminary difficulty (for d = 2,3) is 
the requirement in (28e) that the boundary control u must always be 
tangential at each point of the boundary. I t  is standard that this require- 
ment is intrinsically built in the definition of the state space H (above 
in (5) Part I) of the velocity vectory y, which is critical to eliminate 
the second unknown of the N-S model, the pressure term Vp (see the 
orthogonal complement H' in (5) above, Part I) ,  by virtue of the Leray 
projection P. Evolution of the velocity must occur in H. Accordingly, 
we must then have that the boundary controls be pointwise tangential: 
u . v - 0 on C in (28e). Next, a second difficulty, this time for d = 3, 
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is that the non-linearity of the N-S equation dictates and forces the re- 
3 

quirement that stabilization must occur in the space ( H ~ + ' ( f l ) ) ~ ,  t > 0, 
see Eqn. (5.18a-b) of [3]. This is a high topological level, of which we 
shall have to say more below. A third source of difficulty consists in 
deciding how to inject 'dissipation' into the N-S model, in fact, as re- 
quired, through a boundary  tangential controller expressed in feedback 
form. Here, motivated by [4] and, in turn, by optimal control theory 
[12], in order to inject dissipation into the N-S system as to force lo- 
cal exponential boundary stabilization of its steady-state solutions, we 
choose the strategy of introducing an Optimal Control Problem (OCP) 
with a quadratic cost functional, over an infinite time-horizon, for the 
linearized N-S model subject to tangential Dirichlet-boundary control 
u, i.e., satisfying u . u - 0 on C. One then seeks to express the bound- 
ary feedback, closed-loop controller of the optimal solution of the OCP, 
in terms of the Riccati operator arising in the corresponding algebraic 
Riccati theory. As a result, the same Riccati-based boundary feedback 
optimal controller that is obtained in the linearized OCP is then selected 
and implemented also on the full N-S system. This controller in feed- 
back form is both dissipative as well as 'robust' (with respect to a certain 
class of perturbations). For d = 3, however, the OCP must be resolved 
at the high (H ~+'(fl))3-topological level, within the class of Dirichlet 
boundary  controls in L~ (0, oo; (6Q)3), which are further constrained to 
be tangent ia l  t o  t he  boundary.  

Thus, the OCP faces two additional difficulties that set it apart and 
definitely outside the boundaries of established optimal control theory 
for parabolic systems with boundary controls: (I)  the high degree of 
unboundedness of the boundary  control operator, of order ( $  + t )  as 
expressed in terms of fractional powers of the basic free-dynamics gen- 
erator; and (2) the high degree of unboundedness of the 'penalization' 
or 'observation' operator of order also ( 2  + E ) ,  as expressed in terms 
of fractional powers of the basic free-dynamics generator. This yields 
a 'combined index' of unboundedness str ict ly  greater t h a n  z .  By con- 
trast, the established (and rich) optimal control theory of boundary 
control parabolic problems and corresponding algebraic Riccati theory 
requires a 'combined index' of unboundedness str ict ly  less  t h a n  1 [12, 
Vol. 1, in particular, p. 501-5031, which is the maximum limit handled 
by perturbation theory of analytic semigroups. To implement this pro- 
gram, however, one must first overcome, at the very outset, the prelimi- 
nary stumbling obstacle of showing that the present highly non-standard 
OCP-with the aforementioned high level of combined unboundedness 
in control and observation operators and further restricted within the 
class of tangent ia l  boundary controllers-is, in fact, n o n - e m p t y .  This 
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result is achieved in Theorem 3.5.1 of [3]in full generality (and in Propo- 
sition 3.7.1 of [3] under the assumption that the linearized operator is 
diagonalizable over the finite-dimensional unstable subspace). Thus, af- 
ter this result, the study of the OCP may then begin. Because of the 
aforementioned intrinsic difficulties of the OCP with a combined index 
of unboundedness > i, one cannot (and cannot hope to) recover in full 
all desirable features of the corresponding algebraic Riccati theory which 
are available when the combined index of unboundedness in control and 
observation operators is strictly less than 1 ([I21 and references therein). 
For instance, existence of a solution (Riccati operator) of the algebraic 
Riccati equation is here asserted only on the domain of the generator 
of the optimal feedback dynamics (Proposition 4.5.1 of [3]); not on the 
domain of the free-dynamics operator, as it would be required by, or at 
least desirable from, the viewpoint of the OCP. However, in our present 
treatment, the OCP is a means to extract dissipation and stability, not 
an end in itself. And indeed, the present study of the algebraic Ric- 
cati theory, with a combined index of unboundedness in control and 
observation operator strictly above 5 (rather than strictly less than 1) 
does manage, at the end, to draw out the key sought-after features of 
interest-dissipativity and decay-for the resulting optimal solution in 
feedback form of the OCP for the linearized N-S equation. All this is 
accomplished in Section 4 of [3]. 

The subsequent step of the strategy is then to select and use the same 
Riccati-based, boundary feedback operator, which was found to describe 
the optimal solution of OCP of the linearized N-S equation, directly into 
the full N-S model. For d = 3, the heavy groundwork for the feedback 
stabilization of the linearized problem via optimal control theory makes 
then the resulting analysis of well-posedness (in Section 5 of [3]) and 
stabilization (in Section 6) of the N-S model more amenable than would 
otherwise be the case. 

To this end, key use is made of the Algebraic Riccati Equation satisfied 
by the Riccati operator that describes the stabilizing control in closed- 
loop feedback form. 

Literature. This paper [3]is a successor to [4], which instead consid- 
ered the interior stabilization problem of the Navier-Stokes equations, 
that is, problem ( I ) ,  Part I, with (i) non-slip boundary condition y 5 0 
on C - 80 x (0, oo) in place of the boundary controlled condition 
(28b); and (ii) interior control m(x)u(x, t )  on the right-hand side of 
Eqn. (28a), where m(x) is the characteristic function of an arbitrary 
open subset w C 0 of positive measure. In this case [4] (Part I) proves 
that (the linearized problem is exponentially stabilizable, hence that) 
the steady-state solutions ye to the Navier-Stokes equations are locally 
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exponentially stabilizable by a finite-dimensional feedback controller, in 
fact, of minimal size, see Part I. In addition, one may select the finite- 
dimensional feedback controller to be expressed in terms of a Riccati 
operator (solution of an algebraic Riccati equation, which arises in an 
optimization problem associated with the linearized equation). We shall 
need to invoke this interior stabilization problem (though not in its full 
strength) in Section 3.5 of [3]. 

The work in the literature which is most relevant to our present paper 
is that of A. Fursikov, see [8] (of which we become aware after completing 
[4]), which culminates a series of papers quoted therein. A statement of 
the main contribution of [8], as it pertains to the linearized problem (31) 
below, is contained in [8, Theorems 3.3 and 3.5, pp. 104-51. Given the 
pair {R, Po), where Fo is a portion of the boundary dSZ of 0, the approach 
of [8] starts with a special class, called V1(R, Po),  of initial conditions 

for the linearized problem (31) defined on R. More specifically, yo E 
V1(R,Fo) means that the initial vector is the restriction = Y O J ~  

on R of the vector Yo on the extended domain G = R U w, where: (i) 
yo E ( H ~ ( G ) ) ~ ,  d = 2,3; (ii) v - Y O  r o in G; (iii) yOlaG = O; (iv) 
the set w is an estension of 52 across the pre-assigned portion Po of 
dR. Then, [8, Theorem 3.31 establishes that such yo E V1 (R, ro) can, 
in turn, be re-extended from R to G as a new vector q0 E ( H ' ( G ) ) ~ ,  
v . ~ '  = 0 in G, r l o l a G  = 0, possessing now the new critical property that, 
in addition, q0 belongs to the stable subspace of the linearized operator 
A. Here d is an extension of the original operator A in (6) Part I 
from R to G, obtained by a corresponding extension of the steady-state 
solution ye from R to G, while preserving the required properties of 
being divergence-free across G and vanishing on dG. As a consequence 
of this extension, one obtains a function q(t; qO) = eAtqO, which is the 
solution of the corresponding linearized problem, except this time on G, 
and with homogeneous Dirichlet (non-slip) boundary condition on dG. 
Then, [8, Theorem 3.51 concludes (because of the obvious invariance of 
the stable subspace for the S.C. analytic semigroup eAt ) that such q(t; qO) 

is exponentially decaying: 1 eAtqO / I  5 CePut /lqO 1 ,  in the (H1 (G))~-norm 

1 1  1 1 ,  with a controlled decay rate a, 0 < a < /Re XN+ll. At this 
point, [8] takes the restrictions of q(t; rlO) on R and r o :  y(t) = q(t; qO)ln, 
u(t) = q(t; qo)lro, with u(t) SE 0 on I? \ Po, and defines such u as a 
"feedback control" of the corresponding solution y of problem (31) below 
on R, which then stabilizes such solution y(t) of (31) below over R. A 
similar definition of "feedback control" is given in [8] with respect to the 
non-linear Navier-Stokes problem. 
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One should note, however, that the aforementioned controller for 
problem (31) below given in [8] is not a feedback controller in the stan- 
dard sense. Instead, our main results (in [4] as well as) in the present 
paper construct genuine, authentic, and real feedback controls (Riccati- 
based, in fact, hence with some feature of 'robustness'), that use at 
time t only the state information on R at time t .  The present paper, 
therefore, encounters a host of technical problems not present in [8]: 
from the need for the genuine feedback control u to satisfy the point- 
wise compatibility condition u . v E 0 on C; to the high topological level 
(H;+'(R))~ at which stabilization must occur in our case, as dictated 
by the non-linearity for d = 3, see Eqn. (5.18a-b) of [3], versus the H I -  

topology decay obtained in [8]; to the treatment of the Riccati theory 
for a corresponding optimal control problem with a combined 'index of 
unboundedness' in control and observation operators exceeding -thus 

+ 2~ beyond the (rich) theory of the literature [12], as explained in the 
Orientation. 

Main contributions of the present paper. Qualitative sum- 
mary of main results. A first qualitative description of the main 
results of the present paper follows next. First of all, the pre-set goal 
is achieved: with no assumptions whatsoever (except mild assumptions 
on the domain), we prove here that the steady-state solutions to Navier- 
Stokes equations on R C ( R ~ ,  d = 2,3, are locally exponentially stabilix- 
able by a closed-loop boundary feedback controller acting i n  the Dirichlet 
boundary conditions i n  the required topologies [Theorem 2.3 for d = 3 
and Theorem 2.6 for d = 2 of [3]]. The feedback controller is expressed in 
terms of a Riccati operator (solution of a suitable algebraic Riccati equa- 
tion): as such, via standard arguments (e.g., [4]) this feedback controller 
is 'robust' with respect to a certain class of exogeneous perturbations. 

More precisely, the following main results are established in the pre- 
sent paper: 

(i) For the general cases d = 2,3, an infinite-dimensional, closed-loop 
boundary feedback, stabilizing controller is constructed, as acting (for 
general initial data) on the entire boundary dR for d = 3; or on an 
arbitrarily small portion of the boundary, for d = 2. 

(ii) By contrast, for d = 2 and under a finite-dimensional spectral 
assumption FDSA = (3.6.2) of [3] (diagonalizability of the restriction of 
the linearized operator over the finite-dimensional unstable subspace), 
the feedback controller can be chosen to be finite-dimensional, with di- 
mension related to properties of the unstable eigenvalues, and, moreover, 
still to act on an arbitrarily small portion of the boundary. 

(iii) For d = 3, local exponential feedback stabilization of the steady- 
state solutions to Navier-Stokes equations is not possible with a finite- 
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dimensional boundary feedback controller (except for a meager set of 
special initial conditions). 

(iv) The pathology noted in (iii) for d = 3 is due to the non-linearity 
(see Eqn. (5.18a-b) of [3]) which (by Sobolev embedding and multiplier 
theory for d = 3) forces the the requirement that solutions of the lin- 
earized problem be considered at the high regularity space H ~ + ' ( R )  n H, 
r > 0, under initial conditions yo E H ~ + " ( R ~ H  and L2(0, m; ( L ~ ( I ' ) ) ~ ) -  

3 
boundary controls u. In turn, this high regularity space H2+'(R) causes 
the occurrence of the compatibility condition yolr = u(0) at t = 0 on 
the boundary to be satisfied. Thus, for d = 3, the constructed feedback 
controller must be infinite-dimensional in general. 

(v) By contrast, the linearized problem for d = 2,3 is exponentially 
stabilizable with a closed-loop boundary, finite-dimensional feedback- 
controller acting on an arbitrarily small portion of the boundary up 
to the topological level ( H ~ - ' ( R ) ) ~  and with initial conditions yo E 

( H + - ' ( R ) ) ~  n H, under the same FDSA = (3.6.2) of (31. 
Notation and preliminaries. Same as in Part I. 

4. Main Results (Case d = 3) 

The following assumptions will be in effect throughout the paper. 
Assumptions. (i) The boundary dR of S2 is a finite union of d - 1 

dimensional C2-connected manifolds. 
(ii) The steady-state solution (ye,pe) defined in (2) Part I, belongs to 

( ( ~ ~ ( f l ) ) ~  n V) x H1(R). [For d = 2,3, this property is guaranteed by 
16, Theorem 7.3, p. 591 on ye, for fe  E H, followed by [6, Theorem 3.11, 
p. 301 on p,, for sufficiently smooth 80.1 
Preliminaries. The translated non-linear N-S problem. By the 
substitutions y + ye + y, p + p e  + p  and u -+ yelr +u (yetr being the 
Dirichlet trace of ye on I? = 8R), we are readily led via (28), (2) to study 
the boundary null stabilization of the equation 

Abstract model of the N-S problem (29) projected on H .  We 
shall see in Section 3.1 of [3] that, under the pointwise compatibility 
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condition (LC.) u . u = 0 on C of (28e) (whereby then Pyt = yt), appli- 
cation of the Leray projection P on (29a)-(29d) leads to a corresponding 
equation in H, without the pressure terms, whose abstract version can 
be written as 

where the infinitesimal generator A and the non-linear operator B are 
defined in (15) and ( 7 ) ,  respectively, of Part I. Moreover, the operator 
D: ( ~ ~ ( r ) ) ~  i ( H ( ( R ) ) ~  n H E D ( A ~ - ' )  is defined in (3.1.3) of 131. 

The translated linearized problem. PDE version. The trans- 
lated linearized problem corresponding to (29) is then 

Abstract model of problem (31) projected on H. Its abstract 
version on H is then 

Main results: Case d = 3. The linearized model. We begin 
with the translated linearized problem (31) or its projected version (32). 
For the first result-the main result on problem (32)-essentially no 
assumptions are required. 

THEOREM 4 With  reference to the linearized problem (32), Part II, the 
following results hold true: 

( i )  Let d = 3 and assume further that R is simply connected. Then, 
given any yo E W - (H)+ ' (R) )~  n H ,  c > 0 arbitrary, there exists an 
open-loop, infinite-dimensional boundary control u E ~ ~ ( 0 ,  m; (L2 
u-v = 0 on C, such that the corresponding solution y of (32) satisfies y E 

L2(0, m; (H n H) f l  H f +$ (0, m; H). Moreover, if yo vanishes 
on the portion ro of the boundary r = dR, then u may be required to 
act only on the comlementary part rl = \ ro of the boundary. In 
particular, if yo vanishes on all of I?, then u may be required to have 
an arbitrarily small support rl, meas(rl) > 0. [This is Theorem 3.5.1 
along with Remark 3.5.1, illustrated by Figures 3.5.1 and 3.5.2 in  [3].] 
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( i i )  Let  d = 3. T h e n ,  the control u claimed in ( i )  cannot generally be 
f inite-dimensional except for a meager set  of special init ial  condit ions.  
[Th i s  i s  Proposition 3.1.3 of [3].] 

Case d = 3. Original N-S model (28). We now report the main 
result of the present paper, which provides the sought-after closed-loop 
boundary feedback control for the original N-S equations (28)  [or its pro- 
jected version ( 3 0 ) ] ,  which exponentially stabilizes the stationary solution 
ye of (28)  in a neighborhood of ye. The stabilizing feedback control that 
we shall find is 'robust,' as it is expressed in terms of a Riccati operator 
R, which arises in an associated corresponding Optimal Control Prob- 
lem. To state our (local) stabilizing result, we need to introduce the 
set 

v p  { Y O  E W E  ( ~ t + ' ( C l ) ) ~ n H :  l y 0  - < } (33)  

of initial conditions yo of ( 28 ) ,  whose distance in the norm of W from a 
stationary solution ye is less than p > 0.  Here, E > 0  arbitrary is fixed 
once and for all. 

THEOREM 5 ( M A I N  THEOREM)  Let d = 3  and assume  further that  R  
i s  simply connected. If p > 0 i n  (33)  i s  su f i c i en t l y  small ,  then: for each 
yo E V p ,  there exists a unique fixed-point, mild,  semigroup solution y  of 
the  following closed-loop problem: 

obtained from (28)  by replacing u with the boundary feedback control 
d u = ye + v o G R ( y  - ye) having the following regularity and asymptot ic  

properties: 
( i )  

( y  - ye) E C([O, m);  W )  n ~ ~ ( 0 ,  X I ;  ( H ~ " ( R ) ) ~  n H )  (35)  

continuously i n  yo E W E ( H ~ + ~ ( R ) ) ~  n H :  
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[This follows from Theorem 5.1 and Corollary 5.5 of [3], via the trans- 
lation y + ye,  etc., performed above problem (29).]  

(ii) there exist constants M 2 1 ,  u > 0 (independent of p > 0 )  such 
that such solution y ( t )  satisfies 

[This follows from Theorem 6.1(i) of [3], via the translation y -+ y - ye ,  
etc., performed above problem (29) .] 

Here R is a Riccati operator, i n  the sense that it [arises i n  the Opti- 
mal Control Problem of Section 4.1 and] satisfies the Algebraic Riccati 
Equation (4.5.1) of [3]. The operator R is positive self-adjoint on H 
and, moreover, R E C ( W ;  W ' )  where W' is the dual of W with respect 
to H as a pivot space. In addition [Proposition 4.1.4 of [3]], 

so that the l ~ i x l - n o r m  is equivalent to the W - n o r m .  B y  a solution to 
Eqn. ( 5 ) ) ,  we mean, of course, a weak solution (see, e.g., [6], [13]). 
(This part is Theorem 5.1 of [3].) 
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Abstract In this paper, we first study the problem of rounding a real-valued ma- 
trix into an integer-valued matrix to minimize an Lp-discrepancy mea- 
sure between them. To define the Lp-discrepancy measure, we introduce 
a family F of regions (rigid submatrices) of the matrix, and consider 
a hypergraph defined by the family. The difficulty of the problem de- 
pends on the choice of the region family F. We first investigate the 
rounding problem by using integer programming problems with con- 
vex piecewise-linear objective functions. Then, we propose "laminar 
family" for constructing a practical and well-solvable class of F. In- 
deed, we show that the problem is solvable in polynomial time if F 
is the union of two laminar families. We shall present experimental re- 
sults. We also give some nontrivial upper bounds for the L,-discrepancy. 
We then foucs on the number of global roundings defined on a hyper- 
graph HG = (V, P G )  which corresponds to a set of shortest paths for a 
weighted graph G = (V, E). For a given real assignment a on V satis- 
fying 0 I: a(v) 5 1, a global rounding cu with respect to HG is a binary 
assignment satisfying that I xu,, a(v) - cu(v)l < 1 for every F E PG. 
We conjecture that there are a t  most (VI + 1 global roundings for HG. 

1. Introduction 
Rounding is an important operation in numerical computation, and 

plays key roles in digitization of analogue data. Rounding of a real 
number a is basically a simple problem: We round it to either La] or [a], 
and we usually choose the one nearer to a. However, we often encounter 
a data consisting of more than one real numbers instead of a singleton. 
If it has n numbers, we have 2n choices for rounding. If the original 
data set has some feature, we need to choose a rounding so that the 
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rounded result inherits as much of the feature as possible. The feature 
is described by using some combinatorial structure; we indeed consider 
a hypergraph 3C on the set. A typical input set is a multi-dimensional 
array of real numbers, and we consider a hypergraph whose hyperedges 
are its subarrays with contiguous indices. In this paper, we first focus on 
two-dimensional arrays; In other words, we consider rounding problems 
on matrices. We then consider the roounding problems on hypergraphs 
derived from a set of shortest paths of a weighted graph. 

This article is a summary of our recent papers [4, 31. 

1.1 Rounding Problem and Discrepancy 
Measure 

Given an N x N matrix A = (aij)15i,j5N of real numbers, its rounding 
is a matrix B = (bij)lli  ) j < N  - of integral values such that bij is either Laij ] 
or [aij] for each (i, j ) .  There are 2"' possible roundings of a given A, 
and we would like to find an optimal rounding with respect to a given 
criterion. This is called the matrix rounding problem. Without loss of 
generality, we can assume that each entry of A is in the closed interval 
[O, 11 and each entry is rounded to either 0 or 1. 

In order to give a criterion to determine the quality of roundings, we 
define a distance in the space of all [O, 11-valued N x N matrices. We 
introduce a family F of regions over the N x N integer grid 

This means that each entry location of a matrix is denoted by a symbol pi 
and that the order (pl, . . . ,p,) is arbitrary. Let A = A(G,) be the space 
of all [O,l]-valued matrices with the index set Gn, and let B = B(G,) 
be its subset consisting of all (0, 1)-valued matrices. Let R be a region 
in F For an element A E A, let A(R) be the sum of entries of A 
located in the region R, that is, A(R) = CpiER api.  We define a distance 
Dist;(A, A') between two elements A and A' in A for a positive integer 
P by 

The distance is called the Lp-distance with respect to F. The L, dis- 
tance with respect to .F is defined by 

Di s tg  (A, A') = lim Dis t ; (~ ,  A') = max IA(R) - A1(R) I 
P+m R E 3  

Using the notations above, we can formally define the matrix rounding 
problem: 
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Lp-Optimal Ma t r ix  Rounding Problem: 
P(G,, F , p ) :  Given a [0, 11-matrix A E A, a family F of subsets of G,, 
and a positive integer p, find a (0, 1)-matrix B E B that minimizes 

Also, we are interested in 

Lp-Discrepancy Bound: 
Given a [O, 11-matrix A E A, 

the following combinatorial problem: 

a family 3 of subsets of G,, and a positive 
integer p, investigate upper and lower bounds of 

D(G,, F, p) = sup min D i s t f ( ~ ,  B) .  
A E A B E B  

The pair (G,, F) defines a hypergraph on G,, and D(G,, F, oo) is 
called the inhomogeneous discrepancy of the hypergraph. Abusing the 
notation, we call D(G,, F , p )  the (inhomogeneous) Lp-discrepancy of the 
hypergraph, and also often call ~ i s t ; (A ,  B)  the Lp-discrepancy measure 
of (quality of) the output B with respect to F. 

1.2 Motivation and our Application 

The most popular example of the family F is the set of all rectangular 
subregions in G,, and the corresponding L,-discrepancy measure is 
utilized in many application areas such as Monte Carlo simulation and 
computational geometry. Unfortunately, if we consider the family of all 
rectangular subregions, the discrepancy bound (for the L, measure) is 
known to be R(1ogn) and 0(log3 n) [7]. It seems hard to find an optimal 
solution to minimize the discrepancy. In fact, it is NP-hard 121. 

Therefore, we seek a family of regions for which low discrepancy 
rounding is useful in an important application and also can be com- 
puted in polynomial time. For the application, L, rounding is not 
always suitable, and Lp-discrepancy (with p = 1 or 2) is preferable. For 
the purpose, we present a geometric structure of a family of regions 
reflecting the combinatorial discrepancy bound and computational diffi- 
culty of the matrix rounding problem. 

In particular, we focus on the digital halftoning application of the 
matrix rounding problem, where we should consider smaller families of 
rectangular subregions as F. More precisely, the input matrix represents 
a digital (gray) image, where aij represents the brightness level of the 
(i, j)-pixel in the N x N pixel grid. Typically, N is between 256 and 
4096, and aij is an integral multiple of 11256: This means that we use 
256 brightness levels. If we want to send an image using fax or print it 
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out by a dot (or ink-jet) printer, brightness levels available are limited. 
Instead, we replace A by an integral matrix B so that each pixel uses 
only two brightness levels. Here, it is important that B looks similar to 
A; in other words, B should be a good approximation of A. 

For each pixel (i, j ) ,  if the average brightness level of B in each of 
its neighborhoods is similar to that of A, we can expect that B is a 
good approximation of A. For this purpose, the set of all rectangles 
is not suitable (i.e., it is too large), and we may use a more compact 
family. Moreover, since human vision detects global features, the L1 or 
L2 measure should be better than the L, measure to obtain a clear 
output image. This intuition is supported by our experimental results. 

We should mention here that there exist known algorithms for digital 
halftoning. We briefly review two popular methods among them. The 
first one is ordered Dither which extends a simple thresholding in such 
a way that it uses different thresholds depending on the positions [6]. 
Namely, we prepare an M x M matrix of integers ranging from 1 to M2. 
This matrix (dither matrix) is tiled periodically to cover the whole image. 
Each pixel aij in the image is compared with the corresponding thresh- 
old (the integer of dither matrix divided by M2)  to decide whether the 
output bij = 0 or I .  The second method is called error diflusion which 
propagates the quantization erros to unprocessed neighboring pixels ac- 
cording to a predeteremined way. More precisely, pixels are processed in 
a raster order, from left to right and from top to bottom. Each pixel is 
compared with a fixed threshold, 0.5 and round it up if it is greater than 
or equal to the threshold and round it down otherwise. The quantization 
error caused by the rounding is diffuesed over the pixels around it with 
fixed ratios. For example, if a pixel level is 0.7, it is rounded up to 1 and 
the error -0.3 is diffused to the unprocessed pixels nearby. 

This method gives excellent image quality in many cases, but it tends 
to produce visible artifacts in an area of uniform intensity. 

Those two existing methods do not have any theoretical background 
which guarantee the quality of the goodness of the output image. This 
is one of the motivations of our theoretical study. 

1.3 Known Results on L, Measure 

For the L,  measure, the following beautiful combinatorial result is 
classically known: 

THEOREM 1 [Baranyai[5]1974] Given a real-valued matrix A = (aij) and 
a family F of regions consisting of all rows, all columns and the whole 
matrix, there exists an integer-valued matrix B = (bij) such that IA(R) - 
B(R)1 < 1 holds for every R E F. 
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The combinatorial structure and algorithmic aspects of roundings of 
(one-dimensional) sequences with respect to the L,-discrepancy mea- 
sure are investigated in recent studies [2, 171. 

The incidence matrix C(Gn ,3 )  = (Cij) of the hypergraph ( G n , 3 )  is 
defined by Cij = 1 if the j-th element of G, belongs to the i-th region Ri 
in 3 and 0 otherwise. A hypergraph is called unimodular if its incidence 
matrix is totally unimodular, where a matrix C is totally unimodular if 
the determinant of each square submatrix of C is equal to O,1, or -1. 

The L,-discrepancy problem can be formulated as an integer pro- 
gramming problem, and the unimodularity implies that its relaxation 
has an integral solution. A classical theorem of Ghouila-Houri [glimplies 
that total unimodularity is a necessary and sufficient condition for the 
existence of a rounding with L, discrepancy less than 1. 

1.4 Organization of the Paper 
We shall consider Lp-discrepancy measure instead of L,-discrepancy 

measure. Starting with one-dimensional array, we shall show several 
interesting unimodular families of 3 where we can find an optimal solu- 
tion of P(G,, 3, p). we consider the optimization problem. In fact, if the 
hypergraph is unimodular, the rounding minimizing the Lp-discrepancy 
can be computed in polynomial time by translating it to a separable con- 
vex programming problem and applying known general algorithms [lo]. 
However, we want to define a class of region families for which we can 
compute the optimal solution more efficiently, as well as the class is use- 
ful in applications (in particular, the digital halftoning application). We 
consider the union of two laminar families (defined in Section 3), and 
show that the matrix rounding problem can be formulated into a mini- 
mum cost flow problem, and hence solved in polynomial time. We then 
show recent results on the Lp-discrepancy bound [4]. 

We implemented the algorithm using LEDA[11]. Some output pic- 
tures of the algorithm applying to the digital halftoning problem are 
included. 

Finally, we briefly review the results concerning global roundings. 

2. Mat hematical Programming Formulations 

2.1 One-Dimensional Case 

We shall begin with a basic case for the rounding problem. We take 
a [0, 11-valued one-dimensional array A = (ai)i=l,z,...,n as an input, and 
a binary array B = (bi)i,l,z,..,,n as an output. A family 3 of regions we 
consdier here is a set of all subintervals of the entire interval [I, n]. Now 
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the L1-optimal rounding problem on 3 is described as follows: 

( I l ) : m i n i m i z e { x  1 C a j - x b j 1  I b j = O , l ,  j = l , 2  ,..., n}. 

If we introduce new variables yi = B(Ii) and constants ci = A(Ii) the 
problem can be replaced by 

(12) : minimize 1 yi - cil 
Ii €3 

subject to yi = x b3, j = 1,2,. . . , m  = 131 and 
j€Ii 

b j = O , l ,  j = 1 , 2  , . . . ,  n. 

The constarints concerning the variables yi are represented in a form: 

where I is an identity matrix and Y = (yl,. . . , y,, bl, . . . , b,), G, = 
{ 1 , 2 , .  . . , n)  and C(G,, F) is the incidence matrix defined by cij = 
1 if bj E Ii, 0, otherwise. Notice that the above problem can be viewed 
as a separable piecewise linear convex minimization problem under lin- 
ear constraints. It is known that the incidence matrix C(G,, 3) is totally 
unimodular [18]. Thus, using the following theorem, the problem (12) 
can be solve in polynomial time. 

THEOREM 2 [Hochbaum and Shanthikumar [lo]] A nonlinear separable 
convex optimization problem min{Cy=2=l fi(xi) I Ax 2 b) on linear con- 
straints with a totally unimodular matrix A can be solved in polynomial 
time in n. 

2.2 Mat hemat ical Programming Formulation of 
Matrix Rounding Problem 

We will extend the formulation of the one-dimensional rounding prob- 
lem to that for matrix rounding problems. 

Introducing a new variable yi = B(&) = C(j,k)ERi bjk for each & E 

3, the problem P(G,, 3 , p )  is described in the following form: 

( P I )  : minimize [ x 1 yi - A(&) l p ] " ~  
Ri €3 

subject to yi = x bjk, i = 1 , .  . . , m = 131 
(j,k)ERi 

B E B(Gn). 
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Notice that G, denotes the one of (1) from now one. The objective 
function can be replaced with CRiE3 Iyi - cilP, where Ci = A(&) = 
C(j,k)E Ri ajk is a constant depending only on input values. Now, lyi-ci (P  

is a convex function independent of other yjs. The constraints yi = 
C(j,k)ERi bjk, i = 1,. . . , m  are represented by (-I ,C(G,,F))Y = 0 
using the incidence matrix C(G,, F) defined in Section 1.3 where Y = 
(yl , .  . . , Ym, b l l , .  . . , b,n)T and I is an identity matrix. 

Although the objective function is now a separable convex function, 
its nonlinearity gives difficulty to analyze the properties of the solution. 
Thus, we apply the idea of Hochbaum and Shanthikumar [lO]to replace 
lyi - cilP with a piecewise linear convex continuous function fi(yi) which 
is equal to 1 yi - ci lP for each integral value of yi in [0, I &  I]. This is 
because we only need integral solutions, and if each bPj is integral, yi 
must be a nonnegative integer less than or equal to \& I .  Typically for 
p = 1, fi(yi) is illustrated in Figure 1. 

Figure 1. Conversion of the convex objective function lyi - c, I into a piecewise linear 
convex function fi(yi) with integral breakpoints (shown in bold lines). 

Thus, we obtain the following problem (P2): 

(P2) : minimize { C fi(yi) I yi = C bik, i = 1 , .  . . , m ,  B t B(G,)} 
Ri €3 (j,k)€Ri 

Here m = ]-TI. Thus, we can formulate the problem into an integer pro- 
gramming problem where the objective function is a separable piecewise- 
linear convex function. 

Let (P3) be the continuous relaxation obtained from (P2) by replac- 
ing the integral condition of bij with the condition 0 5 bij 5 1. Note 
that this is different from the continuous relaxation of (PI ) ,  since the 
objective function of (P2) is larger than that of (PI )  at non-integral 
values. If the matrix is totally unimodular, (P3) has an integral optimal 
solution by Theorem 2. This is a key to derive discrepancy bounds and 
also algorithms. We thus have the following result. 
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COROLLARY 3 The matrix rounding problem P(G, ,F ,p)  is solved in 
polynomial time in n if its associated incidence matrix C(G,, 3) is totally 
unimodular. 

3. Geometric Families of Regions Defining 
Unimodular Hypergraphs 

In this section we consider interesting classes of families whose asso- 
ciated incidence matrices are totally unimodular. We call such a family 
a unimodular family, since the associated hypergraph is unimodular. A 
family 3 = {R1, Rz, . . . , R,) is a partition family (or a partition) of G, 
if lJzl R, = Gn and R, f l  Rj  = 0 for any Ri # Rj  in 3. A k-partition 
family is a family of regions on a matrix which is the union of k different 
partitions of G,. 

A family 3 of regions on a grid G, is a laminar family if one of the 
following holds for any pair Ri and Rj  in 3 :  (1) R,n R j  = 0, (2) R, c Rj  
and (3) R j  c R,. The family is also called a laminar decomposition of 
the grid G,. In general, a k-laminar family is a family of regions on a 
matrix which is the union of k different laminar families. 

The following theorem is known [18]. 

THEOREM 4 A 2-laminar family is unimodular. 

Direct applications of Theorem 4 lead to various unimodular families 
of regions. The family of regions defined in Baranyai's theorem is a 2- 
laminar family. Also, take any 2-partition family consisting of 2 x 2 
regions on a matrix. For example, take all 2 x 2 regions with their 
upper left corners located in even points (where the sums of their row 
and column indices are even). The set of all those regions defines two 
partition families Feuen and Fodd where Feuen (resp. Fodd) consists of 
all 2 x 2 squares with their upper left corners lying at even (resp, odd) 
rows (see Figure 2). This kind of families plays an important role in the 
following Section and also in our experiment. Notice that a 3-partition 
family is not unimodular in general. 

0 1 2 3 4  0 1 2 3 4  

0 0  
1 1 

2  2 

3 3 
4  4  

Feven odd 

Figure 2. 2-partition family of 2 x 2 regions. 
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4. Algorithms for Computing the Optimal 
Rounding 

The arguments so far guarantee polynomial-time solvability of our 
problem. However, we needed a more practical algorithm for our exper- 
iments that runs fast for large-scale problem instances. In this section 
we will show how to solve the matrix rounding problem for a 2-laminar 
family based on the minimum-cost flow algorithm. 

Our main result is the following: 

THEOREM 5 Given a [0, 11-matrix A and a 2-laminar family 3, an op- 
timal binary matrix B that minimizes the distance ~ i s t ; (A ,  B )  is com- 
puted in 0 ( n 2  log2 n) time, where n is the number of matrix elements. 

PROOF. We can transform the problem into that of finding a minimum- 
cost circulation flow in the network defined as follows. 

Let 3 be a 2-laminar family given as the union of two laminar fam- 
ilies 3 1  = {Ro, R1, .  . . , R,) and F2 = {Rb, R;, . . . , Rh,)  over the grid 
G,, where Ro and Rb are the entire region G,. The network to be con- 
structed consists of three parts. The first part is an in-tree TI derived 
from 3 1  whose root is Ro, the second one an out-tree T2 from F2 whose 
root is Rb, and the third part connects TI and T2. The lattice structure 
implied by 3 1  naturally defines an in-tree Tl such that the vertex set is 
the set of regions in 3 1  and there is a directed edge (Ri, Rj) if and only if 
R, C Rj  and there is no other region Rk such that Rj  C Rk C Ri. Then, 
each region R,, i 2 1 has a unique outgoing edge, which is denoted by 
e(Ri). We can similarly define T2 for the laminar family F2, in which 
the edge direction is reversed in T2, that is, each node Ri, i 2 1 has an 
unique incoming edge, which is denoted by e(R{). 

In addition, leaves of TI and T2 are connected by edges corresponding 
to elements of G,. Because of the definition of 3 1  and &, each element 
(k ,  1) of G, belongs to exactly one region in Fl which is a leaf in TI and 
to exactly one region in 3 2  which is a leaf in T2. If ( k ,  1) belongs to Ri 
and R>, then we have a directed edge e(i, j )  from Ri to Ri. Finally, we 
draw an edge from Ro to Rb. 

Now, we define capacity and cost coefficient of each edge. (The lower 
bound on the flow of each edge is defined to be 0.) The capacity of an 
edge e(i, j )  is determined simply as 1 because bij is to be rounded to O 
or 1. Other edges do not have capacity constraint. 

The cost associated of an edge e(&)  (e(Ri), respectively) is fi(yi) 
where yi is defined in ( P I ) .  As already mentioned, fi(yi) is piecewise 
linear convex in yi. We then apply the result of [16](see also Chapter 
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14 of the book by Ahuja et al. [I]) for the algorithm of minimum-cost 
circulation with separable convex costs. 

From this result, we can find an optimal rounding in time O(IE1 log 
U(IEI + IVI log IVI)) for a network with node set V and edge set E and 
the largest integral capacity U. In our case, IVI, I El and U are all O(n),  
and thus we have 0 ( n 2  log2 n) ,  where n is the number of matrix elements. 
Q.E.D. 

5 .  Upper Bounds for the L,-Discrepancy 

In this section, we show the following theorem for the Lp-discrepancy 
of a unimodular family. We will omit the proof for the space limit. 

THEOREM 6 [Asano, Katoh, Obokata and Tokuyama [4]] If F is uni- 
modular and p < 3, for any A E A we have 

1 
min ~ i s t r ( ~ ,  B) < 1F1'/~ 
BEB 

It is easy to give an instance to show that the bound is tight: Consider 
Baranyai's problem on a matrix having $ entries in its diagonal position 
(other entries are zeros). 

6. Application to Digit a1 Halftoning 

The quality of color printers has been drastically improved in recent 
years, mainly based on the development of fine control mechanism. On 
the other hand, there seems to be no great invention on the software side 
of the printing technology. What is required is a technique to convert a 
continuous-tone image into a binary image consisting of black and white 
dots so that the binary image looks very similar to the input image. From 
a theoretical standpoint, the problem is how to approximate an input 
[0, 11-array by a binary array. Since this is one of the central techniques 
in computer vision and computer graphics, a great number of algorithms 
have been proposed (see, e.g., [12, 8, 6, 13, 151). However, there have 
been very few studies toward the goal of achieving an optimal binary 
image under some reasonable criterion; maybe because the problem itself 
is very practically oriented. A desired output image is the one which 
looks similar to the input image to the human visual system. The most 
popular distortion criterion that is used in practice is perhaps Frequency 
Weighted Mean Square Error (FWMSE)[14]which is defined by 
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Here, V = (v lk l l l l ) ,  k ,  1 = 0 , .  . . , K is an impulse response that approxi- 
mates the characteristics of the human visual system and K is some small 
constant, say 3. Our discrepancy measure which has been discussed in 
this paper is a hopeful replacement; Indeed, the La-discrepancy measure 
can be regarded as a simplified version of the FWMSE criterion. 

We have implemented the algorithm using LEDA [ll]functions for 
finding minimum-cost flow, and applied to several test images to compare 
its results with the error diffusion algorithm which is most commonly 
used in practice. The data we used for our experiments are Standard  
h igh  precision picture data  created by the Institute of Image Electronics 
Engineers of Japan, which include four standard pictures called, "Bride," 
"Harbor," "Wool," and "Bottles." They are color pictures of 8 bits each 
in RGB. Their original picture size is 4096 x 3072. In our experiments we 
scaled them down to 1024 x 768 in order to shorten the running time of 
the program. Figures 3 and 4 show experimental results for "Wool" and 
"Wine" to compare our algorithm with error diffusion. Our algorithm 
has been implemented using a 2-laminar family defined by the two tiles 
(b) and (c) depicted in Figure 5. 

Figure 3. Experimental results for "Wool". Output images by error diffusion algo- 
rithm (left) and the algorithm in this paper (right). 

7. Global Roundings 

Let H = (V, F), where 3 C 2V, be a hypergraph on a set V of n 
nodes. Given a real valued function a on V, we say that an integer 
valued function a on V is a global rounding  of a with respect to H, if 
wF(a) is a rounding of wF(a) for each F E F, where wF( f )  denotes 
CvEF f (v). Without loss of generality we restrict our attention to the 
case where the ranges of a and a are [O, 11 and {0,1) respectively. 

This notion of global roundings on hypergraphs is closely related to 
that of ,-discrepancy of hypergraphs[7]. Given a and b E [0, 1IV, define 
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Figure 4. Experimental results for "Wine". Output images by error diffusion (left) 
and by the algorithm in this paper (right). 

on00 up; 
nnnn n 

Figure 5. Three different partitions of the image plane (a) by 2 x 2 squares, (b) 
vertically shifted 2 x 2 squares, and (3) cross patterns consisting of 5 pixels. 

the discrepancy DH(a ,  b) between them on H by 

D H ( a ,  b) = max I W F  ( a )  - W F @ )  1 .  
F E F  

Our recent paper [3]investigated maximum number v ( H )  of global 
roundings. 

This direction of research is initiated by Sadakane et al.[17]where the 
authors discovered a somewhat surprising fact that ~(1, )  5 n  + 1 where 
I, is a hypergraph on V = {1,2,  .., n )  with edge set {[i, j ] ;  1  5 i 5 j 5 n )  
consisting of all subintervals of V. We can also see that v ( H )  >_ n + 1 
for any hypergraph H: if we let a(v )  = E for every v ,  where E < l l n ,  
then any binary assignment on V that assigns 1 to at most one vertex 
is a global rounding of H ,  and hence v ( H )  2 n  + 1. 
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Given this discovery, it is natural to ask for which class of hypergraphs 
this property v(H) = n + 1 holds. 

We showed [3] that v(H) = n+ 1 holds for a considerably wider class of 
hypergraphs. Given a connected G in which edges are possibly weighted 
by a positive value, we define a shortest-path hypergraph HG generated 
by G as follows: a set F of vertices of G is an edge of HG, if and only 
if F is the set of vertices of some shortest path in G with respect to the 
given edge weights. Note that we permit more than one shortest path 
between a pair of nodes if they have the same length. The following 
theorem is our main result [3]: 

THEOREM 7 v(HG) = n + 1 holds for the shortest-path hypergraph HG, 
if G is a tree, a cycle, a tree of cycles, an unweighted mesh, or an 
unweighted k-tree. 

We conjecture that the result holds for general connected graphs. 

8. Concluding Remarks 
We have considered the matrix rounding problem based on Lp-discre- 

pancy measure. Although we have shown that the measure is useful in 
application to the digital halftoning application, the current algorithm 
is too slow if we want to require speed together with the high-quality 
requirement. It is desired to design a faster algorithm (even an approxi- 
mation algorithm). Moreover, it is an interesting question to investigate 
what kind of region families give the best criterion for the halftoning 
application. Once we know such a region family, it is valuable to design 
an algorithm (heuristic algorithm if the problem for solving the optimal 
solution is intractable) for the criterion. 
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Notes 
1. Strictly speaking, R can be any subset of G,. Although we implicitly assume that 

R forms some connected portion on the grid G,, the connectivity assumption is not used 
throughout the paper. 

2. We implicitly assume a one-dimensional ordering of elements in G, 
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Abs t rac t  We introduce some methods for constrained nonlinear programming 
that are widely used in practice and that are known under the names 
SQP for sequential quadratic programming and SCP for sequential con- 
vex programming. In both cases, convex subproblems are formulated, 
in the first case a quadratic programming problem, in the second case 
a separable nonlinear program in inverse variables. The methods are 
outlined in a uniform way and the results of some comparative perfor- 
mance tests are listed. We especially show the suitability of sequential 
convex programming methods to solve some classes of very large scale 
nonlinear programs, where implicitly defined systems of equations seem 
to support the usage of inverse approximations. The areas of interest are 
structural mechanical optimization, i.e., topology optimization, and op- 
timal control of partial differential equations after a full discretization. 
In addition, a few industrial applications and case studies are shown 
to illustrate practical situations under which the codes implemented by 
the authors are in use. 

Keywords:  sequential quadratic programming, SQP, sequential convex program- 
ming, SCP, comparative tests, industrial applications, topology opti- 
mization, optimal control of semilinear elliptic equations 
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Introduction 

Over the last years, mathematical optimization became a powerful 
tool in many real-life application areas. Proceeding from a formal math- 
ematical model simulating the behavior of a practical system, optimiza- 
tion algorithms are applied to minimize a so-called cost function subject 
to some constraints. A typical example is the minimization of the weight 
of a mechanical structure under given loads and under constraints for 
admissible stresses, displacements, or dynamic responses. Highly com- 
plex industrial and academic design problems can be solved today by 
means of nonlinear programming algorithms without any chance to get 
equally qualified results by traditional empirical approaches. 

We consider the smooth, constrained optimization problem to min- 
imize a scalar objective function f (x) under nonlinear inequality con- 
straints, 

min f (x) 
x E P :  

9(x) L 0 , 
where x is an n-dimensional parameter vector. The vector-valued func- 
tion g(x) defines rn inequality constraints, g(x) = (gl (z), . . ., g,(x))T. 
To simplify the notation, equality constraints and upper or lower bounds 
of variables are omitted. We assume that the feasible domain of (1) 
is non-empty and bounded, and that the functions f (x) and g(x) are 
smooth, i.e., twice continuously differentiable. 

Since we suppose that problem (1) is nonconvex and nonlinear in 
general, the basic idea is to replace it by a sequence of s impler  prob- 
lems. S impler  means in this case that the structure of the subproblem 
is much easier to analyze and that the subproblem is uniquely solvable 
by an available black box technique. In particular, it is assumed that the 
applied numerical algorithm does not require any additional function or 
gradient evaluations of the original functions f (x) and g(x). An essential 
requirement is that we get a first order approximation of ( I ) ,  i.e., that 
function and gradient values of the original problem and the subproblem 
coincide at a current iterate. 

Sequential quadratic programming (SQP) methods are very well 
known and are considered as the standard general purpose algorithm 
for solving smooth nonlinear optimization problems at least under the 
following assumptions: 

The problem is not too big. 

rn Function and especially gradient values can be evaluated within 
sufficient precision. 
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The problem is smooth and well-scaled. 

In this case, the subproblems consist of strictly convex quadratic pro- 
gramming problems with inequality constraints obtained by linearizing 
the constraints and by approximating the Lagrangian function of (1) 
quadratically. SQP methods have their roots in unconstrained opti- 
mization, and can be considered as extensions of quasi-Newton meth- 
ods taking constraints into account. The basic idea is to establish a 
quadratic approximation based on second order information with the 
goal to achieve a fast local convergence speed. Second order informa- 
tion about the Hessian of the Lagrangian is updated by a positive def- 
inite quasi-Newton matrix. The linearly constrained, strictly convex 
quadratic program must be solved in each iteration step by an available 
black box solver. 

Despite of the success of SQP methods, another class of efficient op- 
timization algorithms was proposed by engineers, where the motivation 
is found in mechanical structural optimization. The method is based on 
the observation that in some special cases, typical structural constraints 
become linear in the inverse variables. Although this special situation 
is rarely observed in practice, a suitable substitution of structural vari- 
ables by inverse ones depending on the sign of the corresponding partial 
derivatives and subsequent linearization is expected to linearize con- 
straints somehow. 

More general convex approximations are introduced known under the 
name moving asymptotes (MMA). The goal is to construct convex and 
separable subproblems, for which efficient solvers are available based on 
interior point techniques. Thus, we denote this class of methods by SCP, 
an abbreviation for sequential convex programming. In other words, SQP 
methods are based on local second order approximations, whereas SCP 
methods are applying global first order convex approximations. 

SCP methods can be used to solve very large scale optimization or 
VLSO problems, respectively, without any further adoptions of the fun- 
damental structure. Typically they are applied to solve topology opti- 
mization problems in mechanical engineering. It seems that these meth- 
ods are particularly efficient in situations where objective function and 
constraints depend also on state variables, i.e., variables defined implic- 
itly by an internal system of equations. 

The subsequent section contains a brief outline of SQP and SCP meth- 
ods to illustrate their basic structure. More details are found in the 
references cited. The results of some comparative numerical tests of 
both approaches are shown for a set of 79 structural optimization prob- 
lems and for a set of 306 standard academic test problems. Section 3 
shows how SCP methods can be applied to solve VLSO problems. The 
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two classes of test problems under consideration are from topology op- 
timization and optimal control of semilinear elliptic partial differential 
equations. Although the presented examples proceed from relatively 
simple academic formulations, they show at least the capability of SCP 
methods for solving large optimization problems without assuming any 
special sparsity patterns. 

To show that SQP and SCP methods are of practical interest and are 
routinely used in industry for design and production, we outline a few 
case studies in Section 4. Especially, we briefly introduce applications 
how to find the 

optimal design of horn radiators for satellite communication (As- 
trium), 

optimal design of surface acoustic wave filters (Epcos), 

on-line control of a tubular reactor (BASF), 

weight-reduction of a cruise ship (Meyer Werft). 

We want to give an impression of the numerical complexity of the 
optimization models and the importance and efficiency of optimization 
codes in these cases. 

1. Sequential Quadratic Versus Sequential 
Convex Programming Methods 

1.1 A General Framework 
Since we assume that our optimization problem ( I )  is nonconvex and 

nonlinear in general, the basic idea is to replace (1) by a sequence of 
simpler problems. Starting from an initial design vector xo E lRn and 
an initial multiplier estimate uo E lRm, iterates x k  E lRn and u k  E IRm 
are computed successively by solving subproblems of the form 

Let yk be the optimal solution and vk the corresponding Lagrangian 
multiplier of (2). A new iterate is computed by 

where a k  is a steplength parameter discussed subsequently. 
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S i m p l e r  means that the subproblem has a specific mathematical struc- 
ture which is easier to analyze, and that it is efficiently solvable by an 
available black box technique, more or less independently of the under- 
lying model structure. In particular, it is assumed that the numerical 
algorithm for solving (2) does not require any additional function or 
gradient evaluations of the original functions f (x) and gj (x) , j = 1, . . . , 
m. Note that we are looking for a simultaneous approximation of an 
optimal solution x* and of the corresponding multiplier vector u*. 

Now we summarize the requirements to describe SQP and SCP algo- 
rithms in a uniform way: 

1 (2) is strictly convex and smooth, i.e., functions fk (x )  and g?(x) 
are twice continuously differentiable, j = 1, . . ., m. 

2 (2) is a first order approximation of (1) at xk, i.e., f (xk) = fk(xk) ,  
vf (xk) = vf '(xk), g(xk) = gk(xk), and Vg(xk) = Vgk(xk). 

3 The search direction (yk - xk, vk - uk) is a descent direction for an 
augmented Lagrangian merit function introduced below. 

4 The feasible domain of (2) is non-empty and bounded. 

Strict convexity of (2) means that the objective function f '(x) is 
strictly convex and that the constraints g:(x) are convex functions for 
all iterates xk and j = 1, . . ., m. Since the feasible domain is supposed 
to be non-empty, (2) has a unique solution yk E lRn with Lagrangian 
multiplier vk E lRm. A further important consequence is that if yk = xk, 
then xk and vk solve the general nonlinear programming problem (1) in 
the sense of a stationary solution. 

A line search is introduced to stabilize the solution process, particu- 
larly helpful when starting from a bad initial guess. We are looking for 
an a k ,  see (3), 0 < a k  < 1, so that a step along a merit function \Zlk(a) 
from the current iterate to the new one becomes acceptable. The idea is 
to penalize the Lagrange function in the L2 norm as soon as constraints 
are violated, by defining 

Then we set 

Q k ( 4  = 

where J = { j  : gj(x) 
constraints considered 

2 -uj/rj) and K = {I , .  . . , m )  \ J define the 
as active or inactive, respectively. 



78 SYSTEM MODELING AND OPTIMIZATION 

The steplength parameter cxk is required in (3) to enforce global 
convergence of the optimization method, i.e., the approximation of a 
point satisfying the necessary Karush-Kuhn-Tucker optimality condi- 
tions when starting from arbitrary initial values, e.g., a user-provided 
xo E lRn and uo = 0. The merit function defined by (4) is also called 
augmented Lagrange function, see for example Rockafellar [31]. The 
corresponding penalty parameter r k  at the k-th iterate that controls the 
degree of constraint violation, must be chosen carefully to guarantee a 
descent direction of the merit function, so that the line search is well- 
defined, 

The line search consists of a successive reduction of cx starting at I ,  usu- 
ally combined with a quadratic interpolation, until a sufficient decrease 
condition is obtained. 

Standard techniques to approximate constraints, for example succes- 
sive linearization, can lead to inconsistent constraints in (2). In these 
cases, it is possible to introduce an additional variable and to modify 
objective function and constraints, for example by 

in the simplest form. The penalty term p k  is added to the objective 
function to reduce the influence of the additional variable yn+l as much 
as possible. The index Ic implies that this parameter also needs to be 
updated during the algorithm. It is obvious that (7) always possesses a 
feasible solution. 

1.2 Sequential Quadratic Programming 

Sequential quadratic programming or SQP methods belong to the 
most powerful nonlinear programming algorithms we know today for 
solving differentiable nonlinear programming problems of the form (1). 
The theoretical background is described in Stoer [44] in form of a review, 
and in Spellucci [43] in form of an extensive text book. From the more 
practical point of view, SQP methods are also introduced in the books of 
Papalambros and Wilde [28] or Edgar and Himmelblau [9]. Their excel- 
lent numerical performance is tested and compared with other methods 
in Schittkowski [33-341 and Hock, Schittkowski [16]. Since many years 
they belong to the most frequently used algorithms to solve practical 
optimization problems. 
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The basic idea is to formulate and solve a quadratic programming 
subproblem in each iteration, which is obtained by linearizing the con- 
straints and approximating the Lagrange function of (1) quadratically. 
To formulate the subproblem, we proceed from given iterates x k  E En, 
an approximation of the solution, u k  E Em, an approximation of the 
vector of multipliers, and Bk E Enxn, an approximation of the Hessian 
of the Lagrange function. Then we obtain subproblem (2) by defining 

It is immediately seen that the requirements of the previous section 
for (2) are satisfied. The key idea is to approximate also second order 
information to get a fast final convergence speed. The update of the ma- 
trix Bk can be performed by standard quasi-Newton techniques known 
from unconstrained optimization subject to the Lagrangian function of 
the nonlinear program. In most cases, the BFGS-method is applied, see 
Powell [30, 291, or Stoer [44], starting from the identity matrix or any 
other positive definite matrix Bo. A simple modification as for example 
proposed by Powell [30] guarantees positive definite matrices. 

Among the most attractive features of sequential quadratic program- 
ming methods is the superlinear convergence speed in the neighborhood 
of a solution, i.e., 

I l ~ k + l  - x*ll < 7 k I l ~ k  - x*lI (9) 

with ~ k  + 0. 
The motivation for the fast convergence speed of SQP methods is 

based on the following observation: an SQP method is identical to New- 
ton's method to solve the necessary optimality conditions of ( I ) ,  if Bk 
is the Hessian of the Lagrange function at x k  and u k  and if we start 
sufficiently close to a solution. The statement is easily derived in case 
of equality constraints only, but holds also for inequality restrictions. 

There remain a few comments to summarize some interesting features 
of SQP methods: 

Linear constraints and bounds of variables remain satisfied. 

In case of n active constraints, the SQP method behaves like New- 
ton's method for solving the corresponding system of equations, 
i.e., the local convergence speed is even quadratically. 

rn The algorithm is globally convergent and the local convergence 
speed is superlinear. 
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A simple reformulation allows the efficient solution of constrained 
nonlinear least squares problems, see Schittkowski [37, 401. 

A large number of constraints can be treated by an active set 
strategy, see Schittkowski [38]. In particular, the computation of 
gradients for inactive restrictions can be omitted. 

There exists a large variety of different extensions to solve also 
large scale problems, see Gould and Toint [13] for a review. 

1.3 Sequential Convex Programming 

Sequential convex programming methods are developed mainly for 
mechanical structural optimization. The first approach of Fleury and 
Braibant [ll] and Fleury [lo] is known under the name convex lineariza- 
tion (CONLIN) and exploits the observation that in some special cases, 
typical structural constraints become linear in the inverse variables. Al- 
though this special situation is always found in case of statically deter- 
minate structures, it is rarely observed in practice. However, a suitable 
substitution by inverse variables depending on the sign of the corre- 
sponding partial derivatives and subsequent linearization is expected to 
linearize constraints somehow. 

For the CONLIN method, Nguyen et al. [26] gave a convergence proof 
but only for the case that (1) consists of a concave objective function and 
constraints which is of minor practical interest. They showed also that a 
generalization to non-concave constraints is not possible. More general 
convex approximations are introduced by Svanberg [45] known under 
the name method of moving asymptotes (MMA). The goal is always to 
construct nonlinear convex and separable subproblems, for which effi- 
cient solvers are available. Using the flexibility of the asymptotes which 
influence the curvature of the approximations, it is possible to avoid the 
concavity assumption. 

Given an iterate xk, the basic idea is to linearize f and gj  at xk 
subject to transformed variables (u: -xi)-' and (xi - L:)-' depending 
on the sign of the corresponding first partial derivative. U: and L: are 
reasonable bounds and are adapted by the algorithm after each successful 
step. Also several other transformations have been developed in the past. 

By defining suitable index sets 
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for objective function and, in a similar way, I& and IJ; for constraints, 
we get the corresponding approximating functions of subproblem (2) by 

j = 1, . . ., m, where y = (yl , .  . . , Y , ) ~ .  The coefficients a: and &, 
j = 0, . . ., m are chosen to satisfy the requirements of Section 2.1, i.e., 
that (2) is convex and a first order approximation of (1) at xk. By 
an appropriate regularization of the objective function, strict convexity 
of f k ( y )  is guaranteed, see Zillober [50]. As shown there, the search 
direction (yk - xk, vk - uk )  is a descent direction for the augmented 
Lagrangian merit function (4,5), see also (6). The approximation scheme 
(10) can be applied only to inequality constraints. Additional equality 
constraints can be added, but are linearized as for SQP methods. 

The choice of the asymptotes L! and u:, is crucial for the computa- 
tional behavior of the method, in particular since additional lower and 
upper bounds are usually available. Additional safeguards ensure the 
compatibility of this procedure with the overall scheme and guarantee 
global convergence. A small positive constant is introduced to avoid 
that the difference between the asymptotes and the current iteration 
point becomes too small. However, these safeguards are rarely used in 
practice, see Zillober [50] for more details. 

For the first SCP codes developed, the convex and separable sub- 
problems are solved by a dual approach, where dense linear systems of 
equations with m rows and columns are solved, cf. Svanberg [45] or 
Fleury [lo]. Recently, a predictor-corrector interior point method for 
the solution of the subproblems was proposed by Zillober [49]. The ad- 
vantage is to formulate either n x n or m x m linear systems of equations 
leading to a more flexible treatment of large problems. The resulting al- 
gorithm is very efficient especially for large scale mechanical engineering 
problems, and given sparsity patterns of the original problem data can 
be exploited. 

To summarize, the most important features of SCP methods are: 

Linear equality constraints and bounds of variables remain satis- 
fied. 

The algorithm is globally convergent. 
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As for SQP methods, a large number of constraints can be treated 
by an active set strategy, see Zillober [52, 511. In particular, the 
computation of gradients for inactive restrictions can be omitted. 

Large scale problems can be handled by different variants of the so- 
lution procedure for the subproblem, see Zillober et al. [53], where 
sparsity of problem data can be exploited. 

1.4 Comparative Results 

Our numerical tests use all 306 academic and real-life test problems 
published in Hock and Schittkowski [I61 and in Schittkowski [36]. Part 
of them are also available in the CUTE library, see Bongartz et al. [5]. 
The test problems possess also nonlinear equality constraints and addi- 
tional lower and upper bounds for the variables. The two codes under 
consideration, NLPQLP of Schittkowski [39] and SCPIP of Zillober [51], 
are able to solve more general problems 

min f (x) 

with additional smooth functions h(x) = (h l , .  . . , h,,)T for equality 
constraints and bounds xl < xu. 

Since analytical derivatives are not available for all problems, we ap- 
proximate them numerically by a five-point difference formula. The test 
examples are provided with exact solutions, either known from analytical 
evaluation or from the best numerical data found so far. Since the calcu- 
lation times are very short, we count only function and gradient evalua- 
tions. This is a realistic assumption, since for the practical applications 
in mind calculation times for evaluating model functions dominate and 
the numerical efforts within an optimization code are negligible. 

The result of a test run is considered as a successful return, if the 
relative error in the objective function is less than a given tolerance E 

and if the maximum constraint violation is less than c2 .  We take into 
account that a code returns a solution with a better function value than 
the known one subject to the error tolerance of the allowed constraint 
violation. However, there is still the possibility that an algorithm termi- 
nates at a local solution different from the one known in advance. Thus, 
we call a test run a successful one, if the internal termination conditions 
are satisfied subject to a reasonably small tolerance, if the obtained solu- 
tion is feasible, and if the objective function value is significantly larger 
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code P S U C C  J nit 

NLPQLP 100 % 33 21 
SCPIP 93 % 74 42 

Table 1. Performance Results for Standard Test Problems 

than the known one. For our numerical tests, we use e = 0.01, i.e., we 
require a final accuracy of one per cent, see Zillober et al. [53] for more 
details. 

The code NLPQLP of Schittkowski [39] represents the most recent 
version of NLPQL which is frequently used in academic and commer- 
cial institutions, see Schittkowski [35]. Functions and gradients must 
be provided by reverse communication and the quadratic programming 
subproblems are solved by the primal-dual method of Goldfarb and Id- 
nani [12] based on numerically stable orthogonal decompositions. The 
SQP algorithm is executed with termination accuracy and the max- 
imum number of iterations is 500. In the SCP implementation SCPIP 
of Zillober [52, 511, the convex subproblems are solved by the predictor- 
corrector interior point method described in Zillober [49]. Input variables 
and tolerances are chosen in a way such that the termination conditions 
for SCPIP and NLPQLP are comparable. 

Table 1 shows the percentage of successful test runs, psuCc, the aver- 
age number of function calls, n f ,  and the average number of iterations, 
nit. Function evaluations needed for gradient approximations, are not 
counted for n f .  Their average number is 4 x n f .  Many test problems are 
unconstrained or possess a highly nonlinear objective function prevent- 
ing SCP from converging as fast as SQP methods. Moreover, bounds are 
often set far away from the optimal solution, leading to initial asymp- 
totes too far away from the region of interest. Since SCP methods do 
not possess fast local convergence properties, SCPIP needs about twice 
as many iterations and function evaluations. 

The situation is different in mechanical structural optimization, where 
the SCP methods have been invented. In the numerical study of Schit- 
tkowski et al. [41], 79 finite element formulations of academic and prac- 
tical problems are collected based on the simulation package MBB- 
LAGRANGE, see Kneppe et al. [19]. The maximum number of vari- 
ables is 144 and a maximum number of constraints 1020 without box- 
constraints. NLPQL, see Schittkowski [35], and MMA, former versions 
of NLPQLP and SCPIP, respectively, are among the 11 optimization 
algorithms under consideration. To give an impression on the behavior 
of SQP versus MMA, we repeat some results of Schittkowski et al. [41], 
see Table 2. 
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One of the main difficulties of a comparative performance study is that 
the optimization program solve only a certain subset of test problems 
successfully, which differs from code to code. Thus, mean values of a 
performance criterion are evaluated pairwise over the set of successfully 
solved test problems of two algorithms, and then compared in form of a 
matrix, see the priority theory of Saaty [32] and also Lootsma [21]. The 
decision whether the result of a test run is considered as a successful one 
or not, depends on a tolerance 6 which is set to E = 0.01 and E = 0.00001, 
respectively. 

code Psucc n f nit Psucc  f nit 

NLPQL 84 % 2.0 1.6 77 % 1.3 1.3 
MMA 73 % 1.0 1 .O 73 % 1.0 1.0 

Table 2. Performance Results for Structural Optimization Test Problems 

The figures of Table 2 represent the scaled relative performance data 
when comparing the codes among each other. We conclude for example 
that for E = 0.01, NLPQL requires about twice as many gradient eval- 
uations or iterations, respectively, as MMA. When requiring a higher 
termination accuracy, however, NLPQL needs only 30 % more gradient 
calls. On the other hand, NLPQL is a bit more reliable than MMA. 

2. Very Large Scale Optimization by Sequential 
Convex Programming 

2.1 Topology Optimization 
To give an impression about the capabilities of an SCP implementa- 

tion for solving very large scale nonlinear programming problems, we 
consider now structural mechanical optimization, more precisely topol- 
ogy optimization. Given a predefined domain in the 2D/3D space with 
boundary conditions and external load, the intention is to distribute a 
percentage of the initial mass on the given domain such that a global 
measure takes a minimum, see Bendsme [2] or Bendsme and Sigmund [3] 
for a broader introduction. Assuming isotropic material, the so-called 
power law approach, see also Bendsme [I] or Mlejnek [25], leads to a 
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nonlinear program of the form 

min uTp 

where x = (x l , .  . . , x , ) ~  denotes the relative material densities, artifi- 
cially introduced variables. In the final solution, we consider a small 
value of xi as zero or no mass, a larger value as one or full mass. Theo- 
retically, one is only interested in 0-1 solutions, which are not guaranteed 
by the continuous approach applied. u = (ul ,  . . . , ud)T is the displace- 
ment vector computed from the linear system of equations K(x)u  = p 
with a positive definite stiffness matrix K(x)  and an external load vec- 
tor p. d denotes the number of degrees of freedom of the structure. We 
assume without loss of generality that there is only one load case. The 
goal is to minimize the so-called compliance or, in other words, to make 
the structure as stiff as possible. 

It is essential to understand that the system of linear equations 
K(x)u  = p can be considered as the state equations of our optimization 
problem. In practical situations, finite element simulation software is 
available to set up the stiffness matrix and to solve the system K(x )u  = p 
internally. To indicate that u depends on the relative densities x, we use 
the notation u(x). 

The relative densities and the elementary stiffness matrices Ki define 
K(x)  by 

n 

V(x) is the volume of the structure, usually a linear function of the 
design variables, 

n 

where T/, is the volume of the i-th finite element. Vo is the available 
volume, Vo = Cy=, V,,  and a with 0 < a < 1 the given fraction of 
the full volume to distribute the available mass, xl is a vector of small 
positive numbers for avoiding singularities. The nonlinearity xp in the 
state equation is found heuristically and usually applied in practice with 
q = 3. Its role is to penalize intermediate values between the lower 
bound and 1. 
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Figure 1. Design Region of Beam 

The partial derivatives of the objective function of problem (12) are 
computed from 

for j = 1, . . ., n,  see Zillober et al. [53]. Since the elementary stiffness 
matrices Kj  are very sparse, for example containing only non-zero entries 
on an 8 x 8-submatrix in case of the rectangular elements used in this 
section, the j-th partial derivative is computed very efficiently as soon 
as the displacement vector u(x) is available. 

The solution of topology optimization problems easily leads to very 
large scale, highly nonlinear programs. The probably most simple ex- 
ample is a beam, which is loaded in the middle and supported at the two 
lower vertices. The design region is a rectangular plate, see Figure 1, 
discretized by rectangular finite elements. For symmetry reasons, we 
consider only one half of the beam for our calculations. The number 
of horizontal grid lines is denoted by n2, the number of vertical grid 
lines by ny. The solution of topology optimization problems as outlined 
so far, produces a strange phenomenon, a checkerboard-type material 
distribution in certain regions. Thus, an additional filter is applied by 
which partial derivatives are modified by certain weights depending on a 
given radius rf around the considered element, see for example Bendsoe 
and Sigmund [3]. In addition, Table 3 shows the total number of opti- 
mization variables, n,  the number of iterations, nit, the final objective 
function value, f (x),  and the gradient norm of Lagrangian function, 
(IV,L(x, u) 1 1 .  The results show that that SCP methods are able to solve 
dense nonlinear programs with more than lo6 variables. More detailed 
computational results are presented in Zillober et al. [53]. 
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nx n y  n nit f ( X I  IIVxL(x? u)II r f 
600 400 240,000 2 2 52.63 1.3E-3 8 

Table 3. Numerical Results of SCPIP for the Half Beam 

2.2 Optimal Control of Semilinear Elliptic 
Partial Differential Equations 

The intention behind the numerical tests of this section is to show 
that SCP methods can be applied also to optimization problems which 
are completely different from the original mechanical engineering appli- 
cations. We consider a series of test problems investigated by Maurer 
and Mittelmann [22-231 when studying necessary optimality conditions 
for optimal control of elliptic partial differential equations with state 
and control constraints. They differ by the type of control, boundary 
and interior control, the cost functional, the non-homogeneous part of 
the elliptic equation, and the boundary conditions. Results for a typical 
test problem are shown below. More detailed numerical results are pre- 
sented in Zillober et al. [53], where the performance of the code SCPIP 
is compared with the best codes of the Maurer and Mittelmann study. 

Proceeding from the two-dimensional unit square R and the boundary 
I?, the optimal control problem is defined by 

min 4 (y(x) - sin(2sxl) s i n ( 2 ~ x 2 ) ) ~  + u ( x ) ~  da 

Ay+eY=O,  X E R ,  

a , y + y = o ,  X E ~  , 
y < 0.371 , -8 5 u < 9 . 

(14) 
u is the control function we want to compute subject to constant lower 
and upper bounds, and y denotes the state variable, i.e., the solution of 
the semilinear elliptic partial differential equation Ay+ eY = 0 subject to 
a Neumann boundary condition of the form d,y + y = 0. 8, y denotes the 
outward unit normal along the boundary r .  The solution of the state 
equations depends on the control function u, and a state constraint for 
y is given in form of an upper constant bound. The cost function is of 
tracking type, see Ito and Kunisch [17] depending on the spatial variable 
x. 
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N + 1  n m nit f (x) 
100 19,998 10,197 20 0.0528 
200 79,998 40,397 22 0.0530 
300 179,998 90,597 16 0.0535 
400 319,998 160,797 18 0.0534 
500 499,998 250,997 16 0.0536 
600 719,998 361,197 16 0.0537 

Table 4. Numerical Results for a Semilinear Elliptic Control Problem 

The elliptic control problem (14) is pointwise discretized subject to the 
control and state variables as proposed by Maurer and Mittelmann [22- 
231 based on a uniform grid of size N for discretizing 0 and a five-star- 
formula for the Laplace operator. Thus, we get a set of N2 equality 
constraints 

First derivatives in Neumann boundary conditions are approximated by 
forward or backward differences, respectively. 

It is important to understand that SCP methods are not invented 
to solve equality constrained problems. Convex approximation cannot 
be applied to equality constraints, which are linearized internally, see 
Zillober [49]. Problem (14) is solved by the SCP code SCPIP with 
termination accuracy E = for the optimality condition and E = 
10-lo for maximum constraint violation. Starting values are uo = 0 
and yo = 0 for all test runs. The total number of variables, n ,  and the 
number of equality constraints, m, are shown in Table 4 together with 
the number of SCPIP iterations, nit, and the final objective function 
value, f (u, y).  The grid size N varies between 100 and 600. 

3. Case Study: Horn Radiators for Satellite 
Communication 

Corrugated horns are frequently used as reflector feed sources for large 
space antennae, for example for INTELSAT satellites. The goal is to 
achieve a given spatial energy distribution of the radio frequency (RF) 
waves, called the radiation or directional characteristic. The transmis- 
sion quality of the information carried by the RF signals is strongly 
determined by the directional characteristics of the feeding horn as de- 
termined by its geometric structure. 

The electromagnetic field theory is based on Maxwell's equations re- 
lating the electrical field E, the magnetic field H, the electrical displace- 
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ment, and the magnetic induction to electrical charge density and cur- 
rent density, see Collin [8] or Silver [42]. Under some basic assumptions, 
particularly homogeneous and isotropic media, Maxwell's equations can 
be transformed into an equivalent system of two coupled equations. They 
have the form of a wave equation, 

with displacement f enforcing the wave, and wave velocity c. 9 is to be 
replaced either by E or H, respectively. 

For circular horns with rotational symmetry, the usage of cylindrical 
coordinates (p ,  4, z )  is advantageous, especially since only waves propa- 
gating in z direction occur. Thus, a scalar wave equation in cylindrical 
coordinates can be derived from which general solution is obtained, see 
for example Collin [8] for more details. 

By assuming that the surface of the wave guide has ideal conductivity, 
and that homogeneous Dirichlet boundary conditions 9 = 0 for 9 = E 
and Neumann boundary conditions d Q / d n  = 0 for Q = H at the sur- 
face are applied, we get the eigenmodes or eigenwaves for the circular 
wave guide. Since they form a complete orthogonal system, electromag- 
netic field distribution in a circular wave guide can be expanded into an 
infinite series of eigenfunctions, and is completely described by the am- 
plitudes of the modes. For the discussed problem, only the transversal 
eigenfunctions of the wave guides need to be considered and the eigen- 
functions of the circular wave guide can be expressed analytically by 
trigonometric and Bessel functions. 

In principle, the radiated far field pattern of a horn is determined by 
the field distribution of the waves emitted from the aperture. On the 
other hand, the aperture field distribution itself is uniquely determined 
by the excitation in the feeding wave guide and by the interior geom- 
etry of the horn. Therefore, assuming a given excitation, the far field 
is mainly influenced by the design of the interior geometry of the horn. 
Usually, the horn is excited by the TEl l  mode, which is the fundamen- 
tal, i.e., the first solution of the wave equation in cylindrical coordinates. 
In order to obtain a rotational symmetric distribution of the energy den- 
sity of the field in the horn aperture, a quasi-periodical corrugated wall 
structure according to Figure 2 is assumed, see Johnson and Jasik 1181. 

To reduce the number of optimization parameters, the horn geometry 
is described by two envelope functions from which the actual geometric 
data for ridges and slots can be derived. Typically, a horn is subdivided 
into three sections, see Figure 3, consisting of an input section, a con- 
ical section, and an aperture section. For the input and the aperture 
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feeding 
wave guide 

Figure 2. Cross Sectional View of a Circular Corrugated Horn 

section, the interior and outer shape of slots and ridges is approximated 
by a second-order polynomial, while a linear function is used to describe 
the conical section. It is assumed that the envelope functions of ridges 
and slots are parallel in conical and aperture section. By this simple an- 
alytical approach, it is possible to approximate any reasonable geometry 
with sufficient accuracy by the design parameters. 

input section T I conical section aperture section 
I 

I 

xi x2 
length of the horn 

Figure 3. Envelope Functions of a Circular Corrugated Horn 

A circular corrugated horn has a modular structure, where each mod- 
ule consists of a step transition between two circular wave guides with 
different diameters, see Figure 4. The amplitudes of waves, travelling 
towards and away from the break point, are coupled by a so-called scat- 
tering matrix. By combining all modules of the horn step by step, the 
corresponding scattering matrix describing the total transition of ampli- 
tudes from the entry point to the aperture can be computed by successive 
matrix operations, see Hartwanger et al. [15] or Mittra [24]. 
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Figure 4. Cross Sectional View of One Module 

From Maxwell's equations, it follows that the tangential electrical and 
magnetic field components must be continuous at  the interface between 
two wave guides. This continuity condition is exploited to compute a 
relation between the mode amplitudes of the excident bk, i ,  b&,j and 
incident ak,i waves in each wave guide of a module, see Figure 4, 

k k = 1,2.  Then voltage and current coefficients u;,~, u:,~, ~ k , ~ ,  and IE,i 
are defined by the amplitudes. 

As mentioned before, the tangential fields must be continuous at  the 
transition between two wave guides. Moreover, boundary conditions 
must be satisfied, E2 = 0 for r1 5 r 5 r2. NOW only n l  eigenwaves 
in region 1 and n2 eigenwaves in region 2 are considered. The electric 
field in area 1 is expanded subject to the eigenfunctions in area 2 and 
the magnetic field in area 2 subject to the eigenfunctions in area 1. Af- 
ter some manipulations, in particular interchanging integrals and finite 
sums, the following relationship between voltage coefficients in region 1 
and 2 can be formulated in matrix notation: 

Here U: and U; are vectors consisting of the coefficients u;, and u:,~ 
for j = 1, . . . , nk, respectively, Ic = 1,2. The elements of the matrix XEE 
are given by 

with tangential field vectors e k , i ( p ,  z, 4 )  for both regions k = 1 and 
k = 2. In the same way XHE, XEH, and XEE are defined. Moreover, 
matrix equations for the current coefficients are available. 
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Next, the relationship between the mode amplitude vectors b; and 
b$ of the excident waves b;,j, b$,j, and a; and a$ of the incident waves 
a;,j, a$,j, j = 1 , .  . . , nk, k = 1,2, are evaluated through a so-called 
scattering matrix. By combining all scattering matrices of successive 
modules, we compute the total scattering matrix relating the amplitudes 
at the feed input with those at the aperture, 

The vector a1 describes the amplitudes of the modes exciting the horn, 
the TEll mode in our case. Thus, a1 is the 2nl-dimensional unity vector. 
The vector a2 contains the amplitudes of the reflected modes at the 
horn aperture, known from the evaluation of the far field. Only a simple 
matrix x vector computation is performed to get the modes of reflected 
waves bl(p) and b2(p), once the scattering matrix is known. 

The main goal of the optimization procedure is to find an interior 
geometry p of the horn so that the distances of b2(p)J from given am- 

plitudes $ for j = 1, .  . . , 2n2 become as small as possible. The first 
component of the vector bl(p) is a physically significant parameter, the 
so-called return loss, representing the power reflected at the throat of the 
horn. Obviously, this return loss should be minimized as well. The phase 
of the return loss and further components of bl (p) are not of interest. 

From these considerations, the least squares optimization problem 

is obtained. The upper index j denotes the j-th coefficient of the corre- 
sponding vector, p a suitable weight, and pl, p, lower and upper bounds 
for the parameters to be optimized. Note also that complex numbers 
are evaluated throughout this section, leading to a separate evaluation 
of the regression function of (19) for the real and imaginary parts of 

b32 (PI. 
The least squares problem is solved by a special variant of NLPQL 

called DFNLP, see Schittkowski [37], which retains typical features of a 
Gauss-Newton method after a certain transformation. For a typical test 
run under realistic assumptions, the radius of the feeding wave guide, and 
the radius of the aperture are kept constant, rg = 11.28 mm and r,  = 
90.73 rnrn, where 37 ridges and slots are assumed. Parameter names, - 

initial values po, and optimal solution values pOpt are listed in Table 5 .  
The number of modes, needed to calculate the scattering matrix, is 70. 



Nonlinear Programming: Algorithms, Software, and Applications 93 

name pb Popt comment i 

- 

length of input section 
length of conical section 
length of output section 
semi flare angle of conical section 
quotient of slot and ridge width 
depth of first slot in input section 
depth of slots in conical section 

Table 5. Initial and Optimal Parameter Values 

Forward differences are used to evaluate numerical derivatives subject 
to a tolerance of and p = 1 was set for weighting the return loss. 
NLPQL needed 51 iterations to satisfy the stopping tolerance lop7.  

4. Case Study: Design of Surface Acoustic Wave 
Filters 

Computer-aided design optimization of electronic components is a 
powerful tool to reduce development costs on one hand and to improve 
the performance of the components on the other. A bandpass filter se- 
lects a band of frequencies out of the electro-magnetic spectrum. In this 
section, we consider surface-acoustic-wave (SAW) filters consisting of a 
piezo-electric substrate, where the surface is covered by metal structures. 
The incoming electrical signal is converted to a mechanical signal by this 
setup. The SAW filter acts as a transducer of electrical energy to me- 
chanical energy and vice versa. The efficiency of the conversion depends 
strongly on the frequencies of the incoming signals and the geometry 
parameters of the metal structures, for example length, height, etc. On 
this basis, the characteristic properties of a filter are achieved. 

Due to small physical sizes and unique electrical properties, SAW- 
bandpass filters raised tremendous interest in mobile phone applications. 
The large demand of the mobile phone industry is covered by large-scale, 
industrial mass-production of SAW-filters. For industrial applications, 
bandpass filters are designed in order to satisfy pre-defined electrical 
specifications. The art  of filter design consists of defining the internal 
structure, or the geometry parameters, respectively, of a filter such that 
the specifications are satisfied. The electrical properties of the filters 
are simulated based on physical models. The simulation of a bandpass 
filter consists of the acoustic tracks, i.e., the areas on the piezo-electrical 
substrate on which the electrical energy is converted to mechanical vi- 
brations and vice versa, and the electrical combinations of the different 
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acoustic tracks. Typically, only the properties of the acoustic tracks are 
varied during the design process, and are defined by several physical pa- 
rameters. Some of them are given in form of real numbers, some others 
in form of integer numbers. As soon as the filter properties fit to the 
demands, the mass production of the filter is started. 

When observing the surface of a single-crystal, we see that any devi- 
ation of an ion from its equilibrium position provokes a restoring force 
and an electrical field due to the piezo-electric effect. Describing the de- 
viations of ions at the surface in terms of a scalar potential, we conclude 
that the SAW is described by a scalar wave equation 

The boundary conditions are given by the physical conditions at the sur- 
face and are non-trivial, since the surface is partly covered by a metal 
layer. In addition, the piezo-electric crystal is non-isotropic, and the ve- 
locity of the wave depends on its direction. For the numerical simulation, 
additional effects such as polarization charges in the metal layers have 
to be taken into account. Consequently, the fundamental wave equation 
is not solvable in a closed form. 

For this reason, Tobolka [46] introduced the P-matrix model as an 
equivalent mathematical description of the SAW. One element is a simple 
base cell, which consists of two acoustic ports, and an additional electric 
port. The acoustic ports describe the incoming and outgoing acoustic 
signals, the electrical ports the electric voltage at this cell, see Figure 5. 
The quantities a l ,  a2, bl and b2 denote the intensities of the acoustic 
waves. In terms of a description based on the wave equation, we have 
a1 cx 4, u is the electrical voltage at the base cell, and i is the electrical 
current. 

Figure 5. Base Cell of the P-Matrix Model with Two Acoustic and One Electric 
Port 

The P-matrix model describes the interaction of the acoustic waves 
at the acoustic ports, with the electric port in linear form. Typically, a 
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transformation is given in the form 

where for example 

'H denotes the Hilbert transformation, C the static capacity between two 
fingers, E the excitation given by 

w the frequency, W the aperture of the IDT, K a material constant, and 
a, the electric load distribution. 

In general, the elements of P are the dimensionless acoustic reflection 
and transmission coefficients in the case of a short-circuited electrical 
port. The 2x2  upper diagonal submatrix is therefore the scattering ma- 
trix of the acoustic waves and describes the interaction of the incoming 
and outgoing waves. Other elements characterize the relation of the 
acoustic waves with the electric voltage, i.e., the piezo-electric effect of 
the substrate, or the admittance of the base cell, i.e., the the quotient 
of current to voltage and the reciprocal value of the impedance. 

Proceeding from the P-matrix model, we calculate the scattering ma- 
trix S. This matrix is the basic physical unit that describes the electro- 
acoustic properties of the acoustic tracks, and finally the filter itself. 
The transmission coefficient T is one element of the scattering matrix, 
T = S21. 

Mobile phone manufacturers provide strict specifications towards the 
design of a bandpass filter. Typically, the transmission has to be above 
certain bounds in the pass band and below certain bounds in the stop 
band depending on the actual frequency. These specifications have to 
be achieved by designing the filter in a proper way. Depending on the 
exact requirements upon the filter to be designed, different optimization 
problems can be derived. 

To formulate the optimization problem, let us assume that x E lRn 
denotes the vector of continuous real design variables and y  E Zm the 
vector of the integer design variables. Z is the set of all integer values. 
By T (  f, x, y )  we denote the transmission subject to frequency f and 
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Figure 6. Design Goals of an SAW Filter 

the optimization variables x and y. Some disjoint intervals Ro, . . ., R, 
define the design space within the frequency interval f i  5 f 5 f,. Our 
goal is to maximize the minimal distance of transmission T (  f ,  x, y) over 
the interval Ro, under lower bounds TI, . . ., T, for the transmission 
in the remaining intervals R1, . . ., R,. Moreover, it is required that the 
transmission is always above a certain bound in Ro, i.e., that T(f, x, y) > 
To for all f E Ro. The optimization problem is formulated as 

max min {T(f ,x ,y)  : f E Ro) 

X E R ~ , ~ E Z ~ :  T ( f , x , y ) < T ,  forf  E R , ,  i = 1 ,  ..., s , (23) 

x < x < z ,  y l y l i j .  - - 

Here :, 3: E lRn and - y, y E Zm are lower and upper bounds for the design 
variables. 

To transform the infinite dimensional optimization problem into a 
finite dimensional one, we proceed from a given discretization of the 
frequency variable f by an equidistant grid in each interval. The corre- 
sponding index sets are called Jo, J1, . . ., J,. Let 1 be the total number 
of all grid points. First we introduce the notation Tj (x, y) = T ( fj ,  x, y), 
f j  suitable grid point, j = 1, . . ., 1. All indices are ordered sequen- 
tially so that (1,. . . ,1) = Jo U J1 U . . . U Js, i.e., Jo = {I, .  . . , lo),  
Jl = {lo + 1, .  . . , I l ) ,  . . ., J, = {1,-1 + 1, .  . . , I ) .  Then the discretized 
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optimization problem is 

max min {Tj(x, y) : j E Jo) 

x E lRn,y E Z m :  Tj(x,y) 5 T, for j E Ji ,  i = 1 , . . . ,  s , (24) 

The existence of a feasible design is easily checked by performing the 
test Tj(x, y) 2 To for all j E Jo. Problem (24) is equivalent to a smooth 
nonlinear program after a simple standard transformation. 

Integer variables are handled in a specific way, see van de Braak et 
al. [47]. Since continuous relaxation is not possible, a certain combi- 
nation of a quadratic approximation and direct search algorithm in the 
integer space is developed. A function evaluation for a set of integer 
variables requires the complete solution of the continuous optimization 
problem (24) by the SQP code NLPQL. 

Lower and upper bounds for the ten design variables under consid- 
eration are shown in Table 6 together with initial values and final ones 
obtained by the code NLPQL. Simulation is performed with respect to 
154 frequency points leading to 174 constraints in the continuous model. 
Altogether 36 calls of NLPQL are made within four quadratic approx- 
imation cycles and one additional direct search iteration. The total 
number of simulations, i.e., the number of evaluations of the transmis- 
sion energy Tj(x, y)  for all j, is 434 without the function calls needed 
for the gradient approximations. The purpose of the example is to show 
that the design goal is only achieved by taking also integer variables into 
account. 

5 .  Case Study: Optimal Control of an Acetylene 
Reactor 

The computation of optimal feed controls for chemical reactors, es- 
pecially for tubular reactors, is a well-known technique, see Edgar and 
Himmelblau [9], Nishida et al. [27], and Buzzi-Ferraris et al. [6-71. The 
mathematical model is given as a distributed parameter system con- 
sisting of a set of first-order partial differential equations in one space 
dimension. The chemical reactions and the temperature depend on the 
spatial variable, whereas the dynamical decrease of the cross-sectional 
area caused by coke deposition is time-dependent. In both cases, we 
know initial values either in the form of time-dependent feed control 
functions or a constant tube diameter. Alternative approaches to com- 
pute optimal reactor feed rates are discussed in Birk et al. [4], and Liepelt 
and Schittkowski [20]. 
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variable lower bound initial value optimal value upper bound 
?A 7 19 12 19 

Table 6. Bounds, Initial, and Optimal Values for Design Variables 

We consider a chemical reactor producing acetylene (C2H2), reacting 
methane (CH4) in natural gas with oxygen. This reaction requires less 
oxygen compared with complete combustion. The products are quickly 
quenched to keep the acetylene from being converted entirely to coke, see 
Wansbrough [48]. During the reaction process, a small part of the carbon 
is deposited in the reactor as coke. The quantity and its distribution in 
the reactor depend on the reaction equations. Since it is impossible 
to measure the cross-sectional area directly, we need a mathematical 
model that describes the functional dependence of the cross-sectional 
area upon other system parameters. If the deposition of coke reaches a 
certain limit, the reactor must be stopped and the tube cleaned. 

There are six reactions to be taken into account. Reactions 1 through 
5 are the main ones that produce acetylene, but also undesirable byprod- 
ucts such as coke. Reaction 6 is included only to balance the hydrogen 
stoichiometry, 

CH4 + i C 2 ~ 2  + %H2 , CH4 + 0 2  -+ CO + H2O + Ha , 
CO + i02 -+ C 0 2  , C2H2 + 2C + H2 , (25) 
H 2 + ; 0 2 - + H 2 0  , C +  5H2 + CH, . 

The reactions can be described by the following system of ordinary dif- 
ferential equations, where Ci denotes the molar concentration of the i-th 
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component, 

d 
v(x,t)  -C1(x,t) = 

dx 
d 

V(X,  t )  %C2(x, t)  = 

d 
v(x,t)  -C3(x,t) = 

dx 
d 

v(x, t)  -C4(x, t)  = 
dx 
d 

v(x, t)  --C5(x, t) = 
dx 

with a reaction parameter c .  Since the acetylene reactor is controlled by 
the feeds of natural gas and oxygen, these are the only components with 
non-vanishing initial values. Initial molar concentrations are given by 

with pnRTo = po assuming ideal gas law. 
The velocity of the mixture in the reactor depends on the cross- 

sectional area A(x, t ) ,  the total mass flow m(t) in the reactor, and the 
density p(x, t) ,  and is given by 

where the total mass flow m(t) = ml(t)  + m2(t) is the sum of the 
two input flows. The density of the mixture is given by p(x,t)  = xg=l C3(x, t)Mj, where Mj denotes the molar weight of the j-th corn- 
ponent, and the temperature in the reactor can be described by the 
differential equation 
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with the initial condition T(0, t )  = To. The incremental change of the 
temperature is determined by the rate of heat release for all reactions, 
which depends on the total heat capacity cp(x, t) .  

The eight material balance equations depend on the rates of the vari- 
ous reactions and on the velocity of the mixture in the reactor, because 
this speed determines the time that the components spent in the reactor. 
The reaction rates are expressed by 

rz(x,  t) = kz exp (I/T(x, t )  - 1/T,) Cl (x, t)C2a2 (x, t )  , 

r5(x, t) = k5 exp - - ( l /T (z ,  t )  - 1/T,) c5(x ,  t ) ~ ; . ~  (x,  t) , ( E d  ) 
(30) 

with five reaction constants kl, . . . , k5, five activation energies El, 
. . . . E5, and three reaction orders a l ,  a2, and a4. For the smaller and 
less important reactions, the stoichiometric order can be used as an es- 
timate for the reaction order. For the other reactions, these parameters 
have to be derived from the real reactor that is going to be examined. 
The average temperature T, is used to scale the exponential functions 
and R denotes the gas constant. 

If we neglect the deposition of coke, the underlying differential equa- 
tion is stationary and does not depend on the time. But a decrease of the 
cross-sectional area A(x, t) increases the velocity v(x, t )  of the mixture 
in the reactor, which influences the incremental change of the concentra- 
tions C(x,  t) and the temperature T(x,  t ) ,  see (26), (28), and (29). The 
coke deposition is modelled by the time-dependent differential equation 

with initial condition A(x, 0) = A. and reaction parameter p. A typical 
contour plot of the cross sectional area over time and spatial variable is 
shown in Figure 7. 

The optimal control problem consists of maximizing 
2 

Pi (t)in, ( t)  - C pi (t)si (t) (32) 
i=l 
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Figure 7. Cross Sectional Area 

over all piecewise linear functions within a given range subject to the 
constraints 

where Pi(t) is the price of the i-th component. Maximum temperature 
is T,,, = 1.200 and the tube length is 1, i.e., XL = 0 and XR = 1. More 
details and also the numerical data are presented in Birk et al. [4], where 
in addition also the optimal positions of maintenance intervals are to be 
computed. 

The partial differential equation is discretizing subject to the time 
variable t ,  since the cross sectional area A(x, t) is monotone decreasing 
without any steep fronts. Thus, it is possible to perform a few Euler 
steps for integrating (31) leading to a system of ordinary differential 
equations in x. We use 5 equidistant time values for approximating the 
two control variables by piecewise linear functions. The number of lines 
is 15 and a 5-point difference formula is applied to discretize spatial 
derivatives. The resulting ODE is integrated by RADAU5 of Hairer 
and Wanner [14]with a relative and absolute error tolerance of low6. 
Thus we get 10 optimization variables and 510 nonlinear constraints by 
discretizing (26) at equidistant time and spatial values. 

The SQP method NLPQL needs a relatively large number of 227 
iterations to reach a solution. Obviously, the starting values are very 
poor as indicated by the values in the last column of the subsequent 
screen display. Moreover, objective function and constraints are badly 
scaled, see first and second column, and the stopping criterion K T  for 
optimality, see last column, is decreased from lo7 to 10W6. 
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But the final convergence speed is very fast indicating that at least 
a local solution is approximated. The optimal control function for O2 
is shown in Figure 8, whereas the control variable for CH4 attains its 
upper bound and is not displayed. 

Figure 8. Optimal Input Control of 0 2  

6 .  Case Study: Weight Reduction of a Cruise 
Ship 

In this section, we describe an example arising in ship building in- 
dustry with the goal to minimize the total weight of the mechanical 
structure. The optimization problem is part of the overall design pro- 
cess of a new cruise ship and the results are essential to analyze further 
substructures by engineers. More details about the project can be found 
in Zillober and Vogel [54]. The problem is to find the optimal thickness 
distribution of beams and shell elements of one of the worlds largest 
cruise ships called R a d i a n c e  o f  t h e  S e a s  with a total length of about 300 
meters with respect to minimal weight subject to thousands of stress 
constraints. 

The discretized finite element model of the ship consists of 32946 shell 
and 33637 beam elements with 46986 nodes in total subject to two dif- 
ferent load cases called sagg ing  and hogging ,  see Figure 9. To formulate 
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a practically relevant optimization problem, certain elements are linked 
to get finally n = 415 design variables xi with different shell thicknesses, 
i = 1, . . ., n. For each region, one element is selected for which the 
component stresses (ax)S, (a?')', ( a x y  )' for load case sagging and (ax) h ,  

( a ~ ) ~ ,  ( a " ~ ) ~  for load case hogging are constrained. These quantities are 
calculated at the centroid of the middle layer of the element by the finite 
element analysis system ANSYS. 

Figure 9. Finite Element Structure of the Ship to be Optimized 

The optimization problem can be formulated as 

min Volume(x) , 
agin 5 (U?(X))' < j = 1, ..., n, 

Y akin I ( o ~ ( x ) ) '  F- amax,  j = 1, ..., n,  
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Thus, the optimization problem consists of 415 optimization variables 
and 4980 constraints. It should be noted that the mechanical model 
does not take into account manufacturing constraints, such as fatigue 
life, buckling, etc. In other words, the weight reduction must be con- 
sidered only as one part of the overall design process. Due to the high 
computational cost of the finite element simulations to be performed, 
the maximum number of iterations is set to 20. The total calculation 
time is about 30 hours for an SGI-ORIGIN workstation with 2 GB main 
memory allocated. SCPIP of Zillober [51] terminated at a thickness dis- 
tribution which corresponds to an acceptable weight reduction compared 
to the initial weight of the ship. The objective function history is shown 
in Figure 10. 

Figure 10. Iteration History of Structural Weight 

Acknowledgments 
The authors wish to thank Meyer Werft Papenburg for granting per- 

mission to publish Figure 9. 

References 

[I] M.P. Bendsee (1989). Optimal shape design as a material distribution problem. 
Structural Optimization, 1:193-202, 1989. 

[2] M.P. Bendsee. Optimization of Structural Topology, Shape and Material. 
Springer, Heidelberg, 1995. 

[3] M.P. Bendsge and 0 .  Sigmund 0. Topology Optimization - Theory, Methods 
and Applications. Springer, Heidelberg, 2003. 



Nonlinear Programming: Algorithms, Software, and Applications 105 

[4] J. Birk, M. Liepelt, K. Schittkowski, and F .  Vogel. Computation of optimal feed 
rates and operation intervals for tubular reactors. Journal of Process Control, 
9:325-336, 1999. 

[5] I. Bongartz, A.R. Conn, N.I.M. Gould, and P.L. Toint. CUTE: Constrained and 
unconstrained testing environment. ACM Trans. Math. Software, 21:123-160, 
1995. 

[6] G. Buzzi-Ferraris, G. Facchi, P. Forzetti, and E. Troncani. Control optimization 
of tubular catalytic decay. Industrial Engineering in Chemistry, 23:126-131, 
1984. 

[7] G. Buzzi-Ferraris, M. Morbidelli, P. Forzetti, and S. Carra. Deactivation of 
catalyst - mathematical models for the control and optimization of reactors. 
International Chemical Engineering, 24:441-451, 1984. 

[8] R.E. Collin. Field Theory of Guided Waves. IEEE Press, New York, 1991. 

[9] T.F.  Edgar and D.M. Himmelblau. Optimization of Chemical Processes. 
McGraw-Hill, New York, 1988. 

[lo] C. Fleury. An efficient dual optimizer based on convex approximation concepts. 
Structural Optimization, 1:81-89, 1989. 

[ll] C. Fleury and V. Braibant. Structural optimization - a new dual method using 
mixed variables. International Journal for Numerical Methods in Engineering, 
23:409-428, 1986. 

[I21 D. Goldfarb and A. Idnani. A numerically stable method for solving strictly 
convex quadratic programs. Mathematical Programming, 27:l-33, 1983. 

[13] N.I.M. Gould and P.L. Toint. SQP methods for large-scale nonlinear program- 
ming. In System Modelling and Optimization: Methods, Theory and Applica- 
tions. Kluwer, 2000. 

[14] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Stiff and 
Differential-Algebraic Problems. Springer, Berlin, Heidelberg, New York, 1991. 

[15] C. Hartwanger, K. Schittkowski, and H. Wolf. Computer aided optimal design of 
horn radiators for satellite communication. Engineering Optimization, 33:221- 
244, 2000. 

[16] W. Hock and K. Schittkowski. A comparative performance evaluation of 27 
nonlinear programming codes. Computing, 30:335-358, 1983. 

[17] K. Ito and K. Kunisch. Augmented Lagrangian-S$P methods for nonlinear 
optimal control problems of tracking type. SIAM Journal on Optimization, 
6:96-125, 1996. 

[18] R.C. Johnson and H. Jasik. Antenna Engineering. McGraw Hill, New York, 
1984. 

[I91 G. Kneppe, J .  Krammer, and E. Winkler. Structural optimization of large scale 
problems using MBB-LAGRANGE. Report MBB-S-PUB-305, Messerschmitt- 
Bolkow-Blohm, D-81663 Munich, 1987. 

[20] M. Liepelt and K. Schittkowski. Optimal control of distributed systems with 
break points. In M. Grotschel, S.O. Krumke, and J .  Rambau, editors, Online 
Optimization of Large Scale Systems, pages 271-294. Springer, Berlin, 2000. 

[21] F.A. Lootsma. Fuzzy performance evaluation of nonlinear optimization meth- 
ods. Journal of Information and Optimization Sciences, 10:15-44, 1981. 



106 SYSTEM MODELING AND OPTIMIZATION 

[22] H. Maurer and H.D. Mittelmann. Optimization techniques for solving elliptic 
control problems with control and state constraints: Part I. Boundary control. 
Computational Optimization and Applications, 16:29-55, 2000. 

[23] H. Maurer and H.D. Mittelmann. Optimization techniques for solving elliptic 
control problems with control and state constraints: Part ii. distributed control. 
Computational Optimization and Applications, 18:141-160, 2001. 

[24] R. Mittra. Computer Techniques for Electromagnetics. Pergamon Press, Oxford, 
1973. 

[25] H.P. Mlejnek. Some aspects of the genesis of structures. Structural Optimization, 
5:64-69, 1992. 

[26] V.H. Nguyen, J . J .  Strodiot, and C. Fleury. A mathematical convergence anal- 
ysis for the convex linearization method for engineering design optimization. 
Engineering Optimization, 11:195-216, 1987. 

[27] N. Nishida, A. Ichikawa, and E. Tazaki. Optimal design and control in a class of 
distributed parameter systems under uncertainty. AIChE Journal, 18:561-568, 
1972. 

[28] P.Y. Papalambros and D.J. Wilde. Principles of Optimal Design. Cambridge 
University Press, Cambridge, 2000. 

[29] M.J.D. Powell. The convergence of variable metric methods for nonlinearly 
constrained optimization calculations. In Nonlinear Programming 3. Academic 
Press, 1978. 

[30] M.J.D. Powell. A fast algorithm for nonlinearly constraint optimization calcula- 
tions. In Numerical Analysis, G.A. Watson ed., Lecture Notes in Mathematics, 
volume 630. Springer, 1978. 

[31] R.T. Rockafellar. Augmented Lagrange multiplier functions and duality in non- 
convex programming. Journal on Control, 12:268-285, 1974. 

[32] T.L. Saaty. The Analytic Hierarchy Process, Planning, Priority Setting, Re- 
source Allocation. McGraw Hill, New York, 1980. 

[33] K. Schittkowski. Nonlinear Programming Codes, volume 183 of Lecture Notes in 
Economics and Mathematical Systems. Springer, Berlin, Heidelberg, New York, 
1980. 

[34] K. Schittkowski. Theory, implementation and test of a nonlinear programming 
algorithm. In Optimization Methods in Structural Design. N. Olhoff eds., Wis- 
senschaftsverlag, 1983. 

[35] K. Schittkowski. NLPQL: A Fortran subroutine solving constrained program- 
ming problems. Annals of Operations Research, 5:485-500, 1985. 

[36] K. Schittkowski. More Test Examples for Nonlinear Programming, volume 187 
of Lecture Notes in Economics and Mathematical Systems. Springer, Berlin, 
Heidelberg, New York, 1987. 

[37] K.  Schittkowski. Solving nonlinear least squares problems by a general purpose 
sqp-method. In Trends in Mathematical Optimization, K.-H. Hoffmann, J.-B. 
Hiriart- Urruty, C. Lemarechal, J .  Zowe eds., International Series of Numerical 
Mathematics, volume 184, pages 295-309. Birkhauser, 1988. 

[38] K. Schittkowski. Solving nonlinear programming problems with very many con- 
straints. Optimization, 25:179-196, 1992. 



Nonlinear Programming: Algorithms, Software, and Applications 107 

[39] K. Schittkowski. NLPQLP: A new fortran implementation of a sequential 
quadratic programming algorithm for parallel computing. Research report, De- 
partment of Mathematics, University of Bayreuth, D-95440 Bayreuth, 2001. 

[40] K. Schittkowski. Numerical Data Fitting in Dynamical Systems. Kluwer, Dor- 
drecht, 2002. 

[41] K. Schittkowski, C. Zillober, and R.  Zotemantel. Numerical comparison of non- 
linear programming algorithms for structural optimization. Structural Optimiza- 
tion, 7:l-28, 1994. 

[42] S. Silver. Microwave Antenna Theory and Design. McGraw Hill, 1949. 

[43] P. Spellucci. Numerische Verfahren der nichtlinearen Optimierung. Birkhauser, 
1993. 

[44] J. Stoer. Foundations of recursive quadratic programming methods for solving 
nonlinear programs. In Computational Mathematical Programming, K. Schitt- 
kowski, ed., NATO ASI Series, Series F: Computer and Systems Sciences, vol- 
ume 15. Springer, 1985. 

[45] K. Svanberg. The method of moving asymptotes - a new method for struc- 
tural optimization. International Journal for Numerical Methods in  Engineer- 
ing, 24:359-373, 1987. 

[46] G. Tobolka. Mixed matrix representation of SAW transducers. Proceedings of 
the IEEE Ultrasonics Symposium, 26:426-428, 1979. 

[47] G, van de Braak, M. J. Biinner, and K. Schittkowski. Optimal design of elec- 
tronic components by mixed-integer nonlinear programming. To appear: Engi- 
neering Optimization, 2003. 

[48] R.W. Wansbrough. Modeling chemical reactors. Chemical Engineering, 5:95- 
102, 1985. 

[49] C. Zillober. A combined convex approximation - interior point approach for 
large scale nonlinear programming. Optimization and Engineering, 2:51-73, 
2001. 

[50] C. Zillober. Global convergence of a nonlinear programming method using con- 
vex approximations. Numerical Algorithms, 27:256-289, 2001. 

[51] C. Zillober. SCPIP - an efficient software tool for the solution of structural 
optimization problems. Structural and Multidisciplinary Optimization, 24:362- 
371, 2002. 

[52] C. Zillober. Software manual for SCPIP 2.3. Research report, Department of 
Mathematics, University of Bayreuth, D-95440 Bayreuth, 2002. 

[53] C. Zillober, K. Schittkowski, and K. Moritzen. Very large scale optimization by 
sequential convex programming. Optimization Methods and Software, 18:103- 
121, 2004. 

[54] C. Zillober and F. Vogel. Solving large scale structural optimization problems. 
In Proceedings of the 2nd ASMO UK/ISSMO Conference on Engineering Design 
Optimization, pages 273-280. J .  Sienz ed., University of Swansea, Wales, 2000. 



STOCHASTIC MODELING 
AND OPTIMIZATION OF COMPLEX 
INFRASTRUCTURE SYSTEMS 

P. Thoft-Christensen 
Department of Building Technology and Structural Engineering 
Aalborg University, Aalborg, Denmark 
ptc@bt.aau.dk 

Abstract In this paper it is shown that recent progress in stochastic modeling and 
optimization in combination with advanced computer systems has now 
made it possible to improve the design and the maintenance strategies 
for infrastructure systems. The paper concentrates on highway networks 
and single large bridges. United States has perhaps the largest highway 
networks in the world with more than 6 million kilometers of roadway 
and more than 0.5 million highway bridges; see [ 2 ] .  About 40% of these 
bridges are considered deficient and more than $50 billion is estimated 
needed to correct the deficiencies; see [12]. The percentage of sub- 
standard bridges deemed to require urgent actions in other countries 
such as France (15%) and UK (20%) is also high; see [3]. 

Keywords: Stochastic modeling, Infrastructure systems, Bridge management sys- 
tems, Suspension bridges. 

Introduction 
Obtaining and maintaining advanced infrastructure systems plays an 
important role in modern societies. Developed countries have in general 
well established infrastructure systems but most non-developed coun- 
tries are characterized by having bad or no effective infrastructure sys- 
tems. Therefore, in the transition from a non-developed country to a 
well developed country construction of effective infrastructure systems 
plays an important role. However, it is a fact that construction of new 
infrastructure systems requires great investments so a careful planning 
of all details in the system is essential for the effectiveness of the system 
from an operational but also economical point of view. 

Obtaining the resources needed to establish infrastructure systems is 
only the first step. The next step and perhaps the most expensive step 
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is to maintain the systems. It is recognized in most developed countries 
that good maintenance of infrastructure systems is in the long run the 
most economical way to keep the infrastructure in a satisfactory state. 
Effective maintenance requires however more resources than available in 
most countries. Therefore, careful planning of maintenance strategies is 
essential for all types of infrastructures. 

1. Formulation of the Cost Optimization 
Problem 

An infrastructure system consists of a number of structures. The ob- 
jective is to minimize the cost of maintaining such a group of structures 
in the service life of the infrastructure. Estimation of the service life 
costs is a very uncertain so that a stochastic modeling is clearly needed. 
This can be expressed mathematically as 

where 
E[C] is the expected total cost in the service life of the infrastructure 

E[CM] is the expected maintenance cost in the service life of the infrastructure 

E[Cu] is the expected user costs e.g. traffic disruption costs due to works 
or restrictions on the structure 

E[CF]  is the expected costs due to failure of structures in the infrastructure. 
For a single structure i in the infrastructure the expected cost can be 

written 

is the discount rate (factor) e.g. 6% 
is the expected total cost for structure i 
is the expected maintenance cost for structure i in year t 
is the expected user costs for structure i in year t 
is the expected failure cost for structure i in year t 
is the probability of the event 
"maintenance is necessary" for structure i in year t 
is the probability of the event "maintenance is 
necessary" for structure i in year t 
is the probability of the event "maintenance is 
necessary" for structure i in year t 
is the remaining service life or reference period (in years). 
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Let the number of structures in the considered infrastructure be m. 
The expected total cost for the group can then be written 

2 .  Bridge Networks 
Future advanced bridge management systems will be based on simple 

models for predicting the residual strength of structural elements. Im- 
proved stochastic modeling of the deterioration is needed to be able to 
formulate optimal strategies for inspection and maintenance of deterio- 
rated bridges. However, such strategies will only be useful if they are 
also combined with expert knowledge. It is not possible to formulate all 
expert experience in mathematical terms. Therefore, it is believed that 
future management systems will be expert systems or at least knowledge- 
based systems; see [15]. 

Methods and computer programs for determining rational inspection 
and maintenance strategies for concrete bridges must be developed. The 
optimal decision should be based on the expected benefits and total cost 
of inspection, repair, maintenance and complete or partial failure of the 
bridge. Further, the reliability has to be acceptable during the expected 
lifetime. 

The first major research on combining stochastic modeling, expert 
systems and optimal strategies for maintenance of reinforced concretes 
structures was sponsored by EU in 1990 to 1993. The research project 
is entitled "Assessment of Performance and Optimal Strategies for in- 
spection and Maintenance of Concrete Structures Using Reliability Based 
Expert systems". The results are presented in several reports and papers; 
see e.g. [15] and [ 5 ] .  The methodology used in the project is analytic 
with traditional numerical analysis and rather advanced stochastic mod- 
eling. 

Monte Carlo simulation has been used in decades to analyze com- 
plex engineering structures in many areas, e.g. in nuclear engineering. 
In modeling reliability profiles for reinforced concrete bridges Monte 
Carlo simulation seems to be used for the first time in December 1995 
in the Highways Agency project "Revision of the Bridge Assessment 
Rules based on Whole Life Performance: Concrete" (1995-1996, Con- 
tract: DPU 9/3/44). The project is strongly inspired by the above- 
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mentioned EU-project. The methodology used is presented in detail in 
the final project report, see [24]. 

In the Highways Agency project "Optimum Maintenance Strategies 
for Different Bridge Types" (1998-2000, Contract: 3/179), the simula- 
tion approach was extended in 1998, see [17] and [I81 to include stochas- 
tic modeling of rehabilitation distributions and preventive and essential 
maintenance for reinforced concrete bridges. A similar approach is used 
in the project on steellconcrete composite bridges, see [6]. 

In a recent project "Preventive Maintenance Strategies for Bridge 
Groups (2001-2003, Contact 31344 (A+B)), the simulation technique 
is extended further to modeling of condition profiles, and the interaction 
between reliability profiles and condition profiles for bridges, and the 
whole life costs. The simulation results are detailed presented in [7] and 
[231, 1221. 

3. Estimation of Service Life of Infrastructures 
In this paper service life assessment of infrastructures is discussed 

based on stochastic models and with special emphasis on deterioration 
of reinforced structures due to reinforcement corrosion. 

(1) The service life Tse,,ice for a reinforced concrete structure has been 
the subject of discussion between engineers for several decades. Several 
authors; see e.g. [16]; have defined the service life as the initiation time 
for corrosion Tco,, of the reinforcement. 

(1) The service life T,e,,ic, has later been modified so that the time Atcmck 
from corrosion initiation to corrosion crack initiation in the concrete is 

(2) included; see [19]. The service life is then defined by Tservice = Tcrack = 
Tco,, + Atcmck. A stochastic model for Atcmck may be developed on the 
basis of existing deterministic theories for crack initiation; see [lo]. 

The service life may further be modified so that the time Atcmck width 

from corrosion crack initiation to formation of a certain (critical) crack 
width is included; see [20]. By this modeling it is possible to estimate 
the reliability of a given structure on the basis of measurements of the 
crack widths on the surface of the concrete structure. 

Corrosion initiation period refers to the time during which the passiva- 
tion of steel is destroyed and the reinforcement starts corroding actively. 
If Ficks law of diffusion can represent the rate of chloride penetration 
into concrete, then it can be shown that the time T,,,, to initiation of 
reinforcement corrosion is 
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where d is the concrete cover, D is the diffusion coefficient, C,, is the 
critical chloride concentration at the site of the corrosion, Co is the 
equilibrium chloride concentration on the concrete surface, Ci is the 
initial chloride concentration in the concrete, erf is the error function. 

After corrosion initiation the rust products will initially fill the porous 
zone around the steel/concrete surface. As a result of this, tensile 
stresses are initiated in the concrete. With increasing corrosion the 
tensile stresses will reach a critical value and cracks will be developed. 
During this process the volume of the corrosion products at initial crack- 
ing of the concrete Wc, it will occupy three volumes, namely the porous 
zone W,orou, , the expansion of the concrete due to rust pressure Wexpan, 
and the space of the corroded steel Wsteel. With this modeling and some 
minor simplifications it can then be shown that the time from corrosion 
imitation to crack initiation is; see [lo] 

where Dbar is the diameter of the reinforcement bar, icorr is the annual 
mean corrosion rate, p,te,l is the density of the steel, and p,,,t is the 
density of the rust products. 

After formation of the initial crack the rebar cross-section is further 
reduced due to the continued corrosion, and the width of the crack is 
increased. Experiments (see e.g. [I]) show that the function between the 
reduction of the rebar diameter ADba, and the corresponding increase in 
crack width AwCmck in a given time interval At measured on the surface 
of the concrete specimen can be approximated by a linear function 

where the factor y is of the order 1.5 to 5. This linearization has been 
confirmed by FEM analyses; see [21]. Let the critical crack width be 

(3)  BY setting T ~ ~ ~ , ~ , ,  = Wcritical corresponding to the service life T,e,vic,. 
(3)  WcTiticul the following expression is obtained for Tservice 

Wcrack(Tcrack) = 0 is the initial crack width at the time Tcrack. Using 
(1) yl(2) Monte Carlo simulation, the distribution functions of TService, servzce 

(3)  and TserVice can then for a given structure be estimated for any value of 
the critical crack width when stochastic distributions are known for all 
parameters. 
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4. Stochastic Modeling of Maintenance 
Strategies 

After a structural assessment of the reliability of a reinforced concrete 
bridge deck at the time To the problem is to decide if the bridge deck 
should be repaired and, if so, how and when it should be repaired. So- 
lution of this optimization problem requires that all future inspections 
and repairs are taken into account. After each structural assessment the 
total expected benefits minus expected repair and failure costs in the 
residual lifetime of the bridge are maximized considering only the repair 
events in the residual service life of the bridge. 

In order to simplify the decision modeling it is assumed that NR re- 
pairs of the same type are performed in the residual service life Tservice 
of the bridge. The first repair is performed at the time TR1, and the 
remaining repairs are performed at equidistant times at the time inter- 
val t~ = (Tservice - TR1)/NR. This decision model can be used in an 
adaptive way if the model is updated after an assessment (or repair) 
and a new optimal repair decision is made with regard to t ~ .  Therefore, 
it is mainly the time TR, of the first repair after an assessment, which 
is of importance. In order to decide which repair type is optimal after a 
structural assessment; the following optimization problem is considered 
for each repair technique, see [15]: 

where the optimization variables are the expected number of repairs NR 
in the residual service life and the time TR of the first repair. W are the 
total expected benefits minus costs in the residual lifetime of the bridge. 
B is the benefit. CR is the repair cost capitalized to the time t = 0 in 
the residual service life of the bridge. CF are the expected failure costs 
capitalized to the time in the residual service life of the bridge. TserVice 
is the expected service life of the bridge. PU is the updated reliability 
index. pmin is the minimum reliability index for the bridge (related 
to a critical element or to the total system). TEEice is the minimum 
acceptable service life. 

The benefits B play a significant role and are modelled by 
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where [TI signifies the integer part of T measured in years and Bi are 
the benefits in year i (time interval [Ti-l, T,]). T, is the time from the 
construction of the bridge. The ith term in (9) represents the benefits 
from to Ti. The benefits in year i are modelled by Bi = koV(Ti) 
where ko is a factor modeling the average benefits for one vehicle passing 
the bridge. 

The expected repair costs CR capitalized to the time t = 0 are mod- 
elled by 

PF (TR) is the updated probability of failure in the time interval ]To, TR]. 
The updating is based on a no failure event and the available inspection 
data at the time To. The factor (1 - P;(T~,)) models the probability 
that the bridge has not failed at the time of repair. r is the discount 
rate. CR, (TR,) is the cost of repair. 

The capitalized expected costs CF due to failure are determined by 

where TR, = To is the time of the structural assessment and TRNR+l = 

T,e,,i,e is the expected service life. The ith term in (11) represents the 
expected failure costs in the time interval ]TRi-l, TRi]. CF(T) is the 
cost of failure at the time T. 

5. Design of Long Bridges 

Several short span (< 500 m) suspension bridges collapsed due to 
the wind. The famous and relatively long (854 m) Tacoma Narrows 
Bridge failed in 1940. In recent years much longer bridges have been 
constructed. The longest suspension bridge today is the Akashi Kaikyo 
Bridge in Japan (main span 1991 m) and the second longest is the Great 
Belt East Bridge in Denmark (main span 1624 m). Future designs with 
improved girder forms, lightweight cables, and control devices may be up 
to 3000-5000 m long. For such extremely long bridges, girder stability 
to wind action may be a serious problem, especially when the girder 
depth-to-width ratio is small compared with existing long bridges. 

The main dynamic problem with long suspension bridges is the aeroe- 
lastic phenomenon called flutter. Flutter oscillation of a bridge girder is 
a stability problem and the oscillations are perpendicular to the direc- 
tion of the wind and occur when the bridge is exposed to wind velocity 
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above a critical value called the flutter wind velocity U,,. U,, decreases 
with decreasing stiffness and damping. Flutter is therefore a serious 
problem for bridges with a relatively low stiffness such as long bridges. 
Installation of passive and active control devices may be a solution to 
the girder stability problem. 

Application of flaps to active control of flutter of long suspension 
bridges has been proposed in [ll] to ensure the aerodynamic stability 
of slender bridge girders by attaching actively controlled flaps along the 
girders. The Ph.D. thesis [8] deals with wind tunnel experiments with 
a sectional model of a girder where the control flaps are installed as 
integrated parts of the leading and trailing edges of the girder. Several 
configurations of the flaps have been tested in a wind tunnel at Instituto 
Technico in Lisbon, Portugal. An analysis of a full span suspension 
bridge is performed in the Ph.D. thesis [9]. For the used configuration of 
the flaps it is shown that the flutter wind velocity U,, can be increased 
by 50% compared with a girder with no flaps. 

By assuming potential flow theory, it has been shown for thin airfoils 
in incompressible flow that the motion-induced vertical load Lae(x, t) 
and the motion-induced moment Ma,(x, t )  on the airfoil are linear in 
the theoretical displacement and the torsional angle and their first and 
second derivatives, where x is the coordinate in the direction of the 
bridge and t is the time, see [14]. Let y and z be the coordinates in 
the direction across the bridge and in the vertical direction. A similar 
formulation for bridges is introduced in [13]. The aeroelastic forces L~~~~ 
and M~~~~ per unit span and for small rotations can then be written, 
see 141: 

where K = Bw/U is the non-dimensional reduced frequency, B is the 
girder width, U is the mean wind velocity, w is the bridge oscillating 
frequency (rad.) at the wind velocity U ,  and p is air density. H:(K) 
and AP(K) (i = 1,2,3,4)  are non-dimensional aerodynamic derivatives 
which can be estimated by wind tunnel experiments. The quantities 
r ,  i%/U and B+,/U are non-dimensional, effective angles of attack. Two 
types of actively controlled flaps are shown in figure 1. 
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Figure 1.  Sections with flaps on pylons and integrated in the section. 

By assuming that the angle of a leading flap has no effect on the air 
circulation it can be shown that the loads due to movement of a leading 
flap on a thin airfoil are also linear in the angle of the leading flap 
and in the first and second derivatives. The motion-induced wind loads 
due to movement of the flaps can therefore be described by additional 
aerodynamic derivatives. The total motion-induced wind loads per unit 

Figure 2. Motion-induced wind loads on the girder and on the flaps. 

span on the girder and the flaps are, see figure 2 

MYa1 = ~p~ + M: (u,, r$)  + M$ (v,, r g  ) 

+ ( L r  (u, r$) - L$ (-u, r:)) $ (15) 

where u, (x, t )  and r ,  (x, t )  are the vertical motion and the rotation of the 
girder at position x along the bridge girder at the time t. r k ( x ,  t )  and 
rF(x ,  t )  are the rotations of the leading and the trailing flaps. Figure 
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3 shows the calculated flutter velocity U,, for different combinations of 
flap rotations. a is the rotation of the girder, a1 and at are the rotations 
of the leading and the trailing flaps, cpl and cpt are the phase angles 
between the leading flap, the trailing flap and the girder, respectively. 

q~ = 3 ~ / 6  both flaps used 
p, = 8n/6 

a, = a  

p, = 8x/6 only trailing flap 
,, = 0 used 

9 
p( = 3x16 only leading flap 

used 
e a, = O  

Figure 3. The theoretical effect on the flutter wind velocity of using flaps. 

Figures 4 and 5 show the torsional movement of the model when the 
flaps are not regulated (configuration 0) and when they are regulated 
(configuration 2) .  The wind speed is 6.1 m/s. The conclusion is that 
configuration 2 is very efficient for controlling the torsional motion of 
the model. During the first second the torsional motion is reduced from 
2.7" to l.lO, i.e. by 62%. 

Figure 4 .  Torsional motion for flap configuration 0 and wind speed 6.1 m/s. 
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Figure 5. Torsional motion for flap configuration 2 and wind speed 6.1 m/s. 

Let di(x) and gj(x) be the vertical and the torsional mode shapes of 
the bridge in mode i and mode j which are assumed to be coupled at 
flutter. Then the governing modal equations for the two-mode flutter 
conditions are 

MZ ( ~ ( t )  + 2w,C,&(t) + w i a ( t ) )  = Fjot ( t )  ( 1 7 )  

where x ( t )  and a( t )  are the vertical and the torsional modal coordinates. 
wZ, Cz, W ,  and <, are the natural frequencies and the damping ratios 
of the vertical and torsional modes. Mz and Mx are the vertical and 
the torsional modal masses. At the coupled motion, the vertical and the 
torsional modal responses are both assumed to be proportional to eiwt,  
when the critical wind velocity is acting on the bridge, i.e. z ( t )  = zoeiwt 
and a( t )  = aoeiwt.  When this is introduced 
the following matrix equation can be derived 

into the above equations 

(18) 

where the system matrix A depends on the natural mode shapes and 
frequencies, the damping ratios, the derivatives and the wind velocity. 
This matrix equation has non-trivial solutions when 

Det ( A )  = Re Det (A )  + i Im Det (A )  = 0 ( 1 9 )  
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resulting in the following two flutter conditions for a bridge with separate 
flaps, [9]: 

+ X  ( - ~ 2  J w q  - 2i ,: ~1 m , @ ) + 2 ~ s + 2 P = ~  
wz 

where m is the girder mass per unit span. a, Z and Q are the modal 
integrals of the girder given by: 

and where Ll to L4 and M I  to M4 contain the modal integrals of 
the flaps f ,  iZ and Q f ,  the sum of flutter derivatives referred to the 
girder and the flaps (see [9] for full expressions). Finally, note that 
the flutter mode can be a coupling of more than two modes. In that 
case, an additional mode gives an additional equation. The determinant 
condition (19) is still valid, but the calculation of the solution is rather 
complicated analytically. The obtained critical wind velocity U,, and 
the critical frequency w,, will not be varied by more than 5%, if several 
similar mode shapes with close frequencies are taken into account in the 
flutter computation, see [9]. 

6 .  Conclusions 

It is shown in the paper that recent developed methodologies in sto- 
chastic and optimization may be used to solve complex problems related 
to infrastructure systems. A general formulation of the cost optimiza- 
tion problem is presented with special emphasis on bridge networks. Fi- 
nally, the difficult (from a formulation and mathematical point of view) 
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problem of estimating the flutter wind velocity for a suspension bridge 
is solved numerically to show how advanced research can take part in 
solving infrastructure problems. 
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Abstract A problem of robust control of a parabolic variational inequality in the 
case of distributed control actions and disturbances is under considera- 
tion. The goal of the paper consists in the description and mathematical 
substantiation of the the method of feedback control in the formalization 
originated from works by N.N. Krasovskii [3], [2]. The paper continues 
investigations [5]-[4]. 

Keywords: robust control, parabolic variational inequality 

1. Introduction 
In the present work, the problem of robust control of distributed pa- 

rameter systems is discussed. The essence of the problem under consid- 
eration may be formulated in the following way. A motion of a dynamical 
system C proceeds on a given time interval T = [to, 191. System's trajec- 
tory x(t) = x(t ;u( . ) ,v( . ) ) ,  t E T, depends on a time-varying unknown 
input v = v(t) E Q, and a control u = u(t) E P, where P and Q are 
given sets. Phase states of the system C are inaccurately measured at 
time moments ri E A = {r i )zo ,  70 = to, r, = 19, ri+l = ri + 6. It is 
required to organize a process of control of the system C by the feedback 
principle in such a way that it is possible to preserve given properties of 
system's trajectory under the action of any admissible input v = v(.). 

'This work was supported in part by the Russian Foundation for Basic Research (grant # 
04-01-00059), Program on Basic Research of the Presidium of the Russian Acad. Sci. (project 
"Control of mechanical systems"), Program of supporting leading scientific schools of Russia 
(project 1846.2003.1) and Ural-Siberian Interdisciplinary Project. 
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The quality of a trajectory constructed is estimated either by the dis- 
tance from a given (prescribed, standard) trajectory x,(t) or by some 
quality functional (a payoff). The problem under discussion is treated 
as the problem of constructing a control u = u(t) providing (under the 
action of any possible but unknown disturbance v = v(t)) retention of a 
trajectory x(t) = x(t;  u(.), v(.)) nearby x, (t) (in the first case) or mini- 
mizing maximally possible values of a payoff (in the second case). This 
is a meaningful formulation of the control problem under consideration. 

2. Statement of the Problem 

Let a system C be described by the parabolic variational inequality 

for a. a. t E T and all z E V, x(to) = XO. 

Here H = L2(R), V is a real Hilbert space, V is a dense subspace of 
H and V c H c V* algebraically and topologically, (., .) stands for the 
inner product in H ,  (-, .) stands for the duality relation between V and 
V*, A : V + V* is a linear continuous (A E C(V; V*)) and symmet- 
rical operator satisfying (for some w > 0 and real ao) the coercitivity 
condition 

(Ax, 2) + aolxl2H 2 ~1x1; VY E V, 

I . I H  and I . J v  stand for the norm in H and V, respectively, and 
cp : V + R = { r  E R : -oo < r 5 +co) is a lower semicon- 
tinuous convex function. Furthermore, without loss of generality, we 
assume that p(x) > 0 Vx E V. Let x(to) = xo E D(p) ,  where 
D(p)  = {x E V : q(x)  < +m). Let Up and Ud be uniformly con- 
vex Banach spaces, f : T x Up x Ud + H be a Lipschitz function, P 
and Q be given bounded and closed sets from space of controls Up and 
disturbances Ud, respectively. It is known that under such conditions for 
any {u(.), v(.)) E L2(T; Up) x L2(T; Ud) there exists a unique solution 
x(.) = x(.; to,  xo, u(.), v(.)) of the inequality (1) with the following prop- 
erties [I]: x(.) = %(.; to,  xo, u(-) ,  v(.)) E W*(T) = W112(T; H) ,  L2(T; V),  
x(t)  E D(cp,)Vt E T, t + cp,(x(t)) E AC(T). Here the function 
cp,(y) : H -+ R is defined by 

w112 (T; H) = {w(-) E L2(T; H) : wt (.) E L2(T; H) ) ,  the derivative wt (.) 
is understood in the sense of distributions, AC(T) is the set of absolutely 
continuous functions x(t)  : T + R. 
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Let us give some definitions. Furthermore, we denote by ualb(.) a 
function u(t) ,  t E [a, b], considered as a whole. The symbol Pa,b(') 
stands for restriction of a set PT(.) onto the segment [a, b] c T. Any 
strongly measurable functions u(.) : T -+ P and v(.) : T -+ Q are 
called an open-loop control and a disturbance, respectively. The sets 
of all open-loop controls and disturbances are denoted by the symbols 
PT(.) and QT(-).  Elements of the product T x D(cp) are called posi- 
tions. A unique solution of the inequality (1) with the properties x(t,) = 

x* , ~ ( 9  = 4; t*, x*, ~ t * , f f  (9, vt*,ff (9) E W1,2([t*, 4; H )  n Lz([t*, 4; V ) ,  
x(t) E D(cp,) Vt E [t,,6], t -+ cp,(x(t)) E AC([t,,6]) is called a motion 
of the system (1) starting from a position (t,, x,) E T x D(cp,) and corre- 
sponding to a control ut,ff ( - )  E ( a )  and a disturbance vt,ff (.) E Qt,ff (.). 
A partition of T is any finite net A = { r i ) z0 ,  where 70 = to, Tm = 19, 
T ~ + I  = T~ + S, S = S(A) is a diameter of A. Any possible function (mul- 
tifunction) U : T x H -+ P is said to be a feedback strategy. Feedback -. 

strategies correct controls at discrete time moments given by some par- 
tition of the interval T .  A solution x(.) of the inequality (1) starting 
from an initial state (t,, x,) and corresponding to a piecewise constant 
control uh( - )  (formed by the feedback principle 

and to a disturbance vt*,$ (.) E Qt*,#(.) is called an (h, A)-motion 
xi(.; t,, x,,U, vt*,s(.)) generated by a positional strategy U on a parti- 
tion A. Thus, when we write xi(.), we mean a solution of the inequality 
(1) constructed by the feedback principle. The set of all (h, A)-motions 
is denoted by Xh(t, ,x, ,U,A). It is clear that the set Xh(t, ,x, ,U,A) is 
not empty for (t,, x,) E T x D(cp,). 

Thus, the problem under consideration may be formulated in the fol- 
lowing way. Let the inequality (1) be considered on the given time 
interval T. Its solution x(.) = x(- ;  to,  xo, uT(.), vT (s)) depends on some 
control UT E PT(.) and disturbance vT(.) E QT(*).  Let us fix a uniform 
net A = { r i ) z0 ,  70 = to, Tm = 19, with a diameter S = 6(A) = ri - ri+1. 
Phase states x ( q )  are inaccurately measured at the moments ri. Results 
of measurements ti E H satisfy the inequalities 

Here h is a value of the level of informational noise. Some prescribed 
trajectory x,(t), t E T ,  and a number E > 0 are given. It is required 
to construct an algorithm of feedback control of inequality (1) providing 
fulfillment of the following condition. Whatever the unknown distur- 
bance vT(.) E QT(.) may be, the deviation of the phase state x(t)  from 
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the prescribed trajectory x,(t) at all moments t E T should not exceed 
the value of E provided the values of h and 6 are sufficiently small. 

So, the problem (Problem 1) consists in construction of a positional 
strategy U : T x H -i P with the following properties: whatever the 
value E > 0 may be, one can indicate (explicitly) numbers h, > 0 and 
6, > 0 such that the inequalities 

are fulfilled uniformly with respect to all measurements Ji with the prop- 
erties (2) if h < h, and the partition diameter 6 = 6(A) < 6,. Here the 
symbol p(x(.), y(.)) denotes the distance from x(.) to y(.) in the uniform 
metric, i.e., 

P(x(')? ~ ( ' 1 )  = sup Ix(t) - Y ( ~ ) I H .  
t€T 

Along with Problem 1, we consider also another problem. Let the 
following quality criterion of the process be given: 

where a : H -+ R and x : T x H x Up x Ud -+ R are given functions sat- 
isfying the local Lipschitz conditions. Introduce the following ordinary 
differential equation 

A pair {x(.),p(.)), where x(.) is a solution of the inequality (1) start- 
ing from an initial state (t,, x,) and p(.) is a solution of the equation 
(4) starting from an initial state (t,,p,) corresponding to a piecewise 
constant control uh(.) (formed by the feedback principle 

and to a disturbance vt, ,8 (.) E Qt, ,8 (.) is called an (h, A, x)-motion 
z;( ' )  = {x i ( ' ;  t*, x* ,ue?  vt,,6(')),&('; t*, P*, ue, vt,,19('))) generated by 
a positional strategy Ue : T x H x R -+ P on a partition A. The set of 
all (h, A, x)-motions is denoted by 2; (t,, x,, p,, Ue, A). It is clear that 
the set ~ z ( t , ,  x,,p,,Ue, A) is not empty for (t,, x,,p,) E T x D ( 9 )  x R. 

Problem 2 consists in the following. A prescribed value of the cri- 
terion, number I,, is fixed. It is necessary to construct a positional 
strategy I,ie : T x H x R -+ P with the following properties: whatever 
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the value E > 0 and disturbance vT(.) E QT(')  may be, one can indicate 
(explicitly) numbers h, > 0 and 6, > 0 such that the inequalities 

are fulfilled uniformly with respect to all measurements ti with the 
properties (2) and +i, - pk( '~i) l  I h, if h 5 h, and the partition 
diameter 6 = 6(A) 5 6,. Here { x i ( . ) , p i ( . ) )  E Zt ( tO ,  xO, O,ue, A),  

h .a(') = x(';t0, x0,Ue('), VT( ' ) ) ,  p i ( ' )  = P('; to, O,Ue('), '?f(')), the con- 
trol uh (.) is defined by (5). 

As one can see from the statement of Problem 2, to solve this problem 
at moments q, it is necessary to know (perhaps, with an error) the 
realization p i ( r i ) .  To obtain this information, one should know the 
realization of disturbance v(t), t E [to, ri]. If the function x does not 
depend on v, i.e., x = ~ ( t ,  x, u), then the information on the disturbance 
v is not required. In this case the quality criterion does not depend on 
v (') : 

Therefore, in definition of an (h, A,  x)-motion one can assume that 
p i ( . )  = pi (.; t,, p,, Ue) is a solution of the equation 

with the initial condition p i  (t,) = p,. 

3. The Algorithm for Solving Problem 1 

Let us indicate the algorithm for solving Problem 1. Introduce sets 

H(.)  = {u(.) E L2(T;  H) : u(t) E H(t )  for a. a. t E T). 

Let the following condition be fulfilled. 
Condition 1. 

a) sets H( t )  for all t E T are nonempty; 
b) there exists a control u, (.) E H(.)  such that x, (.) = x(.; to, xo, U ,  (.)) 
where the symbol x( - ;  to, xo, u,(.)) denotes a solution of the variational 
inequality 
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for a. a. t E T and all z E V, x(to) = xo; 

c) the saddle point condition is fulfilled: 

inf sup(s, f ( t , u , v ) )  = S U P  inf(s,  f ( t , u , v ) )  for any t E T ,  s E H. 
u E P  V E Q  VEQ " E P  

Let us give two examples of functions f satisfying condition l c ) .  

1 A function f does not depend on t and is linear with respect to 
u and v, i.e., f ( t , u , v )  = Bu - Cv, B E C(U,; H), C E C(Ud; H).  
This case was under discussion in 141. 

2 Let a control u and a disturbance v be elements of finite-dimen- 
sional Euclidean spaces, i.e., u E Up = Rn, v E Ud = Rm. A 
mapping f is given according to the following rule: f (t, u, v)(q) = 
F ( t , q , u , v ) ,  where F( . )  : T x R x Rn x Rm -+ R possesses the 
Carathkodory property: a) for all q E R the function F,(t, u, v) = 
F ( t ,  q, u, v) satisfies the Lipschitz property; b) for all ( t ,  u, v) E T x 
P x Q the function Ft,,,,(q) = F( t ,  q, u, v) is Lebesgue measurable. 

Condition lc) is fulfilled if either a control u and a disturbance v are 
separated, i.e., F ( t ,  q, u, v) = F( t ,  q, u) + F( t ,  q,  v), or the function F 

N is of the following structure: F ( t ,  q, u, v )  = Cj=l wj(q) Fj(t ,  u, v), where 
wj E L2(R), j E [l : N], and the vector function 

satisfies the saddle point condition in a "small game" [3]: 

for any t E T, 

Here the symbol "I" ("prime") means transposition. 
Let us describe the procedure of forming an (h,A)-motion 

x i ( t ;  to, xo,U, vt,,t(.)) corresponding to a fixed partition A and a strat- 
egy U of the form: 

U(t, x) = {ue E P : sup(x - x*(t), f (t, ue, v)) < 
v € Q  

inf sup(x - x,(t), f (t, u, v)) + h). 
uEP  v E Q  

Before the start of the work of the algorithm, we fix a value h E (0 , l )  and 
a partition A = { r i ) z o  with a diameter 6 = S(A). Then we organize the 
process of control of the system (1) according to the feedback principle 
in such a way that the motion x i  (.) = x(.; to, zo ,  24, vT(.)) remains in a 
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sufficiently small neighborhood of x,(.) at all moments t E T for suffi- 
ciently small h and 6 under the action of any disturbance vT(.) E QT(-) ,  
i.e., the inequality (3) is valid. The work of the algorithm is divided into 
(m - 1) identical steps. In the interval [to, rl) we assume 

uh(t)  = uo E U(t0, xo) = P, t E [to,r1) 

Under the action of this control as well as of an unknown disturbance 
vtorT1 (.) some (h, A)-motion { x i  (.; to,  xo, U, vto ( ' ) ) ) to  is realized. At 
the moment t = 71 we determine ul from the condition 

i.e., uh(t)  = u1 for t E [q, r2). Then we calculate the realization of the 
(h, A)-motion { x i  (.; 71, x i  (TI), U, vT1 ,,2. Let the (h, A)-motion 
x i ( . )  be defined in the interval [to, ri]. At the moment t = ri we assume 

i.e., uh(t)  = ui for t E [ri, T ~ + ~ ) .  As the result of the action of this con- 
trol and of an unknown disturbance v,,,,, (.) the (h, A)-motion of the 

h system (1) { x i ( - ;  ri, xA(ri) ,  U, v ,~ , ,~+~  (.)))Ti,Ti+l is realized in the interval 
[ri, riS1] The indicated above procedure of forming the (h, A)-motion 
stops at the moment 8. 

THEOREM 1 The strategy U(t,x) of the form (6) solves the Problem 1. 

Proof. Let a partition A = {ri)zo of the interval T with a diameter 
6(A) = 6 and a value of the level of informational noise h be fixed. Let 
us estimate the evolution of the function 

for t E T. Introduce the functional l(y(.)) : W,(T) -+ R, 

Let a, = ao, if a 0  2 0, and a, = 0,  if a 0  < 0. One can prove in a stan- 
dard way [llthat there exists a number K, = K, (ao, w) such that for any 
xo E D(cp), UT(.) E PT( ' ) ,  VT(.)  E QT(-) ,  ~ ( 9 )  = X ( . ; ~ O , X O , ~ T ( . ) , V T ( . ) )  
the inequality 
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is true. It is easily seen that for a. a. t  E [ri, r iS1) ,  i 2 1, the inequality 

( f  ( 4  ui, v ( t ) )  - u*( t ) ,  &t) - x* ( t ) )  + aolxk( t )  - x*(t)1$ 

holds. Here 
U i  E U( r i , t i ) ,  [ t i  - & ( T ~ ) I H  5 h ,  (9) 

(ti is an inaccurate measurement of phase state x;(ri)) ,  v,,,,, (.) is an 
unknown realization of disturbance, the strategy U ( t ,  x )  is determined 
from (6). It follows from (7)-(9) that 

d 
- E ( ~ ,  dt ~ k ( ' ) , x * ( ' ) )  < ( f  ( t ,  ui, ~ ( t ) )  - ~ * ( t ) ,  s i ) ~  + ( l o )  

w l x ~ ( t )  - x*(t)Ik  + 

{ I & ( T ) ~ H + ( X * ( ~ ) ~ H }  d r ) ,  t  E di  = [ri, ri+l), si = [i-x*(ri)  

Ti 

Let us define vectors vf from the conditions 

inf (s i ,  f ( r i ,  U ,  v f ) )  2 sup inf (s i ,  f ( ~ i ,  U ,  v ) )  - h. 
UILEP VEQ 

(11) 

It is obvious that 

u,(t)  E H ( t )  c U f ( t , u , v f ) ,  fora .  a. t E  [ ~ i , ~ i + l ) .  

UEP 

By virtue of condition l a )  there exists a control u( ' ) ( t )  E P, t  E d i ,  
such that 

f ( t ,  ( t ) ,  v f )  = U ,  ( t )  for a. a. t  E [ ~ i ,  7 i+1].  (12) 

Using condition lc) and ( l l ) ,  we deduce that 

inf sup(si, f ( t ,  u ,  v ) )  + h  + L( t  - ri)  = 
u € P  VEQ 

SUP inf (s i ,  f ( t , u , v ) )  + h + L ( t  - r i )  5 
VEQ uEP 

(13) 

inf ( s i ,  f ( ~ ~ , ~ , v ~ ) ) + 2 { h + L ( t - ~ ~ ) )  < (s i ,  f ( t , u ( ' ) , ~ f ) ) + 3 h + 2 ~ ( t - ~ i ) .  
u EP 
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Here L is a Lipschitz constant of the function f (.). In this case it follows 
from (12), (13) that 

We derive from the inequalities (lo),  (14) 

Since 

by (7), (15), and (16) we have for t E T 

Here constants k1 and k:! do not depend on h,  S and can be explicitly 
written. The conclusion of the theorem follows from Gronwall's lemma. 
The theorem is proved. 

Remark 1. The trajectory x,(.) plays the role of a "stable path", 
which is famous in the theory of differential games. By virtue of Theo- 
rem 1, the strategy Li of form (6) guarantees that the solution of inequal- 
ity (1) follows the trajectory x,(.) (the strategy "leads" x(.) along x,(.)) 
irrespective of the unknown effective perturbation. As to the problem 
of choosing the stable path itself, it is a typical problem of a program 
control of a parabolic variational inequality and was studied by many 
authors. 

4. The Algorithm for Solving Problem 2 

Let us indicate the algorithm for solving Problem 2. Denote 
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H,( .;  x) = {u(.) E L2(T; H x R) : u(t) E H,(t; x) for a. a. t E T). 

Let the following condition be fulfilled. 
Condition 2. 

a)there exists a control u* (.) = {ul (.), u2 (.)) E L2(T; H x R),  u* (t) E 
H,(t; x,(t)) for a. a. t E T, such that I, = a(x,(19)) + z, (d),  where 
x, ( a )  = x(9; to, xo, ul (.)), the symbol x(.; to, xo, ul (.)) denotes a solution 
of the variational inequality 

for a. a. t E T and all z E V, x(to) = xo, 

and the symbol z,(.) stands for a solution of the ordinary differential 
equation 

i ( t )  = u2(t) ,  t E T, z(to) = 0; 

b) the saddle point condition is fulfilled: 

sup inf {(s, f (t, u, v)) + rx( t ,  x, u, v ) )  for any t E T, x, s E H, r E R. 
V E Q  u E P  

h Let us describe the procedure of forming an (h, A,  x)-motion zn(.) = 
{xk(.) ,  pk (.)) corresponding to a fixed partition A and a strategy Ue of 
the form: 

Ue(t, X,P) = (18) 

The algorithm for solving Problem 2 is analogous to the algorithm for 
solving Problem 1. Before the start of algorithm's work, we fix a value 
h E (O,1) and a partition A = {r i )go ,  with a diameter 6 = 6(A). The 
work of the algorithm is subdivided into ( rn - 1) identical steps. In the 
interval [to, rl) we assume 

Under the action of this control as well as of an unknown disturbance 
vt0,71(.), Some (h, A,  x)-motion {z;(.))tO,Tl = { x i ( . ;  to, xo7Ue, vtO,T1 (.)I, 
p i ( . ,  to, 0, Ue, vt0,7t is realized. At the moment t = TI we deter- 
mine ul from the condition 
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i.e., uh(t)  = ui for t E [ T ~ ,  T ~ ) .  Then we calculate the realization of the 
(h> '3 v ) - ~ ~ ~ ~ ~ ~  {z; ( '))TI ,, = ('; , xi ('1) 7 U, 'uTI ,T2 ('))) p i  ('; 
&(TI) ,  U, v ~ ~ , ~ ~  ,T2. Let the (h, A, x)-motion z i  ( a )  be defined in 
the interval [to, T ~ ] .  At the moment t = ~i we assume 

i.e., uh (t) = ui for t E [ T ~ ,  r i f l ) .  AS the result of the action of this control 
and of an unknown disturbance v, ,,+, (.), the (h, A ,  x)-motion of the 

h system (1) {zi( . ) )q ,q+l-  {za( . ;  ~ i ,  &(7i), U, ~ q , q + ~  (.)), p i ( . ;  7i, ~ i ( ~ i ) ,  

U, v,,,,, (.))),,,+, is realized in the interval [ T ~ ,  T ~ + ~ ] .  The described 
above procedure of forming the (h, A, x)-motion stops at  the moment 19. 

THEOREM 2 The strategy Ue(t ,x ,p)  of the form (18) solves the Prob- 
lem 2. 

Scheme of the proof of this theorem is analogous to the proof of 
Theorem 1. At that we estimate the evolution of the function 

&; (.), p i  ( t) ,  z, ( e ) ,  z, ( t))  = ~ ( t ,  z i  (.), z* (.)) + 1/21pi ( t )  - z, (t) 12. 

Let a partition A = {ri)Z0 of the interval T with a diameter S(A) = S 
and a value of the level of informational noise h be fixed. Analogous to 
(10) we deduce for a. a. t E [q, i > 1, that the inequality 

v, ,,+, ( a )  is an unknown realization of disturbance, the strategy 

is determined from (18). I t  follows from (19), (20) and the local Lipschitz 
property that 
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and constant kl can be explicitly written. Here 

is the modulo of continuity of a function x(.), X C H is some bounded 
domain, which all solutions of the inequality ( I )  belong to. The conclu- 
sion of the theorem follows from Gronwall's lemma. Further argument 
repeats the one presented in the proof of Theorem 1. At that we take 
the function @ instead of the function f .  The theorem is proved. 
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Abstract We consider the tracking problem for parabolic systems with boundary 
control. Assuming that the reference signal is bounded and measurable, 
we prove various regularity results as well representation formulas for 
the optimal control and the optimal trajectory. 

Keywords: Regulator problem, distributed systems, boundary control 

1. Introduction and Preliminaries 

The quadratic regulator problem for distributed parameter systems 
was analyzed in the monographs [I, 51, in particular the (time and space) 
regularity properties of the Riccati equations, arising in boundary con- 
trol of PDEs, is deeply studied in [5]. However variants of the quadratic 
regulator problem like the tracking and cheap control did not receive 
much attention in the boundary control case. 

The aim of this paper is to partially fill this gap, by investigating 
the tracking problem. This consists in finding a control v to force the 
output z of a given system to follow a desired reference signal y; we 
refer to [3, 8]for an introduction to this problem in finite dimensions. 
We obtain regularity results for the optimal control v as well as useful 
representation formulas involving v and the optimal trajectory w, see in 
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particular Theorems 8, 10 and 13. These are extensions of known finite 
dimensional formulas (see [3]) to the present boundary control case. 

Since the presence of the reference signal y entails a lack of regularity 
in the solution and a different form of the optimal control, our theorems 
are not contained in the monograph 151. Moreover the results which are 
presented here will be applied to the study of the cheap control problem 
in a forthcoming paper. 

The system that we consider is described by 

where A generates an exponentially stable holomorphic semigroup on a 
Hilbert space X and v E L2 (0, T; X) .  Exponential stability is assumed 
only in order to simplify the notations. The operator B takes values in 
(domA*)'. Here A* denotes the adjoint of A and (domA*)' stands for 
the topological dual of domA* (the space domA* is endowed with the 
graph norm); see [5]for more details as well as for several applications of 
(1). We assume that for some y E [0, I ) ,  

i.e. D is a bounded linear operator from U to X ,  where U is a second 
Hilbert space (if A is not stable then the notation (-A)' is to be replaced 
by (-A - r I ) r  with r large enough). Note that (2) is equivalent to 
B E L(U, [dom(-A*)']') and implies that, for some 0 and M > 0, 

The tracking problem is the following: 

+n Ja(wo;v), Ja(wo;v) = {Ilz(t) - y(t)1I2 + allv(t)112} dt , iT 
z(t)  = z(t;wo,v) = Cw(t;wo,v),  

(4) 
where a > 0 is fixed, y is a prescribed reference signal and w(t; wo, v) 
denotes the solution to (1); further C is a linear and bounded operator 
from X to a third Hilbert space Y. The cheap control problem consisting 
in studying the limit for a + O+ will be studied in the sequel. The 
standing assumption on y is that it is measurable and bounded, i.e. 
y E Lm(O, T; Y).  

Let us introduce the following operators 



Tracking Control of Parabolic Systems 137 

wo E X .  The properties of these operators have been precisely studied 
in [5]. Moreover we recall from [5, p. 13 and p. 231: 

THEOREM 1 Let y E [ O , l )  as in (2). We have: 

L E C ( L ~ ( O ,  T;  U), L~ (0, T; dom(-A)'-?)) 

and L E C(LCO(O, T; U), C([O, TI; dom(-A)~))  for every 0 5 B < I - y 

We observe that we are in the second smoothing case studied in [5]so that 
we can freely use all the regularity results in that book, which concern 
the solutions of the Riccati equation and the operators L and A. Using 
a result in [6], we can improve Lemma 1 as follows (as usual, C u  denotes 
the space of Holder continuous functions): 

THEOREM 2 For any 8 E [O,1 - y), we have 

L E C(LCO(O, T; U) ,  C'-T-'([O, TI; dom(-A)'). 

In particular L E C(LCO(O, T; U), C1-?([o, TI ;  X ) ,  

Proof We write: 

see (2). Now recall that in Proposition 4.2.2 in [6], see also Sec. 2.2.2 in 
[B], it is proved that the operator R, 

R f ( t )  = Jot e ~ ( ~ - ' )  f (s )ds  

belongs to L(LCO(O, T ;  X ) ,  C1-a ([0, TI;  dom(-A),), for any a E (0 , l ) .  
Remark that this implies also that R E C(Lm(O, T ;  X )  , C 1 - ~  ([0, TI; X ) )  , 
for any a E (0 , l ) .  Applying this result to L we get the assertion. 

2. The Tracking Problem 
Let us consider (4). The existence of the optimal control v, is clear, 

Let w, be the state produced by v,, i.e. the solution of Eq. (1) when 
v = va. Let moreover z, = Cw, = Av, + rwO be the corresponding 
output. We easily obtain from (5) a second representation formula for 
the optimal control: 

1 
V, = -A*[y - &] . 

a (6) 
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Using Young inequalities, we see that A*(y - rwo)  is continuous on 
[0, TI and 1 1  A* (y - rwo)  (t) 1 1  5 M ( T  - t)'-7 . Moreover from [5, Theo- 
rem 1.4.4.4](a + A*A)-' is boundedly invertible on Cy(O, T; U), where 

C,(O,T;U) = ( f  E C[O,T);U uch that sup (T-t ) , l f ( t ) l  < +m). 
tE(O,T) 

Hence we have that v, is continuous on [O,T). In addition the usual 
bootstrap argument, based on Young inequalities, shows: 

THEOREM 3 The optimal control v, is continuous on [0, TI.  Hence, also 
w,(t) and x,(t) are continuous too. Moreover, I Jv,(t)J I = O ( T  - t ) l - ~ .  

Combining Lemmas 2 and 3 we obtain: 

THEOREM 4 The function w, is Holder continuous on every compact 
interval contained i n  (0, TI with values i n  X .  The Holder exponent is 
1 - y. 

Proof From 

we need only to prove Holder continuity of the integral (since the first 
addendum is continuously differentiable for t > 0, because eAt is a holo- 
morphic semigroup). To this end it is enough to apply Lemma 2. 

In the next result, we give two representations of the minimum value 
of the cost. 

THEOREM 5 W e  have: 

Proof In the following computation, 6 = y - I'wo and norm and inner 
product are in L ~ .  We note that 

since 
Q-Av,= y-2 , .  

This is the first representation. The second representation is obtained 
from here, since 
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The proof is complete. 
We introduce now the explicit form of ( 6 ) :  

1 
B*~**( ' -~)c* [ y ( s )  - z , (s )]ds  = - - B * p ,  ( t )  ( 7 )  a 

where 
T 

p,(t) = - /' e A * ( s - t ) c *  
t 

[ y  (4  - x f f  ( s ) l d s .  ( 8 )  

We note that p, E C([O, TI; X ) ,  since C is a bounded operator and 

For t = 0 we have the equality 

so that we find a third representation for the optimal cost, 

The function p, is the weak solution of 

We have the condition p ( T )  = 0 since the final value of w is not penalized. 
In this way we arrive at the usual hamiltonian system 

The functions p, and w ,  solve ( 1 0 )  in a weak sense. We improve the 
regularity of p, in the next Lemma. 

THEOREM 6 W e  have p, E c'-'([o, TI; d o m ( - A * ) ' ) ,  for every 0 < 6 < 
1, and p, E L 2 ( 0 ,  T ;  dom A*). 

Proof The first assertion follows from ( 8 ) ,  taking into account that the 
function C * [ C w ,  - y] is bounded and applying Proposition 4.2.2 in [6] .  
The second statement can be proved as in [4] ,  see also [5, p. 41. 

Let us consider now the special but important case when y is Holder 
continuous. Using [6,  Theorem 4.3.4land [7, Theorem 3.5.1, we get: 

THEOREM 7 If there exists q E ( 0 ,  I ) ,  q 5 1 - y, s.t. y E C " [ c , T ] ;  Y )  
for every c > 0 ,  then  p, i s  continuously differentiable, and the derivative 
i s  Holder continuous too, i.e., p, E C1+v([c ,  TI, X ) ,  for every c > 0 .  
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In the next result we consider the regularity of the map B*p, = -av,. 

THEOREM 8 Let 7 E (0 , l )  and y E C ~ ( [ E , T ] ;  Y),  for any E > 0. The 
functions B*p, (and so also v,) is Holder continuous on compact inter- 
vals contained in (0, TI, of exponent min{q, 1 - y). 

Proof Let f = -C*[Cw, - y]. The function f is bounded. Now fix 
E > 0 and take t" > t '>_ E. We obtain 

Hence, 

The function f is bounded so that the first addendum is less then 

The second integral is the sum of the following two terms: 

T-t" 

B* I eA* s C* [ y ( ~  $ t') - y(s + t")] ds, 

Holder continuity of y and condition (3) imply that the norm of (11) is 
less then Me[t" - t']" The second integral is treated analogously, and 
we get a similar estimate, with exponent 1 - y on every interval [€,TI, 
E > 0, see Lemma 4. 

A further regularity result that is needed below is as follows: 

THEOREM 9 Let xo E dom A*. The function: 

is differentiable on [0, TI and moreover 
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Proof First recall that the function t + Dv,(t) is continuous on [O, TI. 
Then let S > 0; because the semigroup is holomorphic, we have 

We see from here that 

Thanks to this estimate, we can use dominated convergence theorem 
and we can pass to the limit for 6 + O+ in the following equality: 

We differentiate both sides of the resulting equality and we get: 

The proof is complete. 
If y  = 0 it is well known that the optimal control can be put in 

feedback form. This is not possible if y  # 0 since at a given time t the 
future values of y ,  which affect the optimal control, are unknown. Infact 
we have: 

THEOREM 10 W e  have p,(t) = Pa ( t )w,  ( t )  + d, ( t )  where P, solves the 
Riccati diferential equation 
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Here x and y are arbitrary elements in dom A. The function d, is con- 
tinuous on [0, TI and is zero for t = T. It depends on y but not on wo 
and it is given by (here (Atu)(r) = S I  ~ e ~ ( ' - ' ) ~ u ( s ) d s )  

Proof The operator valued function P,(t) is the solution of the usual 
Riccati equation. For each x E X, P, (.)x is continuous on [0, TI and it 
is zero for t = T. Moreover, it is differentiable on (0, T), with continuous 
and bounded derivative in closed subintervals, see Theorem [5, p. 19-20]. 
In order to prove the theorem, it is sufficient to show that the continuous 
function d, (t) = p, (t) - P, (t)w,(t) only depends on the tracking signal 
y. We introduce the functions vS(s; t ,  xo) and wS(s; t, xo), xo E X, the 
solutions of the optimization problem under study, in the case that y = 0 
and with initial condition xo at time t instead then 0. Hence,vs = -(a+ 
AZ;At)-'AZ;rtxo, where r t xo ( s )  = ~ e ( ' - ~ ) ~ x ~  (note that v+ depends on 
a) .  Moreover, we use the following representation formula for P, (t): 

Hence, 

pa (t) - ~ , ( t ) w ~ ( t )  = - eA*(S- t )~*y(s )ds  6' 
For clarity, in this formula we indicated explicitly the initial time and 
initial value of w,. Now we use dynamic programming: the optimal 
control on [t,T], with initial condition w,(t; 0, wo) is the restriction to 
[t, TI of v,. This holds for every given reference signal y. Hence, 
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as wanted. 
In fact, in finite dimensions d, solves 

We will show that an analogous result holds in general. We prove first: 

THEOREM 11 We have, for every x E domA, 

Proof We already know the continuity of d, and that d,(T) = 0. 
Moreover, from [5, p. 21, formula 1.2.2.191, B*P, E L ( X ;  C([O, TI; U)).  

Recall that d,(t) = p,(t) - P,(t)w,(t). First let us treat p,. Using 
the Hamilton equation ( lo) ,  we see that 

Now we consider differentiability of Pa (t) .  We use formula [5, (1.2.2. Id)] 
and Lemma 9 in order to compute 

The first addendum is 

1 
(-A*P,(t)x - P,(t)Ax - C*CX + -P,(t)BB*P,(t)x,wa(t)). (17) 

Q 

The second addendum is computed from Lemma 9 (recall that P,(t)x E 
dom A* since x E dom A, see [5, property vii), p. 201). We get 

Now we subtract (17) and (18) from (16). The result follows. 
Now we improve our information on the regularity of d,(t): 
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THEOREM 12 We have d ,  E cl-'([o, T I ;  dom(-A*)'), for every 0 < 
0 < 1 ,  and d ,  E L 2 ( 0 , ~ ; d o m A * ) .  

Proof We derive an integral representation formula for d,, which dis- 
plays the desired regularity properties. For any s E [0, TI, set [Pa ( s )  B ]  = 
[B*P,(s)]*. From [5,  p. 21]it follows that P,B is linear and continuous 
from U to C([O, TI; X ) .  Moreover, B*d,(s) = B*p,(s) - B*P,(s)w,(s) 
is well defined and continuous, the first addendum from Lemma 3 and 
the second one from the continuity of w,(s) and of B* P,(s). For the 
same reason, s -+ [P,(s) B]  B*d,(s) is continuous so that, from (15),  the 
following representation formula holds: 

where f ( s )  is bounded on [0, TI with values in X. Now we conclude as 
in Lemma 6. 

We are going to prove a variation of constants formula for d,(t). 
Namely, we want to prove 

THEOREM 13 The function d,(t) is given b y  

where U ( t ,  s )  is an evolution operator which is exponentially bounded, 
strongly continuous and which transforms X into domB* = dom(-A*)', 
for a.e. t > s .  

In order to reduce the notation to a more usual form, it is convenient 
to replace ( ( t )  = d,(T - t ) .  A simple transformation shows that ( ( t )  
solves 

t 

( ( t )  = / e'* { [ P ( ~ ) B ] B * F ( T )  - c*z / (~ )}  dr 
0 

where ~ ( r )  = - ~ P , ( T  - r ) ,  y(r) = y(T - r ) .  To prove the previous 
theorem we need the next result. 

THEOREM 14 There exists a unique strongly continuous and exponen- 
tially bounded evolution family U ( t ,  s )  which, for t > s,  is defined b y  
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for every x E X .  Moreover, for a.e. t > s ,  we have U(t, s ) X  C dom B* 
and [P(.)B]B*u(., s ) z  is locally integrable on [s, SW), for every x E X .  
The evolution family U(t, s )  verifies, for t > s and x E X ,  

Proof We use Theorem 9.19, p. 487, in [2]. Let Uo(t, s) = e Ac(t-s)  and 
let B(t) = [P( t )  BIB*. Then, dom B(t) = dom B* is constant and we 
have B(.)Uo(., s )  strongly continuous for t > s ,  with 

locally integrable, from (3). The conclusion follows from this. 
Proof of Theorem 13. We introduce 

t 
((t) = - / U(t, s)C*&(s)ds 

0 

We are going to prove that [(t) = ((t). We see from (19) that s -+ 
B*U(t,  s )x  is integrable on [0, t], for any x E X .  Since B* is closed, it is 
straightforward to check, by using suitable Riemann sums, that 

Moreover, we see from (19) 

Hence, (( t)  and ((t) solve the same Volterra integral equation, and 

so that also 

(B* [((t) - ((t)]) = / " B*eA*("') 
0 

[&)BI(B*[E(T) - Jl(r)l)dr. 

Thanks to the inequality (3), Young inequalities and continuity of 

[@-PI 



146 SYSTEM MODELING AND OPTIMIZATION 

the operator on L2 (0, T) defined by 

has norm less then MTY for a suitable number M ;  so it is a contraction 
on ~ ~ ( 0 ,  TI),  TI < ( ~ / M ) ~ I Y  = TI. Hence B* [[(t) - J"(t)] is zero on [0, TI] 
and, for t > TI, 

The same argument shows that (B*[[(t) - l ( t ) ] )  is zero on [TI, 2Tl] too. 
In fact, it is easily seen that the norm of the operator 

from L ~ ( T ~ ,  2T1) in itself, is less then MTT, with the same coefficient 
M as above. After a finite number of steps we see that B*[[(t) - i ( t ) ]  
is zero on [O,T] so that, from (20) we have t ( t )  = ((t) on [O,T]. This 
finishes the proof. 
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Abstract Two approaches are proposed for the modeling of deformation of elastic 
solids with small geometrical defects. The first approach is based on 
the theory of self adjoint extensions of differential operators. In the 
second approach function spaces with separated asymptotics and point 
asymptotic conditions are introduced, and the variational formulation 
is established. For both approaches the accuracy estimates are derived. 
Finally, the spectral problems are considered and the error estimates for 
eigenvalues are given. 

Keywords: Shape optimization, topology optimization, asymptotic analysis, elliptic 
operators, singular perturbations 

Introduction 
It seems that in the literature on shape optimisation there is a lack 

of general numerical method or technique, beside the level set method, 
that can be applied in the process of optimisation of an arbitrary shape 
functional (SF) for simultaneous boundary and topology variations. In 
the paper [22] (see also [19]) the so-called topological derivative (TD) 
of an arbitrary SF is introduced. TD usually determines whether a 
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change of topology by nucleation of a small hole, or in similar setting 
of a small inclusion at a given point x E R, would result in improving 
the value J ( R )  of a given SF or not. In the paper the boundary topology 
variations are considered for boundary value problems for elastic solids. 
The singular perturbations of the geometrical domain R are defined by 
small arcs y;, . . . , y i  of the length O(h) on the boundary d o .  

We propose two efficient approaches to the modeling of topological 
variations. First approach is developped in the framework of the self- 
adjoint extensions of differential operators, the second uses the function 
spaces with the detached asymptotics. In both cases, the main idea 
consists in modeling of small defects or inhomogeneities by concentrated 
actions, the so-called potentials of zero-radii. In this way the solution 
U(E, h) with singular behaviour for E --+ O+ is replaced by a function 
with the singularities at the centres P1, ..., PI of the defects. The mod- 
ern framework of analysis of elliptic boundary value problems in non 
smooth domains allows for the the relatively complete theory of singular 
solutions and provides the techniques of derivation of error estimates 
for asymptotic approximations. We can use the known results in this 
field for the solution of shape and topology optimization problems in an 
inverse order. First, the localization and integral atributes of openings 
are determined, followed by the appropriate changes of the topology of 
geometrical domains. The proposed two different approaches to topol- 
ogy optimization have some positive features. The first approach deals 
with selfadjoint operators, so can be readily extended to the evolution 
boundary value problems. The second approach, based on the gener- 
alized Green's formulae, results in the variational problem formulation 
with the solution given by a stationary point of an auxiliary functional 
close in its form to the energy functional. 

1. Problem Formulation 

Let us consider the deformations of plane heterogeneous anisotropic 
elastic body R c I R ~  clamped on small parts of the boundary r = dR in 
the form of closed connected curves $, ..., y;. Instead of tensor notation, 
we make use of the matrix notation which we describe briefly. The 
constitutive relations in the elasticity theory are written with the elastic 
fields in the form of columns. First, two matrices are introduced, 

where a = 2-lI2 is the normalizing coefficients, and T stands for trans- 
position. The first matrix is used to define the column of strains from 
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the displacement column u = (ul , u2) T, 

E(U) := ( ~ 1 1  (u), ~22(u) ,  Q - ' E ~ ~ ( u ) ) ~  = D(V)u . (2) 

Here V = (&, &) is the gradient, and cjX(u) are Cartesian compo- 
nents of the strain tensor (the multipliers a in (1) and (2) make the 
norms of vector and tensor of strains equal). The second matrix gener- 
ates the rigid motions d(x)b of the body R for any column b E R3. The 
Hooke's law 

~ ( u ;  x) = A(x)E(u; x) , (3) 
represents the column of stresses in function of the strains (2), and in- 
cludes the symmetric and positively definite (3  x 3)-matrix function A 
of elastic moduli, which is supposed to be smooth function of the vari- 
able x. In view of (1)-(3), the equilibrium equations and the boundary 
conditions of traction free type are given as follows 

Here, n = (nl,  n2)T is the unit column of external normal vector to the 
contour I?, the contour is supposed to be sufficiently smooth for the sake 
of simplicity of the presentation. In ( 5 )  

and $ are arcs of the length hlj, with the centres P' E 80,  where 
h E (0, ho] is a small parameter and 11, ..., l I  are fixed constants. The 
elastic body is clamped on the sets yi, 

The Dirichlet condition (6) provides the Korn inequality 

however the dependence of the multiplier K(h)  on the parameter h is to 
be clarified. 
Proposition 1 Let I > 2. For any Feld u E H ' ( R ) ~  verifying the 
Dirichlet conditions (6), the Korn inequality holds with the multiplier 
K(h)  such that 

K(h)  5 c/ lnhl . (8) 
The estimate is asymptotically exact. In (8) the constant c is indepen- 
dent of u and h E (0, ho] with ho < 1. 
Note that in the case I = 1 the Korn inequality (7) is still valid, but the 
multiplier K(h)  becomes of order h-l (cf. [21]) and thus, it does not 
satisfy estimate (8). 
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2. Modeling of Singularly Perturbed Boundary 
Value Problem 

We consider the functional 
r 

Asymptotic structures for specific problems with the logarithmic growth 
of fundamental solutions, turn out to be quite complex and therefore, of 
limited practical interest for analysis of functional (9). The main par- 
ticularity of the asymptotic analysis, beside the presence of boundary 
layers near the arcs yk, ..., ̂(hI, is the form of asymptotic terms which 
are rational functions of the large parameter I In hl. Such phenomenon 
was discovered by Il'in for the scalar problem in [6] (see also [7] and 
[13]). A simplification caused regarding the asymptotics with respect to 
the parameter I In hj-l is not sufficient to provide the analysis, since the 
leading terms of asymptotics do not reflect the distribution of contact 
regions and do not exhibit the interactions between the regions. 
We propose an appproach, based on the modeling of problem (4)-(6), by 
means of auxiliary boundary value problems with the boundary condi- 
tions of traction free type on the punctured contour dfl \ {P1, ..., PI) 

and with the prescribed class of singularities at the points pl, ..., PI. 
Such singularities are obtained by an application of forces concentrated 
at the points, and therefore, imitate the reaction of the elastic body at 
the obstacles y i ,  .. ., y;. Thus, in the setting, the models take into ac- 
count the interaction between the elastic body with the rigid foundation. 
On the other hand, the proposed singularities are not included in the 
energy class H1 however the resulting singular solutions are still in 
the space Lq(0) ,  for q 2 I. The main profit from our point of view for 
such modeling is the possibility, with the singular solutions, for asymp- 
totically exact approximation of functional (9), under the condition that 
for some q E [I ,  CQ) and for any u, v E ~ ~ ( 0 ) ~  the following inequality is 
valid 

with the constant CF independent of h E (0 ,  ho] and u, v .  
Modeling defects in media by an application of extensions of differen- 
tial operators which give rise to the singular solutions comes back to 
the work [3] and is developped in [20], [16], [MI, [17], [9] and in other 
publications, for problems of mathematical physics and general elliptic 
systems. There are two possibilities for realization of such ideas. First 
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of all, the operator L(z,  V) in (4), considered as an unbounded operator 
in the space L ~ ( R ) ~ ,  subsists the restriction of the domain of definition, 
which becomes smaller compared to intrinsic domain ~ ' ( f l ) ~ .  In this 
way the domain of the adjoint becomes wider, and finally the selfadjoint 
operator is selected in the form of an intermediate operator. Under the 
proper choice of extension parameters, the selfadjoint operator asymp- 
totically acquires the attributes of singularly perturbed problem such as 
the energy functional and the spectre (see [17], [9], [19]). Since the se- 
lected operator is selfadjoint, the classical semigroup theory can be used 
to construct solutions for the associated evolution problems. On the 
other hand, for our problem, the domain of selfadjoint extension depends 
on the large parameter I lnhl, which could leads to ill posed problems 
for numerical methods when applied for solution of shape optimization 
or shape inverse problems (see [8], [22], [23], [5]). This difficulty can 
be avoided by application of slightly different technique, including the 
space with separated asymptotics (see [18] and others). Roughly speak- 
ing, the boundary value problem is defined in larger class, compared 
with the energy space H ' ( R ) ~ .  In the class, the behaviour of functions 
at points PI, ..., P' is prescribed a priori. The coefficients of asymp- 
totic expansions satisfy some additional relations, in order to ensure the 
unique solvability of boundary value problems. Matching conditions for 
parameters of selfadjoint extensions, and the relations called asymptotic 
point conditions, result in the exactly same solutions obtained by the 
first and the second approach. 

3. Modeling with Self Adjoint Extensions 

We denote by XI, . . . ,xJ the cutoff functions with mutually disjoint 
supports, equal to one in neighbourhoods of the points P1, ..., PI, re- 
spectively, and by Tj = (Tj1,Tj2) the Poisson kernel, i.e., the (2 x 2)- 
matrix function, each column Tjk, k = 1,2 is a solution of the elasticity 
boundary value problem in the half-plane {z : n ( ~ j ) ~ x  > 0) under 
unit force concentrated at the point Pi and directed in the positive di- 
rection of Oxk (linear combinations of the Boussinesq-Cerruti solutions 
problems). 

The unbounded operator L in ~ ~ ( 0 ) ~  defined by the differential ex- 
pression L(z,  V) with the domain 
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is closed and symmetric, however the adjoint L* has the larger domain 
compared to ( l l ) ,  

The following representation is well known 

where 7j1 is a smooth matrix function on the semisphere and 73' is a 
constant ( 2  x 2)-matrix, symmetric and positive definite. 
By comparison of formulae (11) and ( 1 2 )  we can see that the defect of 
the operator L is (31 : 31). The coefficients b i ,  bk, bi and b j  from ( 1 2 )  are 
collected in the column f E IR31, the remaining coefficients are collected 
in the column a. 
Lemma 1 Let S be a symmetric (31 x 31)-matrix. The restriction L 
of the operator L* to the linear subset of ( 1 2 )  

D(L)  = {v E D(L*) : f = Sa)  (14) 

is a selfadjoint operator in ~ ~ ( 0 ) ~ .  If the matrix S is not singular, then 
under condition I > 1 the equation 

admits the unique solution for each f E ~ ~ ( 0 ) ~ .  
The proper choice of parameters of selfadjoint extension, i.e., the selec- 
tion of the matrix S is performed in Section 9.5 in such a way that the 
solution v of equation (15) becomes an approximation of the solution to 
problem (4)-(6). 

4. Modeling in Spaces with Separated 
Asymptot ics 

The linear set (12) with the norm 

becomes the Hilbert space. Two projection operators are introduced 
T* : 9 -+ R3', which take from the function v the columns of coeffi- 
cients 

T-v = a ,  nSv = f . 
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Let us consider the boundary value problem of linear elasticity with the 
asymptotic conditions at the points P1, ..., PI, 

It is easy to see that for the same matrix S in (14) and in (16) the 
solutions v E V(L) of (15) and a E 9 coincide. 
Proposition 2 
1) For functions a ,  u E 9 the generalized Green's formula i s  valid 

where (., .)= and (., .) are scalar products i n  the  spaces L ~ ( E ) ~  and [ R ~ ' ,  
respectively. 
2 )  T h e  funct ion a E 9 i s  a solution t o  problem (16) if and only if it i s  
a stationary point of the functional 

1 1 1 e(o) = Z ( L ~ ,  o)n + -(BD, 2  an + -(ST-D 2 - T+D, n-a) - ( f ,  o ) ~  , (18) 

IfdetS # O and the  condit ion I 2 1 i s  satisfied, t hen  the  stationary point 
of functional (18) i s  uniquely determined.  
The symmetric generalized Green's formula shows that the boundary 
value problem is formally selfadjoint. 
The second assertion in Proposition 1 furnishes the variational formula- 
tion of problem (16) over the Hilbert space 9, and shows the uniqueness 
of solutions under the same conditions as in the case of equation (15). 

5 .  How to Determine the Model Parameters 

The solution v = a of equation (15) or of problem (16) satisfies system 
(4) and boundary conditions ( 5 ) ,  however, in general, leaves a discrep- 
ancy in the boundary conditions (6). In order to construct an approx- 
imation for the solution u(h,x)  in the vicinity of the points P1, ..., PI, 

the method of matched asymptotic expansions is applied (see 171, [ll], 
and cf. [13], [18]). Thus, selecting for the outer asymptotic expansion 
v = a ,  we construct the inner expansions w j ( ~ j ) ,  employing the fast 
variables [j = h-'(x - ~ j ) .  The dilatation of coordinates in the limit 
h -+ +O implies the rectifying of the boundary, freezing of coefficients at 
the point Pj, and the volume forces vanish from the equilibrium equa- 
tions. In the other words, the boundary value problem for wj consist of 
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the homogeneous elasticity system 

the boundary conditions of traction free type 

the Dirichlet conditions for j = 1, ..,I 

Here n j  = n j (P j )  is normal vector on dR evaluated at points Pj; tR; is 
the half-plane {I  E tR2 : t T n j  < 0). 
Since we are going to glue wj with the singular solution v = o with 
the logarithmic singularity, it is necessary to allow for the logarithmic 
growth of wi ( t )  for IJI -+ +m. Such solutions of homegeneous problem 
(19)-(21) are well known (see [2], [l] and others). The solutions ressem- 
ble capacitary potentials in the theory of harmonic functions (see e.g., 
[lo]), belong to the space H ; , ( R ; ) ~  and admit the following asymptotic 
representation at the infinity 

The column a j  in (22) can be arbitrary, however, 

where the symetric (2 x 2)-matrix M j  is called W i e n e r  elastic capac- 
i t y  m a t r i x  for the half-plane clamped along the interval [-lj/2, l j  121. 
When we return to the coordinates x, by comparison of representations 
obtained from (22)-(23) and (13) 

wi (hP1 (x - pi)) = (24) 
= Ti(x  - pi )a i  + (To lnh + Mi)ai + O(hlz - Pi/-') , 

with the expansion of the field v = v = n given in (12), the following 
equalities arise 

which in vector notation takes the form b = Sa, used already in (14) 
and indirectly in (16). Thus, the matrix S is diagonal by blocks and 
contains (3 x 3)-matrices separated in (25) by curly braces. In view of 
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the properties of 7j0 listed after the formula (13), the matrix S is sy- 
metric and negative definite for sufficiently small h E (0, ho]. 
The relations (25) are derived by matching the outer expansion v = a 
with the inner expansions w j ( ~ j ) ,  j = 1, ..., I .  Therefore, by the Korn 
inequality (7), (8), proximity to the true solution u(h, x )  of the global 
asymptotic approximation in the energy norm can be established. The 
global asymptotic approximation is obtained by glueing of the expan- 
sions in the standard way (cf. [7] and [13], [HI). However, in view of the 
assumption (10) for the modeling of functional (9) the estimate for the 
difference u - v = u - a in the norm ~ ~ ( 5 2 ) ~  is required. Such an estimate 
can be established, taking into account the embedding H'(Q) c Lq(Q), 
by direct evaluation of the Lq(R)-norms of the remainders in the repre- 
sentations (24). 

THEOREM 1 If u and v = a are solutions to problems (4) -(6) and 
(15)=(16), respectively, with the same right-hand side f E L ~ ( R ) ~ ,  then 

Functional (9) admits the estimate 

where x is arbitrary positive, the constants c, and C ,  are independent 
of f and h E (0, ho], and 

p,(h) = hl in hlq(x+512) for q t [I ,  21; pq(h) = h2Iq for y > 2 . (29) 

According to the Clapeyron's Theorem the potential energy = the elastic 
energy - the work of external forces takes the form 

and Theorem 1 can be used to show that functional (30) evaluated on 
the solutions to problem (4)-(6), with the precision O(pq(h) 1 1  f ;  L2 (52) 1 1 )  
is approximated by the energy functionals, for the problems (IS), ( l6) ,  

1 1 
c(0; f )  = - (D( -V)~AD(V)D,  a)n + B(Sr-a  - r + o ,  a -a)  - (f,  

2 
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6. Spectral Problems 

Let us assume that the elastic body is homogeneous, i.e., the Hooke's 
matrix A and the material density p > 0 are independent of the point 
x E R. The spectral boundary value problem includes the system of 
partial differential equations 

(compare with (4)) with the boundary conditions ( 5 ) ,  (6), and admits 
the sequence of eigenvalues 

with an orthonormal in L~ (R)2 system of eigenfunctions un (h, .). Asym- 
ptotic expansion, for h -+ +0, of eigenvalues in analogical scalar prob- 
lems are characterized by holomorphic dependence upon the parameter 
I ln hl-I (see [12] and [13]where such asymptotics were constructed and 
justified). For the boundary value problems in the elasticity the asymp- 
totic constructions become more complicated (cf. [4], where, in partic- 
ular, the mistake in [14]was corrected), and therefore the modeling of 
spectral problems are the most actual issue. 

We are going to compare the spectral sequence (32) with the spectre 

of the selfadjoint operator, indicated already in Lemma I ,  or equivalently 
defined by the spectral problem with point conditions at P1, ..., P' : 

The space TI in (12) is compactly embedded in L ~ ( R ) ~ ,  whence accord- 
ingly, the eigenvalues XN(h) are of finite multiplicity, and the unique 
accumulation point at infinity. The operator L is not positive, since the 
matrix S determined in Section 9.5 (see (25)) is negative definite for 
small h > 0. Whence, the numbers from the collection (33), in contrast 
to (32), may be located as well in the negative part of the real axis. Nev- 
ertheless, by an application of the approach proposed in [9]the following 
result is obtained. 

THEOREM 2 For any  T > 0 there exists hT > 0 such that all eigenvalues 
A l  ( h ) ,  ..., (h) E a(pW1L) n (-T, T), for h E (0, hT), become positive 
and satisfy the estimate 
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where p2(h)  i s  defined i n  ( 2 9 )  and the constant en,, depends o n  the 
eigenvalue number  n = 1, ..., N ( T )  and x > 0 but it i s  independent of 
h E (0 ,  h ~ ] .  

Remark 3 
1)  T h e  result remains  valid for the spectres of problems (31) ,  (5)) ( 6 )  
and (34) in the case of nonhomogeneous elastic mater ia l  (A and p  de- 
pend o n  x) .  For determinat ion of the appropriate selfadjoint extension,  
the  dijjerential operator ~ ( x ) - ' / ~ L ( x ,  ~ ) p ( x ) - l / ~  should be used or  the 
weighted class L 2 ( f l )  (cf. [9], [15]). 
2) T h e  in format ion o n  the asymptot ic  behaviour of the  eigenfunctions i s  
also available, but i t  i s  omitted here. 
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Abstract We present a method to factorize a second order elliptic boundary value 
problem in a circular domain, in a system of uncoupled first order initial 
value problems. We use a space invariant embedding technique along 
the radius of the circle, in both an increasing and a decreasing way. 
This technique is inspired in the temporal invariant embedding used by 
J.-L. Lions for the control of parabolic systems. The singularity at the 
origin for the initial value problems is studied. 

Keywords: Factorization, Riccati equation, invariant embedding. 

Introduction 

The technique of invariant embedding was first introduced by Bellman 
([2]) and was formally used by Angel and Bellman ([I]) in the resolution 
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of Poisson's problem defined over a rectangle. J.L. Lions ([5]) gave a jus- 
tification for this invariant embedding in the computation of the optimal 
feedback in the framework of Optimal Control of evolution equations of 
parabolic type. Henry and Ramos ([3]) presented a justification for the 
invariant embedding of Poisson's problem in a cylindrical domain. The 
problem is embedded in a family of similar problems defined on sub- 
cylinders limited by a moving boundary. They obtained a factorization 
in two uncoupled problems of parabolic type, in opposite directions. In 
this paper, we want to generalize this method to other types of geome- 
tries and, in particular, to the case where the family of surfaces which 
limits the sub-domains, starts on the outside boundary of the domain 
and shrinks to a point. We present here the simple situation where R 
(resp R,) is a disk of IR2 with radius a (resp s) and centered on the 
origin and where the sub-domains defined by the invariant embedding 
are both the annuli R \ R,, s E (0,  a)  ([4]) and the family of disks Rs, 
s E (0,  a ) .  This factorization can be viewed as an infinite dimensional 
extension of the block Gauss factorization for linear systems. 

1. Motivation 

Given f E ~ ~ ( 0 ,  I ) ,  yo, y1 E IR, q E RS, p E IRS \ {0), let y be the 
solution of the following boundary value problem: 

Considering the operator A = -p  $ + y, the natural way to factorize 
it, is by searching a, p such that A = -p  ($ + pix))($ - a(x) ) .  

Then, for each cp E C2((0, 1)) we have 

dD Thus, we must have a = P and - + p2 = 4. If we set p(0) = 0 and 
dx P 

dy J = - - +py, we find J(0) = -yo and the following system of uncoupled 
dx 

equations: 
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We point out that the equation in ,8 is a Riccati equation. 

2. Formulation of the Problem and a 
Regularization Result 

We consider the Dirichlet problem for the Poisson equation defined 
over R. 

( P )  - AU = f ,  in R; ulra = UO,  

where I?, denotes the circle of radius s and center at the origin, f E L2(R) 
and uo E H'/~(I',). We assume the additional regularity around the 
origin f E CO>"(0), 0 being a neighborhood of the origin. Introducing 
polar coordinates, G(p, 6) = u(xl,  x2) satisfies 

1 d2G 

(@) 
with respect to 6, 

where Z = ] 0 , 2 ~ [ .  However, by doing this, we introduce a singularity at 
the origin. Furthermore the analogous of the computation done in [3} 
would need to know u(0) which is not a data of the problem. 

In order to avoid this difficulty we start by defining the following 
intermediate problem: 

-nuE  = f ,  in 0 \ R E ;  u,lr, = uo 

- dl? = 0; uElreis constant 
dn 

where RE is a circular domain of radius 0 < E < a and concentric with 
0 .  It's easy to see that this problem is well posed. 

u,, in 0 \  RE 
THEOREM 1 W h e n  E -+ 0, fi,, defined as fi, = 

U, = u & ] ~ , ,  in  QE ' 
where u, i s  the solution of problem (P,) converges t o  u, solution of prob- 
l e m  (P) , in H1(R). 

We can write problem (P,) in polar coordinates restricting problem 
(@) over ]E, a [xZ  and joining the boundary conditions G,lr, constant, lE 2 d 6 = 0 .  
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3. Factorization by Invariant Embedding 

We embed problem (P,) in a family of similar problems ( P s l h )  defined 
on the annulus R \ O,, s  E ] E ,  a[  and satisfying an additional Neumann 
boundary condition in I?,; in terms of polar coordinates we find 

1 a2a, -'a (P?) - p2s = j, in I S ,  a [ x ~  
P dP 

asIra= Go,  a, 27r - periodic with respect to 8 
aa, 
-Ir, = h 
a P  

aa, 
Since --Ir, is well determined through the conditions 'LBEl,Econstant" 

a p  

and ''LE 2 dB = O n ,  it's clear that ( p E )  belongs to the family (&,h)  

for s = E .  

Defining H ~ , ~ ( Z )  as the space of periodic functions v of 8, verifying 
112 v E L ~ ( Z )  and a$$ E L ~ ( z ) ,  we take h E H::(Z)', where H P j p ( X )  = 

[Hj,p(Z)r ~ ~ ( ~ ) l i / 2 .  

For every s  E [E, a ) ,  h t H;$ (1)' we define P ( s ) h  = ysIr ,  , where y, 
is the solution of 

and r ( s )  = ,BSlo,  where CJ, is the solution of 

with respect to 8 

By linearity of (@,,h) we have 

where P(s )  is the Neumann to Dirichlet map for the annulus R \ 0 , .  
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Let X = (612 E L:(o,u; H j , p ( Z ) )  n E L : ( o , ~ ;  L 2 ( Z ) ) } ,  where L: 
stands for the space of functions of p square integrable with the weight 
p. After passing to the limit, when E + 0 ,  the factorization of problem 
( P )  is synthesized by the following theorem 

THEOREM 2 The solution Q of ( P )  is the unique solution of the following 
system of uncoupled, first order in p, initial value problems 

1. for every h ,  in L 2 ( Z ) ,  the self-adjoint operator P ,  P 5 0,  

satisfies the Riccati equation 

in D'(0, a ) ,  with the initial condition P ( a )  = 0, 

2. for every h in L 2 ( Z ) ,  r E X satisfies the equation 

in V1(O, a ) ,  with the initial condition r ( a )  = Qo; 

3. for every h in H ; , p ( ~ ) ' ,  Q E X satisfies the equation 

in D1(O, a ) ,  with the initial condition Q(0)  = lim r ( p )  in L 2 ( Z )  
P+O 

which is constant. 

P ,  r and Q thus defined are unique. Equations ( 4 )  and ( 5 )  are well 
posed for p decreasing from a to 0 and ( 6 )  is well posed for p increasing 
from 0 to a.  

The formal analogy between this result and the LU Gauss factoriza- 
tion of a matrix should be emphasized. The Riccati equation ( 4 )  for 
P is the analogous of the block LU factorization of a block tridiagonal 
matrix, and the initial value problems (5 )  and (6 )  are the analogous of 
the lower and upper block triangular systems. This factorization inher- 
its the well known property of the Gauss factorization for multiple right 
hand sides: if (P) has to be solved for different f and 210, (4 )  is to be 
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solved only once, then the initial value problems (5) and (6) are solved 
for each value of the data. Furthermore, if one considers a finite dif- 
ference discretization of (P) in polar coordinates, for example, one can 
show that the Gauss factorization of the obtained linear system can be 
obtained by one particular discretization of (4), (5), (6). But other pos- 
sible discretizations exist with their own interest. Also this equivalent 
formulation of problem (P) furnishes the Neumann to Dirichlet operator 
P(s) for the annulus 0 \ a, which is of interest for various kinds of prob- 
lems as domain decomposition or the definition of transparent boundary 
conditions. 

4. Sketch of the Proof of Theorem 2 

From (3), the solution CE of ($€) in polar coordinates, satisfies the 
dCE 

relation C, (p) = P(p)  - l r ,  + r(p),  Vp E [E, a]. From this last equality, 
dp 

taking the derivative, ill a formal way, with respect to p and considering 
d P  1 d2 1 A 1 d 2 r  

arbitrary, we obtain - - P--P-P- = I and -Pf - P--+ 
8~ dp p2 de2 P p2 do2 
dr  - = 0, and considering the boundary condition on I?, in (P,), we obtain 
dp 
P (a )  = 0 and r (a )  = GiLO 

From the two equations above, and respective initial conditions, we 

can obtain P and r .  Let M and N be defined by M = {v E (H~/;(T))' I 

i2" v dB = 0) and N = M~ = {v E H;$(Z)~V is constant}. They are 

invariant by P. One has L2(Z) = ( M  n L ~ ( z ) )  $ N and let IIM and IIN 
be the projection, for the L2(z)  metrics, on each subspace respectively. 
The following theorem provides the initial condition for C, on I?,. 

THEOREM 3 Given r ( ~ )  E L2(Z), there exists a unique solution C,(E) E 
dC, dC, 

N and -(E) E M for the equation &(E)  = P(E)- (E) + r ( ~ ) .  In  
8~ dp 

particular, CE ( E )  = IINr(&). 

We use the Galerkin method as in [5], [3], and adequate properties on 
the operator P and function r .  In finite dimension, we can prove the 
existence of a global solution of the decoupled system. Then we can 
justify the preceding formal calculation and we obtain, after passing to 
the limit when the dimension tends to infinity, the following result: 
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THEOREM 4 For every h , h  in L ~ ( z ) ,  the operator P belongs to 

Lm ( E ,  a; L ( H ~ / $  (z)', H:? (1))) and satisfies the following equation 

-h, h + --Ph, -Ph - -h,  P h  = ( h ,  h )  , ( 7 )  ( ) ( I "  p2 80 d0 ") ( -> 
in ;I) ' (&, a ) ,  with P ( a )  = 0. The function r belongs to X1o\nE, satisfies 
r ( a )  = Qo and for every h in L ~ ( z ) ,  satisfies in Dl(&, a )  the following 
equation 

- ,h  f --,-Ph = f , P h  . ( ) ( p 2  a0 a0 1 ) 
Since P and r do not depend on E and thanks to  the estimates on P ( p )  
and r ( p ) ,  we can take E arbitrarily small and consequently consider the 
previous equalities defined on V1(O, a ) .  Let ll.llp denote the norm in 

L (H,$(z)', H$(z ) ) .  T h e  following theorem gives the behavior o f  
P and r around the origin which provides the regularity claimed in 
Theorem 2: 

THEOREM 5 For P satisfying (7 )  and P ( a )  = 0,  we have lim IIP(p)llp = 
o-io 

1.  Furthermore lim 1 1  P ( p )  - p(Pm o I I M )  [ I p  = 0,  where P, is the nega- 
0 4 0  

d2 
tive self-adjoint operator satisfying -P,-P - I .  

do2 CO - 
The solution r of ( 8 )  and r ( a )  = G o ,  has a limit r ( 0 )  constant with 

respect to 0 : lim Ilr(p) - r ( 0 )  1 1  L 2 ( 2 )  = 0. 
P+O 

It should be also remarked that,  measured with the fixed norm 
I l . l l c ( L z c z ) , L z c z ) ) ,  P ( p )  goes to  0 as p goes to  0. Concerning the equa- 
tion on Q, we have 

THEOREM 6 For every h in Hi ,p (Z) ' ,  6 ,  satisfies in Dl(&, a )  the follow- 
ing equation 

with the initial condition & ( E )  = I I N T ( E )  

Using Theorem 1 we obtain the convergence in X o f  il, to  Q satisfy- 
ing ( 6 ) .  Furthermore, thanks to  the local regularity assumption on f 
near the origin which implies that u E C 2 @ ( 0 ) ,  one can prove that 
lim Q , ( E )  = G(0) (the proof for the uniqueness o f  the solution o f  (6 )  uses 
E-40 
the determination o f  Q ( 0 ) ) .  
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5 .  Factorization by Invariant Embedding: Dual 
Case 

Another factorization could be obtained by using an invariant embed- 
ding defined by the family of disks R,. Here the main difficulty is to 
define the initial conditions for P and r at the origin. 

We embed problem (R) in a family of similar problems (Rjh) de- 
fined on the annulus R, \ R,, s E]E, a [  and satisfying an additional Robin 
boundary condition in I?,. We find the following problem in polar coor- 
dinates: 

dQ, 
It is clear that (P,) is exactly (P,,h) for s = a and h = -Ir, + a h ,  and 

d P 

so we use the same notation G, for the solution of (P,) and the family of 

solutions of (&,h) .  This should not make confusion with the solutions 
112 of (ps,h)  in the previous section. For every s E (E ,  a] and h E H,,,(I)' 

we define f',(s)h = ;Y,Irs ,  where '; is the solution of 

. . , r ,  

y,,p_ constant, % 27r - periodic with respect 

and ?,(s) = alp , where ,& is the solution of 
S 

p- - p 2 - = f ^ ,  i n ] ~ , s [ x Z  

a,, constant, 6, 27r - periodic with respect 

f i - $ p c d o = o  

W E  - 
-Irs + a h I r s  = 0 
8~ 
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By linearity of we have 

The following theorem gives another factorization of problem ( P )  : 
THEOREM 7 The solution G of ( P )  is the unique solution of the following 
system of uncoupled, first order in p, initial value problem: 

1. for every h ,  f i  in L 2 ( 2 ) ,  the self-adjoint operator P,  P 2 0,  

1 
in D'(0, a ) ,  with the initial condition ~ ( 0 )  = -nN; 

a 

2. for every h in L ~ ( z ) ,  r" E X satisfies the equation 

D'(0, a ) ,  with the initial condition r"(0) = 0; 

3. for every h in H;,,(Z)', ii E X satisfies the equation 

- 
- ( f ,  h )  H;,~(z),H;,~(z)/ 

in D'(0, a ) ,  with the initial condition &(a) = So. 

Equations (11) and (12) are well posed for p increasing from 0 to a and 
(13) 7:s well posed for p decreasing from a to 0. P,  i: and 12 thus defined 
are unique. 
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6. Sketch of the Proof of Theorem 7 

From ( lo) ,  the solution fi, of (pE) satisfies 

Taking the derivative in a formal way with respect to p and considering 

- + a 6, arbitrary, we obtain the following system 
dP 

We have CE (a) = CO. Further, considering the sets M = {v E ( H (2) )' I 
v dB = O}, N = M'- = {v E H:$(z) IU is constant} and the opera- 

tors llM, nN as previously, one has 2: : M -+ M ,  : N + N and from 
(10) we obtain 

From (14) and (15) we obtain ?,(E) = ~ M ? , ( E )  + ITN?,(E) = 0. In the 
1 

same way, since P , ( E ) ~  = P,(E)IIM~ + P E ( & ) ~ N h  = - n ~ h  we obtain 
a 

1 
PE(&) = -nN.  

a 
Using again the Galerkin method, we can justify these formal calcu- 

lations through the adequate proprieties on PE and YE. After passing 
to the limit when the dimension tends to infinity, we find the following 
result, by the same reasoning as in section 4: 
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THEOREM 8 1. For every h, h i n  L2(Z), the operator P, belongs to 

Lm (E, a;  L(H~$(z)', H~$(I))) and satisfies the following equa- 
tion 

+'a ( ~ , h ,  ah) + 2a ( k h ,  L) - a2 ( ~ , h ,  ~ , h )  = (h, k) , 
P 

1 
i n  Dl(&, a ) ,  considering P,(E) = - I I N .  

a 

2. The function i., belongs to XI,s,,E, satisfies i. ,(~) = 0,  and for every 

h i n  L~ (1) verifies, i n  Dl(&, a ) ,  the following equation 

3. For every h in  Hjlp(Z)', GE satisfies the following equation 

i n  D1(e, a),  with Q, ( a )  = Qo. 

Using Theorem 1 we obtain the convergence in X of Q, to Q satisfying 
(13). Now, since and 7, depend on E and considering G ( p )  = P(p)  h + 
?(p) we use the following consequence of Theorem 1: 

112 COROLLARY 9 For all p E [0, a], iE(p)  i i (p )  strongly i n  Hqp(Z), 

when e i 0. Also, for all p E [0, a] and for a fixed h, &(p)h i P(p)h, 
strongly i n  H ~ $ ( z )  and weakly i n  H;/~(z), when E -+ 0. 

Therefore, passing to the limit when e -+ 0 we find P and i. satisfying 
(11) and (12), respectively. 

Using again the appropriate conditions of regularity around the origin 
(that is; f E C0)a(S;2)) ,  we can define the value of Q(0) (as a constant), and 

dQ du du 
consequently we have Q(0) E N. Also, since - = - cos(0) + - sin(0) 

dp  dx d y  
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and we have assumed enough regularity around the origin, we have Lin (0) d0 = c: cos(8) + c2 sin(0) dR = 0, from which we con- 

a6 
L2= 

86 
clude that -(O) E M. Therefore, from = P(s) (dplr3 + a + 

8~ 
?(s), b's E [0, a] we obtain 

From (16) and (17) we obtain r"(0) = IIMr"(0) + IIN?(0) = 0. In the 
1 

same way, since ~ ( 0 ) h  = P ( O ) I I ~ ~  + P ( O ) I I N ~  = -nNh  we obtain 
a 

1 
P(O) = -nN.  

a 

7. Final Remarks 

We believe that this method is much more general than presented here 
and that it can be extended to higher dimensions, to other operators than 
the Laplacian and more general domains. For example for star shaped 
domains the embedding can be done by homothety, taking the angle 0 
and the homothety factor as independent variables. Then the singularity 
at the origin is treated in the same way. 
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Abstract Identifiability analysis is developed for linear dynamic systems evolv- 
ing in a Hilbert space. Finite-dimensional sensing and actuation are 
assumed to be only available. Identifiability conditions for the trans- 
fer function of such a system is constructively addressed in terms of 
sufficiently nonsmooth controlled inputs. The introduced notion of a 
sufficiently nonsmooth input does not relate to a system and it can 
therefore be verified independently of any particular underlying system. 

Keywords: Identifiability, Hilbert space, Markov parameters, sufficiently rich input. 

Introduction 
A standard approach to identifying a linear system implies that the 

structure of the system is deduced by using physical laws and the prob- 
lem is in finding the values of parameters in the state equation. The 
ability to ensure this objective is typically referred to as parameter iden- 
tifiability. For complex systems, however, it may not be possible to 
model all of the system and a black box approach should be brought 
into play. Here knowledge of the input-output map comes from con- 
trolled experiments. The questions then arise as to if the input-output 
map and the transfer function of the system have a one-to-one relation 
and in which sense a state space model, if any, is unique. 

Many aspects of the identifiability of linear finite-dimensional systems 
are now well-understood. In this regard, we refer to [I], [ 5 ] ,  and [7] to 
name a few monographs. 

Recently [8], [9], the identifiability analysis was proposed in an infinite- 
dimensional setting for linear time-delay systems with delayed states, 
control inputs and measured outputs, all with a finite number of lumped 
delays. It was demonstrated that the transfer function of such a system 
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can be re-constructed on-line whenever a sufficiently nonsmooth input 
signal is applied to the system. The present work extends this result 
to linear dynamic systems evolving in a Hilbert space. The transfer 
function identifiability conditions for these systems are also addressed in 
terms of sufficiently nonsmooth input signals which are constructively 
introduced in the Hilbert space. The notion of a sufficiently nonsmooth 
input does not relate to a system and it can therefore be verified inde- 
pendently of any particular underlying system. 

Similar to linear finite-dimensional systems, the parameter identifia- 
bility in a Hilbert space requires the system with unknown parameters to 
be specified in a form such that if confined to this form all the unknown 
parameters are uniquely determined by the transfer function. In con- 
trast to [2], [3], and [lo] where the parameter identifiability is established 
for linear distributed parameter systems with sensing and actuation dis- 
tributed over the entire state space, the present development deals with 
a practical situation where finite-dimensional sensing and actuation are 
only available. 

1. Basic Definitions 

We shall study linear infinite-dimensional systems 

i = A x +  Bu, x(0) = xO (1) 

y = Cx, (2) 

defined in a Hilbert space H, where x E H is the state, x0 is the initial 
condition, u E Rm is the control input, y E RP is the measured output, 
A is an infinitesimal operator with a dense domain V(A), B is the input 
operator, C is the measurement operator. All relevant background ma- 
terials on infinite-dimensional dynamic systems in a Hilbert space can 
be found, e.g., in [4]. 

The following assumptions are made throughout: 

1 A generates an analytical semigroup SA( t )  and has compact resol- 
vent ; 

2 B E C(Rm, H )  and C E C(H, Rp); 

3 X(O) = xo E n:==, D ( A ~ ) ;  

4 R ( B )  E or=, V(An). 

Hereafter, the notation is fairly standard. The symbol C(U, H) stands 
for the set of linear bounded operators from a Hilbert space U to H ;  
V(A) is for the domain of the operator A; R ( B )  denotes the range of 
the operator B. 
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The above assumptions are made for technical reasons. It is well- 
known that under these assumptions, the Hilbert space-valued dynamic 
system ( I ) ,  driven by a locally integrable input u(t) ,  has a unique strong 
solution x(t) ,  globally defined for all t > 0. The spectrum a(A) = {Xn)r=l of the operator A is discrete, A, -+ -cm as n -+ cm, and the 
solution of (1) can be represented in the form of the Fourier series 

written in terms of the eigenvectors r,, n = 1 , .  . . of the operator A and 
the inner product + ., > in the Hilbert space H. Furthermore, this 
solution is regular enough in the sense that x( t )  E D(An) for all 
t 2 0. 

The identifiability concept is based on the comparison of system (l),  
(2) and its reference model 

defined on a Hilbert space H with the initial condition 2' and oper- 
ators A, B, C, substituted in (l), (2) for xO and A, B, C ,  respectively. 
Certainly, Assumptions 1-4 remain in force for the reference model (4), 
(5). 

The transfer function T(X) = C(XI - A)-'B of system (I),  (2) is com- 
pletely determined by means of the Markov parameters CAn-'B, n = 
1,2,  . . . through expanding into the Laurent series 

and the identifiability of the transfer function is introduced as follows. 

DEFINITION 1 The transfer function of (I), (2), or equivalently, the 
Markov parameters of system (I), (2) are said to be identifiable on n:==, D(An) 28 there exists a locally integrable input function u(t)  to be 
suficiently rich for the system in the sense that the identity y(t) - $(t) 
implies that 

cAn-' B = (?An-' B, n = 1,2,  . . . (6) 

(and consequently T(X) = T(A)),  regardless of a choice of the initial 
conditions x0 E nrZ1 D(An), i?O E n;?, D(An).  In that case the identi- 
fiability is said to be enforced by the input u(t) .  

The identifiability of the system itself (rather than its transfer func- 
tion) is addressed in a similar manner. 
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DEFINITION 2 System (I), ( 2 )  is said to be identifiable on nrZl D ( A n )  
iff there exists a locally integrable input function u ( t )  such that the iden- 
tity y ( t )  - G(t)  implies that 

regardless of a choice of the initial conditions xO E nnY1 Co D ( A n ) ,  i0 E 

nrYl W n ) .  

For later use, we also define sufficiently nonsmooth inputs, which form 
an appropriate subset of sufficiently rich inputs. Indeed, while being 
applied to a finite-dimensional system, a nonsmooth input has enough 
frequencies in the corresponding Fourier series representation and hence 
it turns out to be sufficiently rich in the conventional sense [6]. 

Let u ( t )  = C,"=lui(t)ei be a piece-wise smooth input, expanded in the 
basis vectors ei E Rm, i = 1 , .  . . m, and let Di be the set of discontinuity 
points t 2 0 of u i ( t ) .  

DEFINITION 3 The input u ( t )  = I&ui(t)ei is  said to be suficiently 
discontinuous iff for any i = 1, .  . . , m there exists ti E Di such that 
t i  $! Dj for all j # i. 

DEFINITION 4 The input u ( t )  = C z l u i ( t ) e i  is said to be suficiently 
nonsmooth of class C1 iff there exists l - th order derivative of the input 
u ( t )  and u(') ( t )  is suficiently discontinuous. 

It is worth noticing that the notion of a sufficiently nonsmooth (dis- 
continuous) input does not relate to a system and it can therefore be 
verified independently of any particular underlying system. 

2. Ident ifiability Analysis 

Once the infinite-dimensional system ( I ) ,  ( 2 )  is enforced by a suffi- 
ciently nonsmooth input, its transfer function is unambiguously deter- 
mined by the input-output map. The transfer function identifiability in 
that case is guaranteed by the following result. 

THEOREM 5 Consider a Hilbert space-valued system ( I ) ,  ( 2 )  with the 
assumptions above. Then the Markov parameters C A n - ' B ,  n = 1 , 2 , .  . . 
of (I), ( 2 )  are identifiable and their identifiability can be enforced by an 
arbitrary suficiently nonsmooth (particularly, suficiently discontinuous) 
input ~ ( t )  = C z l  ui ( t ) e i .  

Proof: For certainty, we assume that the input u ( t )  is sufficiently 
discontinuous. The general proof in the case where u ( t )  is sufficiently 
nonsmooth is nearly the same and it is therefore omitted. 
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According to Definition 1, we need to prove that the output identity 

implies the equivalence (6) of the Markov parameters. 
By differentiating (8) along the solutions of (1) and (4), we obtain 

that 
CAx(t) + C B C z l ~ i ( t ) e i  - CAk(t) + C B C ~ ~ U ~ ( ~ ) ~ ~ .  (9) 

It follows that 
CB = CB 

because otherwise identity (9) could not remain true at the discontinuity 
instants ti, i = 1, .  . . , m. Indeed, in spite of the discontinuous behavior 
of the input u( t ) ,  the solution (3) of the differential equation (1) is 
continuous for all t > 0. Thus, by taking into account that u(t) is 
sufficiently discontinuous (see Definition 3), [CB - cB]ui(t)ei  is the 
only term in (9), discontinuous at t = ti. Hence, [CB - CB]ei = 0 for 
each i = 1,. . . , m, thereby yielding (10). 

Now (9) subject to (10) is simplified to 

and differentiating (11) along the solutions of (1) and (4), we arrive at 

Following the same line of reasoning as before, we conclude from (12) 
that 

CAB = CAB. (13) 

Finally, the required equivalence (6) of the Markov parameters for 
n > 3 is obtained by iterating on the differentiation. Theorem 5 is thus 
proven. 

In a fundamental term, Theorem 5 says that the input-output map 
( I ) ,  (2) and Markov parameters of the Hilbert space-valued system have 
a one-to-one relation. In general, the identifiability of the Markov pa- 
rameters does not imply the identifiability of the system. Indeed, let 
Q E L(H)  be such that D(A) is invariant under Q and Q-' E L(H) .  
Then the system 

has the same Markov parameters CAnB, n = 1,2, 
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Thus, in analogy to the finite-dimensional case, the identifiability of 
the infinite-dimensional system is guaranteed if it is in a canonical form 
such that if confined to this form the operators A, B, C are uniquely 
determined by the Markov parameters. The major challenge will be an 
explicit definition of the canonical form of a linear Hilbert space-valued 
system (I), (2). 
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Abstract This paper deals with the problem of state estimation for a hyperbolic 
equation in the presence of unknown, but bounded disturbances, on the 
basis of information from sensors with finite-dimensional outputs. The 
object of investigation is the hyperbolic telegraph equation with energy 
dissipation. Observability properties similar to those introduced earlier 
for parabolic systems ([8]) are checked for various types of measurement 
sensors. Further on recurrent guaranteed minmax filtering procedures 
are introduced which give dynamic estimates of the current state of the 
system and dual control problems are indicated as well. 

Keywords: Minmax filtering, telegraph equation, information set, sensors, observ- 
ability. 

Introduction 
In this paper we consider the problem of state estimation for a system 

described by a hyperbolic equation of the "telegraph" type, with energy 
dissipation. This is to be done through available sensor measurements 
in the presence of unknown, but bounded disturbances. 

We start with the the problem of observability which is the inverse 
problem of finding the final state for this system through available ob- 
servations in the absence of any information on initial and boundary 
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conditions and in the absence of disturbances. This problem may turn 
to be solvable depending on the paricular type of sensor applied. Con- 
ditions for observability are therefore investigated. 

We further derive a filtering equation which gives a set-membership es- 
timate of the state of the system under unknown disturbances subjected 
to a given quadratic bound. These equations also produce a vector- 
valued estimate with respective bounds on the estimation error. 

Finally some dual controllability problems are indicated. 

1. The Telegraph Equation and the Estimation 
Problem 

The telegraph equation is a PDE which describes, for example, an 
electric current transmission in the presence of wave aberration and de- 
pletion, namely ([2]) 

VX, = levtt + (Ig + rc)vt + rgv (1) 

ixx = leitt + (lg + re)& + rgi (2) 

where i is the current intensity, v is the voltage, r is the resistance, 1 is 
the induction, c is the capacity and g the conductivity. For r , g  = 0 it 
turns into a wave equation. 

We further consider the following system: 

( y ) g + y u + f  i n Q ~  Uxx = - 2 U t t  - 
v0 0 

ult=o = q x )  in R 
4 t = o  = Q(x) in R 
~ Z = O  = PI (t) u l Z = l  = p2(t) t E [0, TI, x E [0, I] = 0. 

(3) 
Here QT = R x (0, T), ST = dR x (0, T )  and f is either a control or a 
disturbance (given or unknown). 

An observation of the system performance is available through mea- 
surement sensors taken to be of the following types. 

Examples  of sensors 

2 Pointwise y(t) = u(t, xO) + [(t) t E [tl, t2] t i  > 0. 

3 Dynamic pointwise y(t) = u(t ,x( t ) )  + [(t) t E [t l , ta] t l  > 0. 

4 Distributed observation y(x) = u(0, x )  + [(x).  

5 Dynamic spatially averaged y(t) = g(t, x)u(t ,  x)dx + [ ( t ) .  
Oe(x ( t ) )  
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Then the measurement equation may be presented as 

where Gl( t ) (u( . , t )  -+ Rm), G2(u(., .) -+ {LT(O,l), H1(O, 1))) are the 
measurement maps given by one of the sensors of the above or a combi- 
nation of these. The disturbance in equations (4, 5) is bounded in the 
space of observations y: 

lltll$ 5 p2 (6) 

To formulate the observation problem we need the notion of informa- 
tion or consistency set ([7], [lo]). 

DEFINITION 1 The information set ~ ( t ;  y(.)) is the union of all states 
{u(., t"), ut(.,  i)) of system (3) at time t", for which there exists a tuple 
V = {@ (.), (.), pi  ( a ) ,  p2 ( e ) ,  f (., .) , (( .)I  (initial conditions, boundary 
conditions and input and measurement disturbance), satisfying (4, 6) 
(or (5, 6)) and consistent with observation y(.) due to equations (3, 4) 
(or (3,  5)). 

Problem A Find U(0, y(.)) - the set-valued estimate, or produce a 
pointwise estimate for the state u(0, a ) .  

With no bounds given for initial and boundary conditions and no 
disturbance f the information set U(0, y(.)) may turn to be unbounded 
even with bounded measurement noise. This may happen, for example 
when the observation is pointwise, at a rational point xO. Nevertheless, 
with bound (6) modified to include all elements of the tuple V, the 
estimation Problem A makes sense even in the latter case. 

A preferable type of solution to Problem A is a recurrent "guaranteed 
filtering" equation which describes the evolution of the estimate in time, 
on one hand, and also ensures numerical stability of the corresponding 
algorithm. A problem closely connected with Problem A is the one of 
observability of system (3, 4) (or (3, 5)). 

Problem B Assume disturbances f (., a )  = 0, [(.) = 0. In the absence 
of information on input - initial conditions { @ ( a ) ,  $ ( a ) )  and boundary 
values p1 (.), pa(.) - determine conditions for solvability of the problem: 
given measurement y(t), t E [O,T], find output - the solution u( . ,T)  at 
time T .  

The solution to this Problem B gives the so-called "observability con- 
dition" for system (3, 4) (or (3, 5)) with given type of measurement 
sensor G. It is important to understand which types of sensors ensure 
observability. 
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2 .  Some Properties of the Telegraph Equation 
To produce our solutions we need some properties of the telegraph 

equation 
The solution formula 

THEOREM 2 (Ladyxhenskaya) Let E H;, \I, E L 2 ( 0 ) ,  f E L 2 , ~ ( Q T ) ,  
pi ( t )  = pz(t) 0 + there exists a unique solution of (3) from H1 ( Q T ) .  

Here HI (0) = {p l y ,  2 E L 2 ( R ) } ,  and Ht is a subspace of HI (0)  
where smooth functions with compact support form a dense set. 

The solution of equation (3)  can be written out through Green func- 
tion, the latter being equal to 

2 m  ~ n x  ~ n [ v i e T ~  
G ( z , [ , t )  = - - x s i n -  

1 1 
sin - sh&t 

n=l 1 6 
Here the frequencies un are equal to: un = ( Y ) ~  - ( U O Y ) ~  due to 
wave dispersion. Using [ I ] ,  the following theorem can be proved 

THEOREM 3 For a < am,,(l) the system {eixnt) ,  A*, = f is a 
Riesz basis in Lz(O,To), To = y; 
For other values of a 3no : am,,(no) 5 a < a,,,(no+l), in this case the 
system {eixnt),  where A*, = f &, n 2 no + 1; A*, = f y, n = 
O..no will be a Riesz basis in L2(0,To) .  

A biorthogonal system 
Let a < a,,,(l). We denote by 

cpn = eiXnt - - cos Ant + i sin Ant; cp-,  = e-ixnt - - cos Ant - i sin Ant (7) 

the system that forms Riesz basis. According to Bari theorem ( [ I ] )  there 
exists a biorthogonal system { q ~ ' , } , ~ ~  with uniformly bounded norms, 
and if {cpi}nEz is the orthonormal system from Riesz basis definition 
(i.e. cp ,  = Vcp:), then: cph = (V-')*cp; n E 2. It is possible to show 
that orthonormal system can be taken as 

v o ~ n  v o ~ n  
{cp:)Ym = {cos - 

1 
t + i sin Tt}Tm 

and V - I  will be bounded according to the same Bari theorem. In this 
case biorthogonal system elements {cp',)nEz can be constructed, and so 
it is also possible to construct system biorthogonal to {sin Ant, cos Ant): 
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3. Observability 

In this section the system (3) is taken, with f = p1 = p2 = 0, coupled 
with observation equation (4) or (5) and bound (6). Let us first introduce 
several definitions (see [8]). 

DEFINITION 4 The system (3),(4) (or (3),(5)) with f = p1 = p2 = 0 
is said to be weakly observable if for any signal y(-) observed due 
to equation (4) (or (5)) with zero disturbance (t = 0) there exists only 
one possible couple of initial conditions { a ,  Q) that generate the solution 
u ( . ,  .) which provides the signal y(.) .  

Distributed observation of state and velocity at  time t l  
This is the simplest situation. Let f = 0, pi = 0 and the observation 

equations be as follows: 

Expanding a, 9, yi and ti into Fourier series over functions 
{s in(~nz / l ) ) ,  and denoting corresponding Fourier coefficients by an, 
Qnl dl Y:, t:, t:, we have: 

The last 
initial state 

an = 

Qn = 

system is always solvable and the Fourier components of 
a, Q will be 

Hence, it follows that 

THEOREM 5 For sensor (9) the system is weakly observable. 

It is also interesting to investigate the property of strong observability. 
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DEFINITION 6 The system (3), (4), (6) (or (3), ( 5 ) ,  (6)) with f = 
p1 = pg = 0 is said to be strongly observable if the information set 
of system initial states U(0, y(.)) (p. 179) is a bounded set in L2(R),  
whatever be the measurement y(.). 

To prove strong observability it is necessary that the series with com- 
w 

ponents (9) converge. For yl, yg E Lg(0, 1) the series C may 
n=l  

not converge because in the expression for Qn there is a component 
s s h & t l  -- nsin-tl. In general this series does not converge. 
But if t l  is such that: 

vot1 t l : - E Z  
1 

where Z is the set of integers, then due to the properties of the eigen- 
values vn we have: 

THEOREM 7 For sensor (9) the information domain of initial states 
is bounded in L2(0, I ) .  If instant t l  satisfies (lo), then the information 
domain for initial values of derivatives ut (Q) will also be bounded in 
L2(0, 1). If (10) does not hold, then one can only claim that the last set 
is bounded in V* = (H1(O, I ) ) *  

Distributed observation of state at  two instants of time t l ,  t2 
Take f = p1 = p2 = 0 with observation equations as 

Here a system similar to the one in previous section can be written down, 
but now its discriminant D = &e(u1+u2)t1shfi( t2 - t l ) .  For weak 

1 6  
observability it is necessary and sufficient that discriminant D # 0 . 

THEOREM 8 For sensor (11) system (3) is weakly observable @ (12). 

Spatially averaged observations Let f = p1 = p2 = 0 with observa- 
tion equation as 
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If now wn are the Fourier coordinates of the weighting function w ( x )  

and T 2 To, multiplying observation equation by function e - v t ,  and - -  - 
calculating scalar products with biorthogonal system functions ( 8 )  on 
[0, To], we result in 

Here yn,i,(n,i are scalar products of observations and disturbances 

with biorthogonal system functions with weight e-vt . The initial 
state can be calculated as: 

Yn,l - In,l . - 1 
Town 2 

u +D 
f i ( Y n , o  - In,o) - y ( ~ n , l  - &, , I )  . - 1 

Town 2 

THEOREM 9 System ( 3 )  with sensor ( 1 3 )  having its coeficients w n  # 0 
for all n is weakly observable for T 2 To. 

DEFINITION 10 The system ( 3 ) ,  (4), ( 6 )  (or ( 3 ) ,  ( 5 ) ,  ( 6 ) )  with f = 
pl = p2 = 0 is said to be &-observable if the projection of the in-  
formation set U ( 0 ,  y ( . ) )  (p. 179) on  any finite-dimensional subspace 
X,(O, 1 )  = Span{wnj (.))5=, is bounded, whatever be the measurement 
~ ( 9 .  

Here system { ~ ~ ~ ) j r = ~  is the set of r arbitrary different functions from 

the system of eigenfunctions {m s i n ( ~ n x / l ) ) ~ = ~ .  

THEOREM 11 The system with sensor (13 )  which satisfies wn # 0 n < 
N is observable i n  its first N Fourier components (its first N "harmon- 
ics") for T 2 To. 

COROLLARY 1 2  If the coeficients wn are non-zero Vn,  and T 2 To, 
then system ( 3 )  is observable the i n  first N Fourier components for any 
N and therefore E-observable. 

A pointwise sensor at point xo 
Here the sensor equation is 

Along the lines of previous procedures, we also come to the next 
propositions. 
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THEOREM 13 System (3) with sensor (14) where xo/ l  is irrational is 
weakly observable for T 2 To. 

THEOREM 14 System (3) with sensor (14) which satisfies c o s y  # 
0, n 5 N ,  is observable i n  its first N Fourier components for T 2 To. 
Moreover, i f x o / l  is an irrational point, then the system is observable i n  
its first N Fourier components for any N ,  and therefore is E-observable. 

4. The Filtering Equations 
State Estimation 
Consider the problem of dynamic state estimation for the telegraph 

equation 

The functional describing the measure of uncertainty in the system is 
taken as: 

Here operators Nl,  N2 may be interpreted as regularizers. Introduce 
operators S1 (.) (Green function), S3(.): 

then functional (17) can be rewritten as (in the last scalar product dots 
are omitted): 

F ( T )  =< - a 0 , N I ( Q ,  - QO)  > + < Q - Q0,N2(Q - QO) > + 
+ < Y - GS3@ - GSIQ, M ( Y  - G S 3 a  - @SiQ) > L ~ ( ( O , ~ ) X ( O , T ) )  

(19) 
If u o ( T )  and ul(T)  are the minimizers Q,  Q of (19), and if we denote 
u ( t ,  T) to be the backward solution generated by these minimizers, i.e., 
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u(t ,  T )  = S3(t)uO(T) + Sl ( t )u l (T) ,  then the minimizers should satisfy 

Now denoting u(T, T )  by ii(T), differentiating (20) with respect to T ,  
we get for u(t ,  T ) :  

and 
T 

K ( t , T )  = [ s ~ ( ~ ) N ; ~ s $ ( T )  + s ~ ( ~ ) N F ~ s ; ( T ) ]  - J [ s 3 ( t ) N c 1 s $ ( ~ ) +  
0 

Using notation P(T)  = K(T,  T ) ,  and denoting 

2 d2 .  
Z(T)  = G* ( T )  M(T)  ( Y ( T )  - G(T)ii(T)) 73. = u - - 0102- (24) 

O dx2 
we finally come to the following system describing the dynamics of the 
state estimate and the estimates of initial conditions: 

d2  ii -- dii d E  ( T )  
dT2 

(ol + 0 2 ) -  = Vii + P(T)- 
dT 

+ 
+ 2------ - [ '2) dT ) 1 t = ~  - ( 0  + a2)P(T)  

S ,*( t )G*( t )M(t )G( t )K( t ,T)dt  
dT 

T 
dul 
dT 
- = N;' - / s ; ( t ) ~ * ( t ) ~ ( t ) ~ ( t ) ~ ( t , ~ ) d t  

0 
ii(O)=O uo(0)=cp0 u1(0)=*O 

2 ( T )  

. E(T) 

. E(T) 

( 2 5 )  
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The equation for P ( T )  can also be written as follows 

d 2 p  --  d P  
dT2 

(01 + 0 2 ) -  d T  = V P  + P[V* + (ul + a2)G*MGP- 

- (G* MGP)!, - G* MGPG* MGP] - aK(t,T) G* MGP 
d T  

p(o) = N,-~ Ej = N;~G*(o)M(o)G(o)N;~ 
d T  .=, 

And for K (t, T )  : 
(26) 

- (G* MGP)!, - G* MGPG* MGP]  - 'K(t> T) G* MGP 
6'T 

(27) 
The initial conditions for K ( t ,  T )  can be obtained from equation (23). 

The Dynamic Estimate of Initial Conditions. Consider the 
problem of dynamic initial state estimation for the telegraph equation. 
This problem is directly related to the observability property, since for 
the formulation of the filtering equations the existence of bounded in- 
verse for certain operators is necessary. The related operators are invert- 
ible if the property of strong observability is true. These conditions are 
precisely the ones discussed in the observability sections. Such types of 
conditions were earlier introduced by J.L.Lions ([4]) and further studied 
in [3]. 

Consider problem (15,16). Let the measure of uncertainty in the sys- 
tem be the same as in (6): 

If we again use the notations SI(.) ,  S3(.) (see (18)), the functional 
(28) can be rewritten as: 
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If the system (15-16) is strongly observable, then expressing the mini- 
mizers from (30) and differentiating them with respect to T  it is possible 
to write down the following system of evolution equations: 

Here Ki ( t )  = Sf ( t )  G* ( t )  M  (t)G(t)Si  ( t )  , ICi ( T )  = (J: Ki (t)dt)-I Sf ( T )  x 
x G ( T )  M ( T ) ,  M i ( T )  = (ST Ki(t)dt)-' J: S; (t)G* ( t )  M( t )G( t )S j  (t)dt 
where i , j  = 1,3 a n d i  # j .  

If system (15,16) is only &-observable, then the projections of the 
informational domain on any finite-dimensional subspace are bounded. 
It is therefore possible to indicate the same types of filtering equations in 
finite-dimensional space. These would be written in terms of respective 
Fourier coefficients. 

5 .  The Duality of Optimal Control and 
Observation problems 

Consider the observability problem for the telegraph equation: 
a2u 

- (0' + 6 2 )  = V U  
uIan=O ult=o = < a  ~ ~ l ~ = ~  = Q  
y = G u + (  (31) 

l lEl l  5 P 

Here operator V  is defined by (24). If the solution is presented as (18), 
the support function of the information set U is as follows: 

S; (T)1 = J ~ S ;  ( t )  G* (t)$(t)dt (*) 
ST (T)1 = So ST ( t )  G* ( t )  $ (t)dt (r  l;) 
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Since for the telegraph equation the Green function is Sl (t, .), equation 
(*) is the solution to the adjoint equation in inverse time with right-hand 
side G*$: 

This leads to a control problem for system (32), where $(t, a )  E y* is 
the control. Due to S1 (0) = 0 the controllability of the following system 
will be equivalent to the solvability of equation (**): 

vIt=o = S;(T, . ) I ( . )  - ST(T)G*(T)$(T), 
where $(t, a )  E y* is the control. 

(33) 
This is a control problem for system (33) in backward time. 

Thus, the solution of the observation problem for system (31) under 
disturbances (noise) is equivalent to finding the control $(t, .) E y*, 
which simultaneously steers the adjoint systems (32), (33) in backward 
time to the prescribed end-points, as given in (32), (33), under minimum 
of the norm conjugate to the one that bounds the observation noise ( 
[4]). The prerequisite of such properties for finite-dimensional systems 
was given in [5], [6] and for infinite-dimensional time lag systems in [9]. 
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Abstract A class of quasilinear variational data assimilation problems on the iden- 
tification of the the initial-value functions is considered for the models 
governed by evolution equations. The optimality system is reduced to 
the equation for the control function. The properties of the control 
equation are studied and the solvability theorems are proved for lin- 
ear and quasilinear data assimilation optimality systems. The iterative 
algorithms for solving the problem are formulated and justified. 

Keywords: Optimal control, data assimilation, iterative algorithms 

1. Statement of Data Assimilation Problem 

Let H and X be real separable Hilbert spaces such that X is imbedded 
into H continuously and densely, H*,  X* are the spaces adjoint to H ,  
X ,  respectively. We assume that H = H*, (., .)L2(0,T;H) = (., .), 
1 1  - 1 1  = (., .)'I2. Let us consider also the spaces Y o  = L2(0,T; H ) ,  
Y = L2(0, T ;  X ) ,  Y* = L2(0,T;  X*) of abstract functions cp(t) with the 
values in H, X ,  X*,  respectively, and the space 

dcp W = {cp E L2(0,T;  X )  : - E L2(0,T;  X * ) )  
d t  

with the norm 

'Funding provided by grant 03-01-00779 of the Russian Foundation for Basic Research 
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Let a ( t ;  cp, y5) be a bilinear form defined for any t E [0, TI, cp, y5 E X 
and satisfied the inequalities: 

czllcp112x < a ( t ;  cp, Y )  , c:! = const > 0 , v t E [O, TI , v cp, y5 E x . 
(1.2) 

By A(t) E L(Y, Y*) we denote the operator generated by this form: 

Consider the following quasilinear evolution problem: 

where f E Y*, u E H ,  r E [-rO,rO] is a parameter, 70 E R+, F(cp) is 
a nonlinear F'rechet differentiable operator, F : Y + Y*. Introduce a 
functional of u E H of the form: 

where a = const 2 0, Z is a Hilbert space (observational space) with 
the scalar product (., and the norm I  . I z  = (., .);I2, B : Y + Z 
is a linear bounded operator, p E H,  @ E Z. The functions p, @ are 
generally determined by a priory observational data. The coefficient a 
is a regularization parameter [I]. 

Consider the following data assimilation problem: for given f E Y*, 
@ E Z,  find u E H, cp E W such that 

The problems of the form (1.6) were studied by L.S.Pontryagin [7], J.- 
L.Lions [5], [2]and many others (see Refs.) 

The necessary optimality condition [5]reduces the problem (1.6) to 
the system for finding the functions cp, cp* E W, u E H, of the form: 
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where (F1(p))* : Y -+ Y* is the operator adjoint to the F'rechet derivative 
of F at the point cp E W, A*(t) : Y -+ Y* is adjoint to A(t), K : Y -+ 
Y*, C : Z i Y* are linear bounded operators, K = CB,  C is defined 
by the equality (CO, $) = (0, B$)z V 0 E 2,111 E Y, and equations (1.7), 
(1.8) are considered in the space Y*. 

2. Linear Data Assimilation Problem 
Consider the problem (1.7)-(1.9) for r = 0. The solutions of problems 

(1.7), (1.8) for T = 0 may by represented [6]as 

where Go : H i W, GI : Y* -+ W, G(IT) : Y* -+ W are linear bounded 
operators. Eliminating p ,  p* from (1.7)-(1.9) for r = 0, we come to the 
equation for the control u: 

Lu = P, (2.2) 

where the operator L : H -+ H and the right-hand side P are defined 
by 

E is the identity operator, To : W -+ H is the trace operator: Top = 

vlt=o. 
Consider the operator L for a = 0 and denote it by z. Let Go : H --+ 

W be the operator from (2.1), where the element Gou is defined as the 
solution of (1.7) for T = 0, f = 0. The following statement holds. 

LEMMA 1 The operator 5 : H + H is continuous, self-adjoint, and 
positive semi-definite: 

If the operator BGo : H -+ Z is invertible, the operator z is positive: 
(Ev,v)H > 0 VV E H,v # 0. 

Proof. Let p E H and p = Go p. Then 

(TI Lp = TOG, K p .  

The first assertion of Lemma 1 was proved in [12]. The positive definite- 
ness or semi-definiteness of L follow from the equalities: 



194 SYSTEM MODELING AND OPTIMIZATION 

The lemma is proved. 
From Lemma 1, we get 

LEMMA 2 If the operator BGo : H -+ Z i s  invertible, t hen  the range 
R(L) of the operator L i s  dense in H, and the equation Lu = P i s  
solvable uniquely and densely i n  H .  

Remark 1. In case of "complete observation", when Z = Y O ,  B = E 
(the identity operator), we have C = E, K = E, and the operator L is 
positive. 

Introduce the following additional restriction on the operator A(t): 
Hypothesis (A):  For any  p E yo the solution cp* of the adjoint  

problem 

-- d c p * + A * ( t ) p * = p ,  t ~ ( 0 , T ) ;  p* (T)=O 
d t  

satisfies the inequality IIp* (0) / I x  5 cllpll y o ,  c = c o n s t  > 0. 
Remark 2. The hypothesis (A) is satisfied for a wide class of opera- 

tors A(t),  among them - the second-order elliptic operators in uniformly 
parabolic problems [4], [12]. 

LEMMA 3 Let  X be compactly imbedded in to  H ,  the  hypothesis (A) be 
satisfied, and the operator K : Y O  -+ Y o  be bounded. T h e n  the operator 
L : H -+ H i s  compact. 

Proof. Let us prove that L maps a bounded set of H into a compact 
set. Consider u E H such that 1/u1IH 5 C O ,  co = c o n s t  > 0. Let 

cp = GOu, cp* = G Y ' K ~ ,  then Lu = p*(O). Since 

and by the hypothesis (A), 

then, due to the boundedness of K : Y o  -+ Y o ,  we get 

where c3 = c o n s t  > 0. However, X is compactely imbedded into H, 
hence the set M = {Lu : llullH 5 c o )  is compact in H, i.e. the operator 
L : H -+ H is compact. 

LEMMA 4 T h e  spectrum a(L)  of the operator L satisfies 
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with the constant v from the inequality l l c p l l y  < v IIullH, where u E H ,  

and cp = G o u  is the solution of the problem 3 + A(t)cp = 0 ,  t E 

( 0 ,  T ) ;  d o )  = u .  

Proof. To estimate the spectrum of the self-adjoint operator L con- 
G(T)  sider ( L u ,  u )  for u E H. Let cp = Gou,  cp* = c p ,  then 

Hence, 

5 y2 1 1 ~ 1 ~ .  a ( L )  < sup - 
u E H ,  u#O (u ,  U )  

This ends the proof. 
For case of complete observation, from Lemmas 1-3 we have the fol- 

lowing 

L E M M A  5 Let Z = Y O ,  B = E (the identity operator), X be compactly 
imbedded into H and the hypothesis ( A )  be satisfied. Then the operator 
L-l : H -+ H exists, being unbounded; zero is the point of the continu- 
ous spectrum of the operator z; the equation L u  = P is solvable i n  H if 
and only if 

03 

k=l 
where uk is the orthonormal system of the eigenfunctions of the compact 
operator L, corresponding to the eigenvalues pk. 

The spectrum bounds of the operator L are very important for justi- 
fication and optimization of iterative algorithms for solving the original 
data assimilation problem. Some estimates for the spectrum bounds 
may be derived using Lemma 4. If K = E, for the spectrum a ( L )  of the 
operator L defined by (2.2) the following estimates hold [ll]: 

where 

and Amin,  A,,, are the lower and upper bounds, respectively, of the spec- 
trum of the operator A + A*. 
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If K = E, and A(t) = A : H --+ H is a linear closed operator indepen- 
dent of time, being unbounded self-adjoint positive definite operator in 
H with the compact inverse, then the eigenvalues pk of the operator L 
are defined by the formula [Il l :  

where Ak are the eigenvalues of the operator A. In this case the estimates 
(2.7) are exact, because in (2.7) Amin = 2A1, A,,, = oo, and m,  M are 
given in the explicit form: 

where A1 is the least eigenvalue of the operator A. 
From Lemma 1 it follows that for a > 0 the operator L : H + H is 

positive definite (i.e. coercive). Then, using the well-known results on 
solvability of linear optimal control problems [5]we come to the solvabil- 
ity theorem for the linear problem (1.7)-(1.9): 

THEOREM 6 Let f E Y*, E H, @ E Z. Then for a > 0 the problem 
(1.7)-(1.9) for r = 0 has a unique solution cpo E W, cpT, E W, uo E H, 
and the following estimate holds: 

3. Solvability of Nonlinear Problem 
Let co be the constant from (2.9). The following theorem holds: 

THEOREM 7 Let f E Y*, E H ;  @ E Z and for some R > 0 the 
inequalities 

are satisfied for any J, 7 E B(cpo, R) = {cp E Y : Ilcp - pollw < R), where 
ki = ki(vo, R)  = const > 0. Then for / T I  5 70, with 

Proof. Consider the problem for the remainders p = cp - yo, p* = 
cp* - cp:, G = u - uo, where (cpo, cp;, uo) is the solution to the problem 
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(1.7)-(1.9) for r = 0. The problem for @, @*, fi reads: 

d@* -- 
dt 

+ A*(t)+* + r(F1(cpo + @))*(cpT, + +*) = -KG, t E (0,T); 

+*(T) = 0, (3.5) 

a 6  - +*(0) = 0. (3.6) 
Consider the following iterative process: 

d+*(n+l) 
- -(n+l) 

dt 
+ A* (t)+*(n+l) + T ( F / ( @ ( ~ )  + $DO))* (+*(n) + cp;) = -Kcp , 

+*(n+l) (T) = 0, (3.8) 

&n+l) - p*(n+l) (0) = 0 (3.9) 

for ll+(0)llw + l l + * ( 0 ) ~ l w  5 R. Since (for a fixed n) +(n+l), ~ * ( ~ + l ) ,  fi(n+l) 
is the solution of the linear problem, then, in view of (3.1), it is easily 
seen that 

where 

By successive use of the last inequality, we get 

if (71 5 70. Then, consider the problem for +(n+l) - @(n),  @*(n+l) - 
+*(n), idn+') - idn). This leads to the estimate: 
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which implies 

where +, p*, ii is the solution to the problem (3.4)-(3.6), and the con- 
vergence rate estimate holds: 

with c = const > 0. It is easily seen that for 171 5 70 this solution is 
unique and satisfies the condition Ilpllw + Ilp*llw + IliillH 5 R. Thus, 
under the hypotheses of Theorem, there exists a unique solution of the 
problem (1.7)-(1.9). Theorem is proved. 

If the operator F(cp) is analytic, then the functions (cp, cp* ,  u) are rep- 
resented as the series in the powers of r: 

convergent for 171 < TO in W, W, H, respectively, where Pi, cpt , ui may be 
found by the small parameter method [8]. 

4. Iterative Algorithms 
To solve (1.7)-(1.9) one may use the successive approximation method 

(3.7)-(3.9). Each step of this method involves a linear data assimilation 
problem of the form (1.7)-(1.9) for T = 0. To solve it we consider a class 
of iterative algorithms: 

dcpk k 
- + ~ ( t ) c p ~  = f ,  t E (0, T); cpk(0) = u , dt (4.1) 

where Bk, Ck : H -+ H are some operators, and a k + l ,  PkS1 the iterative 
parameters. 

Let y = ~ ~ 1 1 ~ 1 1 ~  with v defined in (2.5). We introduce the following 
notations: 

rapt = 2(2a + y)-l ,  8 = (2a + y ) ~ - ' ,  (4.4) 
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where wk = (2i - 1 ) / 2 s ,  Tk is the  k - th  degree Chebyshev polynomial of 
the  first kind,  tk = a ( u k  - p) - c p * k ( ~ ) ,  and rlk is the  solution of the  

problem $$ + = 0 ,  t E ( 0 ,  T ) ;  rlk(0) = tk 
THEOREM 8 ( I )  If a k + l  = 7, Bk = E ,  Pk+l = 0 ,  0 < T < 2 / ( a  + Y), 
then the iterative process (4.1)-(4.3) is convergent. For T = rapt defined 
by (4.4) the following convergence rate estimates are valid: 

where qk = l / Q k ,  0 is given by (4.4), and the constants c l ,  c2, cs, c4 do not 
depend on the number of iterations and on the functions c p ,  c p k ,  cp* ,  p*k,  

u , u k , k  > 0 .  
(11) If Bk = E ,  Pk+l = 0 ,  and ak+l = r k ,  where the parameters rr, 

are defined by (4.5) and repeated cyclically with the period s ,  then the 
error i n  the iterative process (4.1)-(4.3) is suppressed after each cycle of 
the length s .  After k = Is iterations the error estimates (4.9) are valid 
with qk = ( ~ ~ ( 0 ) ) - ' .  

(111) If Bk = Ck = E and a k + l ,  Pk+l are defined by (4.6) ,  then the 
error i n  the algorithm (4.1)-(4.3) is suppressed for each k > 1, and the 
estimates (4.9) hold for qk = ( ~ k ( Q ) ) - l .  

(IV) If B k  = Ck = E and ak+1 = l / pk+l ,  Pk+l = ek/pk+l, where 
ek, pk+l are defined by (4.7) ,  (4 .8) ,  then the iterative process (4.1)-(4.3) 
is convergent, and the convergence rate estimates (4.9) are valid with 
4k = ( ~ k ( Q ) ) - l .  
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Proof. 
The iterative process (4.1)-(4.3) is equivalent to the following iterative 

algorithm [12] : 

for solving the control equation Lu = P, where L and P are defined in 
(2.2). 

According to Lemma 4, the bounds of the spectrum of the control 
operator L are given by 

def de f 

U E H ,  u#O (u, U )  
5 a + v2llB1l2. 

uEH,  u#O (u, U) 

(4.11) 
Thus, for a > 0 for solving the equation Lu = P we may use the 

well-known iterative algorithms with optimal choice of parameters. The 
theory of these methods is well developed [9]. Taking into account the 
explicit form of the bounds for m and M from (4.11) and applying for 
the equation Lu = P the simple iterative method, the Chebyshev accel- 
eration methods (s-cyclic and two-step ones), and the conjugate gradient 
method in the form (4.10), we arrive at the conclusions of Theorem, us- 
ing the well-known convergence results [9]for these methods. Theorem 
is proved. 

In case a k  = l/a, Bk = E,  pk = 0, the iterative algorithm (4.1)-(4.3) 
coincides with the Krylov-Chernousko method [3]. 

The numerical analysis of the above-formulated iterative algorithms 
has been done in [10]for the data assimilation problem with a linear 
parabolic state equation. 
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Introduction 

In this paper we investigate the class of evolution second order hemi- 
variational inequalities. By a hemivariational inequality we mean an 
evolution variational inequality involving a nonmonotone multivalued 
map of the Clarke subdifferential type. The problem under considera- 
tion is as follows 

~ " ( t )  + A(t, ul(t)) + Bu(t) + dJ ( t ,  ~ ( t ) )  3 f (t) a.e. t E (0,T) 
u(0) = Uo, u1(0) = U1, 

(1) 

where A: (0 ,  T)  x V -+ 2'* is a nonlinear multivalued damping oper- 
ator, V being a reflexive Banach space with its dual V*, B :  V -+ V* 
is a bounded linear operator, not necessary coercive, d J  denotes the 
Clarke subdifferential of a locally Lipschitz function J and f ,  uo and ul 
are prescribed data. The motivation for the study of the problem (1) 
comes from mechanics and engineering where hemivariational inequali- 
ties express the principle of virtual work or power, e.g, unilateral contact 
problems in nonlinear elasticity and viscoelasticity, problems describing 
frictional and adhesive effects, problem of delamination of plates, loading 
and unloading problems in engineering structures (cf. Panagiotopoulos 
[26-271 and Naniewicz and Panagiotopoulos [24]). 

The notion of hemivariational inequality was introduced by P.D. Pana- 
giotopoulos in the early eighties as variational expressions for several 
classes of mechanical problems with nonsmooth and nonconvex energy 
superpotentials. In the case of convex superpotentials the hemivaria- 
tional inequalities reduce to variational inequalities considered earlier 
by many authors (see e.g. Duvaut and Lions [7] and the references 
therein). The recent mathematical results on the stationary hemivaria- 
tional inequalities can be found in Naniewicz and Panagiotopoulos [24], 
Motreanu and Panagiotopoulos [23] and Haslinger et al. [12]. We refer 
to Migorski [20-22land the references therein for the results on the first 
order evolution and parabolic hemivariational inequalities. We men- 
tion that the hemivariational inequalities of hyperbolic type were firstly 
considered by Panagiotopoulos [29, 281 who studied models involving 
the one dimensional reaction-velocity laws. The hyperbolic hemivari- 
ational inequalities with a multivalued relation depending on the first 
order derivative of the unknown function were treated by Goeleven et 
al. [lo], Haslinger et al. [12], Gasinski [8], Migorski [19], while the 
hemivariational inequalities with a subdifferential term which depends 
on the unknown function were studied by Panagiotopoulos and Pop [30], 
Haslinger et al. [12], Gasinski and Smolka [9], Ochal [25] and Migorski 
[18]. The contact problems for viscoelastic bodies have been recently 
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investigated in several papers, see e.g. Chau et al. [3], Jarusek [14], 
Kuttler and Shillor [16], Rochdi et al. [31], Han and Sofonea [ll] and 
the literature therein. The problem (1) with A(t, .) being multivalued 
maximal monotone, B coercive and J = 0 was considered by Banks et 
al. [I] in the connection with identification of the damping term in the 
forced wave equation. 

The goal of this paper is to provide the existence and uniqueness re- 
sults for the problem (1). The main existence result can be proved in 
two steps (cf. [5]). First we assume regular initial data and reduce this 
problem to an evolution inclusion of the first order. The latter is solved 
by using a surjectivity result for multivalued operators of pseudomono- 
tone type. In the second step we remove the restriction on the initial 
data and we are able to show the result in its generality. The uniqueness 
of a solution to (1) is obtained in a case when the damping operator is 
strongly monotone and the subdifferential operator satisfies a relaxed 
monotonocity condition. 

The paper is organized as follows. In Section 1 we present a con- 
tact problem of viscoelasticity which serves as a model for the problem 
(1). In Section 2 we recall some necessary notation and present a result 
on properties of the Nemitsky operator corresponding to the damping 
operator. The main results of this paper are delivered in Section 3. 

1. Motivation 
In this section we describe shortly the classical contact model of vis- 
coelasticity and we present its variational form. 

We consider a deformable viscoelastic body which occupies a bounded 
open subset R C R d ,  d = 2,3. We suppose that the boundary I? = dR 
is Lipschitz continuous and F is divided into three mutually disjoint 
measurable parts FD, FN and rc such that meas(rD) > 0. The body is 
clamped on Po, so the displacement field vanishes there. Volume forces 
of density f l  act in R and surface tractions of density f i  are applied on 
FN. The body may come in contact with a foundation over the potential 
contact surface r c .  We put Q = R x (0, T) for 0 < T < co. We denote 
by u :  Q + R d  the displacement field, by a :  Q + Sd the stress tensor 
and by ~ ( u )  = (&ij (u)),  cij (u) = (ui,j + uj,i) the strain tensor, where 
. . 

z, J = 1,.  . . , d and Sd denotes the space R,dxd of symmetric matrices of 
order d). 

We suppose the following multivalued counterpart of the Kelvin-Voigt 
viscoelastic constitutive relation 



206 SYSTEM MODELING AND OPTIMIZATION 

where C and B are prescribed multivalued nonlinear and single valued 
linear constitutive maps, respectively. We remark that in the classical 
linear viscoelasticity the above law takes the form Oij  = c ~ ~ ~ ~ E ~ ~ ( u ~ )  
gijklekl(u), where C = {cijkl) and B = {gijkl), i ,  j, k , l  = 1,. . . , d  are the 
viscosity and elasticity tensors, respectively. 

We denote by U N  and UT the normal and the tangential components 
of the displacement u on I?, UN = u n, UT = u - uNn, where n is 
the outward unit vector to F. Similarly, the normal and the tangential 
components of the stress field on I? are given by ON = (an)  - n and 
aT = a n  - UNn, respectively. On the contact surface rc we consider 
the following subdifferential boundary conditions. The normal stress 
a N  and the normal displacement UN satisfy the nonmonotone normal 
compliance response condition of the form 

-ON E d j ~  (x, t, UN) on I'c x (0, T) .  (2) 

The friction law between the friction force UT and the tangential dis- 
placement UT on rc is given by 

Here jN : rC x (0, T) x R -+ R and jT: rc x (0, T) x R~ -+ R are locally 
Lipschitz functions in their last variables and d jN ,  djT represent the 
Clarke subdifferentials of jN(x, t ,  .) and jT(x, t ,  .), respectively. These 
boundary conditions include as special cases the classical boundary con- 
ditions of (see e.g. Panagiotopoulos [27], Chapter 2.3 and Naniewicz and 
Panagiotopoulos [24]). 

Let us denote by uo and ul the initial displacement and the initial 
velocity. The classical formulation of the contact problem is stated as 
follows: find u :  Q + R and a :  Q -+ Sd such that 

In order to give a variational formulation of this problem let H = 
~ ~ ( 0 ;  R d ) ,  7-f = L2(S1;Sd), HI = {u E H : ~ ( u )  E 7-f) = ~ l ( S 1 ;  R d )  and 
V = {v E HI : v = 0 on rD). Using the Green formula, the definition 
of the Clarke subdifferential and assuming the suitable regularity of the 
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data (cf. Denkowski and Mig6rski [5] for details), we obtain the follow- 
ing variational formulation of (4): find u : (0, T) + V and a : (0, T) + 3C 
such that 

( ~ " ( t ) ,  v)v*xv + (a@), E('u))x+ 

(&(x, t ,  U N ;  V N )  + &x, t ,  UT; VT))  d r (x )  > 
> ( f ( t ) , v ) ~ * ~ v  forall v € V a n d a . e . t € ( O , T )  (5) 

I o(t)  E C(&(ul(t))) + G ( E ( u ( ~ ) ) )  for 8.e. t E (0, T) 

u(0) = UO, u1(0) = U1, 

where 

Let V = L2(0, T ;  V), W = {w E V : w' E V*) and let 7 :  ~ ' ( 0 ;  R d )  + 
H1I2(I'; R d )  c L2( r ;  R d )  be the trace operator where S E (1/2,1). We 
define the operators A: (0, T) x V + 2V* and B :  V + V* by 

( B ~ , v ) ~ * ~ v = ( G ( x , t , ~ ( u ) ) , ~ ( v ) ) ~  f o r u , v ~ V a n d t ~  (0,T) 

and the functional J :  (0, T )  x L~(I ' c ;  R d, + R by 

for t E (0, T )  and v E L2( rC;  R d ) .  Consider now the following inclusion 

find u E V with u1 E W such that 

ul'(t) + A(t, u1(t)) + Bu(t) + Y *  (dJ(t ,Yu(t)))  3 f (t) a.e. t (6) 
u(0) = Uo, ~ ' ( 0 )  = U1 

where ;;J* denotes the adjoint operator to 7. It can be shown (cf. Den- 
kowski and Mig6rski [5] for details) that every solution to the inclusion 
(6) is also a solution to the problem (5). Therefore in what follows we 
are interested in the existence result for a problem of type (6). 

2. Preliminaries 

In this section we recall some definitions needed in the sequel and state 
a result that shows that certain properties of the damping mapping can 
be lifted to its Nemitsky operator. 
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Let V  be a reflexive separable Banach space. We denote by (., .) the 
pairing between V  and its dual V*.  

DEFINITION 1  A multivalued operator T :  V -+ 2'* i s  said t o  be pseu- 
domonotone if the following condit ions hold: 

( j )  the  set  T v  i s  nonempty ,  bounded, closed and convex for all v  E V ;  

(a) T is  usc  from each finite dimensional subspace of V i n t o  V *  en-  
dowed with the weak topology; 

($j) i f  vn E V ,  vn -+ v  weakly i n  V  and v i  E T v ,  i s  such that  
limsup (v:, u ,  - v )  5 0 ,  then  t o  each y  E V ,  there exists v* (y )  E 
T v  such that  (v* ( y ) ,  v  - y )  < liminf (v:, v ,  - y ) .  

LEMMA 2 A s s u m e  that a multivalued operator T :  V  -+ 2'* satisfies 
condit ions ( j )  and (a) of the definit ion of pseudomonotonic i ty  and T is  
bounded (2.e. i t  m a p s  bounded sets in to  bounded sets) .  T h e n  T i s  usc  
with respect t o  the strong topology in V  and the  weak topology in V * .  

For the proof we refer to Lemma 1.4 in Kuttler [15]. 

We now comment on a measurability condition for multivalued map- 
pings. For the following definitions, see Section 1.0 of Hu and Papageor- 
giou [13]. 

DEFINITION 3 A mul t i funct ion F :  (0 ,  T )  -+ 2'* i s  said t o  be mea-  
surable, if for every U c V *  open, we have F - ( U )  = { t  E ( 0 , T )  : 
F ( t )  n U # 0 )  i s  measurable. 

DEFINITION 4  A mul t i funct ion S :  (0,  T )  x V  -+ 2'* i s  said t o  be (strong- 
l y )  measurable, if for every C C V *  closed, we have { ( t ,  v )  € (0 ,  T )  x V  : 
S ( t ,  v )  n C # 0 )  i s  a Bore1 set i n  (0 ,  T )  x V .  

The following result due to Kuttler [15], Lemma 5.3 shows that the 
strong measurability condition implies a kind of measurability condition 
for multivalued operators which is useful in our setting. 

LEMMA 5 Suppose S :  (0 ,  T )  x V -+ 2'' has nonempty ,  closed, convex 
values and i t  satisfies the measurability condit ion of Definit ion 4  for 
every C C V *  closed convex set. T h e n  

(*) for every a :  (0 ,  T )  -+ R measurable and x, y  : (0 ,  T )  -+ V measur- 
able, the mul t i funct ion F  : (0 ,  T )  -+ 2'' defined by 
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is measurable (in the sense of Definition 3). 

In what follows (see condition H ( A ) ( i i )  below) instead of the standard 
definition (Definition 4) of measurability of a multivalued operator, we 
assume it satisfies condition (*) of Lemma 5 ,  which will be sufficient for 
our purposes. 

Given 2 < p < oo we introduce the spaces V = LP(0, T ;  V ) ,  V* = 
Lq(O, T ;  V * ) ,  l / p +  l / q  = 1 and we denote by ( ( 9 ,  -)) the duality between 
V and V*. 

DEFINITION 6 Let A :  (0,  T )  x V -+ 2'* be a multivalued operator. The 
operator A: V -+ 2"' given b y  Av = { z  E V* : z ( t )  E A ( t , v ( t ) )  a.e. 
t E (0,  T ) )  for v E V is called the Nemitsky operator corresponding to A. 

We recall also the notion of L-pseudomonotonicity (see e.g. [6]). Let 
L :  D ( L )  c V -+ V* be a linear maximal monotone operator. 

DEFINITION 7 We say that the operator A: V -+ 2'* is L-pseudomono- 
tone, if the following conditions hold: 

(k) the set Av is nonempty, weakly compact and convex for all v E V ;  

(kk) A is usc from each finite dimensional subspace of V into V* fur- 
nished with the weak topology; 

(kkk) if {v,) C D ( L ) ,  v, -+ v weakly in V ,  Lv, -+ Lv weakly in V * ,  
V ;  E Avn, v i  -+ v* weakly in V* and limsup ((v; ,v ,  - v ) )  < 0, 
then v* E Av and ( ( v ; , ~ , ) )  + ( ( v * , ~ ) ) .  

The following result generalizes Theorem 2(b) of Berkovits and Mus- 
tonen [2]. 

THEOREM 8 Assume that a multivalued operator satisfies the following 
hypothesis: 

H ( A )  : A :  (0, T )  x V -+ 2'' is a multivalued operator such that 

(i) A( t ,  .) satisfies conditions (j) and ( j j j )  in the definition of pseu- 
domonotone operator; 

(ii) A is measurable in the sense of condition (*); 

(iii) there are a1 E Lq(0, T )  and bl > 0 such that IIv*llv* 5 a l ( t )  + 
bllv~b-' for all v* E A( t , v ) ,  v E V and a.e. t E (0,  T ) ;  

(iv) there are constants pl > 0, a > 0, r E (0 ,p)  and a function 
a E ~ ~ ( 0 ,  T )  such that (v* ,  v )  2 ,& llvllb - P2llvllb - a( t )  for all 
v* E A(t ,  v ) ,  v E V and a.e. t E (0,  T ) .  
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Then  the Nemitsky operator A corresponding to  A has the following pro- 
perties: 

(1) there are constants C1 > 0 and > 0 such that Ilv*llv* < Cl + - 
blllvllrl for all v* E Av and v E V; 

(2) there are constants p2 > 0 and C > 0 such that ((v*, v)) > ,& IIv(l;- - 
P2llvllL - T i  for all v* E Av and v E V; 

(3) A is  L-pseudomonotone, where L :  D(L) C V -+ V* is  given by 
Lv = v' for all v E D(L) = {v E V : v' E V*,v(O) = 0). 

The detailed proof of this theorem can be found in Denkowski and 
Mig6rski [5 ] .  We conclude this section by recalling (cf. Clarke [4]) the 
definitions of the generalized directional derivative and the generalized 
gradient of Clarke for a locally Lipschitz function h :  E -+ R, where E is 
a Banach space. The generalized directional derivative of h at x E E in 
the direction v E E, denoted by hO(x; v ) ,  is defined by 

h0 (x; v) = lim sup h(y + tv) - h(y) 

Y-tX,  t10 t 

The generalized gradient of h at x, denoted by ah(x), is a subset of a 
dual space E* given by dh(x) = {C E E* : hO(x; v) > (C,  v)E*xE for a11 
v E E}. 

3. Existence Theorem 
In this section we deliver the main result of the paper on the existence 
of solutions to dynamic hemivariational inequalities. 

Let V and Z be two reflexive, separable Banach spaces and let H be 
a Hilbert space. Suppose that V c Z c H = H* c Z* c V*, where H*, 
Z* and V* denote dual spaces to H, Z and V, respectively. We assume 
that all embeddings are dense and continuous, and V c Z compactly. 
We denote by ( a ,  .) the duality of V and V* and the pairing between Z 
and Z* as well. We introduce the following spaces: 

Z*  = Lq(O, T ;  Z*), V* = Lq(O, T;  V*) with lip + l /q  = 1 

with some 2 < p < CXI and W = {v E V : v' E V*}, where the time 
derivative involved in the definition of W is understood in the sense of 
vector valued distributions. We have W c V c 2 c 3-1 c 2* C V* 
with dense and continuous embeddings. Since we have assumed V C Z 
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compactly, we also know (cf. Theorem 5.1, p.58, Lions [17]) that W C 2 
compactly. Moreover, W c C(0, T; H) is continuous. The pairing of V 
and V* and also the duality between 2 and Z* are denoted by ((f ,  g)) = 

l 3 f  (t), d t ) )  dt. 

Consider the following initial value problem for evolution hemivaria- 
tonal inequality of second order: 

The problem (7) is called hemivariational inequality since it is equivalent 
to the following one: 

find y E V with y1 E W such that there is q E V* satisfying 

( ~ " ( t )  + ~ ( t )  + B Y  (t) - f ( t ) ,v)  + JO (4 Y ( t) ;  v) L 0 
for all v E V and a.e, t E (0,T) 

q(t)  E A(t, yl(t)) a.e. t E (0, T )  

~ ( 0 )  = Yo, ~ ' ( 0 )  = Y1, 

where JO( t ,  v; w) is the generalized directional derivative of J ( t ,  .) at a 
point v E Z in the direction w E 2. 

DEFINITION 9 An element y E V solves (7) if and only if y1 E W and 
there exist r )  E V* and (' E Z* such that 

We admit the following hypotheses: 

H(B) : B :  V -+ V*  is a bounded, linear, positive and symmetric 
operator; 

H(J) : J :  (0, T )  x Z -+ lR is a function such that 

(i) for each z E Z, the map J ( . ,  z) is measurable and 
J ( . ,  0) E L1 (0, T) ;  

(ii) for each t E (0, T), the function J ( t ,  .) is locally Lipschitz; 

(iii) there exists c > 0 such that for all C E d J ( t ,  z ) ,  z E Z and 

t E (O,T), we have I ~ [ / / Z *  5 E (1 + I I Z I I ~ ' ~ ) ;  
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(Ho): f E V * ,  yo E V ,  yl E H ;  

( H I )  : I f p  = 2, then ,B1 > c,B2T, where ,8 > 0 is an embedding constant - 
of V into Z .  

We start the study of ( 7 )  with the a priori estimates for the solutions. 

LEMMA 10 Assume that H ( A ) ,  H ( B ) ,  H ( J )  and ( H o )  hold and y is a 
solution to (7) .  I f p  > 2, then there is a constant C > 0 such that 

Moreover, the estimate ( 8 )  still holds forp = 2 provided ( H I )  is satisfied. 

If Z = H, then the estimate ( 8 )  holds for p > 2 without the hypothesis 
( H I ) .  Namely, we have 

LEMMA 11 If H ( A ) ,  H ( B ) ,  H ( J )  and ( H o )  hold, p > 2 and Z = H ,  
then for every y solution to (7 ) ,  the estimate ( 8 )  holds. 

The main result of this paper is the following 

THEOREM 12 If hypotheses H ( A ) ,  H ( B ) ,  H ( J ) ,  ( H o )  and ( H I )  hold, 
then the problem (7 )  has at least one solution. 

The idea of the proof is as follows. First, we consider the operator 
K :  V -+ C ( 0 ,  T ;  V )  given by K v ( t )  = J: v ( s )  ds + yo. Using K we 
rewrite ( 7 )  in the form: find z E W such that 

x l ( t )  + A ( t ,  z ( t ) )  + B ( K z ( t ) )  + d J ( t ,  K x ( t ) )  3 f ( t )  a.e. t 

4 0 )  = Y l .  
( 9 )  

We observe that z E W is a solution to ( 9 )  iffy = K x  solves ( 7 ) .  We deal 
now with the problem (9 )  under the additional hypothesis yl E V .  We 
define the following operators dl : V + 2'*, Bl : V -+ V *  and Nl : V -+ 
2'' by 

A l v  = {v* E V* : v*( t )  E A ( t ,  v ( t )  + y l )  a.e. t) ,  

( B l ~ ) ( t )  = B ( K ( v ( t )  + ~ 1 ) )  

and 
N l v  = { z  E Z* : z ( t )  E d J ( t ,  K ( v ( t )  + y l ) )  a.e. t )  

for all v E V ,  respectively. Using these operators, from (9) we have 
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We note that z E W solves (9) iff z - yl E W solves (10). Next, defining 
L :  D(L) C V -+ V* and 7 :  V + 2'* by Lz = z' with D(L) = {z E W : 
z(0) = 0) and 7 z  = (dl + B1 + Nl)z,  respectively, the problem (10) 
takes the form: find z E D(L) such that (L + 7 ) z  3 f . In order to show 
the existence of solutions, we can prove that 7 is bounded, coercive and 
L-pseudomonotone, and apply a surjectivity result (cf. Theorem 1.3.73 
in [6]). Finally, we suppose yl E H and we establish the existence of 
solutions in this case. 

The existence of solution to (6) can be obtained analogously as for the 
model problem (7). This follows from the fact that the map R : (0, T) x 
Z -+ 2'* given by R(t,  z) = T* (aJ ( t ,yz( t ) ) )  has the same properties as 
d J ( t ,  x) (convex and weak compactness of the values, the strong-weak 
closedness of the graph and a growth condition). 
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Abstract Probabilistic assessment on the code-specified impact factors of RC 
decks is investigated by means of a three-dimensional traffic-induced dy- 
namic response analysis of bridges combined with the Monte Carlo sim- 
ulation technique. The random variables considered in the simulation 
are the roadway roughness, bump height, traveling position of vehicles, 
vehicle running speed and axle load of three-axle vehicles. Statistical 
parameters of the random variables are taken from surveying data on 
Hanshin and Meishin Expressways in Japan. A simple span steel-girder 
bridge with RC decks that is experimentally verified is considered as a 
numerical example. This study demonstrates that the impact factor of 
the deck near expansion joints dominates the design impact factor due 
to the bump at the expansion joint of bridges. 

Keywords: traffic-induced vibration, RC deck, bump, impact factor, reliability as- 
sessment 

Introduction 
The performance of reinforced concrete (RC) decks of highway bridges 

mainly depends on cracking damages. Thus the rational criterion for the 
performance level of RC decks provides useful assessment tool for deci- 
sion making related to the inspection, repair, upgrading and replacement 
of existing steel plate girder bridges based on life-cycle costs, since the 
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RC deck, being directly subjected to wheel loads of vehicles, is more 
easily damaged than other structural members in steel highway bridges 
[5l. 

It is apparent that, except corrosion due to environmental factors, 
trucks or traffic loads play an important role in the deterioration of 
RC decks. Traffic loads are usually affected by the roadway roughness, 
dynamic properties of vehicles, vehicle speed, etc, and the dynamic effect 
is usually considered in design as the impact factor. For decks, moreover, 
a bump near expansion joints is another important factor because of the 
impulsive loading effect generated by vehicles passing over the bump [ll] 
and [15]. 

Most of all the existing research topics related to the deck have been 
focused on static responses. Few research on dynamic responses of decks 
due to moving vehicles have been investigated, even though a fatigue 
problem of decks as a part of dynamic problems has been one of wide 
spreading research themes. Moreover, in civil infra-structures, the re- 
cent design concept trends a reliability-based design to consider many 
sources of uncertainties in structural design. However, researches on the 
impact factor of decks based on a probabilistic approach have not been 
advanced. Therefore, there is a need to fill this gap. 

This paper reports a probabilistic assessment of code-specified impact 
factors for decks considering randomness of the influencing factors to dy- 
namic responses of decks by means of a three-dimensional traffic-induced 
dynamic response analysis of bridges based on the modal analysis [9] 
combined with the Monte Carlo simulation (MCS) technique. 

1. Governing Equations of Bridge-Vehicle 
Interact ion System 

The method called Lagrange equation of motion is adopted for the for- 
mulation of the governing equation of a bridge-vehicle interaction system 
as shown in Eq. (1). 

where, T, V and Ud are the kinematic, potetial and dissipation ener- 
gies of the interaction system, respectively. qi is the i-th generalized 
co-ordinate. 

The kinematic, potential including strain energy and dissipation en- 
ergies due to the viscous damping of the bridge-vehicle interaction sys- 
tem are expressed in a set of generalized coordinates as follows [9]. It 
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is noteworthy that the superscript dot on variables denotes differential 
with respect to time. 

where, 

In the equations, J and g indicate the mass moment of inertia of 
vehicles and gravity acceleration, respectively. D and D indicate dis- 
placement and velocity vectors of a bridge, respectively; M b  and Kb 
respectively indicate mass and stiffness matrices of a bridge; C b  , the 
damping matrix of a bridge derived from the assumption of a linear 
relation between the mass and stiffness matrices. 

The symbols Zvll, Zv12, Zv22, Oxvl l ,  L 1 2 ,  0xv22, O y v l l  and Oyv22 refer 
to vehicle motions in relation to the bounce, parallel hop of the front 
axle, parallel hop of the rear axle, rolling, axle tramp of the front axle, 
axle tramp of the rear axle, pitching and axle windup of the rear axle, 
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Figure 1. Plan view of bridge model 
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Figure 2. FE model of bridge 

respectively. mull,  m,l2 and mu22 indicate the concentrated mass on 
the vehicle body, front axle and rear axle, respectively. 

Kumk, and Cumk, are the spring constant and damping coefficient of 
the v-th vehicle; the subscript k is the index for indicating the vehicle 
body and axle (k = 1: vehicle body; k = 2: axle), m is the index for 
positions of axles or tires (k = 1 and m = 1: front axle; k = 2 and 
m = 1: rear axle; k = 2 and m = 1: wheel at the front axle; k = 2 and 
m = 2: front wheel at the tandem axle; k = 2 and m = 3: rear wheel at 
the tandem axle) and u is the index for indicating left and right sides of 
the v-th vehicle (u = 1, 2 indicating left and right side, respectively). 

The symbol nueh means numbers of the vehicles on a bridge. The 
variable zo,,, denotes the vehicle displacement from the datum before 
deformation to a wheel after deformation of a bridge including roadway 
roughness. The longitudinal position of a wheel location x,,, is relative 
to the bridge entrance. The pavement roughness of the bridge at a wheel 
is denoted by z,,,,. The variable w(t, xu,,) is the elastic deformation 
of the bridge at a location of x,,, and a time of t. The subscript v 
indicates the v-th vehicle on the bridge. 

The final formulation of governing differential equations for a bridge- 
vehicle interaction system is obtained from the relations in Eq. (1) to 
Eq. (4). 
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Table 1. Property of steel bridge 

Mass per unit length (kglm) 7550.000 
Sectional area of girders (mZ ) 0.142 
Moment of inertia (m4 ) 0.212 
Torsional constant (m4 ) 0.055 
Damping constants for the 1st and 2nd modes 0.025 
Fundamental frequency 1st: bending 2.340 

2. Model Description 

2.1 Bridge Model 
A simple span bridge considered is a steel composite plate-girder 

bridge with span length of 40.4m, and composed with three girders. 
The span length and thickness of the RC deck are 2.65m and 17cm, 
respectively. Table 1 shows the properties of the bridge used in the dy- 
namic response analysis. The fundamental frequencies for the bending 
and torsional modes taken from the eigenvalue analysis are calibrated to 
coincide with experimental values obtained from field-test data. Validity 
of the analytical responses is verified by comparing with field-test data 

PI. 
The plan view and finite element model of the bridge are shown in 

Figure 1 and Figure 2, respectively. Analyzed panels are denoted as P I ,  
P2, P3, P4 and P5 as shown in Figure 2. The FE model consists of 494 
nodes, 444 flat shell elements and 223 beam elemts. The response of 
decks is calculated by superposing up to the 330th mode that coincides 
with the 5th bending mode of the deck with frequency of about 750Hz, 
since the dynamic responses are sufficiently converged within the 330th 
mode from a preliminary analysis. 

2.2 Vehicle Model 
Traffics with high percentage of heavy trucks on highway bridges usu- 

ally occur at night, and the maximum traffic constitution among heavy 
trucks has been reported as the three-axle vehicle [14]. Moreover, Kim 
and Kawatani [12] demonstrate that the three-axle dump truck with a 
rear tandem axle gives rise to the maximum impact factor at the decks 
near expansion joints due to bumps. Thus, a dump truck with a tandem 
axle idealized as an eight-degree-of-freedom model is adopted as a vehi- 
cle model [9]. Properties of the vehicle model are summarized in Table 
2. 
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Table 2. Property of vehicle 

Geometry (m) Tread 1.80 
Distance between front and rear axles 3.99 
Distance of tandem axle 1.32 
Distance between front axle and C.G. 2.99 

Weight(kN) Gross 191.00 
Sprung mass including payload 171.00 
Steer axle: unsprung mass 4.90 
Drive axle: unsprung mass 14.70 

Spring constant Front leaf spring 1577.00 
(LNIm) Rear leaf spring 4724.00 

Front tire 3146.00 
Rear tire 4724.00 

Damping coefficient Front suspension 4.60 
(kN . s l m )  Rear suspension 13.72 

Front tire 9.11 
Rear tire 27.34 

Fundamental frequency Bounce 3.00 
( H z )  Parallel hop 17.90 

C.G: Centre of gravity 

2.3 Random Variables 

As random variables that effect on the dynamic response of decks, the 
roadway roughness on the bridge surface, bump height at the expansion 
joint of the bridge entrance, traveling position of vehicles, vehicle running 
speed and axle load at each axle of dump trucks are considered. 

Roadway Profile. The fluctuations of roadway surface can be trea- 
ted as a homogeneous, Gaussian random process with zero mean [4]. The 
simplest model describes the roadway surface as a cylindrical surface 
defined by a single longitudinal profile z,(x). Assuming z,(x) to be a 
zero mean, homogeneous, Gaussian random process as shown in Eq. (5), 
its probability structure can be defined by the auto-correlation function, 
or by the power spectral density(PSD). 

z,(z) = a t  sin (wjx + yic) 

where, a k  is Gaussian random variable with zero mean and variance 
a; = 4S(wk)Aw, cpk is a random variable having uniform distribution 
between 0 and 27r, wk is the circular frequency of roadway surface rough- 
ness written as wk = WL + (k - 1/2)Aw, Aw = (wv - wL)/M, wu and 
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w~ designate the upper and lower limit of the frequency, respectively, M 
means a large enough integer number and S(wk) is the PSD of a roadway 
profile. 

The PSD can be obtained by a spectral analysis of the roadway profile 
measured along any longitudinal section. Following analytical descrip- 
tion has been proposed to fit the measured PSD [7]. 

where, a is roughness coefficient, R (= w/27r) is space frequency (cy- 
cle/m), p designates shape parameter and n means parameter to express 
the distribution of power of the PSD curve. 

If a PSD for a roadway profile is defined, then, by means of the MCS 
method, samples of roadway profiles can be obtained using the sampling 
function shown in Eq. (5). As parameters in Eq. (6), a = 0.001, 
p = 0.05 and n = 2.0 are used in this study based on measured data of 
Meishin Expressway in Japan [lo]. The roadway roughness condition can 
be categorized as the road class "A" corresponds to a very good road 
according IS0  8086 code [2], which typically indicates a newly paved 
highway. 

Bump Height near Expansion Joints. The extreme Type I dis- 
tribution is assumed to describe bump heights at expansion joints of 
bridges based on the surveying results of national roadways in Japan 
[6]. Among the shapes of the measured bump profiles, the sine shaped 
bump profile that gives the most severe effect on the impact factors of 
decks from a preliminary study is adopted in the simulation. Although 
the mean value and standard deviation of the measured bump heights 
on the national roadways are 20.4mm and 7.0mm, respectively, a half 
of the measured height is considered in the analysis for highway bridges 
[6]. The cumulative distribution function (CDF) and probability density 
function (PDF) for the random variables are 

where, u and a are distribution parameters; a = l1.282/ax7 u = p, - 
0.450, [3]. The a, and p, indicate the standard deviation and mean 
value of a random variable x. 
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Traffic Data. The normal distribution is assumed for the running 
speed and traveling position of vehicles on highway bridges based on the 
database of Hanshin Expressway. The PDF of the normal distribution 
for a normal random variables x is shown in Eq. (9). The CDF of 
the normal random variables can be expressed as Eq. (lo), even though 
there is no closed-form solution for the CDF of a normal random variable. 
The mean value and standard deviation of vehicle speeds are assumed 
as 70kmlhr and lOkmlhr, respectively [14]. Those mean value and 
standard deviation for the traveling position of vehicles are 0.0m and 
0.2m from a target passage [13]. 

The lognormal distribution is assumed for the axle load of the three- 
axle vehicles based on the measured data of Hanshin Expressway. The 
mean value and standard deviation for the axle loads are 49.805kN and 
12.056kN for the front axle, 90.507kN and 34.276kN for the front wheel 
of the tandem axle and 67.571kN and 31.637kN for rear wheel of the 
tandem axle [13]. The CDF and PDF for a lognormal random variable 
can be obtained by substituting in(%), pi7(,) and ol,(,) into the Eq.(9) 
and Eq.(lO) instead of x, p, and a,. It is noteworthy that the spring 
constants of vehicles are rearranged to have natural frequencies of 3.0Hz 
for the bounce and 17.9Hz for the axle hop motion according to each 
sample of axle loads. 

3. Simulation of Impact Factor 

3.1 Simulation and Probabilistic Feature 

A number of sample roadway profiles, bump heights, vehicle speeds, 
traveling positions of vehicles and axle loads are generated by means of 
the MCS method. Impact factors of each deck are analyzed according 
to each sample of the random variables by means of traffic-induced dy- 
namic response analysis of bridges [9]. In the simulation, no correlation 
among the considered random variables is assumed. A hundred samples 
of the simulated random variables are considered in the analysis, since 
the simulated impact factors tend to converge within 100 samples in a 
preliminary study. 
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Figure 3. CDF of simulated impact factors of decks on lognormal probability paper 

Figure 4.  Distribution of simulated impact factors of PI-panel 

Three types of distributions, such as normal, lognormal and extreme 
Type I distributions, are considered to investigate the probabilistic prop- 
erty of the simulated RC deck's impact factor. The CDF and histogram 
demonstrate that the impact factor can be concluded to follow lognor- 
mal distribution. Moreover the probability exceeding the code specified 
impact factors taken from the assumption of following the lognormal 
distribution gives the most frequent occurence among the three distri- 
butions. The CDF of the simulated impact factors plotted on lognormal 
probability paper is shown in Figure 3. The histogram of the simulated 
impact factors for the PI-panel is appeared in Figure 4. 
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3.2 Reliability of Code-Specified Impact Factors 

Table 3. Code specified impact factors for deck slab 

Code impact factor Zcode 

AASHTO (USA) i = 50/ (3.3L + 125) 5 0.3 0.300 
DIN1072 (Germany) i = 0.4 - 0.008L 0.379 
JSHB (Japan) i = 20/(L + 50) 0.380 
OHBDC (Ontario, Canada) i = 0.4 0.400 
L = 2.65m: Span length in meter 

Table 4 .  Probability exceeding code specified impact factor (%) 

P1 P 2 P 3 P4 P5 
AASHTO 1 11.15(3.77) 3.16(3.85) 4.25(5.20) 4.08(3.27) 3.58(3.35) 

The reliability of the impact factors specified in AASHTO standard 
(USA), DIN1072 (Germany), Japanese Specifications of Highway Bri- 
dges (JSHB: Japan) and Ontario Highway Bridge Design Code (OHBDC 
Ontario, Canada) is investigated. The impact factors specified in the 
codes are summarized in Table 3. 

The probability of exceeding the code-specified impact factors under 
the assumption of following lognormal distribution is summarized in 
Table 4. The value in the parenthesis indicates the exceeding probability 
against the code-specified impact factor without considering the bump 
at the expansion joint. Table 4 shows that the probability exceeding the 
code-specified impact factor for the deck near the bump is about three 
times greater than that of other decks. 

The reliability index (RI) that calculated from the inverse of the ex- 
ceeding probability is summarized in Figure 5 to compare the limit states 
defined in the EUROCODE [I]. The target reliability indices proposed 
in Eurocode are 1.5 for serviceability limit state (SLS), 3.8 for the ulti- 
mate limit state (ULS) and 1.5 to 3.8 for the fatigue limit state (FLS). 
The symbols -NB and -B indicate the results without considering bumps 
and with consdiering bumps at the expansion joint, respectively. 

If the impact factor can be classified in the serviceability limit state 
then RI of the impact factor of AASHTO for the P I  panel is lower than 
that of the target reliability index for the SLS, although what kind of 

DIN1072 
JSHB 

OHBDC 

5.42(1.79) 1.42(1.88) 1.83(2.51) 2.03(1.48) 1.66(1.61) 
5.37(1.77) 1.40(1.87) 1.82(2.47) 2.01(1.47) 1.64(1.59) 
4.50(1.49) 1.56(1.58) 1.49(2.09) 1.70(1.21) 1.37(1.34) 
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Figure 5. Reliability index of code-specified impact factors with target reliability 
index 

limit state the impact factor is classified in has not been defined yet. On 
the other hand the reliability considering the condition of no bump at 
the expansion joint satisfies the SLS. It indicates that the bump is one 
of important factors for the impact factor of decks. 

4. Concluding Remarks 

The probabilistic feature of RC decks' simulated impact factors are 
examined. The reliability evaluation of code-specified impact factors 
is carried out considering randomness of the roadway roughness, bump 
height, vehicle speed, traveling position of vehicles and axle load. The 
study shows that the straight lines on the lognormal distribution paper 
can approximately represent probabilistic properties of the impact factor 
for the RC deck slab. The impact factor of the deck near expansion joints 
dominates the design impact factor. Therefore, if the impact factor 
of the deck near an expansion joint of an approaching side of bridges 
satisfies a given reliability due to a vehicle with tandem axle running 
on a bump, those reliabilities of other decks are satisfied automatically. 
In considering the impact factor of decks of bridges on roadways that 
have more severe bump condition than highway bridges, the reliability 
index against codes can decrease, therefore the use of code-specified 
impact factors of bridges on national roadways may overestimate the 
performance level of decks. 
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Abstract In the design of bridge structures, it is evident that the most important 
is to acquire their safety. However, there is a limitation to increase the 
safety because of the financial constraint. Especially, the reduction of 
construction cost is quite desirable under the severe economic condition 
in Japan. 
Recently, Life-Cycle Cost (LCC) analysis has been paid attention as 
a possible and promising concept to achieve a rational maintenance 
program. In this study, a stochastic model of structural response is 
proposed, which accounts for the variation due to the uncertain char- 
acteristics of earthquakes, and the probability of failure is calculated 
based on the reliability theory. Using the failure probability, LCC can 
be calculated for the bridge structure with earthquake excitations. 

Keywords: Bridge Structure, Failure Probability, Life-Cycle Cost, Reliability The- 
ory, Seismic Analysis 

Introduction 
Many existing bridges in Japan are suffering from damage due to the 

deterioration of materials, heavy traffics and aging. In the future, it is 
evident that serious social problems will arise as the number of damaged 
bridges increases. Considering the present social and economic situation 
of Japan, it is urgent and important to establish an optimal maintenance 
strategy for such existing bridges so as to ensure their safety in satisfac- 
tory levels. Life-Cycle Cost (LCC) has been paid attention as a possible 
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Figure 1. Seismic Hazard Curve 

and promising method to achieve a rational maintenance program. Gen- 
erally, LCC consists of initial cost, maintenance cost, and renewal cost. 
However, when considering Life-Cycle Cost in the region that frequent 
earthquakes occur, it is important to take into account the social and 
economical effects due to the collapse of structures as well as the min- 
imization of maintenance cost. The loss by the collapse of structures 
due to the earthquakes can be defined in terms of an expected cost and 
introduced into the calculation of LCC. In this study, a stochastic model 
of structural response is proposed, which accounts for the variation due 
to the uncertain characteristics of earthquakes, and the probability of 
failure is calculated based on the reliability theory. 

1. Earthquake Occurrence Probability in 
Service Time 

In this study, the earthquake occurrence probability is evaluated by 
using seismic hazard curve. In the hazard curve, the annual exceedance 
probability of earthquake is calculated by considering the distribution of 
distance from epicenter, historical earthquake records, horizontal maxi- 
mum acceleration and active fault. The hazard curve used here is shown 
in Figure 1. 
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2. Analysis of Required Yield Strength 
Spectrum 

In this study, a probability model of yield strength is developed by 
using the yield strength spectrum. The yield strength spectrum shows a 
nonlinear relation between natural period and yield strength. This spec- 
trum can be obtained for various ductility factors and damage indices. 
For natural period, target ductility factor, earthquake level, type of soil 
and number of seismic wave, the values presented in Table 1 are used. 

Natural Period T 0.1i5.0(sec) 

Earthquake Level 400,80O(gal) 
T y p e  of Soil 

Seismic Wave 

Table 1. Analysis Condition 

Figure 2 shows the calculated results of the yield strength spectrum. 
Because there are many data, only representative values are shown in 
Figure 2,3. Figure 3 shows the analysis results using the data presented 
in Figure 2. There results are obtained through the regression analysis 
for the earthquake level of 800gal. In this study, the distribution of yield 
strength is obtained by using this spectrum. 

0.1 0.5 1 5 

Natural period (sec) 

0.1 0.5 1 5 

Natural period (sec) 

Figure 2. Required Yield Strength Spectra 



232 SYSTEM MODELING AND OPTIMIZATION 

Natural period (sec) 

(a)Typel (400gal ,~r=I  .O) 

Natural petiod (sec) 

(bIType2 (800ga l ,p2 .0 )  

Figure 3. Standard Required Yield Strength Spectra 

2.1 Probability Model of Required Yield 
Strength 

When designing a structure, type of soil, ground maximum acceler- 
ation and target ductility factor should be given. The natural period 
of the structure is changed by the design. In order to make the design 
simple, it is not good that the probability model of the required yield 
strength changes depending on the design. In this study, a probability 
distribution model of yield strength is developed for various types of soil 
and target ductility factors. In this model the required yield strength 
can be constant regardless of the natural period. Here, the probability 
distribution model is assumed to be the lognormal distribution. The 
probability density function of the lognormal distribution is given in 
Figure 1 

,u ln(s)  is the standard value of required yield strength, al,(,) is standard 
deviation of every response ductility factor. In other words, if to under- 
stand a standard value of the probability function, the probability model 
of required yield strength can be calculated. We calculated a standard 
deviation about the type of soil and target ductility factor. (Refer to 
Table 2.) 



Optimal Maintenance for Bridge Considering Earthquake Effects 

Table 2. Result of Analysis 

Ductility Factor 

1 

3. Reliability Analysis of Steel Bridge Pier 

As an example, a steel bridge pier is employed, in which its failure 
probability and reliability index are calculated. 

Earthquake 

1 

2 

3.1 Analysis Model 

As mentioned previously, a steel bridge pier is used for the analysis 
model. Figure 4 shows the detail of the steel bridge pier and its cross 
section. To simplify the design, it is assumed that the cross section is 
square without stiffening and the width of flange and web is equal. To 
avoid the local buckling, this pier is designed according to the gJapanese 
Specification of Highway Bridgeh. Then, the minimum thickness is de- 
termined so as to satisfy the following requirement: where the steel 
material is SM490Y. 
In this study, the residual stress and the initial deflection are consid- 
ered for the initial imperfection of the steel pier. This pier is used for 
a three-spanned continuous steel girder bridge with 40 m span length. 
The bridge has two main girders and Reinforced Concrete (RC) slabs. 
For the design condition, the vertical load P is calculated to be 10.84 
MN, which corresponds to the reaction force to the superstructure. The 
height of the steel pier is 10m, and its width is 2,000 mm and its thickness 
is 42 to 60mm. 

Soil 
1 
2 
3 
1 
2 
3 
1 

Varl, 
0.0030 
0.0029 
0.0052 
0.0049 
0.0054 
0.0044 
0.0222 

( T I ,  

0.0551 
0.0537 
0.0722 
0.0699 
0.0736 
0.0662 
0.1488 
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Figure 4. Analysis Model 

3.2 Limit State Functions 

In this study, both the serviceability limit condition and the ultimate 
limit condition are taken into account as the limit state. 

Serviceability Limit Condition. The elastic limit of the struc- 
ture is employed for the serviceability limit condition. The limit state 
function is given as follows: 

where Pa means the yield strength of the structure and Pyn means the 
required yield strength of ductility factor p=1.0. 

Ultimate Limit Condition. In this study, the ductility factor p 
is taken as the parameter which decides the ultimate limit condition. 
Considering the difference of structural type and structural material, 
the reliability analysis is performed for the ductility factor p=1.0, 2.0, 
3.0, 4.0, 5.0. Then, the limit state function is given as 

where Py, is required yield strength of the ductility factor p=1.0, 2.0, 
3.0, 4.0, 5.0. 

3.3 Reliability Analysis Model 
For the above ultimate and serviceability limit functions, the reliabil- 

ity analysis is performed, where the load combination is not considered. 
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Because the distribution of earthquake force becomes a non-normal dis- 
tribution, the safety margin Z also becomes a non-normal distribution. 
Therefore, it is necessary to transfer Z to a normal distribution. 

where pc and 0, are the mean value and the standard deviation of the 
normal distribution which is used for the approximation. The two values 
are unknown variables and to be obtained by solving the above equa- 
tions. Then the reliability index is calculated as 

4 Po : ultimate limit I 

Figure 5. Reliability Index 

3.4 Reliability Analysis of Steel Bridge Pier 

Since it needs enormous task to analyze all the target ductility factor 
and type of soil, only types I1 soil is taken into consideration and the 
corresponding damage index to the earthquake is assumed as follow: 
For type I earthquake, 400 gal is employed as the maximum acceleration. 
Type I earthquake is defined in the Japanese Specification of Highway 
Bridge. This type I earthquake is used to check the seismic design for 
middle earthquakes. Then, the damage index of the structure is assumed 
to be pT=l.O. On the contrary, Type I1 earthquake is used to check for 
strong earthquakes, in which the maximum acceleration is 800gal. Then, 
the damage index of the structure is PT=2.0. 
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Material Cost 97,585 
1,700 

Transport Cost 9,000 

Table 3. Initial Cost 

4. Life-Cycle Cost Considering Earthquake 
Effects 

Here, initial cost and loss of the steel bridge pier are described. Based 
on the result obtained previously, LCC is formulated and calculated for 
the steel bridge pier. 

4.1 Initial Cost and Loss Cost 
As the initial cost, only pier is considered, because the sufficient data 

for the whole bridge is not prepared. Then, the initial cost consists of 
material cost, painting cost and transportation cost. (Table 3) It is also 
assumed that type I earthquake will lose 80%of the initial cost and type 
I1 earthquake will lose 110%. 

4.2 Formulation of LCC Considering 
Earthquake Effects 

The failure probability of structure is calculated by (8). 

Then, LCC is formulated as (9), where i is the social discount rate and 
assumed to be 2%. 

LCC = CI + Pf,t=L 
CF 

(1 + qT 

4.3 Result of Analysis 
The relation between LCC and failure probability is shown in Figure 

6, in which LCC is calculated with the same assumption as those used 
in the reliability analysis. 

We calculated LCC about the order which was equal to the reliability 
analysis. 
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Case 1. For the case shown in Figure 6, LCC is minimized when the 
thickness t f=t ,  is 50(mm). Then, the failure probability Pf is 0.03 and 
the reliability index P is 1.86. 

Case 2 .  For the case shown in Figure 7, LCC is minimized. When 
the thickness t f=t ,  is 56(mm), in which Pf is 0.12 and reliability index 
is 1.17. 

From these results, it is confirmed that it is possible to propose the 
optimal design plan in service time including the loss cost, which has 
the minimum LCC from the standpoint of reliability-based design, by 
introducing the loss of the structure due to the earthquake and the 
repairing cost. 

1,100 

Initial Cost 

LCC 

1 .E+00 I .E-0 1 1 .E-02 I .E-03 

Filure Probability Pr  

Figure 6. Type I eathquake,p~=l.O 

5 .  Conclusion 

In this study, an attempt was made to propose a calculation method 
of LCC considering earthquake effects based on reliability index. 
Through several numerical calculations, the following conclusions were 
derived: 

1 The proposed method can calculate LCC and failure probability 
for the structure which shows simple behavior by the earthquake. 
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LCC 

1 .E+00 1 .E-01 1 .E-02 

Filure Probability Pf 

Figure 7, Type I1 eathquake, ,U~=2.0 

2 Considering the collapse of the structure, LCC could be evaluated 
by failure probability. 

3 Using the reliability-based design concept, it is possible to provide 
a design plan to make the reliability index maximum and LCC 
minimum. 

4 In the calculation of LCC, many factors are interrelated and in- 
clude various uncertainties. 

Therefore, there still remain many issues to overcome in the future. For 
instance, in this study, the probability model of the maximum accelera- 
tion and required yield strength was calculated by the historical earth- 
quake records and the standard input earthquake wave of " Japanese 
Specification of Highway Bridge". However, when comparing the return 
period of the earthquake, the period of the earthquake records was too 
short and the available data is insufficient to estimate the earthquake 
intensity and the seismography. Moreover, the data of initial cost and 
maintenance cost were insufficient to calculate LCC of the whole bridge 
with accuracy. In the calculation of LCC, user cost should be accounted 
for as well as the earthquake occurrence and the maintenance by the 
deterioration of the structure. 
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Introduction 

In this work we study the existence of global solutions and the asymp- 
totic behavior of the energy related to the following nonlinear wave equa- 
tion with a boundary condition of memory type 

utt - Au + F(x ,  t ,  u, Vu) = 0 in Rx]O, SKI[, ( la )  

u = 0 on I'ox]O, +cm[, ( lb )  
t du 
g(t  - s)-(s)ds = 0 on rl x]O, +m[,  (lc) 

dv 
u(x ,O)=uO(x) ,  ut(x,O) = ( x )  in R, (Id) 

where R is a bounded domain of R n  , n 2 1, with smooth boundary 
I' = ro U rl. Here, Po and Fl are closed, disjoint, ro # 8 and v is 
the unit normal vector pointing towards the exterior of R. Equation 
(lc) is a nonlocal boundary condition responsible for the memory effect. 
Considering the history condition, we must add to conditions (1b)-(lc) 
the one given by 

u = O  on Fox]-m,O] .  

We observe that in problem (la)-(ld),  u represents the transverse 
displacement and the relaxation function g is a positive non-increasing 
function belonging to W2j1(0, +cm). Furthermore, suppose that the func- 
tion F : 2 x [0, +m[x  R~~~ -+ R is of class C1 and satisfies 

where Co is a positive constant, and C = ((1, ..., Cn). 
Let y be a constant such that y > 0 for n = 1,2, and 0 < y 5 2/(n-2) 

for n 2 3. Assume that there is a non-negative function y( t )  in the space 
Lm(O, cm) n ~ ' ( 0 ,  cm) such that 

and, particularly, 

Consider the existence of positive constants Co, . . . , C,, which verify 
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and also consider that there exist positive constants D l ,  D2, such that 
for all 5, [, q, f j  E R and for all 5, ( E Rn, 

Defining 

where cp is a sufficiently regular function, we obtain an example of a 
function F which verifies the above hypotheses. 

In order to obtain the decay rates stated in theorems (2.1)-(2.2), we 
will assume that the function cp(t) considered in (4) satisfies one of the 
following assumptions 

where Oo, O1 and bl are positive constants and p > 1. 
The integral equation (lc) describes the memory effect which can be 

caused, for example, by the interaction with another viscoelastic ele- 
ment. Indeed, from the physical point of view, condition (lc) means 
that R is composed of a material which is clamped in a rigid body in 
Po and is clamped in a body with viscoelastic properties in the comple- 
mentary part of its boundary named r l .  So, it is expected that if the 
kernel of the memory decays (exponentially or polynomially) the same 
occurs to the solutions of problem ( la)  - (Id). 

In what follows we are going to assume that there exists xo E Rn such 
that 

Defining m(x) = x - xo, the compactness of rl implies that there exists 
a positive constant So such that 

There is not much in literature regarding the existence and asymptotic 
behavior of evolution equations subject to memory conditions acting on 
the boundary. It is worth mentioning some papers in connection with vis- 
coelastic effects on the boundary. In this direction we can cite the work 
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by Aassila , Cavalcanti and Soriano [llwho considered the linear wave 
equation subject to nonlinear feedback and viscoelastic effects on the 
boundary, and proved uniform (exponential and algebraic) decay rates. 
Also, we can cite the article of Andrade and Mundz Rivera [2]where it 
was considered a one-dimensional nonlinear wave equation subject to a 
nonlocal and nonlinear boundary memory effect. In this work the au- 
thors showed that the dissipation occasioned by the memory term was 
strong enough to guarantee global estimates and, consequently, allowed 
them to prove existence of global smooth solution for small data and 
to obtain exponential(or polynomial) decay provided the kernel decays 
exponentially(or polynomially). In the same context we can mention the 
work of Santos [Il l ,  where decay rates were proved concerning the wave 
equation with coefficients depending on time and subject to a memory 
condition on the boundary. 

A natural question that arises in this context is about the non-exis- 
tence results for the wave equation in the presence of viscoelastic effects 
acting on the boundary. Concerning to this subject we can mention the 
work of Kirane and Tartar [6]who obtained non-existence results and 
Qin [9]who proved a blow up result for the nonlinear one dimensional 
wave equation with memory boundary condition. 

In connection with the above discussion, regarding viscoelastic prob- 
lems, it is important to cite the works of Ciarletta [4], Fabrizio and 
Morro [5]and Qin [8]. 

The main goal of the present paper is to complement the above men- 
tioned works. The majority of the results are obtained in an one di- 
mensional domain while our paper deals with a n-dimensional problem 
which brings up some additional difficulties, mainly in what concerns the 
geometric conditions. In addition, as we have a nonlinear problem whose 
nonlinearity F = F(x ,  t, u, Vu) depends on the gradient, we do not have 
any information about the influence of the integral F ( x ,  t ,  u, Vu)utdx 
on the energy E( t )  (see page 6) or about the sign of the derivative E1(t). 
In other words, we cannot guarantee that E1(t) 5 0 which plays an 
essential role in establishing the desired decay rates. 

Note that condition ( lb )  implies that the solution of system ( la)-( ld)  
must belong to the following space 

The notations we use in this paper are standard and can be found 
in Lion's book 171. In the sequel, C (sometimes C1, C2, . . . ) is going to 
denote various positive constants which do not depend on t and neither 
depend on the initial data. This paper is organized as follows. In sec- 
tion 2 we establish the existence and uniqueness for regular and weak 



Decay Rates for a Nonlinear Wave Equation with Memory Type B.C. 243 

solutions to the system(1a)-(ld). In section 3 we prove the uniform ex- 
ponential decay and in section 4 we prove the uniform polynomial decay. 

1. Notations and Main Results 

In this section we present some notations and we are going to study the 
existence of regular and weak solutions to the system ( la)- ( ld) .  First, 
we will use equation (lc)  to estimate the term B. 

Defining the convolution product operator by 

and differentiating the equation (lc)  with respect to t ,  we obtain the 
Volterra equation 

Applying the Volterra's inverse operator, we get 

where the resolvent kernel satisfies 

1 Defining 7 = -, we get do)  

Reciprocally, considering that the initial data satisfies u0 = 0 on rl, 
(11) implies ( lc) .  Since we are interested in relaxation functions of 
exponential or polynomial type and identity (11) involves the resolvent 
kernel k, we want to investigate if k has the same properties. The 
following Lemma answers this question. 

Let h be a relaxation function and k its resolvent kernel, that is, 

LEMMA 1 If h is a positive continuous function, then k is also a positive 
continuous function. Moreover, 

1 If there exist positive constants co and y with co < y such that 
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we conclude that the function k satisfies 

for all 0 < E < y -co.  

2 Let us consider p > 1 and define b y  cp := s u p t E ~ +  G ( l  + t )P ( l  + 
t - s ) - P ( l  + s ) - P  ds .  Provided there exists a positive constant co 
with cocp < I such that 

the function k satisfies 

proof. Note that k ( 0 )  = h ( 0 )  > 0. If we take t o  = inf{t E R+ : k ( t )  = 
0 )  we obtain that k ( t )  > 0 for all t E [ O , t o [ .  If to < +co, from equation 
(12)  we get that -k * h ( t o )  = h ( t o )  which is a contradiction. Therefore 
k ( t )  > 0 for all t E [0, +m[. Now, fixing E ,  such that 0 < E < y - co and 
defining 

k , ( t )  := eCtk ( t ) ,  h , ( t )  := eCth( t ) ,  

we get from (12)  that k , ( t )  = h , ( t )  + kc * h, ( t ) .  Hence 

Therefore 

which proves our first assertion. To show the second part let us introduce 
the following definitions 

Multiplying equation (12)  by ( 1  + t ) p  we obtain 
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and, consequently, 

which implies 

This concludes the proof of Lemma. 
Remark:  In Racke [ lo,  Lemma 7.41, it is assured that cp is a finite 
positive constant. Also, according to this Lemma, in what follows, we 
are going to use (11) instead of (lc). 

In order to prove the following Lemma, let us define 

LEMMA 2 For real functions g, cp E C1([O, oo[) we have 

The proof of this lemma follows by differentiating the term g o cp. 

The first order energy of system ( la)-( ld)  is defined by 

+' / I U ( X ,  t) ~ ' + ~ d x  - Il(k'0u) (t) 
?'+2 a 2 

The well-posedness of system ( la)-( ld)  as well as the decay rates 
expected are presented in the following Theorem. 

THEOREM 3 Let k E W 2 > l ( ~ + ) ,  assume that assumptions (2)-(8) hold 
and suppose that {uO, ul} E (V fl H ~ ( R ) ) ~  , satisfying the compatibility 
condition 

Then, problem (la)-(ld) possesses a unique solution u such that 

u E LW(0, oo, v n H2(n) ) ,  u' E Lm(O, oo, V),  u" E L"(0, oo, V).  (14) 
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In addition, assuming that there exist positive constants b l ,  b2 which 
verify one of the conditions below 

and, moreover, that hypotheses (9) - (10)  hold, we obtain that the en- 
ergy E( t )  associated to problem ( l a ) - ( l d )  decays, respectively, with the 
following rates of decay 

where c q ,  a2 and C are positive constants. 

THEOREM 4 Let k E W 2 > l ( R + ) ;  suppose that {uO, u l )  E V x L ~ ( C ~ )  and 
the assumptions (2) - (10)  and (15)- (16)  hold. Then, problem ( l a ) - ( l d )  
has a unique weak solution u i n  the space 

Furthermore, the decay rates presented i n  (17)- (18)  hold for the weak 
solution u. 

proof. The proof of existence and uniqueness for regular and weak 
solutions can be obtained following exactly identical procedure as in the 
work [3]of the authors Cavalcanti, Domingos Cavalcanti and Soriano. 
Consequently it will be omitted. 

2. Exponential Decay 
In this section we shall study the asymptotic behavior of the so- 

lutions of system ( l a ) - ( l d )  when the resolvent kernels k is exponentially 
decreasing, that is, there exist positive constants bl ,  b2 such that 

Note that this conditions implies that 

k ( t )  5 k(0)eFbl  for t > 0. 
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Our point of departure will be to establish some inequalities for the 
solution of system (la)-(ld).  

LEMMA 5 Any regular solution u of the system (la)-(ld) satisfy 

proof. Multiplying the equation ( la )  by ut and integrating by parts 
over R we get 

Taking (3 ) ,  (11) into account and using Lemma 2 our conclusion fol- 
lows. 

Let us consider the following binary operator 

Then employing Holder's inequality for 0 < p 5 1 we have 

Let us define the functionals 

P 

where 6 €In - 2, n[ and 0 > 3. The following Lemma plays an impor- 
tant role for the construction of the Lyapunov functional. 
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L E M M A  6 For any regular solution of the system (la)-(ld) we get 

proof. Differentiating the equation (21) with respect to t  and substi- 
tuting the equation ( la)  in the expression obtained we deduce 

-2 F ( X ,  t ,  U ,  V u ) r n .  Vudx  - 0 F ( x ,  t ,  u ,  Vu)udx .  S, 
From the inequalities (3)  and (4)  we obtain 

-0 F ( x ,  t ,  u ,  Vu)udx  < -0 lu7+2dx S, (23) 

+OP(t) S,P + l " I I " ~ l ) d ~ ,  

S, < -2 S, 1u7u(m.  V U ) ~ X  F ( x ,  t ,  u ,  V u ) m .  Vudx  - (24) 

+2y(t)  ( 1  + IVul(m.  V u ( ) d x .  S, 
Substituting the inequalities (23)-(24) into (22) and noting that 

our conclusion follows. 
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To show that the energy decay exponentially we shall need of the 
following Lemma. 

LEMMA 7 Let f be a real positive function of class C 1 .  If there exists 
positive constants yo, yl and co such that 

then there exist positive constants y and c such that 

f ( t )  < (f (0 )  + c)e-". 

proof. First, let us suppose that yo < yl .  Define F ( t )  by 

co F ( t )  := f ( t )  + ------ePYlt. 
71 - Yo 

Then 
' l co  e-71' < - y o ~ ( t ) .  F 1 ( t )  = f l ( t )  - - 

7 1  - Yo 

Integrating above inequality over 10, t [  we arrive to 

F ( t )  < ~ ( 0 ) e - 7 0 '  + f ( t )  5 ( f  (0) + A) e-?Ot. 
71 - "Yo 

Now, we shall assume that yo 2 yl .  In this conditions we obtain 

f l ( t )  5 -71 f ( t )  + c ~ e - ~ l '  + [ e 7 l t f ( t ) l 1 ~ c o .  

Integrating last expression over 10, t [  we obtain 

f ( t )  < [ f  (0 )  + cot] eUY1 t .  

Since t < ( y l  - ~)e(~1- ' ) '  for any 0 < E < yl we conclude that 

This completes the proof. 
Finally, we shall show the inequality (17) of the Teo 3. Using hypoth- 

esis (15) and Young inequality in Lemma 5 we get 
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where e is an arbitrary positive constant. Applying Young and Poincark's 
inequalities in Lemma 6  we obtain 

Noting that the boundary condition (11) can be written as = 

-q{ut  + k ( t ) u  - k' o u - k ( t ) u o )  we arrive at 

1 On the other hand applying the inequality ( 2 0 )  with p = in inequal- 
ity ( 2 6 )  we obtain 
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Let us introduce the Lyapunov functional 

with N > 0. Taking N large and E small enough, the previous inequali- 
ties imply that 

where R(t) = k ( t )  + p ( t ) .  Moreover, using Young's inequality and taking 
N sufficiently large we find that 

for some positive constants qo and q l .  From this inequality we conclude 
that 

which implies, in view of Lemma 7 and from the exponential decay of k ,  
cp, that 

for some positive constants C, CQ. From the inequality ( 2 9 )  our conclu- 
sion follows. 

3. Polynomial Rate of Decay 

Here our attention will be focused on the uniform decay rate when 
the resolvent kernel k  decays polynomially like (1 + t ) - p .  In this case 
we will show that the solution also decays polynomially with the same 
rate. Therefore, we will assume that the resolvent kernel k  satisfies 

for some p > 1 and some positive constants bl and b2. 

The lemmas below will play an important role in the sequel. 

LEMMA 8 Let  u be a solution of s y s t e m  (la)-(ld). Then, for p > 1, 
0 < r < 1 and t > 0 ,  we have 
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while for r = 0 we get 

(Srl 1kl0udI'~) 
P+ 1 

5 2 (J," IIu(s, .)11;2(~,)ds + ~ I I U ( S ,  Jrl I ~ ~ I ' + & O U ~ I ' ~ .  

proof. See e. g. [12] 

LEMMA 9 Let f > 0 be a diflerentiable function satisfying 

for some positive constants cl, c2, a and p such that 

p>a+l. 
Then there exists a constant c > 0 such that 

C 
f ( 4  L (1 + t p  

f (0) for t > 0. 

proof. See e. g. [ll] 

Finally, we shall prove the inequality (18). Using hypothesis (30) in 
Lemma 5 yields 

Considering inequality (20) with p = ~ 9 -  2(~+1) and taking hypothesis 
(30) into account we obtain the estimate 

I l + i  lkl o u12 5 C[-k ] p + l  Ou. 

Using the above inequalities in Lemma 6, yields 
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In this conditions, taking N sufficiently large and c small enough the 
Lyapunov functional defined in (28)  satisfies 

Let us fix 0 < r  < 1 such that & < r < 5. From (30)  we have 
that 

Using this estimate in Lemma 9  we get 

On the other hand, from the Trace theorem we deduce 

~ ( t ) ' + i l - ~ i p + l )  < - C E ( O )  ( l - ~ ; ( p + l ) i l / ( t ) .  

Substituting (32)-(33)  into (30)  we obtain 

Taking into account the inequality ( 29 )  we conclude that 

which implies, applying Lemma 9,  that 

Since (1 - r ) ( p  + 1) > 1 we get, for t 2 0 ,  the following bounds 
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Considering the above estimates in Lemma 9 with r = 0 it holds that 

Using the last inequality instead of (32) and reasoning in the same 
way as above we conclude that 

Applying Lemma 9 again, we obtain 

Finally, from (29) we conclude 

which completes the proof. 
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Abstract We propose a novel stochastic approach to reconstruct the unknown 
input of a partly known dynamical system from noisy output data. 
We assume that the unknown function belongs to a Reproducing Ker- 
nel Hilbert Space (RKHS). We then design an algorithm based on the 
Markov chain Monte Carlo (MCMC) framework which is able to recover 
the minimum variance estimate of the input given the output data. 

Keywords: Bayesian regularization; stochastic processes; stochastic simulation 

1. Introduction 
Deconvolution is the process of reconstructing the input of a dynam- 

ical linear system starting from sparse and noisy output data. This 
problem is important and encountered in many domains of applied sci- 
ence (see e.g. [2, 71). It is also often difficult to solve since it is subject 
to ill-posedness and ill-conditioning [2, 141. Usually, the system designer 
does not have sufficient information to overcome these difficulties by re- 
stricting the unknown function to a finite dimensional model.' The most 
attractive and employed technique to effectively solve the deconvolution 
problem is instead nonparametric regularization, which does not restrict 
the unknown function to a particular parameteric form (see e.g. [9, 
141). Many nonparametric deconvolution algorithms select a function 
from an infinite dimensional Reproducing Kernel Hilbert Space (RKHS) 
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[I ,  51. The key feature of such spaces is their capability to approx- 
imate arbitrarily well a very rich class of functions [8]. The unknown 
function is then estimated as the solution of a Tychonov-type variational 
problem [13], containing a quadratic term related to the adherence of ex- 
perimental data and another one which penalizes unlikely solutions, i.e. 
functions whose norm amplitude is large. The resulting estimator has an 
interpretation in stochastic terms [7, 141. In fact, under certain Gaussian 
assumptions, it provides the minimum variance estimate of the unknown 
function given the data.2 In real applications, a Tykonov-type estima- 
tor has unknown parameters that must be included in the estimation 
procedure. For example, the regularization parameter, which is a key 
one since it establishes the right amount of regularization to include in 
the estimation process, is almost always unknown [12]. Other unknown 
variables can be present in the linear relationship between the function 
and the measurements. If we employ a stochastic framework where we 
model all these additional unknown parameters as random variables, it 
turns out that the minimum variance estimate of the function requires 
the evaluation of analytically intractable integrals (see Section 1 in [lo]). 

In this paper we present a new approach to face this problem together 
with an efficient algorithm based on a stochastic simulation technique 
known in literature as Markov chain Monte Carlo (MCMC). Our tech- 
nique is able to reconstruct a function belonging to a generic RKHS 
together with all the other unknown parameters present in the problem. 
In contrast to the approach in [lo], our computational scheme avoids 
any kind of discretization of the domain where the function of interest is 
defined. The paper is organized as follows. In Section 2 we describe the 
measurement model and recall some properties of RKHSs (that are used 
in the other sections). In Section 3 we describe our stochastic decon- 
volution model and the resulting estimation problem. In Section 4 the 
algorithm which implements the model introduced in Section 3 is illus- 
trated. The performance of the new approach is then tested in Section 
5 by one simulated case study. Conclusions are finally offered in Section 
6. 

2. Preliminaries 

2.1 The Measurement Model 
For any vector w, we use wi to refer to the i - th  component of w. 

Moreover, all the vectors are column vectors. We define our problem in 
mathematical terms. We are given a vector of measurements y E X n .  
The measurement values depend on an unknown function f : X + 
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%, where X is a compact domain on 34, and on an unknown random 
vector u E Xn.  The dependence between the function and the i - t h  
measurement is 

~i = Li ( f 8) + ui (1) 
where the mapping f + Li( f ,  8) is a linear and continuous functional be- 
tween a space containing continuous functions and %. Moreover, 8 E X d  
is an unknown random vector whose probability density function, prior 
to making the measurements, is p s ( 0 ) .  We are also given a model for 
the statistics of the measurement noise. To be specific, we assume u is 
a zero-mean Gaussian random vector whose positive definite covariance 
matrix is C,(B). We assume that the functions L, ps, and C, are known. 
In addition, given 0, u is independent from f .  The problem of estimating 
8 and f without additional information is ill-posed (ill-posed problems 
are described on page 7 of [13]). 

2.2 Reproducing Kernel Hilbert Spaces 
Our approach to this ill-posed inverse problem is to place a Bayesian 
prior on a special type of function space H called Reproducing Kernel 
Hilbert Space (RKHS). We briefly sketch some properties of these spaces 
which are relevant in the context of the present work. We use L2(X) to 
denote the classical Lebesque space of square integrable functions on X ,  
equipped with the inner product < ., . >z. 

DEFINITION 1 We say that M : X x X + % is positive definite if for 
all finite sets {xl, x2, ..., x k }  C X the k x k matrix whose (i, j )  entry is 
M(xi, xj) is positive semi-definite. Moreover, we say that M is a Mercer 
kernel if it is continuous, symmetric and positive definite. 

The following theorem can be obtained by combining the Spectral The- 
orem for compact operators and Mercer's theorem (see [4]). 

THEOREM 2 If M is a Mercer Kernel, there exist a sequence { A j  2 0 : 
Xj+1 2 Xj ,  j  = 1, .  . . , oo) and a basis in  L ~ ( x )  of continuous functions 
{q5j : j  = 1, .  . . , m} such that 
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where the above convergence is uniform in  X  x X .  

The following proposition can be derived from [I, 41. 

THEOREM 3 For each Mercer kernel M  there exists a unique Hilbert 
space H such that 

w for each x  E X ,  M ( x , . )  E H 

the span of the set { M ( x ,  .), x  E X )  is dense i n  H 

for each f E H and x  E X ,  f (x) =< f (.), M ( x ,  .) >H 

If X j  > 0 for every j,  the associated RKHS H has the representation 

equipped with the inner product < ., . >H where, given f ,  g E H with 
f = CF1 aj$j and g = Cgl bj4j ,  we have 

The theorem above enables us to interpret H as a certain subset of 
smooth functions in L 2 ( x )  generated by the eigenvectors { $ j ) .  The 
smoothness condition does in particular concern the behavior of the 
generalized Fourier coefficients { a k )  and is regulated by the eigenvalues 
of M  

We conclude this section by defining the notation O to be a subset of 
gd and K  : O x X  x X  + 8 to be a parameterized Mercer Kernel; i.e., 
for each 0  E O,  K ( 0 ,  -, .) is a Mercer Kernel. In addition $(., 0 )  and Xi(0) 
are the eigen-functions and eigen-values corresponding to K ( 0 ,  a ,  a ) .  

DEFINITION 4 W e  use ~ ~ ( 0 )  to denote the n x N matrix whose (i, j )  
entry is L i ($ j ,  0 ) .  In addition, we denote with AN (0)  the N x N diagonal 
matrix whose i - th  entry of the diagonal is equal to Xi(0). 

DEFINITION 5 Let N  the set of natural numbers. Given A C N ,  we 
define the following notation: 
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2.3 An Example of RKHS 

In this section we review some properties of an example RKHS space 
parameterized by the integer m > 0. We define the Green's function Gm 
and the reproducing kernel Km on [0, T] x [0, TI, T E 3 as 

0 i f x < y  
1 i f x > y a n d m = l  

(x - y)m-l/(m - I)! otherwise 

Given a function f : [0, T] -+ R, we use f to denote the i - th  derivative 
of f .  The RKHS associated to Km is then 

equipped with the inner product 

f : [O,T]-+% 

For the special case m = 1, the following closed forms for d j  and X j  are 
available (see [15]) 

f (m) E L~ [o, TI 
a n d f o r j = O ,  ... , m - 1 ,  f ( j ) ( 0 ) = 0  
and f (j) is absolutely continuous 

3. Statement of the Estimation Problem 

We now define our estimation problem in a Bayesian framework. We 
start by defining a Bayesian prior for the unknown function f on the 
RKHS corresponding to K (8, ., .). 

Assumption: Given 8, the function f is a random field of the form 
f (x) = Cj",l aidi(x), where {ai) are Gaussian and independent random 
variables and the variance of ai is Xi(8). In addition, each ai is inde- 
pendent of the measurement noise u. 
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Figure 1. Bayesian network describing the stochastic deconvolution problem 

A graphical description of the joint probability density function of y,  f 
and 0 is given by the Bayesian network in Figure 1. It is important to 
note that the node 0 is connected via a direct link with both f and y. We 
also note that given the other two nodes in the network, y depends on 
f and 0 through C,(O) and L ( f ,  0 ) .  In addition, the probability density 
function of f given 8 depends on 0 through the sequence { X i ( 0 ) ) ,  i.e., 
the smoothness parameters contained in 0 parameterize the norm in the 
RKHS H. 

THEOREM 6 The m in imum variance estimate of the function f ,  given 
0 and y ,  is 

where H is the RKHS corresponding to K ( 0 ,  ., .). 
(see Appendix for the proof) 

Equation (3) shows that if f is the only unknown in the model depicted 
in Figure 1, its optimal estimate is provided by a Tikhonov-type varia- 
tional problem. The solution of such problem is linear in the data y and 
admits a closed form which is well known in literature (see e.g. [14]). 
However, in real applications 8 is seldom completely known. The esti- 
mation problem we aim to solve when 0 is uncertain is described below. 

Problem: Let p(ylai,  0 )  and p(ai 10) the probability density functions of 
y given (a i ,  0 )  and of ai given 0 ,  respectively. Let also p ( y )  the marginal 
probability density function of y. Given the Bayesian network of Figure 
1 and known the data y, determine the m in imum variance estimate of 
f ( x ) ,  i .  e. compute f ( x )  = Czl Bi4i (x )  where 



Bayesian Deconvolution o f  Functions in RKHS using MCMC Techniques 263 

The function f̂  takes into account all the possible sources of uncertainty 
present in the problem and represents our ideal estimate of the ran- 
dom field f .  However, its determination turns out difficult since the 
computation of iLi will in general require the solution of an analytically 
intractable integral. We describe the strategies developed in order to 
circumvent these problems in the next Section. 

4. MCMC Deconvolut ion Algorithms in RKHS 

We solve our stochastic deconvolution problem by reducing it to the 
reconstruction (in sampled form) of two finite-dimensional probability 
density functions. The numerical procedure relies on the MCMC frame- 
work (for an overview on MCMC theory see e.g. [6]). To simplify our 
notation below, dependence of some operators on 0 is implicit. 

4.1 Step 1: Reconstruction of p(OIy) 
The first goal is to reconstruct the probability density function of 0 given 
y after integrating out the unknown random field f from the probabilis- 
tic model of Figure 1. For this aim, the following proposition is useful. 
It can be proved by employing the linearity of the operator L and the 
fact that v is independent from f .  

THEOREM 7 W e  have 

where Cy is an n x n matrix, such that 

We then have that p(0ly) cx p(ylO)p(O) and a MCMC strategy can be 
employed in order to recover in sampled form this marginal posterior. 
In particular, we firstly obtain an approximated covariance matrix C of 
the random vector 0 given y as the inverse of the Hessian of the mi- 
nus log of p(ylO)p(O) computed at its mode (in 6). We then resort to a 
random-walk Metropolis scheme to reconstruct p(61y). In other words, 
we use a proposal density which consists of a Gaussian distribution cen- 
tered at the current point of the Markov chain with covariance matrix 
proportional to C. 
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4.2 Step 2: Determination of the Minimum 
Variance Estimate of f given y 

THEOREM 8 Let A = {x E N; x N ) .  Also, let C V , - ~  the n x n matrix 
such that Cv , -A( i , j )  = C v ( i , j )  + L i L j [ K - A ( x ,  y ) ] .  Then,  by denoting 
with p (y laN ,  0 )  the probability density function of y given aN  and 0 ,  we 
have: 

exp (-i(Y - ~ " a " ) ~ ( & , , - ~ ) - ' ( ~  - ~ ~ a " ) )  
p(y laN1 0 )  = [ d e t ( 2 ~ C , , - ~ ) ] ~ ~ ~  

Proof: The model of measurements can be rewritten as follows 

where is zero-mean normal random vector independent from aN and 
having covariance matrix equal to This completes the proof. 

The following result can be obtained using Bayes formula and Theo- 
rem 8. 

THEOREM 9 Given y and 0 ,  the random vector aN is Gaussian having 
covariance matrix g a ~  and mean j i , ~  where: 

N -1 N T -1 C,N = [ ( A  ) + ( L  C ~ , - , ( L ~ ) I - '  

We remark that A", L N  and may depend on 0.  Thus, f i l a ~  can 
be computed for some of those values of 0 located in high probability 
regions in accordance with the marginal posterior obtained (in sampled 
form) at step 1 of the proposed algorithm. This analysis obtains crucial 
information regarding how the a posteriori probability density function 
of a component ai differs from its a priori probability density function. 
The spectrum of many physical transformations L is located at low fre- 
quencies. If one also has that the higher i, the lower is the spectral 
content of 4i, as e.g. in eq. ( 2 ) ,  many of the amplitudes in the set { a i )  
may be insensitive to the output data. This means that from a certain 
index i the minimum variance estimate of ai will be close to the mean 
of the prior, i.e. close to zero. This makes it possible to find a value of 
N SO that, for every t ,  xZ1 iii4i ( t )  Cgl  iii4i ( t ) .  
Finally, after determining the number of amplitudes ai which is worth 
reconstructing, the marginal posterior of aN given y can be recovered. 
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Figure 2. Simulation Left A posteriori probability density function of 9 2  obtained 
in sampled form by MCMC. Right A posteriori and a priori variance of ai as function 
of i having set 81 and 9 2  to their minimum variance estimates 

For this aim, let Ok be a sample drawn from the distribution of O given 
y as obtained in step 1. Then, it suffices drawing samples from a Gaus- 
sian distribution having mean ,G,N (Ok) and covariance matrix 2 , ~  (Ok)  
by using a sufficiently large set of realizations Ok. 

5. Numerical Experiments 

We consider a semi-blind deconvolution problem, i.e. a deconvolution 
problem where the relationship between the unknown input and the 
output data is only partly known. Let 

Then, the simulated function f to reconstruct, taken from [3], is f (x) = xi=l ~ ~ P p j , ~ ( x )  where 0 < x < 1 and wl = 0.3, w2 = 0.6, pl = 12, 
p2 = 4, ql = 7, q:! = 11. f is modeled as the unknown input of a shift- 
invariant linear system with impulse response equal to x([O, 02]), where 
x(A) is the indicator function of a set A and O2 is equal to 0.27, a value 
drawn from a uniform random variable between 0 and 1. The function 
has to be reconstructed from 50 output observations, collected by us- 
ing a uniform sampling grid and corrupted by a white Gaussian process 
with a constant CV% equal to 10. We model the unknown function 
as xzl ~ ~ 4 ~ ~ , ~  where ai are independent Gaussian random variables of 
variance Xi = OIXw,,i (note that O1 represents the regularization parame- 
ter). Moreover, we model O1 and O2 as uniform and independent random 
variables on [0, p], with p + +m, and [O, 11, respectively. In Figure 2 
(left panel) we report the a posteriori probability density function of O2 
as reconstructed in sampled form in the first step of our algorithm by 
a MCMC run where 5500 samples were generated.4 The minimum vari- 
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Figure 3. Simulation Top Minimum variance estimate of ai as function of i .  Mid- 
dle minimum variance estimate of f (continuous line) with 95% confidence interval 
(shaded area) and true function (dashed line). Bottom panel Reconvolution (contin- 
uous line) vs noisy samples (bullets) 

ance estimate of this parameter turns out to be 0.258, a value close to 
truth. Such estimate together with that of has been then employed in 
order to compute the covariance matrix of eq.(4) when N is set to 100. In 
Figure 2 (right panel) we plot the diagonal elements of such matrix and 
of the matrix AN (& ) . This plot suggest that only few components ai are 
identifiable from the data. The second step of the algorithm has been 
then performed by setting N to 50 and generating 1500 samples of a N .  
In Figure 3 we plot the minimum variance estimates of the components 
of aN (top panel) and of f (solid line, middle panel), which appears close 
to the true function (dashed line, middle panel), together with the 95% 
confidence interval (shaded area, middle panel). Finally, in the bottom 
panel of Figure 3 the reconvolution against the noisy samples is depicted. 

6 .  Conclusions 

We have proposed a new Bayesian deconvolution algorithm based on 
the MCMC framework. The technique we have introduced improves on 
the existing deconvolution algorithms proposed in literature in some im- 
portant aspects. In particular, differently from the approach developed 
in [lo], our approach is well suited for the reconstruction of a function 
belonging to a generic RKHS and avoids any kind of discretization of 
the domain X where the unknown function is defined. 

Future developments of this work could consist in extending the esti- 



Bayesian Deconvolution of Functions in RKHS using MCMC Techniques 267 

mation technique here presented for reconstructing functions from non- 
linearly related output data. 

Appendix: Proof of Theorem 6 

In the sequel, the dependence of C,, L and {Aj)  on 6 will be implicit. Given a 
function f E H, where f = Cp1 ajq5j(x), let a N  the vector containing the first N 
components of {a,). Let also f: (5) = Cg1 a;$, (x), where x E X. We define the 
following prior distribution for a N  

The conditional density for y given a N  and 6 is 

The corresponding negative log of the likelihood for a certain y E Sn and a certain 
a N  is 

N 2 N 

l N ( y , a N ~ 6 )  = - 
1 I fa ' I H  + 1 log(2ahj) + - log det[2rrEV] 

2 j=1 2 

We point out that H, being a RKHS, is a subset of the space of continuous functions 
and convergence in the topology induced by 1 1 1 1 ~  implies uniform convergence (see 
[4]). Then, as N -+ oo, the following pointwise convergence holds 

where l(y, f (6) is defined by 

Thus, given the model of Figure 1, maximizing l(y, f 10) with respect of f corresponds 
to recovering the maximum a posteriori estimate of f given y and 6. This, combined 
with the linearity of L and the gaussianity of f ,  completes the proof. 

Notes 
1. Otherwise, this would reduce deconvolution to  a standard parametric estimation prob- 

lem, easily solvable by traditional methods as nonlinear least squares 
2. There is a strong relationship between RKHSs and Gaussian processes, see e.g. Section 

1.4 in [14]. 

3. all the functions in H are in fact continuous, see Proposition 3 on pag.36 of [4]. 

4. Results displayed in the sequel have been obtained by assessing the convergence of the 
generated Markov chains through the binary control of Raftery and Lewis [ll]. In particular, 
we have always required to estimate quantiles 0.025, 0.25, 0.5, 0.75, 0.975 of all the unknown 
parameters with precision respectively 0.005, 0.01, 0.01, 0.01, 0.005 and with probability 0.95 
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Abstract 

Keywords: 

Stochastic hybrid systems arise in numerous applications of systems 
with multiple models; e.g., air traffc management, flexible manufac- 
turing systems, fault tolerant control systems etc. In a typical hybrid 
system, the state space is hybrid in the sense that some components 
take values in a Euclidean space, while some other components are dis- 
crete. In this paper we propose two stochastic hybrid models, both of 
which permit diffusion and hybrid jump. Such models are essential for 
studying air traffic management in a stochastic framework. 

Stochastic hybrid systems, Markov processes, Ito-Skorohod type sto- 
chastic differential equations, hybrid jumps. 

Introduction 

In this article we study some classes of stochastic hybrid models. 
Stochastic hybrid systems arise in numerous applications of systems with 
multiple modes, e.g., flexible manufacturing systems, air traffic manage- 
ment, fault tolerant control systems etc. For various applications of 
stochastic hybrid systems we refer to [3], [8], [I], [Illand the references 
therein. In a typical hybrid system, the state space is hybrid in the sense 
that some components take values in a Euclidean space while some other 
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components are discrete. The evolution of continuous and discrete com- 
ponents are intertwined in an intricate manner. This makes the anal- 
ysis of a hybrid system quite involved and challenging. Several classes 
of stochastic hybrid systems have been studied in the literature, e.g., 
counting processes with diffusion intensity [lo], [13], diffusion processes 
with Markovian switching parameters [Il l ,  [16], switching diffusions [8], 
[9], piecewise deterministic processes [5], [15], Markov decision drift pro- 
cesses [lletc. All these stochastic hybrid systems arise in different kinds 
of applications. 

Here we address two kinds of stochastic hybrid models. In the first 
model we construct a Markov process (X(t) ,  O(t)), where X(t)  E [Rd 

and O(t) E O = {1,2, . . . , N). Here X( t )  is governed by a stochastic 
differential equation of Ito-Skorohod type with drift coefficient, diffusion 
matrix and the 'jump' function depending on the discrete component 
O(t) . Thus X( t )  switches from one jump diffusion path to another as the 
discrete component O(t) moves from one state to another. On the other 
hand, the discrete component O(t) is a "controlled Markov chain" with 
a transition matrix that depends on the continuous component X(t) .  A 
change in the discrete state O(t) makes a switching in the continuous 
state. This apart the continuous state does jump at random times. At 
times this may lead to a situation where a switching triggers a jump 
and vice-versa. This model is discussed in the next section. Section 
3 is devoted to the study of a very general stochastic hybrid system. 
The state of the system at time t ,  denoted by (X( t ) ,  O(t)) takes values 
in u,(S, x On), where On = {1,2,. . . , N,) and Sn is a subset of [ R d n .  

Between the jumps (X(t) ,  O(t)) is a switching diffusion. That is O(.) is 
a pure jump process taking values in On; between successive jumps of 
O(t), X( t )  is a diffusion process. On the other hand, the infinitesimal 
jump rates of O(t) depends on X( t ) .  Let A, be a subset of Sn. If X( t )  
starting from some point in S,, hits A, then it executes an instantaneous 
jump to some S,. The destination of X( t )  at this moment is determined 
by a pre-determined map. The discrete component at this moment is 
also reset by a given map. We investigate a Markovian structure of this 
system by introducing another switching component in the systems. 

A typical construction of a hybrid systems is based on stochastic dif- 
ferential equations driven by Wiener processes and Poisson random mea- 
sures. For a comprehensive treatment of stochastic differential equation 
driven by Wiener processes and Poisson random measure we refer to [6], 
[7] and [12]. 
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1. Stochastic Hybrid Model I 
In this section we construct a Markov process (X( t ) ,  B(t)) taking val- 

ues in !Rd x O where O = {1,2, .  . . , N).  The evolution of the process is 
governed by equations of the following form: 

P(B(t + 6t = j), B(t) = i, X( s ) ,  B(s), s 5 t )  (1) 
= ,Aij (X(t))6t + O(6t), i # j 

Here b, a, g, X are suitable functions, X, 2 0, i # j, ~2 Aij  = 0, W ( - )  
is a standard Wiener process and p(., .) is a certain Poisson random 
measure on !R+ x R to be specified shortly. Under certain conditions we 
establish the existence of a pathwise unique solution of (1). We make 
certain assumptions on b, a, g, A.  Let 

We make the following assumptions on the above functions. 

( A l )  For each i = 1 ,2 , .  . . , N, b(.,  i )  is bounded and Lipschitz continu- 
ous. 

(A2) For each i = 1,2 , .  . . , N, a(. ,  i) is bounded and Lipschitz contin- 
uous. 

(A3) For i, j = 1,2, .  . . , N, Xi j ( . )  are bounded and measurable, Xij(.) 2 
0 for i # j, and c:, X U ( - )  = 0. 

(A4) Let K1 be the support of g(., ., .) and let Ul be the projection of 
K1 on R. We assume that Ul is bounded. 

Note that in ( I ) ,  the process B(t) is a pure jump process. Thus by 
the results of [6], B(t) may be represented by an integral with respect to 
a Poisson random measure. Following [4], [8], [9]we proceed to obtain 
this representation explicitly. To this end, we first embed O into !RN by 
identifying i with ei, the i th unit vector in R N .  For i ,  j E 0 , :  x E Rd,  
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let Aij(x) be consecutive (with respect to the lexicographic ordering on 
O x O) left closed, right open intervals on the real line, each having 
length Xij (x). Define a function 

by 
j - i if u E Aij(x) 

h(x, i, u) = 
otherwise. 

(2) 

Let (X(t),O(t)) be an Rd x O-valued process given by the following 
stochastic differential equation of Ito-Skorohod type. 

fort  2 0, X(O) = xo, O(O) = 00. I 
Here: 

(i) Xo is a prescribed Rd-valued random variable. 

(ii) O0 is a given O-valued random variable. 

(iii) W ( . )  is a d-dimensional standard Wiener process. 

(iv) p(dt, du) is a Poisson random measure with intensity dt x l(du), 
where 1 is the Lebesgue measure on R. 

By the construction of the function h in (2), it is clear that a solution 
of (3) is also a solution of (1). Thus we prove the existence of an a s .  
unique strong solution of (3). To achieve this we use the method in [6]. 

THEOREM 1 Assume (A1)- (A4). Let p(., .), W (.), Xo,  Oo be independent. 
Then the equation (3) has an a.s. unique strong solution. 

PROOF: Let (a, F, P) be the underlying (complete) probability space 
on which p(., .), W ( e ) ,  Xo,  O0 are defined. Let @(.) be the Poisson process 
on (R, F, P) corresponding to the given Poisson random measure p(., .). 
Let Kz = support of h(- ,  ., .) and Uz the projection of K2 on R. By (A3), 
U2 is a bounded set. Let U = Ul U U2. Then U is also bounded. Let Dg 
denote the domain of the Poisson process c(.). Let 

D = {t E Dp : fi(t) E U ) .  
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Since l ( U )  < oo, D is a discrete set in (0 ,  co) a s .  Let 7 1  < 7 2  < . . . < 
rn < . . . be the enumeration of all elements in D. Let 

Then it is easy to see that rn is an Ft- stopping time for each n and 
7, f oo a . ~ .  First we establish the existence and uniqueness of the 
solution in the time interval [ O ,  q]. TO achieve this consider the following 
stochastic differential equation: 

Y ( t )  = Xo + b(Y ( s ) ,  QO)dt + p(Y ( s ) ,  Qo)dW ( s )  
/o 

First assume Xo. = x  E [ R ~  and Qo = i E O for some x ,  i. Under ( A l ) ,  
( A 2 ) ,  the equation ( 4 )  has an a.s. unique strong solution which depends 
measurably on x i , :  and : W ( . ) .  The solution for the initial condition 
X o ,  Q0 is obtained by replacing ( x ,  i )  by ( X o ,  80). Now set 

The process { X l ( t ) ,  Q1( t ) ) tE[0 ,71~  is clearly the unique solution of (3 )  in 
the time interval [ O ,  T ~ ] .  Next, let x = x1 ( r l ) ,  8 = O(rl), : w ( . )  = 
w(-  + r l )  - W ( r l ) ,  and @ = ( f i ( t ) ) ,  where Dfi = { s  : s  + r1 E D g )  and 
p(s)  = @(s + 7 1 ) .  Proceeding as before we can determine the process 
( x 2 ( t ) ,  62(t)) on [0, .ill with respect to X ,  8, w and 3. Clearly .il = 

7 2  - 7 1 .  Define ( X  ( t )  , 6  ( t )  ) by 

It is now clear that ( X ( t )  , O(t))  is the unique solution of (3 )  in the interval 
[ O ,  r 2 ]  Proceedings this way ( X  ( t ) ,  B( t ) )  is determined uniquely in [ O ,  rn] 
for every n. Hence a.s. ( X ( t ) ,  Q ( t ) )  is determined uniquely for all time. 
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Some comments are in order. 

Remark 2.1 
(i) The boundedness assumption on b and a in (Al),  (A2) may be 

relaxed. It may be replaced by a growth condition of the following type: 
there exists a constant C such 

Similarly the Lipschitz continuity assumption in (Al),  (A2) may be re- 
placed by locally Lipschitz continuity. 

(ii) If for each i = 1,2, . . . , N, a(. ,  i )a* (., i )  is uniformly elliptic, i.e., 
the least eigenvalue of a( . ,  i)a* ( a ,  i) is uniformly bounded away from zero, 
then we can drop any kind of continuity assumption on b(.,i). In fact 
if b(., i )  is bounded and measurable and a( . ,  i )  is bounded and Lipschitz 
and (A3), (A4) hold, then under the uniform ellipticity condition it can 
be shown as in [8], [9], (3) has an a.s. unique strong solution. 

(iii) It is clear from the construction that the process (X( t ) ,  O(t)) is 
Markov. Let ,C denote the extended generator of (X( t ) ,  O(t)). Then for 
f E C2(IRd x O) c D ( L ) ,  it can be shown that 

where 

(6) 
and 

v,,~(A x { j } )  = Ixxl j ) (x  + g(x, i ,u) ,  i + h(x, i ,u))du for A E L ? ( R ~ ) .  J', 
(iv) Note that the times at which jumps or switchings occur are deter- 

mined by the stopping times r,, n = 1,2, . . . . But at every T,, a jump or a 
switching may not occur. For example if at t = 71, g(Y (rl -), 60, @(rl)) = 
0, there is no jump in the trajectory of X( t )  at this time. Similarly, if 
h(Y (71-), Oo,@(rl)) = 0, then O(t) remains at Oo and thus there is no 
switching in the trajectory of X( t )  at this time. If g(Y(rl-), OO,@(rl)) # 
0 but h(Y(rl-) ,  OO,@(rl) = 0, then there will be a jump at t = 71, 

but no switching at t = 71. Similarly if g(Y (rl -), OO,@(rl)) = 0, but 
h(Y(rl-) ,  O O , @ ( r l ) )  # 0, there is no jump but only a switching oc- 
curs at t = 71. On the other hand if g ( Y ( ~ l - ) ,  O O , @ ( r l )  # 0 and 
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~ ( Y ( T ~ - ) , Q ~ , ~ ~ ( T ~ ) )  # 0 there is a simultaneous jump and switching 
at t = 7 1 .  This kind of mechanism goes on for t > 71. 

(v) We now focus our attention to a specific case where jumps and 
switching always occur simultaneously. Let 

be a function which is bounded and measurable. Let the function g(., ., .) 
be given by 

( x )  if u E Aij(x) 
g(x, i, 4 = (7) 

otherwise. 

If g(., ., - )  is of the above form, then from (2) and (7), it is clear that the 
jumps and switchings always occur together. In this specific case the 
extended generator of (X(t),  Q(t)) can be expressed explicitly in terms 
of b, a, lj and Xij. Let C denote the extended generator of (X(t) ,  Q(t)) .  
Let f : IRd x O + R be a smooth function. Then using Ito's formula one 
can show that 

where Li f (x, i) is as in (6). 
(vi) Consider the non-degenerate case, i.e., when for each i 

is uniformly elliptic. In this case if for each i, b(.,  i )  is bounded and 
measurable, and a( . ,  i )  is bounded and Lipschitz continuous, (A3) holds 
and g(., a ,  .) is of the form ( 7 ) ,  then one can show as in [9]that the process 
(X( t )  , B(t)) is strong Feller. 

2. Stochastic Hybrid Model I1 
In this section we study a very general stochastic hybrid system. We 

refer to [2], [14]for analogous controlled stochastic hybrid systems. The 
state of the system at time t ,  denoted by (X(t) ,  Q(t)) ,  takes values in 
UF=l(Sn x On),  where On = {1 ,2 , .  . . , Mn) and Sn is a subset of Rdn.  
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Between the jumps of X( t )  the state equations are of the form 

dX(t)  = bn (X(t) ,  O(t))dt + an(X( t ) ,  O(t))dWn (t) 1 

where for each n E N 

are suitable functions, A$(.) > 0, i # j, : xz1 A$(.) = 0, : Xo, Oo are 
Sn- and 0,- valued random variables, and Wn(.) is a standard d,- 
dimensional Wiener process. For each n E N ,  let A, C S,,: D, C 

S,. The set A, is the set of instantaneous jump, whereas D, is the 
destination set. If at some random time X( t )  hits A,, then it executes 
an instantaneous jump. The destination of (X( t )  , O(t)) at this juncture 
is determined by a map 

After reaching the destination, the process (X( t ) ,  O(t)) follows the same 
evolutionary mechanism over and over again. 

To ensure the existence of such a pair of processes we need to make 
certain assumptions. 

For each n E N ,  let S, be the closure of a connected open subset of 
some Euclidean space w d n .  For each n E N ,  A, and D, are closed, and 
A, n D, = 4. 

We now make the following assumptions. 

(A5) For each n E N and i E O,, bn(., i )  is Lipschitz continuous. 

(A6) For each n E N and i E On, an(.,  i )  is Lipschitz continuous. 

(AT) For each n E N, i ,  j E On, A$(.) are bounded and measurable. 

(A8) The maps g,, n E N ,  are bounded and uniformly continuous. 

(A9) inf, d(A,, D,) > 0. 
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Let (R, F, P) be the underlying (complete) probability space on which 
Wn(- ) ,  Xo, O0 are defined. As in the previous section Q(t) can be ex- 
pressed as an integral with respect to a Poisson random measure. Let 
p(. , .)  be R+ x R-valued Poisson random measure with the intensity 
dt x l(du) as in the previous section. Construct the maps 

as in the previous section such that 

dO(t) = jR hn(X(t-),  O(t-), u)p(dt, du). 

Let 
q = a{wn(s) ,  P(A, B)ls I t ,  A E a([% t]), B E a(R)). 

Let Xo, 00, Wn (.) , p(., 9 )  be independent. Then as in the previous section, 
we can show that under (A5) ,  (A6) and (A7), the equation (8) has an 
a s .  unique strong solution, denoted by (Xn(t) ,  On(t)) which takes values 
in Rdn x On. Let 

71 = inf{t 2 01 : X(t)  E A,). (10) 

Then 71 is an stopping time. Now define the process (X(t) ,  O(t)) by 

Note that (X(r l ) ,  O(rl)) E Dm x em, for some m E N. From rl on the 
system continues with the same mechanism from the state (X(r l ) ,  O(rl)). 
Let 

Ft = v n q .  
Thus there is a sequence of Ft stopping times 0 = 70 5 71 < 72 < 73 < 
. . . < rm < . . . such that rm f m a.s. and in the interval [ r , ,~ ,+~) , :  
m = 0,1, . . . the process (X(t) ,  O(t)) evolves according to (8) for some 
index n E N. At times rm, m > 1, there is an instantaneous jump 
determined by the map g,. 

Note that, though in each interval of the type [T,,T,+~), the evo- 
lution of (X(t) ,  O(t)) follows a Markovian type dynamics, the process 
(X( t ) ,  O(t)), : t E [0, m), is not a Markov process. This is because 
we have not thus far accounted for a dynamical variable ~ ( t ) ,  to be 
introduced shortly, which is intricately linked with the evolution of 
(X(t)  , O(t)) . Let ~ ( t )  be an N valued process defined by 
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The process q( t )  is a piecewise constant process, it changes from n to m 
when ( X ( t ) ,  Q ( t ) )  jumps from the regime S, x O, to the regime Sm x Om. 
Thus q( t )  is an indicator of a regime and a change in q( t )  means a 
switching in the regimes in which ( X ( t ) , Q ( t ) )  evolves. One can show 
that the process ( X ( t ) ,  Q ( t ) ,  q ( t ) )  is Markov. To see this more clearly 
we investigate the equations governing the process ( X ( t )  , Q ( t )  , q ( t ) ) .  To 
this end, let 

3 = { ( x ,  i ,  n) lx  E S,, i  E On)  

A = { ( x , i , n ) l x ~ A , ,  ~ E O , )  

D = { ( x ,  i ,  n ) ( x  E D,, i  E 0, )  

Clearly ( X ( t ) ,  Q ( t ) ,  q ( t ) )  is an 3-valued process. The set A is the set 
where jumps occur and D is the destination set for this process. The 
sets u,(S, x On) ,  u,(A, x 0,) and u,(D, x 0,) can be embedded in 
3, A and D respectively. 

Let do denote the injection map of U,(D, x On) into D. Define three 
maps g i :  A+ ~ , : i  = 1,2,::  h :  A+ N 

( x  i ,  n )  = the first component in do (g,(x, i ) )  1 
6 ( x  i ,  n )  = the second component in do (9, ( x ,  i ) )  (13) 

( x i  n )  = the third argument in do(g,(x, i ) ) .  J 
To describe the evolution of ( X ( t ) ,  Q ( t ) ,  q ( t ) )  there is a sequence of Ft 
stopping times 

7 1 < 7 2 < 7 3 <  . . .  < T m <  . . .  
7, CCI a s .  which are the successive hitting times of A, such that for 
t  = 7, 

where lji, h are defined in (13). For 7, < t < Tm+l 

where b(x , i , n )  = bn(x , i ) ,  a ( x , i , n )  = a n ( x , i ) ,  h ( x , i , n , u )  = h n ( x , i , u ) .  
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The stopping time Tm+l is defined by 

The equations for (X(t) ,  Q(t) ,  ~ ( t ) )  may thus be summarized as follows: 

where S is the Dirac measure. 
From the above equation it is clear that the ,!?-valued process 

is a Markov process. Note that the stochastic hybrid model constructed 
in this section generalizes the stochastic hybrid models studied in [2], 
[14]. In the stochastic hybrid model studied in [2], there is no discrete 
component like Q(t). In [14]the discrete component Q(t) is included, 
but this component remains unchanged when the continuous component 
X( t )  makes an instantaneous jump. In our model we have removed 
this restriction on the dynamics of Q(t) ,  and allow it to change when 
X( t )  changes. Thus we automatically have simultaneous jumps and 
switchings. Moreover in [14], the same functions b, a, X i j  are used in 
every component of the state space Sn x On, whereas in our model, these 
functions depend on the index n. Thus our dynamics are more general 
than the one treated in [14]. Hence we have constructed a stochastic 
hybrid model which is more general than the models in [2]and [14]. 

3. Conclusion 

In this paper we have explicitly constructed two stochastic hybrid sys- 
tems. We established the existance and uniqueness of a strong solution 
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in both cases, and showed that both solutions are Markov processes. 
The important point is that both models allow for simultaneous jumps 
in the trajectory and model parameters, the "so-called" case of a hybrid 
jump. 
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Abstract This paper explores the possibility of using an asymptotic state ob- 
server for the real-time reconstruction of insulin blood concentration in 
an individual by using only measurements of the glucose blood concen- 
tration. The interest in this topic relies on the fact that the glucose 
measurements are much more economical and faster then the insulin 
measurements. An algorithm providing reliable insulin concentrations 
in real-time is essential for the realization of an "artificial pancreas", an 
automatic device aimed to infuse the required amount of insulin into 
the circulatory system of a diabetic patient. An important issue for a 
good observer design is the determination of satisfactory models of the 
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glucose-insulin homeostasis. Different models have been considered and 
discussed in this paper. For all models presented an asymptotic state 
observer has been constructed and numerical simulations have been suc- 
cessfully carried out. 

Keywords: Homeostasis, nonlinear systems, state observer, drift-observability 

Introduction 
It is well-known that glucose and insulin blood concentrations are two 

extremely important variables in a diabetic individual. Unfortunately, 
only glucose blood concentration can be easily monitored in real-time, 
while the measurement of the insulin concentration is expensive and not 
immediate. In many control applications, when not all the variables of 
a system can be directly measured, an "asymptotic state observer" is 
used, which is an algorithm that processes the available measurements 
and provides estimates of all the system variables, with an error that 
asymptotically converges to zero. This fact suggests the use of a state 
observer for the reconstruction of the insulin blood concentration us- 
ing only glucose concentration data. This paper investigates the use 
of the observers presented in [13] and [6], that under some conditions 
guarantee exponential decay of the estimation error. The design of a 
good observer requires the knowledge of a good model of the system 
under investigation. The problem of developing satisfactory models of 
the glucose-insulin homeostasis has been widely investigated by many 
authors in the last two decades (see [7], [16], [LO], [9], [2], [5], [ll], [15], 
[4]). At today the most used model in physiological research on glucose 
metabolism is the so called Minimal Model [2], originally proposed for 
the interpretation of the glucose and insulin plasma concentrations fol- 
lowing the intra-venous glucose tolerance test (IVGTT). In the Minimal 
Model two dynamic subsystems can be singled out. The parameters 
of each subsystem can be evaluated using glucose and insulin data in 
a separate identification procedures. In [7] the authors showed that in 
some situations the coupling of the two subsystems does not admit an 
equilibrium and the concentration of active insulin in the "distant" com- 
partment increases without bounds. For this reason, in this paper two 
modifications of the Minimal Model are considered. For each model an 
asymptotic state observer is computed and verified through numerical 
simulations. 
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1. Asymptotic State Observers 

Consider a dynamic system described, for t 2 0, by nonlinear differ- 
ential equations of the form 

k(t) = f (44) + g(x(t))u(t) ,  (1) 

y (t) = h ( ~ ( t ) ) ,  (2) 

where x(t)  E X C Rn is the system state, u(t) E U C_ R is the input 
function and y (t) E R is the output, f (x) and g(x) are Ck (x) vector 
fields, with k an integer allowing all differentiations needed. 

In most applications the input u(t) and the output y(t) of the sys- 
tem are the only quantities available through measurements, while the 
system state x(t) remains unaccessible. An important issue in systems 
and control theory is the problem of state reconstruction through on line 
processing of the measured input and output signals. An algorithm that 
asymptotically reconstructs the state is called an asymptotic state ob- 
server, and is usually described by differential equations. The existence 
of an asymptotic observer depends on the observability properties of the 
system. A system is said drift-observable if it is such that, when the 
input is identically zero, different states produce different outputs (see 
[6]). Such property depends only on the pair (f (x),  h(x)) , and claims 
the theoretical possibility of the state reconstruction from the measured 
output data, when u(t) ZE 0. A system is said uniformly observable 
when different states produce different outputs, for any input function 
u(t) (see [12]). This is a rather strong property for nonlinear systems, 
and depends on the triple (f (x),  g(x), h(x)) .  A weaker property is the 
almost-uniform observability, that characterizes systems such that dif- 
ferent states produce different outputs, for any constant input (see [13]). 
The study of the drift-observability and of the almost-uniform observ- 
ability of nonlinear systems is made through the construction of suitable 
vector functions that map the system state at a given time t into the 
output and its derivatives at the same time t. 

The following two square maps can be defined for system (1)-(2) 

where L ? ~ ( x )  denotes the k-th order repeated Lie derivative of the func- 
tion h(x) along the field f (x), and in the same way, ~ ) + ~ , h ( x )  denotes 
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repeated Lie derivative of h(x) along f (x) + g(x)u, with u constant pa- 
rameter. Formally 

L?h(x) = h(x),  L ? + g u h ( ~ )  = h b ) ,  
d ~ ) h  

~ ;+ 'h (x )= - f ( z ) ,  L;;iuh(x)= 
dx 

dL?+guh (f (x) + g(z)u),  
dx 

(4) 
Recall that the observation relative degree of a triple (f (x), g(x), h(x)) 
in a set R C !Rn is an integer r 5 n such that 

The observation relative degree is said full or mazimal if it is equal to 
n. Quite obviously, when u = 0 the two maps (3) coincide, so that 
@(x) = !P(x,O). Moreover, it is not difficult to show that if the relative 
degree is maximal it follows that !P(x, u) = @(x). Let z(t) be the vector 
made of the output and its derivatives up to order n - 1, i.e. 

It can be easily checked that when u(t) - 0 or the relative degree is 
maximal it is z(t) = @(x(t)), while if u(t) r fi it is z(t) = !P(x(t), a). 
The map @(x) is named drift-obseruability map. The drift-observability 
property in an open set R E !Rn implies that in R there exists the inverse 
map x = @ - l ( z ) .  This means that when u(t) 3 0 or when the relative 
degree is full the state can be reconstructed from the knowledge of the 
output, at least from a theoretical point of view. In the same way, 
the uniform-observability in R x U implies the existence of the inverse 
x = !Pli- '(z,~), forall x E R and fi E U .  This means that the state can 
be reconstructed from the knowledge of the output and of the constant 
input ti. 

Let Q(x) and Q(x, u) denote the Jacobians 

Drift-observability of the system (1)-(2) in a set R implies nonsingularity 
of Q(x) in 0, and allows the construction of the asymptotic observer 
presented in [6], described by the differential equation 
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Almost-uniform observability in a set S2 x U implies invertibility of 
Q(x, u) for all (x, u) E S2 x U, and allows the construction of the fol- 
lowing asymptotic observer 

presented in [13]. In both observers (8)-(9) the constant vector K is the 
observer gain, and is a design parameter. In [6, 131 it is shown that, 
under suitable assumptions, there exists a choice for K such that (8) or 
(9) are exponential observers for system (1)-(2), i.e. there exist positive 
constants ,u and cu such that 

In the case of observer (8) the convergence is guaranteed if the system 
has relative degree n and the input u(t)  is bounded. If the system rel- 
ative degree is smaller than n, (8) is still an exponential observer for 
(1)-(2), provided that the amplitude of the input u(t)  satisfies a specific 
bound (for more details see [6]). For systems with generic relative degree 
(9) is an exponential observer provided that the input derivative satis- 
fies a specific bound (slowly varying input, for more details see [13]). A 
strategy for the choice of the gain vector K is described in the conver- 
gence proofs reported in [6, 131. In particular, K should be chosen such 
to assign eigenvalues to the matrix Ab - KCb,  where (Ab, Cb) define a 
Brunowski pair of dimension n. 

In this paper the state observers (8) and (9) are applied for the recon- 
struction of the blood insulin concentration through on-line processing 
of the measured blood glucose concentration (the system output y(t)). 

2 .  The Minimal Model 

There are two main experimental procedures currently in use for the 
estimation of the insulin sensitivity in a subject: the euglycemic hyper- 
insulinemic clamp (EHC) [8] and the intra venous glucose tolerance test 
(IVGTT) [2]. With respect to the EHC, the IVGTT is easier to execute 
and provides more informations. The test consists of injecting 1.V. a 
bolus of glucose and frequently sampling the glucose and insulin plasma 
concentrations afterwards, for a period of about three hours. The phys- 
iological model most used in the interpretation of the IVGTT is known 
as the Minimal Model [2]: 
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where [ a ] +  denotes the positive part of its argument, and 

G(t) [mg/dl] is the blood glucose concentration at time t [min]; 

I ( t )  [pUI/ml] is the blood insulin concentration; 

X (t) [min-'1 is an auxiliary function representing insulin-excitable 
tissue glucose uptake activity, proportional to insulin concentration 
in a "distant" compartment; 

Gb [mgldl] is the subject's baseline glycemia; 

Ib [pUI/ml] is the subject's baseline insulinemia; 

po [mgldl] is the theoretical glycemia at time 0 after the instanta- 
neous glucose bolus; 

pl [min-'1 is the glucose "mass action" rate constant, i.e. the 
insulin-independent rate constant of tissue glucose uptake, "glu- 
cose effectiveness" ; 

p2 [min-'1 is the rate constant expressing the spontaneous decrease 
of tissue glucose uptake ability; 

p3 [ m i n - 2 ( p ~ ~ / m l ) - 1 ]  is the insulin-dependent rate of increase 
in tissue glucose uptake ability, per unit of insulin concentration 
excess over baseline insulin; 

p4 [ ( p ~ l / r n l ) - '  (mg/dl)-'min-2] is the rate of pancreatic release 
of insulin after the bolus, per minute and per mgldl of glucose 
concentration above the "target" glycemia; 

pg [mg/dl] is the pancreatic "target glycemia" (pancreas produces 
insulin as long as G(t) > pg); 

p6 [min-'1 is the first order decay rate constant for plasma insulin; 

p7 = pUI/ml is the theoretical plasma insulin concentration at 
time 0, above basal insulinemia, immediately after the glucose bo- 
lus. 

Parameters po, pl , p4, pg , p6 and p7 are usually referred to in the liter- 
ature as Go, SG, y, h, n and Io, respectively, while the insulin sensitivity 
index SI is computed as p3/p2. 

The Minimal Model was conceived as composed of two parts. The first 
one, made of eq.'s (11)-(12), describes the time course of plasma glucose 
concentration as a function of the circulating insulin, treated as a forcing 
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function, known from measurements. The second part consists of eq. (13) 
and describes the time course of plasma insulin concentration accounting 
for the dynamics of pancreatic insulin release in response to the glucose 
stimulus regarded as a forcing function, known from measurements. In 
this way the problem of model parameter fitting can be separated into 
two separate subproblems. However, some stability problems of the 
Minimal Model have been revealed in [7]. The main reason of instability 
is a term in the third equation that linearly grows with time. 

The injection into the bloodstream of a subject of a bolus of glucose 
during the IVGTT induces an impulsive increase in the plasma glucose 
concentration G(t) and a corresponding increase of the plasma concen- 
tration of insulin I ( t )  , secreted by the pancreas. These concentrations 
are measured during a three hour time interval beginning at the bolus 
injection. Note that in eq. (13) the positive part of G(t)  - ps multiplies 
the time t to model the hypothesis that the effect of circulating hyper- 
glycemia on the rate of pancreatic secretion of insulin is proportional 
both to the hyperglycemia and to the time elapsed from the glucose 
stimulus [16]. However the multiplication by t in (13) introduces an ori- 
gin for time, making the model non stationary and binding the model 
to the IVGTT experimental procedure. 

The application of the observer (8) to the Minimal Model can be 
worked out by considering the time t ,  explicitely appearing in (13), as 
an external input, and verifying that the relative degree is 3. Before 
deriving the observer equations, it is convenient to put system (11)-(13) 
in a suitable form, defining: 

XI = G - p5, (glucose conc. exceeding the target glycemia) (14) 

2 2  = X + pl,  (rate of tissue glucose uptake) (15) 
2 3  = I - Ib, (insulin conc, exceeding the baseline insulinemia) (16) 
y = G - pg. (measured variable: xl)  (17) 

With these definitions the Minimal Model can be written as 

with state domain X and initial conditions x(0): 
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Figure 1 .  Minimal Model: state observation 

The drift-observability matrix of system (18)-(21) is 

All simulations of the observation algorithm revealed a very good 
tracking capability of the observer. Fig. 1 reports simulation results 
using a gain vector K that assigns eigenvalues (- 1, -1.2, -1.4) to the 
matrix Ab - KCb. The values of model parameters used in the reported 
simulation are Gb = 87, Ib = 37.9, po = 398, pl = 0.05, pz = 0 , 5 

5 p3 = lo-*, p4 = 10- , p5 = 150, p~ = 0.05, p7 = 199. 

3. The Fisher Model 

In this section we investigate the behavior of the observer (9) applied 
to the model used by Bergman et  al. [I]-[2] and by Fisher e t  al. 191- 
[lo] for the development of control strategies of plasma glucose levels in 
diabetic individuals. Two main approaches are currently followed in the 
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development of insulin infusion programs: open-loop methods, devoted 
to the computation of a predetermined amount of insulin to be deliv- 
ered to a patient, and closed-loop methods, often referred to as artificial 
beta cells or artificial pancreas. Closed-loop methods require continuous 
monitoring of blood glucose levels and can involve quite sophisticated 
and costly apparatus. An intermediate approach is followed by semi 
closed-loop methods ([5], [9], [lo]), based on intermittent blood glucose 
sampling. Optimization techniques are used to calculate insulin infusion 
programs for the correction of hyperglycemia. The semi closed-loop al- 
gorithm proposed in [ll] is based on three hourly plasma glucose samples 
and combines a single injection with continuous infusion of insulin. 

The model of insulin-glucose homeostasis used in the cited works is 
a suitable modification of the Minimal Model. In particular, as long as 
severe diabetic individuals are being considered, in the third equation of 
the Minimal Model the time-varying term that models the stimulus on 
the insulin production given by the glucose concentration is removed. In 
the first equation a glucose infusion term is introduced, representing the 
effect of glucose intake resulting from a meal. The resulting model is as 
follows: 

The same meaning of the parameters used in the Minimal Model is 
retained in this model, except that GA(t) and IA( t )  represent the dif- 
ferences of plasma glucose concentration and free plasma insulin con- 
centration from their basal values Gb and Ib (i.e. G(t) = Gb + GA(t) ,  
I ( t )  = Ib + IA(t) .  P ( t )  and u(t) are the rates of infusion of exogenous 
glucose and insulin, respectively, VI is the insulin distribution volume 
and N is the fractional disappearance rate of insulin. Note that for dia- 
betic patients the basal value of plasma insulin concentration Ib is not a 
natural  va lue  but should be interpreted as a target  va lue  for the insulin 
infusion program. 

The model parameters pl ,  pz and p3 are estimated by Bergman e t  
al,  in [3] in a study of diabetic and normal human subjects. Values 
they use for normal subjects are pl = 0.028, p:! = 0.025, ps = 0.000013. 
For diabetic (glucose resistant) subjects the value of pl is significantly 
reduced and can be set to zero. The other parameters for a subject of 
average weight can be set as: 
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The value of Ib is typical of free insulin levels of controlled diabetic 
subjects under steady-state conditions. 
The steady-state in the model corresponds to a constant insulin infusion 
rate of u = NVIIb [ m u .  min-'1. This is consistent with observations 
of the infusion rates that are required to maintain steady-state plasma 
glucose levels of severe diabetics at the basal values of normal subjects. 

In the design of an observer for the model (26)-(28) we assume that 
oral glucose infusion starts at t = 0 prior to which plasma glucose and 
insulin are at their fasting levels. The term P( t )  in (26) represents 
the rate at which glucose enters the blood from intestinal absorption 
following a meal. In oral glucose tests it is observed that the plasma 
glucose level rises from the rest level to a maximum in less than 30 min. 
In normal subjects the glucose level falls to the base level after about 
2 - 3 hours. A function that produces this kind of desired behavior in 
the mode1 (26)-(28) is 

where B depends on the amount of glucose ingested during the meal, 
and k is the rate constant of glucose delivery to the blood circulatory 
system. A good value for k in normal subjects is k = 0.05 min-l, while 
for a medium meal B = 0.5 mg/(min.dl). The introduction of the term 
(29) in the model (26)-(28) requires an additional differential equation 

The state space dimension now has dimension n = 4. The state variables 
considered for the observer design are 

With respect to these variable the Fisher Model takes the form (1)-(2) 
with 
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Figure 2. Fisher Model: state observation (n=4) 

For this system the observation relative degree is smaller than 4, the 
dimension of the state space. As a consequence, the observer (9) should 
be preferred to observer (8). The expressions of the map @(x, u) and 
of the Jacobian Q(x, u) are quite long and are not reported here due to 
lack of space. The values of the parameters used in the simulations are 
Gb = 4.5, Ib = 25, pl = 0.05, p2 = 0.1, p3 = 6.5.1oP4, k = 0.05, B = 0.5, 
N = 5/54, VI = 12. The set of eigenvalues chosen for the computation 
of the observer gain is (-1, -1.05, e+3/4"jj, e33/4Tj >. 

4. Glucose Feedback Model 
One disadvantage of the Minimal Model (18)-(21) is its intrinsic non 

stationarity, due to the presence of a term that grows linearly with time 
in eq. (20) and affects the system stability. We propose a stationary 
model with a behavior similar to the Minimal Model: 
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Figure 3. Output feedback model: state observation 

where the auxiliary variable u(t) is computed as 

This model differs from the Minimal Model in the third equation, 
where the explicit appearance of time t has been substituted with an 
auxiliary variable u that approximates the unit ramp only for high values 
of the measured glucose concentration. 

For low glucose concentrations, u(t) decays to a steady state value. 
The parameters a1 and a2 can be adjusted so to give the desired behavior. 
We found a good behavior with a1 = 0.1 and a2 = 1. 

From a control system perspective, equations (37)-(41) describe an 
output feedback system and therefore we name such model of the insulin- 
glucose homeostasis the "Glucose Feedback Model". This model has rel- 
ative degree 3 and therefore admit the observer equation (8). The drift- 
observability matrix coincides with (25), because the pair (f (x),  h(x)) is 
the same of the Minimal Model. 

Fig. 3 reports the simulation results using a gain vector K that assigns 
eigenvalues (-0.5, 0.5 . e+3/4Tj, 0.5 . e-3/4nj) to the matrix Ab - KCb. 
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The values of the model parameters are the same used in the simulation 
of the Minimal Model. 

5. Conclusions and Future Developments 

This work explores the use of nonlinear state observers for real-time 
monitoring of the insulin blood concentration using only measurements 
of blood glucose concentration. Three models of the glucose-insulin 
homeostasis have been presented here, on which asymptotic observers 
have been constructed. The clinical validation of the proposed observers 
using experimental data will be the object of a future research. In future 
work, also the delay-differential models presented in [7] will be consid- 
ered for state observation, using the observer developed in [14]. 
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Abs t rac t  Proper orthogonal decomposition ( P O D )  is a Galerkin method which 
has been introduced in a fluids mechanics context. I t  is also known as 
Karhunen-Loeve decomposition and principal component analysis. The 
idea of POD consists in using a priori known information on the solu- 
tion u of P D E ,  for example snapshots ui = u ( t i ) ,  to determine a set 
of functions which are the eigenfunctions of an Hilbert-Schmidt opera- 
tor. This basis can be used to solve the PDE with a smaller amount 
of computations. Convergence estimates have been proved recently in 
the parabolic case starting from a particular discretization scheme [7 ] .  
Moreover it has been proved that the method converges independently 
from the scheme [6] .  We consider the case of a linear parabolic equa- 
tion. We give a first convergence estimate in a case where u is regular. 
However classical POD does not look satisfactory and an improvement 
consists in considering a POD which takes into account the derivative of 
u. We will also present some insights into the control of the approxima- 
tion by introducing what will be called a good order of approximation. 

Keywords: Proper orthogonal decomposition, Karhunen-Love decomposition, model 
reduction. 
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1. Principle of Proper Orthogonal 
Decomposition (POD) 

1.1 Proper Orthogonal Decomposition of a 
Function u E L2(0, T ;  X )  

Let X be a real separable Hilbert space endowed with the scalar prod- 
uct (., .)x, let T > 0 be a positive real and let u € L2(0, T ;  X) be a (class 
of) function depending on time t E [0, TI with values in X .  We define 
the POD operator K(u)  : X -+ X: 

We consider the kernel z(s ,  t )  = b ( v ( s ) ,  u( t ) )x  and we define the auxil- 
iary POD operator k ( u )  : L2(0, T) -+ L2(0, T): 

By concern of clarity, we denote K = K(u)  and k = i?(u). The oper- 
ators K and i? are self-adjoint semi-definite. Moreover i? is a Hilbert- 
Schmidt operator since the kernel z is L ~ ( [ o ,  T ] ~ ) .  We can therefore - - - 
index the eigenvalues of K in a non-increasing sequence: XI  > A:! > 

. . > xk > . . > 0. We assume that u is not the null function so that 
the spectrum of i? is not zero. 

LEMMA 1 T h e  operators K and have the  same  eigenvalues with same  
multiplicity. 

Proof. Let 1 be an eigenvalue of the operator i? with multiplicity r > 
1. We consider a set ( v ~ ) ~ < ~ < ~  - - of orthonormal eigenvectors in L2(0, T )  

and we define the set ($k)l<k<r by posing gk = l/&(u, ~ ~ ) ~ 2 ( ~ , ~ ) .  
Then the set ($k)l<k<T - - is a s 2  of orthonormal eigenvectors of the op- 
erator K in X for the eigenvalue 1. Conversely, if X is an eigenvalue of 
the operator K and if ($k)l<k<T is a set of orthonormal eigenvectors of 
K in X ,  the set ( v ~ ) ~ < ~ < ~  - - defined by vk = l / f l ( ~ , $ ~ ) ~  is a set of 
orthonormal eigenvectors of i? in L2 (0, T) for the eigenvalue A. 

DEFINITION 2 T h e  n o n  zero eigenvalues of the operator K ,  indexed i n  
a n o n  increasing order, are called the  P O D  eigenvalues associated with 
the function u. A set ( g k ) k > ~  of orthonormal eigenvectors of K in X 
corresponding to these eigenialues i s  called a set of P O D  eigenvectors 
associated wi th  the function u. 
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Remark .  The POD eigenvectors depend on the space X .  If the 
fonction u is in L2(0, T; X l )  n ~ ~ ( 0 ,  T; X2),  the POD eigenvectors in X1 
differ from the POD eigenvectors in X2. 

Remark .  We have not uniquess of the POD eigenvectors, although 
we have uniquess of the eigenspaces of the operator K .  We define the 
approximated subspaces 6 = span(&, . a , qe) which do not depend 
of the POD vectors in the case when Xe > Xe+1 and we denote Y = 

X 
the space spanned by the POD eigenvectors in X. 

Remark .  The POD eigenvectors correspond to eigenvalues which are 
indexed in a non increasing order: the order of indexation is significant. 

Example.  The method of snapshots. Let us consider real num- 
bers a > 0 and 0 = to < . < trv = T such that ti+l - ti = CJ 

for i = 0,.  - .  , N - 1. Let u be a piecewise constant function defined 
by posing u( t )  = Ui+l  E X for t €]ti, ti+l]. The values ( u ~ ) ~ ~ ~ ~ ~  
are called snapshots. The proper orthogonal decomposition of u corre- 
sponds to the method of snapshots. For any cp E X, we have: K(u)cp = 

1/N ~ z ~ ( u i ,  9)xui .  The method of snapshots consists in considering 
the correlation matrix Kc,, defined by: 

Then we denote vk = ( v ~ , ~ ) ~ < ~ < ~  E R ~ ,  for k = 1," .  , N ,  a set of 
orthonormal eigenvectors of the matrix Kc,, . Ort honormal eigenvectors 
of the operator K(u)  are given by posing: +k = I / J ~  xE1 Vi,kui. In 
practice, we compute the proper orthogonal decomposition of a function 
u by approaching u with a piecewise constant function. The method of 
snapshots allows us to compute the proper orthogonal decomposition of 
this piecewise constant function. 

Let us mention at last two characterizations of the POD eigenvectors. 

THEOREM 3 Let (gk)k>1 be a set of POD eigenvectors associated with 
u. Then for any .t 2 0 , t h e  vector Ge+1 satisfies: 

1 lT (u(t) ,  1/11+1)$ dt = 
T 

max (u(t)A4Rdt. (4) 
T 0 (de+i, +e+i)x V E S P N ~ I , , + ~ P \ { O )  $1 (P, PIX 

Conversely, if (qk)k>1 is a set of orthonormal vectors i n  X which satisfy 
equality (4), then ($k)k>l - is a set of POD eigenvectors associated with 
u. 

Remark .  In case when the function u is piecewise constant, we still 
call the values of u snapshots. The previous proposition characterizes the 



298 SYSTEM MODELING AND OPTIMIZATION 

POD eigenvectors as the best correlated to the snapshots in a quadratic 
mean sense. 

THEOREM 4 Let ($k)k>l be a set  of P O D  eigenvectors associated with 
u. For a n y  integer l 2 fi and for any  orthonormal set  (cpk)k>1 - in X ,  we 
have the following inequality: 

Moreover we have: 

I n  particular for .t = 0 ,  the s u m  of the P O D  eigenvalues i s  equal t o  the 
energy of u. Conversely, if ($k)k>l  i s  a set of orthonormal vectors i n  
X which satisfy equations ( 5 )  and ( 6 ) ,  then  - i s  a set o f  P O D  
eigenvectors associated wi th  u. 

1.2 Proper Orthogonal Decomposition of a Set 
of Functions 

Let n E N* be a positive integer and let ( u ~ ) ~ ~ ~ ~ ~  be a set of (class 
of) functions in L2 ( 0 ,  T ;  X )  . We define the POD operator K : X -+ X 
b y  posing: 

DEFINITION 5 T h e  n o n  zero eigenvalues of the operator K ,  indexed i n  
a n o n  increasing order, are called the P O D  eigenvalues associated with 
the set  ( u ~ ) ~ < ~ < , .  A set ($k)k>l of orthonormal eigenvectors of K i n  X 
corresponding to these eigenv&es is  called a set  of P O D  eigenvectors 
associated with (ui)1 

The theorems analogous to theorems 3 and 4 hold. 
Example. Let us consider a function u E L 2 ( 0 ,  T ;  X ) .  If the time 

derivative d u l d t  is in ~ ~ ( 0 ,  T ;  X ) ,  we can consider the proper orthogonal 
decomposition associated with (u, d u l d t ) .  

2. Problem Formulation 
Let V and H be real separable Hilbert spaces. We assume that the 

embedding V c H is dense continuous. So there exists a constant a > 0 
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such that l l . l l H  5 all.llv. We identify the space H with the dual space 
HI. Then the space H = H' is identified with a dense subspace of the 
dual V '  of the space V ,  with continuous embedding. 

Let a : V x V + R a bilinear continuous elliptic form. So there exist 
real numbers ,8, K > 0 such that for any c p ,  $ E V we have la(cp, $ ) I  < 
PIIcpllvll$llv and ~II911$ L 4 9 ,  cp). Let 4 E H and f E L2(0 ,T ;  V ' ) ,  
with T > 0. We consider the following parabolic problem: 

( p )  { $ ( ~ ( t ) ,  P ) H  + a ( u ( t ) ,  9) = ( f  ( t ) ,  V ) V / X V  t E [O,T], 9 E 
("(0),  ( P ) H  = ( $ 7  ( P ) H  Y' E v, 

(8) 
where (., . ) H  is the scalar product in H and (., .)v,xv is the duality 
V ' ,  V .  We denote W ( 0 ,  T ;  V )  = { u  E L2(0,  T ;  V) ldu /d t  E L2(0,  T ;  V ' ) )  
the space of (class of) functions in L2(0,  T ;  V )  the time derivative of 
which is in L2(0,  T ;  V ' ) .  We denote C(0 ,  T ;  H )  the space of continuous 
functions with values in H .  The space W (0,  T ;  V )  is identified with a 
subspace of C(0 ,  T ;  H )  in the following sense: any (class of) function 
in W (0,  T ;  V )  admits a continuous representative with values in H. We 
have the following result ([4], theorems 1 and 2, p. 619-620): 

THEOREM 6 The problem ( P )  admits a unique solution u in W (0,  T ;  V ) .  

Let u be the solution of problem (P). Then u E ~ ~ ( 0 ,  T ;  V )  n L2(0, T ;  H )  
and we can consider the proper orthogonal decomposition of u in both 
cases X = V and X = H .  Let ($k)k>l be a set of POD eigenvectors 
associated with u in one of both cases-x = V or X = H .  Let l > 1 be 
an integer and let 5 = span(Gl, . . , $0 be the approximated subspace 
of order l. We consider the following problem ; 

THEOREM 7 In both cases X = V and X = H ,  the sequence (Ue)e>l of 
the solutions of the problems (P,) converges towards the solution-u of 
the problem ( P )  as l + +oo in L2(0,  T ;  V )  strong. 

3. Estimates of the Error of 
POD-Approximation in a Regular Case 

Now we want to give an estimate of the error llUe - u I I ~ ~ ( ~ , ~ ; V )  We 
consider a case when the function u is regular. We make the following 
assumption: 
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Assumption 1. Still denoting u the solution of the problem (P) in 
W (0, T; V), we assume that the time derivative duldt is in the space 
L2(0, T ;  V). 

This assumption is sensible because of the following result ([12]theo- 
rem 3.2, p. 70): 

THEOREM 8 I f f  and df ldt  are in ~ ~ ( 0 ,  T ;  H )  and if the initial condition 
4 is in V, then duldt is in L2(0, T ;  V).  

Under assumption 1, we can also consider the POD approximation of the 
problem (P) by defining the proper orthogonal decomposition associated 
with (u, duldt). In this case we will obtain an estimate of the error of 
approximation according to the POD eigenvalues. 

3.1 Case of the POD Associated with u 

We consider the case X = V and we still denote ($k)k>l a sequence of 
POD eigenvectors associated with u. The theorem 4 alhws us to write 
the following equality in V for t E [0, TI and for any ! 2 1: 

We define two fonctions ue and Ze by posing for t E [0, TI: 

As the function Ue, which is the solution of the problem (P!), is in the 
space f i  = s ~ a n ( $ l ,  ' ' , d!), we have Ul(t) = ~ : = 1  (Ue(t)> $k)~$k.  
By definition, the set ($k)k>l - is orthonormal in V, so the Pythagore 
theorem gives: 

We observe the following equality: 

and we know from theorem 4 that the rest Cr=e+l X k  tends towards 
zero as t i m. We only have to estimate the term l1ue - ~ l ~ ~ ~ 2 ( o , T i v ) ~  

We denote xe = Ue - ue. The function u (resp. Ue) is the solution 
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of problem ( P )  (resp. (Pe))  so the function ze satisfies the following 
equality for cp E Ye: 

as well as (za  ( 0 )  , p) = (G (0 )  , 9) H .  If we take cp = ze (0 )  , we obtain 

Ilze(0) 1 1  5 IIGt(0) 1 1  and if we take cp = ze( t )  in equality ( l 4 ) ,  we obtain 
the following equality after integration on [0, TI: 

Then we get: 

where E > 0 is a real to be chosen below. Let us recall that the definition 
of the form a gives for any cp E V : ~ l l ( p 1 1 $  L a((p,(p) I PII(p11$. 

Moreover we assume K - P/2 > 0. Now we choose E > 0 such that 
K - Q / ~ E  - P/2 > 0 and we obtain the following estimate: 

~, 

The term I ~ ~ ! ~ ~ z ( o , T ~ )  tends towards zero as ! -+ cc by definition of 
Ga and because of equality (6 )  in theorem 4. Moreover equality (10) 
holds in V for almost any t E [O,T], so in H for any t E [O,T] because 
u E C ( 0 ,  T ;  H ) ,  in particular for t = 0 ,  and we obtain that the term 
llGt(0) 1 1 $  tends towards zero as C -+ m. However we have in general 
d u l d t  E ~ ~ ( 0 ,  T ;  V ' ) ,  which does not ensure the convergence of the term 
IdZt/dtli2(,,,;,). That is why we are led to make assumption 1. 

THEOREM 9 Under  assumpt ion I ,  we  choose E > 0 such that  K - a / 2 ~  - 

P/2 > 0 and we set: 

W e  choose X = V and we consider the proper orthogonal decomposition 
associated t o  the function u. W e  get the following es t imate:  
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o n  the error between the solution u of the problem ( P )  and the approxi- 
m a t i o n  Ue ,  which is  the solution of the problem (Pe) .  

Proof. According to inequality ( 1 7 ) ,  it suffices to proove that the 
term l l d G e / d t 1 ~ 2 ( o , T ; X )  tends towards zero as I i m. As the sub- 

v 
space Y = ~ p a n ( $ ~ ) k > ~  is closed in V and as u E L 2 ( 0 , T ;  Y )  ac- 
cording to equality ( l o ) ,  we obtain, under assumption 1 ,  that d u l d t  E 
L 2 ( 0 ,  T; Y ) .  We can then write the following equality in V for t E [0, TI : 

d"/dt ( t )  = C z l  (du /d t ( t ) ,  + k ) v $ k S  Then we have ~ d ~ / d t l l t 2 ( o , T ; v )  - - 

1 1  C L e + i  ( d u / d t ( t ) ,  +k)v+k l l~2(o jT;v )  which tends towards zero as I i 
m. On the other hand, we have the bound l l . l l H  5 aII.llv and we get the 
expected result from equalities ( 1 2 )  and ( 1 3 )  as well as from inequality 
( 1 7 ) .  

3.2 Case of the POD Associated with (u ,du /d t )  

The definition of the term pe in theorem 9 let the term 

arise, which represents the energy of the rest of the time derivative of u. 
It seems quite natural to consider the proper orthogonal decomposition 
associated with the set (u ,  d u l d t )  so that the POD eigenvalues also take 
into account the energy of d u l d t .  

We still consider the case X = V and we denote ($k)k>l a set of 
POD eigenvectors associated with (u, d u l d t ) .  In this case we have the 
following equality, according to theorem 4, in particular according to 
equality (6) : 

We set c = r n a x ( & a 2 / ( 2 ~  - a/& - P ) ,  ( K  - ~ I ~ E ) / ( K  - a / 2 ~  - ,B/2))  and 
we can now express the following theorem: 

THEOREM 1 0  Under  assumpt ion 1, we choose X = V and we consider 
the proper orthogonal decomposition associated with (u ,  d u l d t ) .  W i t h  the  
above notations,  we obtain the following estimate: 
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4. Choosing the Order of Approximation 
When proper orthogonal decomposition is utilized for model reduc- 

tion, the question arises of the choice of the order e 2 1 of approximation. 
The integer l must be large enough for the approximation to be good 
and small enough for the model to be reduced enough. The usual crite- 
rion (cf. for example [I, 5, 8, 9, 10, 111) consists in setting a percentage 
6 E [O,1] then in choosing the smaller integer l 2 1 such that: 

where the Xks are the POD eigenvalues. As the sum of the POD eigen- 
values is equal to the energy of u, this criterion consists in projecting 
the studied system onto the modes which capture the largest portion of 
the energy of u. We are going to see that this criterion can be irrelevant 
and we will propose alternative ideas. 

4.1 A Counter-example to the Usual Criterion 
of the Choice of the Order of Approximation 

We still consider the parabolic case of the problem (P ) .  We set R = 
]0,1[, V = H i  (R), H = L2 (R) and X = V. We define the bilinear form a 
by posing a(. ,  .) = (., .)v so that the problem (P) is the variationnal form 
of the heat equation with homogeneous Dirichlet boundary conditions. 
Let and $2 be orthonormal vectors in V but not in H defined by: 

Then we have 

We set T = 1 and we define two orthogonal functions hl and h2 in 
L2 (0, T) by posing for t E [0, TI : hl (t) = I and h2(t) = 1.2 sin(20rt). 
We set at last for x E R and t E [0, T] : u(x, t )  = h l ( t ) $ ~ ~ ( x )  + 
h2(t)g2(z).  We assume that the function u is the solution of the problem 
(P) for a well chosen right-hand term f . We still denote K the POD 
operator associated with u and we observe that K+l = $1 and KG2 = 
0.72 $2 so the vectors ($1, $2) are the POD eigenvectors associated with 
u and the POD eigenvalues are X1 = 1 and X2 = 0.72 . We denote yl  
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(resp. y2) the solution of the projection of the problem (P) onto span(gl) 
(resp. span(g2)). As XI > X2 we expect the projection onto span(gl) to 
be better than that onto span($2), that is: 

In fact, this inequality is not satisfied. Indeed a computation with Maple 
allows us to obtain: 

instead of the expected inequality (24). If we set the percentage S = 58% 
and if we apply criterion (22), we find l = 1 and we compute yl, whereas 
the function yz is a best approximation of the solution u of the problem 
(P ) .  We could conclude that the POD set (GI,  $2) is not well indexed 
and that the indexation must be modified to consider the set (Q2,gl).  
However, if the number of POD eigenvectors is infinite, it is difficult to 
reindex them. We rather consider the point of view which consists in 
keeping the same order of indexation as that of the eigenvalues and in 
going deeper into the calculation of the approximation. 

4.2 Definition of Some Criteria for Choosing the 
Order of Approximation 

Let us first mention two natural criteria for choosing the order of 
approximation. The first natural criterion is the absolute value l 2 1 of 
the order of approximation: we can decide not to go over a certain value, 
for instance in order to limit the computation time. This is not the usual 
point of view: in general, one prefers to choose the smallest integer l 2 1 
which satisfies a certain condition, for example the inequality (22), which 
amounts to favouring the precision of the approximation rather than the 
speed of computation ; we will follow this line by defining criteria for 
the order of approximation. The second natural criterion consists in 
utilizing the bounds (19) and (21) in theorems 9 and 10 to ensure a 
given precision. 

We still make the regularity assumption 1 and we set X = V. We 
consider the case of the proper orthogonal decomposition associated with 
the solution u of the problem (P) .  We propose the following definition: 

DEFINITION 11 W e  define the real numbers E ,  pe > 0 as theorem 9. T h e  
integer l 2 1 is  a good order of approximation if we have the following 
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inequality: 

THEOREM 1 2  If the integer ! 2 1 i s  a good order of approximation,  the 
Galerkin projection of the problem ( P )  on to  the subspace is  better 
t h a n  the  Galerkin projection onto  the  subspace I$', for a n y  subspace Y: 
orthogonal t o  Ye in Y ,  in the following sense: 

where UT is  the  solution obtained by Galerkin projection on to  I$'. 

DEFINITION 1 3  W e  define real numbers  E ,  pe > 0 as in theorem 9 .  T h e  
integer l > 1 i s  a very good order of approximation if the following 
inequality holds: 

THEOREM 1 4  If the integer ! 2 1 i s  a very  good order of approxi- 
ma t ion ,  then  for any  integer k 2 1 + 1 the Galerkin projection of the 
problem ( P )  onto  the subspace = span('$l , .  . . , $e-ll  $e )  i s  better in 
the sense of the n o r m  L2(0, T ;  V )  than  the projection onto  the  subspace 
s ~ a n ( ' $ l ,  ' '  , '$t-1, $ k ) .  

Analogous definitions can be expessed in the case of the POD associ- 
ated with (u,  d u l d t )  . 

5. Conclusion 

We have recalled the principle of proper orthogonal decomposition and 
we have considered POD-Galerkin methods for a parabolic problem. If 
the solution u of the parabolic problem ( P )  is regular, i.e. u satisfies 
assumption 1, we can obtain bounds of the error of the POD-Galerkin 
approximation in the case X = V .  We have considered the POD asso- 
ciated with u and the POD associated with ( u , d u / d t ) .  These bounds 
do not depend on the discretization scheme and allow us to define some 
criteria for choosing the order of approximation. 
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