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Preface

Convexity of functions plays a central role in many branches of ap-
plied mathematics. One of the reasons is that it is very well fitted to
extremum problems. For instance, some necessary conditions for the
existence of a minimum become also sufficient in the presence of con-
vexity. However, by far not all real-life problems can be described by a
convex mathematical model. In many cases, nonconvex functions pro-
vide a much more accurate representation of reality. It turns out that
often these functions, in spite of being nonconvex, retain some of the
nice properties and characteristics of convex functions. For instance,
their presence may ensure that necessary conditions for a minimum are
also sufficient or that a local minimum is also a global one. This led to
the introduction of several generalizations of the classical concept of a
convex function. It happened in various fields such as economics, en-
gineering, management science, probability theory and various applied
sciences for example, mostly during the second half of the last (20th)
century.

For instance, a well-known and useful property of a convex function
is that its sublevel sets are convex. Many simple nonconvex functions
also have this property. If we consider the class of all functions whose
sublevel sets are convex, we obtain what is called the class of quasiconvex
functions. It is much larger than the class of convex functions. The
introduction of quasiconvex functions is usually attributed to de Finetti,
in 1949. However quasiconvexity played already a crucial role in the 1928
minimax theorem of John von Neumann where it was introduced as a
technical hypothesis, not as a new type of a function1.

Many other classes of generalized convex functions have been intro-
duced since then. In recent years, besides real-valued generalized convex
functions, also vector-valued as well as multi-valued generalized convex

1See A. Guerraggio and E. Molho, “The origins of quasi-concavity: a development between
mathematics and economics”, Historia Mathematica 31, 2004, 62–75.
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functions have been investigated intensively. During the last forty years,
a significant increase of research activities in this field has been wit-
nessed.

A well-known feature of convexity is that it is closely related to mono-
tonicity: a differentiable function is convex if and only if its gradient is
a monotone map. This can be extended to nondifferentiable functions
as well, through the use of generalized derivatives, subdifferentials and
multi-valued maps. Similar connections were discovered between gen-
eralized convex functions and certain classes of maps, generically called
generalized monotone. For instance, a differentiable function is quasi-
convex if and only if its gradient has a property that, quite naturally,
was called quasimonotonicity.

Generalized monotone maps are not new in the literature. It is very
interesting to observe that the first appearance of generalized monotonic-
ity (well before the birth of this terminology) dates back to 1936. Even
more remarkable, it occurred independently and almost at the same time
in two seminal articles: the one, by Georgescu-Roegen (1936), dealt with
the concept of a local preference in consumer theory of economics, and
the other one, by Wald (1936), contained the first rigorous proof of the
existence of a competitive general equilibrium. It is also remarkable that
various axioms on revealed preferences in consumer theory are in fact
generalized monotonicity conditions.

The recognition of close links between the already well established field
of generalized convexity and the relatively undeveloped field of general-
ized monotonicity gave a boost to both and led to a major increase of
research activities. Today generalized monotonicity is frequently used
in complementarity problems, variational inequalities and equilibrium
problems.

The first volume devoted exclusively to generalized convexity were the
Proceedings of a NATO Advanced Study Institute organized by Avriel,
Schaible and Ziemba in Vancouver, Canada on August 4-15, 1980; “Gen-
eralized Concavity in Optimization and Economics” by Schaible and
Ziemba (1981, Academic Press). It was followed by the monograph
“Generalized Concavity” by Avriel, Diewert, Schaible, Zang (1988,
Plenum Publishing Corporation). Both volumes maintain the close re-
lationship between the mathematics of generalized convex functions and
its relevance to applications, especially in economic theory which de-
scribed the field from the beginning.

It was Mordecai Avriel who initiated the first monograph solely de-
voted to generalizations of convexity back in 1978. Shortly after that he
also proposed to organize an international conference on this topic. He
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often emphasized the importance of generalizing convexity with applica-
tions in mind. This gives the research area its interdisciplinary nature.

The extensive amount of new knowledge accumulated since the initial
two volumes, exclusively contained in research papers, gave birth to the
idea of presenting the main research results in both generalized convexity
and generalized monotonicity in the form of a handbook.

The present volume consists of fourteen chapters, written by lead-
ing experts of various areas of Generalized Convexity and Generalized
Monotonicity. Each chapter starts from the very basics and goes to the
state of the art of its subject. Given the amount of material in the field,
there are some topics that were not included. We trust that the com-
prehensive bibliography provided by each chapter can help to bridge the
gap.

The chapters are grouped into two parts of the book, depending on
whether their main focus is generalized convexity or generalized mono-
tonicity.

Chapter 1, by Frenk and Kassay, provides an introduction to con-
vex and quasiconvex analysis in a finite-dimensional setting. Since this
analysis is heavily based on the study of certain sets, the most impor-
tant algebraic and topological properties of linear subspaces, affine sets,
convex and evenly convex sets and cones are included here. The well-
known separation results are also presented and then used to derive the
so-called dual representations for (evenly) convex sets. The next part is
devoted fundamentally to the study of convex, quasiconvex and evenly
quasiconvex functions. It is shown that this study can be reduced to the
study of the sets considered in the preceding part. As such, the equiva-
lent formulation of a separation result for convex sets is now given by the
dual representation of a function. The key result in this respect is the
Fenchel-Moreau theorem within convex analysis and its generalization
to evenly quasiconvex functions. The remainder of the chapter presents
some important applications of convex and quasiconvex analysis to opti-
mization theory, game theory and the study of positively homogeneous,
evenly quasiconvex functions.

Chapter 2, written by Crouzeix, is devoted to first and second order
characterizations of generalized convex functions and first order criteria
for generalized monotonicity. First order characterizations of differen-
tiable generalized convex functions (quasiconvex, pseudoconvex, etc.)
include characterizations in terms of generalized monotonicity (quasi-
monotonicity, pseudomonotonicity, etc.) of the gradient map. Second
order characterizations of generalized convexity are inherently linked
with first order characterizations of generalized monotonicity. In this
study the positive (semi-)definiteness of the restriction of a quadratic
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form to a linear subspace is of great importance. An exhaustive study
is presented on this subject. The chapter concludes with some impor-
tant applications on Cobb-Douglas functions, conditions for a function
to be convexifiable, generalized convex quadratic functions, generalized
monotone affine maps, interior point methods and additive separability.

It is well known from convex analysis that a “nice” geometrical struc-
ture of convex functions, the convexity of the epigraph, has strong im-
plications in terms of continuity and directional differentiability. In the
case of quasiconvex functions the epigraph is no longer convex, but the
sublevel sets are. In parallel to convex functions, here it is the geomet-
rical structure of the sublevel sets which implies important continuity
and differentiability properties for quasiconvex functions. Chapter 3, by
Crouzeix, provides a deep insight into quasiconvex analysis discussing
quasiconvex regularizations, cone-increasingness, as well as continuity
and differentiability properties of quasiconvex functions. In the absence
of a directional derivative, generalized derivatives like the lower and up-
per Dini derivatives can be used. In certain cases these derivatives are
linked with important geometrical objects: the normal cone to sublevel
sets and the quasi-subdifferential of a quasiconvex function at a given
point. The role and usefulness of these objects are thoroughly investi-
gated in this part.

It is well known that in classical scalar optimization theory, convexity
plays a fundamental role since it guarantees important properties such
as: a local minimizer is also a global one; a stationary point is a global
minimizer (the first order necessary optimality conditions are sufficient).
The results obtained in the scalar case have had a major influence on
the area of vector optimization, which has been well developed during
recent decades. In vector optimization the concept of a minimum is usu-
ally translated by means of an ordering cone in the image space of the
objective function. This cone induces only a partial order which is the
main reason why there are several ways of extending the notion of gen-
eralized convexity in vector optimization. Chapter 4, by Cambini and
Martein, discusses the role of generalized convexity properties in scalar
and vector optimization problems in finite dimensions. In the scalar-
valued case extremal problems with quasiconvex, quasilinear, pseudo-
convex, pseudolinear, preinvex and invex functions are studied. In the
vector-valued case optimality conditions are derived for certain classes
of differentiable vector-valued generalized convex functions including C-
quasiconvex,
functions where C denotes the ordering cone of the image space.

Chapter 5, by Luc, also deals with vector optimization problems, but
in a more general setting, namely in a real Hausdorff topological vector
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space and in terms of nonlinear analysis. Different classes of generalized
convex vector functions are introduced and studied. Existence results
for efficient solutions are given and structural properties such as com-
pactness and connectedness of solution sets are investigated. Optimality
conditions are provided in terms of three kinds of derivatives: classical
derivatives, contingent derivatives and approximate Jacobians. The last
part of the chapter discusses scalarization methods for solving vector
optimization problems.

A central topic in optimization is convex duality theory. Given a
primal convex minimization problem, one embeds it into a family of
perturbed optimization problems and then, relative to these perturba-
tions, one associates it with a so-called dual problem. The deep relations
existing between the primal and the dual are helpful for analyzing prop-
erties of the original problem and, in particular, for obtaining optimality
conditions. They are also used to devise numerical algorithms. In case
of problems arising in applications in various sciences, particularly in
economics, dual problems usually have a nice interpretation that yields
a new motivation for analyzing them. In Chapter 6, by Martínez–Legaz,
generalized convex duality and its economic applications are discussed.
The extension of convex duality theory to the generalized convex case
is based on the Fenchel-Moreau generalized duality scheme and also on
the general theory of conjugations. In quasiconvex analysis the so-called
level sets conjugations are very useful. The Fenchel-Moreau general
duality scheme and these conjugations are discussed in details in this
chapter. The remainder of the chapter is devoted to economic applica-
tions: duality between direct and indirect utility functions in consumer
theory, monotonicity of demand functions and consumer duality theory
in the absence of a utility function.

The notion of a subdifferential of a convex function at a given point
of its domain plays a central role in convex analysis. In fact the subd-
ifferential plays two different roles. One of them is local: it furnishes a
local approximation to a convex function in a neighborhood of a given
point. The other one is global: it is a tool for constructing supporting
hyperplanes to the epigraph of a convex function. Generalizations of the
first line of thought of the subdifferential leads to nonsmooth analysis,
while the second one leads to abstract convexity. Abstract convexity
is the topic of Chapter 7, written by Rubinov and Dutta. One of the
fundamental results of convex analysis is that each lower semicontinu-
ous convex function is the upper envelope (pointwise supremum) of all
affine functions majorized by the function. The main motivation for
the development of abstract convexity lies in the fact that the envelope
representation is very convenient, even when we consider the upper en-
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velope of sets of nonaffine functions. Two kinds of objects are studied
in the framework of abstract convexity: abstract convex functions and
abstract convex sets. Abstract convex functions can be represented via
the envelope representation of not necessary linear or affine elementary
functions. Abstract convex sets are defined via the following property: a
point not belonging to an abstract convex set can be separated from it by
an elementary function. This chapter presents the main definitions re-
lated to abstract convexity and provides numerous examples of abstract
convex functions based on various sets of elementary functions, including
abstract quasiconvex functions. Some applications of abstract convexity
can also be found in it: a Minkowski duality scheme, a Fenchel-Moreau
conjugation, and Hadamard type inequalities for quasiconvex functions.

Chapter 8, by Frenk and Schaible, is devoted to Fractional Program-
ming. It concludes the first part of the book which focuses on gener-
alized convexity. Fractional programs are ratio-optimization problems
involving one or several ratios in the objective function. Such objective
functions are usually not convex, but often generalized convex in case
of convex, concave or affine numerators and denominators. An exten-
sive literature comparable to that for other major classes of optimization
problems has been developed. During the last forty years fractional pro-
gramming has benefited from advances in generalized convexity and vice
versa.

The chapter begins with a survey of a large variety of applications
of single-ratio, min-max and sum-of-ratios fractional programs. Recent
applications are emphasized. Some case studies are mentioned too. This
survey of fractional programming applications reinforces the relevance
of generalized convexity to applied disciplines, in particular to manage-
ment science. With that it complements the presentation of generalized
convexity applications in economic theory in Chapter 6. The survey
of fractional programming applications is followed by a detailed anal-
ysis of a min-max fractional program which includes the single-ratio
and the more restricted, classical min-max fractional program as special
cases. Basis of the analysis is a parametric approach. First a primal
Dinkelbach-type algorithm is proposed and its convergence properties
are analyzed. Then duality is introduced giving rise to a dual max-min
fractional program and duality relations are established. Finally a dual
Dinkelbach-type algorithm is presented and its convergence properties
are derived.

The first chapter of the second part of the book is Chapter 9, by
Hadjisavvas and Schaible. It starts with an introductory presentation of
nine kinds of generalized monotone maps and shows the links between
these maps and differentiable generalized convex functions: a function
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belongs to one of nine classes of generalized convex functions if and only
if its gradient belongs to a corresponding class of generalized monotone
maps. The remainder of the chapter is devoted to criteria for the gen-
eralized monotonicity of maps. This is done first for differentiable maps
and then for nondifferentiable maps (locally Lipschitz or just continu-
ous). Finally, the special case of affine maps is discussed in considerable
detail in view of its relevance to generalized convex quadratic programs
and generalized monotone linear complementarity problems.

Generalized convex functions are not necessarily differentiable. In
this case, the gradient is usually replaced by an appropriate general-
ized derivative. Chapter 10, by Komlósi, is devoted to the study of
nonsmooth generalized convex functions with the help of special classes
of generalized derivatives. Several results are presented on the links
between generalized monotonicity of generalized derivatives and gener-
alized convexity of the functions under discussion. The abundance of
different notions of generalized derivatives has motivated an axiomatic
treatment resulting, among others, in the abstract concept of first order
approximations. The usefulness of quasiconvex first order approxima-
tions in optimization theory is investigated. In particular, generalized
upper quasidifferentiable functions are studied, and quasiconvex Farkas-
type theorems and KKT-type optimality conditions are established.

The relationship between generalized convex functions and general-
ized monotone maps can also be approached by using subdifferentials
instead of generalized derivatives. For nonconvex functions, the standard
Fenchel-Moreau subdifferential is not suitable. This led Clarke, Rock-
afellar and others to the introduction of many different subdifferentials.
In Chapter 11, by Hadjisavvas, the relationship of generalized convex-
ity of lower semicontinuous functions to the generalized monotonicity of
their subdifferential is presented. This unifying approach includes most
subdifferentials. Some new kinds of generalized monotonicity, such as
cyclic generalized monotonicity and proper quasimonotonicity are in-
troduced. The latter notion has proved to be closely linked to Minty
variational inequalities. Finally, some recent results on the maximal-
ity of pseudomonotone operators and its relationship to continuity are
presented.

Generalized monotonicity is not exclusively a “dual” concept of gen-
eralized convexity. The concept of pseudomonotonicity, for instance,
appeared first in complementarity problems. Chapter 12, by Yao and
Chadli, demonstrates the importance of this concept in complementar-
ity problems and variational inequalities. In the first part of the chapter
recent results on existence and uniqueness of solutions for complementar-
ity problems and variational inequalities in infinite-dimensional spaces
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under pseudomonotonicity are reported. An application of the comple-
mentarity problem to the post-critical equilibrium state of a thin elastic
plate is given. In the next part topological pseudomonotonicity is pre-
sented, and again existence results are derived and some applications are
given. The notion of topological pseudomonotonicity was introduced by
Brézis in 1968 for nonlinear operators in order to obtain existence theo-
rems for quasi-linear elliptic and parabolic partial differential equations.
In the final part some possible extensions of complementarity and vari-
ational inequality problems are given, and the equivalence of several
problems including complementarity problems, least element problems
and variational inequality problems is discussed.

Equilibrium problems provide the most general and unified framework
for optimization, complementarity problems and variational inequalities.
Traditionally, most works on various aspects of equilibrium problems
were limited to monotone problems. However, the monotonicity assump-
tion turned out to be too restrictive for many applied problems, espe-
cially in economics and management science. During the last decade gen-
eralized monotone equilibrium problems were investigated rather inten-
sively and much progress has been made in different directions. Chapter
13, by Konnov, presents basic results in the theory and for the construc-
tion of solution methods for generalized monotone equilibrium problems
and variational inequalities. Vector-valued equilibrium problems are also
considered.

Probably the first use of generalized monotonicity (well before the
birth of this terminology) was made already sixty eight years ago in
economics. As said before, it occurred independently in an article by
Georgescu-Roegen (1936), dealing with the concept of a local preference
in consumer theory, and in an article by Wald (1936), containing the
first rigorous proof of the existence of a competitive general equilibrium.
These significant advances are presented in Chapter 14, by John. This
chapter provides further important examples of the use of generalized
convexity and generalized monotonicity in economics. The first example
is consumer theory. The utility function approach puts emphasis on
the quasiconcavity and pseudoconcavity of that function. The demand
relation approach displays generalized monotonicity properties that are,
in the economic literature, well known as axioms in revealed preference
theory. In case of convex (respectively semistrictly or strictly convex)
nontransitive preferences, various generalized monotonicity properties of
demand arise quite naturally. The second interesting example is general
equilibrium theory. The relevance of pseudomonotone excess demand to
the stability of an equilibrium is recognized by its representability as a
solution of a Minty variational inequality problem.
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Research in generalized convexity and generalized monotonicity con-
tinues, and scientific results are numerous. They are presented regu-
larly in special session clusters at many major conferences each year,
in particular at the International Symposium on Generalized Convexity
and Monotonicity which is organized usually every three years. Un-
til today, there have been seven such symposia. The last three were
organized by the “Working Group on Generalized Convexity”. This
is a growing association of several hundred researchers, whose website
(http://www.genconv.org) provides information on past and future
conferences, proceedings, publications etc.

We express our sincere gratitude to Dr. John Martindale, Kluwer
Academic Publishers for his outstanding, continuous support in the pro-
duction of this volume.

NICOLAS HADJISAVVAS

SANDOR KOMLOSI

SIEGFRIED SCHAIBLE
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Chapter 1

INTRODUCTION TO CONVEX
AND QUASICONVEX ANALYSIS

Johannes B.G. Frenk
Department of Economics, Econometric Institute

Erasmus University

3000DR Rotterdam, The Netherlands

frenk@few.eur.nl

Gábor Kassay
Faculty of Mathematics and Computer Science

Babes Bolyai University

3400 Cluj, Romania

kassay@math.ubbcluj.ro

Abstract In the first chapter of this book the basic results within convex and
quasiconvex analysis are presented. In Section 2 we consider in de-
tail the algebraic and topological properties of convex sets within
together with their primal and dual representations. In Section 3 we
apply the results for convex sets to convex and quasiconvex functions
and show how these results can be used to give primal and dual rep-
resentations of the functions considered in this field. As such, most of
the results are well known with the exception of Subsection 3.4 deal-
ing with dual representations of quasiconvex functions. In Section 3
we consider applications of convex analysis to noncooperative game and
minimax theory, Lagrangian duality in optimization and the properties
of positively homogeneous evenly quasiconvex functions. Among these
result an elementary proof of the well-known Sion’s minimax theorem
concerning quasiconvex-quasiconcave bifunctions is presented, thereby
avoiding the less elementary fixed point arguments. Most of the results
are proved in detail and the authors have tried to make these proofs as
transparent as possible. Remember that convex analysis deals with the
study of convex cones and convex sets and these objects are generaliza-
tions of linear subspaces and affine sets, thereby extending the field of
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linear algebra. Although some of the proofs are technical, it is possible
to give a clear geometrical interpretation of the main ideas of convex
analysis. Finally in Section 5 we list a short and probably incomplete
overview on the history of convex and quasiconvex analysis.

Keywords: Convex Analysis, Quasiconvex Analysis, Noncooperative games, Mini-
max, Optimization theory.

1. Introduction

In this chapter the fundamental questions studied within the field of
convex and quasiconvex analysis are discussed. Although some of these
questions can also be answered within infinite dimensional real topolog-
ical vector spaces, our universe will be the finite dimensional real linear
space equipped with the well-known Euclidean norm Since con-
vex and quasiconvex analysis can be seen as the study of certain sets, we
consider in Section 2 the basic sets studied in this field and list with or
without proof the most important algebraic and topological properties
of those sets. In this section a proof based on elementary calculus of
the important separation result for disjoint convex sets in will be
given. In Section 3 we introduce the so-called convex and quasiconvex
functions and show that the study of these functions can be reduced to
the study of the sets considered in Section 2. As such, the formulation
of the separation result for disjoint convex sets is now given by the dual
representation of a convex or quasiconvex function. In Section 4 we will
discuss important applications of convex and quasiconvex analysis to op-
timization theory, game theory and the study of positively homogeneous
evenly quasiconvex functions. Finally in Section 5 we consider some of
the historical developments within the field of convex and quasiconvex
analysis.

2. Sets studied within convex and quasiconvex
analysis

In this section the basic sets studied within convex and quasiconvex
analysis in are discussed and their most important properties listed.
Since in some cases these properties are well-known we often mention
them without any proof. We introduce in Subsection 2.1 the definition
of a linear subspace, an affine set, a cone and a convex set in together
with their so-called primal representation. Also the important concept of
a hull operation applied to an arbitrary set is considered. In Subsection
2.2 the topological properties of the sets considered in Subsection 2.1 are
listed and in Subsection 2.3 we prove the well-known separation result
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for disjoint convex sets. Finally in Subsection 2.4 this separation result
is applied to derive the so-called dual representation of a closed convex
set. In case proofs are included we have tried to make these proofs
as transparent and simple as possible. Also in some cases these proofs
can be easily adapted, if our universe is an infinite dimensional real
topological vector space. Most of the material in this section together
with the proofs can be found in Lancaster and Tismenetsky (cf. [47]) for
the linear algebra part, while for the convex analysis part the reader is
referred to Rockafellar (cf. [63]) and Hiriart-Urruty and Lemaréchal (cf.
[34], [35]).

2.1 Algebraic properties of sets
As already observed our universe will always be the

Euclidean space and any element of is denoted by the vector
or The inner product

is then given by

while the Euclidean norm is defined by

To simplify the notation, we also introduce for the sets and
the Minkowsky sum given by

The first sets to be introduced are the main topic of study within linear
algebra (cf. [47]).

Definition 1.1 A set is called a linear subspace if L is non-
empty and for every Moreover, a set
is called affine if for every

The empty set  and are extreme examples of an affine set. Also
it can be shown that the set M is affine and if and only if M
is a linear subspace and for each nonempty affine set M there exists a
unique linear subspace satisfying

for any given (cf. [63]).
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Since is a linear subspace, we can apply to any nonempty set
the so-called linear hull operation and construct the set

For any collection of linear subspaces containing S it is obvious
that the intersection is again a linear subspace containing S and
this shows that the set is the smallest linear subspace containing
S. The set is called the linear hull generated by the set S and if S
has a finite number of elements the linear hull is called finitely generated.
By a similar argument one can construct, using the so-called affine hull
operation, the smallest affine set containing S. This set, denoted by

is called the affine hull generated by the set S and is given by

If the set S has a finite number of elements, the affine hull is called
finitely generated. Since any linear subspace is an affine set, it is clear
that To give a so-called primal representation of these
sets we introduce the next definition.

Definition 1.2 A vector x is a linear combination of the vectors
if

A vector x is an affine combination of the vectors if

A linear combination of the nonempty set S is given by the set
with while an affine combination of the same set is
given by the set with and

A trivial consequence of Definitions 1.1 and 1.2 is given by the next
result which also holds in infinite dimensional linear spaces.

Lemma 1.1 A nonempty set is a linear subspace if and only if it
contains all linear combinations of the set L. Moreover, a nonempty set

is an affine set if and only if it contains all affine combinations
of the set M.

The result in Lemma 1.1 yields a primal representation of a linear
subspace and an affine set. In particular, we obtain from Lemma 1.1
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that the set with nonempty equals all linear
(affine) combinations of the set S. This means

and

For any nonempty sets and one can now show using
relation (1.4) that

and using relation (1.5) that

Also, for a linear mapping, it is easy to verify that

and for an affine mapping, that

Recall a mapping is called linear if

for every and and it is called affine if

for every and Moreover, in case we apply relation (1.7)
to the affine mapping given by with

and use relation (1.9) the following rule for the affine hull of
the sum of sets is easy to verify.

Lemma 1.2 For any nonempty sets and it follows
that

Another application of relations (1.4) and (1.5) yields the next result.
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Lemma 1.3 For any nonempty set and belonging to
it follows that

An improvement of Lemma 1.1 is given by the observation that any
linear subspace (affine set) of can be written as the linear or affine
hull of a finite subset To show this improvement one needs to
introduce the next definition (cf. [47]).

Definition 1.3 The vectors are called linearly independent if

Moreover, the vectors are called affinely independent if

For an equivalent characterization of affinely independent vec-
tors is given by the observation that the vectors are affinely
independent if and only if the vectors are linear inde-
pendent (cf. [34]). To explain the name linearly and affinely independent
we observe that the vectors are linearly independent if and only
if any vector x belonging to the linear hull can be writ-
ten as a unique linear combination of the vectors Moreover,
the vectors are affinely independent if and only if any vector x
belonging to the affine hull can be written as a unique
affine combination of the vectors The improvement of Lemma
1.1 is given by the following result well-known within linear algebra (cf.
[47]).

Lemma 1.4 For any linear subspace containing nonzero ele-
ments there exists a set of linearly independent vectors
satisfying Also for any nonempty affine set

there exists a set of affinely independent vectors
satisfying

By Lemma 1.4 any linear subspace containing nonzero ele-
ments can be represented as the linear hull of linearly independent
vectors. If this holds, the dimension dim(L) of the linear subspace L is
given by Since any x belonging to L can be written as a unique lin-
ear combination of linearly independent vectors this shows (cf. [47]) that
dim(L) is well defined for L containing nonzero elements. If L = {0} the
dimension dim(L) is by definition equal to 0. To extend this to affine sets
we observe by relation (1.1) that any nonempty affine set M is parallel
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to its unique subspace and the dimension dim(M) of a nonempty
affine set M is now given by By definition the dimension of
the empty set equals –1. Finally, the dimension dim(S) of an arbi-
trary set          is given by dim(aff(S)). In the next definition we will
introduce the sets which are the main objects of study within the field
of convex and quasiconvex analysis.

Definition 1.4 A set is called convex if for
every Moreover, a set is called a cone if
for every

The empty set is an extreme example of a convex set and a cone. An
affine set is clearly a convex set but it is obvious that not every convex
set is an affine set. This shows that convex analysis is an extension of
linear algebra. Moreover, it is easy to show for every cone K that

Finally, for an affine mapping and a nonempty
convex set it follows that the set A(C) is convex, while for
a linear mapping and a nonempty cone the set A (K) is a cone.

To relate convex sets to convex cones we observe for and
any nonempty set that the set

is a cone. This implies by relation (1.10) that the set is a
convex cone for any convex set It is now clear for any nonempty
set that

and so any convex set C can be seen as an intersection of the convex cone
and the affine set  This shows that convex sets

are closely related to convex cones and by relation (1.11) one can study
convex sets by only studying affine sets and convex cones containing 0.
We will not pursue this approach but only remark that the above relation
is sometimes useful. Introducing an important subclass of convex sets,
let a be a nonzero vector belonging to and and

The set is called a halfspace and clearly this halfspace is a
convex set. Moreover, the set is also
called a halfspace and this set is also a convex set. Another important
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subclass of convex sets useful within the study of quasiconvex functions
is given by the following definition (cf. [23]).

Definition 1.5 A set is called evenly convex if or
is the intersection of a collection of halfspaces

Clearly the empty set is evenly convex and since any halfspace
can be obtained by intersecting the halfspaces

it also follows that any halfspace is evenly convex. In Sub-
section 2.3 it will be shown that any closed or open convex set is evenly
convex. However, there exist convex sets which are not evenly convex.

Example 1.1 If
then it follows that C is convex but not evenly convex.

Since is a convex set, we can apply to any nonempty set
the so-called convex hull operation and construct the nonempty set

For any collection of convex sets containing S it is obvious
that the intersection is again a convex set containing S and this
shows that the set co(S) is the smallest convex set containing S. The
set is called the convex hull generated by the set S and if S has
a finite number of elements the convex hull is called finitely generated.
Since is by definition evenly convex one can construct by a similar
argument using the so-called evenly convex hull operation the smallest
evenly convex set containing the nonempty set S. This set, denoted by

is called the evenly convex hull generated by the set S and is given
by

Since any evenly convex set is convex it follows that
By the so-called canonic hull operation one can also construct the

smallest convex cone containing the nonempty set S, and the smallest
convex cone containing The last set is given by

Unfortunately this set is called the convex cone generated by S (cf. [63]).
Clearly the set is in general not equal to the smallest convex cone
containing S unless the zero element belongs to S.  To give an alternative
characterization of the above sets we introduce the next definition.



Convex and Quasiconvex Analysis 11

Definition 1.6 A vector x is a canonical combination of the vectors
if

The vector x is called a strict canonical combination of the same vectors
if A vector x is a convex combination of the vectors

if

A canonical combination of the nonempty set S is given by the set
with while a strict canonical combina-

tion of the same set is given by with Finally
a convex combination of the set S is given by the set with

A trivial consequence of Definitions 1.4 and 1.6 is given by the next
result which also holds in infinite dimensional linear spaces.

Lemma 1.5 A nonempty set is a convex cone (convex cone
containing 0) if and only if it contains all strict canonical (canonical)
combinations of the set K. Moreover, a nonempty set is a convex
set if and only if it contains all convex combinations of the set C.

The result in Lemma 1.5 yields a primal representation of a convex
cone and a convex set. In particular, we obtain from Lemma 1.5 that the
set with nonempty equals all canonical (convex)
combinations of the set S. This means

and

We observe that the representations of and listed in rela-
tions (1.16) and (1.17), are the “convex equivalences” of the representa-
tion of          and           given by relations (1.4) and (1.5). Moreover,
to relate the above representations, it is easy to see that

Since by relations (1.16) and (1.17) a convex cone containing 0 (convex
set) can be seen as a generalization of a linear subspace (affine set) one
might wonder whether a similar result as in Lemma 1.4 holds. Hence we
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wonder whether any convex cone containing 0 (convex set) can be seen
as a canonical (convex) combination of a finite set S.

Example 1.2 Contrary to linear subspaces it is not true that any con-
vex cone containing 0 is a canonical combination of a finite set. An
example is given by the so-called or ice-cream cone

Despite this negative result it is possible in finite dimensional linear
spaces to improve for canonical hulls and convex hulls the representation
given by relations (1.16) and (1.17). In the next result it is shown that
any element belonging to cone(S) with S containing nonzero elements
can be written as a canonical combination of at most linearly inde-
pendent vectors belonging to S. This is called Caratheodory’s theorem
for canonical hulls. Using this result and relation (1.11) a related result
holds for convex hulls and in this case linearly independent is replaced
by affinely independent and at most is replaced by at most
Clearly this result (cf. [63]) is the “convex equivalence” of Lemma 1.4.

Lemma 1.6 If is a set containing nonzero elements, then for
any x belonging to there exists a set of linearly independent
vectors belonging to S such that x can be written as a
canonical combination of these vectors. Moreover, for any
there exists a set of affinely independent vectors
belonging to S such that x can be written as a convex combination of
these vectors.

Proof. Clearly for the desired result holds and so
should be nonzero. By relation (1.16) there exists some finite set

and satisfying If the vectors
are linearly independent, then clearly and we are

done. Otherwise, there exists a nonzero sequence satisfying
and without loss of generality we may assume that the

set is nonempty. If
and we obtain that

and so x can be written as a strict canonical combination of at most
vectors. Applying now the same procedure again until we have identified
a subset of consisting of linearly independent vectors the
first part follows. To show the result for convex hulls it follows for any

that (x, 1) belongs to
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By relation (1.18) the set is the convex cone generated
by S × {1} and by the first part the vector (x, 1) can be written as
a canonical combination of at most linearly independent vectors

Hence one can find positive scalars satisfying
and and since the vectors

are linearly independent if and only if the vectors are
affinely independent the desired result follows.

Although in the above lemma for cones and for
convex hulls it is easy to see that can be replaced by
This concludes our discussion on algebraic properties of linear subspaces,
affine sets, convex sets, and convex cones. In the next subsection we
investigate topological properties of these sets.

2.2 Topological properties of sets

In this subsection we focus on the topological properties of the dif-
ferent classes of sets used within linear algebra and convex analysis. To
start with affine sets one can show the following result. This result can
be easily verified using Lemma 1.4 (cf. [46]).

Lemma 1.7 Any affine set is closed.

An important consequence of Lemma 1.7 is given by the following
observation. For a given set let and denote the
interior, respectively the closure of the set S. By Lemma 1.7 we obtain

and this yields by the monotonicity of the hull
operation that

Opposed to affine sets it is not true that convex cones and convex sets
are closed. However, as will be shown later, the algebraic property con-
vexity and the topological property closed are necessary and sufficient to
give a so-called dual representation of a set. Due to this important rep-
resentation one needs beforehand easy sufficient conditions on a convex
set to be closed.  Recall that every affine set can be seen as the affine hull
of a finite set of affinely independent vectors and this property implies
that every affine set is closed. By this observation it seems reasonable
to consider convex sets which are the convex hull of a smaller set and
identify which property on the smaller set S one needs to guarantee that
the convex set is closed. Looking at the following counterexample
it is not sufficient to impose that the set S is closed and this implies that
we need a stronger property on S.
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Example 1.3 If then S is closed and its
convex hull given by is
clearly not closed.

In the above counterexample the closed set S is unbounded and this
prevents to be closed. Imposing now the additional property that
the closed set S is bounded or equivalently compact, one can show that

is compact and hence closed. Using relation (1.18) this also yields
a way to identify for which sets S the set is closed. So finiteness
of the generator S for affine sets should be replaced by compactness of S
for convex hulls. To prove the next result we first introduce the so-called
unit simplex

If the function with denoting the
Cartesian product of the set is given by

then by Lemma 1.6 it follows that

Using relation (1.20) one can now show the following result (cf. [34]).

Lemma 1.8 If the nonempty set is compact, then the set
is compact. Moreover, if S is compact and 0 does not belong to
then the set is closed.

Proof. It is well known, that the set is compact (cf. [64])
and this shows by relation (1.20) and a continuous function that
is compact. To verify the second part we observe by relation (1.18) that

and so we need to show that the set
is closed. Consider now an arbitrary sequence belonging
to satisfying This implies

and since and is compact there exists a subsequence
with and Hence we obtain

and so showing the desired result.

The following example shows that the condition cannot be
omitted in Lemma 1.8.
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Example 1.4 If the condition is omitted in Lemma 1.8, then the
set might not be closed as shown by the following example. Let

Clearly S is compact and
Moreover, by relation (1.18) it follows that

and this set is not closed.

An immediate consequence of Caratheodory’s theorem (Lemma 1.6)
and Lemma 1.8 is given by the next result for convex cones generated
by some nonempty set S.

Lemma 1.9 If the set contains a finite number of elements,
then the set is closed.

Proof. For the finite set S we consider the finite set
and the set I consists of linearly independent vectors}. By Lemma 1.6
it follows that Since each I belonging to V is a
finite set of linearly independent vectors the set I is compact and 0 does
not belong to co(I). This shows by Lemma 1.8 that is closed for
every I belonging to V and since V is a finite set the result follows.

Next we introduce within a finite dimensional linear space the defi-
nition of a relative interior point, generalizing the notion of an interior
point. A similar notion can also be defined within a so-called (infinite
dimensional) locally convex topological vector space (cf. [58]).

Definition 1.7 If a vector is called
a relative interior point of the set if x belongs to and
there exists some such that

The relative interior of any set S is given by
is a relative interior point of S}. The set is called relatively open
if S equals and it is called regular if is nonempty.

As shown by the next example it is quite natural to assume that x
belongs to This assumption implies that

Example 1.5 Consider the set and let x = (1,0).
Clearly the set is given by and for it follows
that If one would delete in the definition of a
relative interior point the condition that x must belong to then
according to this, the vector (1, 0) would be a relative interior point of
the set S. However, the vector (1, 0) is not an element of S and so this
definition is not natural.
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By Definition 1.7 it is clear for full dimensional or equivalently
that relative interior means interior and hence relative

refers to relative with respect to By the same definition, we also
obtain that every affine set is relatively open. Moreover, since by Lemma
1.7 the set is closed it follows that and so it is
useless to introduce closure relative to the affine hull of a given set S.
Contrary to the different hull operations the relative interior operator is
not a monotone operator. This means that does not imply that

Example 1.6 If and then both sets are convex
and and This shows and

To guarantee that the relative interior operator is monotone we need
to impose the additional condition that If this holds
it is easy to check that

By the above observation it is important to know which different sets
cannot be distinguished by the affine hull operator. The next lemma
shows that this holds for the sets S, and This
result can be easily verified using

Lemma 1.10 It follows for every nonempty set that

By relation (1.21) and Lemma 1.10 we obtain
and for arbitrary sets Moreover,

by relation (1.7) it is easy to verify that

Since we also like to show an alternative definition
of a relative interior point is given by the next lemma.

Lemma 1.11 If the set is regular, then the vector x is a relative
interior point of the set S if and only if x belongs to and there
exists some such that

Proof. We only need to verify the if implication. Let x be a relative
interior point of the set S. This means and there exists some

such that Since we obtain that
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is nonempty for every and so we may consider
any point y belonging to Clearly and

and this shows Hence y belongs
to and we have verified that

The next result shows for regular sets that the affine hull
operation cannot distinguish the sets and S and so this lemma can
be seen as an extension of Lemma 1.10.

Lemma 1.12 If the set is regular, then it follows that

Proof. It is clear that and to show the converse
inclusion it is sufficient to verify that Let

Since the set S is regular one can find some and
so by Lemma 1.11 there exists some satisfying

Clearly the set belongs to
and this implies by relation (1.23) that

This means that the halfline starting in y and passing through
is a subset of and contains x. Hence

x belongs to and so

An immediate consequence of Lemmas 1.11 and 1.12 is given by the
observation that for any regular set it follows that x is a relative
interior point of S if and only if x belongs to and there exists
some satisfying This implies for
every regular set that and since by definition

we obtain for any set that

Keeping in mind the close relationship between affine hulls and convex
sets and the observation that nonempty affine sets are regular (in fact

we might wonder whether convex sets are regular. This is
indeed the case as the following result shows (cf. [63]).

Lemma 1.13 Every nonempty convex set is regular.

Although convexity is not a necessary condition for a set to be regular
it follows by the definition of a regular set that at least around any
relative interior point the set must be “locally” convex. A set, which
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clearly violates this condition, is the set of rational numbers and
this set is therefore not regular. Besides convexity of the set C the
proof of Lemma 1.13 uses also that C is a subset of a finite dimensional
linear space. If the last condition does not hold and C is an infinite
dimensional convex subset of a locally convex topological vector space,
then the above result might not hold. We will now list some important
properties of relative interiors. To start with this, we first verify the
following technical result.

Lemma 1.14 If         are nonempty sets, then it follows for
every that

Proof. Consider for the vector with
and It is now necessary to verify that

belongs to By the definition of y and we obtain
that

and so it follows that belongs to Hence the vector belongs
to and this shows the desired result.

Applying now Lemma 1.14, the next important result for convex sets
can be shown. This result will play an prominent role in verifying the
topological properties of convex sets.

Lemma 1.15 If       is a nonempty convex set, then it follows for
every that

Proof. To prove the above result it is sufficient to show that
for any and Clearly this set is

a subset of             and since     belongs to                 there exists some
satisfying

Moreover, since it follows that
and this implies
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Applying now Lemma 1.14 and relation (1.25) we obtain by the convexity
of the set C that

and this shows the result.

By Lemmas 1.13 and 1.15 it follows for any nonempty convex set
C that the set       is nonempty and convex.  Also, since

we obtain that is a convex set. An easy and im-
portant consequence of Lemma 1.15 is given by the observation that
the relative interior operator cannot distinguish the convex sets C and

A similar observation holds for the closure operator applied to the
convex sets and C. The next result also plays an important role
in the proof of the weak separation result to be discussed in Subsection
2.3.

Lemma 1.16 If is a nonempty convex set, then it follows that

Proof. To prove the first formula we only need to check that
To verify this we consider and select some y belong-

ing to ri(C). By Lemma 1.15 the half-open line segment [y, x) belongs
to and this implies that the vector x belongs to Hence

and the first formula is verified. To prove the second
formula, it follows immediately by relation (1.21) that
To verify consider an arbitrary x belonging to

and so one can find some satisfying

Moreover, since is nonempty, construct for some the
line through the points x and y. Since

and it follows that and so by
relation (1.26) there exists some satisfying

This shows

and since and this implies by Lemma 1.15 and
relation (1.27) that Hence it follows that
and this proves the second formula.

In the above lemma one might wonder whether the convexity of the
set C is necessary. In the following example we present a regular set
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S with and convex and S not convex and this set does not
satisfy the result of Lemma 1.16.

Example 1.7 Let This set is clearly not convex
and while Moreover, and

We will now give a primal representation of the relative interior of a
convex set S (cf. [63]).

Lemma 1.17 If is a nonempty convex set, then it follows that

The above result is equivalent to the geometrically obvious fact that
for S a convex set and any and the line segment [y, x]
can be extended beyond x without leaving S. Also, by relation (1.24)
and Lemma 1.16 another primal representation of with S a convex
set is given by

Since affine mappings preserve convexity it is also of interest to know how
the relative interior operator behaves under an affine mapping. Using
Lemma 1.17 one can show the next result (cf. [63]).

Lemma 1.18 If is an affine mapping and is a
nonempty convex set, then it follows that More-
over, if is a nonempty convex set satisfying

is nonempty, then

As shown by the following counterexample the condition
is nonempty cannot be omitted in the previous lemma.

Example 1.8 Let given by for all and
let Then clearly and

An immediate consequence of Lemma 1.18 is given by the observation
that

for any and convex sets. To conclude our dis-
cussion on topological properties for sets we finally mention the following
result (cf. [63]).
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Lemma 1.19 If the sets are convex and is non-
empty, then it follows that Moreover, if the set
I is finite, we obtain

As shown by the next counterexample it is necessary to assume in
Lemma 1.19 that the intersection is nonempty.

Example 1.9 Let and
It is obvious that

and and so we obtain and
For the same example it is also easy to see that

In the following counterexample we show that the second result listed
in Lemma 1.19 does not hold if the set I is not finite.

Example 1.10 Let and For this
example it follows and since

for each we obtain

This last example concludes our discussion of topological properties
of convex sets. In the next subsection we will discuss basic separation
results for those sets.

2.3 Separation of convex sets
For a nonempty convex set consider for any the

so-called minimum norm problem given by

If additionally C is closed, a standard application of the Weierstrass
theorem (cf. [64]) shows that for every y the optimal objective value

in the above optimization problem is attained. To verify that the
minimum norm problem has a unique solution, observe for any
belonging to that

For every belonging to C it follows by relation (1.29) with
replaced by for that

and so for different optimal solutions of the minimum norm
problem (P(y)) we obtain that Since the set C
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is convex and hence belongs to C, this yields a contradiction
and the optimal solution is therefore unique. Denoting now this optimal
solution by one can show the following result (cf. [34]).

Lemma 1.20 For any and a nonempty closed convex
set it follows that

Moreover, for every the triangle inequality

holds.

Proof. To show the only if implication we observe that

and this shows by the Cauchy-Schwarz inequality (cf. [46])

for every If we obtain, substituting x = y in relation
(1.30), that and by the nonnegativity of this yields

Also, using we obtain and so
Moreover, if then and this implies by relation

(1.30) that for every Hence z is an optimal
solution and by the uniqueness of this solution we obtain To
verify the if implication, it follows for that and since
C is convex this shows

for every and Rewriting relation (1.31) we obtain for
every that and letting

the desired inequality follows. To show the triangle inequality, we
observe using for every that

The last term equals and
applying now the first part yields the desired inequality.

Actually the above result is nothing else than the first order necessary
and sufficient condition for a minimum of a convex function on a closed
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convex set. We will now prove one of the most fundamental results in
convex analysis. This result has an obvious geometric interpretation
and serves as a basic tool in deriving dual representations. In infinite
dimensional locally convex topological vector spaces the next result is
also known as the Hahn-Banach theorem (cf. [65]).

Theorem 1.1 If is a nonempty convex set and y does not
belong to the set then there exists some nonzero vector
and with for every x belonging to In
particular, the vector satisfies this inequality.

Proof. By Lemma 1.20 we obtain for every and the nonzero
vector that This shows

and since the desired result follows.

The nonzero vector belonging to is called the normal
vector of the separating hyperplane

and and this hyperplane strongly separates the
closed convex set and y. Since we may take as a normal
vector of the hyperplane the vector and this vector has norm
1 and belongs to

The strong separation result of Theorem 1.1 can be used to prove
the following “weaker” separation result valid under a weaker condition
on the point y. Instead of y does not belong to we assume that
y does not belong to ri(C). By Theorem 1.1 it is clear that we may
assume without loss of generality that y belongs to the relative boundary

of the convex set

Theorem 1.2 If is a nonempty convex set and y does not
belong to then there exists some nonzero vector belonging to
the unique linear subspace satisfying for every
Moreover, for the vector there exists some such that

Proof. Consider for every the set By
Lemma 1.16 it follows that y does not belong to and so there
exists some vector satisfying
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The set is a closed convex set and by relation (1.33) and Theorem
1.1 one can find some vector satisfying

for every The sequence belongs to a compact
set and so there exists a convergent subsequence with

This implies by relations (1.33), (1.34) and (1.35) that

for every and

Suppose now that there does not exist some satisfying
By relation (1.36) this implies that for every

and since y belongs to we obtain by relation (1.4) and
Lemma 1.3 that for every z belonging to Since by
relation (1.37) the vector belongs to this implies
and so we contradict Hence it must follow that there exists
some satisfying and this proves the desired result.

The separation of Theorem 1.2 is called a proper separation between
the set C and the vector y. One can also introduce proper separation
between two convex sets.

Definition 1.8 The convex sets are called properly sepa-
rated if there exist some satisfying

for some and

An immediate consequence of Theorem 1.2 is given by the next result.

Theorem 1.3 If the convex sets satisfy
then the two sets can be properly separated.

Proof. By relation (1.28) we obtain for and that
and this shows if and only if
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Applying now Theorem 1.2 with y = 0 and the convex
set given by the result follows.

The above separation results are the corner stones of convex and quasi-
convex analysis. Observe in infinite dimensional locally convex topolog-
ical vector spaces one can show similar separation results under stronger
assumptions on the convex sets and (cf. [65],[17],[58]). An easy
consequence of the separation results is given by the observation that
closed convex sets and relatively open convex sets are evenly convex.
These convex sets play an important role in duality theory for quasicon-
vex functions.

Lemma 1.21 If the nonempty convex set is closed or relatively
open, then C is evenly convex.

Proof. If the result follows by definition and so we may suppose
that the closed set C is a proper subset of Hence there exists some

and this implies by Theorem 1.1 that there exists some
and satisfying This shows that the set of all
open halfspaces H satisfying is nonempty and by the definition
of it is clear that Again by Theorem 1.1
one can show using contradiction that C equals and
this shows that every closed convex set is evenly convex. To verify the
second result, we observe and since is nonempty by
the first part, it follows that is nonempty and
To show that we assume by contradiction that
there exists some with for every Due to
it follows by Theorem 1.2 that there exists some nonzero
satisfying

for every Since the convex set C is relatively open there exists for
every some satisfying and so by relation (1.38)
we obtain for every that
Hence the open halfspace with
and belongs to and since this contradicts

for every H belonging to

This concludes our discussion of separation results of convex sets. In
the next subsection we will use these separation results to derive dual
representations for convex sets.
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2.4 Dual representations of convex sets

In contrast to the primal representation of a linear subspace, affine
set, convex cone and convex set discussed in Subsection 2.1 we can also
give a so-called dual representation of these sets. From a geometrical
point of view a primal representation is a representation from “within”
the set, while a dual representation turns out to be a representation from
“outside” the set. Such a characterization can be seen as an improvement
of the hull operation given by relations (1.2), (1.3), (1.16) and (1.17).
We start with linear subspaces or affine sets (cf. [47]).

Definition 1.9 If   is some nonempty set, then the nonempty
set given by for every is
called the orthogonal complement of the set S.

It is easy to verify that the orthogonal complement of the set S is
a linear subspace. Moreover, a basic result (cf. [47]) in linear algebra is
given by the following.

Lemma 1.22 For any linear subspace L it follows that

By Lemma 1.22 a so-called dual representation of any linear hull
with S nonempty can be constructed. Using it fol-

lows by Lemma 1.22 that Since is
the smallest linear subspace containing S and is clearly a linear
subspace containing S the previous inclusion implies

The alternative representation of in relation (1.39) is called a dual
representation. To construct a dual representation for an affine hull we
observe by Lemma 1.3 and the dual representation of a linear hull that

for belonging to Since it is easy
to verify that for every we obtain
for affine hulls the dual representation

for every
Next we discuss the dual representation of a closed convex set con-

taining 0 and a closed convex cone. This dual representation will be
verified by means of the strong separation result listed in Theorem 1.1.
Recall first the definition of a support function.
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Definition 1.10 If       is some nonempty set, then the function
given by is called the

support function of the set S.

An equivalent formulation of Theorem 1.1 involving the support func-
tion of the closed convex set C is given by the following result.

Theorem 1.4 If   is a proper nonempty convex set, then it fol-
lows that if and only if   for every

Proof. Clearly implies that for every s
belonging to To show the reverse implication let
for every and suppose by contradiction that By
Theorem 1.1 there exists some nonzero vector and satis-
fying for every x belonging to This implies

contradicting our initial assumption
and so it must follow that belongs to

To generalize the dual representation of linear subspaces in Lemma
1.22 to the larger class of closed convex sets containing 0 we need to
generalize the orthogonality relation given in Definition 1.9.

Definition 1.11 If   is a nonempty set, then the set given
by is called the polar of the
set S. Moreover, the bipolar of the set S is defined by

The polar of a nonempty set is a nonempty closed convex
set and satisfies If the nonempty set is a convex
cone, then it is easy to show that for every

and is a closed convex cone, while for L a linear subspace
it follows that Hence the polar operator applied to a linear
subspace reduces to the orthogonal operator and can therefore be seen
as a generalization of this operator. To prove a generalization of Lemma
1.22 it is convenient to introduce the so-called Minkowski functional (cf.
[65]). Recall in the next definition that

Definition 1.12 The Minkowski functional or gauge of the nonempty
set is given by the function defined by

As shown by the next result the support function of any set S con-
taining the zero vector 0 equals the gauge of the closed convex polar
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Lemma 1.23 If      is a nonempty set containing 0, then it follows
that for every

Proof. Since 0 belongs to it follows that the support function
of the set is nonnegative. Consider now the following two

cases. If we obtain for every and
This shows for every and so
Moreover, if we obtain using that

and this shows the desired result.

Finally we can prove the so-called bipolar theorem for closed convex
sets containing 0, generalizing Lemma 1.22. This representation can be
seen as a so-called dual representation of a closed convex set containing
0.

Theorem 1.5 If      is a nonempty convex set with then
it follows that

Proof. It is obvious that and so we only need to verify the
reverse inclusion. Since for any satisfying it follows
that

for every we obtain for every that
This implies and since this inequality trivially holds for

we obtain by Lemma 1.23 that for every s.
Applying now Theorem 1.4 shows and we have checked that

By a similar approach as used after Lemma 1.22 it is easy to construct
a dual representation of the convex set with S a nonempty
set. First we observe by the definition of the polar operator and using
Theorem 1.5 that Since is a
closed convex set containing and is the smallest
closed convex set containing we obtain by the previous inclusion
the general formula

The formula, listed in relation (1.41), is called the bipolar theorem for
arbitrary sets Replacing Theorem 1.4 by its equivalent version
valid in locally convex topological vector spaces one can verify using
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a similar proof the bipolar theorem (cf. [10], [37]) in locally convex
topological vector spaces.

An important special case of Theorem 1.5 is given by
with K a convex cone. By means of similar proof techniques (cf. [67]) it
is also possible to give a dual representation of the relative interior
of a convex cone K. Without proof we now list the following result. For
related results, valid in infinite dimensional topological vector spaces,
the reader should consult [38].

Theorem 1.6 For any nonempty convex cone it follows that

This concludes our section on sets. In the next section we will consider
functions studied within convex and quasiconvex analysis.

3. Functions studied within convex and
quasiconvex analysis

In this section we first introduce in Subsection 3.1 the different classes
of functions studied within convex and quasiconvex analysis and derive
their algebraic properties. These algebraic properties are an easy con-
sequence of two important relations between functions and sets and the
properties of sets derived in Subsection 2.1. Also from Subsection 2.1
we know how to apply hull operations to sets and using this it is also
possible to construct so-called hull functions. These different hull func-
tions are also introduced in Subsection 3.1 and their properties will be
derived. In Subsection 3.2 topological properties of functions are intro-
duced together with some of the “topological” hull functions. It will
turn out that especially the class of lower semicontinuous functions is
extremely important in this field. Finally in Subsections 3.3 and 3.4 dual
characterizations of the considered functions will be derived. The key
results in these sections are the Fenchel-Moreau theorem within convex
analysis and its generalization to the so-called evenly quasiconvex and
lower semicontinuous quasiconvex functions.

3.1 Algebraic properties of functions
In this subsection we relate functions to sets and use the algebraic

properties of sets given in Subsection 2.1 to derive algebraic properties
of functions. To start with this approach, let be an
extended real valued function and associate with its so-called epigraph
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A related set is the strict epigraph

Within convex analysis it is now useful to represent a function by the
obvious relation (cf. [63])

By definition and this only happens if the vector x does
not belong to the so-called effective domain

of the function By this observation it follows that is nonempty
if and only if is nonempty and if this holds we obtain

with A the projection of onto given by As shown
by the following definition, the representation of the function given by
relation (1.44) is useful in the study of convex functions.

Definition 1.13 The function is called convex if the
set is convex. Moreover, the function is called
positively homogeneous if the set is a cone.

An equivalent definition of a convex function is given by the next
result, which is easy to verify.

Lemma 1.24 A function is convex if and only if the
set is convex.

Using Lemma 1.24 we obtain that a function is
convex if and only if for every

whenever In case we know additionally that
we obtain by relation (1.44) that is convex if and only if for every

and so we recover the more familiar definition of a convex function. An
important special case satisfying relation (1.48) is given by and
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is nonempty. If this holds the function is called proper. Also
the next result is easy to verify.

Lemma 1.25 The function is positively homoge-
neous if and only if for every and

To investigate under which operations on convex functions this prop-
erty is preserved we observe for any collection of functions
that

Since the intersection of convex sets is again convex we obtain by rela-
tion (1.49) that the function is convex if is convex for every

Moreover, by relation (1.48), it follows that any strict canonical
combination of the convex functions is again convex.

In case we use the representation of a function given by relation
(1.44), and the various hull operations on a set defined in Subsection 2.1
it is easy to introduce the various so-called hull functions of The first
hull function is given by the next definition (cf. [63]). In this volume
the various hull functions, given in this subsection and the next, are also
discussed by Crouzeix (cf. [11]).

Definition 1.14 For any function the function
given by is called

the convex hull function of the function

The next result yields an interpretation of the convex hull function of
a function Recall that the convex hull of the empty set is again the
empty set.

Lemma 1.26 For any function the convex hull
function is the greatest convex function majorized by      Moreover, it
follows that and

Proof. Without loss of generality we may assume that or equiva-
lently is nonempty. Since is a convex set we obtain by
Definition 1.14 for every that

for every This shows by relation (1.47)
that the function is convex. Moreover, if and is convex,
then and so is the greatest convex
function majorized by Using again Definition 1.14 it is also easy to
verify that To show the last part of this
lemma, let and so for every
This implies by relation (1.46) that
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with A the projection of onto and we have verified
Also, for we obtain by relation

(1.46) that and so x belongs to showing the
reverse inclusion.

In general it follows that A direct consequence of
Lemma 1.26 and the fact that is convex for a collection
of convex functions, is the often used representation of the function
given by

Next to the epigraph of a function one also con-
siders the so-called lower-level set of the function given
by

A related set is the strict lower-level set of the function of level
represented by

Within quasiconvex analysis it is now useful to represent a function
by the obvious relation (cf. [15])

As shown by the following definition, the representation of the function
given by relation (1.53), is useful in the study of quasiconvex functions.

Definition 1.15 The function is called quasiconvex
if for every the lower-level set is convex. Moreover, the
function is called evenly quasiconvex if for every the lower level
set is evenly convex.

To derive the relation between convex and quasiconvex functions we
observe that for every This
implies that a convex function is also a quasiconvex function. Since each
monotonic (increasing or decreasing) function is quasiconvex,
but not necessarily convex, the converse is not true. For quasiconvex
functions a similar result as in Lemma 1.24 can be easily verified.

Lemma 1.27 A function is quasiconvex if and only
if the set is convex for every

To recover a more familiar representation of a quasiconvex function
it can be shown easily (cf. [2]) that a function is
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quasiconvex if and only if for
every

As for convex functions, one is interested under which operations on
quasiconvex functions this property is preserved. Clearly for any collec-
tion of functions it follows that

and this shows that the function is quasiconvex if is quasi-
convex for every Opposed to convex functions, it is not true that
a strict canonical combination of quasiconvex functions is quasiconvex
and this is shown by the following example.

Example 1.11 Let be given by and

These functions are quasiconvex, but it is easy to verify by means of a
picture that the sum of the two functions is not quasiconvex.

Using relation (1.53), one can apply the different hull operations to
the lower level set. The first hull function constructed in this way is
listed in the next definition (cf. [15], [11]).

Definition 1.16 For any function the function
given by is called the

quasiconvex hull function of the function

The next result (cf. [15]) yields an interpretation of the quasiconvex
hull function of a function

Lemma 1.28 For any function the quasiconvex hull
function is the greatest quasiconvex function majorized by More-
over, it follows that for every

Proof. Again we may assume without loss of generality that is
nonempty. By Definition 1.16 it follows that
Since it is obvious that the reverse inclusion holds, we obtain

By this relation it is clear that the function is qua-
siconvex and applying a similar argument as in Lemma 1.26 to lower
level sets it can be shown that this function is the greatest quasiconvex
function majorized by the function

A direct consequence of Lemma 1.28 and the fact that is
quasiconvex for a collection of quasiconvex functions, is the
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often used representation of given by

To conclude this subsection, we consider a hull function based on
evenly convex sets (cf. [55], [11]). It will turn out that this function
plays an important role in duality theory for quasiconvex functions.

Definition 1.17 For any function the function
given by is called the

evenly quasiconvex hull function of the function

As done for the quasiconvex hull function one can show by a similar
proof the following result (cf. [55]).

Lemma 1.29 For any function the evenly quasi-
convex hull function is the greatest evenly quasiconvex function ma-
jorized by Moreover, it follows that for
every

A direct consequence of Lemma 1.29 and the fact that is
evenly quasiconvex for a collection of evenly quasiconvex func-
tions, is the often used representation of given by

Since an evenly quasiconvex function is clearly a quasiconvex function it
holds that This concludes our discussion of algebraic properties
of convex and quasiconvex functions. In the next subsection we will
consider topological properties of functions.

3.2 Topological properties of functions

In this subsection we first introduce the class of lower semicontinuous
functions. These functions play an important role within the theory of
convex functions.

Definition 1.18 If                  is some function, then this
function is called lower semicontinuous at if

with

Moreover, the function is called upper semicontinuous
at if the function is lower semicontinuous at x and it is
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called continuous at x if it is both lower and upper semicontinuous at x.
The function is called lower semicontinuous (upper
semicontinuous) if is lower semicontinuous (upper semicontinuous) at
every and it is called continuous if it is both upper and lower
semicontinuous.

We mostly abbreviate lower semicontinuous by l.s.c.. To relate the
above definition of liminf to the liminf of a sequence we observe for
every sequence that
Using this definition one can easily show the following result.

Lemma 1.30 The function is l.s.c. at
if and only if for every sequence
satisfying

Using Lemma 1.30 the following important characterization of l.s.c.
functions can be proved (cf. [63], [1]).

Theorem 1.7 If  is an extended real valued function,
then the following conditions are equivalent:

1

2

3

The function is l.s.c..

The set is closed.

The set is closed for every

It is useful to know under which operations on l.s.c. functions this
property is preserved. Since and the inter-
section of closed sets is again a closed set we obtain by Theorem 1.7 that
the function is l.s.c. if each function is l.s.c.. Also it
follows for every finite set I that and this
shows by Theorem 1.7 and the fact that a finite union of closed sets
is closed, that the function is l.s.c. if each         is  l.s.c..
Finally, for arbitrary functions we obtain
that

with denoting the complement of the set and this implies
using Theorem 1.7 that the function is l.s.c. for every
if the functions are l.s.c..

To verify the next theorem we introduce for any function
the (possibly empty) set of continuous real valued minorants

of given by
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In the next result it is now shown that any l.s.c. function can be seen
as a pointwise limit of an increasing sequence of real valued continuous
functions.

Theorem 1.8 For any function the following con-
ditions are equivalent:

1

2

3

The function is l.s.c..

There exists an increasing sequence of continuous functions
satisfying for every

with nonempty.

Proof. We only give a proof of 1 2 since the other implications are
obvious. We first show the desired result for a nonnegative uniformly
bounded function Actually, if the function is nonnegative and uni-
formly bounded, then the sequence given by

is increasing, converges point-
wise to and each is continuous (actually Lipschitz continuous
with Lipschitz constant To reduce the general case of a proper l.s.c.
function to this special case, replace the proper l.s.c. function by
the nonnegative uniformly bounded l.s.c. function where

and apply the first part. Hence there exists an
increasing sequence of continuous functions converging pointwise to

Use now that the function is one-to-one, strictly
increasing and continuous with a continuous inverse and select the
sequence

By Theorem 1.8 we obtain that the set of l.s.c. functions is the small-
est set of functions, which are closed under taking the sup operation to
any collection of functions belonging to this set and which contain the
set of continuous real valued functions.

As in the previous subsection, we are going to introduce hull oper-
ations related to functions. In this case topological properties will be
involved. First we consider the so-called l.s.c. hull function of a function

(cf. [63], [11]).

Definition 1.19 For any function the function
given by is called

the l.s.c. hull function of the function

In the next result an interpretation of the l.s.c. hull function of a
function is given.
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Lemma 1.31 For any function the l.s.c. hull func-
tion is the greatest l.s.c. function majorized by Moreover, its epi-
graph equals and If addition-
ally is a convex set, it follows that

Proof. By Definition 1.19 we obtain
This means that equals

and by Theorem 1.7 the function is l.s.c.. Moreover, if
and is l.s.c., then by Theorem 1.7 we obtain

and so it follows that To verify the last part we
may assume without loss of generality that is nonempty. Since

it follows that and by relation (1.46) we obtain
Finally, if

is a nonempty convex set it follows by Lemma 1.16 that
and since we obtain

A direct consequence of Lemma 1.31 and the fact that is
l.s.c. for a collection of l.s.c. functions, is the often used
representation of given by

For nondecreasing functions it is possible to give a
more detailed description of the l.s.c. hull function of To show this
result we first introduce the next definition.

Definition 1.20 For any function the function
is given by

The next result is needed in the proof of a dual representation of a
l.s.c. quasiconvex function.

Lemma 1.32 For any nondecreasing function it fol-
lows that  for every

Proof. Since the function is nondecreasing, it is easy to verify that
is nondecreasing and We now verify that the function is l.s.c.
and so by Theorem 1.7 we need to check that the lower-level set
is closed for every Assume now by contradiction that there exists
some such that the set is not closed. Hence there exists
a sequence with and does
not belong to Since is nondecreasing and it
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follows that for every and by Definition 1.20 one can find
some satisfying This implies that there exists some

satisfying and so contradicting
belongs to Therefore is l.s.c. and using it

follows by relation (1.58) that Suppose now by contradiction
that for some By relation (1.57) and is l.s.c. this
implies that there exists some satisfying for every

and so

This yields a contradiction and the result is proved.

The next result relates to and this result is nothing else than a
“function value translation” of the original definition of the l.s.c. hull
function of

Lemma 1.33 For any function and it
follows that

Proof. Since and
Suppose now by contradiction that

If this holds, then clearly and by
the definition of liminf there exists some finite  and satisfying

for every This implies that the open set
containing the point has an empty intersection

with However, by Lemma 1.31 it follows that belongs
to and so every open set containing must have a
nonempty intersection with Hence we obtain a contradiction and
so the result is proved.

By Lemma 1.33 and Definition 1.18 it follows immediately that

Using Theorem 1.7 and Lemmas 1.31 and 1.33 one can show that the
l.s.c. hull operation applied to functions preserves the convexity and
quasiconvexity property.

Lemma 1.34 If the function is convex (quasicon-
vex), then also the l.s.c. hull function of is convex (quasiconvex).

Proof. If the function is convex, then is a convex set and hence
also is a convex set. Since by Lemma 1.31 the epigraph of
is given by this shows that is a convex function. To verify

is a l.s.c. function we obtain that
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that is quasiconvex for quasiconvex we need to verify by Lemma 1.27
that the set is convex for every If the vectors
belong to it follows by Lemma 1.33 that

for every and This implies for every and
that there exists some vector satisfying

Applying now the quasiconvexity of the function we obtain for every
that

and since the vector belongs to the set
this yields

for every Using again Lemma 1.33 we obtain

and it follows that belongs to

To improve Lemma 1.33 for convex functions we need to give a rep-
resentation of the relative interior of the epigraph of a convex function.
This representation is an immediate consequence of the following obser-
vation. If is a convex function and is finite for
some x, then clearly and so

A similar observation also holds for and this shows that
relation (1.60) is valid for every Also by relation (1.46) and
Lemma 1.18 we obtain

with the projection on and so it follows by relation
(1.61) that
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Since the set is affine and therefore relatively open we obtain
by relation (1.62) that the conditions of Lemma 1.19 hold and hence by
relation (1.60) we obtain

for every Using this equality the next representation is
easy to verify.

Lemma 1.35 If the function is convex and
is nonempty, then the set is nonempty and

Proof. If x belongs to and it follows by relation
(1.63) that To show the reverse inclusion we proceed
as follows. If belongs to then by relation (1.61) we
obtain Applying now relation (1.63) yields

In case is a convex function with nonempty, the result of
Lemma 1.33 can be improved as follows.

Lemma 1.36 If the function is convex and
is nonempty, then for every
Moreover, if then it follows that

Proof. By Lemma 1.33 it is obvious that
If then the result holds by the previous inequality and so we
assume This implies that for
every and since it follows by Lemma 1.35 that

for every Applying now Lemma 1.15 we
obtain for every that and
this shows Hence it
follows that and since we obtain

This proves the first part and to verify
the second part we first observe that the convex set is nonempty
and so by Lemma 1.13 the set is nonempty. By Lemma 1.31
and 1.35 and is convex it now follows that

This implies using Lemma 1.16 and is convex that
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and by contradiction we obtain for every
Since always the proof is completed.

We now introduce the most important hull function used within the
field of convex analysis (cf. [63], [11]).

Definition 1.21 For any function the function
given by is

called the l.s.c. convex hull function of the function

Using now a similar approach as in Lemma 1.31 one can prove the
following result.

Lemma 1.37 For any function the l.s.c. convex hull
function is the greatest l.s.c. convex function majorized by More-
over, it follows that

and

A direct consequence of Lemma 1.37 and the fact that is
a l.s.c. convex function for a collection of l.s.c. convex functions,
is the often used representation of given by

To relate the various hull functions based on relation (1.44) we observe
by Lemmas 1.26 and 1.34 that the function is convex and l.s.c. Since

this shows by Lemma 1.37 that Also by Lemmas
1.26 and 1.37 it holds that the l.s.c. function is bounded from above
by This implies by Lemma 1.31 that and combining both
inequalities yields

for every An immediate consequence of relation (1.66) is now
given by the chain of inequalities

for every We finally consider hull functions based on the lower
level set (cf. [15],[11]).

Definition 1.22 For any function the function
given by is called

the l.s.c. quasiconvex hull function of the function

Using a similar approach as in Lemma 1.28 one can show the following
result.
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Lemma 1.38 For any function the l.s.c. quasicon-
vex hull function is the greatest l.s.c. quasiconvex function majorized
by Moreover, it follows that for every

A direct consequence of Lemma 1.38 and the fact that is
a l.s.c. quasiconvex function for  a collection of l.s.c. quasiconvex
functions, is the often used representation of given by

To relate the various hull functions based on relation (1.53) we first
observe by Lemma 1.21 that every closed convex set is evenly convex
and so it follows that

for every Moreover, using relation (1.68) and
Lemma 1.34 we obtain and since by relation (1.69) and Lemma
1.38 also this finally yields

for every The above representations of the hull functions do
not depend on the fact that the domain is finite dimensional and so we
can also introduce the same hull functions in linear topological vector
spaces (cf. [56]). In the next two subsections we consider the dual
representations of some of the hull functions.

3.3 Dual representations of convex functions

In this subsection we will consider in detail properties of convex func-
tions, which can be derived using the strong and weak separation results
for nonempty convex sets. In particular, we will discuss a dual repre-
sentation of a l.s.c. convex function satisfying As always in
mathematics one likes to approximate complicated functions by simpler
functions. For convex functions these simpler functions are given by the
so-called affine minorants.

Definition 1.23 For any function the affine function
given by with     and             is called an

affine minorant of the function if for every x belonging to
Moreover, the possibly empty set of affine minorants of the function

is denoted by



Convex and Quasiconvex Analysis 43

Since any affine minorant of a function is continuous and convex
it is easy to verify the following result.

Lemma 1.39 For any function it follows that

Proof. We only give a proof of the above result for nonempty. Since
by relations (1.67) and (1.66) we know that it follows
immediately that Moreover, if the function
belongs to then clearly and is continuous and convex. This
implies by relation (1.65) that and hence the affine function
belongs to

Since an affine function is always finite valued the set is empty if
there exists some satisfying and so it is necessary
to consider functions In Theorem 1.9 necessary and
sufficient conditions are given for to be nonempty. To prove this
result we first need to verify the next important lemma.

Lemma 1.40 If                 is an arbitrary function and
is finite for some then the set is nonempty.

Proof. It follows that the vector does not belong to the set
By Lemma 1.37 the nonempty set is convex and closed

and applying Theorem 1.1, there exists some nonzero vector sat-
isfying

for every Since belongs to this implies
and so for every the inequality

holds. By relation (1.71) it follows by contradiction that
for every and this yields using that

for every Substituting this into relation
(1.71) we obtain

for every Since the previous inequality trivially holds for
the function is an

affine minorant of and the desired result is proved.

Using Lemma 1.40 one can show the following theorem.
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Theorem 1.9 For any function the following con-
ditions are equivalent:

1 The set is nonempty.

Proof. If the set is nonempty then for any we obtain by
relation (1.65) that for every and this shows the
implication 1 3. Due to the implication 3 2 is obvious.
To show the implication 2 1 consider some satisfying
In case is empty it follows that and so trivially is
nonempty. Therefore assume that is nonempty. By Lemma
1.26 this is a nonempty convex set and so by Lemma 1.13 one can find
some Since is a convex function it follows
by Lemma 1.36 that and so we
have found some satisfying is finite. Applying now Lemma
1.40 yields is nonempty and the result is proved.

As shown by the following example it is not true that is nonempty
for

Example 1.12 For the concave function given by
it is easy to verify that Hence we

obtain that is empty and this yields by Lemma 1.39 that is
empty.

To prove an important representation for a subclass of convex func-
tions we introduce the following definition.

Definition 1.24 The function belongs to the set
if is convex and l.s.c. and

It is now possible to prove the following representation for the set
This result is known as Minkowski’s theorem.

Theorem 1.10 For any function it follows that

and the set is nonempty.

Proof. If the function has the representation
and the set is nonempty, then clearly the function

is l.s.c., convex and and so belongs to To prove

2

3
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the reverse implication, we observe for that
and this shows by Theorem 1.9 that the set is nonempty and hence

Suppose now by contradiction that
for some Hence one can find

some satisfying

and so If is empty, then the affine function
is an affine minorant of and this contradicts relation (1.72).

Therefore we assume that is nonempty and since this set is closed
and convex there exists by Theorem 1.1 a nonzero vector and

satisfying

for every Since for and the vector
belongs to it follows by relation (1.73) that

Consider now the two cases and              If we
obtain by relation (1.73) replacing by that

and this implies using relation (1.72) that Hence by
relation (1.73) it holds that

for every x belonging to and we have found some satis-
fying contradicting relation (1.72). If and
in relation (1.73), then by the same proof we obtain a contradiction and
so we consider the last case                  and Introduce now the
affine function given by

By relation (1.73) for every and Since
is nonempty, select some and by relation (1.72) it follows

that Introducing now the affine function
given by

we obtain and since for every and
we also obtain Hence is an affine minorant of

satisfying and this contradicts relation (1.72) showing the
desired result.

An immediate consequence of Minkowski’s theorem and Lemma 1.39
is listed in the next result.



46 GENERALIZED CONVEXITY AND MONOTONICITY

Theorem 1.11 If                         is a function satisfying
then it follows that and the set
is nonempty.

Proof. By relation (1.66) and Theorem 1.10 we obtain that
with the set is nonempty. Applying

now Lemma 1.39 the desired result follows.

In Theorem 1.11 we only guarantee that any function can
be approximated from below by affine functions. However, it is some-
times useful to derive an approximation formula in terms of the original
function This formula was first constructed in its general form by
Fenchel (cf. [21]) and it has an easy geometrical interpretation (cf. [27]).

Definition 1.25 For any function the function
given by is called the

conjugate function of the function The function
given by is called the biconjugate
function of

By the above definition it is immediately clear that the conjugate
function is convex and l.s.c.. Moreover, if the function

is proper and the set of affine minorants is nonempty, then it
is easy to verify that the function is also proper. As shown by the next
result the biconjugate function has a clear geometrical interpretation.

Lemma 1.41 If is an arbitrary function satisfying
is nonempty, then it follows that if and only if

with Additionally, it holds that
for every

Proof. To verify the equivalence relation we observe for
for every that or

Moreover, if we obtain and
this implies for every that To prove
the relation for the biconjugate function it follows by the definition of

that Since by the first
part if and only if is an affine minorant
of this shows that for every and
hence the equality for the biconjugate function is verified.

To prove one of the most important theorems in convex analysis we
introduce the definition of the closure of the function
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Definition 1.26 If                                   is an arbitrary function, then
the closure of the function is given by

Clearly the function is l.s.c. and satisfies Also it is
easy to verify by Lemma 1.41, Theorem 1.9 and using that

for any convex function The next result is known as the Fenchel-
Moreau theorem and is one of the most important results in convex
analysis.

Theorem 1.12 For any function it follows that
for every

Proof. If for some then To show this,
suppose by contradiction that for some This implies the
existence of some satisfying for every
and so the function is an affine minorant of Hence
by relation (1.65) we obtain that and this contradicts
our initial assumption. Since we obtain and by
Definition 1.26 we obtain In case the result
follows by Theorem 1.11 and Lemma 1.41.

An important consequence of the Fenchel-Moreau theorem is given
by the following result. Recall a function is sublinear, if it is positively
homogeneous and convex.

Lemma 1.42 Any l.s.c. sublinear function has the
representation

with a nonempty closed convex set.

Proof. By the Fenchel Moreau theorem it follows that

Since is positively homogeneous we obtain by Lemma 1.25 that

for every and and this shows that
If for every then for every x and this
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shows by the Fenchel Moreau theorem that for every x,
contradicting Therefore is not identically and this yields
that the set C is not empty. Again by the Fenchel Moreau theorem we
obtain

and since the function is l.s.c. and convex the nonempty set C is
closed and convex.

Finally we introduce the so-called subgradient set of a function at a
point.

Definition 1.27 For any function and the
subset of consisting of those vectors satisfying

for every is called the subgradient set of the function
at the point This set is denoted by and its elements are

called subgradients.

If then clearly and so it is sufficient to con-
sider those satisfying Moreover, if
and is empty, then again and hence we only need
to consider and is not empty. If or

then this implies, using is nonempty, that
and so the only interesting case which remains is given by fi-

nite. It is now relatively easy to prove for       finite that
is equivalent to another condition related to the conjugate function.

Lemma 1.43 If is an arbitrary function satisfying
is finite for some then it follows that if and only

if

Proof. If then by definition
for every x and this implies using is finite that

for every x. Hence we obtain that
and this shows the equality. To verify the reverse implication is trivial
and so we omit its proof.

Up to now we did not show any existence result for the subgradient
set of at in case is finite. Such a result will be given by the
next theorem.

Theorem 1.13 If the function is convex and
is finite for some then the set is nonempty.
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Proof. If and is finite we obtain by Lemma 1.35
that This implies by the convexity of the set

and Theorem 1.2 that there exists some nonzero vector
satisfying

for Moreover, using belongs to
for every we obtain and to show that assume by
contradiction that Hence it follows by relation (1.75) that

for every Since and so

we know that belongs to This implies, using be-
longs to that there exists some satisfying

and applying now relation (1.76) with x replaced by
yields Hence it follows that and we obtain a
contradiction. Therefore it must hold that and dividing now the
inequality in relation (1.75) by and using that is finite for
every yields

for every This shows that the vector is a
subgradient of the function at the point and so is a nonempty
set.

In case does not belong to for some convex function
it might happen that does not have a subgradient at the point

This is shown by the following example.

Example 1.13 Consider the convex function given
by for and              otherwise. Clearly 0 belongs
to the relative boundary of but is empty.

In case the function is a sublinear function one can show
the following improvement of Theorem 1.13 replacing the condition

by the condition

Theorem 1.14 If the function is sublinear and
then the set is nonempty and
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Proof. Since is convex it follows that and this implies by
Theorem 1.9 that is nonempty and so is a proper function. Since
by Definition 1.13 and Lemma 1.31 the function is also sublinear one
may apply Lemma 1.42 and this shows with

a nonempty closed convex set. By relation
(1.74) and it follows that and so

We will now verify that By the definition of
we obtain for that for every  Since          is
finite and positively homogeneous it follows that and so it
follows that This shows and to verify the reverse
inclusion we observe for every that for every
x. This implies and so a belongs to C. Hence is
nonempty and the proof is completed.

In Theorem 1.14 we actually show for sublinear
and that

A nice implication of Theorem 1.13 is the observation that convex func-
tions have remarkable continuity properties. Before showing this result
we need the following technical lemmas.

Lemma 1.44 If the vectors form an or-
thonormal system and the set P is the convex hull generated by the set

then it follows that

Proof. Since the vectors form an orthonormal system we
obtain for any vector that

Applying now the Cauchy-Schwartz inequality to the inner product of
the vectors and it follows that

and this implies by relation (1.78) that
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Consider now an arbitrary vector y belonging to
Since the vectors are independent, there exists a unique
vector such that

with Applying now the inequality in relation
(1.79) it follows that

and this shows that the vector y belongs to P.

Another result which is needed in the proof of Theorem 1.15 is given
by the following lemma.

Lemma 1.45 If the function is convex and for
some and there exists some finite constants satisfying

for every x belonging to then one
can find some L > 0 satisfying

for every  belonging to

Proof. Let and be two different vectors belonging to
This yields that the vector belongs to

and since is a relative interior point of the convex set one can
find some satisfying

Hence the vector belongs to and by relation
(1.80) we obtain

Using now relation (1.48) and the fact that the function is bounded
from above and below on it follows for

that
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Reversing the roles of and yields a similar bound for
and the desired inequality is verified.

The above property of the function is called Lipschitz continuity on
the set Using Lemmas 1.45, 1.44 and Theorem
1.13 one can now show the next result, which is an improvement of
Lemma 1.36.

Theorem 1.15 If is a convex function, then it
follows that is continuous on and Lipschitz continuous on
every compact subset of

Proof. If one can find some satisfying

To give a more detailed characterization of we observe by
Lemma 1.4, that there exists a set of linearly independent vectors

satisfying and so

Without loss of generality (Use the well-known Gram-Schmidt orthog-
onalization process (cf. [47])) we may assume that the set
is an orthonormal system. By relations (1.82) and (1.81) and a
convex set it follows that the set with P the convex hull generated
by the set belongs to Also by
the convexity of the function and relation (1.48) we obtain that

for every Since by Lemma 1.44 there exists some
satisfying

this shows that the function is bounded from above on
Using Theorem 1.13 we also obtain that the function is

bounded from below on and applying now Lemma
1.45 with replaced by yields the desired result.

This concludes our discussion on dual representations and conjugation
for convex functions. In the next subsection we consider the same topic
for quasiconvex functions.
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3.4 Dual representations of quasiconvex
functions

In this section we study dual representations of evenly quasiconvex
and l.s.c. quasiconvex functions. Most of the results of this section can
be found in [56]. Unfortunately in [56] no geometrical interpretation of
the results are given and for such an interpretation the reader should
consult [27]. In [56] it is shown, that one can use the same approach
as in convex analysis and this results in proving that certain subsets
of quasiconvex functions can be approximated from below by so-called

functions with belonging to a given class
of extended real valued univariate functions. Recall that a function is
called univariate if its domain is given by As in convex analysis the
used approximations and the generalized biconjugate functions have a
clear geometrical interpretation (cf. [27]). To start with this approach
we introduce in the next definition the class of functions. More
general classes of so-called coupling functions are discussed in this
volume by (cf. [49]).

Definition 1.28 For a given univariate function the
function is called a function, if there exist
some and such that for every If

denotes a subset of the set of extended real valued univariate functions
the function is called a function, if for some the function

is a function. The function is called a minorant of
the function if for every and

is a function. The set denotes now the (possibly empty)
set of minorants of

To specify the set we first consider the set of extended real valued
nondecreasing univariate functions and the proper
subset of extended real valued nondecreasing l.s.c. univariate
functions. Since for any and also the function

given by belongs to we
observe for these classes of extended real valued univariate functions that
the class of functions, reduces to the set of functions

given by for some and
Clearly and since the function with

for every belongs to the set we obtain that
is nonempty for every This is a major difference
with the set of affine minorants of a function since this set might be
empty. Observe in Theorem 1.9 we showed that this set is nonempty if
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and only if One can now show the following result for
functions with either equal to or

Lemma 1.46  is then the function is
evenly quasiconvex. Moreover, if is then the function is
l.s.c. and quasiconvex.

Proof. If is a function, then there exists some and
such that for every

with the lower level set of the function Since is nondecreasing,
this lower level set is either empty or an interval given by or

with Hence the set is either
empty or an open or closed halfspace and this shows that is evenly
convex. Similarly for we obtain, using Theorem 1.7, that
is empty or and hence is empty or a closed halfspace.
This shows that the function is quasiconvex and by Theorem 1.7 it is
also l.s.c..

By Lemma 1.28, 1.29, 1.38 and 1.46 and (see
relations (1.69) and 1.70).) one can show, applying a similar proof as in
Lemma 1.39, that the following result holds.

Lemma 1.47 For any function it follows that
and

Contrary to functions studied in convex analysis, we do not have to
determine for which extended real valued functions the sets
are nonempty and so we can start generalizing Minkowsky’s theorem (see
Theorem 1.10) to evenly quasiconvex and l.s.c. quasiconvex functions.
In the proof of this generalization and in the remainder of this subsection
an important role is played by the following functions.

Definition 1.29 For any function and let
denote the function

It is now possible to show the following result.

Theorem 1.16 If                            is an evenly quasiconvex function,
then for every Moreover, if is
an l.s.c. quasiconvex function, then for
every

Proof. Since the set is nonempty, we obtain by the definition of
that for every Suppose now

If
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by contradiction that for some and
so there exists some satisfying

If the set is empty, it follows that for every
and choosing for every and with
arbitrary, we obtain that contradicting relation (1.83).
Therefore the set is nonempty and since the function is evenly
quasiconvex one can find a collection of vectors satisfying

By relation (1.83) the vector does not belong to and this
shows by relation (1.84) that there exists some with a nonzero
satisfying This implies again by relation (1.84) that

Since the vector is nonzero, the function given in Definition 1.29,
is nondecreasing and so the function is and
by relation (1.85) it satisfies Also for every we obtain
that and so we have constructed a minorant
of the function satisfying This contradicts relation (1.83)
and hence we have shown that for every

To verify the representation for quasiconvex and l.s.c. we
again assume by contradiction that there exists some satisfying

for some If the convex set is empty then as in the first part
we obtain a contradiction. Therefore the closed convex set is
nonempty and since by relation (1.86) it holds that does not belong
to there exist by Theorem 1.1 some nonzero vector and

satisfying for every This implies for
every y satisfying that and so Introducing
now the function with listed in Definition 1.20
this implies

By Lemma 1.32 the function is l.s.c. and
for every x. Hence we have constructed a minorant of

the function satisfying and this contradicts relation (1.86).
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Therefore for every and the proof
is completed.

By Theorem 1.16 it is clear that the set of functions
functions) play the same role for l.s.c. quasiconvex functions (evenly qua-
siconvex functions) as the affine functions do for l.s.c. convex functions.
However, besides this observation, it is also interesting to investigate
the question whether these sets of minorants are the smallest
possible class satisfying the above property. In this section we will also
pay attention to this question. An immediate consequence of Theorem
1.16 and Lemma 1.47 is given by the next result.

Theorem 1.17 For any function it follows that
and

for every

Proof. By Theorem 1.16 we obtain
and since by Lemma 1.47 it holds that the first formula
follows. The second formula can be verified similarly.

Studying the proof of Theorem 1.16 for evenly quasiconvex functions
one can actually show the following improvement of Theorem 1.17.

Theorem 1.18 If                     is an arbitrary function, then it
follows for every that

with the function given in Definition 1.29.

Proof. It follows for every a and that Since
this implies by Lemma 1.46 that the function

is evenly quasiconvex and so by Lemma 1.29 we obtain for every
that Suppose now by contradiction that

for some and so there exists some
satisfying

If the set             is empty we obtain
and this implies for every contradicting relation
(1.87). Therefore the set is nonempty and since by Lemma 1.29
the function is evenly quasiconvex one can find a collection of vectors

satisfying

for every
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By relation (1.87) we know does not belong to and so by
relation (1.88) there exists some and a nonzero vector satisfying

This implies using for every and
relation (1.88) that

and so it follows that This yields
contradicting relation (1.87). This shows the desired

representation and our proof is completed.

Also for l.s.c. quasiconvex functions one can show the following im-
provement of Theorem 1.16. Observe this formula is more complicated
than the corresponding formula for evenly quasiconvex functions.

Theorem 1.19 If                    is an arbitrary function, then it
follows for every that

with denoting the l.s.c. hull of the function and listed in Defi-
nition 1.20.

Proof. By Lemma 1.32 and relation 1.70 it is sufficient to show for every
that To verify this we first observe for

every a and that and so we obtain
for every x. By Lemma 1.32 the function is l.s.c.

and nondecreasing and this implies by Lemma 1.46 that
is quasiconcex and l.s.c.. Therefore we obtain for every x that

Suppose now by contradiction that for some
and so there exists some satisfying

If the set is empty we obtain and we obtain
as in Theorem 1.18 a contradiction with relation (1.89). Therefore, the
closed convex set is nonempty and since by relation (1.89) it
holds that does not belong to there exist by Theorem 1.1
some nonzero vector and satisfying for
every Hence it follows for every y satisfying that

and this yields Using this observation we
obtain
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and this contradicts relation (1.89) completing the proof.

It is also possible to show for every that the function is
actually the inverse of another function.

Lemma 1.48 It is a function with nonempty
and the function is given by

then it follows for every that

Proof. Since is nonempty, there exists some satisfying
is nonempty. If for some it follows that then

for every there exists some satisfying and
This implies and hence

Since we obtain
and to show equality we assume by contradiction that there exists

some satisfying

If this holds one can find some satisfying and
Hence there exists some satisfying and
Since we obtain for every y satisfying that

This implies and it follows
This is clearly a contradiction and the proof is completed.

In case is empty and so and we use the well-known
convention that and then it is easy to verify
that the above relation still holds. The next result first verified in [15]
is an immediate consequence of Lemma 1.48 and Theorem 1.19.

Theorem 1.20 If                    is an arbitrary function, then it
follows that

for every

Actually the result in Theorem 1.18 and 1.19 can be seen as a gen-
eralization of the Fenchel-Moreau theorem for l.s.c. convex hulls. To
show this we need to generalize the notion of conjugate and biconjugate
functions used within convex analysis. Since we are dealing with ex-
tended real valued functions we use the convention that

and
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Definition 1.30 Let be a nonempty collection of extended real valued
univariate functions. For any function and the
function is called the
function of the function The function

is called the function of

By a similar proof as in Lemma 1.41 it is easy to give a geometrical
interpretation of the biconjugate function.

Lemma 1.49 For a nonempty collection of extended real valued uni-
variate functions and an arbitrary function it follows
that if and only if with and

Additionally, it holds that for
every

Combining now Lemma 1.49 and Theorem 1.17 we immediately obtain
for the sets 1 the following generalization of the Fenchel-Moreau
theorem.

Theorem 1.21 For any function it follows that
and for every

Proof. By Lemma 1.49 we obtain
and this shows by Theorem 1.17 the desired result.

By Theorem 1.18, 1.19 and 1.21 we obtain the formulas

and

for every Considering these formulas we now wonder whether
it is possible to achieve the same result using a smaller set of extended
real valued univariate functions.

Definition 1.31 For any the function is given
by for and for every The set
consists now of all functions while the set consists of all
functions with the l.s.c. hull of the function

If is an arbitrary function, then for and
we obtain
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with defined in Definition 1.29. Moreover, for a = 0 and it
follows that

and this shows

Also for it is easy to verify that and so we have
computed for every the function of the function
To evaluate the function of we observe by Lemma 1.32
that for every and for every Again
considering it follows that

Moreover, for a = 0 and we obtain that

while for it is easy to verify that Using the above
computations we will first evaluate in the proof of Lemma 1.50 the bi-

function of a function while in the
proof of Lemma 1.51 the same computation will be carried out for a

function of the same function

Lemma 1.50 For every and it follows for
every that

Proof. By relation (1.92) and for every we obtain
using the convention that

Also by relation (1.91) and it follows
for every x that

This shows, using is nondecreasing for every that
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and so using relations (1.95) and (1.96).
This shows the first equality and the second one is already listed in
Theorem 1.18.

The next result yields a similar result as Lemma 1.50 for a quasiconvex
and l.s.c. function.

Lemma 1.51 For every and it follows for
every that

Proof. By relation (1.93) and for every we obtain
using that

Also by relation (1.92) and it follows
with that

Since for every and we obtain
by relation (1.98) that

Applying now relations (1.90), (1.97) and (1.99) it holds for every
that

Since it follows that and this shows by relation
(1.100) the desired result.

In the last two lemmas we have shown that it is sufficient for any
function satisfying to consider the class of minorants
and the class of minorants for approximating respectively

This concludes the section on quasiconvex duality. In the next section
we will discuss some important applications.

4. On applications of convex and quasiconvex
analysis

In this section we will discuss different applications of the theory of
convex and quasiconvex analysis. In Subsection 4.1 we consider ap-
plications to noncooperative game theory, while in Subsection 4.2 we
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discuss its applications to optimization problems and in particular to
Lagrangian duality. Finally in Subsection 4.3 we will use the duality
representation of evenly quasiconvex functions to show that every posi-
tively homogeneous evenly quasiconvex function satisfying and

is actually the minimum of two positively homogeneous l.s.c.
convex functions. This result was first verified by Crouzeix (cf. [15]) for
a slightly smaller class of quasiconvex functions and serves as a very nice
application of quasiconvex duality.

4.1 Minimax theorems and noncooperative
game theory

To introduce the field of infinite antagonistic game theory (cf.[72])
we assume that the set of pure strategies of player 1 is given by some
nonempty set while the set of pure strategies of player 2 is given
by If player 1 chooses the pure strategy and player 2
chooses the pure strategy then player 2 has to pay to player 1 an
amount with a given function. This function
is called the payoff function and for simplicity this function is taken to
be nonnegative. Since player 1 likes to gain as much profit as possible,
but at the moment he does not know how to achieve this, he first decides
to compute a lower bound on his profit. To compute this lower bound
player 1 argues as follows : if he decides to choose action then it
follows that he wins at least irrespective of the action of
player 2. Therefore a lower bound on the profit for player 1 is given by

Similarly player 2 likes to minimize his losses but since he does not know
how to achieve this he also decides to compute first an upper bound on
his losses. To compute this upper bound player 2 argues as follows. If he
decides to choose action b it follows that he loses at most
and this is independent of the action of player 1. Therefore an upper
bound on his losses is given by

Since the profit of player 1 is at least and the losses of player 2 is at
most and the losses of player 2 are the profits of player 1 it follows
directly that In general but under some properties on
the action set and payoff function one can show that By the
above inequality it follows immediately that for and so
we assume in the remainder of this section that The equality

is called a minimax result and if additionally inf and sup are
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attained an optimal strategy for both players can be easily derived. For
player 1 it is possible to achieve at least a profit independent of the
action of player 2, while for player 2 it is possible to achieve at most a
loss independent of the action of player 1. Since and both
players have opposite interests, they will choose an action which achieves
the value and so player 1 will choose that action satisfying

Moreover, player 2 will choose that strategy satisfying

Since for and the additional assumption that the infimum and
supremum are attained, it is clear how the optimal strategies should be
chosen we will investigate in this subsection for which payoff functions
and strategies the minimax result holds. Before discussing this,
we give the following example for which this equality does not hold.

Example 1.14 Consider the continuous payoff function
given by For this function it holds for ev-

ery that and so
Moreover, it follows that for every

and for every This shows
and so does not equal For this

example it is not obvious which strategies should be selected by the two
players.

By extending the sets of the so-called pure strategies of each player
it is possible to show under certain conditions that the extended game
satisfies a minimax result. In the next definition we introduce the set of
mixed strategies.

Definition 1.32 For a nonempty set D of pure strategies and
let denote the one-point probability measure concentrated on the set
{d} and denote by the set of all probability measures on D with a
finite support.

Introducing the unit simplex
it follows by Definition 1.32 that belongs to the set if and only

if there exist some and set consisting of different
elements such that
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Clearly the set can seen as the convex hull of the set and
so it is convex. A game theoretic interpretation of a strategy
is now given by the following. If a player with pure strategy set D
selects the mixed strategy then with probability

this player will use the pure strategy By this
interpretation it is clear that the set D of pure strategies can be identified
with the set of one-point Borel probability measures We
now assume that player 1 uses the set of mixed strategies and the
same holds for player 2 using the set This means that the payoff
function should be extended to a function and this
extension is given by

with and This extension
represents the expected profit for player 1 or expected loss of player 2
if player 1 selects the mixed strategy and player 2 selects the
mixed strategy Without any conditions on the pure strategy
sets A and B and the function one can show the next result.

Lemma 1.52 For any set A and B of pure strategies it follows that

and

Proof. Since it follows that

To verify the reverse inequality we observe for every mixed strategy
and relation (1.103) that

This implies

and so the first formula is verified. The second formula can be shown
by exactly the same argument.

It is now possible to show that the extended game given by and the
mixed strategy sets and satisfies a minimax result under some
topological conditions on the function and the sets A and B of pure
strategies. The next result was first given by Ville (cf. [70], [18], [72])
using a much more complicated proof. In the next alternative proof we
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only use the separation result for convex sets listed in Theorem 1.3 and
the well-known result that a continuous function on a compact set is
uniformly continuous (cf. [43]).

Theorem 1.22 If the pure strategy sets and are
compact and the function is continuous, then it follows
that

Proof. It is easy to see that the inequality holds and so we only need to
verify the reverse inequality. By Lemma 1.52 it is now sufficient to show
that By scaling we
may assume that

and so need to show that

Assume now by contradiction that there exists some satisfying

for every Since the function is continuous on the compact set
A × B, it is well-known (cf. [64], [43]) that the function is uniformly
continuous on A × B. Hence there exists some such that for every

satisfying it follows that
This implies for every satisfying

that

Since A is compact one can find a finite set satisfying
and this shows by relations (1.106) and (1.105) that

for every Introducing the convex set V given by

it follows by the definition of V that belongs to V if
and only if there exists some mixed strategy satisfying

This implies by relation (1.107) that



66 GENERALIZED CONVEXITY AND MONOTONICITY

and so the convex sets and V are
disjoint. Applying now Theorem 1.3 one can find some mixed strategy

satisfying and this contradicts relation
(1.104).

Actually the result in Theorem 1.22 holds under weaker topological
conditions on the function However the proof of that result uses the
Riesz representation theorem for the set of continuous functions on a
compact Hausdorff space, the Banach-Alaoglu theorem and infinite di-
mensional separation (cf. [29]) and is beyond the scope of this chapter.
The result listed in Theorem 1.22 is the most important result in infinite
antagonistic game theory and fits within a chain of equivalent minimax
theorems (cf. [28]). For one of these equivalent minimax results an-
other alternative proof using also finite dimensional separation is given
in [26]. Although not listed in [28], one result which also fits within this
chain is the famous Sion’s minimax theorem (cf. [66]) for quasiconcave-
quasiconvex bifunctions.

Theorem 1.23 If           is compact and convex,          is convex
and the function satisfies is quasiconcave and
upper semicontinuous for every and is quasiconvex
and lower semicontinuous for every then it follows that

This result was proved using the Knaster-Kuratowski-Mazurkiewicz
(KKM) lemma (cf. [74]). This lemma is the basis of fixed point theory
and nonlinear functional analysis. It is also possible to give a more
elementary proof of Sion’s minimax theorem based on finite dimensional
separation between convex sets. However, the most elementary proof
of Sion’s minimax theorem is given by an adaptation of the so-called
level set method due to Joó (cf. [40], [41], [42]). This method first
translates the minimax equality into an equivalent geometrical condition
of a nonempty intersection of a collection of upper-level sets. Under the
assumptions of Sion’s minimax theorem it is now possible to verify this
geometrical condition using compactness arguments and the well-known
elementary topological result that every convex set is connected (cf. [36]).
To start with our analysis we first introduce for every and
the functions and defined by
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Also we introduce for every and the upper-level set
given by

It is now easy to show the following result (cf. [41]).

Lemma 1.53 It follows that if and only if
for every

Proof. If then for every there exist by the
definition of some satisfying This shows
that belongs to the intersection and so is
nonempty. To verify the reverse implication it is sufficient to verify that

or equivalently for every Consider now
for some By our assumption it follows that the intersection

is nonempty and so there exists some satisfying
This implies that

and so the proof is completed.

By Lemma 1.53 we need to show that for every
Before proving this result we consider an arbitrary finite set

and introduce the affine mapping
given by

and the set valued mapping given by

To verify the main result we need the following elementary lemma.

Lemma 1.54 If the functions are quasiconvex on the convex
set B for every then it follows for every and

that

for every

Proof. If the vector a belongs to then by definition
and This implies, using

is affine, that
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and by the quasiconvexity of the functions we obtain by relation
(1.112) that Hence it follows that a
belongs to and the result is proved.

In order to prove the next important lemma we denote by the
set of all finite subsets of B.

Lemma 1.55 If the functions are quasiconcave and upper
semicontinuous for every and the functions are
quasiconvex and lower semicontinuous for every then it follows
for every J belonging to and that

Proof. If J is a subset of B consisting of one element the result clearly
holds by the definition of listed in relation (1.102). Suppose now for
all sets J belonging to and consisting of at most elements that

for every To prove the result for all sets J belonging to
consisting of at most elements, we assume by contradiction that
there exists some set and some satisfying

Consider now for the points and the set valued mapping
given by relation (1.111). By our induction hypothesis listed

in relation (1.113) and the assumption that the functions are
quasiconcave and upper semicontinuous we obtain that the sets
are nonempty, closed and convex for every By relation (1.114)
it follows that

and so the nonempty sets

are disjoint and To show that consider
for a given the closed sets

By Lemma 1.54 we obtain that and so

Also by relation (1.115) the sets and are disjoint and since
is convex and hence connected (cf. [36]) we obtain by relation (1.117)
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that either or is empty. This implies using again Lemma 1.54
that or and so Hence we have
shown that the sets and satisfy

We will now verify that the sets and are open in [0, 1] and to do
so consider some (a similar proof applies to Since is
nonempty for every it follows by the definition of that

with This means that there exists
some satisfying

and by lower semicontinuity of the function and relation (1.119) there
exist some such that

for every Hence we obtain that
for every and since this implies by relations (1.118) and
(1.15) that for every Hence is an open set
and since similarly is open we obtain by relation (1.118) and [0, 1]
connected that either or is empty. This yields a contradiction with

nonempty and so relation (1.114) cannot hold.

It is now possible to give a proof of Sion’s minimax result.

Proof. (Sion’s minimax theorem). Since A is compact and is upper
semicontinuous we obtain that the set is compact. By the finite
intersection property for compact sets we obtain by Lemma 1.55 that

for every and this shows by Lemma 1.53 that
Since A compact and upper semicontinuous and lower

semicontinuous it follows by a standard argument that we may replace

Actually we can also apply Sion’s minimax theorem to prove Theorem
1.22. Looking at the proof of Theorem 1.22 we observe in relation (1.107)
that

with I belonging to This shows by Lemma 1.52 that

sup by max.
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To the expression in relation (1.120) we may now apply Sion’s minimax
theorem and so we obtain

and in a similar way we obtain a contradiction with relation (1.104). In
the next subsection we will consider applications of convex analysis to
optimization theory.

4.2 Optimization theory and duality

In this subsection we will show how the tools of convex analysis can
be used within optimization theory. In particular we introduce the dual
of an optimization problem and derive some important properties of
this dual problem. To start with a general introduction to optimization
theory let be an arbitrary function and consider the
so-called primal optimization problem given by

In this optimization problem the infimum need not be attained. Since
represents an extended real valued function the above optimization

problem also covers optimization problems with restrictions. Associate
now with the function a function satisfy-
ing for every x and consider the so-called perturbation
function given by

It is easy to verify (remember the strict epigraph and the effective domain
of a function are listed in relation (1.43) and (1.45)!) that

with the projection of onto given by A(x, y) =
y. Also by the definition of the function F we obtain that
In the next definition we introduce the dual of the optimization problem
(P) (cf. [63]).

Definition 1.33 The so-called dual problem of optimization problem
(P) is given by

with the conjugate function of listed in Definition 1.25.

By Definitions 1.33 and 1.25 it follows that and since
the inequality always holds. We are now



Convex and Quasiconvex Analysis 71

interested under which conditions on the perturbation function it fol-
lows that If then the inequality
implies and every is an optimal solution of
the dual problem (D). Therefore we only need to consider
Consider now the cases is finite and Observe the last
case only happens if is empty. For finite, one can now show
the following result. This result is a direct consequence of Theorem 1.12
giving a dual characterization of a convex function (Fenchel-Moreau the-
orem) and Theorem 1.13.

Theorem 1.24 If the function is convex and
is finite, then it follows that

Moreover, if 0 belongs to then the dual problem has an op-
timal solution and

Proof. Since the function is convex, l.s.c. at 0 and finite it
follows by relations (1.59) and (1.66) that
is finite and this implies by Lemma 1.40 that is nonempty. Therefore

for every x and by the Fenchel-Moreau theorem (Theorem
1.12) we obtain To prove the
reverse implication we observe by Theorem 1.12 and is
finite that is finite. Hence it must follow by
Definition 1.26 that and by relation (1.59) the function
is l.s.c. at 0. To show the second part it follows by Theorem 1.13 that

is nonempty and by Lemma 1.43 it is now easy to verify that any
is an optimal solution of the dual problem. Moreover, by

Lemma 1.36 we obtain that and we can apply the first part.

Finally we consider the case In general it does not hold
even for convex and l.s.c. in 0 that To show this we
will discuss in Example 1.16 a linear programming problem satisfying

and
If is some real valued function and a vector

valued function represented by
then an important special case of optimization problem (P) is given by

with a nonempty convex cone and some nonempty
set. The above optimization problem includes some important classes of
optimization problems listed in the following example.
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Example 1.15

If and g(x) = Ax – b with A some matrix,
and then optimization problem

reduces to the so-called linear programming problem (cf. [4], [54],

[19])

1

If and g(x) = Ax – b with A some matrix,
and is some closed convex cone, then

optimization problem reduces to a so-called conic convex pro-
gramming problem (cf. [53]), given by

2

If and g(x) = –x, then optimization problem reduces
to a so-called generalized geometric programming problem (cf. [57]),
given by

3

If the nonempty convex cone is given by
with and the set then optimization
problem reduces to the classical nonlinear programming prob-
lem (cf. [3], [54], [19])

4

For optimization problem the so-called Lagrangian perturbation
scheme is used and this means that the function
is given by

For this specific choice of F we obtain by relation (1.121) that

Using the representation of listed in relation (1.123), one can give a
more detailed expression of the dual problem. Observe this dual problem
is called the Lagrangian dual problem.

Lemma 1.56 If the function is given by
then the Lagrangian dual of optimization

problem equals
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Proof. By the definition of the function it follows for every
that

This shows

and to simplify the above expression we first consider a vector a belong-
ing to Since by definition for every and
this implies

Moreover, if the vector a does not belong to one can find some
satisfying Since for every and the

set D is not empty this yields and the desired result is
verified.

By Lemmas 1.24 and 1.56 the following result about the Lagrangian
dual problem is easy to derive.

Theorem 1.25 If the primal problem is represented by and the
vector valued function is given by
and satisfies is convex and then
it follows that and the Lagrangian dual problem
(LD) has an optimal solution.

Proof. Since by assumption 0 belongs to we
obtain that the feasible region of the optimization problem is not
empty and this shows For the result follows
immediately and so we only consider is finite. To apply Theorem
1.24 we first need to verify whether the function is convex. It is easy
to check that

and this implies by relation (1.122) that By
assumption this set is convex and hence by Lemma 1.24 the perturbation
function is convex. Also by relation (1.122) we obtain
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and applying Lemma 1.56 and Theorem 1.24 the desired
result follows.

The condition is known in the literature as the
generalized Slater condition. Observe, if is a convex function and g is
a so-called K-convex vector valued function (cf. [73], [6]), then it follows
that is a convex set and hence also is convex.
Also it is possible to prove related results under slightly weaker condi-
tions (cf. [25],[24]). As shown by the next lemma the Lagrangian dual
(LD) of a conic convex programming problem is again a conic convex
programming problem. Due to the recent developments in interior point
methods this class of optimization problems became very important (cf.
[53]).

Lemma 1.57 If the primal problem is a conic convex programming
problem given by

with some closed convex cone and there exists some
satisfying then it follows that

and the last dual conic convex optimization problem has an optimal so-
lution.

Proof. By part 2 of Example 1.15 we know that a conic convex pro-
gramming problem is a special case of optimization problem with

the vector valued function h, listed in Theorem 1.25,
given by and a closed convex cone. Clearly
for this choice the set is convex. Moreover, by
Lemma 1.18 the generalized Slater condition reduces to

and by our assumption this condition is satisfied. Therefore the above
result is an immediate consequence of Theorem 1.25 once we have eval-
uated for Observe now that

and since
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the desired result follows by Theorem 1.25.

Using Lemma 1.57 with it follows that the Lagrangian dual
of the linear programming problem is given
by and so this dual problem reduces to the ordi-
nary dual listed in many text books (cf. [4]). Since the set
is a polyhedral convex cone (cf. [63]), the generalized Slater condition
in Lemma 1.57 can be replaced by the condition that the feasible re-
gion of the linear programming problem is nonempty. Actually it can
be shown for every polyhedral convex cone D that the associated conic
convex programming problem reduces to a linear programming problem
and so it is only useful to consider conic convex programming problems
with a nonpolyhedral convex cone D. It is also possible to extend the
above duality results for conic convex programming problems to a larger
class of problems than the one having a generalized Slater point and for
more details on this the reader is referred to [67]. To conclude this sec-
tion we consider the following example of a linear programming problem
satisfying and

Example 1.16 Consider the linear programming problem

Clearly this optimization problem has an empty feasible region and so
Penalizing the restrictions and

using the nonpositive Lagrangian multipliers and we obtain that
the Lagrangian function is given by

Observe now for every that

and

and by this observation it follows that for every or
equivalently

One can also use the same Lagrangian perturbation scheme and the
dual representation of an evenly quasiconvex function and the corre-
sponding function to introduce the so-called surrogate dual.
Due to limited space we will not discuss the properties of such a dual but
refer the reader to the literature cited in [27]. This concludes our discus-
sion on duality and optimization problems. In the next subsection we



76 GENERALIZED CONVEXITY AND MONOTONICITY

will consider the structure of positively homogeneous evenly quasiconvex
functions.

4.3 Positively homogeneous evenly quasiconvex
functions and dual representations

In this subsection the dual representation of an evenly quasiconvex
function is used to show a remarkable property of a positively homo-
geneous evenly quasiconvex function. In [11] a similar property is also
derived for a positively homogeneous quasiconvex function. As such
the results in [11] apply to a larger class of functions, but are slightly
weaker. Also the proof technique used in [11] is more direct and based
on the geometrical aspects of convexity, whereas the approach used in
this chapter is a natural consequence of the dual representation of an
evenly quasiconvex function discussed in Subsection 3.4. To start with
the dual approach we consider a positively homogeneous evenly quasi-
convex function satisfying Since
is positively homogeneous and for every x we obtain by
Lemma 1.25 that if and only if Considering for
every the function given by

(see also Definition 1.29) it is easy to verify the next result.

Lemma 1.58  If                         is positively homogeneous, then for
every it follows that the function is positively
homogeneous and nondecreasing.

Proof. For any nonzero vector a it is obvious by relation (1.125) that the
function is nondecreasing. Also by Lemma 1.25 we obtain for every

and that

and so the result is verified for every nonzero a. Moreover, for a = 0, we
obtain for every and that

while for and it follows using the convention
that Trivially the function is

nondecreasing and the proof is completed.

To analyze the behaviour of a positively homogeneous evenly quasi-
convex function satisfying for every x and we
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first decompose this function. Using a slightly different decomposition
as done by Crouzeix (cf. [15],[11]) we introduce the nonnegative function

given by

with the strict lower level set of the function of level 0 listed
in relation (1.52). Using now for every x and
we immediately obtain that Moreover, the function

is given by

To analyze the function it is only interesting to consider positively ho-
mogeneous evenly quasiconvex functions satisfying is nonempty.
If this holds, we obtain by Lemma 1.25 that is a nonempty con-
vex cone and since it follows that Also
for every we obtain that

and this yields for that By relation (1.127) we
therefore obtain for is not empty that

Since trivially for every x it is easy to verify considering
the cases and that

for every For the functions and one can now show the
following result.

Lemma 1.59 If                       is a positively homogeneous evenly
quasiconvex function, then the functions and are positively homo-
geneous and evenly quasiconvex.

Proof. Since is positively homogeneous and evenly quasiconvex (and
hence quasiconvex) we obtain by Lemma 1.25 and 1.27 that is a
(possibly empty) convex cone. This implies again by Lemma 1.25 that

is positively homogeneous. To show that is evenly quasiconvex we
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observe that for every Also by the definition of
we obtain

This shows, using the fact that is a nonnegative function and
is evenly quasiconvex, that also is evenly quasiconvex. To verify the
same result for we observe, since is also a (possibly empty)
convex cone, that is positively homogeneous. Moreover, for every

we know by relation (1.128) that
and applying Lemma 1.21 and is evenly quasiconvex it follows that
is evenly quasiconvex.

We will now apply the dual representation of an evenly quasiconvex
function and show the following result for a nonnegative positively ho-
mogeneous evenly quasiconvex function with A related
result is also discussed in [11]. Recall that a function is called sublinear,
if it is positively homogeneous and convex.

Lemma 1.60 If                        is a nonnegative positively homo-
geneous evenly quasiconvex function with then is a non-
negative l.s.c. sublinear function.

Proof. By the dual representation of an evenly quasiconvex function (see
Theorem 1.18) we obtain that

Since it follows by the definition of that is a nonnegative
function for every Moreover, using and

we obtain Also for and satisfying
it follows by the monotonicity of that and
this implies for every Moreover, for we
obtain by Lemma 1.58 that with and
combining both observations yields

for every Applying now relation (1.131) yields

and since is a l.s.c. sublinear function the desired
result follows by relation (1.132).

Since by relation (1.126) we obtain that and
for positively homogeneous and evenly quasiconvex the function
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is also positively homogeneous and evenly quasiconvex (Lemma 1.59)
we may apply Lemma 1.60 and so we obtain the result that is a
nonnegative l.s.c. sublinear function in case the function is positively
homogeneous, evenly quasiconvex, and for every
x. Finally we will show the following result for a positively homogeneous
evenly quasiconvex function satisfying nonempty,

and for every x..

Lemma 1.61 If                          is a positively homogeneous evenly
quasiconvex function with then is a nonpos-
itive l.s.c. sublinear function.

Proof. By the dual representation of an evenly quasiconvex function we
obtain (see Theorem 1.18) that

If the vector a does not belong to the polar cone then there
exists some satisfying and By Lemma 1.58
this yields for every that

and so Since the function is nonde-
creasing, this shows that for every and using the fact
that for every x and relation (1.133) we obtain

If the vector a belongs to and for some
then clearly x does not belong to Since
this implies that and so we have shown for every a belonging
to that

To analyze for and we first assume that there
exists some satisfying and By Lemma 1.58 it
holds that for every and since
we obtain that Hence it follows that
for every and we have shown for every for which
there exists some satisfying that
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Using again the fact that for every x and relations (1.134),
(1.135) and (1.136) yields

for every with

We will now analyze the behaviour of for an arbitrary a
belonging to D. If it follows by relation (1.135) that

Also, if then for every y satisfying we
obtain, using that and since this implies

Finally, for and it follows by Lemma 1.58
that with and since is nonempty
we obtain by relation (1.137) that Hence we have shown
for every that

Again by relation (1.137) and for every x we obtain that the
set is nonempty and by relations (1.138)
and (1.137) this shows

Since for it follows that for
and otherwise, this is clearly a l.s.c. sublinear function and by relation
(1.139) the desired result follows.

Since by Lemma 1.59 and relation (1,127) the function satisfies
the conditions of Lemma 1.61 for a positively homogeneous evenly
quasiconvex function with and for every x it
follows that is a nonpositive l.s.c. sublinear function. Using rela-
tion (1.130) and Lemma 1.59 up to 1.61 the following remarkable result
follows immediately.

Theorem 1.26 If                   is a positively homogeneous
evenly quasiconvex function and then can be written as
the minimum of a nonpositive l.s.c. sublinear function and a nonnegative
l.s.c. sublinear function.

Proof. If is empty then is a nonnegative function and the
result follows by Lemma 1.60. Moreover, if is nonempty, then
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by relation (1.130) it follows that and applying the
observations after Lemma 1.60 and 1.61 yields the desired result.

By Theorem 1.26 every positively homogeneous evenly quasiconvex
function satisfying for every x and must be
the minimum of two l.s.c. sublinear functions and so it is also l.s.c.. By
relation (1.77) these l.s.c. sublinear functions can be written as support
functions. This is a rather remarkable result, which does not hold in
general for evenly quasiconvex functions. As an example we mention
the evenly quasiconvex function given by

which is neither upper or lower semicontinuous at 0. To conclude this
subsection we observe that Theorem 1.26 is an extension of the main
result in Crouzeix (cf. [15]). For related results see also [14], [13], [12] and
[11]. Introducing now the Dini upper directional derivative
given by

(cf. [30], [11]) it is possible to use the above so-called Crouzeix repre-
sentation theorem for positively homogeneous quasiconvex functions to
analyze the global behaviour of the function for qua-
siconvex (cf. [15], [44], [45], [33], [11]). This concludes our discussion
of positively homogeneous evenly quasiconvex functions and dual repre-
sentations. In the next section we mention some milestone papers and
books within the long history of convex and quasiconvex analysis.

5. Some remarks on the history of convex and
quasiconvex analysis

In this section1 we will discuss the origin of the important notions
used in convex and quasiconvex analysis. It seems that the field of con-
vex geometry and convex bodies in two and three dimensional space was
first studied systematically by H.Brunn (cf. [7], [8]) and Minkowski (cf.
[51]). Brunn (cf. [9]) and Minkowski (cf. [52]) also proved the existence
of support hyperplanes. Also at the end of 19th and the beginning of
the 20th century Farkas showed in a series of papers (cf. [45], [61]) the
alternative theorem for linear inequality systems and this result became
known as Farkas lemma within linear programming. Although this re-
sult was listed with an incorrect proof in some of his earlier papers a

1The authors like to thank Prof. J. Kolumbán (Cluj) and Prof. S. Komlósi (Pecs) for pointing
out some of the early developments.
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correct proof of this result appeared in [20]. More fundamental ideas
about the related field of necessary optimality conditions for nonlinear
optimization subject to inequality constraints can be found in papers by
Fourier, Cournot, Gauss, Ostrogradsky, and Hamel (cf. [61]). On the
other hand, more early references related to the study of convex sets are
listed in the reprinted version of the 1934 book of Bonnesen and Fenchel
(cf. [5]), Fenchel (cf. [22]), Valentine (cf. [68]) and Varberg (cf. [62]). Also
at the beginning of the 20th century convex functions were introduced
by Jenssen (cf. [39]) and more than forty years later a thorough study of
conjugate functions in was initiated by Fenchel (cf. [21]). Although
Mandelbrojt (cf. [48]) already introduced the conjugate function in
for (cf. [69]), it was Fenchel, who first realized the importance of
the conjugacy concept in convex analysis. Four years before the mile-
stone paper of Fenchel, also the first book on convex functions written
in French by Popoviciu (cf. [60]) was published. In the English scientific
community the unpublished lecture notes by Fenchel (cf. [22]) were a
long time the main source of references. This book served as the main
inspiration for the classical book of Rockafellar (cf. [63]) as noted in its
preface. Also in this preface it is mentioned that Prof. Tucker suggested
the name convex analysis and this became the standard word for this
field. The introduction of quasiconvex functions started later. Although
in most of the literature de Finetti ([16]) is mentioned as being the first
author introducing quasiconvex functions, these functions were already
considered by von Neumann (cf. [71] and independently Popoviciu (cf.
[59]). Actually von Neumann (cf. [71]) already proved in 1928 a mini-
max theorem on simplices for bifunctions which are quasiconcave in one
variable and quasiconvex in the other variable. A generalization of this
result was rediscovered by Sion (cf. [66]) 30 years later. For more de-
tails on the development of quasiconvex functions the reader is referred
to [2]. To develop results for the surrogate dual concept developed by
Glover (cf. [31]) an adhoc approach involving the function
was initiated by Greenberg and Pierskalla (cf. [32]). Their results were
generalized and put into the proper framework of dual representations
by Crouzeix in a series of milestone papers (cf. [12], [13], [15], [14]). In
these papers Crouzeix focussed his attention on the dual representation
of the l.s.c. hull of a quasiconvex function. Although Fenchel (cf. [23])
already introduced the concept of an evenly convex set the usefulness
of this concept leading to a more symmetrical dual representation of an
evenly quasiconvex function was discovered independently by Passy and
Prisman (cf. [55]) and (cf. [50]). This concludes our
short excursion, which is by no means complete, to the history of convex
and quasiconvex analysis.
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Keywords:

This chapter is devoted to first and second order characterizations of
quasi/pseudo convexity of a function and first order characterizations
of quasi/pseudo monotonicity of a single-valued map. Some applications
are given.

generalized convexity, generalized monotonicity, first and second order
characterizations.

1. First order conditions for quasiconvexity
Given a convex subset C of a linear space E and we recall

that is said to be:
convex on C if for every and one has

strictly convex on C if for every and

quasiconvex on C if for every and
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and strictly quasiconvex on C if for every and

For and let us define

and for

Then, is convex (strictly convex, quasiconvex, strictly quasiconvex)
on C if and only if is convex (strictly convex, quasiconvex, strictly
quasiconvex) on for all and The proof is easy and
left to the reader. Therefore, since first and second order conditions for
convexity of a function of several variables are straightforwardly derived
from the corresponding conditions for a function of one real variable, we
turn one special attention to quasiconvex functions of one real variable.

Let be a differentiable function on the interval I of
Then, is quasiconvex on I if and only if there exists so
that is nonincreasing on and nondecreasing on
one of the intervals and may be empty. Hence,
we immediately deduce that each of the following four conditions

is a sufficient and necessary condition for to be quasiconvex on I.
These characterizations are straightforwardly transcribed to general

functions.

Proposition 2.1 Assume that is differentiable on the convex
subset C of E. Then each of the following four conditions
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is a sufficient and necessary condition for to be quasiconvex on C.

Remark 2.1 Dealing with differentiability means that some topological
structure has been defined on the space E. Several kinds of differentia-
bility can be used. Here, only minimal conditions are required: it is
sufficient that differentiability for    on E implies differentiability for all
functions of one real variable

If is convex and then reaches its minimum at
Unfortunately, this essential optimality condition is not preserved for
quasiconvex functions as seen from the very simple example given by
the function of one real variable This motivates the intro-
duction of the class of pseudoconvex functions: given a convex set C, a
differentiable function is said to be:
pseudoconvex [39] on C if

and strictly pseudoconvex on C if

It is clear that a differentiable convex function is pseudoconvex. In
view of Proposition 2.1, a differentiable pseudoconvex function is qua-
siconvex. It is easily seen that a differentiable strictly pseudoconvex
function is strictly quasiconvex.

As for convexity and quasiconvexity, pseudoconvexity can be charac-
terized via functions of one real variable. Indeed, it is clear that is
(strictly) pseudoconvex on C if and only if for all and
the function of one real variable is (strictly) pseudoconvex on
In connection with the last condition in Proposition 2.1, we have the
following characterizations of pseudoconvexity.

Proposition 2.2 Assume that is differentiable on the convex set C.
Then the three following conditions are equivalent:
i) is pseudoconvex on C,
ii) and
iii) and

Proof. It is clear that ii) and iii) are equivalent. Assume for contradiction
that iii) holds but is not pseudoconvex. Then there exist
such that and Then, in view of iii),

for all Hence a
contradiction.
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Next, assume that is pseudoconvex and iii) does not hold. Then
there exist such that

Because is pseudoconvex (and therefore quasiconvex too) the first in-
equality implies in contradiction with obtained
from the second inequality.

Proposition 2.3 Assume that is differentiable on the convex set C.
Then the two following conditions are equivalent:
i) is strictly pseudoconvex on C,
ii) and

Proof. Assume for contradiction that ii) holds but is not strictly
pseudoconvex. Then there exist such that
and Then, in view of ii),
for all Hence a contradiction.

Conversely, assume for contradiction that is strictly pseudoconvex
and ii) does not hold. Then there exist such that

and Hence, by strict pseudocon-
vexity, and

The following proposition is a direct consequence of the definition.

Proposition 2.4 Assume that is differentiable and pseudoconvex on
the convex set C. Assume that and Then has a
global minimum on C at

In fact, pseudoconvex functions on open convex sets are precisely those
differentiable quasiconvex functions which reach their minimum at points
where their gradients vanish. This is the object of the next theorem.

Theorem 2.1 Assume that is differentiable on the open convex set
C.
(i) If is pseudoconvex on C then it is quasiconvex on C and has a
global minimum at any such that
(ii) If is quasiconvex on C and has a local minimum at any
such that then it is pseudoconvex on C.

Proof. Only ii) needs to be proved. Assume, for contradiction, that the
assumptions hold but is not pseudoconvex. Then, and
exist so that and Since

is quasiconvex, Let us consider Then is
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quasiconvex on [0, 1] and From we deduce that
for all Set

Then and for all If then
for all because is quasiconvex. Hence in

case and in case as well.
Set then and since has

not a local minimum at Take so that (for instance
when or E is a Hilbert space). Since C

is open, is continuous at and then there
is such that

Next, since is quasiconvex, for all
which leads to the contradiction

Remark 2.2 Notice that no continuity on is required. Also the ar-
gument of the proof involves only functions of two real variables. Hence,
it is sufficient that the definition for the differentiability of on E is
such that it implies differentiability for the restrictions of to the two-
dimensional affine subspaces of E. Theorem 2.1 is due to Crouzeix-
Ferland [9], a version for directionally differentiable functions has been
given by Komlósi [34].

An immediate consequence of the above theorem is the following:

Corollary 2.1 Assume that is differentiable on the open convex set
C and its gradient does not vanish on C. Then is pseudoconvex on C
if and only if it is quasiconvex on this set.

2. Generalized monotonicity

In the same way that monotonicity is related to convexity, generalized
monotonicity is related to generalized convexity. In this chapter, we are
only concerned with gradients of functions, therefore we consider only
generalized monotonicity for single-valued maps.
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Let C be a convex subset of E and where denotes the
dual space of E. The map F is said to be:
monotone on C if

pseudomonotone on C if

or equivalently, if and only if

quasimonotone on C if

and strictly pseudomonotone on C if

Quasimonotonicity has been introduced by Hassouni ([23], 1983) and
independently by Karamardian and Schaible ([30], 1990), pseudomono-
tonicity by Karamardian ([29], 1976). In fact, pseudomonotonicity, when
applied to nonnegative maps on the positive orthant, is nothing else than
the weak axiom of revealed preferences (Houthakker [26], 1950) for de-
mand functions. A considerable literature is devoted to this axiom and
its various avatars.

It is clear that a monotone map is pseudomonotone and a pseu-
domonotone map is quasimonotone. Assume that               is differen-
tiable on the convex set C. Then, besides the well known characteriza-
tion of convex functions, we have, as direct consequences of Propositions
2.2, 2.3 and 2.1, the following characterizations of generalized convex
functions.

Proposition 2.5      is convex (pseudoconvex, strictly pseudoconvex, qua-
siconvex) on C if and only if        is monotone (pseudomonotone, strictly
pseudomonotone, quasimonotone) on C.

As for (generalized) convexity for functions, characterizations of (gen-
eralized) monotonicity for maps can be derived from the characteriza-
tions for maps of one real variable. As in the previous section, given

and let us define
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Next, for let us define

It is easily seen that F is monotone (pseudomonotone, strictly pseu-
domonotone, quasimonotone) on C if and only if for all and

is monotone (pseudomonotone, strictly pseudomonotone, quasi-
monotone) on Furthermore, generalized monotonicity and gener-
alized convexity are preserved under affine transformations as shown
below. The proof is immediate and left to the reader.

Proposition 2.6 Let X and Y be two linear spaces, be
linear,          C be a convex subset of X and D be a convex subset of Y
such that
i) Assume that             is quasiconvex (pseudoconvex) on D and
let be defined by Then is
quasiconvex (pseudoconvex) on C.
ii) Assume that is quasimonotone (pseudomonotone) on
D and let be defined by Then

is quasimonotone (pseudomonotone) on C.

The corresponding version of Theorem 2.1 is as follows:

Theorem 2.2 Assume that F is continuous on the open convex set C.
Then F is pseudomonotone on C if and only if F is quasimonotone on
C and for all such that and all such that
there exists so that

Proof. The necessity follows from definitions. Let us prove the sufficiency
by contradiction. Assume that F is not pseudomonotone, then

exist so that and Take

Then and for all
Hence in view of the assumption. Let be such that

By continuity, exists so that
But F is quasimonotone and therefore It follows

the contradiction

The following immediate corollary concerns the special case where F
does not vanish on C, it is a quasi transcription of Corollary 2.1.
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Corollary 2.2 Assume that F is continuous on the open convex set C
and for all Then F is pseudomonotone on C if and
only if F is quasimonotone on C.

Assume now that F is differentiable on C. Let us introduce the con-
dition:

Then (Sdp) gives a necessary condition for quasi/pseudomonotonicity as
shown below.

Proposition 2.7 Assume that is differentiable on the con-
vex subset C of E. If F is quasimonotone on C, then (Sdp) holds for
all

Proof. Assume that (Sdp) does not hold for some and
Then, there is some such that and

Hence F is not quasimonotone.

This condition is necessary but not sufficient as seen from the following
example: for Then, is not quasiconvex and its
derivative is not quasimonotone but (Sdp) holds for A sufficient
condition is as follows.

Proposition 2.8 Assume that is differentiable on the con-
vex subset C of E and the following condition holds for all

Then F is strictly pseudomonotone on C.

Proof. In a first step, we prove that

If not, take

Then, and for all
in contradiction with

Next, if F is not strictly pseudomonotone, exist so that
and Hence,

and for all Condition (dp) contradicts
for all

Condition (dp) is sufficient but not necessary for strict pseudomono-
tonicity as shown by the function Then, is strictly
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pseudoconvex (and even strictly convex) but (dp) does not hold for the
derivative at 0.

If we compare (Sdp) and (dp) respectively with the necessary condi-
tion for monotonicity and the sufficient condition for strict monotonicity:

we see that (Sdp) and (dp) involve the (semi)-definiteness of the quadratic
form over the linear subspace which is orthogonal to
instead of the whole space.

Before considering sufficient conditions for generalized monotonicity,
we look at the semi-definiteness question in the next section.

3. Semi-definite positivity of a quadratic form
over a linear subspace

In this section, given an symmetric matrix A and an
matrix B, we are interested in conditions equivalent to
the condition

or to the condition

We start with some background in linear algebra.
The inertia of a symmetric matrix M is the triple

where and denote re-
spectively the numbers of positive, negative and null eigenvalues of M.
Then We make use of two basic re-
sults on inertia. The first of them is quoted in any good book of linear
algebra.

Theorem 2.3 (Lagrange-Sylvester law on inertia) Let M and Q be two
matrices, with M symmetric and Q nonsingular. Then

The second result is less known. It concerns partitioned matrices and
is a simple consequence of the previous one.

Theorem 2.4 (Schur’s complement) Let us consider the matrix
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where A and C are symmetric and A is nonsingular. Then,
i)
ii)

Proof. Observe that

i) is a direct consequence of the rules on determinants and ii) follows
from the Lagrange-Sylvester law.

The matrix is termed as the Schur’s complement of M
by A. Now, we introduce the bordered matrix associated with condition
(PSD) and/or (PD)

The fundamental theorem is as follows

Theorem 2.5 Assume that B has rank Then,
i) and
ii) (PSD) holds if and only if
iii) (PD) holds if and only if
iv) (PD) holds if and only if             is positive definite for
large enough,
v) if (PSD) holds, then A has at most negative eigenvalues.

Proof. i) Since B has rank a nonsingular matrix P exists so that
(I stands for the identity matrix, for simplicity, we do not

precise its order, thus, in the following, I denotes the identity matrix of
order or according to the case). Then,

and the product of the three matrices

is the matrix
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The Lagrange-Sylvester law on inertia implies

Hence, i) is obtained.
ii) and iii) Set then (PSD) and (PD) are equivalent to say

that is positive semi-definite and positive definite respectively.
iv) The sufficient condition is obvious. Assume that (PD) holds, then

By continuity, for large enough

It follows from Theorem 2.4 that

from what iv) is deduced.
v) follows from the fact that the number of negative eigenvalues of a

leading submatrix (here A) cannot exceed that of the matrix (here M).

A way of computing the inertia of a matrix consists in considering the
sign changes in the sequence of the determinants of the leading subma-
trices. This is the object of the next theorem. For let
us define

where is obtained from A by deleting rows and columns whose indices
are not in R. Similarly, the matrix is obtained from B by deleting
rows whose indices are not in R. More specifically, if

where the matrices and
correspond to the matrices associated to Notice that

Still, we consider the case where B has full rank, moreover
we assume that the matrix (obtained in keeping the last
rows of B) is nonsingular.

Theorem 2.6 Assume that B has rank and is nonsingular.
Then,
i) (PD) holds if and only if                                for
ii) (PSD) holds if and only if                          for all
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Proof. Assume that (PSD) holds, then for all

If (PD) holds, the inequality is strict. Since has rank it follows
from Theorem 2.5 that is nonnegative or positive accord-
ing to the case.

Let us prove i). For the matrix has
the following form

If

and

Proceed by induction.
Let us prove ii). The case where being already treated

in i), we consider the case Since is nonsingular
and M has rank then performing a suitable permutation
on the first rows and columns of M, we have nonsingular for

and singular for . Proceed
as for i), then

Next, we analyse more specially the case where Then B is a
column matrix that we represent by the vector     Conditions (PSD)
and (PD) become

and

is nonsingular, we set We start with
we know that because is

nonsingular. Next, for and as long as
is nonsingular, Theorem 2.4 implies
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Theorem 2.7 Assume that and Denote
by the Moore-Penrose pseudoinverse matrix of A. Then,

i)

ii)

Proof. Let P be a matrix and D be a nonsingular

diagonal matrix so that and Set

and It follows from Theorem 2.4 that

Hence,

and the theorem follows.

Historical comments: Positive and positive semi-definiteness of the
restriction of a quadratic form to a linear subspace have been investi-
gated since a long time. The necessary and sufficient condition iv) in
Theorem 2.5 is known as the Finsler-Debreu Lemma (see references [22]
and [18]). More recent references are Haynsworth [24], Cottle [6] and
Chabrillac-Crouzeix [5].

4. Sufficient conditions for generalized
monotonicity

Throughout this section, C is an open convex subset of and
is differentiable on C. We have already seen that the following

condition:

is necessary but not sufficient for F to be quasimonotone or pseudomono-
tone on C. With regard to sufficiency, we consider the following addi-
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tional conditions:

and

In order to prepare the proof of the main result of this section, we
begin with some very simple preliminary results.

Lemma 2.1 Let (with be differentiable, strictly
positive on and such that Assume in addition
that there exists some M > 0 such that for all Then
there is a sequence converging to 0 such that for all

Proof. Given let us define Then
and there exists such that In view

of the mean value theorem, there is such that
But

Lemma 2.2 Given A a real      symmetric matrix,
with then

Proof. Notice that

and the inertia of this matrix is (1, 1, 0). Then the lemma is a direct
consequence of Theorem 2.4.

Lemma 2.3 Assume that F is differentiable on the open convex set C
and (Sdp) holds but F is not quasimonotone on C. Then, there exist
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and two positive real numbers and such that
and

Proof. Because F is not quasimonotone, exist so that
and Take

Then for all
and Then (Sdp) implies Take

and

Lemma 2.4 Assume that F is differentiable on the open convex set C
and (Sdp) holds but F is not pseudomonotone on C. Then, there exist

and such that

Proof. Because F is not pseudomonotone, there exist so
that and Define and as in the
proof of Lemma 2.3 (here

Theorem 2.8 (Brighi, Crouzeix–Ferland, John) Assume that F is con-
tinuously differentiable on the open convex set C. Then:
i) F is quasimonotone on C if and only if the two conditions (Sdp) and
(Bq) hold.
ii) F is pseudomonotone on C if and only if the two conditions (Sdp)
and (Bp) hold.

Proof. It is obvious that (Sdp) and (Bq) hold when F is quasimonotone
and (Sdp) and (Bp) hold when F is pseudomonotone. Assume, for
contradiction, that (Sdp) and (Bq) hold but F is not quasimonotone
(or (Sdp) and (Bp) hold but F is not pseudomonotone). It results from
Lemma 2.3 (Lemma 2.4) that (Ctr) holds for some Without loss of
generality, we assume that is the vector of the canonical basis
of For let us consider the bordered matrices
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where is the matrix corresponding to the
first lines and rows of Also, corresponds
to the last line of and to It results
from that and (and therefore

for all Next, define with
For simplicity, we write instead of and so on.

Notice that is nothing else than the derivative of Hence, in
view of Lemma 2.1, there exists a sequence converging to 0 such that

for all It results from (Sdp) and Lemma 2.2
that the matrix

is positive semi-definite. In particular, when it holds

Notice that the quantities

stay bounded when
We consider the following cases:
1) Then because By continuity of F,

converges to when It follows that the quantity

converges to and this is not possible since the matrix is
semi-definite positive. In that part, one needs only to require to be
bounded, but not necessarily continuous, in a neighborhood of

2) and Then (Sdp) implies that the matrix
is positive semi-definite positive. Hence A(0) is pos-

itive semi-definite positive and because Since
is continuous, converges to when Next, let us
consider the first order approximation of Since and

we have

It follows that Then, it is easily derived that
when which is not possible.
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3) and Then, there is a contradiction with
Condition (Bq) in the quasimonotone case or with Condition (Bp) in
the pseudomonotone case.

It clearly follows that if F does not vanish on C, F is pseudomonotone
and quasimonotone on C as soon as (Sdp) holds.

Historical comments: It was early observed ([42, 31]) that (Sdp) is
a necessary condition for pseudo/quasimonotonicity (actually, the proof
is quite immediate as seen in Section 2). If F is affine, then it is eas-
ily shown that (Sdp) is also sufficient (see for instance [13]). Sufficient
conditions in the non-affine case are more difficult to get. It is shown in
Hildenbrand [25] that (Sdp) is sufficient for pseudomonotonicity when
F does not vanish on C (with a proof due to John). Independently,
Crouzeix and Ferland [12] have shown that if (Sdp) holds with the ad-
ditional condition

then F is pseudomonotone on C. They also proved that if (Sdp) holds
with

then F is quasimonotone on C. The proof of Crouzeix-Ferland, based
on the Cauchy-existence theorem for differential systems, is rather com-
plicated. Recently, John [27] adapted the approach already used in
Hildenbrand [25] to give an elegant proof of the Crouzeix-Ferland re-
sult for pseudomonotonicity. Very recently, Brighi [4] has shown that
Condition (Cfp) can be relaxed in Condition (Bp). The proof of Theo-
rem 2.8 given above is original and looks, at least for the author, much
simpler than the former ones. Finally, we quote a generalization of the
theorem to Lipschitzian maps by Dinh The Luc and Schaible [38] based
on Crouzeix-Ferland’s proof.

It is clear that Conditions (Bq) and (Bp) can be replaced in the the-
orem respectively by the following conditions:
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and

Remark 2.3 For simplicity, the results have been established in a finite
dimensional setting. As seen, the proof of the theorem proceeds by
contradiction. The contradiction leads to condition (Ctr). Without loss
of generality, it can be assumed in (Ctr) that Then the proof
involves only the linear space generated by the vectors and when

or and when a two-dimensional space
in both cases. Thus, Theorem 2.8 is still valid in infinite dimensional
settings.

5. Second order conditions for generalized
convexity

Assume that is twice continuously differentiable on the convex
set C. Then, by Proposition 2.5, is quasiconvex (pseudoconvex) on
C if and only if is quasimonotone (pseudomonotone) on C.
Hence, Theorem 2.8 gives birth to necessary and sufficient condition for
generalized convexity. Condition (Sdp) becomes

Next, let us have a look at conditions (Bp) and (Bq). The matrix
is symmetric. If then condition (Sdp) im-

plies that the matrix is positive semi-definite, hence
is equivalent to and conditions (Bp) and (Bq) become

and

Let us consider the following conditions which involves the function
in place of its gradient:
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and

Theorem 2.9 (Crouzeix, Crouzeix-Ferland) Assume that is twice dif-
ferentiable on the open convex set C and is locally Lipschitz on C.
Then:
i) is quasiconvex on C if and only if the two conditions (Sdp) and
(Cq) hold.
ii)   is pseudoconvex on C if and only if the two conditions (Sdp) and
(Cp) hold.

Proof. It is clear that (Sdp) and (Cq) hold when is quasiconvex and
(Sdp) and (Cp) hold when is pseudoconvex.

Assume that (Sdp) and (Cq) hold but is not quasiconvex. Then
there exist such that and
Take

and Then and
therefore for all It
follows from (Sdp) that Next, referring to the proof
of Theorem 2.8, condition (Ctr) holds for and Besides

because condition (Cq). Then, proceed as in case 1) of the
proof of Theorem 2.8.

Assume that (Sdp) and (Cp) hold but is not pseudoconvex. Then
there exist such that and
Take

and Then for
all Proceed as above, here follows from
condition (Cp).

Corollary 2.3 Assume that is twice differentiable on the open convex
set C, is locally Lipschitz on C and does not vanish on C. Then

is quasiconvex on C (and pseudoconvex on C) if and only if (Sdp)
holds.

Historical comments: It was early seen that (Sdp) is a necessary con-
dition for quasiconvexity (Arrow-Enthoven [1]). It is sufficient when is
quadratic as we shall see in the last section (Martos [40], Ferland [21] and
Schaible [43]). For the non-quadratic case, using the implicit function
theorem, Katzner [32] was able to prove that (Sdp) is also sufficient when
the gradient stays strictly negative on the domain. Theorem 2.9 is due to
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Crouzeix [8], see also Crouzeix-Ferland [9] and Diewert-Avriel-Zang [20].
As in Katzner, the proof in [8] is based on the implicit function theorem:
when it is shown that in a neighborhood of the boundary
of the level set is defined by a convex function. A very
closed approach is followed by Komlosi [35, 36] where condition (Sdp) is
expressed in terms of the so-called Quasi-Hessians. Also, Dinh The Luc
[37], using a version of the implicit function theorem for Lipschitzian
maps, has generalized the theorem to functions for which the gradient
has a Lipschitz property.

Remark 2.4 In Theorem 2.9 as in Theorem 2.8, the assumption “C
open” cannot be omitted, at least for pseudoconvexity and pseudomono-
tonicity. To see that, consider the function this
function (its gradient) is pseudoconvex (pseudomonotone) on the posi-
tive orthant of but not on its closure. Fortunately, for quasiconvexity
and quasimonotonicity, things are better as seen below.

Proposition 2.9 Assume that C is a convex subset of E with

i) Assume that is continuous on C and quasiconvex on
Then is quasiconvex on C.

ii) Assume that is continuous on C and quasimonotone on
Then F is quasimonotone on C.

Proof. By assumption, there exists
i) Let and For all the
points and belong to the interior
of C. Hence Set

Then
ii) Let and with For all
the points and belong to the interior of C. For

small enough, Then
Set then we have

6. Some applications

The following lemma will be used in several places of this section.
Its proof is given in the chapter on continuity and differentiability of
generalized convex functions in this volume.

Lemma 2.5 (Newman-Crouzeix) Assume that is quasicon-
vex and positively homogeneous on the open convex set C.
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i) If
ii) If

for all then is convex on C.
for all then is convex on C.

6.1 Cobb-Douglas functions
Cobb-Douglas functions are of common use in economics. They are

defined on the positive orthant of by the relation
for all

Proposition 2.10 is pseudoconvex on the positive orthant if and only
if one of the following conditions holds
i) for all
ii) for all except one and

Proof. Set Then, is pseudoconvex if and only if is
so. The proof directly follows from Theorems 2.9 and 2.7.

The following result is well known. It can be derived from the previous
one.

Proposition 2.11 is convex on the positive orthant if and only if one
of the following conditions holds
a) for all
b) for all except one and

Proof. A convex function is pseudoconvex. Hence either i) or ii) of
the last proposition holds. If i) holds, then is convex and therefore

is convex. If ii) holds with the function
is not convex, whence is not convex. If

then is pseudoconvex and positively homogeneous of order 1, hence it

is convex in view of Lemma 2.5. If then
and therefore is convex.

6.2 Mereau-Paquet’s type conditions
Let C be a convex set and is said to be convexifiable

or convex transformable on C if there exist a convex function
and a scaling function continuous, strictly increasing
and such that for all A convexifiable function
is quasiconvex; if in addition is differentiable with for all

then is pseudoconvex.
Assume that is twice differentiable on the convex set C and let

be defined on C by with Then
and (where for
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simplicity we write for From this very simple obser-
vation we deduce the following results.

Proposition 2.12 (Mereau-Paquet [41]) Assume that  is twice differ-
entiable on the convex set C and for all the matrix

is positive semi-definite. Then is convexifiable on C,
whence it is pseudoconvex on C.

Proposition 2.13 Assume that is twice continuously differentiable on
the convex set C and the following condition holds for some

then   is convexifiable on a convex neighborhood of

Proof. The proof of the first proposition is immediate. For the second
proposition, combine item iv) of Theorem 2.5 with the continuity of

In the same kind of idea, given a convex subset C of E and
F is said monotone transformable on C if there exists
such that the map G defined by is monotone on C. A
monotone transformable map is pseudomonotone.

Assume that is differentiable on the convex set C and let
G be the map defined on C by with
differentiable on C. Then From
this observation, we deduce the following proposition.

Proposition 2.14 Assume that F is continuously differentiable on the
convex C and the following condition holds for some

then F is monotone transformable on a convex neighborhood of

Proof. For large enough, the matrix is pos-
itive definite. Take Then proceed by continuity.

6.3 Generalized convex quadratic functions

We start with a preliminary result.
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Proposition 2.15 Assume that the symmetric matrix A
has one and only one negative eigenvalue, then there exists a closed
convex cone T such that

and

Proof. There exist a diagonal matrix D and a matrix P
such that and where
corresponds to the diagonal entry of D. Then

Next,

Take

and

Now, we are concerned with the quadratic function

where A is an symmetric matrix and It is known that
is convex if and only if A is positive semi-definite. We look at the non
positive semi-definite case.

Proposition 2.16 Assume that A is a symmetric matrix,
and A is not positive semi-definite. Then is quasiconvex on the open
convex set C if and only if A has one and only one negative eigenvalue,

and is contained either in or in
where T is the cone defined in Proposition 2.15.

Proof. The necessary condition (Sdp) for quasiconvexity is in the present
case

Apply Theorem 2.7. Then A has one negative eigenvalue and, for all
and It follows that

because C is open. Set Then
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for all Hence C is contained either in or in Note
that on and on Hence the
condition is sufficient as well.

In particular, if the condition holds, is pseudoconvex on and
By continuity, is quasiconvex on T and –T. It is also easily

seen that T and –T are the maximal domains of quasiconvexity of
Another interesting result is as follows.

Corollary 2.4 Assume that A has one and only one negative eigenvalue
and Then is convexifiable on T and –T. Actually, the

function is convex on T and –T.

Proof. The function defined by is quasiconvex on T
and –T. Hence is also quasiconvex. Moreover,
is positively homogeneous and negative on the interiors of T and –T.
Hence, in view of Lemma 2.5, it is convex on these interiors and by
continuity on their closures. But, is nothing else than

Historical comments: The main historical references on generalized
convex quadratic functions are Martos [40], Ferland [21] and Schaible
[43], see also [33].

6.4 Generalized monotone affine maps

We consider the map where and A is
an matrix which is not necessarily symmetric. We are concerned
with the generalized monotonicity of F on the open convex set C. As
for quadratic functions, we exclude the trivial case where A is positive
semi-definite. The necessary condition

implies that the matrix has one and only one negative eigenvalue
and, for all and

It follows that belongs to (and not necessarily to
The analysis becomes a little more difficult than for functions.

See references [13] and [17].

6.5 Generalized convexity over an affine space
Let C be a convex subset of and A be a

matrix with rank We are interested in the (generalized) convexity of
on the set
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It is assumed that D is nonempty. Let be fixed in D and B be a
matrix with rank such that AB = 0 (such a matrix

exists). Then for all such that there exists an unique
so that Furthermore, there is convex such that

Let be defined on by It is clear
that is convex (quasiconvex, pseudoconvex) on D if and only if is
so on Notice that corresponds to The
following theorem is a direct consequence of the second order conditions
for (generalized) convexity.

Theorem 2.10 Assume that C is open and is twice continuously dif-
ferentiable on D.

i) is convex on D if and only if the following condition holds

ii) Assume that for all Then is pseudocon-
vex on D if and only if the following condition holds

iii) If the following condition holds

then is strictly convex on D.
iv) If the following condition holds

then is strictly convex on D.

As an application, given we consider the (generalized) convexity

on the set where
This function is convex when We consider the case such
a function is of interest in interior point methods where it is termed
as a multiplicative potential function and is used in the analysis of the
convergence of Karmarkar’s type methods.

Theorem 2.11 is convex on if and only if quasi-
convex and pseudoconvex if and only if Moreover, is strictly
convex when and strictly pseudoconvex when

of the function
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Proof. For simplicity, we use the following notation: is the vector of
and, for X is the diagonal matrix defined by

Easy computations give

Convexity: is convex on C if and only if for all and the
matrix

has only one negative eigenvalue (it has at least one), i.e., because the
Lagrange-Sylvester law on inertia, if and only if the following matrix M
has also only one negative eigenvalue.

Apply Theorem 2.4. Then,

The 2×2 matrix has one negative eigenvalue. It has only one if and only
if This condition holds for all if and only if

There is only one case where the second eigenvalue is zero, when
and for all Then is strictly convex.

It is easily seen that
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Quasiconvexity: It is much simpler to deal with the function

Indeed, is quasiconvex if and only if is so. Here,

Next, is quasiconvex if and only if for all and all the
matrix

has only two negative eigenvalues (it has at least 2). Hence, in view of
the Lagrange-Sylvester law, if and only if the matrix

has two and only two negative eigenvalues. Next, in view of Theorem 2.4,
where

Hence is quasiconvex (and pseudoconvex) if and only if P has at most
one negative eigenvalue knowing that it has at least one. This condition
is equivalent to

it holds for all if and only if The second eigenvalue is
positive and therefore is strictly pseudoconvex.

6.6 Additive separability

Let us assume that, for is an open convex subset of
and is twice differentiable. Set

and let be defined by
for all We are concerned with the generalized
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convexity of on C. We exclude the degenerate cases where or
is constant on for some

It is clear that is convex if and only if all are convex. Suppose
that is quasiconvex on C, then it is clear that each function is qua-
siconvex on for all Suppose that one of them (say is not convex.
Then there exists some for which is not positive semi-
definite. Let us consider the matrix In
view of (Sdp) and Theorem 2.7, this matrix has at most one negative
eigenvalue. It follows that for the matrix is pos-
itive semi-definite at each therefore is convex. Thus, if is
quasiconvex on C, at most one of the functions is not convex.

The conjunction of additive separability with generalized convexity
has very strong implications which cannot be given here. We refer the
reader to Debreu-Koopmans [19] and Crouzeix-Lindberg [10]. For maps,
the conjunction of separability with generalized monotonicity has also
strong implications, we refer to Crouzeix-Hassouni [14, 15].
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Chapter 3

CONTINUITY AND DIFFERENTIABILITY
OF QUASICONVEX FUNCTIONS

Jean-Pierre Crouzeix
CUST and LIMOS

Université Blaise Pascal

63170 Aubière, France

jp.crouzeix@math.univ-bpclermont.fr

Abstract The convexity of the epigraph of a convex function induces important
properties with respect to the continuity and differentiability of the
function. Moreover, the function is locally Lipschitz in the interior of
the domain of the function. If for a quasiconvex function, the convexity
concerns the lower level sets and not the epigraph, some important
properties on continuity and differentiability are still preserved. An
important property of quasiconvex functions is that they are locally
nondecreasing with respect to some positive cone.

Keywords: quasiconvexity, monotonic functions, continuity, differentiability, direc-
tional derivatives, Dini-differentiability, normal cones.

1. Introduction and notation

A convex function of one real variable admits right and left derivatives
at any point in the interior of its domain, hence it is continuous at such
a point. A convex function defined on a normed linear space E is
continuous at if bounded in a neighbourhood of If
and belongs to the interior of the domain of then is bounded in
a neighbourhood of and thereby continuous at this point. Concerning
differentiability, it follows from the observation on functions of one real
variable that admits a directional derivative with respect to
any direction at any point in the interior of the domain. It is easily
seen that the function is convex in The Fenchel-subdifferential
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of at is defined from the directional derivatives by

where denotes the topological dual of E. If that definition of
appears analytical, its true essence is geometrical: the deep nature of
convex analysis is geometrical, even if this nature is sometimes hidden
by analytical considerations. We illustrate that below with the example
of the subdifferential. Assume that is convex and belongs to the
interior of its domain. Then, the point does not belong to the
strict epigraph of which is the set that
epigraph is convex. Let us define the following set

Then, in view of separation theorems on convex sets and under suitable
assumptions in the case where the dimension of E is not finite, is
a closed convex nonempty cone. The set is nothing else that the
set obtained from as follows

Convex analysis finds its main applications in optimization. A general
formulation of a convex optimization problem is

where C is convex and is convex. A point is an optimal solution
if and only if where

Both sets C and are convex. Hence, according to separation theo-
rems and under the appropriate assumptions when the dimension of E
is not finite, we are interested in vectors such that

Such vectors belong to the closed convex cone

which is nothing else that the polar cone of the cone generated by
Namely,
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and

It is clear that is the projection on E of the set defined
in Equation (3.1). Hence, is the closed convex cone generated by

the Fenchel-subdifferential of at When the point moves,
the point moves on the boundary of the epigraph. Because the
epigraph is convex, the map has nice properties of continuity which
afterwards implies nice properties of continuity for the maps and

These properties are the tools used to analyse sensitivity in convex
programming.

The epigraph of a quasiconvex function is not convex and can-
not be used. However, convexity is present through the level sets
The purpose of this chapter is to show how this convexity gives birth to
some interesting properties concerning the continuity and the differen-
tiability of how can be obtained from the directional derivatives
of at and what can be said about the continuity of the point-to-set
map

Throughout the chapter, we use the following notation:
E is a normed linear real space. Given and

denotes the open ball

Let (as usual in convex analysis, we consider func-
tions defined on the whole space; if we have a function with

set for The epigraph (denoted
also by and the strict epigraph are respectively the
following subsets of

Given we define

Clearly, for

and
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We recall that is said to be quasiconvex if

and is said to be strictly quasiconvex on the convex
set D if

is said to be lower semi-continuous (lsc in short)
at if for all there is a neighbourhood V of  such
that for all The function        is said to be upper semi-
continuous (usc in short) at if is lsc at It is clear that is
continuous at if and only if it is both lsc and usc at Finally, is
continuous (lsc, usc) on E if continuous (lsc, usc) at any

For the sake of completeness, we recall in the two following proposi-
tions the meaningful geometrical interpretations of lower semi-continuity
and quasiconvexity.

Proposition 3.1 The following statements are equivalent:

is lower semi-continuous on E,

is closed,

is closed for all

Proposition 3.2 The following statements are equivalent:

is quasiconvex on E,

is convex for all

is convex for all

A set is said to be evenly convex (Fenchel [10]) if it is the
intersection of open half spaces. It results from separation theorems
that open and closed convex sets are evenly convex.

A function is said to be evenly quasiconvex if all are evenly
convex. A lower semi-continuous quasiconvex function is evenly qua-
siconvex since its level sets are convex and closed and thereby evenly
convex. If is an upper semi-continuous quasiconvex function then it
is also evenly quasiconvex because its level sets are
intersections of open convex sets.

Given and denote the closure and the interior
of C. The relative interior of C, denoted by is the interior
of C with respect to the affine subspace generated by C. It is known
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that the relative interior of a nonempty convex set C of is nonempty,
furthermore C and have the same closure.

Sometimes, infinite values are not well praised when considering con-
tinuity and differentiability. It is easy to avoid this problem; indeed,
given let us consider the function defined by

for all Then It is easy to
see that is (evenly) quasiconvex if and only if is (evenly) quasiconvex
and is lsc (usc) at a point if and only if is so. In this spirit, we shall
say that is differentiable at if is differentiable at this point. Thus,
for continuity and differentiability questions in quasiconvex analysis, it
is sufficient to consider functions which are finite on the whole space.

2. Quasiconvex regularizations of functions

We begin this section with the four following observations:
1) Given we have

2) Given we have

3) A function is thoroughly defined when its epigraph or its level sets
are given. Indeed,

Given such that

(such a property holds for the epigraph and the strict epigraph of a
function), a function is defined by

Then

Note that but in general. If then
and coincide.
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In the same manner, given a family of sets such that
for all a function is defined by

Then

We have but in general. If for all
then and coincide.

4) Any intersection of closed (convex, closed convex, evenly convex)
sets is a closed (convex, closed convex, evenly convex) set. Given
we denote by and the intersection of all the
closed sets, the convex sets, the closed convex sets and the evenly convex
sets, respectively, which contain C. These sets, named the closure (i.e.
the closed hull), the convex hull, the closed convex hull, and the evenly
convex hull are the smallest closed set, convex set, closed convex set and
evenly convex set, respectively, which contains C.

Based on these four observations, we can construct regularisations of
a function by considering the hulls of its epigraph or of its level sets.
Thus, given a function we define in connection with
the epigraph

It results that and are the greatest lsc function, the greatest
convex function, the greatest lsc convex function which are majorized
by It is clear that and but

in general. It is worth noticing that, in the three
above relations, we can use the strict epigraph instead of the epigraph.

Before dealing with level sets, we recall that for all

Then, given we construct the functions

The first line leads to alternative constructions of With the last
three lines, we obtain respectively the greatest quasiconvex function, the
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greatest evenly quasiconvex function and the greatest lsc quasiconvex
function majorized by It is clear that for all

Also, we have

Proposition 3.3 Let Then

Proof. We know that Assume that is lsc at and
Take be such that There is a neighbourhood V
of such that Hence for all in
contradiction with Assume that Since is lsc
at for all there is a neighbourhood V of such that

for all But and therefore is lsc at

Since

it follows that for all

The equality does not hold in general. However, for quasiconvex func-
tions, we have the following result:

Proposition 3.4 Assume that is quasiconvex and
Then

Proof. Fix Let then for all
and for all It follows

that and therefore

Furthermore, for quasiconvex functions, we also have the following
result:

Proposition 3.5 Assume that is quasiconvex and
Then is continuous at if and only if is continuous at

Proof. Assume that is continuous at By definition is lsc, it is also
use at since and is usc at Next, assume that

is continuous at Let There is an open neighbourhood
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V of such that for all i.e., Since
and is convex, then because, in a finite

dimensional space, a convex set and its closure have the same interior.
It follows that and is usc at

This result does not hold when the dimension of E is infinite, even
for a convex function, as shown below.

Example 3.1 Let H be an hyperplane of E which is not closed (such
H exists when the dimension of E is not finite). Take if
and otherwise. Then is convex, for all and
therefore is continuous on E but is not continuous at any

Assume that is quasiconvex. If is lsc at then
If is usc on the whole space, then is evenly quasiconvex, hence

at any point. This equality does not hold when is only
usc at (and even if is usc in a neighbourhood of ) as shown by the
following counter-example.

Example 3.2 if or and
otherwise. Then is quasiconvex and is usc on a neighbourhood of

but

Historical comments: If evenly convex sets have been introduced by
Fenchel [10], the introduction of evenly quasiconvex functions is due to
Passy and Prisman [15] and, independently, to Martinez-Legaz [13]. The
description of the process for constructing regularized functions is given
in Crouzeix [3, 6].

3. Quasiconvex functions are nondecreasing

Let Then is quasiconvex if and only if there
exists so that:

either is nonincreasing on and nondecreasing on

or is nonincreasing on and nondecreasing on

Thus, the simplest examples of quasiconvex functions are the nonde-
creasing functions of one real variable. It results that, unlike convex
functions, quasiconvex functions are not continuous on the interior of
their domain. A fortiori, directional derivatives are not necessarily de--
fined. Still, nondecreasing functions of one real variable are almost ev-
erywhere continuous and differentiable, whence quasiconvex functions
of one real variable are also almost everywhere continuous and differen-
tiable on the interior of their domains.
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When E is a linear space, quasiconvexity has again a connection with
monotonicity. Let E be a normed linear space, and
K be a convex cone of E, is said to be nondecreasing with respect to
K if

For let us define

for some

Theorem 3.1 Let be quasiconvex, and such
that and Then there exists an open convex
neighbourhood V of and nonempty open convex cone K so that

Futhermore, if is strictly quasiconvex

Moreover for all

Proof. Let and R > 0 be such that
and Let some Set and

for some

Then K is a nonempty open convex cone. Hence for
all Set Assume that with

Then there is so that
Observe that then the results follow from the (strict)
quasiconvexity of

In the particular case where we derive the following result.

Corollary 3.1 Let quasiconvex, and
such that and Then there exist an open
convex neighbourhood V of and linearly independent
vectors such that

Furthermore, if is strictly quasiconvex and then the inequal-
ity is strict.
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Proof. Choose for vectors n linearly independent vectors in K.

A nondecreasing function is not necessarily quasiconvex as shown be-
low.

Example 3.3 Let be defined by
Then is nondecreasing with respect to the nonnegative orthant of
but is not quasiconvex.

It appears that the relationship between quasiconvex functions and
nondecreasing functions looks like the relationship between convex func-
tions and Lipschitz functions. Because the class of convex functions is
contained in the class of quasiconvex functions, it is interesting to know
if such a relation exists between the classes of Lipschitz and monotonic
functions. The following result shows that, indeed, there is nearly such
a relation: if is Lipschitz, there is a linear function such that is
nondecreasing.

Proposition 3.6 Assume that is locally Lipschitz in
neighbourhood of i.e., there is and such that

Define a function by Then

Proof. The proof is immediate.

It follows that a Lipschitz function enjoys the properties of monotonic
functions.

4. Continuity

Given with and a
direction we define the function of one real variable

It is know that is convex (quasiconvex) on E if and only if, for any
is convex (quasiconvex) on The first result concerns

nondecreasing functions.

Proposition 3.7 Assume that is finite, U is a convex neighbour-
hood of K is an open convex cone, and is nondecreasing with
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respect to K on U. Then is lsc (usc) at if and only if is lsc
(usc) at 0.

Proof. There exist and such that

then V is a neighbourhood of Assume that is lsc at 0. Let some
can be chosen close enough to 0 so that

and for all If is usc at 0 and
is chosen close enough to 0 so that then

for all

Next, we combine that proposition with Theorem 3.1 in order to derive
results for quasiconvex functions. Recall that, as far as continuity is
considered, it is enough to deal with real-valued functions.

Corollary 3.2 Assume that is quasiconvex,
and Set Then is lsc

(usc) at as soon as is lsc (usc) at 0.

Proof. Define K as done in the proof of Theorem 3.1 and apply the
proposition.

Proposition 3.8 Assume that is quasiconvex,
and is usc at Set Then is lsc (usc) at if

and only if is lsc (usc) at 0.

Proof. Take so that Then there exists such that
the open ball is contained in Notice that

Assume that is lsc at 0 and show that is lsc at Let so that
there is so that Set

Then V is a neighbourhood of and, because is quasiconvex,
for all

Assume that is usc at 0 and show that is usc at Let so
that there is so that Set

Then V is a neighbourhood of and, because is quasiconvex,
for all

In these two corollaries, we have shown that the continuity of holds
if it holds along one specific direction. The following result can appear
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weaker since it involves continuity along all directions, but it deserves to
be given in reason of its very simple formulation. Before, we introduce
the following definition.

The function is said to be continuous along the lines at a point
(or hemi-continuous or again radially continuous) at if for each
the function is continuous at 0. Similar definitions apply to lower
and upper semicontinuity.

Theorem 3.2 [3, 6] Assume that is quasiconvex on and is
finite. Then is lsc (usc) at if and only if is lsc (usc) along the
lines at

Proof. 1) Assume that, for every is lsc at 0 and let us prove that
is lsc at Let and let us prove that for all

in a neighbourhood V of If take If not take
in the relative interior of Set there is

such that It results that
In view of separation theorems, there exist and such that for all

Take
2) Next, assume that, for all is usc at 0 . Let Denote

by the vector of the canonical basis of There is such
that for all Take for V the convex hull of the

points Then V is a neighborhood of and

Such a result does not hold if the dimension of E is not finite.

Example 3.4 Consider a function which is linear but not continuous
on E, such a function exists as soon as the dimension of E is infinite.
This function is continuous along the lines at any point.

For other results on continuity in infinite dimensional spaces, we refer
the reader to Hadjisavvas [11].

5. Differentiability: notation and first results

We start with the notation. Assume that is finite and
Then the upper and the lower Dini-derivative of at with respect to
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the direction are respectively defined by

If then the directional derivative of
with respect to the direction exists and is defined by

If for all

and exist and

then is said to be differentiable at along the lines or again weakly
Gâteaux-differentiable at

If there is a vector such that

then  is said to be Gâteaux-differentiable  at Such a  is uniquely
defined, it is called the (Gâteaux-)gradient of at and denoted by

If is Gâteaux-differentiable at and

then is said to be Fréchet-differentiable at
Although Fréchet- and Gâteaux-differentiability do not coincide for

an arbitrary function, they coincide when the function is monotone on

Theorem 3.3 (Chabrillac-Crouzeix [2]) Let K be
a nonempty open convex cone. Assume that is nondecreasing with
respect to K and is Gâteaux-differentiable at Then is Fréchet-
differentiable at

Proof. Assume that is Gâteaux- but not Fréchet-differentiable at
Then there exist and a sequence converging to 0 such that
for all
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Set Without loss of generality, we can assume that the

whole sequence converges to some Let Then
exists so that

where and Then V is a neighbourhood of
For large enough, and therefore

Since is Gâteaux-differentiable at for large enough

and

The contradiction follows from Equations (3.2), (3.3), (3.4), (3.5) and
(3.6).

As an immediate corollary, we see that Gâteaux-differentiability and
Fréchet-differentiability coincide for locally Lipschitz functions on
Also, Theorem 3.3 can be applied to quasiconvex functions.

Theorem 3.4 Assume that is quasiconvex. If is
Gâteaux-differentiable at then is Fréchet-differentiable at  as well.

Proof. Let
1) Then for all and therefore

Let be the canonical basis of Set for
For take and

Then

where Then, since is quasiconvex

and the result follows.
2) There is such that and

The result follows from Theorems 3.1 and 3.3.
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3) We are left with the case where but Of course,
The proof is obtained in working on the affine set generated

by S and combining the proofs in 1) and 2).

A previous proof by Crouzeix [8] of that theorem does not make use
of Theorem 3.3.

It is well known that a nondecreasing function of one real variable is
almost everywhere differentiable. The result still holds in

Theorem 3.5 (Chabrillac-Crouzeix [2]) Let K be
an open nonempty convex cone. Assume that is nondecreasing with
respect to K. Then is almost everywhere Fréchet-differentiable.

The celebrated Rademacher’s theorem on locally Lipschitz functions
can be viewed as a corollary of this theorem. Another consequence is
that quasiconvex functions on are also almost everywhere Fréchet-
differentiable, a previous and direct proof of this result was given in
Crouzeix [7].

6. Directional derivatives
It is clear that, for a general function, the Dini-derivatives

and are positively homogeneous of degree 1 with respect to the
direction This is also the case for the directional derivatives
when they are defined. The following proposition is a direct consequence
of quasiconvexity.

Proposition 3.9 Assume that is quasiconvex and
is finite. Then is quasiconvex.

Proof. Let with Then, for all

Pass to the limit when there is no problem because we consider
the lim sup.

There are counter-examples (Crouzeix [5]) where the function is
quasiconvex, but the lower Dini-derivative is not. The fact that, for a
convex function, the directional derivative is convex and posi-
tively homogeneous in has strong implications. Indeed, the indicator
function of the Fenchel-subdifferential of at is nothing else
that the Fenchel-conjugate of the function Quasiconvex posi-
tively homogeneous functions also will play a fundamental role as seen
below.
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Theorem 3.6 (Newman [14], Crouzeix [4]) Assume that is con-
vex and is quasiconvex and positively homogeneous
of degree one.

1 If  for all then is convex on

2 If  for all then is convex on

Proof. Several types of proofs can be given. The following one is based
on the geometrical aspect of convexity. Consider in case 1)

and in case 2)

Next, let us consider the cone T in generated by S. Both S and
T are convex. In case 1) T corresponds to the epigraph of In case 2)
take where is the recession cone of Then,

corresponds to the epigraph of as well.

Now, assume that is quasiconvex and positively
homogeneous of degree 1. Define and      by 

Then Hence is the minimum of two convex
functions. This decomposition will be useful for the directional deriva-
tives and the upper Dini-derivatives of quasiconvex functions, indeed
they are quasiconvex in the direction.

Theorem 3.7 (Crouzeix [8]) Assume that is quasi-
convex, is finite and is weakly Gâteaux-differentiate at Then

is Gâteaux-differentiable at as well.

Proof. By assumption, for all If
for all take Next, assume that for some
Set

and Then, The
sets and are convex. and are two complementary sets.
Hence the closure of is a half-space. The functions and are
convex on and respectively, furthermore for
all Hence is linear on Finally, it is deduced that

is linear on the whole space.

Theorems 3.4 and 3.7 claim that for quasiconvex functions on
Fréchet-differentiability, Gâteaux-differentiability and weakly Gâteaux-
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differentiability coincide. For nondecreasing functions on Gâteaux-
differentiability and weakly Gâteaux-differentiability do not coincide in
general.

7. More on the Dini-derivatives
For simplicity, throughout the sequel of the chapter, we shall use the

following notation: given quasiconvex on E and with finite,
we define the sets

If the first result looks rather technical, its consequences are quite
meaningful.

Theorem 3.8 Assume that is  quasiconvex, is finite and
Let us define

Proof. If then both and are nonnegative
while both and are nonpositive; the inequalities hold.

We are left with Take

then and

Because

then for all

then for all

there exists so that

i) If

ii) If
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For all let us define

and

where is determined in such a way that and are on the
same straight line. More precisely, we have

Since and is quasiconvex, we have

The quantity is negative because Hence,

On the other hand,

Because the concluding argument applies similarly to both lower and
upper Dini-derivatives, we develop it below only for the lower Dini-
derivative. Since it follows that for small enough

Hence, Replace by its value and let
then

Recall that is a cone and the Dini-derivatives are positively
homogeneous, thence for all

Therefore, replacing by in (3.8), one obtains
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Finally, passing to the limit when we obtain

From this theorem, we immediately deduce the following result.

Corollary 3.3 Assume that is quasiconvex and

If for some then for all

If for some then for all

The same conclusions hold for the upper-Dini derivatives.

Remark 3.1 When the assumption can be
replaced by in the theorem and its corollary.

We recall that a function which is differentiable at is said to be
pseudoconvex at if

Dini-directional derivatives allow relaxations of this notion. According
to the lower or the upper Dini derivative, is said to be -pseudoconvex
at if

and -pseudoconvex at if

Another consequence of the theorem is given below.

Corollary 3.4 Assume that is quasiconvex, usc and
If there is some such that then is -pseudoconvex

at Similarly, if there is some such that then is
pseudoconvex at

Proof. Assume that Since is usc, and
therefore Apply the theorem.

We have said that, for a convex function the normal cone can
be obtained from the Fenchel-subdifferential and therefore from
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the directional derivatives Such a result exists for quasiconvex
functions. This is the object of the following theorem.

Theorem 3.9 Assume that is quasiconvex on E, is finite and

the interior of is not empty. If there exists such that
then

The same result holds for the lower Dini-derivatives. If the
assumption is not necessary.

Proof. Apply Corollary 3.3.

knowledge of the lower Dini-derivatives of at The same conclusion
holds for the upper Dini-derivatives.

We have seen the strong connection between quasiconvex functions
and nondecreasing functions. The next result concerns nondecreasing
functions. The proof is quite easy and left to the reader.

Proposition 3.10 Assume that K is an open convex cone and is
nondecreasing with respect to K. Then and are nonde-
creasing with respect to K. Hence they are continuous on

If is quasiconvex, Theorem 3.1 says that, under some mild assump-
tions, such a cone K exists and the proposition can be applied. However,
a more general result exists. The next theorem involves since the
cone K built in Theorem 3.1 is contained in the following result
leads to stronger results.

Theorem 3.10 Assume that is quasiconvex, is finite and one of
the following conditions holds:

(1) and
(2) and

Then

Moreover, and then

Remark 3.2 This theorem says that if the quasiconvex function is
-pseudoconvex at then can be thoroughly recovered from the
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Proof. a) If the property is trivial.

If then in case (1) and

therefore in both cases. It results from Corollary 3.3
that

b) We are left with the case

In case (1), because is a convex cone and there
exists such that

Such a exists in case (2) as well. Let then there exists
such that

c) Firstly, we deal with the lower Dini-derivative. Let and such
that By definition of there
exists such that for all there is such that

Since is quasiconvex and

we have

Hence, dividing by and passing to the limit when we obtain

That inequality holds for all and all thence

d) Next, we deal with the upper Dini-derivative. Firstly, we show that
there exists so that

If not, there exists such that Since
there exists so that

Since is quasiconvex, for all
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Next, since is quasiconvex and

one has

Hence, dividing by and passing to the limit when one has

Pass to the limit when
e) Finally, assume that and

Then, and Hence, in view of (2)

(3) and
(4) and
Indeed, in both cases, there exists such that

for all The remaining of the proof is the same as in the theorem.

When the closure of is a half-space, the normal cone is
reduced to one direction. The next theorem takes into account the im-
plications of Theorem 3.10 in this very special case.

Theorem 3.11 Assume that E is a Hilbert space, is quasiconvex on E
and is a closed half-space. Take such that
Then there exist and such that

and
i) if then

ii) if then

Remark 3.3 When the theorem also holds under one of the
following relaxed assumptions:
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Moreover, if and are finite then

and if and are finite then

Proof. Notice that Set
then Furthermore, for all and

On the other hand

and

Hence, in view of Theorem 3.10,

Assume that Pass to the limit when then

Similarly, assume that Then,

Proceed in the same way for the upper Dini-derivative. Then, take

Finally, assume that Then for all

Hence when both and are finite. Pro-
ceed similarly for

Remark 3.4 When and or and are not finite the
second part of the theorem does not hold as shown by the following
counter-example: Take and defined by

and
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Then,

Here is an halfspace and Take then
but

An important consequence of the last theorem is stated below.

Theorem 3.12 Assume that is quasiconvex on , is finite and
Then is differentiable at if and only if is

an half-space and the function is differentiable at

Proof. If is differentiable at then is an half-space. Con-
versely, the differentiability of at 0 is equivalent to the assertion that

Apply Theorem 3.11, then and then
for some Thus is Gâteaux-differentiable at and

therefore Fréchet-differentiable at this point since we are in

Generalized derivatives have been made popular with the Clarke ap-
proach. A good situation is when the function is locally Lipschitz. Unlike
convex functions, quasiconvex functions are not locally Lipschitz on the
interior of their domain: Lipschitz properties do not belong to the essence
of quasiconvexity. Henceforth, our intimate opinion is that generalized
derivatives for locally Lipschitz functions are quite inappropriate in qua-
siconvex analysis. However, because so many people have tried to adapt
these generalized derivatives, we indicate that for quasiconvex functions,
the Lipschitz condition holds if it holds in one direction. The result is
as follows:

Theorem 3.13 (Crouzeix [9]) Assume that is quasiconvex on an open
convex set C. Assume in addition that there exist an open convex cone
K, and constant L such that

K for all

for all and such that both and
lie in C.

Then there exists a constant such that
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Proof. Without loss of generality, we assume that For all
define

The assumptions on K and imply that is nondecreasing with
respect to K, then Proposition 3.7 implies that is continuous at any

and therefore is continuous on [0,1]. Choose so that

and take Then

Next, define By Theorem 3.8 and since

Since

the result follows with

Theorem 3.1 gives conditions for the existence of such a cone K.

8. Continuity of the normal cone

Recall that a point-to-set map M : E F is said to be closed at
a point a if for any sequence converging to with

we have
The map is said to be closed on E if closed at any point It

is known that a map is closed on E if and only if its graph
is a closed subset of E × F.

The map M is said to be USC at a point a if for each open set
there is a neighbourhood V of such that for

all We shall use the following well known characterization.

Proposition 3.11 Let M : E K be a point-to-set map where E is
a metric space and K is a compact set. Assume that, for all in
neighbourhood of the set is compact and nonempty and the map
M is closed at Then M is USC at

Proposition 3.12 Let be quasiconvex. Assume
that is finite and lsc at Then  is closed at
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Proof. Let be a sequence converging to with
Let be such that Then there is a neighbourhood

V of such that for all For large enough,
and therefore, because

Hence, passing to the limit

Because the inequality holds for all with it results that

The normal cone is, of course, unbounded. Continuity with un-
bounded maps is sometimes difficult to handle. It is one of the reasons
why the subdifferential is used in sensitivity in convex programming
instead of the normal cone T at the epigraph.

We shall say that a point-to-set map M : E F is C-USC at
(Borde-Crouzeix [1]) if there is a compact-valued map C such that C is
USC at and for all in a neighbourhood of

Theorem 3.14 Let quasiconvex, and
such that and Then is C- USC at

Proof. By Theorem 3.1, there is K an open nonempty convex cone such
that for close to Let be fixed. We define a map
C by

Then, for close to is generated by Hence C is closed at
Furthermore

where is the polar cone of K. The set is compact and the result
follows.

If a convex function is differentiable, then its gradient is continuous.
Now, assume that we are faced with a function which is differentiable
and quasiconvex. Let be such that Then
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It results from Theorem 3.14 that the map

is continuous at any where the gradient does not vanish. Recall that,
for a convex function, the gradient itself is continuous, for a quasi convex
function it is only the directiongiven by the gradient which is continuous.

Some people prefer to consider the normal cone

instead of When is pseudoconvex in one of the different senses
we have given, the two cones coincide.

9. Are the generalized derivatives useful in
quasiconvex analysis?

Assume that is finite in A general formulation of a generalized
derivative of at with respect to a direction is as follows

The different ways by which the arguments converge to con-
verges to the different orders to take the limits with respect to the
arguments, the different types of limit (sup, inf, ...) give birth to many
combinations quite appropriate to exercice the skills of a mathematician.
For instance, the upper (lower) Dini-derivative corresponds to the case
where and the limit is the limit sup (limit inf).

Once a generalized derivative is defined, a generalized subdifferential
is built as the closed convex set such that

Now, it is time to look at the uses of such a generalized derivative
and such a subgradient. Because we deal with optimization problems,
the first use concerns optimality conditions. We have seen that, in the
quasiconvex setting, the normal cone plays a fundamental role.
Hence, the first property to be asked to generalized derivatives and/or
generalized subgradients is that they allow to recover the cone
The second important use concerns sensitivity. For that, a standard
approach consists to consider some continuity on the subdifferential, this
continuity is provided in general by considering the convergences of the
arguments and to and respectively in definition (3.11). Is
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it really necessary to consider generalized derivatives and the associated
subdifferential and not to consider directly the normal cone We
have seen, in the last section, that the normal cone has the wished
continuity property.

Anyway, if we want to consider some generalized derivatives and their
associated generalized subgradients, the simplest ones seem the best.
Since, unlike in the convex case, directional derivatives cannot be con-
sidered, the best candidates are the Dini-derivatives. If is pseudocon-
vex then Proposition 3.10 shows that can be recovered from the
Dini-derivatives. For simplicity we assume that these Dini-derivatives
are finite. Let us define

and

Then, is the cone generated by and/or hence it
is thoroughly defined from the knowledge of these sets. Furthermore,
because is quasiconvex, for all

An exhaustive bibliography on generalized derivatives and generalized
subgradients in quasiconvex programming is reference [16].
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Abstract In this chapter, the role of generalized convex functions in optimization
is stressed. A particular attention is devoted to local-global properties,
to optimality of stationary points and to sufficiency of first order nec-
essary optimality conditions for scalar and vector problems. Despite
of the numerous classes of generalized convex functions suggested in
these last fifty years, we have limited ourselves to introduce and study
those classes of scalar and vector functions which are more used in the
literature.

generalized convexity, vector optimization, optimality conditions.Keywords:

1. Introduction

In classical scalar optimization theory, convexity plays a fundamental
role since it guarantees the validity of important properties like as: a
local minimizer is also a global minimizer, a stationary point is a global
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minimizer and the usual first order necessary optimality conditions are
also sufficient for a point to be a global minimizer.

For many mathematical models used in decision sciences, economics,
management sciences, stochastics, applied mathematics and engineering,
the notion of convexity does not longer suffice. Various generalizations
of convex functions have been introduced in literature. Many of such
functions preserve one or more properties of convex functions and give
rise to models which are more adaptable to real-world situations then
convex models.

Starting from the pioneer work of Arrow-Enthoven [1], attempts have
been made to weaken the convexity assumption and thus to explore the
extent of optimality conditions’ applicability. The results obtained in the
scalar case have had a great influence on the area of vector optimization
which has been widely developed in recent years with the aim to extend
and generalize, in this field, such results (see for instance [15]), [42], [62].

In the scalar case various generalization of convexity have been sug-
gested and their properties studied (see for instance [3], [86]). In this
chapter we limit ourselves to consider only the classes which preserve the
properties of convex functions related to optimality like as quasiconvex,
semistrictly quasiconvex and pseudoconvex functions.

A particular attention is devoted to pseudolinear functions, that is
functions which are both pseudoconvex and pseudoconcave, since they
have also the nice property, which is very important from a computa-
tional point of view, that the set of all minimizers and the set of all maxi-
mizers are contained in the boundary of the feasible region; in particular,
if such a region is a polyhedral set and if the minimum (maximum) value
exists, it is attained at least at a vertex of the feasible set.

In Section 3 we have considered the class of the so-called invex func-
tions since it is the wider class for which the Kuhn-Tucker conditions
become sufficient. These functions can be characterized as the ones for
which a stationary point is a minimum point and, like as the considered
classes of generalized convex functions, they play an important role also
in establishing constraint qualifications.

In vector optimization, the concept of minimum is usually translated
by means of an ordering cone in the space of the objectives. For sake of
simplicity in this chapter we refer to the Pareto cone, that is the non-
negative orthant of the space of the objectives. This cone induces only a
partial order and this is the main reason for which there are several ways
to extend the notion of generalized convexity in vector optimization.

As in the scalar case, we have chosen to present some classes of vec-
tor generalized convex functions which preserve local-global properties
and the sufficiency of the most important first order necessary vector
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optimality conditions. Furthermore, in Section 10, we have suggested
a possible way to extend the concept of pseudolinearity for a vector
function, while in Section 11 the notion of vector invexity is developed.

In this chapter, we have given the fundamental notions, ideas and
properties of generalized convex scalar and vector functions. For sake
of simplicity, we have considered differentiable functions even if recent
papers are devoted to the nonsmooth case.

2. Generalized convex scalar functions and
optimality conditions.

In this section, we will establish local-global properties and the suffi-
ciency of the most important first order necessary optimality conditions.
With this aim, we introduce some classes of real-valued generalized con-
vex functions which contain properly the convex one.

Let be a function defined on an open set X of and let
S be a convex subset of X.

Definition 4.1 The function  is quasiconvex on S if its lower-level
sets are convex sets for all real numbers

As is known, an useful characterization of a quasiconvex function is
the following:

for every and
When   is a differentiable function,   is quasiconvex if and only if

Definition 4.2 The function is semistrictly quasiconvex on S if

for every and

Definition 4.3 The differentiable function is pseudoconvex on S if

We recall that, in the differentiable case, a pseudoconvex function is
a semistrictly quasiconvex function, that, in turn, is quasiconvex.
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The essence of the difference between quasiconvexity and pseudocon-
vexity is stated in the following known theorem for which we will give a
very simple proof.

Theorem 4.1 Let be a differentiable function on an open convex set

If then is pseudoconvex if and only if it is
quasiconvex.

Proof. Taking into account that a pseudoconvex function is quasiconvex
too, we must prove that a quasiconvex function is pseudoconvex.

Assume, to get a contradiction, that there exist with
and Since is quasiconvex,

necessarily we have For the continuity of there
exists such that with (observe
that since Consequently, for the quasiconvexity
of we have On the other hand

so that

and this is absurd.

Let us note that a function is quasiconcave, semistrictly quasicon-
cave or pseudoconcave if and only if the function is quasiconvex,
semistrictly quasiconvex or pseudoconvex, so that all results that we
are going to describe for generalized convex functions hold with obvious
changes for the corresponding class of generalized concave functions.
Like as the convex case, a semistrictly quasiconvex function f (in par-
ticular pseudoconvex) has the nice properties that the set of points at
which f attains its global minimum over S is a convex set and that a
local minimum is also global. This last property is lost for a quasicon-
vex function; with this regard it is sufficient to consider the quasiconvex
function

and the point which is a local but not global minimum point.
Nevertheless, if is a strict local minimum point for a quasiconvex

function, then it is also a strict global minimum point. The class of
semistrictly quasiconvex functions is the wider class for which a local
minimum is also global in the following sense:
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if is a continuous quasiconvex function, then is semistrictly quasi-
convex if and only if every local minimum is also global.

In order to analyze local and global optimality at a point we
must compare with and this suggests to consider
generalized convexity at the point Following Mangasarian [65], we
can also weaken the assumption of convexity of S, requiring that S is
star-shaped at that is implies the line-segment is
contained in S.

The following definitions hold:

Definition 4.4 Let be a function defined on the star-shaped set S at

i) is quasiconvex at if

ii) is semistrictly quasiconvex at if

iii) is pseudoconvex at if is differentiable at and

It is well known that a point, which is minimum with respect to every
feasible direction starting from it, is not necessarily a local minimum
point. Consider for instance the function on
the set The point is minimum with respect to
every feasible direction but it is not a local minimum,
how it can be verified by considering the restriction of to the curve

The following theorem points out that, requiring suitable
generalized convexity assumptions, optimality along feasible directions
at a point implies the optimality of

Theorem 4.2 Let be a function defined on the star-shaped set S at

i) If is quasiconvex at and is a strict local minimum point
for every direction then is a strict global
minimum point of on S.

ii) If is semistrictly quasiconvex at and is a local minimum
point for every direction then is a global
minimum point of on S.

iii) If is pseudoconvex at and is a local minimum point for
every direction then is a global minimum
point of on S.
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Now we will stress the role of generalized convexity in establishing
sufficient first order optimality conditions.

With this aim, in the following we will consider a real-valued differ-
entiable function defined on an open subset X of It is well known
that a stationary point for is not necessarily a minimum point for

such a property holds requiring a suitable assumption of generalized
convexity.

Theorem 4.3 Consider a differentiable function on a convex set
If is pseudoconvex at the stationary point then is a

global minimum point for the function on S.

Theorem 4.3 does not hold if pseudoconvexity assumption is substi-
tuted with quasiconvexity or semistrictly quasiconvexity. In fact

is a strictly increasing function so that it is both semistrictly quasicon-
vex and quasiconvex, but the stationary point is not a minimum
point for

Now we will see how generalized convexity assumptions are very im-
portant to guarantee the sufficiency of first order optimality conditions
which are in general only necessary. When S is star-shaped at one
of the most known conditions for to be a local minimum point is

where is the cone of feasible
directions of S at given by

Such a condition is not sufficient even if strict inequality
holds as is shown in the following example.

Example 4.1 Consider the function defined on the
convex set and the point We
have and

but is not a minimum point as it can be verified performing
a restriction of the function on the curve

In Example 4.1 the closure of the cone contains
properly and directions belonging to are
critical directions, that is In order to be sure that is a
minimum point, we must require the validity of the sufficient condition

When the function is pseudoconvex the critical directions do not play
any role as it is stated in the following theorem whose proof follows
directly by the definition of pseudoconvexity.

Theorem 4.4 Let be a star-shaped set at and let be
pseudoconvex at Then is a minimum point for on S if and only
if
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Remark 4.1 Let us note that if is a stationary point, the condition
is always verified. Since quasiconvexity

assumption in a stationary point does not guarantee the optimality of
Theorem 4.4 does not hold for this class of functions.

On the other hand, if is quasiconvex at and then
is pseudoconvex at so that we have the following corollary.

Corollary 4.1 Let be a star-shaped set at If is
quasiconvex at and then

is a minimum point for on S.

Consider now the case where the feasible set S is described by means
of constraint functions. More exactly consider the problem:

where are differentiable functions defined on an open set

The most known first order necessary optimality conditions for a con-
strained problem are the following Kuhn-Tucker conditions:
let be a feasible point and set if

is a local minimum point for P and a constraint qualification holds,
then there exist such that:

The following example points out that (4.9) and (4.10) are not suffi-
cient optimality conditions.

Example 4.2 Consider the problem

It is easy to verify that for the point (0, 0), conditions (4.9) and (4.10)
hold with but (0, 0) is not a local minimum point for the problem.

Let us now show that (4.9) and (4.10) are also sufficient when the
objective and the constraint functions are certain generalized convex
functions.

Theorem 4.5 Let be a feasible point for problem P and assume that
verifies the Kuhn-Tucker conditions (4.9) and (4.10). If is
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pseudoconvex at and are quasiconvex at then is
a global minimum point for problem P.

Proof. Assume there exists a feasible point such that
From the pseudoconvexity of we have and from
the quasiconvexity of we have Taking
into account that it results

and this contradicts (4.9).

Remark 4.2 In Example 4.2, the objective and the constraint functions
are quasiconvex and also semistrictly quasiconvex on and this points
out that Theorem 4.5 does not hold if is quasiconvex or semistrictly
quasiconvex.

Taking into account Remark 4.1, Theorem 4.5 holds if is quasiconvex
at and Such a condition is verified, for instance, in
Consumer Theory, where it is assumed that the partial derivatives of
the utility function U are positive and -U is a quasiconvex function.

3. Invex scalar functions
In [38] Hanson has introduced a new class of generalized convex func-

tions (invex functions) with the aim to extend the validity of the suffi-
ciency of the Kuhn-Tucker conditions. The term invex is due to Craven
[27] and it steams for invariant convex.

Since the papers of Hanson and Craven, during the last twenty years,
a great deal of contributions related to invex functions, especially with
regard to optimization problems, have been made (see for instance [8,
28, 29, 40, 80, 93].

Definition 4.5 The differentiable real-valued function defined on the
set is invex if there exists a vector function defined on
X × X such that

Obviously a differentiable convex function (on an open convex set X)
is also invex (it is sufficient to choose

A meaningful property characterizing invex functions is stated in the
following theorem [8].
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Theorem 4.6 A differentiable function is invex (with respect to some
if and only if every stationary point is a global minimum point.

Proof. Let be invex with respect to some If is a stationary
point of from (4.11) we have

so that is a global minimum point. Now we will prove that
(4.11) holds for the function defined as

If is a stationary point and also a global minimum for we have
otherwise

so that (4.11) holds.

It follows immediately from Theorem 4.6 that every function without
stationary points is invex.

The class of pseudoconvex functions is contained in the class of in-
vex functions (it is sufficient to note that for a pseudoconvex function a
stationary point is also a global minimum point), while there is not in-
clusion relationships between the class of quasiconvex functions and the
class of invex functions. Indeed, the function is quasiconvex
but not invex, since is a stationary point but it is not a minimum
point; furthermore the following example shows that there exist invex
functions which are not quasiconvex.

Example 4.3 Consider the function on the open
convex set

It is easy to verify that the stationary points of
are global minimum points, so that is invex. On the other hand,

setting A = (–1, 1), we have
and so that is not
quasiconvex.

Since a function which is not quasiconvex is also not pseudoconvex,
the previous example shows also that the classes of pseudoconvex and
convex functions are strictly contained in the one of invex functions.

Some nice properties of convex functions are lost in the invex case. In
fact, unlike the convex or pseudoconvex case, the restriction of an invex
function on a not open set, does not maintain the local-global property.
With this regard, consider again the function on
the closed set The point is
a local minimum for f on S but it is not global since
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For the same function defined on the set
of all minimum points is given by
which is a non convex set; as a consequence, for an invex function the
set of all minimum points is not necessarily a convex set.

Following Hanson [38], we will prove the sufficiency of the Kuhn-
Tucker conditions under suitable invex assumptions.

Theorem 4.7 Let be a feasible point for problem P and assume that
verifies the Kuhn- Tucker conditions (4.9) and (4.10). If
are invex functions with respect to the same then is a

global minimum point for problem P.

Proof. For any we have

Consequently is a global minimum point.

The proof of Theorem 4.7 points out that it is sufficient to require the
invexity of the functions at that is (4.11) holds
with

Invexity allowed also the weakening of convexity requirements in dual-
ity theory, since duality results involving Wolfe dual or alternative duals
can be established [29, 37, 40, 67]. Furthermore, invex functions, as well
as generalized convex functions, play some role in establishing constraint
qualifications as it will be seen in the next section.

Since invexity requires differentiability assumption, in [8, 40] the fol-
lowing new class of functions, not necessarily differentiable, have been
introduced.

Let be a real valued function defined on a subset of and
We say that a subset X of is if for every

the segment is contained in X.

Definition 4.6 Let be a real valued function defined on a set
X; is pre-invex with respect to if the following inequality holds:

A differentiable function satisfying (4.12) is also invex and this is the
reason why functions verifying (4.12) are called pre-invex [93].
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Like as convex functions, for a pre-invex function every local minimum
is also global and nonnegative linear combinations of pre-invex functions
with respect to the same are pre-invex. Furthermore it is possible
to establish saddle point and duality theorems following the classical
approach used in the convex case [93].

4. Generalized convexity and constraint
qualifications

As we have pointed out in Section 2, the Kuhn-Tucker conditions
(4.9) and (4.10) are necessary optimality conditions for problem P when
certain regularity conditions on the constraints are satisfied. The aim of
this section is to stress the role of generalized convexity and invexity in
establishing constraint qualifications.

For our purposes, it will be useful to define the following sets:

where is pseudoconcave at
Denoting with the closure of the convex hull of the Bouli-

gand tangent cone to the feasible region S at the
following inclusion relationships hold:

In order to guarantee the validity of the Kuhn-Tucker conditions, it
must result (Guignard constraint qualification), so that
any condition which implies becomes a constraint qual-
ification.

In particular, condition is a constraint qualifica-
tion; indeed it implies so that from (4.13) we
have We will prove that, under suitable assumption of
generalized convexity on the constraint functions, it results or

The following theorem holds.

Theorem 4.8 If one of the following conditions holds then Guignard
constraint qualification is verified.

i) The functions are pseudoconvex at and there
exists such that [65].

ii) The functions are quasiconvex at
and there exists such that [1].
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iii) The functions are pseudoconvex at and there
is some vector such that [69].

iv) The functions are pseudoconcave at [65].
v) The functions are invex at with respect to the

same and there exists such that [8].

Proof. i) Since for the pseudoconvexity of we
have so that the direction and
thus

ii) It follows from i), taking into account that the quasiconvexity of
at and the assumption imply the pseudoconvexity

of at
iii) For the function is pseudoconvex and pseudoconcave

so that (see section 6) implies
On the other hand implies, for the
pseudoconvexity of so that
and thus

iv) It is sufficient to note that
v) We have For the invexity of

it results so that
and thus

At last we prove the necessity of the Kuhn-Tucker conditions requiring
a generalized Karlin constraint qualification which involves invexity [37].

Theorem 4.9 Let be an optimal solution for problem P where the
functions are invex with respect to the same Assume that
there exist no vector such that

Then conditions (4.9) and (4.10) hold.

Proof. The optimality of implies the following F. John conditions:
there exist such that

Assume that that is For the invexity
assumption, we have:

so that and this
contradicts the generalized Karlin constraint qualification.
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5. Maximum points and generalized convexity

In this section we will show that for a generalized convex function, a
global maximum point, if one exists, is attained at the boundary of the
feasible region S and, under suitable assumptions on S, it is an extreme
point of S.

We will begin to prove that if the maximum value of the function is
reached at a relative interior point of S, then is constant on S.

We recall that the relative interior of a convex set denoted
by is defined as the interior which results when C is regarded as a
subset of its affine hull In other words,

where B is the Euclidean unit ball in

Lemma 4.1 Let be a continuous and semistrictly quasiconvex func-
tion on a convex set S. If is such that
then is constant on S.

Proof. Assume that there exists such that For
a known property of convex sets [81], there exists such that

Since is a continuous function, without loss of generality,
we can assume that The semistrict quasiconvexity of
implies and this is absurd since

From Lemma 4.1, we have directly the following result.

Theorem 4.10 Let be a continuous and semistrictly quasiconvex func-
tion on a convex and closed set S. If assumes maximum value on S,
then it is reached at some boundary point.

The previous theorem can be strengthened when the convex set S
does not contain lines (such an assumption implies the existence of an
extreme point [81]).

Theorem 4.11 Let be a continuous and semistrictly quasiconvex func-
tion on a convex and closed set S containing no lines. If assumes
maximum value on S, then it is reached at an extreme point.

Proof. If is constant, then the thesis is trivial. Let be such that
From Theorem 4.10, belongs to the boundary

of S. Let C be the minimal face of S containing if is not an
extreme point, then It follows from Lemma 4.1 that is
constant on C. On the other hand, C is a convex closed set containing
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no lines, so that C has at least one extreme point which is also an
extreme point of S [81]. Consequently is a global maximum for on
S.

Obviously the previous result holds for a pseudoconvex function, while
a quasiconvex function can have a global maximum point which is not
a boundary point. In fact the function

is nondecreasing, so that it is quasiconvex; on the other hand any point
where assumes its maximum value is not a boundary point.

If we want to extend Theorem 4.11 to the class of quasiconvex func-
tions, we must require additional assumptions on the convex set S.

Theorem 4.12 Let be a continuous and quasiconvex function on a
convex and compact set S. Then there exists some extreme point at
which assumes its maximum value.

Proof. From Weierstrass Theorem, there exists with
Since S is convex and compact, it is also the convex hull

of its extreme points, so that there exists a finite number of
extreme points such that From
the quasiconvexity of we have and the
thesis follows.

Taking into account that a pseudoconvex function is also semistrictly
quasiconvex, we have the following corollaries:

Corollary 4.2 Let be a pseudoconvex function on a convex and closed
set S. If assumes maximum value on S, then it is reached at some
boundary point.

Corollary 4.3 Let be a pseudoconvex function on a convex and closed
set S containing no lines. If assumes maximum value on S, then it is
reached at an extreme point.

From a computational point of view, Theorems 4.11 and 4.12 and
Corollaries 4.2 and 4.3 are very important since they establish that we
must investigate the boundary of the feasible set (in particular the ex-
treme points if one exists) in order to find a global maximum of a gen-
eralized convex function. Nevertheless, for these classes of functions a
local maximum is not necessarily global and the necessary optimality
condition is not sufficient for to be a
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local maximum point, so that the problem of maximize a quasiconvex
or pseudoconvex function is a hard problem. This kind of difficulties
vanishes if is also quasiconcave or pseudoconcave. We will deep this
aspect in the next section.

6. Quasilinear and pseudolinear scalar functions

A function defined on a convex subset S of is said to be quasilinear
(pseudolinear) if it is both quasiconvex and quasiconcave (pseudoconvex
and pseudoconcave).

The pseudolinear functions have some properties stated in [26, 54, 55]
for which we propose simple proofs.

Theorem 4.13 Let be a function defined on an open convex set

i) If is pseudolinear and there exists such that
then is constant on S.

ii) is pseudolinear if and only if

iii) Assume Then is pseudolinear on S if and
only if its normalized gradient mapping is constant on each
level set

Proof. i) It follows from Theorem 4.3, taking into account that the
stationary point is also a global maximum, since is pseudoconcave.

ii) Let be pseudolinear. Since is also quasilinear, then
implies that is constant on the line-segment so that the

directional derivative is equal to zero.
Assume now Since

implies necessarily we have

Assume that (4.14) holds; we must prove that is both pseudoconvex
and pseudoconcave. If is not pseudoconvex, there exist with

such that Since
implies we must have so that the
direction is an increasing direction at The continuity of the
function implies the existence of 1 [ such that

Consequently
and this contradicts (4.14). It follows that is pseudoconvex. In an
analogous way it can be proven that is pseudoconcave.
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iii) Let be pseudolinear with We must prove
that

Set
We have Indeed, if from ii) it results

for every such that From ii), it follows
and so that

and thus In an analogous way we can prove that
Since it results Set and

assume that for a suitable the points

are such that The continuity
of implies the existence of 1 [ such that with

From ii) we must have on the other
hand so that
from ii), and this is absurd.

Consequently we have

Assume now that (4.15) holds. Let and set
If is constant in sign, then is quasilinear

on the line segment [0, 1]. Otherwise, from elementary analysis, there
exist such that with We can
assume, without loss of generality, that
Set Since

we have and

and this is
absurd.

It follows that the restriction of the function over every line-segment
contained in S is quasilinear, so that is quasilinear and also pseudo-
linear since

Remark 4.3 Following the same lines of the proof given in ii) of the
previuos theorem, it can be shown that (4.14) is equivalent to the fol-
lowing two statements:

which point out that pseudolinearity is equivalent to require that the
logical implication in the definition of pseudoconvex (pseudoconcave)
function can be reversed.
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Let us note that i) and ii) of Theorem 4.13 do not hold if is quasi-
linear, as it is easy to verify considering the function fur-
thermore, i) and ii) of Theorem 4.13 hold even if S is a relatively open
convex set, while in iii) the assumption cannot be weakened,
as it is shown in the following example.

Example 4.4 Consider the function  defined
on the relatively open convex set

Consider the convex set obviously
while

By simple calculation, it results Let A = (0, 0, 1),
B = (0, 0, 2); we have

so that while is pseudolinear on S.

Condition iii) of Theorem 4.13 can be strengthened when the function
is defined on the whole space in the sense stated in the following

theorem.

Theorem 4.14 The non constant function  is pseudolinear on the
whole space if and only if its normalized gradient mapping

is constant on

Proof. It follows from iii) of Theorem 4.13.
Let be pseudolinear on and assume that its normalized gra-

dient mapping is not constant on Then there exist
such that From iii) of Theorem 4.13, we have

Set and
Let us note that im-

plies so that and, from ii) of
Theorem 4.13, Analogously we have

Since there exists
so that and this

is absurd.

From a geometrical point of view, the previous theorem states that
the level sets of a non constant pseudolinear function, defined on the
whole space are parallel hyperplanes; vice-versa if the level sets of a
differentiable function, with no critical points, are hyperplanes, then the
function is pseudolinear.

In any case, if the level sets of a function are hyperplanes, then the
function is quasilinear, but the vice-versa is not true. In fact the function
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where is as in (4.5), is quasilinear and the level set
is not a hyperplane.

When the non constant pseudolinear function is defined on a convex
set from iii) of Theorem 4.13, the level sets are the intersection
between S and hyperplanes which are not necessarily parallel (consider
for instance the classic case of linear fractional functions).

The above considerations suggest a simple way to construct a pseu-
dolinear function. Consider for instance the family of lines It
is easy to verify that such lines are the level sets of the function

defined on since
is pseudolinear on S.

Another way to construct a pseudolinear function is to consider a
composite function where is pseudolinear and is a
differentiable function having a strictly positive (or negative) derivative.

With respect to an optimization problem having a pseudolinear ob-
jective function defined on a polyhedral set S, we have the nice property
that when the maximum and the minimum value exist, they are reached
at a vertex of S.

Setting the edges starting from a vertex the neces-
sary and sufficient optimality condition stated in Theorem 4.4 and the
analogous one for a pseudoconcave function can be specified by means
of the following theorem.

Theorem 4.15 Let be a pseudolinear function defined on a polyhedral
set S. Then:

i)  A vertex is a minimum point for on S if and only if

ii) A vertex is a maximum point for on S if and only if

When S is a polyhedral compact set, the previous theorem can be
extended to a quasilinear function.

Theorem 4.16 Let be a quasilinear function defined on a polyhedral
compact set S. Then:

i) A vertex is a minimum point for on S if and only if

ii) A vertex is a maximum point for on S if and only if
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The optimality conditions stated in the previous theorem have sug-
gested some simplex-like procedure for pseudolinear problems. These
programs include linear programs and linear fractional programs which
arise in many practical applications [30, 87, 89]. Algorithms for a lin-
ear fractional problem have been suggested by several authors [9, 25, 68].
Computational comparisons between algorithms for linear fractional pro-
gramming are given in [33].

7. Generalized convex vector functions

Let X be an open set of the n-dimensional space a convex
subset of X and F a vector function from X to

In what follows, we will consider in the partial order induced by the
Paretian cone, even if most of the results, which are going to establish,
hold when the partial order is induced by any closed convex cone. For
convenience, we set

As is known, there are different ways in extending the definitions of
generalized convex functions to the vector case; we will address to those
classes which will allow to obtain several properties related to optimality,
referring to bibliography for further deepenings (see for instance [15],
[18], [62]).

As it happens in the scalar case, we can refer to vector generalized
convexity or to vector generalized concavity. In this last case, it is suf-
ficient to substitute in what follows – C, with C,
respectively, in order to obtain the corresponding definitions and results.

Definition 4.7 The Junction F is said to be C-convex (on S) if

It is easy to prove that F is C-convex if and only if any component
of F is convex.

Definition 4.8 The function F is said to be C-quasiconvex (on S) if
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When Definition 4.8 reduces to (4.1). If any component of F
is quasiconvex, then F is C-quasiconvex, but the converse is not true.
For instance the function is
on but it is not componentwise quasiconvex.

In [62], Luc suggests another definition of a quasiconvex vector func-
tion which is equivalent to require componentwise quasiconvexity and
which plays an important role in establishing the connectedness of the
set of all efficient points. This class of functions is strictly contained in
the class of C-quasiconvex ones [15].

Remark 4.4 When F is a differentiable function, C-quasiconvexity im-
plies the following property:

where denotes the Jacobian matrix of F evaluated at
Unlike the scalar case, the converse implication does not hold in gen-

eral and this points out that the study of vector generalized convexity
is more complicated than that of the scalar case; this remark motivates
once again the variety of definitions which have been suggested in the
literature for the vector case.

Assume now that F is a differentiable function and let be the
Jacobian matrix of F evaluated at As for the quasiconvex case, there
are different ways to extend scalar pseudoconvexity to the vector case.
We introduce three classes of vector pseudoconvex functions which re-
duce, when to the classical definition given by Mangasarian [65].

Definition 4.9 The function F is said to be (on
S) if

Definition 4.10 The function F is said to be
(on S) if

Definition 4.11 The function F is said to be
(on S) if

If any component of F is pseudoconvex, then F is
and also if any component of F is
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strictly pseudoconvex (that is
then F is if any component of F is qua-

siconvex and at least one is strictly pseudoconvex, then F is
The converse of these statements are not true in general,

as it is shown in the following example.

Example 4.5 The function is
and on with

but it is not componentwise quasiconvex or pseudoconvex.
The function is on
with but its components are not strictly pseudoconvex.

The following theorem states the inclusion relationships among the
introduced classes of functions.

Theorem 4.17 Let F be a differentiable function.
i) If F is C-convex (on S), then it is C-quasiconvex,

and (on S).
ii) If F is (on S), then it is

and (on S).

Proof. In order to prove that C-convexity implies
and it is sufficient to note that

C-convexity implies and that

The other inclusion relationships follow directly from the definitions.

The following examples point out that there are not inclusion relation-
ships between and
ity and between C-convexity and

Example 4.6 Consider the function

It is easy to prove that there do not exist such that
so that F is On the other

hand, setting we have while
and thus F is not

Consider now the function

Setting we have and
so that F is not while simple

calculations show that F is
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Example 4.7 Consider the function

F is C-convex since it is componentwise convex. Setting
we have and so that F is not

On the other hand, the function is not C-convex on
with but it is

The following example points out that, unlike the scalar case, there is
not inclusion relationship between quasiconvex and pseudoconvex vector
functions.

Example 4.8 Consider the function
Since F is componentwise quasiconvex, it is also C-quasiconvex.

Setting we have
but so that F is not

Furthermore but
and thus F is not

Consider now the function
It is easy to verify that the relation ( in particular

does not hold for every so that F
is both and Setting

we have so that but
1[ and thus F is not

C-quasiconvex.

8. Efficiency

In vector optimization, because of the contradiction of the objective
functions, it is not possible, in general, to find a point which is optimal
for all the objectives simultaneously. For such a reason, a new concept
of optimality was introduced by the economist Edgeworth in 1881. How-
ever this new concept is usually referred to the French-Italian economist
Pareto who in 1896 developed it further.

Speaking roughly, a point is Pareto optimal if and only if it is possible
to improve (in the sense of minimization) one of the objective functions
only at the cost of making at least one of the remaining objective func-
tions worse; a point is weakly Pareto optimal if and only if it is not
possible to improve all the objective functions simultaneously.

For a formal definition, consider the following vector optimization
problem:

where X be an open set of
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Definition 4.12 A point is said to be :
weakly efficient or weakly Pareto optimal if

efficient or Pareto optimal if

If the previous conditions are verified in where I is a suitable
neighbourhood of then is said to be a local weak efficient point
or a local efficient point, respectively.

In the scalar case (s=1) a (local) weak efficient point and an (local)
efficient point reduce to the ordinary definition of a (local) minimum
point.

Obviously (local) efficiency implies (local) weak efficiency.
With respect to the class of functions, a point
is (local) weakly efficient if and only if it is (local) efficient.

Let us note that all the results which will be established for problem
P hold for the problem substituting with with

and requiring generalized concavity instead of generalized convex-
ity.

With regard to the existence of efficient points of problem P, we refer
the interested reader to [12, 62, 84, 94].

Now we will stress the role played by vector generalized convexity
in investigating relationships between local and global optima. As in
the scalar case, from now on, we will consider generalized convexity at
a point and we will require that the feasible set S is star-shaped
at furthermore, referring to a pseudoconvex vector function, the
differentiability of F at is assumed.

The following theorem shows that, under suitable assumption of gen-
eralized convexity, local efficiency implies efficiency.

Theorem 4.18 i) If  is a local efficient point for P and F is
at then is an efficient point for P.

ii) If is a local weak efficient point for P and F is
at then is a weak efficient point for P.

Proof. i) Assume that there exists such that
Since F is at we have

that is and this implies
the existence of a suitable such that

This contradicts the local efficiency of
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ii) The proof is similar to the one given in i).

In general a local efficient point for P is not an efficient point when F
is as it is shown in the following example.

Example 4.9 Consider the function where
and

It is easy to prove that F is at
with and that is a local efficient point, but not efficient since

Let us note that the function F is also C-quasiconvex since its com-
ponents are quasiconvex, so that, also for this class of vector functions,
local efficiency does not imply efficiency.

The class of functions is not appropriate to
guarantee that a local efficient point is also efficient as is pointed out in
the following example.

Example 4.10 Consider the function
F is at with

and the feasible point is a local efficient point but it is
not a (weak) efficient point since

As we have pointed out in the previous examples,
and do not guarantee that a lo-

cal efficient point is also efficient. An important subclass of these two
classes of functions, for which such a property holds, is the component-
wise convex one.

Theorem 4.19 Let F be C-convex at If is a local efficient (weak
efficient) point for P, then     is efficient (weak efficient) for P.

Proof. Assume that there exists such that
Since F is C-convex at it results

Taking into account that
(intC+C=intC), we have

and this contradicts the
local efficiency (weak efficiency) of

If F is componentwise pseudoconvex at unlike the scalar case,
local efficiency does not imply efficiency.
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Consider for instance the function S =
[0, 1], The first component of F is pseudoconvex at

since there does not exist such that
Since the second component of F is convex, then F is componentwise
pseudoconvex at It is easy to verify that is a local efficient
point, but not efficient since

The following theorem shows that requiring the pseudoconvexity of
the components of F not only at a point but on the whole feasible region,
local efficiency implies efficiency.

Theorem 4.20 Consider problem P where F is componentwise pseu-
doconvex on the convex set S. If      is a local efficient point for P, then

is efficient for P.

Proof. We recall that a pseudoconvex scalar function has the property
that if then is decreasing at with respect to the
direction and if then is decreasing at or is a
minimum point with respect to the direction Assume now that
there exists such that where at least
one inequality is strict. For the mentioned property, it results that is
not a local efficient point and this is a contradiction.

Some other classes of generalized convex vector functions have been
suggested in order to maintain local-global properties. For instance in
[11], a class of functions is introduced verifying the following property

This class contains componentwise semistrictly quasiconvex functions,
but, unlike the scalar case, an upper semicontinuous function verifying
(4.18) is not necessarily C-quasiconvex. Consider in fact the continuous
function

and the point
Condition (4.18) is verified at with since

On the other hand F is not C-quasiconvex at
since for we have but it is not true that

Another class of functions verifying local-global properties has been
introduced in [64] with the following property:

F is componentwise quasiconvex and for all such that
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It is easy to prove that this last class is strictly contained in the previous
one.

9. Optimality conditions in vector optimization

As in the scalar case, generalized convexity in vector optimization
plays an important role in establishing sufficient optimality conditions.
In order to develop a self-contained analysis, we will also present the
proofs of the first order necessary optimality conditions, which are based
on the following known separation theorems.

Theorem 4.21 Let W be a linear subspace of
i) if and only if

ii) if and only if

Theorem 4.22 Set where and are linear sub-
spaces of and respectively. Then the following hold.

i) if and only if

ii) if and only if

iii) if and only if

Consider problem P where F is a differentiable function. The follow-
ing theorem holds.

Theorem 4.23   If       is an interior local weak efficient point for P then

Proof. Consider the line-segment The local
weak efficiency of implies so that

Setting it
results the thesis follows from i) of Theorem 4.21.



Remark 4.5 In the scalar case, condition (4.19) is equivalent to state
that is a stationary point; for such a reason, we will refer to points
verifying (4.19) as stationary points of a vector function.

The following example shows that (4.19) is not, in general, a sufficient
optimality condition.

Example 4.11 Consider problem P where
and the feasible point

We have so that with

Consequently is a stationary point for F, but not a local weak efficient
point, since

Theorem 4.24 i) If is a stationary point for F and F is
pseudoconvex at then is an efficient point.

ii) If is a stationary point for F and F is
at then is a weak efficient point.

Proof. Assume that is not an efficient point or a weak efficient point.
Then there exists such that and thus

this contradicts (4.19). Then i) and ii) hold.

Taking into account that a C-convex function is also
function, we have the following corollary.

Corollary 4.4  If is a stationary point for F and F is C-convex at
then is a weak efficient point.

Consider the C-convex function and the
cone The point is a stationary point for F and also a
weak efficient point, but it is not efficient. From i) of Theorem 4.17, it
follows that a stationary point is not in general an efficient point for the
classes of and functions. For this
last class of functions, a stationary point is not in general a weak efficient
point; for instance the function is

at the stationary point but is not a
weak efficient point.

Requiring in (4.19) the positivity of all multipliers, it is possible to
state some other sufficient optimality conditions.

Theorem 4.25 If F is at  and
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then is an efficient point.

Proof. The proof is similar to the one given in Theorem 4.24.

Taking into account Theorems 4.19 and 4.20, we have the following
corollary.

Corollary 4.5 i) If F is C-convex at and (4.20) holds, then is
an efficient point.

ii) If F is componentwise pseudoconvex on S and (4.20) holds, then
is an efficient point.

Remark 4.6 Let us note that (4.20) is a sufficient condition for to be
a local efficient point without any requirement of generalized convexity
when or, equivalently, when

In section 10 we will prove, for a wide class of functions including the
linear ones, that (4.20) is a necessary and sufficient condition for to
be an efficient point.

Consider now the case where is not necessarily an interior point.
A necessary condition for to be a weak efficient point for P is

In the scalar case (4.21) reduces to
and this implies where denotes the
convex hull of S. In the vector case, when S is star-shaped at but
not convex, condition (4.21) cannot be extended to the elements of
and this implies that (4.21) cannot be expressed by means of multipliers
as it is shown in the following example.

Example 4.12 Consider the linear vector function

Setting it results
and
We have and so that

it is not possible to separate S and

In order to express (4.21) by means of multipliers, we must require
the convexity of S. The following theorem holds.

Theorem 4.26 Consider problem P where S is a convex set. If is a
weak efficient point, then
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Proof. Consider the set since is a
linear function and S is a convex set, W is convex too. The necessary
optimality condition (4.21) implies so that (4.22)
follows from Theorem 4.21.

Under suitable assumptions of generalized convexity, (4.22) becomes
a sufficient optimality condition.

Theorem 4.27 i) If (4.22) holds and F is at
then is an efficient point.

ii) If (4.22) holds and F is at then
is a weak efficient point.

iii) If (4.22) holds and F is C-convex at then is a weak
efficient point.

Proof. The proofs are similar to the one given in Theorem 4.24.

Consider now the case where the feasible region S is expressed by
inequality constraints, that is the problem

where are differentiable functions and
For sake of simplicity, corresponding to a feasible point we will as-

sume, without loss of generality, that is binding to all the constraints,
that is

The following theorem states a first order necessary optimality condi-
tion which can be considered the natural extension in vector optimization
of the classical Fritz John condition.

Theorem 4.28 If is a weak efficient point for P* then

Proof. Let us note that implies that is a feasible
direction of S at Since is a weak efficient point,

or, equivalently,
Setting

we have The
thesis follows from i) of Theorem 4.22.

As in the scalar case, it can happen that in (4.23); if we
will refer to (4.23) as the Kuhn-Tucker conditions in vector optimization.

Under suitable assumptions of generalized convexity, the Kuhn-Tucker
conditions become sufficient optimality conditions.
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Theorem 4.29 i) If (4.23) holds with F is
at and G is C-quasiconvex at then is an efficient point

for P*.
ii) If (4.23) holds with F is at

and G is C-quasiconvex at then is a weak efficient point for P*.
iii) If (4.23) holds with F is at

and G is C-quasiconvex at then is a local efficient point for P*.
iv) If (4.23) holds with F is C-convex at and G is

C-quasiconvex at then is an efficient point for P*.

Corollary 4.6 i) If (4.23) holds with F is componentwise strictly
pseudoconvex at and G is C-quasiconvex at then is an efficient
point for P*.

ii) If (4.23) holds with F is componentwise pseudoconvex at
and G is C-quasiconvex at then is a weak efficient point for P*.

iii) If (4.23) holds with F is componentwise pseudoconvex
on S and G is C-quasiconvex at then is an efficient point for P*.
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10. Pseudolinearity in vector optimization

Conditions (4.16) and (4.17) suggest to define pseudolinearity with
respect to the Paretian cone requiring that the logical implication in the
definitions of and
can be reversed.

More exactly, let be an open set, a differentiable
function and a convex set.

Definition 4.13 The function F is (on S) if the
following two statements hold:

Remark 4.7 If F is componentwise pseudolinear, then F is
the converse is not true, as it can be easily verified consid-

ering the class of functions where
are such that and there

exist such that

implies that a local efficient point is efficient
too, even if such a property does not hold for
functions (see Example 4.10).
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Theorem 4.30 Let F be (on S). If is a
local efficient point for P, then    is efficient for P.

Proof. Assume that there exists such that
Then Consider the line-segment

It results
so that for the pseudolinearity of F,

and this contradicts the local efficiency of

Remark 4.8 If we are interested in maximizing a vector pseudolinear
function, it is sufficient to consider efficiency with respect to the cone C
instead of -C; so that, taking into account condition (4.25), the previous
result and the ones that we are going to establish hold for a maximum
vector problem too.

Another important property of vector pseudolinear functions is that
the sufficient optimality condition (4.20) becomes also necessary.

Theorem 4.31 Let F be (on S) and let
be an interior point of S. Then    is an efficient point for P if and only
if

Proof. The pseudolinearity of F and the efficiency of imply
(4.26) follows from ii) of Theorem 4.21. The

converse statement follows from Theorem 4.25.

Corollary 4.7 Let F be a componentwise pseudolinear or an affine
function (on S). Then       is an interior efficient point if and only

if

When all the components of F are pseudolinear on the whole space
the existence of a stationary point implies that any point of is

efficient as it is shown in the following theorem.

Theorem 4.32 Let F be componentwise pseudolinear on If there
exists an efficient point for F, then any point of     is efficient.

Proof. Without loss of generality, we can suppose that
indeed if there exists such that then

is a constant function and the efficiency of a point with respect
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to F is equivalent to the efficiency of with respect to the function

Let be an efficient point for F; then from Corollary 4.7, there
exists such that From

Theorem 4.14, we have with

so that and thus, taking into account
Corollary 4.7, is an efficient point.

Let us note that if F is componentwise pseudolinear on a convex
subset of the property stated in Theorem 4.32 may not hold even if
there exist stationary points, as is shown in the following example.

Example 4.13 Consider the function

F is on S since its components are pseudolinear
on S. Consider the interior point It results

so that, setting we have that

is is a stationary point for F and, consequently, is an efficient
point either with respect to C or with respect to -C, as it can be verified
applying the definitions. On the other hand is not an
efficient point, so that Theorem 4.32 does not hold if we substitute
with a subset S. Let us note that the line-segment [A, B] with
B = (1,1), is the set of all efficient points of F.

As we have pointed out in Section 7, all the given definitions of vec-
tor pseudoconvex functions collapse, in the scalar case, to the ordinary
definition of pseudoconvexity given by Mangasarian. This suggests the
possibility to extend pseudolinearity in multiobjective programming as
follows:

F is if

F is if
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In order to outline that the class of functions is
more appropriate to deal with efficiency, let us note that a component-
wise pseudolinear function is not in general and
that for a function an interior efficient point
cannot be characterized as a stationary point with positive multipliers, as
is shown in the following example which points out also that the classes
of and functions are not comparable
as it happens for vector pseudoconvexity.

Example 4.14 Consider the function

It can be verified that F is but F
is not even if F is (pseu-
doconcave). Obviously is an efficient point for F, but

with holds if and only if
so that it is not possible to have the positivity of

all multipliers.
In order to point out that there is not inclusion relationships between

the two classes of functions, consider
Such a function is but it is not

Consider now the case where the feasible region is expressed by means
of constraint functions, that is problem P*. The following theorem states
a necessary and sufficient optimality condition of the Kuhn-Tucker type.

Theorem 4.33 Consider problem P*, where F is
G is and such that

Then a feasible point is efficient point for P* if and only if

Proof. Necessity. Consider the linear subspace

Now we will prove that
Assume that there exists such that
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Let us note that (4.29) and (4.30) hold for any point of the intersection
between the convex set X and the line-segment so that we can
assume without loss of generality that

The pseudolinearity of G and property (4.27) imply the feasibility of
On the other hand, (4.29) contradicts the efficiency of so that

From iii) of Theorem 4.22, we have (4.28).

Sufficiency. It follows from iii) of Theorem 4.29 and from Theorem
4.30.

In the previous theorem, we have assumed that the constraint vector
function G belongs to the subclass of functions
verifying the property (4.27); this subclass contains the componentwise
pseudolinear functions and the inclusion is proper since the function

is and verifies 4.27
but it is not componentwise pseudolinear.

As a direct consequence of the previous theorem, we obtain the fol-
lowing result given by Chew-Choo [26].

Corollary 4.8 Consider problem P*, where the objective function and
the constraints are componentwise pseudolinear. A point   is an effi-
cient solution of problem P* if and only if

In [26] it is also shown the strict relation among the efficiency of the
multiobjective pseudolinear problem P*, the efficiency of the linearized
problem and the optimality of the scalarized problem associated to P*,
as it is stated in the following theorem.

Theorem 4.34 Let be a feasible point of the problem P*, where the
objective function and the constraints are componentwise pseudolinear.
Then the following statements are equivalent:
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i)  is an efficient solution of P*;
ii)    is an efficient solution of the problem:

iii) there exist positive multipliers such that minimizes
the linear function

11. Invexity in vector optimization

The notion of scalar invexity can be extended to the vector case by
means of the following definition.



Definition 4.14 Let be a differentiable vector-valued func-
tion defined on an open set F is C-invex on if there
exists a vector function such that

It is easy to verify that the class of C-invex functions, with respect
to the same function is closed under addition and multiplication by
a positive scalar and furthermore that C-invexity is equivalent to the
invexity (with respect to the same of each component of F.

In [29], conditions are obtained, necessary or sufficient, for F to be
K-invex with respect to some where K is a convex cone.

Obviously, C-convex functions are C-invex since (4.31) holds with

The properties of C-convex functions related to stationary points and
to the sufficiency of the Kuhn-Tucker conditions can be extended to the
class of C-invex functions as expressed in the following theorems.

Theorem 4.35 Let F be C-invex on S.
i) If   is a stationary point for F, that is

then   is a weak efficient point.
ii) If (4.32) holds with then is an efficient point.

Proof. i) If    is not a weak efficient point, then there exists       such
that from the invexity assumption, we have

and thus which contra-
dicts (4.32).

ii) The nonefficiency of and the invexity of F imply the existence of
with Taking into account that

we have once again and this is absurd.

Theorem 4.36 Consider problem P* where F is C-invex and G is
V-invex with respect to the same

i) If

then    is a weak efficient point.
ii) If (4.33) holds with then is an efficient point.

Proof. i) If    is not a weak efficient point, then there exists        such
that (we have assumed,
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without loss of generality, The C-invexity of F and the
V-invexity of G imply
so that and this contradicts
(4.33).

ii) The proof is similar to i).

A scalar function is invex if and only if every stationary point is a
global minimum point. This property is lost for a vector invex function
as it is shown in the following example.

Example 4.15 Consider the function
The function F is not C-invex since, choosing

we have so that
whatever the function be.

On the other hand any is a stationary point and also an efficient
point.

In order to characterize the class of vector functions for which a sta-
tionary point is a weak efficient point, in [73] a class of vector pseudoin-
vex function is introduced.

Definition 4.15 Let be a differentiable function on
the open set S. Then F is C-pseudoinvex on S if there exists a vector
function such that

The following theorem points out that the class of C-invex functions
is contained in the class of C-pseudoinvex functions; the inclusion is
strict since the function in the previous example is C-pseudoinvex but
not C-invex.

Theorem 4.37 Let be a differentiable function de-
fined on the open set S. If F is C-invex with respect to some then F
is C-pseudoinvex with respect to the same

Proof. Let such that Since F is
C-invex, we have Taking into
account that it results and
thus F is C-pseudoinvex.

Unlike the vector case, for scalar functions the concept of invexity and
pseudoinvexity coincide.
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A differentiable scalar function is pseudoinvex on the open set
if there exists such that

Obviously invexity implies pseudoinvexity. On the other hand a sta-
tionary point is also a global minimum for a pseudoinvex func-
tion; indeed if there exists such that then we have

and this contradicts the assumption
From Theorem 4.6 is invex, so that scalar invexity is equivalent to
scalar pseudoinvexity.

The following theorem gives a characterization of C-pseudoinvex func-
tions which reduces to Theorem 4.6 in the scalar case.

Theorem 4.38 A vector function F is C-pseudoinvex on S if and only
if every stationary point of F is a weak efficient point.

Proof. Necessity. The proof is similar to i) of Theorem 4.35.
Sufficiency. Let be such that Then

is not a weak efficient point and so it is not a stationary point. Set
from i) of Theorem 4.21 there exists

such that The thesis follows setting

Let us note that Theorem 4.36 can be extended to the case where F
is C-pseudoinvex; further developments are given in [73].

Invexity has been studied also in the nondifferentiable case in order to
obtain saddle point and duality results in multiobjective programming.
We refer the interested reader for instance to [36, 49, 76, 80, 82, 93].
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In this chapter we introduce the notion of convexity and generalized
convexity including invexity for vector valued functions. Some charac-
terizations of these functions are provided. Then we study vector prob-
lems involving generalized convex functions. The major aspects of this
study concern the existence of efficient solutions, optimality conditions
using contingent derivatives and approximate Jacobians, scalarization
for convex and quasiconvex problems, and topological properties of ef-
ficient solution sets of generalized convex problems.

Generalized convex vector functions, efficient solutions, vector optimiza-
tion problems.

The last decades of the passed century witnessed a tremendous de-
velopment of vector optimization and of generalized convexity, because
these two branches of mathematics, on one hand, provide a fertile ground
where the usefulness of important theoretical results of mathematics can
be confirmed and certain improvements can be suggested, and on the
other hand, these branches themselves have many applications in ap-
plied sciences such as mechanics, economics, industry, finance etc. Vec-

Chapter 5
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tor optimization problems with generalized convex data are of particular
interest because they offer exciting premises for theoretical research and
challenging computational methods that are beyond the reach of scalar
optimization. In this chapter we shall concentrate on the study of vector
optimization problems involving generalized convex data.

The chapter is divided into 6 sections. In this first section we intro-
duce the notion of partial order in a topological vector space by means
of convex cones. Correct cones and cone-complete sets are of particu-
lar interest in the study of efficient solutions and are given in the two
next subsections. Approximate Jacobians and contingent derivatives
are the two models of generalized derivatives we have chosen to use in
our analysis, and they are briefly presented in the subsections 1.3 and
1.4. In section 2 we investigate properties of generalized convex vector
functions, their relationship with scalar counterparts. Invex vector func-
tions are a part of this generalization. Section 3 introduces fundamental
concepts of vector optimization: efficient points, efficient solutions, and
presents conditions for the existence of efficient points. In section 4, we
discuss optimality conditions of a vector optimization problem by using
the classical derivative, the approximate Jacobians and the contingent
derivatives. Whenever the problem is convex or invex, sufficient condi-
tions are obtained. Section 5 treats the scalarization method for solving
vector problems with convex structure. The final section gives most im-
portant topological properties of efficient point sets for problems with
convex and quasiconvex data.

Notations in this chapter: E, X, Y, Z, W are real Hausdorff topolog-
ical vector spaces if otherwise not mentioned; L(X, Y) is the space of
continuous linear maps from X to Y, L(X, R) is usually denoted by

which is the topological dual of X. Given the notations
stand for the complement, the relative inte-

rior, the interior, the closure, the convex hull, the closed convex hull of
A respectively. When E is a normed space, denotes the closed
ball centered at with radius
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1.1 Partial orders and convex cones

Let E be a nonempty set and let be a binary relation on
E. We say that B is a partial order on E if it is reflexive, i.e.
for every and transitive, i.e. imply
We shall write instead of
Throughout this chapter we shall deal with a special case where E is a
topological vector space and is equipped with a partial order B which is



linear in the sense that implies for
all and
Recall that a nonempty set is said to be a cone if for each

and The linear part of a cone C is denoted by

and when the cone is said to be pointed. A set is
called a base of C if its closure does not meet the origin and
where is the cone generated by the set i.e.

The positive polar cone of C is given by

and the strictly positive polar cone of C is given by

The next result, which is immediate from the definition, characterizes
linear partial orders by means of convex cones.

Proposition 5.1  If       is a linear partial order in E, then the set

is a convex cone in E. Conversely, if C is a convex cone in E, then
the relation defined by if and only if is a linear
partial order in E.

Sometimes we simply write instead of and if
When is nonempty, we also write instead

of Below are some examples of linear partial orders.

Example 5.1 1. The usual order: Let and (the
nonnegative orthant). Then is the usual componentwise order, i.e.
for one has if and only if

2. The lexicographic order: Let C be the cone in consisting of
all vectors, whose first nonzero component is positive. Then is a
linear partial order. Actually this order is complete in the sense that
any two elements of are comparable (either or

3. The ubiquitous order: Let denote the space of sequences whose
terms are all zero except for a finite number. This is a normed space if
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we equip it with the max-norm. Let C be a cone consisting of sequences
whose last nonzero component is positive. Then the order generated by
C is a linear partial order in The cone C is called ubiquitous because
of the following property : for each there exists such that

Here

Definition 5.1 We say that the cone C is correct if
or equivalently

Note that the cone is pointed and correct, while the lexicographic
cone and the ubiquitous cone are pointed and not correct. This kind of
cones is very useful in establishing the existence of optimal solutions for
vector problems. Let us mention some cases where C is correct.

Proposition 5.2 Each of the following conditions is sufficient for a
convex cone C to be correct
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(i)

(ii)

(iii)

C is closed;

is open;

C consists of the origin and an intersection of half-spaces that are
either open or closed.

1.2 Order complete sets
Let C be a convex cone in E. Let be a net in E. It is said

to be decreasing if for

Definition 5.2 A set is said to be C–complete (resp. strongly
C–complete) if it has no covering of the form

where is a decreasing net in A.

We note that every strongly C–complete set is C–complete. The con-
verse is not always true. When C is a closed cone the two concepts
coincide.

Recall that a subset           is said to be C–compact if any cover
of A of the form are open} admits a finite sub-
cover (see [42]), and C–semicompact if any cover of A of the form

admits a finite subcover (see [19]). It is
clear that every compact set is C–compact, and every C–compact set
is C–semicompact. The converse is not true in general. Below are some



Let be a continuous map from to A closed set of
is said to be an approximate Jacobian of

at if for every and one has

where is the real function here are components of
and are components of and is the upper Dini

directional derivative of the function at in the direction that is

If for every is an approximate Jacobian of at then
the set-valued map is called an approximate
Jacobian map of When approximate Jacobian is also called
approximate differential.

It follows from the definition that if a function is Gâteaux differen-
tiable at a point, then its Gâteaux derivative is an approximate Jaco-
bian and any other approximate Jacobian contains this derivative in its
convex hull. Conversely, if a function admits a singleton approximate
Jacobian, then the function is Gâteaux differentiable and its Gâteaux
derivative coincides with that singleton element. It is important to no-
tice that several known generalized derivatives of vector functions such
as Clarke’s generalized Jacobians, Warga’s unbounded derivate contain-
ers (see [70]), Ioffe’s matrix prederivatives (see [32]) etc. are examples of
approximate Jacobians. Moreover, as seen in the next example of [36],
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criteria for C–completeness. The first criterion and the second part of
the second one can be found in [42], the second criterion can be derived
from [66].

Proposition 5.3 The following assertions hold:

(i)

(ii)

Every C–semicompact set is C– complete. In particular every
weakly compact set in a locally convex space is C–complete.

Every compact set is strongly C-complete if C has Sterna-Karwat’s
property: for every linear subspace the set is a linear
subspace if and only if is a linear subspace. In partic-
ular, when E is finite dimensional, every compact set is strongly
C–complete whatever C be.

1.3 Approximate Jacobians



a locally Lipschitz function may admit an approximate Jacobian whose
convex hull is strictly smaller than Clarke’s generalized Jacobian.
Define by

Then it can easily be verified that

are approximate Jacobians of at 0; whereas Clarke’s generalized sub-
differential is given by

Clearly, this example shows that certain results such as mean value con-
ditions and necessary optimality conditions that are expressed in terms
of may provide sharp conditions even for locally Lipschitz func-
tions.

Approximate Jacobians were introduced and studied in [36]. Further
developments and applications of this concept were given in [36], [37],
[38], [39]. We refer the interested reader to these papers for more details
on approximate Jacobian. For our purposes we shall need the following
elementary calculus rules of approximate Jacobians which were already
established in [36], [38]:

a) Suppose that is continuous. If admits an approximate
Jacobian at and attains its minimum at then

b) Suppose that and are continuous. If and
are approximate Jacobians of and respectively at then

is an approximate Jacobian of at
c) Mean value theorem: Let be a continuous map from to

Let and let be an approximate Jacobian of at
Then

Some more terminologies are in order. Let be a nonempty
set. The recession cone of A, which is denoted by     consists of all
limits where and is a sequence of positive num-
bers converging to 0. It is important to notice that when A is closed
and convex, Elements of are called recession
approximate Jacobian matrices.
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1.4 Contingent derivatives

Let be a set-valued map. The graph of F which is denoted
by is defined by

and the domain of F which is denoted by is defined by

We say that F is upper semi-continuous at if for every neighborhood
of there is a neighborhood of such that

and it is compact at if every net
possesses a convergent subnet with the limit belonging to the graph of
F as soon as converges to The monograph [3] gives a detailed
study of set-valued maps.

The upper and lower contingent derivatives of F at
which are denoted by and respectively, are
set-valued maps from X to Y defined by

for every where limsup and liminf above stand for the upper
limit and the lower limit in the sense of Kuratowski-Painlevé. Thus,

if and only if there exist a net converging to
a net of positive numbers converging to 0 and

such that

and if and only if for every net con-
verging to and for every net of positive numbers converging to 0,
there exists such that

We observe that whenever F is a single-valued map, the value set
is either empty or a singleton, while the value set
is not necessarily a singleton. Since in this case

is uniquely defined, namely one writes and
instead of and of respectively.
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When X and Y are normed spaces and F is a single-valued Frechet
differentiable map around the Frechet derivative of F at coin-
cides with both the upper and the lower contingent derivatives of F at

To expose calculus rules for contingent derivatives we need the fol-
lowing differentiability. We say that F is upper semidifferentiable at

if for every net converging
to there is such that the net con-
verges to a nonzero vector in X × Y, where is a subnet of
the net Note that this is always the case when X and Y are
finite dimensional. In the literature is called the contin-
gent derivative of F at while is called the Dini
lower derivative of F at (see [42], [60]). Here are some useful
properties of contingent derivatives, that will be needed in the sequel
(see [51] for the proof).

Proposition 5.4 Let and
be set-valued maps. Then the following assertions hold for every

andwhere

(iii)

(i)

(ii)

where and

provided and are upper semi-continuous
at one of them is compact at and one of them, say is
upper semidifferentiable at with
for

(iv) provided
H is upper semi-continuous, F is compact at and upper semid-
ifferentiable at with where

and

(v)
where and

where
and

These extensions and some other modified versions of contingent deriva-
tives are studied in [3], [15], [42] and references given therein.
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2. Generalized Convex Vector Functions

2.1 Convex vector functions

The class of convex vector functions came to attention of researchers
around seventies of the last century by the works of Valadier [69], Zowe
[73] among others. These functions have many points in common with
convex scalar functions. However, due to the incompleteness of orders
in vector spaces, analysis over convex vector functions is much more
complicated.

Let be a nonempty convex set, and let Y be partially ordered
by a convex cone

Definition 5.3 Let We say that is convex (respectively
strictly convex) if for each and one has

Recall that the epigraph and the graph of are defined by

For the lower level set of at is defined by

Immediate elementary properties of convex functions is given in the next
proposition.

Proposition 5.5 The following assertions hold.

If is convex, then for each the lower level set is
convex.

(i)

is convex if and only if is a convex set;(ii)

is convex (respectively strictly convex) if and only if the functions
are convex ( resp. strictly convex) for every

(iii)

We turn now to the operations with convex functions. Let Z be partially
ordered by a convex cone Let be a function. We say that

is non-decreasing if implies and increasing
if
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Proposition 5.6 Let be two convex functions. The
following assertions hold:

and are convex for each and they are strictly
convex provided is strictly convex and

(i)

is convex if is non-decreasing and convex; is strictly
convex if is strictly convex and is increasing convex.

(ii)

Observe that another generalization of the concept of strictly convex
functions and increasing scalar functions is to use the order (>) instead
of We leave this kind of generalization to the interested reader. It
follows from Proposition 5.5 the following continuity property of convex
vector functions.

Corollary 5.1 Assume that X and Y are of finite dimension, and the
closure of the cone C is pointed. Then the convex function
is locally Lipschitz on the relative interior of A.

As in the scalar case, one may define the subdifferential of a convex
function  at          as follows

The following result (see [73]) shows the existence of the subdifferential
defined above.

Theorem 5.1 Assume that X is a separable reflexive Banach space,
is convex, continuous at is closed, convex and pointed,
and with respect to the Mackey topology on the interior of the cone

is nonempty. Then is a nonempty convex set.

In the remaining of this section, X and Y are assumed to be finite
dimensional. By assuming in view of Corollary 5.1, is locally
Lipschitz near Then, by the famous theorem of Rademacher

is differentiable almost everywhere in a neighborhood of Hence
Clarke’s generalized Jacobian can be defined as the convex hull
of the set of all limits of Jacobians with and is differ-
entiable at The following rules of subdifferentials for convex vector
functions have been proven in [54].

Proposition 5.7 Assume that is pointed, convex and closed. The
following assertions hold.

For every is a closed convex set; and for
In particular, if then is nonempty convex

compact.

(i)
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(ii)

(iii)

(iv)

(v)

(vi)

is differentiable at if and only if is a singleton.

The set-valued map is closed at any point at
which is continuous.

for all

for all and

Let and be two convex functions from to Y. Then for

Equality holds if C is generated by linearly independent vectors.

It should be noticed that in general, the inclusion of (iv) of the above
proposition is strict. In order to characterize convex vector functions via
subdifferential, we recall the notion of monotone maps.
Let be a set-valued map. We say that F is monotone
if for every one has

It is evident that F is monotone if and only if the set-valued maps
are monotone (with respect to the usual order

of real numbers). When F is monotone, it is said to be maximal if there
is no monotone map from A to L(X, Y) the graph of which contains the
graph of F as a proper subset.

Proposition 5.8 The following assertions hold:

If is convex, where A is open, then is a nonvoid-
valued maximal monotone map from A to L(X,Y);

If for each where A is a convex set, then is
convex;

Assuming locally Lipschitz from an open convex subset
to Y, then is convex on A if and only if is monotone.

(i)

(ii)

(iii)

For the proof of this proposition see [54] and for more details about
convex vector functions see [24], [42], [54], [68], [73].
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2.2 Quasiconvex and pseudoconvex vector
functions

As in the previous subsection is a function, A is a
convex subset of X. For denote

and means for every

Definition 5.4 We say that is

quasiconvex (on A) if for each for each one
has

semistrictly quasiconvex if it is quasiconvex and

whenever

strictly quasiconvex if it is quasiconvex and

whenever

pseudoconvex if one can find and
such that

strictly pseudoconvex if and one can
find and such that

(i)

(ii)

(iii)

(iv)

(v)

Above is one among many possibilities of defining generalized convex
vector functions which are a direct extension of generalized convex scalar
functions. For instance, for quasiconvexity one may require (see [10],
[43])

implies

for some

(i’)

(ii’)
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One may also go further in generalizing (i), (ii) and (iii) by using sepa-
rately order relations induced by and (see [10], and
also [12], [13], [14] for other generalizations). The following implications
are immediate: (iv); (iii) (ii) (i). Moreover, strict convex-
ity implies strict quasiconvexity, convexity implies quasiconvexity. In
the literature some authors use the terminology “strictly quasiconvex
functions” instead of “semistrictly quasiconvex functions” and “strongly
quasiconvex functions” instead of “strictly quasiconvex functions” (see
[2]). Below are some properties of generalized convex vector functions
that can be obtained without any difficulties. Recall that a set
is said to be strictly convex if for each and one has

Proposition 5.9 Assume that is continuous. The following asser-
tions hold:

is quasiconvex if and only if its level sets are convex;

If is strictly quasiconvex, then its level sets are strictly convex;

If is directionally differentiable at then it is pseudoconvex if
and only if

(i)

(ii)

(iii)

and it is strictly pseudoconvex if and only if

We note that the characterization of (iii) has been used in [10] as a
definition of pseudoconvexity. The converse of (ii) is not always true.
Moreover some of the assertions of the above proposition remain valid
without the continuity of

When Y is a finite dimensional Euclidean space and is the
nonnegative orthant generalized convex vector functions are char-
acterized by its components.

Proposition 5.10 Let and let be par-
tially ordered by the nonnegative orthant. Then the following assertions
hold:

is quasiconvex (resp. strictly quasiconvex) if and only if the
components have the same property;

If is semistrictly quasiconvex, then the components are
semistrictly quasiconvex;

(i)

(ii)
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If the components are strictly pseudoconvex, then is
strictly pseudoconvex.

(iii)

The following scalar characterization of quasiconvex vector functions in
Banach spaces which generalizes (ii) of Proposition 5.10, has recently
been established in [7] (see [42] for the sufficient condition and for the
particular case when Y is a finite dimensional Banach lattice, and [11]
for the case in which is a polyhedral cone).

Proposition 5.11 Assume that and that is the weak*
closed convex hull of extremal directions of Then is quasiconvex if
and only if for every extremal direction of the cone the composite
function is a scalar quasiconvex function.

Recall that for a function where A is an open set, the
directional upper derivative (resp. lower derivative) of at in
direction is defined by

We define the directional upper derivative of at
in direction as

and the directional lower derivative of at in direction as

Note that equipped with the partial order is a Banach lattice,
hence for every and exist. By extend-
ing the concept of generalized monotonicity for vector bifunctions (see
[49]), we can characterize generalized convexity by means of directional
derivatives. As examples, let us give some extensions.

Definition 5.5 Let We say that F is

quasimonotone if for each one has(i)
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strictly quasimonotone if it is quasimonotone and if
there is such that

strictly pseudomonotone if for each with one
has

(ii)

(iii)

The following implications hold:(iii) (ii) (i). These definitions were
given for the case when in [49] (see also [47], [53]). By using the
criteria for scalar functions of [49], one can derive the following result.

Theorem 5.2 Let A be an open set in X and let
be lower semicontinuous so that is finite at every in

every direction Then the following assertions hold:

is quasiconvex if and only if is quasimonotone;

If is strictly quasimonotone (resp. strictly pseudomonotone),
then is strictly quasiconvex (resp. strictly pseudomonotone).

(i)

(ii)

It is worth noticing that the foregoing result is true when is sub-
stituted by for quasiconvexity and strict quasiconvexity, while this
fails for strict pseudoconvexity in general. Similar results can also be
obtained in terms of generalized derivatives of vector functions (see [39],
[49], [68]).

2.3 Invex vector functions
Let be a function. Let be a set-valued map

and let be a function.

Definition 5.6 We say that is F–invex at with respect to if for
every one has

We shall simply say that is if and
if The concept of invexity was initially introduced

by Hanson [29] and Craven [20] for Fréchet differentiable functions. Non-
smooth invex functions and set-valued invex maps were given in [51], [64]
and some others. The three propositions below have been given in [51]
for a more general case in which the function is set-valued.
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Proposition 5.12 Assume that is at with
respect to and is (resp. at
with respect to Then is (resp. at
with respect to

The relationship between convexity and invexity is seen in the next re-
sult.

Proposition 5.13 Assume that is convex. Then it is
(and when is continuous) at every with respect to

Conversely, if is F–invex at every with respect
and if F is convex in the sense

for each with then is convex.

Proposition 5.14 Let be F–invex at with respect to
and let be a linear nondecreasing map. Then

is (2F) – invex with respect to is with
respect to for every

is with respect to

(i)

(ii)

Invex functions form a class of functions in which necessary optimality
conditions are also sufficient conditions and exact duality theory can be
developed.

3. Vector Optimization Problems

3.1 Efficient points

Definition 5.7 Let be a nonempty set and let Y be partially
ordered by a convex cone We say that a point is

an ideal point of A for every The set of all ideal
points of A is denoted by IMin(A) or

an efficient point of A if whenever for some one has
The set of all efficient points of A is denoted by Min(A) or

(i)

(ii)

Sometimes one is interested also in the set of efficient points with respect
to the ordering generated by the cone if This is the
set of weakly efficient points and denoted by WMin(A) or
If there exists a convex cone with such that

to
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then we call it properly efficient. The set of all properly
efficient points of A is denoted by PrMin(A) or
When Y is a locally convex space, if for each neighborhood V of the
origin, there is a smaller neighborhood U such that

then is said to be a superefficient point of A. The set of all
superefficient points of A is denoted by SuMin(A) or
The definition of proper efficient points is due to Henig [30]. There are
some other definitions of proper efficient points. They coincide with the
above one when A is a convex set in a finite dimensional space (see [25],
[27], [48] for more details). The definition of superefficient points is due
to Borwein and Zhuang [9]. The results of this subsection are standard
and can be found in [42].

Example 5.2 1. Let or
and let Then

2. For (Example 5.1(3)), C the ubiquitous cone, the unit ball
has no efficient points.

Below is an equivalent definition of efficient points.

Proposition  5.15 Let Then

if and only if        and

if and only if  and
In other words if and only if and there is no

with

if and only if and In
other words, if and only if and there is no

with

(i)

(ii)

(iii)

The relationship between the different concepts of efficiency is seen in
the next result. We suppose always that

Proposition 5.16 For every nonempty set one has

(i)
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and when E is a normed space and has
a convex closed base,

If then IMin(A) = Min(A) and this set is a singleton
whenever is pointed.

(ii)

(iii)

If the space Y is equipped with two orders, then the relationship be-
tween efficiencies with respect to these orders is expressed by the next
proposition.

Proposition 5.17 Assume that K is a pointed convex cone with
Then we have

provided is nonempty ;

(similarly for WMin and PrMin).

(i)

(ii)

Note that the above result is no longer true if K is not pointed except
for the particular case where K is a closed half-space. We shall denote
by for and call it a section of A at

Proposition 5.18 Let with The following assertions
hold

if

(similarly for WMin).

(i)

(ii)

Remark that the inclusion A is not true in gen-
eral except for very specific cases.

3.2 Existence criteria

Theorem 5.3 Let A be a nonempty set in Y. The following assertions
hold

if and only if there is such that is nonempty
and strongly

When C is correct, if and only if there is such
that is nonempty and

(i)

(ii)

Proof. (Brief proof of the first assertion). The necessity is obvious. For
the sufficiency, suppose to the contrary that for some the section

is nonempty and strongly but Denote by
the set of all decreasing nets in and introduce a partial order on
by inclusion, i.e. for one writes if and only if as
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sets. We observe that is nonempty because and the above
introduced order is a partial order on Now we prove that satisfies
the hypothesis of Zorn’s lemma : every chain has
an upper bound. Indeed, denote by the family of all finite subsets of

 For each we set It is evident that
Now we put Let be the index set consisting
of all elements of a with if being considered as
elements of In other words the index set order is defined by the
cone Then is a directed index set because for

there exist such that and Taking
we see that Since is a decreasing net, there

is such that and Then with and
Moreover, it is evident that for all Hence is an

upper bound of X. Now we apply Zorn’s lemma to obtain a maximal
element say Then the family is
a covering of A which is impossible because is strongly

Corollary 5.2 If A is a nonempty compact set in a finite dimensional
space, then whatever the cone be. If A is a nonempty
compact set in an infinite dimensional space and the cone is closed,
then

Note that in an infinite dimensional space a compact set may have
no efficient points if the cone is not correct. In fact, let Y be
and let be the ubiquitous cone. Let

and It is evident
that Hence A is a compact set. Despite of this,

because
The existence of superefficient points is given in the next result of [28].

See also [33], [63] and [72] for more on existence criteria.

Theorem 5.4 If Y is a locally convex space, has a closed bounded
base and A is then A possesses superefficient points.

3.3 Vector optimization problems
Let be a nonempty set, let Y be partially ordered by a convex

cone The vector optimization problem associated with A and
which is denoted by (VP), is written as
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This problem consists of finding an element called an efficient
solution such that

The set of all efficient solutions of (VP) is a denoted by By
replacing IMin, PrMin and WMin instead of Min in the above definition,
we obtain the set of ideal solutions the set of properly efficient
solutions and the set of weakly efficient solutions
respectively.
The set A is sometimes given in the form of constraints

where is partially ordered by a convex cone
These two constraints can be combined in one by equipping the

product space Z × W with a partial order generated by the convex cone
K := C × {0} and by the constraint

Note that the cone K has no interior points even when C has, therefore
those results which require a nonempty interior of the cone, cannot apply.
In such a situation the separated form of constraints 5.1 and 5.2 works
better.
The following inclusions are immediate:

Furthermore, if is nonempty, then Some cri-
teria for the existence of efficient solutions are given below, which can
be deduced from Theorem 5.3 and Corollary 5.2.

Proposition 5.19 The following assertions hold

If A is compact, is correct and is continuous, then (VP) has
efficient solutions;

If A is compact, is continuous and Y is finite dimensional, then
(VP) has efficient solutions.

(i)

(ii)

The notion of local solutions of (VP) can be defined by considering a
neighborhood of a point instead of the whole set A. Namely, is
said to be a local efficient solution of (VP) if there is a neighborhood
U of in X such that The other kinds of
local solutions are defined similarly.



Generalized Convexity in Vector Optimization 215

3.4 Local-global properties

Let us consider the problem (VP) of the previous subsection. We
say that has a local–global minimum property if every local efficient
solution of (VP) is a global efficient solution. This property is an impor-
tant feature in numerical computing because most existing less costly
algorithms allow to compute local solutions only. The next result was
established in [52].

Proposition 5.20 Assume that A is convex. Each of the following con-
ditions is sufficient for the local-global property of (VP):

is convex;

verifies whenever
and

is semistrictly quasiconvex;

is pseudoconvex.

(i)

(ii)

(iii)

(iv)

We note that a similar result can be formulated for weakly efficient
solutions. In fact, by considering the cone instead of

we have Observe that (ii) does
not guarantee the local-global property for weakly efficient solutions as
seen by the next example.

Example 5.3 Let where

Then verifies (ii). Despite of this, the point is a local weakly
efficient solution, but it is not a global weakly efficient solution.

4. Optimality Conditions

The readers are already acquainted with several conditions for efficient
solutions of a vector problem in the previous chapter by Cambini and
Martein. In this section we provide a few complementary results, which
enlighten the role of generalized convexity in vector optimization. We
choose three kinds of derivatives to express the optimality conditions:
the classical derivatives, the contingent derivatives and the approximate
Jacobians. Classical derivatives provide an easy way to understand the
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meaning of multipliers (see [34]). Approximate Jacobians give a gen-
eral approach and sometimes sharp conditions when treating problems
with nonsmooth continuous data. Contingent derivatives are useful in
expanding the analysis to set-valued optimization problems (see [15],
[42]).

4.1 Differentiable problems
Let us consider the following vector problem (VP):

where and are functions from X to Y, Z and W respectively with
X, Y, Z and W Banach spaces. We assume that Y and Z are partially
ordered by convex pointed cones and having nonempty interiors.
In this section we shall derive a necessary condition for local weakly
efficient solutions. Two classic results of analysis will be needed:

1) Mean Value Theorem (MVT): If is Gâteaux differentiable on X,
then for each one has

2) Open Mapping Theorem (Lyusternik’s Theorem): If is Fréchet
differentiable with continuous at and if is surjective, then
the tangent cone to the set at defined
by

coincides with Ker

Theorem 5.5 Assume that and are Fréchet differentiable with
and bounded and continuous in a neighborhood of If

is a local weakly efficient solution of (VP), then there exist multipliers
such that

Proof. (Sketch) If is not surjective, then there exists a nonzero
functional such that
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This implies Now setting and we obtain
multipliers as requested. When is surjective, by using the
(MVT) and the Lyusternik’s theorem one may prove that

Then one separates these convex sets by a linear functional

for all It follows from the above
inequality that and Remember
that hence Moreover, one has

for all which implies

as required.

When (VP) is a convex problem, that is and are convex functions
and is linear (therefore we may omit the necessary condition is also
sufficient.

Theorem 5.6 Assume that and are convex and there exist multi-
pliers such that

Then is an efficient (resp. weakly efficient) solution of (VP) if

Proof. An “ab absurdo” argument will achieve the proof.

4.2 Conditions using approximate Jacobian

Let us consider the constrained problem

We assume that X, Y, Z and W are finite dimensional and define
It is a continuous function from A to Y × Z × W. The product



218 GENERALIZED CONVEXITY AND MONOTONICITY

space Y × Z × W is equipped with the euclidean norm. The space
L(X, Y × Z × W) is equipped with the norm of linear operators, i.e. for
an

The closed unit ball of this space is denoted by B. We also denote by
T the set of all vectors with The following
lemma will be needed (see [50]).

Lemma 5.1 Let be a nonzero vector with

Then there exists a unique point such that

Moreover, for every there is some such that

for all with

Recall that a set-valued map is said to be upper semi-
continuous at if for every there is some such that

where and denote the closed unit
balls in X and Y respectively.

Theorem 5.7 Assume that is an approximate Jacobian map of H
which is upper semicontinuous at If is a local weakly efficient
solution of then there is a vector such that

Proof. (Sketch) Let us choose a vector so that

For each define functions and
as follows
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It is clear that these functions are continuous. Let be a
neighborhood that exists by the definition of the local weakly effi-
cient solution Then for all Furthermore, since

by Ekeland’s variational principle (see [17]),
there is such that and

In particular, the net converges to as tends to 0, and provides
a minimum of the function

If is an approximate Jacobian of at then
It can be seen that for each integer there is some such
that for every the set

is an approximate Jacobian of at Hence for each there is
such that for the set

is an approximate Jacobian of at By choosing as
and taking into account the fact that B, and T are all compacts, we
derive the existence of vectors

such that We apply Caratheodory’s theorem to express
the vectors as

where with and
Since T is compact, without loss of

generality, we may assume that the sequence converges to some
Then



220 GENERALIZED CONVEXITY AND MONOTONICITY

Moreover, we also may assume that the sequences converge to
and that

where the above sums have the following properties:
1) for each the sequence is bounded and converges to
some
2) for each the sequence is unbounded, but the sequence

is bounded and converges to some
3) for each the sequence is unbounded and there is
some such that the sequences converge to
some
If is nonempty, then we have and
Hence If is empty, then for one
has which implies that and
Thus,

The complementary slackness                 is obtained by observing that
if then the vector must have the corresponding component

and by passing it to limit when tends to 0.

We end up this subsection by noticing that when the data of the prob-
lem are locally Lipschitz, one can use Clarke’s generalized Jacobian as
an approximate Jacobian. In this case the recession part of the mul-
tiplier rule disappears and the above theorem gives the multiplier rule
by Craven [20]. When the problem is convex, the necessary condition is
sufficient too.

4.3 Conditions using contingent derivatives

To easily understand the analysis, let us begin with the unconstrained
problem (VP)

where A is an open subset of X. The following optimality conditions
are quite straightforward (see [42] and [51]).
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Theorem 5.8   If is a local weakly efficient solution of (VP),
then for every one has

Conversely, if is (respectively at and
for each the above relation holds

then is a weakly efficient solution of (VP).

We turn to the problem with inequality constraints of the form

where We assume that The proof of the following
theorem can be found in [51].

Theorem 5.9 Let be a local weakly efficient solution of Then
for every and for every
there exist a nonzero multiplier such that

The multiplier can be chosen independent of provided that the
set is convex, and independent of
provided that the set is convex. In the
latter case one has and the vector can be guaranteed nonzero
under an additional hypothesis, called constraint qualification, that

The problem with mixed constraints takes the form

where and Below F denotes a set-valued map
from X to Y × Z × W, and the space of linear nondecreasing
operators from Z to Y. We have the following sufficient condition under
an invexity hypothesis (see [51]).

Theorem 5.10 Assume that the following conditions hold

is a feasible solution of

The function is F–invex at with respect to some func-
tion

(i)

(ii)

(resp.
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For every and for every there exist
linear operators and such that

Then    is a weakly efficient solution of

Observe that condition (iii) can be replaced by the following more fa-
miliar one:

(iii’) For every and for every there exist a
multiplier with such that

A particular case is obtained when and are differentiable and F is
given by

Corollary 5.3 Let be a feasible solution of Assume that

are differentiable at and for every one has

There is with such that

(i)

(ii)

Then    is a weakly efficient solution of

Note that when is a convex problem, condition (ii) is satisfied and
we obtain the same result as Theorem 5.6.

As we have seen in the above theorems, the convexity of the sets
presents a sufficient condition for the exis-

tence of a multiplier at a local weakly efficient solution. This set actually
is the projection of the epigraph of the set-valued map
on the product space Y × Z. When the map is single-
valued, the convexity of the epigraph is equivalent to the convexity of
this map. In Subsection 1.4, contingent derivatives are given in a gen-
eral setting for set-valued maps. They are very convenient for the study
of those problems whose objective function and constraint functions are
set-valued. This, in fact, was done in [51] in which necessary conditions
for locally weakly efficient solutions of are also derived by means
of contingent lower derivatives.

(iii)
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5. Scalarization of vector problems

One of the most important methods for solving problem (VP) is scalar-
ization which consists of converting problem (VP) into a scalar problem
whose optimal solutions are weakly efficient or efficient for problem (VP).
Usually, one finds a scalarizing function which preserves or-
der relations of Y, and solves the scalar problem of the form, which is
denoted by (P):

The scalarizing function depends on the structure of the vector prob-
lem. In this section we shall describe this function for particular cases
in which convexity and compactness structures are imposed.

5.1 General case

In this section we say that is increasing (with
respect to the cone if implies An increasing
function with respect to the cone (remember that
is called weakly increasing. The following standard result expresses the
relationship between the solution set of problem (P) and that
of (VP) (see [42]).

Proposition 5.21 The following assertions are true:

If is increasing (respectively, weakly increasing), then every op-
timal solution of (P) is an efficient solution (respectively, weakly
efficient solution) of (VP);

Conversely, for every weakly efficient solution of (VP), there
exists a continuous weakly increasing function such that is an
optimal solution of (P).

There exists a continuous weakly increasing function such that
the weakly efficient solution set of (VP) coincides with the solution
set of (P).

If Y is a normed space, has a compact base and if both and
are compact, then there is a continuous, increasing

function such that the efficient solution set of (VP) coincides with
the solution set of (P).

(i)

(ii)

(iii)

(iv)

The so-called smallest weakly increasing function which is defined
as below is quite useful (see [42] for this definition, and [40] for early use).
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Let and Set

This function has the property that if is a weakly increasing function
on Y, then the level set of at must contain the level set of
at 0. By taking and any one obtains as a
scalarizing function that verifies (ii) of the above proposition.

5.2 Convex case

In this subsection we consider a convex problem i.e. problem (VP)
with A being a convex set and a convex function.

Proposition 5.22 Assume that (VP) is a convex problem. Then

A point is a properly efficient solution of (VP) if and only
if it is an optimal solution of (P) with

A point is a weakly efficient solution of (VP) if only if it is
an optimal solution of (P) with

(i)

(ii)

It should be noticed that an efficient solution of a convex vector problem,
which is not proper, can be a solution of no scalar problem (P) with

Thus we have the following inclusions for a convex problem

Under some additional hypotheses on A and (for instance when
is closed and has a bounded convex base, A is compact and is

continuous) one may have

The equality

can be realized if is strictly convex. Another important feature of the
scalarizing method is that for problem (P) is convex, which
allows us to apply convex optimization techniques to solve the vector
problem.
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5.3 Quasiconvex case

Now assume that (VP) is a quasiconvex problem, i.e is a quasiconvex
function and A  is a convex set. If Y is finite dimensional, say
and is closed, then for each extreme vector of problem (P)
is a quasiconvex problem, whose optimal solution are solutions of (VP),
with This shows that there is no hope of getting weakly efficient
solutions of (VP) via scalarizing functions from The smallest weakly
increasing functions are quite useful in this situation (see [40] and [42]).

Proposition 5.23 Let Then is a weakly efficient
solution of (VP) if and only if is an optimal solution of (P) with

Moreover, for a fixed with is a
weakly efficient solution of (VP) if and only if is an optimal solution
of (P) with where An optimal solution of (P) is
efficient if and only if it is a unique optimal solution. The problem (P)
mentioned above is quasiconvex if (VP) is quasiconvex.

5.4 Density properties
The scalarization results for convex problems of Subsection 5.2 suggest

an idea of finding efficient points of a convex set A by solving a family
of scalar problems of the form

where This in fact was proven by Arrow, Barankin and Black-
well as early as in 1953 (see [1]).

Theorem 5.11 Let and let A be a convex compact
set in Then the set
over A for some is dense in Min(A).

This density result is then generalized by several authors to more gen-
eral spaces (see [22], [26], [35], [61]) for more general ordering cones).
One of the most interesting generalizations is due to Jahn [35] and then
improved by Petschke [61], and Gong [26] as follows.

Theorem 5.12 Assume that Y is a Banach space, is a convex
closed pointed cone and is a weakly compact convex set. Then
PoMin(A) is dense in Min(A) under each of the following conditions

has a bounded convex base;(i)
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0 is a point of continuity of     in the sense that for each
the weak closure of                does not contain 0 (here
is the closed ball centered at 0 with radius

Every efficient point of A is denting in the sense for each

(ii)

(iii)

Note that conditions (i) and (ii) are equivalent. When A is not convex,
the set PoMinA is very poor. For instance with and

We have Min(A) = A, while PoMin(A) = {(–1,0), (0, –1)}. In such a
situation, one looks for density of properly efficient points or supereffi-
cient points. The next result is due to Ha ([28]), some similar results
have been obtained in [9], [56] etc. Recall that a closed convex cone
in a normed space is said to be normal if for every one has

Theorem 5.13 Assume that E is a Banach space, is a normal cone
with a convex base, and A is Then PrMin(A) is dense in
Min(A). If in addition has a bounded base, then SuMin(A) is dense
in Min(A).

Proof. (Sketch) Let which can be assumed to be 0.
Thus, Define a sequence of delating cones by

where is a closed convex base of
There exists such that

Since A is C-compact, one sees that is Furthermore,
as is a closed normal cone with a closed convex base (because
is), Consequently, and there exists

(which contains for It is clear that
and By this

is dense in When has a bounded convex base, so does
by which and the result follows.

6. Structure of efficient solution sets

One of the key and most challenging topics of vector optimization
theory is to investigate the structure of efficient point sets. Among
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the topological properties of these sets, the connectedness and the con-
tractibility are of interest as they provide a possibility of continuous
moving from one optimal solution to another along optimal alternatives
only, and they guarantee the stability of numerical algorithms under
limiting processes. In this chapter we shall concentrate on the above
properties for problems that have some convexity structure.

6.1 Closeness and compactness properties

Consider the vector problem (VP)

where is a nonempty set.

Proposition 5.24 If is closed, then is closed. If
A is closed and is continuous, then is closed. In particular,
if is compact, then is a compact set; and if A is
compact, is continuous, then is a compact set.

Note that the conclusion of the proposition remains true if the continuity
of is replaced by a weaker condition, the C-continuity: for each

and each neighborhood V of there is a neighborhood U of
such that Note also that in general, and

are not closed even when A is (convex) compact and is
continuous.

6.2 Convex problems

One of the most interesting properties of the efficient point set of a
convex set is the contractibility. Let us recall that a set is said
to be contractible if there is a continuous function
such that

The following result was essentially given in [45].

Theorem 5.14 Assume that Y is a uniformly convex Banach space,
is a closed convex cone with a bounded convex base and B is a weakly
compact set such that is convex and has a nonempty relative
interior. Then is a contractible set and is
arcwise connected.
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Proof. (Sketch) Let be a bounded convex base of There exists
such that for every and for sufficiently

small. Let Then is a bounded convex
base of For sufficiently large, where is
the ball centered at 0 with radius Let

and

One can see that is continuous, increasing and strictly quasiconvex.
Moreover, it attains its minimum on B at a unique point. Define a
set-valued map This
map is closed and lower semicontinuous at every point of

Define a function
minimized on It can be seen that is well

defined and continuous. Now a continuous function
can be constructed by

for and where is some point chosen from
This function shows the contractibility of

Some weaker results can be obtained under weaker conditions (see [42],
[57], [58]).

Theorem 5.15 Assume that Y is a normed space, is a dosed cone
with a convex base and B is a compact (respectively weakly compact)
with convex. Then is connected (respectively weakly
connected).

Proof. (Sketch) Under the hypothesis of the theorem, is
sandwiched between the weakly connected set mini-

mizes on B} and its (weak) closure, hence is (weakly) connected.

Theorem 5.16 Let Y be a real Hausdorff topological vector space,
a closed convex cone with a convex base, and B a compact and convex
set. Then is arcwise connected.

In a two dimensional space, the structure of the efficient set of a convex
closed set is very simple.

Theorem 5.17 Assume that is a closed and convex set, and
is a convex cone with nonempty interior and is pointed. Then

is homeomorphic to an interval if it is nonempty.
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As a particular case of this theorem, if B + C is convex, closed and if
there is some bounded set A such that B + C = A + C, then
is compact. Consequently, is homeomorphic to a simplex.
This observation is a corrected version of Theorem 3.1 of [41] in which

was used instead of B + C = A + C.
Now we turn to the convex problem (VP):

where is a nonempty set. The following result is immediate from
Theorem 5.14.

Corollary 5.4 Assume that Y is a normed space, is a closed cone
with a convex base, A is convex and compact, and is convex with
closed with respect to the weak topology of Y. Then is connected
and is weakly connected.

6.3 Quasiconvex problems

Consider the vector problem (VP) as in the previous section:

where A is a nonempty convex set, Y is partially ordered by a closed,
convex and pointed cone having a nonempty interior. The two
theorems below can be found in [42].

Theorem 5.18 Assume that  is a continuous, quasiconvex function
and A is a convex closed set. The following assertions hold.

(i) is nonempty, closed and connected provided that for ev-
ery the set is nonempty compact whenever
the level set is nonempty;

(ii) is nonempty, closed and connected provided that
for each the set is nonempty
compact whenever

Theorem 5.19  Assume that     is C – continuous, strictly quasiconvex
and A is closed convex. The following assertions hold

(i) is nonempty, closed and connected provided that for each
is compact;
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(ii) is nonempty, closed and connected provided that
is continuous and that for each the
is compact. In this case, and are homeo-
morphic and they are a retract of A and of respectively. In
particular, they are contractible.

Observe that the sets and are no longer connected
if is continuous and quasiconvex. When X and Y are finite dimensional
and is the nonnegative orthant, some connectedness and contractibil-
ity properties are still available by weakening the strict quasiconvexity
to the semistrict quasiconvexity, as shown by the next results of [5].

Theorem 5.20 Assume that is a compact set and
with semistrictly quasiconvex. Then is contractible.

The connectedness of under the same hypothesis above was es-
tablished by Sun ( see [67]). The following interesting result has been
proved by Schaible [65] for by Daniilidis, Hadjisavvas and
Schaible [23] (see also [18] and [6] for an improvement), for
and finally by Benoist [4] for an arbitrary A particular case where

are linear fractional has been proven by Choo and Atkins [16]
for and by Yen and Phuong [71] for arbitrary.

Theorem 5.21 Assume that is convex, compact and
with semistrictly quasiconvex. Then

and are connected.

Proof. (Main ideas) We say that is sequentially strictly quasi-
convex if for each there is a sequence converging to a
such that

If B is sequentially strictly quasiconvex, and if for every
the section is compact, then is connected.
When are semistrictly quasiconvex, the set is continu-
ously strictly quasiconvex in the sense that for each there
is a continuous function such that
and when when for every

Hence is sequentially strictly quasiconvex
and the result follows.
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based on Fenchel-Moreau conjugations; in particular, it discusses qua-
siconvex conjugation and duality in detail. It also describes the related
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mand functions.
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1. Introduction

A central topic in optimization is convex duality theory. In its modern
approach, mainly due to Rockafellar [121], [122], given a (primal) convex
optimization problem one embeds it into a family of perturbed optimiza-
tion problems and then, relative to these perturbations, one associates
to it a so-called dual problem. The deep relations existing between the
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primal and the dual are helpful for analyzing the properties of the origi-
nal problem and, in particular, for obtaining optimality conditions; they
are also used to devise numerical algorithms. In the case of problems
arising in applications to other sciences, particularly in economics, the
dual problems usually have nice interpretations that shed new light into
the nature of the associated primal problems and yield a new perspective
for analyzing them.

Convex duality is based on the theory of convex conjugation. In its
finite dimensional version, which we adopt in this article for simplicity1,
to each extended real-valued function one
associates another function called its conjugate, defined
by here stands for the scalar product
in Being the pointwise supremum of the collection

of affine functions, is convex, lower semicontinuous (l.s.c.) and proper
(in the sense that it does not take the value except if it is identically

So is, in particular, the second conjugate of which, on the
other hand, is a minorant of (an easy consequence of the definition of
conjugate function); it actually follows from the separation theorem for
closed convex sets that is the largest l.s.c. proper convex minorant of

Thus a function is convex, proper and l.s.c if and only if it coincides
with its second conjugate.

Another essential tool in duality theory is the notion of subgradient.
One says that is a subgradient of at if

The set of all subgradients of at denoted is called the
subdifferential of at For every and

the following properties hold:

1 However convex and quasiconvex conjugation and duality theories extend easily to the frame-
work of locally convex real topological vector spaces.
2This notion of properness differs from the usual one in that it is satisfied by the constant
functions and Under this slightly modified definition, some statements become
simpler.
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One can easily verify that the subdifferential mapping is
cyclically monotone, that is, one has

This property is characteristic of “submappings” of subdifferential op-
erators [121, Thm. 24.8]: A multivalued mapping from to is
cyclically monotone, i.e. (6.1) holds with replaced with if and only
if there exists a l.s.c. proper convex function such
that for every

To apply convex conjugation theory to duality in optimization, one
considers a family of problems

being an objective function and denoting
a given parameter vector; the minimization variable is thus
Problem is regarded as a perturbation of an (unperturbed) primal
problem, defined as

The perturbation function associated to the family of perturbed opti-
mization problems is defined by it
thus assigns to each perturbation parameter the optimal value
of the corresponding problem. One associates to a dual problem,
relative to the family of perturbed problems

One can easily check that the objective function of this dual problem
satisfies and hence the optimal value is
therefore it is less than or equal to the optimal value of the primal
problem; moreover, the set of optimal dual solutions is If the
perturbation function is convex (which happens, in particular, if is
convex), proper and l.s.c. then both optimal values are the same and
the optimal solution set is simply In fact, it turns out that for
the optimal values to be the same a necessary and sufficient condition
is the coincidence at the origin of the perturbation function with its
largest l.s.c. proper convex minorant. Notice that this duality theory is
fully symmetric when applied to problems with a l.s.c. proper convex
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perturbed objective function Indeed, in this case, by embedding the
dual problem into the family of perturbed problems

or, equivalently,

with defined by one gets, as a
dual problem to

which is clearly equivalent to the primal problem (as
for every In fact, what are in symmetric

duality are the families and of perturbed problems rather
than the unperturbed problems and alone.

The above duality theory specializes very nicely in the case of inequal-
ity constrained minimization problems of the form

with and the inequality in is to be
understood in the componentwise sense. The classical way to embed
this problem into a family of perturbed ones is by introducing so-called
vertical perturbations, namely, one considers the perturbed objective
function given by

This function is convex whenever and the component functions of are
convex. Clearly, minimizing is equivalent to the original problem.
A straightforward computation of shows that, in this case, the
dual problem reduces to

being the Lagrangian function defined by
In this way, the classical Lagrangian duality theory

becomes a particular case of the perturbational duality theory we have
briefly described.
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It is worth mentioning that, historically, the first dual problems dis-
covered in optimization theory were defined without using any pertur-
bation; the perturbational approach to duality proposed by Rockafellar
later on provided us with a unifying scheme for all those duals. In a
series of papers, [143], [146], [147], Singer has shown that the converse
way also works, that is, some unperturbational dual problems induce the
perturbational dual problems.

Another example of the general duality scheme described above is
Fenchel duality for the unconstrained minimization problem

with and By embedding
this problem into the family of perturbed minimization problems with
objective function defined by
one arrives at the dual problem

Of a completely different nature, though also based on convex conju-
gation, is Toland-Singer duality theory [159], [137]. It also deals with
problem (6.2), but assuming that are l.s.c. proper
convex functions and using the convention Thus
the problem consists in minimizing a d.c. (difference of convex) function,
which is in general a nonconvex problem. Since one has

Notice that the preceding proof of Toland-Singer theorem does not re-
quire any property of however there is no loss of generality in assum-
ing that is a l.s.c. proper convex function, since the dual problem

depends on only through
Duality theory in d.c. optimization is further developed in [164], [152]

and [165]. Problems with d.c. objective and constraint functions are dis-

denoting the concave conjugate of given by
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cussed in [57], [58] and [93]. In this last paper, Lagrangian and Toland-
Singer duality theories are unified, as they arise as special cases of the
general framework developed there. In [94], d.c. duality on compact sets
is studied; the compactness assumption is used there as a substitute for
the restrictive constraint qualifications required in [93].

Convex duality theory admits an extension to the generalized convex
case; it will be presented in Section 3. It is based on the so-called Fenchel-
Moreau generalized conjugation scheme, which will be outlined in the
next section. A special type of generalized conjugation operators are
the so-called level sets conjugations, useful in quasiconvex analysis; they
will be described in Section 4. Their applications to duality theory in
quasiconvex optimization will be the object of Section 5. The rest of
the chapter is devoted to economic applications. Section 6 deals with
duality between direct and indirect utility functions in consumer theory.
The related topic of monotonicity of demand functions will be treated in
Section 7, in which a new result characterizing utility functions inducing
monotone demands will be presented. In the last section we will be
concerned with the extension of consumer duality theory to the case
when consumer’s preferences are not represented by utility functions.

The subject of generalized convex duality is covered in several mono-
graphs [148], [105], [124], where the reader can find some further devel-
opments as well as other topics not covered in this article.

2. Generalized Convex Conjugation
Convex conjugation theory was extended by Moreau [102] to an ab-

stract framework, which we are going to present in this section.
Let X and Y be arbitrary sets and be a function, which

will be called the coupling function. For any we define its

here and in the sequel we use the conventions
except in the statement of

Theorem 6.1 and formula (6.4), where
Similarly, the of is the

function defined by

notice that this notation is consistent with considering the coupling func-
tion given by
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Functions of the form with and
are called in the same way, functions are
those of the form for given and

We denote by and the sets of functions and
functions, respectively.

Let be a set of extended real-valued functions on X. According to
the duality theory introduced by Dolecki and Kurcyusz [32] (see also the
pioneering paper [56], in which a more abstract duality theory was first
developed), a function is called if it is the pointwise
supremum of a subset of Clearly, the class of functions is
closed under pointwise supremum. Hence, every function has
a largest minorant, which is called its hull. Notice
that these notions make also sense in the more general case when is a
set of functions from X into a complete lattice A and

The proofs of the following propositions are easy.

Proposition 6.1 Let and Then

and are and respectively.

Proposition 6.2 The hull of coincides with
In the same way, the hull of coincides with

Corollary 6.1 A function is if and only if it
coincides with its second In the same way, a function

is if and only if it coincides with its second

In view of the preceding proposition, we shall say that
is at is at if

(resp., Consequently,
(or of a function is equivalent to the corresponding prop-
erty at every point.

We next give some useful examples of generalized conjugation opera-
tors:

Example 6.1 [102, p. 125] Let X and Y be a dual pair of vector spaces
and denote the duality pairing. Define
by with the convention for Then

is if and only if (with the convention
is sublinear (i.e. subadditive and positively homogeneous) or, equiva-

(i)
(ii)
(iii)
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lently, the support function of a set that contains the origin. The
function is the support function of

Example 6.2 [102, p. 126] Let and define
by with the convention

for every Then is if and only
if it is convex and nondecreasing. The conjugate function is the so-
called Young transform of

Example 6.3 [6, Thm 2] Let X be a topological space, Y an arbitrary
set and be of needle type on X, i.e. such that for every

and every neighborhood N of there exist
and a neighborhood of such that

and

Then is if and only if it is l.s.c. and has
a finite-valued minorant.

If X is a Hilbert space and then the function
defined by is of needle type

on X.

Example 6.4 [71, Prop. 2.2] Let and N > 0.
Define by Then

is if and only if it is continuous with
constant N.

Example 6.5 [80, Thm. 5.4] Let X be a normed space with dual X*,
and with denoting the closed

ball in X* with radius N > 0. Define by
with the convention if and

Then is if and only if it is quasiconvex3

and continuous with constant

Example 6.6 [85, Thm. 5.3] Let
where are unbounded from above and from below, and

3See Section 4 for the definition of quasiconvexity and for another conjugation scheme for
quasiconvex functions that does not require the very restrictive Hölder continuity condition
of this example.
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be the restriction of the scalar product. Then
is if and only if it does not take the value unless it
is identically This generalized conjugation operator (in the case

has been used in [76] to propose a dual representation of
cooperative games.

Example 6.7 [92, Thm. 2.1] Let and

with denoting the set of all linear mappings
Define by

and stand here for “lexicographically less than” and “lexicograph-
ically greater than”, respectively. Then is if and
only if it is convex. This example shows that the notion of
is a true generalization of convexity (not only of lower semicontinuous
proper convexity)!

Example 6.8 [128, Thm. 2.1] Let and define
by

Then is if and only if it is nondecreasing and its
restriction to any open ray emanating from the origin is convex. These
functions are called ICAR (increasing and convex-along-rays). Exam-
ples of ICAR functions are all nondecreasing positively homogeneous
functions of degree (in particular, all Cobb-Douglas functions

with which are of utmost
importance in economic modeling) and all polynomials with nonnega-
tive coefficients (in particular, all quadratic forms with
nonnegative matrix A) [128, Ex. 2.1 and 2.2]. Based on this general-
ized convexity property of ICAR functions, the so-called cutting angle
method (a generalization of the well known cutting plane method of con-
vex programming) has been proposed and successfully implemented for
solving a very broad class of nonconvex global optimization problems
(see [3], [125] and [7]).
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Example 6.9 [78, Lemma A,1(a)] Let and define
by Then is

if and only if it is nonincreasing and its restriction to any
ray emanating from the origin is convex and continuous.

The possibility of extending Fenchel duality (see the Introduction) to
the unconstrained minimization of the sum of two generalized convex
functions in terms of conjugates is discussed in [75].

As for Toland-Singer duality, extensions to the generalized conjuga-
tion framework have been developed by Singer [142], [144] and Volle
[163]. According to [72, Thm. 3.1], one has:

Theorem 6.1 For any the following statements are equiv-
alent:

(i) is

(ii)

(iii)

(iv)

(v)

For some related results involving generalized conjugation for differ-
ences of functions (under suitable assumptions on the coupling function),
see [72, Thm. 4.1]. Applications to global optimality conditions for un-
constrained minimization are discussed in [41]. For an abstract extension
of d.c. duality theory, we refer to [90].

Following [6], we say that is  at
if and there exists such that and

One then says that is a of at The set of all
of at denoted is called the

of at We set if The following properties
hold:

Proposition 6.3 Let and If
then



Generalized Convex Duality 247

We omit the obvious corresponding notions and properties for func-
tions

From Proposition 6.3, it follows that, for a function
the inverse to the operator is

that is, for any and one has if and only if

The equivalence between submappings of convex subdifferential op-
erators and the cyclic monotonicity property [121, Thm. 24.8] can be
extended to the nonconvex case [44, Thm. 2.7]:

Definition 6.1 Let A multivalued mapping from X
to Y is monotone if the expression

is nonpositive for any set of pairs (m arbitrary)
such that

Theorem 6.2 A multivalued mapping from X to Y is
monotone if and only if there exists a function

such that for every

In classical convex analysis, one has the strongest result that maximal
cyclically monotone mappings are exactly the subdifferentials of l.s.c.
convex functions, and two such functions having the same subdifferential
mapping coincide up to an additive constant. However, these results do
not extend to our general setting, as the following example shows:

Example 6.10 [60, p. 15] Let X = Y = {1,2} and define

by Consider the functions

given by and
One can easily check that, for one has

whence all three functions are The subdifferential mappings
are given by
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Thus and are not maximal monotone, since their
graphs are strictly contained in that of which is mono-
tone. Moreover, but is not constant. Notice that

is maximal monotone, because the only mapping that
strictly dominates has all of X × Y as its graph and so is not

monotone.
From an axiomatic point of view, conjugation operators

were characterized by Singer [140, Thm. 3.1]:

Theorem 6.3 For a mapping the following statements
are equivalent:

(i) There exists a coupling function such that

(ii) One has

and

Moreover, in this case is uniquely determined by namely, one has

denoting the indicator function4 of

Other generalized conjugation schemes are developed in [36], [61],
[27], [28], [29], [38] and [37]. For generalized conjugation theory with
functions taking values in ordered groups, we refer to [161] and [91].
An application of generalized conjugation to solving infimal convolution
and deconvolution equations is given in [97]. The relationship between
generalized conjugation and the theory of lower semicontinuous linear
mappings for dioid-valued functions in idempotent analysis is explored
in [151].

Operators satisfying (6.3) are called dualities. This notion makes also
sense for operators acting on functions that take their values in arbitrary
complete lattices [148, p. 419]:

4We recall that the indicator function of is defined by
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Definition 6.2 Let A and B be complete lattices. A mapping
is a duality if

For this broader class of mappings, the following representation (of
which Theorem 6.3 is a corollary) was given in [85, Thm. 3.1].

Theorem 6.4 Let A and B be complete lattices. A mapping
is a duality if and only if there exists a function

such that

and

Moreover, in this case G is uniquely determined by namely, one
has

When is a conjugation operator with coupling function
the function associated to it in the

sense of the preceding theorem is given by
The dual operator of a duality is defined as follows:

Definition 6.3 The dual operator of a duality is the
mapping given by

In the preceding definition, as in the sequel, the infimum in is to
be interpreted in the pointwise sense.

It is well known that the dual of a duality is a duality, too [148,
Thm. 5.3]; moreover, for any and one has [148,
Cor. 5.3]:

From this equivalence, it easily follows that any duality coincides
with its second dual [148, Thm. 5.3], i.e. The relationship
between the representations of and (in the sense of Theorem 6.4)
was described in [85, Thm. 3.5]:
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Theorem 6.5 Let be a duality , with dual
and be the mappings

corresponding to them by Theorem 6.4. Then

In particular, the dual operator of a conjugation
operator with coupling function is the
conjugation operator associated with the coupling function

Composing a duality with its dual
yields a hull operator (see, e.g., [148, Cor. 5.5]). The
functions that are closed under this operator were identified in [85, Thm.
3.6]:

Theorem 6.6 Under the assumptions of Theorem 6.5, for every func-
tion one has

Hence, if and only if  is – convex, with

Example 6.11 [87, Thm. 5.2] Let X be a (real) locally convex space,
with dual , and denote by the canonical bilinear

pairing. Define

with the convention Then satisfies if
and only if it is convex, positively homogeneous and l.s.c..

One can easily check that the dual operator is given
by

Example 6.12 [91, Thm. 7.2] Let X, X* and be as in the preced-

ing example. Define
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with the convention Then satisfies if
and only if it is a l.s.c. extended semi-norm.

One can easily check that the dual operator is given
by

Example 6.13 [81] Let Define by

Then satisfies if and only if it is quasiconvex,
nonincreasing, l.s.c. and co-radiant (i.e. it satisfies for

or, equivalently, for ).
One can easily check that the dual operator is given

by

a function satisfies if and only if it is quasi-
convex, nonincreasing and l.s.c.. Hence, the mapping is a
bijection, with inverse from the set of l.s.c. nonincreas-
ing co-radiant quasiconvex functions onto the set of l.s.c.
nonincreasing quasiconvex functions

In the special case when is a conjugation operator with
coupling function the hull operator
assigns to every function its second

The usefulness of dualities in generalized convexity theory is made
evident in [85, Thm. 3.7 and Remark 3.3], where it is proved that for
every set of extended real-valued functions one can construct a duality

such that the functions closed under are precisely the
functions. Some more results on dualities can be found in [85]. In [86],
[87], [89], [90] and [45], dualities associated to certain operations are
studied. Subdifferentials with respect to dualities are introduced in [88].
Some generalizations of the notion of duality have been proposed by
Penot [110].

3. Generalized Convex Duality
Generalizing the convex duality theory we have presented in the In-

troduction, in this section we consider two arbitrary sets X and U and
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a family of optimization problems

being an objective function and denoting a param-
eter; the minimization variable is thus This family is regarded as
consisting of perturbations of an (unperturbed) primal problem, defined
as the one corresponding to a distinguished element

The set U is thus interpreted as a perturbation space. The associated
perturbation function is defined by
We further consider a “dual” set V to the perturbation space and a
coupling function One then associates to the dual
problem

The following result is immediate (the second part of its statement fol-
lows from Proposition 6.3):

Proposition 6.4 The optimal value of the dual problem is
If it is finite, the optimal solution set is

Since the optimal value of the primal problem is obviously the
following results hold:

Theorem 6.7 The optimal value of the dual problem is not greater
than the optimal value of They coincide if and only if the perturba-
tion function is at In this case, if the optimal value is
finite then the optimal solution set to is

Corollary 6.2 If and satisfy
then they are optimal solutions to and respectively.

One can introduce a Lagrangian function in connection with this du-
ality theory. One defines the of problem

relative to the family of perturbed problems by

denoting the partial mapping If is
at for every the supremum of the

with respect to its second argument coincides with the objective function
of
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It follows that the optimal value of is Simi-
larly, if does not take the value the infimum of the
with respect to its first argument coincides with the objective function
of the dual problem

Therefore in this case the dual optimal value is
Thus, under all these conditions, the optimal values of and
coincide if and only if
In this case the set of saddlepoints of L coincides with the Cartesian
product of the optimal solution sets.

This function is a generalization of the classical one
of convex optimization, which corresponds to the special case when

and is the usual scalar product; in particular, for ver-
tically perturbed inequality constrained optimization problems one gets
the standard Lagrangian mentioned in the Introduction (after restricting
the dual vectors to the nonnegative orthant, which is possible because
only nonnegative values of the dual variable are actually relevant).

From a practical point of view, the most useful example of generalized
convex duality is the one described next:

Example 6.14 [61, Ex. 1”] For the inequality constrained optimization
problem

with and consider the vertically
perturbed objective function defined by

and the coupling function given by
(cf. Example 6.3). A straightforward computation shows

that the function satisfies, for
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every

This function coincides, up to a very simple change of vari-
ables, with the augmented Lagrangian introduced by Rockafellar [123].
Since is of needle type on for every the function is

and hence Moreover,
since is finite-valued the dual problem is

By Theorem 6.7, the optimal values of and coincide if and
only if the perturbation function is l.s.c. at the origin and has a finite-
valued minorant. Notice that a sufficient condition for the
existence of a minorant of the perturbation function is
the objective function to be bounded from below. A necessary and
sufficient condition for the existence of a dual optimal solution is given
in [123, Thm. 5].

Other works on nonconvex duality based on generalized conjugation
theory are [154], [155] and [104]. Some other approaches to generalized
convex duality for single, multiobjective or optimal control problems are
presented, e.g., in [33], [103], [170], [53], [108], [100] and [54]. Appli-
cations of duality theory to generalized convex fractional programming
problems, based on geometric programming [117], are given in [134] and
[135]. The literature on the applications of generalized convexity to du-
ality theory during the decade 1985-1995 is surveyed in [118].

4. Quasiconvex Conjugation

Let X be an arbitrary set. We recall that the (lower) level sets of a
function are

A function is called quasiconvex when its level sets are
convex or, equivalently, when it satisfies

it is called quasiconcave if is quasiconvex. The functions that are
both quasiconvex and quasiconcave are said to be quasiaffine. If (6.5)
holds with strict inequality whenever and then and
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are called strictly quasiconvex and strictly quasiconcave, respectively.
Notice that all these notions, like that of a convex function, are of a
purely algebraic nature; indeed they make sense for functions defined on
an arbitrary real vector space instead of

For duality purposes, the most suitable quasiconvex functions are
those whose level sets are not just convex, but evenly convex. We recall
[40] that a subset of is called evenly convex if it is an intersection
of open halfspaces. As a consequence of the Hahn-Banach theorem [34,
Cor. 1.4], every open or closed convex set is evenly convex (note that
any closed halfspace is an intersection of open halfspaces). It follows
from the definition that the class of evenly convex sets is closed under
intersection. A function is said to be evenly quasiconvex
[106] (or normal quasiconvex [66]) if all of its level sets are evenly convex,
and evenly quasiaffine if it is quasiconcave and evenly quasiconvex5. Ob-
viously, every l.s.c. quasiconvex function is evenly quasiconvex, and it is
easy to prove that upper semicontinuous (u.s.c.) quasiconvex functions
are evenly quasiconvex, too. Evenly quasiconvex functions are closed
under pointwise supremum, given that the level sets of the supremum
of a family of functions are intersections of level sets of the members
of the family. Therefore every function has a largest evenly quasiconvex
minorant, which is called its evenly quasiconvex hull. Clearly, the evenly
quasiconvex hull of any function lies between its l.s.c. quasiconvex and
quasiconvex hulls. One says that a function is evenly quasiconvex at a
point if it coincides with its evenly quasiconvex hull at that point. A
characterization of evenly quasiconvex functions, which is not expressed
in terms of separation of level sets, is given in [26].

In the same way that the essence of classical convex conjugation is
the fact that l.s.c. proper convex functions are upper envelopes of affine
functions, it will follow from the quasiconvex conjugation theory in this
section that the evenly quasiaffine functions are supremal generators of
the class of evenly quasiconvex functions. Evenly quasiaffine functions
have a simple structure, as shown by the next theorem [70, Thm. 2.36]
(an earlier version of the equivalence (i) (iii) for u.s.c. functions was
given in [158, Thm. 1]):

Theorem 6.8 For any function the following statements
are equivalent:

(i) is evenly quasiaffine.

5It easily follows from the characterization below of evenly quasiconvex functions that an
evenly quasiaffine function is evenly quasiconcave (that is, is evenly quasiconvex),  too.
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(ii) Every nonempty level set of is either an (open or closed) halfs-
pace or the whole space.

(iii) There exists and a nondecreasing function
such that

Except in the trivial case of constant functions, the decomposition
given in (iii) above is unique up to a multiplicative constant, i.e. if

with and nondecreasing
then one has and for some

positive real number [114, Prop. 2.4].
To apply the generalized convex conjugation theory that we have de-

veloped in Section 2 to the analysis of quasiconvex functions, in this
section we first present level sets conjugations, a specialization of that
theory that is useful for the dual description of functions whose level sets
are generalized convex in a certain sense. This will in particular yield
a conjugation theory for quasiconvex functions. Level set conjugations
have been studied in [65], [139], [162], [142], [163], [109], [110] and [111].

Let Y be another arbitrary set and be the opposite of
the indicator function of i.e.

The set G is the graph of the multivalued mapping given by
the inverse of F is defined

by According to
the definitions in Section 2, the and of and

respectively, are and given by

Thus for the second of one has

The functions are those taking a constant value on
for some and the value on

As for the of for any and
one has:
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The following results [70, Thm. 4.1 and Cor. 4.2] describe local and
global

Theorem 6.9 Let and Then is at
if and only if for every there exists such that

Corollary 6.3 A function is if and only if each
level set of is an intersection of sets of the form with

Volle [164, Thm. 3] obtained an analogue of Toland-Singer duality
theorem for level set conjugations. According to [72, Thm. 5.1], one has
(compare Theorem 6.1):

Theorem 6.10 For any the following statements are equiv-
alent:

(i)

(ii)

(iii)

(iv)

(v)

For a related formula on the of (under a
suitable assumption on G), see [72, Thm. 5.2]. For the case when and

are convex see [168, Thm. 2.1].
Now we set and

in order to specialize the preceding scheme to quasiconvex conjugation6.
The conjugation formulas are then

and

6Alternatively, one can consider (see [70] for details). One then
obtains another quasiconvex conjugation scheme, which is suitable for l.s.c. quasiconvex
functions; however the approach used in this section yields a simpler theory and is applicable
to the broader class of evenly quasiconvex functions, as will be shown below.
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Thus the second of satisfies

Since in this setting one has for ev-
ery the functions are those that take a con-
stant value on a closed halfspace (or the empty set or the whole space)
and the value on its complement. Given that

in view of Corollary 6.3, one has:

Theorem 6.11 A function is if and only if it
is evenly quasiconvex.

Corollary 6.4 The second of any function
coincides with the evenly quasiconvex hull of

Since the functions are evenly quasiaffine, from the pre-
ceding theorem one immediately gets:

Corollary 6.5 Every evenly quasiconvex function is the pointwise supre-
mum of a collection of evenly quasiaffine functions.

In fact, given that if is evenly quasiconvex, (6.9) yields
an explicit family of evenly quasiconvex functions whose supremum is
namely one has

Notice that a (finite) real-valued version of Corollary 6.5 would be false,
as shown, e.g., by the one variable evenly quasiconvex function
if In if which cannot be expressed as a supremum of
real-valued evenly quasiaffine functions; indeed, this function has no
real-valued evenly quasiaffine minorant since, by Theorem 6.8, a one
variable function is evenly quasiconvex if and only if it is monotonic.

The next result [70, Prop. 4.3] shows that the of a
function at a point is closely related to its quasi-subdifferential in the
sense of Greenberg and Pierskalla [49]:

Theorem 6.12 Let be such that and
denote by
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the quasi-subdifferential of  at Then

In fact, since the existence of such that

occurs (if and) only if an alternative simpler, though
less explicit, description of is

From Theorem 6.12, it easily follows that is an evenly convex
cone. The quasi-subdifferential can be obtained from the subdiffer-
ential by means of the formula presented next [62, p. 10]:

Corollary 6.6 Let and be as in Theorem 6.12. Then

Corollary 6.7 Let and be as in Theorem 6.12. Then
coincides with the projection of onto

A more detailed presentation of quasiconvex conjugation theory, which
uses a similar approach as the one in this section, can be found in [70].
For some other approaches and results, we refer to [17], [19], [4], [138],
[66], [68], [106] (applied to quasiconvex optimization duality in [107]),
[162], [142], [112], [145], [113], [153], [35], [42], [129], [160], [127], [150]...
In particular, in [67], [69] and [70] a conjugation scheme based on a lexi-
cographic separation theorem for convex sets is presented, which is exact
for quasiconvex functions in the sense that second conjugates coincide
with quasiconvex (rather than evenly quasiconvex) hulls. The following
characterization of quasiconvex functions [70, Cor. 3.6] (on arbitrary
vector spaces) is closely related to that conjugation scheme:

Theorem 6.13 Let X be a real vector space. A function is
quasiconvex if and only if there is a family of total order relations
on X that are compatible with its linear structure7 and a corresponding

7We recall that an order relation    on a real vector space X is said to be compatible with
the linear structure of X if

and
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family of isotonic functions such that

Since the only total order relations on that are compatible with
its linear structure are the standard orderings and the preced-
ing theorem generalizes the well-known fact that a function of one real
variable is quasiconvex if and only if it is the pointwise maximum of a
nondecreasing function and a nonincreasing function.

Applications of quasiconvex conjugacy to the study of Hamilton-Jacobi
equations are developed in [8], [9], [11], [126], [166], [10], [169], [1] and
[116]; more abstract generalized convex conjugation concepts have also
been considered for their analysis in [110] and [115].

5. Quasiconvex Duality

As in Section 3, we here consider two arbitrary sets X and U, a func-
tion the family of perturbed optimization problems

and the associated perturbation function defined by
The unperturbed, primal problem is

for some fixed To apply the level sets conjugation scheme de-
scribed in the preceding section, we further consider another set V,
“dual” to U, and G induces the multivalued mappings

and given by and
respectively, and

the coupling function given by

Then the dual problem to relative to this coupling function is

Its objective function takes the value at any and, for
one has

Thus can be equivalently written as
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The can be easily computed:

Let us now consider the case when
and We then obtain the

following formulation for the dual problem

which, by setting reduces to the unconstrained problem, in the
variable alone,

This dual problem was introduced by Crouzeix [18], who was the first to
propose, as Rockafellar did in the convex case, a unifying perturbational
approach to duality theory in quasiconvex optimization [17], [19]. The

is given in this case by

As particular cases of the results of Section 3, we can state

Proposition 6.5 The optimal value of the dual problem coincides
with the value of the evenly quasiconvex hull of the perturbation function

at 0.

Theorem 6.14 The optimal value of is not greater than the optimal
value of They coincide if and only if the perturbation function is
evenly quasiconvex at 0.

Corollary 6.8 Let be an optimal solution to Then is
an optimal solution to if and only if minimizes

subject to the constraint
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In the case of a vertically perturbed inequality constrained minimiza-
tion problem, that is, when has the form

with and the dual objective function
satisfies

Thus one obtains, as the dual problem to

the so-called surrogate dual problem

it is associated to the given by

For the perturbation function defined in this case by
to be quasiconvex it suffices that be convex,

be quasiconvex and the component functions of be convex. A strong
duality theorem holds under an additional mild topological assumption
on and a Slater constraint qualification [64, Thm. 3]:

Theorem 6.15 If is quasiconvex and u.s.c. along lines (i.e. for every
is an u.s.c. function of  the

component functions of are convex and there is an such that
(componentwise) then

Hence, is an optimal solution to if and only if the optimal
value of coincides with that of the surrogate problem
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In this case, any optimal solution to is also an optimal
solution to

Other works on surrogate duality in quasiconvex optimization and
integer programming are [64], [46], [47], [48] and [141]; for vector op-
timization problems, surrogate duality was introduced and studied in
[84].

The earliest approach to quasiconvex duality that uses generalized
conjugate functions in a similar way as convex conjugates are classi-
cally employed in convex duality theory is due to Crouzeix; an extensive
study can be found in [19]. A detailed treatment of quasiconvex dual-
ity theory from the viewpoint of generalized conjugation is presented in
[70] and [114]. Duality for optimization problems involving quasiconvex
functions is also studied in [130], [157], [109], [167], [42], [2], [149] and
[111]; in particular, applications to generalized fractional programming
are discussed in [21], [23] and [69].

6. Duality in Consumer Theory

Consider an economy in which different type of commodities are
available, so that the set of commodity bundles is the nonnegative or-
thant It is usually assumed that the preferences of a consumer in
the commodity space are represented by a so-called utility function8

even though, traditionally, utility functions are assumed
to take only finite values, it is convenient for some of the developments
in this section to consider extended real-valued utility functions. The
problem a consumer faces consists in spending his income M > 0 in
an optimal way subject to a budget constraint; thus, if the exogenously
given prices of the goods are represented by the price vector the
problem to solve is

8A preference relation on is said to be represented by a utility function if,
for any is preferred or indifferent to if and only if . A preference
relation represented by a utility function must be a total preorder (see Section 8 for the
definitions of these terms). We refer to [13] for an extensive discussion on the problem of
representing preference relations by utility functions.
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The function that associates to the optimal value of this prob-
lem,

is called the indirect utility function associated with Since is pos-
itively homogeneous of degree zero, there is no loss of generality by
assuming that M = 1; in this way one obtains the (normalized) indirect
utility function defined by

One obviously has for every and M > 0.
The function can be interpreted as a utility function representing the
preferences that the consumer has on price vectors; indeed, the consumer
is supposed to prefer to if as he can get
a larger utility by purchasing goods under the prices represented by
than under those represented by

From the definition of the indirect utility function it immediately
follows that it is a nonincreasing function; on the other hand, a straight-
forward computation shows that its level sets satisfy

Thus these level sets are intersections of collections of open halfspaces,
and hence they are evenly convex. It follows that is evenly quasiconvex.
Notice that no special properties of the utility function are required for

to be nonincreasing and evenly quasiconvex. Indirect utility functions
(arising from arbitrary utility functions) are almost characterized by
these two conditions; just an additional minor condition on the behavior
on the boundary is required to get a complete characterization
[73, Thm. 2.2]:

Theorem 6.16 Let There exists a utility function
having as its associated indirect utility function if and

only if is nonincreasing, evenly quasiconvex and satisfies

denoting the l.s.c. hull of
In this case, one can take nondecreasing, evenly quasiconcave and

satisfying
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Under these conditions, is unique, namely, is the pointwise largest
utility function inducing furthermore, it satisfies

Condition (6.11) is actually satisfied at any not just on the
boundary, for any indirect utility function In fact, any nonincreasing
function satisfies it on the interior. This condition is weaker than lower
semicontinuity at for both conditions are equivalent.

Comparing expressions (6.10) and (6.7), we observe that the transfor-
mation assigning to a utility function its corresponding indirect utility
function is, up to a sign change, of the level set conjugation type. In-
deed, for of (6.6), with one has

Therefore the results in this section on the duality between
direct and indirect utility functions can be interpreted in the frame-
work of level set conjugations. It thus turns out that this is, in a sense,
the most appropriate conjugation theory for nonincreasing quasiconvex
functions on Unlike the one presented in Section 4 for quasiconvex
functions on the whole space, it does not require introducing an extra
parameter; the conjugate of a function on is also defined on It
follows from Theorem 6.16 that the conjugation operator is an
involution from the set of nonincreasing evenly quasiconvex functions
satisfying (6.11) onto itself; it therefore follows that this conjugation
scheme is fully symmetric. Another related symmetric approach to qua-
siconvex conjugacy, which does not require the introduction of an extra
parameter either, was proposed by Thach [156] (see [77, Thm. 2.1] for a
simple characterization of the functions that coincide with their second
conjugates).

According to Theorem 6.16, any nonincreasing evenly quasiconvex
function satisfying (6.11) is the indirect utility function
associated with a unique nondecreasing evenly quasiconcave function

satisfying (6.12).
For an extension of Theorem 6.16 to utility functions taking values in

arbitrary complete chains, we refer to [82, Thm. 1]. The usefulness of
such an extension lies in that it allows one to consider preference orders
that do not admit real-valued utility representations; notice that any
preference order can be represented by a utility function taking values
in a sufficiently large complete chain.

As an immediate consequence of the preceding theorem, one gets [73,
Cor. 2.3]:
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Corollary 6.9 For every the function defined
by

with given by (6.13), is the pointwise largest nonincreasing evenly qua-
siconvex minorant of that satisfies

In view of the already observed symmetry between the definition of
and formula (6.13), Theorem 6.16 and Corollary 6.9 have the following
dual versions [73, Thm. 2.4 and Cor. 2.5]:

Theorem 6.17 Let There exists a function
such that (6.13) holds if and only if is nondecreasing, evenly quasicon-
cave and satisfies (6.12).

In this case, one can take nonincreasing, evenly quasiconvex and
satisfying (6.11). Under these conditions, is unique, namely, is the
pointwise smallest function such that (6.13) holds; furthermore, it is the
indirect utility function associated with

Corollary 6.10 For every the function
defined by

being the indirect utility function associated with is the pointwise
smallest nondecreasing evenly quasiconcave majorant of that satisfies

It follows from Theorem 6.17 that every nondecreasing quasiconcave
utility function satisfying (6.12) can be recovered from its
associated indirect utility function by (6.13).

All the results presented so far on the duality between direct and
indirect utility functions have been stated for extended real-valued func-
tions; however, one can easily check that they remain valid after replac-
ing and by and
respectively, in their statements. The case of nonnecessarily bounded,
but finite-valued, utility functions is dealt with in the next theorem [73,
Thm. 2.6]:

Theorem 6.18 A nondecreasing evenly quasiconcave function
satisfying (6.12) is finite-valued if and only if its associated

indirect utility function is bounded from below and finite-
valued on the interior of
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To compare the preceding theorem with the situation in the bounded
case, notice that, since any indirect utility function is nonincreasing, it
is bounded from above if and only if it is finite-valued at the origin.

The dual version of Theorem 6.18 is [73, Thm. 2.7]:

Theorem 6.19 The indirect utility function induced by a
nondecreasing evenly quasiconcave function satisfying (6.12)
is finite-valued if and only if is bounded from above and finite-valued
on the interior of

As an immediate consequence of theorems 6.18 and 6.19, one gets [73,
Cor. 2.8]

Corollary 6.11 Let be a nondecreasing evenly quasicon-
cave function satisfying (6.12) and let be its associated
indirect utility function. The following statements are equivalent:

(i)
(ii)
(iii)

and are finite-valued.
is bounded.
is bounded.

Some axiomatic characterizations of the mapping assigning to every
utility function its associated indirect utility function are given in [74].

Quasiconcave utility functions admit another dual representation,
namely, by the so-called expenditure functions. From a purely math-
ematical point of view, an expenditure function is nothing else than
the support function of the upper level sets of the utility function. Let

be a utility function (from now on, we shall restrict our-
selves to the real-valued case). One defines the associated expenditure
function by

It shows the amount of money that a consumer with preferences repre-
sented by needs to spend under the prices to achieve a utility level

at least.
Expenditure functions induced by arbitrary utility functions are char-

acterized in [83, Thm. 2.2]:

Theorem 6.20 A function is the expenditure
function for some utility function if and only if the
following conditions hold:

(i) For each either is finite-valued, concave, linearly
homogeneous and u.s.c., or it is identically equal to

(ii) For each is nondecreasing.
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(iii) with denoting the superdiffer-
ential of the concave function at the origin, i. e.

The duality between expenditure and utility functions, under the
weakest possible assumptions, is described next [83, Thm. 2.5]:

Theorem 6.21 The mapping is a bijection from the set of
u.s.c. nondecreasing quasiconcave functions onto the set of
functions that satisfy (i)-(iii) (of Theorem
6.20),

(iv)
and

(v)
Furthermore, the inverse mapping is with given
by

According to the preceding theorem, a utility function
can be recovered from its associated expenditure function (that is,
one has ) if and only if it is quasiconcave, nondecreasing and
u.s.c.. On the other hand, for a function
satisfying (i)-(v), is the pointwise largest utility function whose asso-
ciated expenditure function is moreover, it is the only one that is
quasiconcave, nondecreasing and u.s.c.

A dynamic analogue of the duality in consumer theory is provided
in [15]. Some applications of duality theory to the study of rationality
of choice are given in the fundamental paper [120]. More material on
economics duality can be found in [136], [12], [30], [5], [16] and [39]. The
survey paper [31] provides an extensive review of the literature on duality
in microeconomics up to 1982. More recent surveys are [55] and [14].
Among the papers dealing with the relations between the properties
of direct and indirect utility functions that have appeared after that
survey paper was published, let us mention [22], where a symmetric
duality in the continuously differentiable case is developed, and [43],
which relates continuity properties of direct utility functions to those of
the corresponding indirect ones.

7. Monotonicity of Demand Functions

The mapping assigning to each pair the (possibly empty) so-
lution set to the problem stated in the preceding section is
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called the Walrasian demand correspondence. Since as is positively
homogeneous of degree zero, as in the preceding section there is no loss
of generality by assuming that M = 1. One can then consider the (nor-
malized) demand correspondence clearly,

Notice that we only consider strictly positive
prices in fact, under the natural assumption that the utility
function is strictly increasing in each variable, would be empty for

since there would be “an infinite demand” for a good with
zero price.

If preferences are locally nonsatiated, the demand correspondence is
cyclically quasimonotone (the notion of cyclically quasimonotone oper-
ator was introduced and studied in [59], [24] and [25]):

Theorem 6.22 If the utility function has no local maxi-
mum then the demand function is cyclically quasimono-
tone (in the decreasing sense), i.e. if

then

The proof of the preceding theorem is quite simple: If we had
from the inequalities

and the local nonsatiation assumption it would follow that
for which is impossible.

Quasimonotonicity is the property resulting from imposing only for
the condition in the definition of cyclic quasimonotonicity; thus,

X is quasimonotone (in the decreasing sense) if

Hence every cyclically quasimonotone mapping is quasimonotone. As
observed in [59], quasimonotonicity (cyclic quasimonotonicity) of a de-
mand function (i.e., a single-valued demand correspondence) is a conse-
quence of the related weak (strong, resp.) axiom of revealed preference
introduced by Samuelson [131], [132] (Houthakker [51], resp.).

Quasimonotonicity is weaker than monotonicity. One says that X is
monotone (in the decreasing sense) if

Obviously, if the preceding sum is nonpositive then at least one of its
terms must be nonpositive, so that a monotone mapping is quasimono-
tone, too.
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In general, a demand correspondence X need not be monotone, as
shown by the following example. Let be the utility function
defined by

One can easily check that is quasiconcave, nondecreasing, u.s.c. and
has no local maximum. This utility function can be interpreted as fol-
lows. Suppose and denote liters of wine and water, respectively,
and the consumer needs to drink at least one liter (of anything) to stay
healthy, so that he derives a negative utility the drink-
ing deficit, from drinking a total amount in case he drinks
enough, he derives a nonnegative utility equal to the amount
of wine he consumes (our consumer is assumed to enjoy only wine and
not water). For and the optimal solution of

is Clearly, is increasing in so that the
demand function is not monotone in our sense. The interpretation of
this fact is clear; if wine is too expensive and water is cheap enough, a
rise of the price of water prevents the consumer to drink as much wine as
he was drinking before, so that his consumption of water must increase
in order to meet the one liter drinking requirement. Goods, like water in
the example, for which this kind of situation occurs are called inferior,
or Giffen, goods.

Under mild assumptions, the demand correspondence is actually a
function (i.e. it is single-valued) and the values it takes can be easily ob-
tained from the indirect utility function. This is the case, for instance,
when the utility function is u.s.c. (which ensures the nonemptiness
of X) and its associated indirect utility function is continuously dif-
ferentiable on with a nonzero gradient (conditions on ensuring
the differentiability of and a symmetric duality for the continuously
differentiable case have been obtained by Crouzeix in [22]). Indeed, let

and Then one has and
whence, as for every pair such that

it follows that is an optimal solution to the (dual) problem

Thus, by the Kuhn-Tucker theorem there is a real number such
that
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From these equalities one gets and
and hence so that one arrives at

To solve this equation for one just needs to be different from
zero (in which case, since is nonincreasing, is negative). We
have thus proved (see, e.g., [96, Prop. 3.G.4]):

Theorem 6.23 (Roy’s Identity) If the utility function is u.s.c. and
its associated indirect utility function is continuously differentiable at

with then

Sufficient conditions for monotonicity of demand were given a long
time ago by Mitjushin and Polterovich [101] under the assumption that
the utility function is concave. This assumption is somewhat artificial,
since concavity of the utility function is not an intrinsic property of the
consumer’s preferences; it depends on the specific utility representation.
Notice that, e.g., composing a concave utility function with an increasing
function one gets a new utility function representing the same preferences
as the initial one; however, concavity is not necessarily preserved by
this operation. This fact is in sharp contrast with the corresponding
situation regarding quasiconcavity: If a utility function is quasiconcave,
any other utility representation of the same preferences is necessarily
quasiconcave. Conditions for a preference relation to admit a concave
utility representation can be found in [95, Section 2.6].

Theorem 6.24 If the utility function is concave, has
a componentwise strictly positive gradient on induces a demand
function (i.e. a single-valued demand correspondence

with of class and satisfies

then is strictly monotone, i.e. it satisfies (6.15) as a strict inequality
whenever

At this point it is interesting to observe the symmetry between the
roles played by and in connection with the demand correspondence.
From the very definitions of X and it follows that



272 GENERALIZED CONVEXITY AND MONOTONICITY

Therefore, for the inverse demand correspondence one has

the minus signs in the description of this set are included in order to make
evident the analogy between the expressions for and
Indeed, according to (6.13), under the standard assumptions on one
has

which shows that can be regarded as “the indirect utility function
associated with Therefore, as the monotonicity of X is obviously
equivalent to that of every result relating properties of to the
monotonicity of X admits a dual version in terms of which can be
obtained by replacing with in the original statement (after taking
care of some little technical details that are needed to deal with the
lack of symmetry due to the fact that X and have slightly different
domains). In particular, a dual version of Theorem 6.24 is given in [119,
Thm. 2.2].

Condition (6.16) is in fact related to generalized convexity properties,
as shown by the next proposition [79]:

Proposition 6.6 For a nondecreasing quasiconcave utility function
with no stationary points9, the following statements are

equivalent:

(i)

(ii) The function is convex-
along-rays.

(iii) The restriction of the indirect utility
function to the positive orthant has a representation of the type

with

A simple modification of the proof of Theorem 6.24 (as presented, e.g.,
in [50, Appendix 4]) yields the next result [79], which states a necessary
and sufficient condition for the monotonicity of demand functions. No-
tice that it only requires strict quasiconcavity of the utility function (in
contrast with Theorem 6.24, which assumes concavity).

9A stationary point of a differentiable function is a point at which the gradient of the function
vanishes.
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Theorem 6.25 Let be a demand function induced by
a strictly quasiconcave utility function which is on
and has a componentwise strictly positive gradient on
Then is monotone if and only if

and

The strict version of inequality (6.17) was first considered in [99, for-
mula (4)]; in the same paper it was proved that it is invariant under
monotone transformations of the utility function [99, Annexe II]. Thus
it only depends on the consumer’s preferences rather than on any par-
ticular utility representation.

An earlier characterization of monotone demand functions for con-
sumers with concave utility functions was given by Kannai
[52, Thm. 2.1] in terms of differential geometric properties of the indif-
ference surfaces

The following theorem [79] gives a sufficient condition for the mono-
tonicity of demand correspondences, without requiring any differentia-
bility assumption:

Theorem 6.26 Let be a utility function and let
be its associated indirect utility function. If the

is convex (in particular, if the
defined by is

quasiconcave) and has no maximum then the demand correspondence
X is monotone.

set
function

Corollary 6.12 Let be a utility function and let
be its associated indirect utility function. If

is concave and has no maximum and is convex then the demand cor-
respondence X is monotone.

Corollary 6.12 is essentially due to Milleron [99]. It suggests to inves-
tigate conditions under which an indirect utility function is convex. In
[79], the following result is proved:
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Theorem 6.27 If is nondecreasing and the function
is convex-along-rays then the restriction

of the indirect utility function to the positive
orthant is convex. Conversely, if is bounded, nonincreasing
and convex then there is a nondecreasing quasiconcave utility function

such that is convex-along-rays and
whose associated indirect utility function extends

The first part of the preceding theorem refines statement ii) in [20,
Thm. 11], which uses the additional assumption that can be recovered
from by (6.13). This theorem can also be found in [119, Prop. 2.4(i)]
under the extra hypothesis that is continuous and quasiconcave. The
following corollary is immediate [119, Prop. 2.4(ii)]:

Corollary 6.13 Let be a nondecreasing quasiconcave
utility function. The restriction of its associated indirect
utility function to the positive orthant is convex if and only if

Condition (6.18) is stronger than Mitjushin - Polterovich inequality
(6.16), as one has

for any nondecreasing utility function with no stationary points. Thus,
combining the preceding corollary with Mitjushin - Polterovich’s result,
one obtains again Corollary 6.12 (under differentiability assumptions,
which are actually superfluous).

8. Consumer Theory without Utility

The theory developed in the preceding sections admits a partial ex-
tension to the case in which consumer’s preferences are not necessarily
represented by a utility function. The relevance of such an extension
stems from the fact that preference orders, rather than utility repre-
sentations, are the primitive objects of consumer theory. Since not all
preference orders can be represented by a utility function, by analyz-
ing preferences directly one gets more general results. Besides, a utility
function representing a given preference order is not unique, and some
utility representations may satisfy the regularity conditions that make
the full duality relations possible while some others may not. This shows
that duality theory based on utility functions is not intrinsic to the eco-
nomic model, an undesirable fact that disappears by focusing directly



on preference orders. Two pioneering contributions to duality theory for
preference orders are [98] and [63].

There is still another reason why the preference orders approach to
duality theory is convenient: An indirect utility function does not always
represent accurately the preferences of a consumer with respect to prices,
since the definition (6.10) does not distinguish whether the supremum is
attained or not. If, for an indirect utility function and price
vectors one has then and are considered
to be indifferent, but it might be the case that the supremum in the
definition of is attained while that in the definition of is not;
then the consumer should prefer to since he can achieve a utility

under but not under In fact, in this situation one
would have for the indirect utility function associated
to some other utility representation of the same preference order, which
shows that comparing prices through indirect utility functions might
be inconsistent and misleading. Of course this inconsistency is absent
under the common assumption that maximal elements exist whenever
the utility function is bounded on the budget set, which is the case, e.g.,
when it is continuous and strictly increasing in each component.

Let us assume that the preferences of a consumer on commodity bun-
dles are represented by a preorder that is, a reflexive and transitive
binary relation on One says that is total if, for every
at least one of and holds true. The assertion
is to be interpreted as meaning that is at least as good as in the
consumer’s preference ranking. When both and hold
true, one says that and are indifferent and write The
indifference relation is obviously an equivalence relation. We write

when and and are not indifferent; the relation
is called the strict preorder associated to

The indirect preorder induced by is defined as follows: if
and only if for every in the budget set
there exists such that The meaning of this definition
is clear: The consumer prefers the vector price to if he can get
under commodity bundles that are at least as good as those that
are available to him under One can easily check that is a total
preorder, too. The associated indifference relation and strict preorder
will be denoted by and respectively.

To be able to recover preference orders on goods from indirect pre-
orders, one has first to define the direct preorder induced by a total
preorder on prices This is done as follows: For
one writes if and only if for every in the inverted budget set

there exists such that
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This definition is in fact an adaptation to the total preorders
setting of formula (6.13), which defines the utility function on goods in-
duced by a given utility function on price vectors. Since is a total
preorder, is a total preorder, too.

Thus, given a total preorder on goods one can construct its asso-
ciated total preorder on prices, which in turn induces a new total
preorder on goods. The next theorem [82, Thm. 2] characterizes
the case when one recovers in this way the original total preorder:

Theorem 6.28 Let be a total preorder on The following state-
ments are equivalent:

(i) coincides with
(ii) has the following properties:

(a) is nondecreasing10.
(b) For every the upper contour set is

evenly convex.
(c)For every if and belongs to the closure of

, then
(d) For every if and is a –  maximal

element of for some then is a –  maximal element
of for some

Moreover, if conditions (a)-(d) hold, then has the following prop-
erties:

(a’) is nonincreasing11.
(b’) For every the lower contour set is

evenly convex.
(c’) For every if and belongs to the closure of

then
(d’) For every if and is a – minimal

element of for some then is a –  minimal element
of for some

The duality mapping is a bijection, with inverse
from the set of all total preorders on with properties (a)-(d) onto
the set of all total preorders on with properties (a’)-(d’).

It is important to notice that conditions (a’)-(c’) are satisfied by the
indirect preorder induced by an arbitrary preorder that is, con-
ditions (a)-(d) are not required to this effect. An example of a total

10One says that is nondecreasing if it is an extension of the componentwise ordering
that is, if one has whenever
11 One says that is nondecreasing if it is an extension of the reverse componentwise ordering

that is, if one has whenever
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preorder whose induced indirect preorder fails to possess property
(d’) is the one on represented by the utility function
defined by

Its associated indirect utility function satisfies

One can easily check that if then no – maximal ele-
ment exists in the corresponding budget set on the contrary,
if then has at least a maximal element. Hence
is a utility representation for the indirect preorder Consider now
the price vectors (0, 1) and (0, 2), which are clearly indifferent under

While (0,1) is a – minimal element of one can
verify that no exists such that (0, 2) is a – minimal
element of Indeed, if with is such that

then if is

such that then We have
thus seen that condition (d’) does not hold. Therefore, in view of The-
orem 6.28, and must be different. To check that this is the case,
let be defined by (6.14). A straightforward computation
shows that

and that the infimum in the right hand side of (6.14) is not attained if
and only if Therefore is a utility representation of
For every one has whence, as

it follows that Since we
have an evidence that and are different.

An obvious manipulation of the preceding example would yield a total
preorder satisfying conditions (a)-(c) but not (d). Conditions (a)-(c)
are actually satisfied by any total preorder that can be written in the
form for some total preorder however must be different from

unless condition (d) also holds. The following result [82, Prop. 3]
shows the discrepancy between and when satisfies (a)-(c) but
not (d).
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Proposition 6.7 Let be a total preorder on satisfying properties
(a)-(c) of Theorem 6.28. Then is the total preorder whose strict
preorder is defined as follows:

if and only if
either
or is not a –maximal element in for any

and is a – maximal element of for some

The preceding proposition tells us that is an extension of (or,
equivalently, is an extension of In other words, the only difference
between and if satisfies (a)-(c) but not (d) is that some pairs
that are indifferent under are not indifferent under In a sense,

can be regarded as a regularized version of Indeed, in spite of
the fact that, for an arbitrary total preorder does not necessarily
coincide with (as shown by the example above), one has [82, Thm.
4]:

Theorem 6.29 For every total preorder on coincides with

For total preorders such that all budget sets corresponding to strictly
positive prices have maximal elements, one has the following duality re-
sult [74, Thm. 5], which, in contrast with the general case, also provides
a characterization of the associated indirect preorders:

Theorem 6.30 Let be a total preorder on such that for every
the set has a –maximal element. Then has the

following properties:
(a) is nonincreasing.
(b) For every the strict lower contour set

is evenly convex.
(c) For every if belongs to the closure of

and then
Conversely, if is a total preorder on such that (a)-(c) hold

with replaced by then, for every the set has a
–maximal element and coincides with

Therefore, the mapping is a bijection from the set of total
preorders on that satisfy conditions (a)-(c) of Theorem 6.28 and
are such that, for every the set has a –maximal
element onto the set of all total preorders on for which (a)-(c)
hold with replaced by

The class of total preorders that, besides being in perfect duality with
their associated indirect preorders, have the additional property that
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all budget sets corresponding to strictly positive prices have maximal
elements admits a very easy characterization [74, Thm. 6]:

Theorem 6.31 Let be a total preorder on that coincides with
The following statements are equivalent:

(i) For every the set has a –maximal element.
(ii) For every the strict lower contour set

is evenly convex.
(iii) For every the strict lower contour set

is evenly convex.

An analogue of the concept of expenditure function also exists in
the context of consumer’s preferences represented by preorders instead
of utility functions. For a (partial) preorder on the associated
expenditure function is defined by

It shows the amount of money that a consumer with preferences repre-
sented by needs to spend under the prices to purchase a commodity
bundle at least as good as

The duality relationship between expenditure functions and preorders
is described in the next theorem, whose statement involves the following
Hull Cancellation Property:

(HCP) For all only if
with denoting closed convex hull.

One can easily observe that, for a total preorder, the Hull Cancellation
Property can be equivalently expressed in terms of equalities instead of
inclusions. However, this is not the case, in general, for partial preorders
[83, Thm. 3.3]:

Theorem 6.32 The mapping is a bijection from the set of
all preorders on whose upper contour sets
satisfy (HCP) onto the set of functions that satisfy
the following properties:

(a) For every the mapping is concave, positively ho-
mogeneous and upper semicontinuous.

(b) For every the closed convex hull of the set
coincides with the superdif-

ferential of the concave function at the origin (see Theorem 6.20).
The inverse mapping is with denoting the preorder on
defined by if and only if (pointwise).
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According to the preceding theorem, for a preorder whose upper
contour sets satisfy the Hull Cancellation Property, and coincide.
In fact, one can easily prove that the converse statement is also true. The
class of preorders satisfying the Hull Cancellation Property includes all
nondecreasing preorders whose upper contour sets are closed and convex,

since for any such preorder and any one has

For this subclass of preorders, the following duality theorem [83,
Thm. 3.5] holds:

Theorem 6.33 The mapping is a bijection from the set of
all nondecreasing preorders on whose upper contour sets are closed
and convex onto the set of functions that satisfy the
following properties:

(a) For every the mapping is concave, positively ho-
mogeneous and upper semicontinuous.

(b ’)For every
The inverse mapping is given by: if and only if

Some classical results of the standard utility framework, like the Slut-
sky equation, can be generalized to the preference setting; see [98, for-
mula (5)] and [83, Thm. 4.13]. Demand correspondences can also be
introduced in this context. Given a total preorder on the commod-
ity space the associated demand correspondence X assigns to each
price vector the set
The last results [79] in this section state sufficient conditions for the
monotonicity of X. We recall that a total preorder on is said to
be locally nonsatiated if no relatively open subset of has a

– maximal element. The next theorem generalizes Theorem 6.26.

Theorem 6.34 Let be a locally nonsatiated total preorder in and
let X be its associated demand correspondence. If the set

is convex then X is mono-
tone.

From this theorem the following result follows:

Proposition 6.8 Let be a nondecreasing total preorder in X be
its associated demand correspondence, and assume that satisfies the
following condition:
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Then X is monotone.

In the case when the upper contour sets are closed, they must also
be closed if the condition in the preceding proposition holds (take

Notice that this sufficient condition is satisfied when is non-
decreasing and its graph, is a
convex set; indeed, if is convex then one has

and, since for every positive and if is nondecreasing

then one also has for every
To conclude, let us mention the recent paper [133], in which the pos-

sibility of reconstructing demand correspondences from indirect prefer-
ences is studied.
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1. Introduction
It is a well known fact that convex analysis is one of the cornerstones

of modern Operations Research, including optimization and its applica-
tion to various fields. The notion of subdifferential of a convex function
at a given point of its domain plays a central role in convex analysis.
The subdifferential plays two different roles. One of them is local: the
subdifferential furnishes a local approximation to a convex func-
tion in a neighborhood of a given point The other is global:
is a tool for constructing supporting hyperplanes to the epigraph of the
convex function An affine function is a global support of at if
is a minorant for all and Indeed, if

then the affine function where
is a global support of at

Generalizations of the first trail of the subdifferential lead to non-
smooth analysis while the second trail leads to abstract convexity. Thus
abstract convexity in a sense is the generalization of the global properties
of convex functions. The existence of global affine supports is guaran-
teed by the separation theorem for convex sets. This idea also leads to
the following fundamental result of convex analysis: each lower semicon-
tinuous convex function is the upper envelope (pointwise supremum)
of all affine functions majorized by it. The main motivation for the
development of abstract convexity lies in the fact that the envelope rep-
resentation is very convenient, even when we consider the upper envelope
of sets of non-affine functions.

Thus one is motivated to examine the main global notions of convex
analysis in a non-convex setting. Two kinds of objects are studied in
the framework of abstract convexity: abstract convex functions and ab-
stract convex sets. It is assumed that a class of not necessary linear or
affine elementary functions is given. Abstract convex functions can be
represented via the envelope representation of sets of elementary func-
tions. Abstract convex sets bring in the notion of non-linear separation.
A point not belonging to an abstract convex set can be separated from
it by an elementary function.

Various classes of functions and sets can be studied from the point
of view of abstract convexity. Since this volume deals with generalized
convexity, special attention in this paper is devoted for the study of
quasiconvex functions from the point of view of abstract convexity.

Abstract convexity allows one to consider a new interesting area of
applications of quasiconvexity, namely Hadamard type inequalities. This
is one of the surprising applications of abstract convexity.
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The structure of the paper is as follows. In Section 2 we present
main definitions related to abstract convexity. In Section 3 we examine
Minkowski duality and Fenchel-Moreau conjugation and some links be-
tween the distance and the plus-Minkowski gauge. Examples of abstract
convex functions and sets based on various sets of elementary functions
are discussed in Section 4. In particular, we study supremal generators
of sets of lower semicontinuous functions in this section. Supremal gen-
erators of sets of quasiconvex functions are examined in Section 5. Some
applications of abstract convexity can be found in Section 6. In the fi-
nal Section 7 we discuss applications to Hadamard type inequalities for
quasiconvex functions.

2. Main definitions

Order relations will play a very important role in this paper. In the
sequel we assume, unless the opposite is explicitly mentioned, that all
sets of functions under consideration will be equipped with the point wise
order relation In other words, if Y is a set of extended real-valued
functions defined on a set X and then

for all If then sup U is the pointwise supremum
(the upper envelope) of the set U and inf U is the pointwise infimum
(the lower envelope) of U. By definition

Let H be a set of extended real-valued functions defined on a set X.
Consider a function The set

is called the support set of the function with respect to H. The support
set accumulates the global information about the function in terms of
the set H. The function

is called the H-convex hull of a function Clearly A function
defined on X is called abstract convex with respect to H (or H-convex)

if that is

Remark 7.1 For application it is interesting to consider only sets H of
sufficiently simple functions. The set H will be called in the sequel the
set of elementary functions.

Assume now that the set H consists of finite functions. If the support
set is nonempty, then for all If
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is empty then Let Denote
by the union of the set of all functions and the
function identically equal to Then each H-convex function belongs
to

Let H be a set of finite functions defined on X. A set is called
abstract convex with respect to H (or (X, H)-convex) if each point
can be separated from V by a function from H, that is, there exists
such that Similarly a set is called
abstract convex with respect to X (or (H, X)-convex) if for each
there exists such that It is easy to
check that U is (H, X)-convex if and only if there exists a function
defined on X such that

The intersection of all (H, X)-convex sets containing a set is
called the abstract convex hull or (H, X)-convex hull of the set U. We
shall denote the (H, X )-convex hull of U by or, if it does not
cause misunderstanding, by

Example 7.1 Let X be a locally convex Hausdorff topological vector
space. Consider the conjugate space L = X* as a set of elementary
functions. Then a function is abstract convex with respect
to X* if and only if this function is lower semicontinuous and sublinear.
(This is a version of Hahn-Banach theorem.) Consider now the set H of
all continuous affine functions as a set of elementary functions. Then a
function is abstract convex with respect to H if and only
if is a lower semicontinuous convex function. Let Then the
following assertions are equivalent:

1)

2)

3)

U is (X, L)-convex;

U is (X, H)-convex;

U is closed and convex.

A notion of abstract convex set allows one to define abstract quasiconvex
functions. A function is called abstract quasiconvex with
respect to a set of elementary functions H (or H-quasiconvex) if its level
sets are (X, H)-convex for all

Remark 7.2 Abstract concave functions, that is, the lower envelopes
of subsets of elementary functions, abstract concave sets and abstract
quasiconcave functions may equally be studied in this fashion. For the
sake of definiteness we shall discuss here mainly the abstract convex
situation.
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Let H be a set of finite functions defined on a set X and
be an H-convex function. Then

for all The set

is called the support set of at a point Clearly is not
empty if and only if the supremum in (7.4) with replaced by is
attained.

We now give the definition of abstract subdifferential. Let L be a set
of finite functions and be the set of functions of the
form with and Here 1 is the function defined by

for all Let be an function.
The L-subdifferential of at a point is the following set:

There is a simple link between the L-subdifferential and the
support set with respect to

Proposition 7.1 Let be an function, and
Let and Then if and only if

The proof is straightforward.

3. Minkowski duality and Fenchel-Moreau
conjugation

Abstract convexity provides a convenient framework for the study of
various types of dual objects related to abstract convex functions and
sets. Various types of conjugacies, dualities and polarities have been
defined and studied. A detailed presentation and historical survey of
corresponding definitions and results can be found in the book [32]. The
reader can find a survey of corresponding results in the paper [17] in
this Handbook. Some discussions on this topic (from the point of view
of quasiconvexity) can be found also in [20]. In this paper we consider
only Minkowski Duality and Fenchel-Moreau conjugation and relations
between them.

Let H be a set of finite functions defined on a set X. Consider the
set of all H-convex functions and the set S(H, X) of
all (H, X)-convex sets. We assume that P(H, X) is equipped with the
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pointwise order relation and S(H, X) is equipped with the order relation
by inclusion.

Definition 7.1 The mapping defined by
is called the Minkowski duality.

Remark 7.3 The notion of Minkowski duality was introduced by S.S.
Kutateladze and A.M. Rubinov [13, 14]. The concept of Minkowski
duality in more general setting can be found in [24].

We now present the main result related to Minkowski duality. Its proof,
based on the well-known Moore scheme [2], can be found in [13, 14, 24].

Proposition 7.2 The ordered sets P(H, X) and S(H, X) are complete
lattices and the Minkowski duality is an isomorphism between these
lattices.

For arbitrary family of H-convex functions we have

where and are boundaries in the lattice P(H, X) while
and are pointwise boundaries. For an arbitrary family
of (H, X)-convex sets we have where

denotes the (H, X )-convex hull of a set and where sup
and inf are boundaries in the lattice S(H, X ) .

We now consider the Fenchel-Moreau conjugation. Let L be a set of
elementary functions defined on a set X. For a given function
the function defined by

is called the Fenchel-Moreau L-conjugate to
Let The function is referred to as the

abstract affine function, corresponding to The set

is called the set of abstract affine functions corresponding to L. (We have
already used this set under the definition of the abstract subdifferential.)
If L possesses the following property then

The Fenchel-Moreau conjugate function possesses some good proper-
ties, if the set L is the so-called set of abstract linear functions. We now
give a corresponding definition.
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A set L of finite functions defined on X is called a set of abstract
linear functions if for all (Note that
we do not define an individual abstract linear function, but only the
set of all such functions.) It follows directly from the definition of a
set of abstract linear functions that the mapping is one-to-
one correspondence, so we can identify a pair with the function

Keeping in mind this identification, we show that the support set
of a function can be identified with the epigraph

of the conjugate function

Proposition 7.3 Let Then

Proof. We have

Let be the Minkowski duality between the sets and
Then hence for each

the following equality holds

which expresses links between Minkowski duality and Fenchel-Moreau
conjugation.

It is convenient to study the Fenchel-Moreau conjugation in terms
of coupling functions. Let X and L be a pair of sets with a coupling
function We can consider each element as
a function defined on X by and each element as a
function defined on L by So we can consider L as a set of
functions defined on X, and X as a set of functions defined on L.

Let and be nonempty.
Clearly Since for each

the function is an abstract affine function
defined on X, it follows that is abstract convex with respect to the
set of X -affine functions. Let be the second conjugate
of the function Then is L-convex. The following theorem is one
of the main results of abstract convex analysis.

Theorem 7.1 (Fenchel- Moreau) Let L and X be a pair of sets equipped
with coupling function Let Then
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Corollary 7.1 if and only if is

The Fenchel-Moreau conjugation can be defined also with respect to
a set of functions, mapping into the extended real line (see [32] and
[17]). The abstract subdifferentials can be defined in this setting with
the help of this conjugation (for more details see [32, 17]).

4. Examples of abstract convex functions and
sets. Supremal generators

For a meaningful application of abstract convexity we first need to
find sufficiently simple classes of elementary functions with respect to
which the functions/sets involved in the problem at hand are abstract
convex. From this point of view it is interesting and important to have
a description of abstract convex functions and sets for some given sets
of elementary functions. We now present some examples.

4.1 Multiplicative min-type functions

Consider the cone of all with nonnegative coordinates
and the cone of all with positive coordinates. We assume
that both of them are equipped with coordinate-wise order relation. Let
K be either or A function is called increasing if

implies A conic structure of the set K allows one
to define properties along-rays. We say that a certain property (P) of
a function holds along-rays if this property is valid for the
restriction of to the each ray with
starting from zero and passing through In other words, the property
(P) holds along-rays if for each the function of one variable

defined by

satisfies (P). We now give some examples of functions with properties
along-rays:

1)

2)

3)

lower semicontinuous-along-rays functions the function is
lower semicontinuous for all

convex-along-rays functions the function is convex for all

positively homogeneous functions. A function is called positively
homogeneous (of degree if for all (in
particular if then function is linear-along-rays);

We shall usually study functions with properties along-rays, which in
addition, possess some “good and not along-rays” property. As a rule
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we shall consider increasing functions with properties along-rays. A
combination of monotonicity with properties along-rays is very useful.
For example, the following result holds ([25]):

Proposition 7.4 Let be an increasing and lower semi-
continuous along-rays function. Then is lower semicontinuous.

In particular we consider in the sequel IPH (increasing and positively
homogeneous of degree one) function and ICAR (increasing and convex-
along-rays) functions defined on K, where either
The order relation allows one to define normal subsets of the cone K. A
set U K is called normal, if It is
easy to check that a function is increasing if and only if its
level sets are normal for all

First we consider Consider a coupling function defined
on by

where This coupling function generates functions

with We denote function (7.9) by the same symbol as the
vector, which generates it. Function is called a mul-
tiplicative min-type function. Consider the set L of all multiplicative
min-type functions as the set of abstract linear functions. Note that we
can identify L and as topological ordered sets, however we cannot
identify them as convex cones. The following results hold (see [24] and
references therein).

Theorem 7.2 A function is L-convex if and only if
this function is IPH.

Theorem 7.3 A set is abstract convex (or, more precisely
if and only if this set is normal and closed (in the

topological space

Remark 7.4 It follows from Theorem 7.3 that a function is L-quasi-
convex if and only if this function is increasing and lower semicontinuous.

To describe the L-subdifferential we need the following notation. If
and then
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Theorem 7.4 Let be an IPH function. Assume that is proper, that
is Then is not empty for all and

Remark 7.5 It follows from Theorem 7.4 that for all

Consider now the set of abstract affine functions with respect to
the set of abstract linear functions L. By definition,

where for all
Clearly the sets, which are abstract convex with respect to coin-

cide with L-convex subsets, hence with normal closed subsets of
Hence a function is if and only if this function is
increasing and lower semicontinuous. We now describe func-
tions.

Theorem 7.5 A function is if and only if
this function is ICAR.

Let be an ICAR function. Then for each the function
defined on by is convex, hence its subdifferential
(in the sense of convex analysis) at the point is nonempty.
Let

Theorem 7.6 Let be an ICAR function and
int dom where dom Then
hence is nonempty. If is strictly increasing at the point that
is then

Consider now the cone The coupling function (7.8) is not
suitable for since min for all if at least one coordi-
nate of is equal to zero. We substitute (7.8) for the coupling function

Note that the restriction of the function (7.12) to coincides with
(7.8), however in contrast with (7.8) the function (7.12) is not symmet-
ric. The description of abstract convex sets, abstract convex functions
and their L-subdifferentials can be generalized for the case under con-
sideration, see [24, 28] and references therein for details.
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4.2 Additive min-type functions

Consider a space equipped with the coordinate-wise order re-
lation. A mapping is called topical if is increasing

where means coordinate-wise order rela-
tion) and for all and Here 1 is
the vector of corresponding dimension , whose all coordinates is equal to
one. Topical mappings are intensively studied and they have many ap-
plications in various parts of applied mathematics (see [10]). Note that
a mapping is topical if and only if its coordinate functions are topical.
A set is called downward if If
it is natural to study topical functions, mapping into the extended real
line However it is not very difficult to show ([27]) that each topical
function mapping into is either finite or identically or

Topical functions and downward sets can be studied in
the framework of abstract convexity (see [15, 27]). Consider a coupling
function defined on by

where For each this coupling function generates
the function defined on which we denote by the same symbol By
definition Let W be the set of all functions with

Note that the function where belongs
to W if so we cannot consider W as a set of abstract linear
functions. A function is called additive min-type function. The
following results hold:

Theorem 7.7 [27] A function is W-convex if and only if
is topical.

Theorem 7.8 [15] A set is abstract convex (more precisely,
( W)-convex) if and only if U is downward and closed.

Direct proofs of Theorem 7.7 and Theorem 7.8 can be found in [27]
and [15], respectively. We now present a construction, which allows one
to easily derive these proofs from known results for IPH functions. A
detailed presentation of this construction can be found in [15, 27]. We
shall use the following notation:
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The mapping E defined by is an isomorphism between ordered
sets and with the inverse mapping L, where It is
easy to see is normal if and only is downward
and is topical if and only if the function defined by is
IPH. Using this isomorphism we can obtain Theorem 7.7 and Theorem
7.8 as a simple corollary of Theorem 7.2 and Theorem 7.3, respectively.
This isomorphism and Theorem 7.4 also allows one to describe easily the
support set at a point for topical functions. Namely the following result
holds [27]:

Theorem 7.9 Let be topical function and Then

Note that a function is increasing if and only if its level
sets are downward for all Hence, due to
Theorem 7.8 a function is W-quasiconvex if and only if is
increasing and lower semicontinuous.

As it turned out, the Fenchel-Moreau conjugation has a very simple
form in the case under consideration.

Theorem 7.10 [27] For a function the following are equiv-
alent:

1)

2)

is a topical function;

we have (Here is the Fenchel-Moreau conju-
gate with respect to the set W.)

Proof. 1) 2). First we show that for each
function and each Indeed,

We now show that the opposite inequality holds if is a topical function.
It follows from the definition of the coupling function that

which implies that Since is topical we
have

Hence
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2) 1) Let be an arbitrary function and Then the
function where is topical. Applying the
equality we can easily check that is a topical
function. Indeed is increasing as the upper envelope of a family of
increasing functions. Then

Thus, is topical. Due to 2), we conclude that the function
is topical. It follows directly from this assertion that is also

topical.

Corollary 7.2 For an IPH function define the polar function by

Applying Theorem 7.10 and the isomorphism E described above we can
deduce the following result (see [24] and references therein):

where is defined by (7.10).

Remark 7.6 Let be a positive integer and let be the set of func-
tions of the form where

and stands for the inner product of vectors and Abstract
convexity with respect to sets and has been studied in [24]. In
particular, it was shown in [24] that a set which contains the
origin, is convex if and only if this set is closed and radiant
(in another terminology, star-shaped with respect to zero). The latter
means that

4.3 Supremal generators

Let F be a set of functions defined on a set X. A set H F is
called a supremal generator of F if each is abstract convex with
respect to H. Some examples of supremal generators can be found in
previous subsections. For instance, the set L of multiplicative min-type
functions is a supremal generator of the set of all IPH functions (see
Subsection 4.1) and the set of additive min-type functions is a supremal
generator of the set of all topical functions (see Subsection 4.2). If H is
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a supremal generator of F and if the set is such that
then is a supremal generator of F as well. There exist very small
supremal generators of very large sets, in particular of the set of all lower
semicontinuous functions defined on a compact set X. To show it we
need the following assertion.

Lemma 7.1 Let H be a set of continuous functions defined on a metric
space X with the metric Assume that

H is a conic set (that is,1)

2) H contains negative constant functions;

3) for each and there exists a function such that

Then H is a supremal generator of the set of all lower semicontinuous
functions defined on X and bounded from below.

Proof. Let be a lower semicontinuous function defined on X and
bounded from below. Without loss of generality assume that is finite.
There exists a constant such that the function
is positive. Let and The function is lower
semicontinuous and so for each there exists such
that if Applying the property 3) we can find
a function such that if and

if Let Then for
all Indeed, if and
if We have also Since is an arbitrary positive
number, it follows that Since H is a
conic set, we have Hence

Remark 7.7 If X is a compact space then a set H with properties l)-3)
is a supremal generator of the set of all lower semicontinuous functions.

Remark 7.8 A more general result, based on the notion of the support
to a Urysohn peak can be found in [13].

We now give a simple example of a supremal generator.

Proposition 7.5 Let Y be a Hilbert space with the inner product
and let X Y. For each triplet where
consider the function defined on X by

if and if
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Let H be the set of all functions of the form (7.14). Then H is a supremal
generator of the set of all lower semicontinuous, bounded from below
functions defined on X.

Proof. Clearly, H is a conic set, which contains negative constants. For
each and the function

belongs to H. Note that for all such that
and all fairly large numbers Let

Then for all If then for all fairly
large numbers Thus the desired result follows from Lemma 7.1.

Remark 7.9 Assume that Y is a Euclidean space. Then
the set H from Proposition 7.5 is a half space of the
space, so this set is a “very thin” subset of the set of all lower semicon-
tinuous functions. It can be shown [13] that there exists convex cones,
which are spanned by functions, which are supremal generators
of the set of all lower semicontinuous functions defined on the compact
set On the other hand, if the set of all lower semicontinuous
functions defined on a compact space X contains a convex cone, which
is spanned by functions, then X can be topologically embedded to

(See [13] and also [24] for details.)

Various versions of Proposition 7.5 have been proposed in order to take
into account some functions unbounded from below (see, for example
[3, 5, 24]). We now present (without proof) one of the most general
results in this direction ([30]). Let X be a normed space, be a positive
number and let be the set of all lower semicontinuous functions

which are bounded from below on each bounded set and
such that

Consider a continuous sublinear function defined on X such that
Let be the set of all functions of the form

with and

Theorem 7.11 The set is a supremal generator of the set

In particular, if X is a Hilbert space then the set of all functions
of the form with and is a
supremal generator of the set
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5. Supremal generators of sets of quasiconvex
functions

Abstract convexity is a convenient tool in the study of quasiconvex
functions. There are numerous papers in this direction and we are not
able to give a comprehensive survey of this research. So we restrict
ourselves only to some results directly related to abstract convexity of
quasiconvex functions. We also do not quote numerous results pertaining
to different types of dual objects for quasiconvex functions. A detailed
survey of many of these results can be found in the book [32] and pa-
pers [17] and [20]. In this section we mainly present results due to J.E.
Martinez Legaz [16], J.P. Penot and M. Volle [21, 22], I. Singer [32] and
M. Volle [33], which are related to abstract convexity of quasiconvex
functions with respect to a certain subset of quasiaffine functions. In
contrast to original papers, we give direct proofs of the corresponding
results, which are not based on conjugation. We do not present a his-
torical survey related to these results. A detailed historical survey can
be found in [32], see also [17, 20].

Recall the notion of a quasiconvex function.

Definition 7.2 Let X be a locally convex Hausdorff topological vector
space. Let Then is said to be quasiconvex if for all

and

Quasiconvex functions can also be characterized via their level subsets.
A function is quasiconvex if and only if its level sets

is convex or equivalently if its strict level
sets are convex. In fact this was the
starting point for the definition of quasiconvex functions.

A function is called quasiconcave if is quasiconvex.
Note that a function defined on a convex set is affine if and only if this
function is simultaneously convex and concave. This observation leads
to the following definition.

Definition 7.3 Let X be a locally convex Hausdorff topological vector
space. A function is called quasiaffine if it is both quasiconvex
and quasiconcave.

It is well known (see Example 7.1) that the set of all affine functions
is a supremal generator to the set of all lower semicontinuous convex
functions mapping into As it turned out, the set of quasiaffine
functions plays the similar role with respect to the set of quasiconvex
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functions. First we need to characterize quasiaffine functions. In what
follows we shall always denote by H the class of all increasing functions

and by we shall denote the class of all increasing functions
which are continuous from the left ( i.e lower semicontinu-

ous). A function is said to be proper if for all
and there exists at least a such that

Theorem 7.12 Let be a proper function. Let denote the
topological dual of X. Then the following statements are equivalent

(iii)

(ii)

(i) There exists and such that

is proper lower semicontinuous and quasiaffine.

Every non-empty level set of is either closed half-space or the
whole space.

Proof, (i) (ii) Note that the linearity of implies its convexity and
concavity. Let us assume that (i) holds . Then since is increasing,
the linearity of implies both quasiconvexity and quasiconcavity of
Hence is quasiaffine. Moreover is lower-semicontinuous and is
continuous and hence is proper and lower semicontinuous.

(ii) (iii). Since is quasiconvex and lower semicontinuous all its
level sets are convex and closed. Again is convex since is
also quasiconcave. This set is also open. If is nonempty then by
applying the standard separation theorem we can assert that there exists

and such that for all and
for all This shows that This
proves the assertion.

(iii) (i) Assume first that each of the level sets are empty or the
whole space X. In this case must be constant and (i) holds with any

if we take as the constant with the same value as Assume
now that for some and
Then, if then either that is with

or is a closed half-space on which is bounded above
by From this argument it is clear that
where must satisfy Similarly if then

for some (possibly . Let be
defined by Clearly is increasing and it is easy
to check that is left continuous. Finally for any we have

Hence
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Lemma 7.2 The supremum of any family of lower semicontinuous
quasiaffine functions is a lower sernicontinuous quasiconvex function.

Proof. Consider any arbitrary family of lower semicontinuous quasiaffine
functions on X, given as where is an arbitrary index set.
Let This shows that where

denotes a lower level set of and denotes a lower level
set of If there exists then by
convention. If for all then from Theorem 7.12 we have that
for all is a closed half space or the whole space. Hence
is either the whole space or a closed convex set. Again if there exists

such that and then Since
is arbitrary we have that is a closed convex set for every This
shows that is quasiconvex and lower semicontinuous.

We are now in a position to prove one of the most significant results
of this section.

Theorem 7.13 The set of all lower semicontinuous quasiaffine func-
tions forms a supremal generator of the set of all lower semicontinuous
quasiconvex functions.

Proof. We need to show that given any proper lower semicontinuous
quasiconvex function it can be supremally generated by a
family of proper lower semicontinuous quasiaffine function. In fact we
have to demonstrate that

where is as before the family of increasing extended real functions
on the real line which are left continuous. To show this we need to show
that for and with there exist and
such that and Since we have that there
exist and such that and for all

Let us define the function as follows

It is clear that and Again let us observe that
where denotes the lower semicontinuous hull of Now we put

From the definition of the lower semicontinuous hull we can write
that
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Hence Now from the definition of and noting
the fact that it is clear that This
proves the assertion.

We shall now turn to another important subclass of quasiconvex func-
tions and shall also describe a supremal generator for them. Before that
we need the notion of an evenly convex set. A set  is called evenly
convex if for each there exists such that for
all It is clear that open and closed convex sets are evenly convex.

Definition 7.4 A proper function is called evenly quasicon-
vex if every level set of is evenly convex.

The class of evenly quasiconvex functions is very broad. In fact ev-
ery lower semicontinuous and every upper semicontinuous quasiconvex
function is evenly quasiconvex.

Definition 7.5 A function is called evenly quasiaffine if it
is evenly quasiconvex and also quasiaffine.

This definition was introduced by Martinez-Legaz [16] and Penot and
Volle [21]. Recall that we denote by H the set of all increasing functions

Theorem 7.14 For any the following assertions are equiv-
alent:

(i)

(ii)

(iii)

There exists and such that

is evenly quasiaffine.

Every non empty level set of is either the whole space X or a
closed half space or an open half space of X.

We now state the following result:

Theorem 7.15 Let G denote the set of all evenly quasiaffine functions
A function is evenly quasiconvex if and only if

there exists  such that

A proof of Theorem 7.15 can be found for example in [21].
We now mention an important property of the set A of all affine

functions defined on a locally convex Hausdorff topological vector space.
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This set is a supremal generator of the set of all lower semicontinuous
convex functions, which is minimal in the following sense: for each
and the set is not a supremal
generator of (If with and then

It is enough to show that does not coincide with the
upper envelope of its support set supp Indeed, if

then and Assume then then
which is impossible for

Such a property does not hold for the set of quasiaffine functions.
There exist very thin subsets of the set of all lower semicontinuous
(evenly) quasiaffine functions, which are supremal generators of the set
of lower semicontinuous (evenly, respectively) quasiconvex functions. To
describe such sets we can use supremal generators of the set (H,
respectively). First, we introduce the following notation. Let K be
a set of functions We shall denote by the set

Consider now a supremal generator of the
set Then for each we have Since
each lower semicontinuous quasiaffine function can be represented in
the form with and we have

so is a supremal generator of the set of all lower semi-
continuous quasiaffine functions. Since, in turn, is a supremal
generator of the set of all lower semicontinuous quasiconvex func-
tions, it follows that is a supremal generator of The same
argument shows that is a supremal generator of the set Q of all
evenly quasiconvex functions if K is a supremal generator of the set H.
The simplest and very small supremal generator of the set is formed
by the functions of the form

where
The set of the so-called subaffine functions can serve as a small supre-

mal generator of Let us consider and for each we define a
function as follows

Again observe that for a given the function is increasing. The
following function
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where is an affine function, is called a subaffine function. Ob-
serve that every subaffine function is also quasiaffine. All subaffine func-
tions are continuous. It can be shown that the subaffine functions form a
supremal generator of the class of all lower semicontinuous quasiconvex
functions. We now present an example of a conjugation scheme, which
is closely related to the discussed supremal generation. This scheme has
relations to the lower subdifferential of Plastria (see Martinez-Legaz [16]
for more details).

Consider and let denote the generalized
conjugate of given by

From the discussions above it is clear that is a lower semicontinuous
quasiconvex function on

A conjugate can also be defined by defining the conjugate function
on a restricted set where is a ball of radius N
centered at the origin in and hence the subaffine function that is
used in (7.21) will be now restricted by Denote by
the restriction of a linear function to the ball We have

With restricted to we now just have subaffine functions which
are Lipschitz with rank N. Let us denote the set of subaffine functions of
the form where is a constant and
as H(N). Let Q(N) be the set of all H(N)-convex functions. We now
present the following result (see, Martinez-Legaz [16]).

Theorem 7.16 Let Then the following statements are
equivalent

i)

ii) Either and is quasiconvex and Lipschitz with rank N,
or identically equal to or

For some applications it is interesting to consider only quasiconvex
functions mapping into or even bounded from below. Let
respectively) be the set of all increasing (lower semicontinuous increas-
ing, respectively) functions bounded from below. It is
easy to see that the set is a supremal generator of the set of
all evenly quasiconvex functions bounded from below and
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the set is a supremal generator of the set of all lower semi-
continuous quasiconvex functions bounded from below.
If is a supremal generator of then is a supremal generator
of If is a supremal generator of then is a supremal
generator of Simple supremal generators of and are formed
by the so-called two step functions, that is either functions of the form

or functions of the form

where with and It is easy to see that the set
of all functions of the form (7.24) is a supremal generator of and the
set of all functions of the form (7.25) is a supremal generator of

It is interesting to consider supremal generators of some subsets of the
set and One of such subsets is the set of all nonnegative lower
semicontinuous (evenly, respectively) quasiconvex functions q such that

We now present the following result (see, for example, [24]
and references therein).

Theorem 7.17 1) Let be the class of all evenly quasiconvex func-
tions such that Then the
class of all two steps functions of the form

with and is a supremal generator of
2) Let be the class of all lower semicontinuous quasiconvex functions

such that Then the class of
all two steps functions of the form

with and is a supremal generator of

As it was mentioned in [31], the set is a minimal conic set, which
is a supremal generator of The above form of representation of
the supremal generators for quasiconvex functions will be important in
the study of Hadamard type inequalities for quasiconvex functions. In
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particular we shall use Theorem 7.17 in the simplest case, when X =
R. Let us note that in this case each quasiconvex function is evenly
quasiconvex. The following result (see, for example, [18]) can be easily
proved.

Theorem 7.18 Let denote the class of two step functions given
as

with Then is a supremal generator of the
class of all non-negative quasiconvex functions

6. Some applications of abstract convexity

Abstract convexity has found many applications in various areas of
mathematics. In particular, abstract convexity forms a natural frame-
work in the study of various form of duality in not necessary linear
setting. This question is discussed in details in the book [32] and in pa-
pers [17] and [20]. At the same time abstract convexity can be applied
in the study of many concrete problems. We now present some known
examples of such applications.

6.1 Boundary values of convex functions defined
on a ball

Consider the unit ball B of the Hilbert space Y. Let
be a lower semicontinuous convex function and be the restriction
of to the unit sphere S. Then is a lower semicontinuous func-
tion and moreover, is bounded from below. Indeed, since is lower
semicontinuous and convex, there exists an affine continuous function

denned on B, such that for all In particular
We now show that the reverse

assertion holds.

Proposition 7.6 Let be a lower semicontinuous bounded from below
function defined on S. Then there exist a lower semicontinuous convex
function such that for all

Proof. Let H be the set of all functions of the form

with and For a function defined by (7.26) consider
the affine function where Clearly
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Consider the support set of the function with respect to H.
Let and Clearly

is a lower semicontinuous convex function. Applying Proposition 7.5
and (7.27) we conclude that for all

6.2 The principle of preservation of inequalities
The following simple, however very useful result, was established in

[13, 14],

Theorem 7.19 (Principle of preservation of inequalities) Let L be a
supremal generator of a set of functions Y. Let be an increasing
functional defined on Y, that is Let
further, Then

Proof. Let Then

For we have Since is
increasing we have Hence

Assume that for al Applying (7.28) with
we conclude that

Applications of the Principle of Preservation of Inequalities to in-
equalities of Hadamard type will be studied in the next section. We now
consider applications of different type.

Proposition 7.7 Consider the space C(X) of all continuous functions
defined on the compact topological space X equipped with the pointwise
order relation. Let be a supremal generator of C(X). Let

be an increasing operator such that
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If for all then coincides with the identity.

Proof. Let and for all Then
is an increasing function defined on C(X) and for all

Let It follows from the Principle of Preservation of
Inequalities that Applying this principle to we get

hence due to (7.29) we obtain the opposite inequality:
Since is an arbitrary point of X, we have

Remark 7.10 The inequality (7.29) holds for superadditive operators,
that is operators such that and
In particular, (7.29) is valid for linear operators. If is linear opera-
tor then Proposition 7.7 is a special case of the well-known Korovkin
theorem. (See, for example [13, 14] for corresponding discussion, where
some versions of Proposition 7.7 are presented and also a convergence of
a sequence of linear operators to identity is discussed.)

Remark 7.11 Proposition 7.7 is of special interest since there exist very
small supremal generators of C(Q) (see Subsection 4.3). In particular
the following assertion follows from Proposition 7.14 and Proposition
7.7: Let be the segment on the real line and

Let be a linear operator such that for
and Then is the identity.

6.3 Numerical methods of global optimization

Let us recall a well-known cutting plane method (see for example [12])
in convex optimization. Consider a problem of convex minimization

where is a convex compact set and is a convex finite function
defined on an open set containing X. We shall use the support set of a
convex function at a point. Let L be the set of affine functions defined
on Due to Proposition 7.1 the support set of a function
at a point with respect to L consists of affine functions of the form

where and
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Cutting plane method

Step 0. Let Choose an arbitrary point

Step 1. Let Consider

Step 2. Solve the problem

Step 3. Let be a solution of (7.31). Let and
go to step 1.

Only abstract convexity of convex functions with respect to the set
of affine functions has been used here. So we can easily generalize the
cutting plane method for almost any abstract convex situation.

Let L be a set of elementary functions defined on set X and let
be an L-convex function. Assume that the support set

of a function with respect to L is not empty
for all Consider the problem of global optimization:

Generalized cutting plane method

Step 0. Let Choose an arbitrary initial point

Step 1. Calculate Let

Step 2. Find a global optimum of the problem

Step 3. Let be a solution of the problem (7.32). Let
and go to step 1.

Generalized cutting plane method was studied by many authors. (See
[24], where some works related to this method have been mentioned.)
The convergence of this method can be proved under very mild assump-
tions. We present here a particular case of the result obtained by D.
Pallaschke and S. Rolewicz [18].
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Theorem 7.20 ([18]) Let X be a compact set, L consist of continuous
functions and be a continuous function, abstract convex with respect
to L. Then each limit point of the sequence which is produced by
the generalized cutting plane algorithm, is a global minimizer of function

over X.

There are two major difficulties in the numerical implementation of the
generalized cutting plane algorithm.

1) to find

2) to solve problem (7.32).

For special classes L of elementary functions these difficulties can be
overcome. In particular, if L consists of multiplicative min-type func-
tions, both problems mentioned above can be solved. In such a case gen-
eralized cutting plane method is called the cutting angle method (since a
level set of a multiplicative min-type func-
tion is the complement to right angle). A presentation of the cutting
angle method can be found in [24].

7. Inequalities of Hadamard type for
quasiconvex functions

The main field of application of quasiconvexity is optimization prob-
lems with the quasiconvex objective function. These problems are very
important for economical applications (see, for example [1]). Another in-
teresting field of applications of quasiconvexity is the so-called Hamilton-
Jacobi equations (see for example [20] and references therein). We now
show that abstract convexity (in particular, Principle of Preservation of
inequalities) allows one to find interesting applications of quasiconvexity
in the theory of inequalities. In particular, we shall study Hadamard
type inequalities and their generalizations with quasiconvex functions
involved.

Given a convex function where is a closed interval
in R, the famous Hadamard inequality tells us that the following holds,

In this article we attempt to study the generalizations of the left side of
the inequality for some classes of quasiconvex functions defined on
We shall also introduce a class of generalized convex functions called P-
functions in our study and will also develop the Hadamard inequality
for such a class of functions in context of the real line.
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Remark 7.12 The term “Hadamard-Hermite”-type inequality (see [8])
more precisely reflect the history, however we shall use for the sake of
simplicity the term Hadamard type inequality.

We will first present a well-known generalization of the inequality (7.33)
for convex functions defined on compact subsets of (See for example
[23], where functions defined on a compact subset of a locally convex
Hausdorff topological space have been considered.)

Before stating the Hadamard type inequality for convex functions in
higher dimensions we shall state certain formal notions required in the
theorem. Consider which is a convex and compact set. Let
be a Borel nonnegative normed measure on the set Z, that is, is a

function defined on the Borel of subsets of Z, such
that for all Borel sets and

Theorem 7.21 Let Z be a convex and compact subset of Let us
define Then and

for each lower semicontinuous convex function defined on Z.

Proof. Let us note that is the limit of sums of the form

such that as where is a family
of disjoint subsets such that and Since Z is convex
and for all and we have that and
since Z is compact we have Let be the coordinate of
Clearly for all where is the coordinate
of Let us consider any Then

Now consider any affine function defined on Z. Then there exists
such that where is some constant.

Hence we have

Now by applying the Principle of Preservation of Inequalities we estab-
lish the theorem.

We will now define the notion of a P- function.
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Definition 7.6 Let S be a convex subset of a locally convex Hausdorff
topological vector space X and be a non-negative function
on S. Then is said to be a P-function if for all and
we have

Though we have defined the notion of a P-function in the setting of a
locally convex Hausdorff topological vector space the original definition
of P- function (see [6]) was provided on a segment of the real line. In
[19, 24] certain interesting properties of P- functions is noted for case
defined over the real line. We now present these properties in our general
setting. Denote the class of P-functions defined on a convex set S by
P(S).

Proposition 7.8 The following properties hold.

P(S) is a convex cone, that is for
and

P(S) is a complete upper semi-lattice , that is for an arbitrary in-
dex set A, with for all and
then

P(S) is closed under pointwise convergence.

1)

2)

3)

We would now like to assert that the class of P(S) is indeed very broad
and the following proposition justifies this assertion.

Proposition 7.9 Let be a non-negative bounded
function. Then there exists a number such that the function

Here for all

Proof. Let us consider Let
and let So writing where

we have

Let us put Then

This shows that
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This clearly shows that

We shall now study P-functions for the case where X = R and S a
segment in R. We will be more interested in the case where S = R and
we shall in that case denote P(S) by P. Our next task is to describe a
small supremal generator for the set P, (see [19]). Let T be the set of
all collections with , and For
any such triplet we define as the following function:

It is clear that Let us denote by the set of all functions
with It has been proved (see [19, 24] that forms the supremal
generator of the class P.

Remark 7.13 Note that each function can be
represented as the sum of two quasiconvex functions and where

It easily follows from these observation that P is the least set, which
contains the set of all nonnegative quasiconvex functions defined on R,
and is a convex cone and complete upper semi-lattice. See [19, 24] for
details.

Before actually presenting the result in which we deduce the Hadamard
type inequality for the P-functions we would like to state a few words re-
garding the nature of the inequality. For P - functions and quasiconvex
functions we want to establish an inequality of the form

We can refer to as the modulus of the inequality. The above inequality
is called asymptotically sharp if for every there exits such that
the above inequality is violated when the modulus is changed to
The inequality is called sharp if equality holds at least for one We
will now state certain preliminaries required to establish the inequality.

Consider the of Borel subsets of the segment (0, 1) and
a non-negative measure on such that Let be the
set of all Borel measurable P-functions defined on (0, 1). We denote
by the restriction of the function to the segment (0, 1). We also
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denote by the class of all functions It is clear that each is
Borel measurable and it can be shown that is indeed the supremal
generator of

Consider the functional

where stands for For a fixed consider the following
functions

Let and
Clearly is increasing while is decreasing and further

A measure on a is called atomless if
for each We have the following lemma

Lemma 7.3 Let be an atomless Borel measure with and
let with with and Then

Proof. It is easy to see that since is atomless we have

Again as is atomless we have

Hence the result follows.

Now for any define

It is now easy to check that
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Theorem 7.22 Let be an atomless measure and Then

for all

Proof. Let us as before define where It is clear
that J is an increasing function. We will first check that the inequality
(7.44 ) holds for all Then the Principle of Preservation of In-
equalities at once will guarantee the result. We will consider the distinct
cases with and with with
In the first case let us observe that Hence

This clearly shows that by applying Lemma we have

Now plugging the expression for we establish the result in the first
case.
Now we consider the case where Let us calculate Now from the
definition of we have either or
In the first case noting that and
we have

Since and it is clear that

Let us now assume that If and hence
and thus from the definition of the function it is clear that

Since is an increasing function we have

Thus
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When we can prove the assertion along similar lines. As we have
already mentioned before the Principle of Preservation of Inequalities at
once proves that the inequality is indeed true for all

Remark 7.14 Let us remark that the Hadamard type inequality proved
in the theorem above is indeed a sharp inequality.

If we consider to be the Lebesgue measure then
Then and Thus from the above theorem we
have

In particular let us note that

This result was established by Dragomir, Pecaric and Persson [6]. Let us
observe that if we instead of the interval (0, 1) considered some arbitrary
interval with and let remain to be the Lebesgue measure
then it can be shown that for we have

Let us also mention that the Hadamard type inequality can be proved
in a similar manner for a non-negative quasiconvex function without re-
quiring that be atomless. We can find a supremal generator consisting
on two-steps functions, such that one step is equal to zero (see Theorem
7.18). Let us also note that the classical Hadamard type inequality is
used to estimate the function value at the center of a symmetrical set.
The version of Hadamard type inequality with respect to an arbitrary
interior point was first established by Pearce and Rubinov [19] which is
in fact the theorem presented above.

We shall now present a simple and very elegant proof to derive a
Hadamard type inequality at an arbitrary point for a quasiconvex func-
tion defined on a closed and bounded interval of the real line and bounded
from below. The fundamental notion of supremal generators is very
beautifully used in the proof. The proof is due to Professor J. E.
Martinez-Legaz who very kindly agreed to our request to reproduce it
here.
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Theorem 7.23 Let be a quasiconvex function which is
bounded from below by Let Then

Proof. Without loss of generality assume that (If we can
consider the quasiconvex nonnegative function instead of )
Let us consider that where Consider the two step
function given as

If for some then by quasiconvexity we have
Further let us consider the following two step function
given as

If for all then it is clear that Hence either

or

This shows that

This clearly shows that

Remark 7.15 Observe that if the function in the above theorem is
non-negative then and the result reduces to that of the previous
theorem. A further more important fact is that if then the result
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in the above theorem provides a stronger estimate ( or rather a tighter
bound) than the usual Hadamard type inequality for non-negative qua-
siconvex functions. Another important point to observe in the above
proof is underlying use of the notion of supremal generators. In the
above proof either or are in fact belong to the support set of with
respect to the supremal generator of the set of quasiconvex functions,
which consists of two step functions. The above theorem has a simple
approach since it does not have to depend on other stand alone results
like the Principle of Preservation of Inequalities. The above proof also
illustrates that the supremal generators are one of the most elegant and
powerful ways to view a quasiconvex function.

Remark 7.16 A different approach for Hadamard-type inequalities for
quasiconvex functions was suggested by Hadjisavvas [11].

We will now turn our attention to prove a Hadamard type inequality
for quasiconvex functions in higher dimensions. For a special class of
quasiconvex functions defined on we will give an exact expression for
calculating the modulus of the Hadamard-type inequality. The results
that will now be presented are due to a recent work by Rubinov and
Dutta [26]. We will in fact consider only the class of non-negative evenly
quasiconvex functions which is large enough since it contains both non-
negative upper and lower semicontinuous quasiconvex functions. As one
will observe, we indeed prove the Hadamard type inequality for certain
important subclasses of the class of non-negative evenly quasiconvex
functions.

Denote by the set of all nonnegative evenly quasiconvex functions
Let For each

vector and each number consider the function defined
by

Let It is easy to check that The
following result holds (see, for example, [24]).

Proposition 7.10 is a supremal generator of

Let be a closed convex set. Denote by the set of
all nonnegative evenly quasiconvex functions such that
the minimum is attained and less than If
X is compact then each non-negative lower semicontinuous quasiconvex
function defined on X belongs to We now define a set L(X)
of two-step functions defined on X. A function belongs to L(X) if and
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only if there exists a vector a point and nonnegative
numbers and such that and for all we have:

Clearly

Proposition 7.11 [26]The set L(X) is a supremal generator of the set

Let

where is a Borel measure defined on X. Let We wish to
establish the asymptotically sharp inequality of the form

which is valid for all For this purpose we need to calculate
the constant In our case it is sufficient to calculate in the following
form:

Let In order to calculate we need the following sets

and

For the given and each and consider the sets

Clearly

and

If then indeed, The same argument
shows that for

Proofs of the following results can be found in [26]
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Theorem 7.24 Let defined by (7.56). Then

Corollary 7.3 Let and is defined by (7.60). Then

for each and the constant is asymptotically sharp.

Corollary 7.4 If is attained, then the constant
in the inequality (7.61) is sharp.

We shall now discuss the special case of non-negative evenly quasicon-
vex functions which vanish at the point and thus forms a subclass
of all non-negative evenly quasiconvex functions which attains a mini-
mum over the set Obviously we assume that We will
present the results without a proof. For the proofs the reader is referred
to Rubinov and Dutta [26].

Let be a closed convex set such that Let
be the set of all evenly quasiconvex nonnegative functions defined on X
and such that and let be the set of restrictions to X of
functions from In other words, if there exists and
a number such that where is defined
by (7.53). It follows from Proposition 7.10 that is a supremal
generator of

Then we consider the inequality of the form

Here is an increasing function such that

We show that the asymptotically sharp estimate in this inequality is
the product where is the asymptotically sharp constant in the
inequality

Consider an increasing function such that for
all and
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and let

where is a finite Borel measure on X. Clearly is an increasing
functional defined on Let and

Hence in this case the modulus of the Hadamard inequality is denoted
by Consider the sets

and

Note that is not empty for all and is not empty for all
since Let

Theorem 7.25 We have If either or
then

For our study we need to be the identity function and hence
Also observe that all the conditions of Theorem 7.25 are satisfied. This
shows that Hence for the non-negative evenly quasiconvex func-
tions vanishing at we indeed have to calculate by formula (7.65).

Corollary 7.5 Let and let and be defined by (7.64) and
(7.65), respectively and let Then

for each and the constant is asymptotically sharp.

Corollary 7.6 If is attained and is
attained then the constant in the inequality (7.66 is sharp.

We are now going to mention a theorem in which we provide an ex-
plicit calculation for in the two dimensional case.
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Theorem 7.26 Consider in the plane For
any point we have

We end this section with the following result.

Proposition 7.12 Consider and X = [–1, +1] , and
then
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Abstract Single-ratio and multi-ratio fractional programs in applications are often
generalized convex programs. We begin with a survey of applications of
single-ratio fractional programs, min-max fractional programs and sum-
of-ratios fractional programs. Given the limited advances for the latter
class of problems, we focus on an analysis of min-max fractional pro-
grams. A parametric approach is employed to develop both theoretical
and algorithmic results.

Keywords: Single-ratio fractional programs, min-max fractional programs, sum-of-
ratios fractional programs, parametric approach.

1. Introduction.

In various applications of nonlinear programming a ratio of two func-
tions is to be maximized or minimized. In other applications the ob-
jective function involves more than one ratio of functions. Ratio op-
timization problems are commonly called fractional programs. One of
the earliest fractional programs (though not called so) is an equilibrium
model for an expanding economy introduced by von Neumann (cf. [74])
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in 1937. The model determines the growthrate of an economy as the
maximum of the smallest of several output-input ratios. At a time when
linear programming hardly existed, the author already proposed a du-
ality theory for this nonconvex program. However, apart from a few
isolated papers like von Neumann’s, a systematic study of fractional
programming began much later.

In 1962 Charnes and Cooper (cf. [18]) published their classical pa-
per in which they show that a linear fractional program with one ratio
can be reduced to a linear program using a nonlinear variable transfor-
mation. Separately, Martos [49] in 1964 (from his Ph.D. dissertation
in Hungarian in 1960) showed that linear fractional programs can be
solved with an adjacent vertex-following procedure, the same way as lin-
ear programs are solved with the simplex method. He recognized that
generalized convexity properties (pseudolinearity) of linear ratios enables
such a technique which is successfully used in linear programming.

The study of fractional programs with only one ratio has largely dom-
inated the literature in this field until about 1980. Many of the re-
sults known then are presented in the first monograph on fractional pro-
gramming (cf. [65]) which the second author published in 1978. Since
then two other monographs solely devoted to fractional programming
appeared, one in 1988 authored by Craven (cf. [21]) and one in 1997
by Stancu-Minasian (cf. [71]). An overview of solution methods for
single-ratio and multi-ratio fractional location problems appeared in the
monograph by Barros (cf. [5]).

Fractional programs with one or more ratios have often been studied in
the broader context of generalized convex programming (cf. [4]). Ratios
of convex and concave functions as well as composites of such ratios are
not convex in general, even in the case of linear ratios. But often they
are generalized convex in some sense. From the beginning, fractional
programming has benefited from advances in generalized convexity, and
vice versa (cf. [50]).

Fractional programming also overlaps with global optimization. Sev-
eral types of ratio optimization problems have local, nonglobal optima.
An extensive survey of fractional programming with one or more ratios
appeared in the Handbook of Global Optimization [61]. The survey also
contains the largest bibliography on fractional programming with one
or multiple ratios so far. It has almost twelve-hundred entries. For a
separate, rich bibliography [71] may be consulted.

Very recently two surveys have appeared updating some of the devel-
opments reviewed in [61]. The single-ratio and min-max case is treated
in [59] and the sum-of-ratios case in [60].
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2. Classification of Fractional Programs.

To start with single-ratio fractional programs, let be a
nonempty closed set and be extended real-valued
functions which are finite-valued on B. Assuming for every

consider the nonlinear program

The problem is called a single-ratio fractional program. In most
applications the nonempty feasible region B has more structure and is
given by

with and some set of real-valued contin-
uous functions. So far, the functions in the numerator and denominator
were not specified. If and are affine functions (linear
plus a constant) and denotes the nonnegative orthant of
then the optimization problem is called a single-ratio linear frac-
tional program. Moreover, we call a single-ratio quadratic fractional
program if the functions and are quadratic and the func-
tions are affine. The minimization problem is called a
single-ratio convex fractional program if C is a convex set,
and are convex functions and is a positive concave function on B.
In addition it is assumed that is nonnegative on B if is not affine.
In case of a maximization problem the single-ratio fractional program
is called a single-ratio concave fractional program if is concave and
is convex. Under these restrictive convexity\concavity assumptions the
minimization problem is in general a nonconvex problem.

In some applications more than one ratio appears in the objective
function. One form of such an optimization problem is the nonlinear
programming problem

with extended real-valued functions
which are finite-valued on B with for every and

The problem is often called a generalized fractional program.
As for single-ratio fractional programs we can specify the functions and
make a distinction between multi-ratio linear fractional programs and
multi-ratio convex fractional programs. If one is not affine, we need
to assume that all functions are nonnegative. Clearly both problems

and are special cases of the following problem.
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Let and be nonempty closed sets and
be a finite-valued function on A × B. In case
is a finite-valued positive function on A × B, consider the min-

max nonlinear programming problem

Problem (P) is called a (primal) min-max fractional program. In order
to unify the theory for single-ratio and multi-ratio fractional programs,
we consider in Section 6 the so-called parametric approach applied to
problem (P) and derive from this approach duality results and algorith-
mic procedures for problem (P). This yields immediately duality results
and algorithmic procedures for problems and

Another multi-ratio fractional program we encounter in applications
is the so-called sum-of-ratios fractional program given by

with for every and It is a more challenging
problem than as recent studies have shown. We also encounter in
applications the so-called multi-objective fractional program

which is related to and
In Sections 3 and 4 we will review applications of fractional programs

and respectively. Section 5 focuses on applications of the
fractional program In addition we review here some of the solution
procedures for this rather challenging problem. Finally in Section 6 we
return to problems and In a joint treatment of both involving
the more general problem (P) a parametric approach is used for the
analysis and development of solution procedures of (P).

3. Applications of Single-Ratio Fractional
Programs

Single-ratio fractional programs arise in management decision
making as well as outside of it. They also occur sometimes indirectly
in modelling where initially no ratio is involved. The purpose of the
following overview is to demonstrate the diversity of problems which
can be cast in the form of a single-ratio fractional program. A more
comprehensive coverage which also includes additional references for the
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models below is contained in [61]. For other surveys of applications of a
single-ratio fractional program see [21, 59, 62, 64, 65, 71].

Economic Applications.
The efficiency of a system is sometimes characterized by a ratio of

technical and/or economical terms. Maximizing the efficiency then leads
to a fractional program. Some applications are given below.

Maximization of Productivity.
Gilmore and Gomory [37] discuss a stock cutting problem in the
paper industry for which under the given circumstances it is more
appropriate to minimize the ratio of wasted and used amount of
raw material rather than just minimizing the amount of wasted
material. This stock cutting problem is formulated as a linear
fractional program. In a case study, Hoskins and Blom [43] use
fractional programming to optimize the allocation of warehouse
personnel. The objective is to minimize the ratio of labor cost to
the volume entering and leaving the warehouse.

Maximization of Return on Investment.
In some resource allocation problems the ratio profit/capital or
profit/revenue is to be maximized. A related objective is return
per cost maximization. Resource allocation problems with this
objective are discussed in more detail by Mjelde in [53]. In these
models the term ‘cost’ may either be related to actual expenditure
or may stand, for example, for the amount of pollution or the prob-
ability of disaster in nuclear energy production. Depending on the
nature of the functions describing return, profit, cost or capital,
different types of fractional programs are encountered. For exam-
ple, if the price per unit depends linearly on the output and cost
and capital are affine functions, then maximization of the return
on investment gives rise to a concave quadratic fractional program
(assuming linear constraints). In location analysis maximizing the
profitability index (rate of return) is in certain situations preferred
to maximizing the net present value, according to [5] and [6] and
the cited references.

Maximization of Return/Risk.
Some portfolio selection problems give rise to a concave nonquad-
ratic fractional program of the form (8.3) below which expresses the
maximization of the ratio of expected return and risk. For related
concave and nonconcave fractional programs arising in financial
planning see [61]. Markov decision processes may also lead to the
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maximization of the ratio of mean and standard deviation. A very
recent application of fractional programming in portfolio theory is
given in [48]. The authors argue that the ratio of two variances
gives sophisticated forecasting models with significant predictive
power.

Minimization of Cost/Time.
In several routing problems a cycle in a network is to be determined
which minimizes the cost-to-time ratio or maximizes the profit-
to-time ratio. Some of these models are combinatorial fractional
programs (cf. [56]). Also the average cost objective used within
the theory of stochastic regenerative processes (cf. [2]) leads to the
minimization of cost per unit time. A particular example occurring
within this framework is the determination of the optimal order-
ing policy of the classical periodic and continuous review single
item inventory control models (cf. [12, 13, 34]). Other examples
of this framework are maintenance and replacement models. Here
the ratio of the expected cost for inspection, maintenance and re-
placement and the expected time between two inspections is to be
minimized (cf. [7, 35]).

Maximization of Output/Input.
Charnes and Cooper use a linear fractional program as a model to
evaluate the efficiency of decision making units (Data Envelopment
Analysis (DEA)). Given a collection of decision making units, the
efficiency of each unit is obtained from the maximization of a ratio
of weighted outputs and inputs subject to the condition that sim-
ilar ratios for every decision making unit are less than or equal to
unity. The variable weights are then the efficiency of each member
relative to that of the others. For an extensive recent treatment
of DEA see [17]. In the management literature there has been
an increasing interest in optimizing relative terms such as relative
profit. No longer are these terms merely used to monitor past
economic behavior. Instead the optimization of rates is receiving
more attention in decision making processes for future projects (cf.
[5, 42]). We mention here a case study in which the effectiveness
of medical institutions in the area of trauma and burned manage-
ment was analyzed with help of linear fractional programming (cf.
[24]).

Non-Economic Applications.
In information theory the capacity of a communication channel can be

defined as the maximal transmission rate over all probabilities. This is a
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concave nonquadratic fractional program. Also the eigenvalue problem
in numerical mathematics can be reduced to the maximization of the
Rayleigh quotient, and hence gives rise to a quadratic fractional program
which is generally not concave. An example of a fractional program in
physics is given by Falk (cf. [25]). He maximizes the signal-to-noise ratio
of an optical filter which is a concave quadratic fractional program.

Indirect Applications.
There are a number of management science problems that indirectly

give rise to a concave fractional program. We begin with a recent study
which shows that the sensitivity analysis of general decision systems
leads to linear fractional programs (cf. [52]). The developed software
was used in the appraisal of Hungarian hotels. A concave quadratic frac-
tional program arises in location theory as the dual of a Euclidean mul-
tifacility min-max problem. In large scale mathematical programming,
decomposition methods reduce the given linear program to a sequence of
smaller problems. In some of these methods the subproblems are linear
fractional programs. The ratio originates in the minimum-ratio rule of
the simplex method.

Fractional programs are also met indirectly in stochastic programming,
as first shown by Charnes and Cooper [19] and by Bereanu [14]. This
will be illustrated by two models below (cf. [65, 71]).

Consider the following stochastic mathematical program

where the coefficient vector is a random vector with a multivariate
normal distribution and B is a (deterministic) convex feasible region.
It is assumed that the decision maker replaces the above optimization
problem by the maximum probability model

i.e., he wants to maximize the probability that the random variable
attains at least a value equal to a prescribed level Then the

optimization problem listed in (8.2) reduces to

where is the mean vector of the random vector and V its variance-
covariance matrix. Hence the maximum probability model of the concave
program (8.2) gives rise to a fractional program. If in problem (8.2) the
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linear objective function is replaced by other types of nonlinear functions,
then the maximum probability model leads to various other fractional
programs as demonstrated in [65] and [71].

Consider a second stochastic program

where are concave functions on the convex feasible region B,
and is a random variable with a continuous cumulative distribution
function. Then the maximum probability model for (8.4) gives rise to
the fractional program

For a linear program (8.4) the deterministic equivalent (8.5) becomes
a linear fractional program. If is concave and linear, then (8.5) is
still a concave fractional program. However, if is also a (nonlinear)
concave function, then (8.5) is no longer a concave fractional program.
Obviously a quadratic program (8.4) reduces to a quadratic fractional
program. For more details on (8.4) and (8.5) see [65, 71].

Stochastic programs (8.2) and (8.4) are met in a wide variety of plan-
ning problems. Whenever the maximum probability model is used as a
deterministic equivalent, such decision problems lead to a fractional pro-
gram of one type or another. Hence fractional programs are encountered
indirectly in many different applications of mathematical programming,
although initially the objective function is not a ratio.

4. Applications of Min-Max Fractional
Programs

In mathematical economics the multi-ratio fractional program
arises when the growthrate of an expanding economy is defined as follows
(cf. [74]):

where denotes a feasible production plan of the economy.
In management science simultaneous maximization of rates such as

those discussed in the previous section can also lead to a multi-ratio
fractional program. This is the case if either in a worst-case approach
the model
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is used or with the help of prescribed ratio goals the model

is employed. Examples of the second approach are found in financial
planning with different fractional goals or in the allocation of funds un-
der equity considerations. Financial planning with fractional goals is
discussed in [38]. Furthermore, multi-facility location-queueing prob-
lems giving rise to are introduced in [5].

A third area of application of min-max fractional programs is numer-
ical mathematics (cf. [41]). Given the values of a function in
finitely many points of an interval for which an approximating ratio of
two polynomials and with coefficient vectors is
sought. If the best approximation is defined in the sense of the
then the following problem is to be solved:

with variables
At the end of this section on applications of we point out that in

case of infinitely many ratios is related to a fractional semi-infinite
program (cf. [41]). Several applications in engineering give rise to such
a problem when a lower bound for the smallest eigenvalue of an elliptical
differential operator is to be determined (cf. [40]).

For further applications of we refer to the very recent survey [59].

5. Sum-of-Ratios Fractional Programs

Problem arises naturally in decision making when several rates
are to be optimized simultaneously and a compromise is sought which
optimizes a weighted sum of these rates. In light of the applications of
single-ratio fractional programming numerators and denominators may
be representing output, input, profit, cost, capital, risk or time, for
example. A multitude of applications of the sum-of-ratios problem can
be envisioned in this way. Included is the case where some of the ratios
are not proper quotients. This describes situations where a compromise
is sought between absolute and relative terms like profit and return on
investment (profit/capital) or return and return/risk, for example.

Almogy and Levin (cf. [1]) analyze a multistage stochastic shipping
problem. A deterministic equivalent of this stochastic problem is formu-
lated which turns out to be a sum-of-ratios problem.

Rao (cf. [57]) discusses various models in cluster analysis. The prob-
lem of optimal partitioning of a given set of entities into a number of
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mutually exclusive and exhaustive groups (clusters) gives rise to various
mathematical programming problems depending on which optimality
criterion is used. If the objective is to minimize the sum of the squared
distances within groups, then a minimum of a sum of ratios is to be
determined.

The minimization of the mean response time in queueing-location
problems gives rise to as well, as shown by Drezner et al. (cf.
[23]); see also [75].

Furthermore we mention an inventory model analyzed in [63] which is
designed to determine simultaneously optimal lot sizes and an optimal
storage allocation in a warehouse. The total cost to be minimized is the
sum of fixed cost per unit, storage cost per unit and material handling
cost per unit.

In [46] Konno and Inori formulate a bond portfolio optimization prob-
lem as a sum-of-ratios problem.

More recently other applications of the sum-of-ratios problem have
been identified. Mathis and Mathis [51] formulate a hospital fee opti-
mization problem in this way. The model is used by hospital adminis-
trators in the State of Texas to decide on relative increases of charges
for different medical procedures in various departments.

According to [20] a number of geometric optimization problems give
rise to the sum-of-ratios problem. These often occur in layered manufac-
turing, for instance in material layout and cloth manufacturing. Quite
in contrast to other applications of the sum-of-ratios problem mentioned
before, the number of variables is very small (one, two or three), but the
number of ratios is large; often there are hundreds or even thousands of
ratios involved.

Our current understanding of the structural properties of the sum-of-
ratios problem is rather limited. In [36] Freund and Jarre showed that
this problem is essentially NP-hard, even in the case of one concave ratio
and a concave function. Hence is a global optimization problem in
contrast to and

Given the small theoretical basis, it is not surprising that algorithmic
advances have been rather limited too. However in recent years some
progress has been made. Some of the proposed algorithms have been
computationally tested. Typically execution times grow very rapidly in
the number of ratios. At this time problems up to about ten ratios can
be handled. We refer to the algorithms by Konno and Fukaishi (cf. [45])
(see also [44]) and by Kuno (cf. [47]). The former is superior to several
earlier methods (cf. [45]) while the latter is seemingly faster than the
former. Clearly a more thorough testing of various proposed algorithms
is needed before further conclusions can be drawn. Also some of the
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applications call for methods which can handle a large number of ratios;
e.g., fifty (cf. [1]). Currently such methods are not available.

For a special class of sum-of-ratios problems with up to about one
thousand ratios, but only very few variables an algorithm is given in
[20]. This method by Chen et al. is superior to the other algorithms on
the particular class of problems in manufacturing These are geometric
optimization problems arising in layered manufacturing. In contrast to
general-purpose algorithms for the method in [20] is rather robust
with regard to the number of ratios.

Focus of the remainder of this review of fractional programming will
be the min-max fractional program (P). It includes as special cases
and For a very recent survey of applications, theoretical results
and solution methods for and since [61] was published we refer
to [59]. A corresponding survey for since [61] appeared is given
in [60]. For a survey of some recent developments for multi-objective
fractional programs we refer to [33].

6. Analysis of Min-Max Fractional Programs.
In this section we will analyze min-max fractional programs by means

of a parametric approach. Although other approaches are also avail-
able, this one makes it possible to derive duality results for the (pri-
mal) min-max fractional program (P) and at the same time to construct
an algorithm which solves problem (P). As already mentioned in Sec-
tion 2, let and be some nonempty closed sets and

a finite-valued function on A × B. Moreover, con-
sider the function which is a finite-valued positive
function on A × B. For the related functions and

given by

we assume, unless stated otherwise, that the following condition holds.

Condition 8.1 For every we have

For every we now consider the single-ratio fractional program

This optimization problem is well-defined and its objective function
value satisfies A more complicated optimization
problem is given by the already introduced (primal) min-max fractional
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program

Clearly It is not assumed beforehand
that the optimization problems (P) and have an optimal solution.
Therefore we cannot replace sup by max or inf by min. The simpler
optimization problem is introduced since it will be part of the so-
called primal Dinkelbach-type approach discussed in subsection 6.2 to
solve the (primal) min-max fractional program (P).

Another optimization problem is to consider for every the
single-ratio fractional program

Also this problem is well-defined and it satisfies
Clearly for every we obtain Similarly as for the
(primal) min-max fractional program we introduce the more complicated
optimization problem

This problem is called a (dual) max-min fractional program. Clearly
its optimal objective function value satisfies Like for the
(primal) min-max fractional program we introduce the functions

and given by

Analyzing the so-called dual Dinkelbach-type approach to solve prob-
lem (D), we need the following counterpart of Condition 8.1.

Condition 8.2 For every we have

The simpler optimization problem is introduced since it will be
part of the dual Dinkelbach-type approach discussed in subsection 6.4 to
solve the (dual) max-min fractional program (D). If we consider a single-
ratio fractional program, A consists of one element and the optimization
problems (P) and (D) are identical. For a classical multi-ratio fractional
program (generalized fractional program) A is a finite set consisting
of more than one element; hence optimization problems (P) and (D)
are different from each other. If programs (P) and (D) are different
and additionally both the primal and dual Dinkelbach-type
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approach can be used to solve optimization problem (P) . As already
observed before, many results (cf. [4, 5, 21]) were derived for generalized
fractional programs. In this section we will consider the more general
(primal) min-max and (dual) max-min fractional program and derive
similar structural properties for this problem as it was done for the
more specialized primal and dual generalized fractional program before.

We selected these more general optimization problems not often con-
sidered in the fractional programming literature since one can use similar
parametric techniques as for generalized fractional programs and at the
same time unify the existing theory for single-ratio and multi-ratio frac-
tional programs. Using the parametric approach one can reduce the
max-min and min-max fractional program to so-called (semi-infinite)
max-min and min-max programs. Unfortunately, solving these semi-
infinite optimization problems efficiently on a computer is very difficult.
For an extensive discussion of some of the used procedures the reader
should consult [55]. However for special cases there is still room for im-
provement, and this seems to be a new area of research (cf. [15]). In the
theoretical analysis of max-min and min-max fractional programs it will
turn out that convexity plays a major role, not only in establishing the
equality (a so-called strong duality result), but also in the rate of
convergence analysis for the primal and dual Dinkelbach-type paramet-
ric approach. Due to symmetry arguments similar type of convergence
results hold for these two algorithms.

In case we analyze the primal Dinkelbach-type approach, not all the
results are valid under Condition 8.1, and we sometimes need the fol-
lowing stronger condition.

Condition 8.3 The set is compact, the function is positive
on A × B and for every the functions and
are finite-valued and continuous on some open set containing
A.

If Condition 8.3 holds, then it follows from Corollary 1.2 of [3] that

for every and so this condition implies Condition 8.1. Moreover,
the single-ratio fractional program has an optimal solution and

is finite for every
In case we also analyze the dual Dinkelbach-type approach, not all

results are valid under Condition 8.2, and so we sometimes need the
following counterpart of Condition 8.3.
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Condition 8.4 The set is compact, the function is positive
on A × B and for every the functions and
are finite-valued and continuous on some open set containing
B.

Again, if Condition 8.4 holds, it follows from Corollary 1.2 of [3] that

for every and so this condition implies Condition 8.2. Moreover,
the single-ratio fractional program has an optimal solution, and

is finite for every
Before analyzing in the next subsection the parametric approach ap-

plied to (P), we will derive an alternative representation of a generalized
fractional program. This alternative representation satisfies automati-
cally Condition 8.3. For a generalized fractional program the set A is
given by and the functions and are replaced by
the functions and This means

In this case the optimization problem can be solved trivially.
To obtain a different representation of a generalized fractional pro-

gram, we introduce the unit simplex

If the vector belongs to the strictly positive orthant of it
is well-known (cf. [4]) that the function given by

is quasiconvex on for every By Condition
8.1 it follows for given by
that for every Then for given by

we have

for every Applying relation (8.10) yields

With this we have found another representation of a generalized frac-
tional program. Using this representation, the corresponding (dual) gen-
eralized fractional program is given by
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In subsection 6.3 we will give sufficient conditions to guarantee that
the primal and dual optimal objective function values coincide. However
before discussing this, we will first consider in the next subsection the
so-called primal parametric approach for solving the (primal) min-max
fractional program (P).

6.1 The Primal Parametric Approach.

To analyze the properties of the (primal) min-max fractional program
(P) and at the same time construct some generic algorithm to solve this
problem we introduce the function given by

and consider for every the optimization problem

For every the function is now given by

Since on and is the supremum of affine functions, it is
obvious that is a decreasing lower semicontinuous convex function.
Its so-called effective domain is defined by (cf. [58])

By the finiteness of on it is obvious that for every
A more difficult optimization

problem than is the parametric min-max optimization problem

For this function it holds that for every For
the function the so-called effective domain is given by

By the definition of the functions and it is easy to verify that

In the next result we identify for and the effective
domains of the functions and
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Lemma 8.1 Assume Condition 8.1 holds. Then if and only if
and is finite if and only

Proof. Assume Suppose by contradiction that there exists
some satisfying This implies for every that

Hence for a given one can find some sequence
satisfying

Since and is finite, we obtain by relation (8.13) that
for every yielding which contradicts our

assumption.
Conversely, if then clearly and so there

exists some satisfying Due to
it is easy to see that and so which completes
the proof of the first part. By identifying B with the second part
follows immediately from the first part.

Using similar algebraic manipulations as in [22] applied to a general-
ized fractional program one can show the following important result for
the optimal value function of a parametric min-max problem
The validity of the so-called parametric approach to solve problem (P)
is based on this result.

Theorem 8.1 Assume Condition 8.1 holds and Then
if and only if Moreover, if then
if and only if

Proof. If and then there exist some
and satisfying

for every Since this yields

for every It follows that

Conversely, if then there exist some and
satisfying This implies for
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every and we obtain for every that

Since it follows from relation (8.14) that
and the proof of the first part is completed. By identifying B with

the second part follows from the first part.

A useful implication of Theorem 8.1 is given by the following result.

Lemma 8.2 Assume Condition 8.1 holds and for some
Then

Proof. By the definition of we obtain for
every This implies From Theorem 8.1 it follows
that and this shows the desired result.

If Condition 8.1 holds and we obtain from Theorem 8.1 and
Lemma 8.1 that and is finite for every In case
we only assume that is positive on A × B it is easy to verify that

for every and implies However as shown
by the following single-ratio fractional program satisfying Condition 8.1
and it may happen that for every and

(cf. [22]).

Example 8.1 For A = {1}, and
it follows that the optimization problem (P) reduces to

and so Also
for every and Moreover, the
optimal solution set of the optimization problem equals B, and

for every

To derive some other properties of the so-called parametric approach
we need to investigate in detail the functions and We first observe
that the positivity of the function on A × B implies that the functions

and are decreasing. In the next result it is shown that
the decreasing function is upper semicontinuous.

Theorem 8.2 Assume Condition 8.1 holds. Then the function
is upper semicontinuous.

Proof. To prove that the function is upper semicontinuous, let
and consider the upper level set If

then this set is closed. So we assume that
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To show that this set is closed consider some accumulation point
of the set Hence there exists some sequence

satisfying If for some it holds
that then by the monotonicity of the function we obtain

and so Therefore we may assume
without loss of generality that for every Observe now for
every and that

for every This implies using and that

for every and hence

Since we obtain for every that By
relation (8.15), and this yields for every

that Hence and so
Applying Theorem 1.7 of [29] yields that is upper semicontinuous.

By Theorem 8.2 and Lemma 1.30 of [29] we obtain

Since for every we know that this yields

Again by the monotonicity of it follows that exists.
But this limit might not be equal to Therefore the function is
left-continuous with right-hand limits.

An important consequence of Theorem 8.2 is given by the next result.
To show this result we first introduce a so-called set-valued mapping

(cf. [3]) with denoting the set of all subsets of the nonempty
set and X a nonempty closed subset of If is
a set-valued mapping, it is always assumed that is nonempty
for every The graph of a set-valued mapping is given
by

An important subclass of set-valued mappings is introduced in the
next definition (cf. [11]).
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Definition 8.1 The set-valued mapping where X is a
closed set is called closed if its graph is a closed set.

By the definition of a closed set it is immediately clear that the set-
valued mapping is closed if and only if for any sequence

and it follows that

Examples of set-valued mappings occurring in min-max optimization
are the set-valued mappings and given
by

and

The set represents the set of optimal solutions of the opti-
mization problem while the set denotes the set of optimal
solutions in B of the optimization problem Also we consider the
set-valued mapping given by

This set represents the set of optimal solutions of the optimization
problem For the above set-valued mappings one can show the
following result. It is always assumed in the next result that the sets

and are nonempty on their domain.

Lemma 8.3 Assume Condition 8.1 holds and the functions and are
finite-valued and continuous on some open set containing
A × B . Then the set-valued mappings and are closed.

Proof. We first show that the set-valued mapping is closed. To start
with this, consider some sequence
satisfying and
Since A and B are closed sets, this yields and and by
the definition of we obtain

Since the function is continuous on it is easy to verify
using Theorem 1.7 of [29] that the function is lower semicontinuous
on Using this together with Lemma 1.30 of [29] and

we obtain
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Then by relation (8.19) it follows that This shows
that the set is closed. To prove that the set-valued mapping is
closed we consider some sequence satisfying

and By Theorem 8.2 and Lemma
1.30 of [29] we obtain

Since is lower semicontinuous on it follows that

Hence by relation (8.20) we obtain

Using this shows that Hence we have verified
that is closed.

Finally, to show that is closed, consider a sequence
satisfying

and Since it follows that
using the fact that is closed. This shows

Moreover, since we obtain
using the fact that is closed. Hence

Therefore is an optimal solution of the min-max frac-
tional program (P). This completes the proof.

We will now consider for every the decreasing convex function
introduced in relation (8.12). In the next result it is shown

for finite that this function is Lipschitz continuous with Lipschitz
constant

Lemma 8.4 Assume Condition 8.1 holds and is finite for
Then the function is strictly decreasing and

Lipschitz continuous with Lipschitz constant and this function
satisfies and

Proof. If is finite for some then we know by Lemma 8.1 that
is finite for every Selecting some using

and the fact that is finite, it is easy to verify that

for every Hence is a Lipschitz continuous convex function
with Lipschitz constant Also it is easy to verify using

that
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for every This shows that is strictly decreasing on
Again by relation (8.22) we obtain for a given and that

and for a given and that

If is finite, it follows from Lemma 8.4 and Theorem 1.13 of [29]
that the finite-valued convex function has a nonempty subgradient
set for every Hence for every and
the subgradient inequality

holds. Applying relation (8.21) and the fact that is strictly decreas-
ing we obtain

for every Furthermore, applying relation (8.22) yields

for every Hence by relations (8.23) and (8.24) it follows
that

To give a more detailed representation of the subgradient set
it is convenient to assume that the set introduced in relation
(8.16) is nonempty. As already observed, this set represents the set of
optimal solutions of the parametric problem It is easy to see that

for every Since is a closed
convex set, this implies

Although it is possible for a finite to give a complete representation
of the subgradient set for every we only consider the
following important subcase.

Lemma 8.5 Assume Condition 8.3 holds. Then it follows for every
that is finite, is a nonempty compact set for every

and

Also for every and and it holds
that



356 GENERALIZED CONVEXITY AND MONOTONICITY

Proof. Since the functions and are continuous,
on A × B and A is compact, we obtain that is finite. By

the same argument it also follows that is nonempty for every
Also by the continuity of the function

the set is closed and hence compact. Using now the
proof of Lemma 3.2 in [8] and the fact that is a compact set
yields the desired representation of the subgradient set To show
the last part we observe by the subgradient inequality that

Moreover, applying the same argument it follows
that Adding these two inequalities yields

and since it follows that

Looking at the proof of the last inequality it is only needed that
the subgradient sets and are nonempty. In view of
Lemma 8.1 this is true if is finite and Condition 8.1 holds. By
relation (8.11) the above conditions are clearly satisfied for a generalized
fractional program.

In the next lemma we show the following important improvement of
Lemma 8.1 and Lemma 8.2.

Lemma 8.6 Assume Condition 8.1 holds. Then the set
is nonempty if and only if Moreover, if this

set is nonempty, it only contains the finite value

Proof. If the set is nonempty, then it follows
for any belonging to this set that for every
This shows by the positivity of on A × B that Also
by Lemma 8.2 we obtain for finite that This
proves the first part of the above result. To prove the second part, we
observe that by Lemma 8.4 the function is strictly decreasing. This
completes the proof.

Up to now we did not assume that there exists some satisfying
i.e., that the min-max fractional program (P) has an

optimal solution in B. In the next theorem we show the implications of
this assumption. To do so, consider the (possibly empty) set
given by

It is now possible to prove the following theorem.
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Theorem 8.3 If Condition 8.1 holds, then for some
if and only if Moreover, if for

some then

Proof. By Lemma 8.2 it follows for that
Since this shows that

Using relation (8.28) with replaced by it follows for
that belongs to Hence we still need to show that only

contains Consider therefore an arbitrary belonging to By the
definition of in relation (8.27) one can find some satisfying

and this implies by Lemma 8.6 that
Since it follows by Theorem 8.1 that and this shows
that Hence and we have verified
that only contains

To prove the converse we obtain for that
for some Applying Lemma 8.6 yields is finite

and which proves the “only if” implication. To verify the
second part it follows by relation (8.28) that belongs to for
every satisfying and so

To prove the reverse inclusion, let Since
for some it follows from relation (8.28) with replaced by
that Since this implies
Applying now Lemma 8.6 yields

If we introduce the (possibly empty) set given by

then without Condition 8.1 one can show, using similar techniques as
before, the following result. Note the vector is an optimal solution
of the (primal) min-max problem (P) if and only if and

Theorem 8.4 The (primal) min-max fractional program (P) has an
optimal solution if and only if Moreover, if (P) has an
optimal solution, then the set listed in relation (8.18) is nonempty
and
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For the moment this concludes our discussion of some of the theoreti-
cal properties related to the parametric approach. In the next subsection
we will consider the (primal) Dinkelbach-type algorithm and use the pre-
viously derived properties to show its convergence.

6.2 The Primal Dinkelbach-Type Algorithm.
In this section we will introduce the so-called primal Dinkelbach-type

algorithm to solve the (primal) min-max fractional program (P). A
similar approach for a slightly different min-max fractional program sat-
isfying some compactness assumptions on the feasible sets A and B was
considered by (cf. [72, 73]). Contrary to [72] the feasible set
A in this section does not depend on Due to this our assumptions
are less restrictive. Using Lemma 8.1 and the fact that the (primal)
Dinkelbach-type algorithm is based on solving a sequence of parametric
optimization problems for it is natural to assume that the
(primal) min-max fractional program (P) satisfies the next condition.

Condition 8.1 holds and is finite for every

If is finite, then for every the set is nonempty
while for the set is nonempty for every

Contrary to the analysis in [22] for generalized fractional programs we
do not assume that the min-max fractional program (P) has an optimal
solution. Also for generalized fractional programs the first part of Con-
dition 8.5 is automatically satisfied. If Condition 8.5 holds, then one
can execute the following so-called primal Dinkelbach-type algorithm.
The geometrical interpretation of this algorithm is as follows. By Theo-
rem 8.3 we need to find the zero point of the optimal value function

Starting at a given point it follows by Theorem 8.1 that
Since the function is nonconvex and it is too ambitious to

compute in one step its zero point we replace this function by the
easier convex function with belonging to We know by
the definition of and that and
For the function it is easy to compute its zero point. By Lemma
8.2 this is given by We now replace the original point in the
parametric problem by the smaller value and repeat the
procedure.

Condition 8.5
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Primal Dinkelbach-type algorithm.

1

2

Select and and compute

Determine If stop and return and
Otherwise compute

let and go to step 1.

To determine in step 1 and 2 one has to solve a single-ratio
fractional program. If A is a finite set, then this is easy. Also in order
to select one has to solve for A finite a finite min-max
problem. Algorithms for such a problem can be found in part 2 of
[55]. In case A is not finite, one needs to solve a much more difficult
problem, a semi-infinite min-max problem (cf. [27, 55]). Therefore to
apply the above generic primal Dinkelbach-type algorithm in practice
one needs to have an efficient algorithm to determine an element of the
set and this is in most cases the bottleneck. In general one
cannot expect that an efficient and fast algorithm exists. But for special
cases this might be the case. Including the construction of approximate
solutions of the problem by using smooth approximations of the
max operator, thus speeding up the computations and at the same time
bounding the errors (cf. [16]) seems to be an important topic for future
research.

By Lemma 8.6 it is sufficient to find in step 2 of the primal Dinkelbach-
type algorithm the solution of the equation As already
observed, we can give an easy geometrical interpretation of the above
algorithm (cf. [5, 16]). The next result shows that the sequence
generated by the primal Dinkelbach-type algorithm is strictly decreasing.

Lemma 8.7 If Condition 8.5 holds, then the sequence generated by
the primal Dinkelbach-type algorithm is strictly decreasing and satisfies

for every

Proof. If the algorithm stops at then by the stopping rule we
know that This implies by Theorem 8.1 for that

which shows that If the algorithm does not
stop at the first step, then Since is nonempty, the
algorithm finds some Hence
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Thus for every we obtain and so

for every This shows To verify that
we assume by contradiction that Since this
yields by relation (8.29) and Lemma 8.6 that

and we obtain a contradiction. Therefore and by the definition
of it is obvious that Applying now the same argument
iteratively shows the desired result.

By Lemma 8.7 it follows that the sequence generated by the primal
Dinkelbach-type algorithm converges to some limit In case the
generated sequence is finite, it is easy to show the following result.

Lemma 8.8 If Condition 8.5 holds and the primal Dinkelbach-type al-
gorithm stops at then and

Proof. Since Condition 8.5 holds, we obtain Also by the stop-
ping rule of the Dinkelbach-type algorithm it follows that
This implies by Theorem 8.1 that Since always we ob-
tain To show that with and
we observe by Lemma 8.6 and by using that

Hence it follows that Applying again Lemma
8.6 we obtain which completes the proof.

In the remainder of this subsection we only consider the case that the
primal Dinkelbach-type algorithm generates an infinite sequence

By Lemma 8.7 it follows that exists. Imposing
some additional condition it will be shown in Lemma 8.9 that this limit
equals To simplify the notation in the following lemmas we introduce
for the sequence generated by the
primal Dinkelbach-type algorithm the sequence with

and for finite the sequence with
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By the observation after Lemma 8.4 these subgradient sets are non-
empty. It is now possible to derive the next result.

Lemma 8.9 If Condition 8.5 holds and there exists a subsequence
satisfying then Moreover, for

finite it follows that

Proof. By Lemma 8.7 the sequence is strictly decreasing,
and so exists. If we obtain using

for every that and so for
the result is proved. Therefore assume that is finite. Since

and the function and the sequence are
decreasing, it follows that the sequence is increasing
and exists. If we assume that

then one can find some satisfying for every
By Lemma 8.2 we also know that Applying the

subgradient inequality to the convex function we obtain for every
that

with Since by relation (8.25) it follows that
the above inequality shows This yields by

our assumption and finite that

and so This contradicts that is finite, and we have shown
that Applying now Theorem 8.2 and Lemma 1.30
of [29] yields Then by Theorem 8.1
it follows that Since by Lemma 8.7 it is obvious that

we obtain completing the proof.

By relation (8.25) it follows that

for every and so one can apply Lemma 8.9 in case
To achieve a rate of convergence result for the

sequence generated by the primal Dinkelbach-type algorithm, we need
to assume in the proof that To apply our procedure we al-
ways impose that is nonempty for finite. Then it follows by
Theorem 8.3 that if and only if the min-max fractional pro-
gram (P) has an optimal solution in B or equivalently there exists some
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satisfying However, if the condition of Lemma 8.9
holds, we conjecture for finite that the min-max fractional program
(P) might not have an optimal solution in B, and so is not equal to
zero. Using a stronger condition than in Lemma 8.9, we show in the next
lemma for finite that the sequence generated by the
primal Dinkelbach-type algorithm satisfies
This sufficient condition implies the existence of an optimal solution of
the (primal) min-max fractional program (P) in B.

Lemma 8.10 If Condition 8.5 holds, is finite and there exists a sub-
sequence satisfying then
and

Proof. By the convexity of the function and the subgradient in-
equality we obtain for every that

with Since it follows by our assumption and
the monotonicity of the subgradient sets as shown in Lemma 8.5 that
one can find some finite M satisfying for every

and every sequence and This
shows

for every and so Hence by Lemma 8.9 we
obtain Using relations (8.34) and (8.33) yields

Since by Theorem 8.1 we know that
the proof is completed.

By relation (8.25) it follows in case that the
condition of Lemma 8.10 is satisfied. A similar condition is also given in
[22] for a generalized fractional program. In the next lemma we consider
the generated sequence and show for B compact
and some additional topological properties on the functions and that
this sequence contains a converging subsequence.

Lemma 8.11 If Condition 8.5 holds, the functions and are finite-
valued and continuous on some open set containing A × B,
the set B is compact and there exists a subsequence
satisfying then the sequence
has a converging subsequence and every limit point of the sequence

satisfies with finite. Additionally, if
there exist a unique satisfying then



Fractional Programming 363

Moreover, for A × B compact, the generated sequence
has a converging subsequence and every limit point

of the sequence is an optimal solution of problem (P).
If the optimization problem (P) has a unique optimal solution
then and

Proof. To verify that is finite we obtain by Condition 8.5 and
continuous that the finite-valued function is lower semicon-
tinuous. By the compactness of B this implies, using Corollary 1.2 of
[3], that there exists some satisfying and so is
finite. Again by the compactness of B it is also obvious that the se-
quence contains a convergent subsequence. To show that
every limit point of the sequence satisfies
we observe by Lemma 8.9 that This implies by Lemma
8.3 that Using now Theorem 8.3 we obtain
If there exists a unique satisfying then again by
Theorem 8.3 we obtain Since every converging subse-
quence of the sequence converges to an element of
it follows that every convergent subsequence converges to the element

By contradiction and B compact we obtain and the
proof of the first part is completed. If A × B is compact, then by the
continuity of the function we obtain

Again by the observation after Lemma 8.10 we obtain By
Lemma 8.3 the set-valued mapping is closed and using a similar proof
as for the first part one can show the last part.

If we consider a generalized fractional program, then clearly A is
compact, and if additionally the conditions of Lemma 8.11 hold, then
the second part of this lemma applies. Unfortunately it is not clear
to the authors whether in the first part of this lemma the condition

can be omitted.
We now want to investigate how fast the sequence converges to

Before discussing this in detail, we list for finite the following inequal-
ity for the sequence generated by the primal Dinkelbach-
type algorithm. A similar inequality can also be derived for the dual
Dinkelbach-type algorithm to be discussed in subsection 6.4.

Theorem 8.5 If Condition 8.5 holds and there exists some
satisfying then it follows for every and
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that

Proof. Since for some we obtain by Lemma 8.6 that
Applying now the subgradient inequality

to the function at the point it follows for that

Hence

Moreover, for every and we obtain
again by Lemma 8.6 that Applying now the sub-
gradient inequality to the function at the point yields for

that

Hence by relations (8.35) and (8.36) we obtain
Since this implies

Using relation (8.37) it follows that

and this completes the proof.

In case of a single-ratio fractional program the function
reduces to and so for every it follows that

Hence we obtain that the inequality in Theorem
8.5 reduces to

for any optimal solution of the optimization problem

(cf. [67]).
Before introducing convergence results for the primal Dinkelbach-type

algorithm, we need the following definition (cf. [54]).
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Definition 8.2 A sequence with limit converges
Q-linearly if there exists some such that

The sequence converges Q-super linearly if

If a slightly stronger condition as used in Lemma 8.10 holds, then
one can show that the sequence generated by the primal
Dinkelbach-type algorithm converges Q-linearly. The same result was
shown for a generalized fractional program in [22].

Theorem 8.6 If Condition 8.5 holds, is finite and the sequence
satisfies then and

converges Q-linearly.

Proof. By Lemma 8.10 we obtain Since Condition 8.5 holds,
one can find some satisfying and this
shows by Lemma 8.6 that Hence the set

is nonempty, and for every belonging to this set it follows by
Theorem 8.5 that

with and Since is strictly
decreasing and it follows by Lemma 8.5 that the sequence

is decreasing and satisfies with
This shows that exists. To identify

we observe in view of that

for every Since the function is continuous, this yields using
and that

for every and so Therefore and we have
identified this limit. Also by our assumption we obtain that there exists
some and this shows
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Applying now relation (8.39) yields the desired result.

If the conditions of Theorem 8.5 hold and additionally we assume that
then it can be shown in view of the proof of Theorem

8.6 that the sequence converges Q-linearly to This condition is
slightly weaker than the one used in Theorem 8.6. Observe the condi-
tion was used in the proof of Lemma 8.10 to show that

and this implies as shown in the first part of the proof of
Theorem 8.6 that for some Therefore, if there exists
some satisfying and then assuming
Condition 8.5 holds the sequence converges Q-linearly to A disad-
vantage of the first part of the previous assumption is that in general we
do not know looking at a min-max problem whether there exists some

satisfying Hence we imposed some stronger algorith-
mic condition on the sequence implying this result. In case the
(primal) min-max fractional program (P) has a unique optimal solution
and some additional topological properties are satisfied, then one can
show that the sequence converges superlinearly.

Theorem 8.7 If Condition 8.5 holds, the functions and are contin-
uous on some open set containing the compact set A × B
and the min-max fractional program (P) has a unique optimal solution

then and and
the sequence converges Q-superlinearly.

Proof. Using Lemmas 8.9 and 8.11 the first part follows, and so we only
have to show that converges superlinearly. Considering the proof of
Theorem 8.6 it follows that

with and Since
is uniformly bounded by the compactness of A × B and the function

is continuous, there exists a converging subsequence satisfying
To identify we observe for every

that

with Since B is compact and continuous, it follows
by Proposition 1.7 of [3] that is upper semicontinuous, and
this implies by relation (8.40) that



Fractional Programming 367

Since we obtain and this shows
by relation (8.41) that By the uniqueness of the optimal
solution and Lemma 8.5 we obtain This shows the desired result.

In case we consider a single-ratio fractional program with B compact
and the functions continuous it follows by Lemma 8.11 that

with an optimal solution of this fractional programming problem. Re-
placing now in relation (8.38) by we obtain for a single-ratio frac-
tional program with B compact and continuous that the sequence

always converges Q-superlinearly. Clearly in practice the
(primal) Dinkelbach-type algorithm stops in a finite number of steps,
and so we need to derive a practical stopping rule. Such a rule is con-
structed in the next lemma. For other practical stopping rules yielding
so-called solutions the reader may consult [16].

Lemma 8.12 If Condition 8.5 holds and there exists some subsequence
satisfying and some satisfy-

ing then the sequence is
decreasing and its limit equals 0. Moreover, it follows for every
that

Proof. By Lemma 8.7 the sequence is strictly decreasing, and this
implies by Lemma 8.5 that the negative sequence is decreasing. Also,
since is decreasing, we obtain that the negative sequence is in-
creasing and so the positive sequence is decreasing. Applying
now Lemma 8.9 it follows that while the listed in-
equality is an immediate consequence of Lemma 8.9 and relation (8.35).

Using Lemma 8.12 a stopping rule for the (primal) Dinkelbach-type
algorithm is given by for some predetermined Fi-
nally we observe that the (primal) Dinkelbach-type algorithm applied to
a generalized fractional program can be regarded as a cutting plane algo-
rithm (cf. [10]). This generalizes a similar observation by Sniedovich (cf.
[70]) who showed the result for the (primal) Dinkelbach-type algorithm
applied to a single-ratio fractional program.

In the next section we investigate the dual max-min fractional pro-
gram (D) and its relation to the primal min-max fractional program

(P).
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6.3 Duality Results for Primal Min-Max
Fractional Programs.

In this subsection we first investigate under which conditions the opti-
mal objective function values of the primal min-max fractional program
(P) and the dual max-min fractional program (D) coincide. To start
with this analysis, we introduce the following class of bifunctions.

Definition 8.3 The function is called a con-
cave/convex bifunction on the convex set with and

if for every the function is concave on
and for every the function is convex on More-
over, a function is called a convex/concave
bifunction on if is a concave/convex bifunction on the same
set. It is called an affine/affine bifunction if it is both a concave/convex
and a convex/concave bifunction.

To guarantee that equals we introduce the following sufficient
condition.

Condition 8.6 The set is a closed convex set and is a
compact convex set. Moreover, there exists some open convex set
containing A × B such that is a positive finite-valued convex/concave
bifunction and a positive finite-valued concave/convex bifunction on

If the function is a positive affine/affine bifunction, then
is a finite-valued concave/convex bifunction.

If the set B is given by relation (8.1), one can also introduce another
dual max-min fractional program. To guarantee that for this problem
strong duality holds, we need the following slightly stronger condition.

Condition 8.7 The set is a closed convex set and is a
compact convex set. Moreover, there exists some open convex set
containing A×C such that is a positive finite-valued convex/concave
bifunction and a positive finite-valued concave/convex bifunction on

If the function is a positive affine/affine bifunction, then
is a finite-valued concave/convex bifunction

If Condition 8.6 holds, then by Theorem 1.15 of [29] we obtain that
the function is continuous on for every and

is continuous on for every The same property
also holds for the function By the compactness of A this implies
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for every and so Condition 8.6 implies Condition 8.1. Also, since
for every the function is continuous on
A and the set A is compact, we obtain that is finite for every

implying For we derive in Theorem 8.8 that
the optimal objective function value of the (primal) min-max fractional
program (P) equals the optimal objective function value of the (dual)
max-min fractional program (D). Contrary to the proof of the same
result in [5] for generalized fractional programs based on Sion’s minimax
result (cf. [31, 69]) the present proof is an easy consequence of the easier-
to-prove minimax result by Ky Fan (cf. [26, 27, 32]) and Theorem 8.1.
Note that we do not assume that there exists some satisfying

Theorem 8.8 If Condition 8.6 holds, then there exists some
satisfying

Proof. Since we know that it follows for that
for every This shows the desired result for

If is finite, then we need to verify that Since is
finite, we obtain by Condition 8.6 that the function is
a concave/convex bifunction on A × B and for every the function

is continuous on Applying now Theorem 3.2 of [32]
(see also [27]) we obtain

This shows by Theorem 8.1 and the remark after Condition 8.6 that

for some Since for every we obtain

for every Hence

Using now relation (8.43) the desired result follows.

Since there are rather general necessary and sufficient conditions on
the bifunctions such that for those functions min-max equals max-min
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(cf. [28, 30]), the above result holds for a much larger class than the
class of concave/convex bifunctions. However, since the class of con-
cave/convex bifunctions is most known, we have restricted ourselves to
this well-known class. An easy consequence of Theorem 8.8 is given by
the next result.

Lemma 8.13 If Condition 8.6 holds and there exists some sat-
isfying and some satisfying then the
vector is an optimal solution of the (primal) min-max fractional
program (P) and an optimal solution of the (dual) max-min fractional
program (D).

Proof. By the definition of and it is clear that for every
vector that

This implies by Theorem 8.8 for the given vector
that

Hence is an optimal solution of the (primal) min-max frac-
tional program (P) and an optimal solution of the (dual) max-min frac-
tional program (D).

If the (dual) max-min fractional program (D) has a unique optimal
solution and the optimal solution set of the (primal) min-max fractional
program (P) is nonempty, then by Lemma 8.13 the unique optimal so-
lution of (D) is an optimal solution of (P). If Condition 8.6 holds and
we use the so-called dual Dinkelbach-type algorithm to be discussed in
subsection 6.4 for identifying this observation will be useful. To an-
alyze the properties of the optimization problem (D) and at the same
time construct some generic algorithm to solve problem (D), we intro-
duce similar parametric optimization problems as done for problem (P)
at the beginning of subsection 6.1. For every consider the
parametric optimization problem

For every the function is now given by
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Since on A × B and is the infimum of affine functions, it is
obvious that is a decreasing upper semicontinuous concave function.
The so-called effective domain is defined by

By the finiteness of on it is obvious for every
that actually A more difficult
optimization problem than problem is now given by the parametric
optimization problem

As for the concave function we also introduce the effective domain
of the function given by

It should be clear to the reader that we actually apply the Dinkelbach-
type approach to the (dual) max-min fractional program (D) while at
the beginning of subsection 6.1 we applied the same approach to the
(primal) min-max fractional program (P). It is easy to show that

and so we obtain for every If the optimization
problem (P) is a single-ratio fractional program, then the set A consists
of one element, and as already observed there is no difference in the
representation of the (primal) min-max fractional program (P) and the
(dual) max-min fractional program (D). Hence for A consisting of one
element it is not surprising that also the functional representation of the
functions and are the same. If the set A consists of more than one
element, then we want to know, despite the different functional represen-
tations of the functions and under which conditions
for some It should come as no surprise that this equality holds under
the same conditions as used in Theorem 8.8. Note that in the next result
we do not assume that the set is nonempty.

Theorem 8.9 Assume Condition 8.6 holds where is a convex/concave
bifunction on A × B. Then it follows for every that there exists
some satisfying

Moreover, if is an affine/affine bifunction, the same result holds for
every
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Proof. Since we obtain by Lemma 8.1 that for every
Also, for a convex/concave bifunction it follows by Condition

8.6 and that the function is a concave/convex
bifunction on A × B and is continuous on for every

A similar observation holds for if is an
affine/affine bifunction. Since A is compact, we can now apply Theorem
3.2 of [32]. This shows

Hence by relation (8.45) there exists for and a convex/concave
bifunction or and an affine/affine bifunction some
satisfying This completes the proof.

Applying similar proofs as in Lemma 8.1 and Theorem 8.1 one can
verify the following results.

Lemma 8.14 Assume Condition 8.2 holds. Then if and
only if and if and only if

Clearly Lemma 8.14 can be compared with Lemma 8.1 while the next
result is the counterpart of Theorem 8.1.

Theorem 8.10 Assume Condition 8.2 holds and Then
if and only if Moreover, if then if

and only if

A direct consequence of the above results is given by the following.

Theorem 8.11 Assume Condition 8.6 holds where is a positive con-
vex/concave bifunction on A × B. Then it follows that

for every and these functions are finite-valued on
Moreover, if is a positive affine/affine bifunction on A × B

and is finite, then for every and these
functions are finite-valued on

Proof. If is a positive convex/concave bifunction on A × B, then by
Condition 8.6 the function must be a positive concave/convex bifunc-
tion on A × B . Then automatically Also, by Theorem 8.8
and 8.9 we obtain and for every Since
Condition 8.6 implies Condition 8.1, it follows by the remark after The-
orem 8.1 that is finite for every This yields
is finite-valued on Using the monotonicity of we see



Fractional Programming 373

for every Hence the first part follows. The second part can be
proved similarly, and its proof is therefore omitted.

If Condition 8.6 holds and hence also Condition 8.1 and is fi-
nite, then it might happen (as shown in Example 8.1) that the value

is not equal to zero. If additionally there exists some
satisfying then by Theorems 8.3 and 8.11 we know that

and we need this assumption in combina-
tion with Condition 8.6 to identify by the so-called dual Dinkelbach-
type algorithm to be discussed in the next subsection. The next result is
the counterpart of Theorem 8.2. It can be proved by similar techniques.

Theorem 8.12 Assume Condition 8.2 holds. Then the decreasing func-
tion is lower semicontinuous.

Similarly as in Section 6.1 it follows by Theorem 8.12 that
and the function is right-continuous with left-hand limits.

As in Section 6.1 we now introduce the following set-valued mappings
and given by

and

The set represents the set of optimal solutions of optimiza-
tion problem while the set denotes the set of optimal solu-
tions in A of optimization problem Also we consider the set-valued
mapping given by

This set represents the set of optimal solutions in A × B of opti-
mization problem In the next result it is assumed that the sets

and are nonempty on their domain. Applying
Theorem 8.12 and using a similar proof as in Lemma 8.3 we obtain the
following counterpart of Lemma 8.3.

Lemma 8.15 Assume Condition 8.2 holds and the functions and
are finite-valued and continuous on some open set containing
A×B. Then the set-valued mappings  and are closed.

Considering now the function given by
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one can show as in Lemma 8.4 the following result.

Lemma 8.16 Assume Condition 8.2 holds and is finite for
Then the function is strictly decreasing and

Lipschitz continuous with Lipschitz constant and the function
satisfies and

As in Section 6.1 with respect to the function it follows in case
Condition 8.2 holds that the subgradient set of the convex strictly in-
creasing function is nonempty for every and this set satisfies

Moreover, the subgradient inequality is given by

for every Also one can show the following counterpart
of Lemma 8.5.

Lemma 8.17 Assume Condition 8.4 holds. Then it follows for every
that is finite, is a nonempty compact set for every

and

Also for every and and it
holds that

The next result can be compared with Lemma 8.6.

Lemma 8.18 Assume Condition 8.2 holds. Then the set
is nonempty if and only if Moreover, if this

set is nonempty, then it only contains the finite value

Up to now we did not assume that there exists some satisfying
or equivalently the dual max-min fractional program

(D) has an optimal solution in B. In the next lemma the implications of
this assumption are discussed. To do so, consider the (possibly empty)
set given by

The counterpart of Theorem 8.3 is given by the following result.
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Theorem 8.13 Assume Condition 8.2 holds. Then
for some if and only if Moreover, if

for some then the set is nonempty and

If we introduce the (possibly) empty set given by

then without Condition 8.2 one can show the following counterpart of
Theorem 8.4. Remember a vector is an optimal solution of (D) if
and only if and

Theorem 8.14 The (dual) max-min fractional program (D) has an op-
timal solution if and only if Moreover, if (D) has an optimal
solution, then the set is nonempty and

Finally we will consider in this section another dual max-min frac-
tional program if the nonempty set B is given by (see also relation (8.1))

In case the set B is specified as in relation (8.51) we always assume
for the corresponding primal min-max fractional program (P) that the
function is positive on A×C. Introducing now the vector-valued func-
tion given by we consider for
every the single-ratio fractional program

A more complicated optimization problem is now introduced by the
so-called partial dual of the (primal) min-max fractional program given
by

Again this is a max-min fractional program, and using only on
A×C it is easy to show the following result.

Lemma 8.19 If is positive on A × C, then it follows that
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Proof. Since and for every and we
obtain by the positivity of on A×C that

for every and This shows

and so the first inequality is verified. We already showed that
Hence the proof is complete.

To verify that it is clear from Lemma 8.19 that

for every If is finite and we want to ensure that
then the following so-called Slater-type condition on the non-

empty set B should be considered. Before introducing this condition,
we assume throughout the remainder of this section that the (possibly
empty) set denotes the set of indices for which
is affine. Note that denotes the relative interior of the set C (cf.
[29, 58]).

Condition 8.8 There exists some where C is a closed convex
set satisfying for every and for every
Moreover, for every the functions are convex.

To show under which conditions the equality and the finite-
ness of holds, we first need to prove the following Lagrangean duality
result.

Lemma 8.20 Assume Condition 8.8 holds and for a given the
function is convex on C and is concave on C.
Then it follows for every that there exists some satisfying

with B defined in relation (8.51). Moreover, the same result holds for
every if is convex and is affine.

Proof. Using the definition of the set B and it is easy to see that
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Moreover, for either and concave or and
affine we see that the function is convex

on C. Applying now Theorem 28.2 of [58] or Theorem 1.25 of [29] we
obtain that there exists some dual solution such that the above
inequality is actually an equality.

Using Lemma 8.20 it is now possible to show that the optimal objec-
tive function value of the partial dual equals

Theorem 8.15 Assume Conditions 8.7 and 8.8 hold. Then there exists
some satisfying

Proof. For we know by the remark after Lemma 8.19 that the
result holds. Hence we only need to verify the result for finite. To
start we observe by relation (8.42) that

for some Applying now Lemma 8.20 one can find some
satisfying

This shows

By relation (8.52) and for every we obtain
which completes the proof.

In case we use the partial dual it follows that the partial dual of
the single-ratio fractional program

with B given by relation (8.51) is given by

Thus for this (Lagrangean) dual (cf. [66, 68]) the single-ratio frac-
tional program and its dual have a different representation. If Theorem
8.15 holds, one can always apply a Dinkelbach-type algorithm to the par-
tial dual to find This is discussed in detail in [6] and [9]. In the
next subsection we will introduce a similar Dinkelbach-type algorithm
applied to the (dual) max-min problem (D).
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6.4 The Dual Dinkelbach-Type Algorithm.
In this section we apply the Dinkelbach-type approach to the (dual)

max-min fractional program (D). Parallel to subsection 6.2 we assume
that the next condition holds. Note that this condition is the counterpart
of Condition 8.5 used in the primal Dinkelbach-type algorithm which was
applied to the (primal) min-max fractional program (P).

Condition 8.9

Condition 8.2 holds and is finite for every

If is finite, then for every the set is nonempty
while for the set is nonempty for every

If condition 8.9 holds, then one can execute the following so-called
dual Dinkelbach-type algorithm. As for the (primal) Dinkelbach-type
algorithm introduced in Section 6.2 one can give a similar geometrical
interpretation of the next algorithm.

Dual Dinkelbach-type algorithm.

1 Select and and compute

2 Determine If stop and return and
Otherwise compute

let and go to 1.

Observe in Step 1 and 2 one has to solve a single-ratio fractional pro-
gram. If B is a finite set, then solving such a problem is easy. Moreover,
by Lemma 8.18 it is sufficient to find in step 2 of the primal Dinkelbach-
type algorithm the solution of the equation As already
observed, this yields an easy geometrical interpretation of the above
algorithm (see also [5]). The next result shows that the sequence
generated by the dual Dinkelbach-type algorithm is strictly increasing.
The proof of this result is similar to the proof of the corresponding re-
sult for the primal Dinkelbach-type algorithm in Lemma 8.7. This also
shows that the primal Dinkelbach-type algorithm approaches the opti-
mal objective function value from above while the dual Dinkelbach-type
algorithm approaches it from below.
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Lemma 8.21 If Condition 8.9 holds, then the sequence generated
by the dual Dinkelbach-type algorithm is strictly increasing and satisfies

for every

By Lemma 8.21 we obtain that the sequence generated by the
dual Dinkelbach-type algorithm converges to some limit Using a
similar proof as in Lemma 8.8 one can show the following result in case
the generated sequence is finite. If strong duality holds and so
one can also use this algorithm to approximate

Lemma 8.22 If Condition 8.9 holds and the dual Dinkelbach-type algo-
rithm stops at then and

In the remainder of this subsection we only consider the case where the
dual Dinkelbach-type algorithm generates an infinite sequence
By Lemma 8.21 it follows that exists. Imposing some
additional condition it will be shown in Lemma 8.23 that this limit equals

To simplify the notation in the following lemmas, we introduce for
the sequence generated by the primal
Dinkelbach-type algorithm the sequence given by

and for  finite the sequence

By the observation after Lemma 8.16 these subgradient sets are non-
empty. Using a similar proof as in Lemma 8.9 it is possible to verify the
next result.

for every

given by

Lemma 8.23 If Condition 8.9 holds and there exists a subsequence
satisfying then More-

over for finite it follows that

By relation (8.49) it follows that

Hence one can apply Lemma 8.23 in
To show that we can follow the

proof of Lemma 8.10 and obtain the following result.

Lemma 8.24 If Condition 8.9 holds, is finite and there exists a sub-
sequence satisfying then
and
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By relation (8.55) it follows in case that the con-
dition of Lemma 8.24 is satisfied. The next result should be contrasted
with Lemma 8.11.

Lemma 8.25 If Condition 8.9 holds, the functions and are finite-
valued and continuous on some open set containing A ×
B, the set A is compact and there exists a subsequence
satisfying then the sequence
has a converging subsequence and every limit point of the sequence

satisfies with finite. Additionally, if
there exist a unique satisfying then
Moreover, for A×B compact the generated sequence

has a converging subsequence and every limit point of the
sequence is an optimal solution of problem (D). If the
optimization problem (D) has a unique optimal solution then

and

We now want to investigate how fast the sequence converges to
Before discussing this in detail, we list for finite the following inequal-
ity for the sequence generated by the dual Dinkelbach-type
algorithm. The proof is similar to the proof of the corresponding result
listed in Theorem 8.5 for the primal Dinkelbach-type algorithm.

Theorem 8.16 If Condition 8.9 holds and there exists some
satisfying then it follows for every and

that

If a slightly stronger condition as used in Lemma 8.24 holds, then
one can show that the sequence generated by the primal
Dinkelbach-type algorithm converges Q-linearly. The same result was
shown for the dual generalized fractional program in [5] and [8]. The
proof of the next result is similar as the proof of the corresponding result
for the primal Dinkelbach-type algorithm given in Theorem 8.6

Theorem 8.17 If Condition 8.9 holds, is finite and the sequence
satisfies then and the

sequence converges Q-linearly.

Finally we show in case the dual (max-min) fractional program (D)
has a unique optimal solution and some other topological conditions
hold that the sequence converges Q-superlinearly. In case
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also strong duality holds, then we know by the remark after Lemma 8.13
that this unique optimal solution of (D) is also an optimal solution of the
primal min-max fractional program P assuming this set is nonempty. By
the compactness of A × B in the next result the set of optimal solutions
of (P) is nonempty.

Theorem 8.18 If Condition 8.9 holds, the functions and are con-
tinuous on some open set W containing the compact set A × B and the
max-min fractional program (D) has a unique optimal solution
then and and the se-
quence converges Q-superlinearly.

If strong duality holds, then it is clear that one can also use the
dual Dinkelbach-type algorithm to determine the value This is the
main use of this algorithm in the literature (cf. [8, 9]). Also one could
combine the dual and primal approach in case strong duality holds and
use simultaneously both. An example of such an approach applied to a
generalized fractional program with an easy geometrical interpretation
is discussed by Gugat (cf. [39, 41]). In [39] it is shown under slightly
stronger conditions that always a Q-superlinear convergence rate holds.
This concludes our discussion of the parametric approach used in min-
max fractional programming which was a major emphasis in this chapter
on fractional programming.
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Abstract

Keywords:

We first present nine kinds of (generalized) monotone maps and in case
of gradient maps their counterpart of nine kinds of (generalized) convex
functions. In addition we present topologically pseudomonotone maps.
We then derive sufficient and/or necessary conditions for various kinds
of generalized monotonicity for several subclasses of maps. We study
differentiable maps, locally Lipschitz maps, general continuous maps
and affine maps.

Generalized convexity, generalized convex functions, generalized mono-
tonicity, generalized monotone maps, gradient maps.

1. Introduction
In many classical models generalized monotonicity can replace the

rigid assumption of monotonicity without the loss of valuable proper-
ties for the analysis and solution of such models, for instance in com-
plementarity problems and variational inequalities or more generally in
equilibrium models in the sense of Blum and Oettli [24]; for example see
[34, 46] in this volume.
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In working with generalized monotonicity concepts one quickly real-
izes the need for sufficient and/or necessary conditions which are easier
to verify than the original definitions, much like in generalized convex-
ity [1]. In this chapter a major focus is the derivation of criteria for
generalized monotonicity of certain subclasses of maps [44].

As a basis for such a study we first present nine kinds of (generalized)
monotone maps and their counterpart, nine kinds of generalized convex
functions in Section 2. This is followed in Section 3 by the presentation
of topologically pseudomonotone maps. Then in Sections 4, 5 and 6
criteria for generalized monotonicity of subclasses of maps are derived.
Section 4 deals with differentiable maps. In Section 5 we consider the
nondifferentiable case, namely locally Lipschitz and general continuous
maps. Finally in Section 6 we obtain criteria for generalized monotone
affine maps. These results can be viewed as extensions of characteriza-
tions of generalized convex quadratic functions which are presented here
as well.

Let us fix some notation. Given we denote by their
scalar product; will be the closed line segment

The line segments and are defined analogously. For
any we denote by int C its interior.

Let be the nonnegative orthant of
The set of all linear maps from to will be denoted by

For any the corresponding matrix will be denoted by
the same symbol.

We denote by the Jacobian of a differentiable map F.

2. Various kinds of generalized monotonicity

Let C be a subset of and be a map. The classical
definition of monotonicity and its stronger variants is as follows:

Definition 9.1 (i) F is monotone, if for all

(ii) F is strictly monotone, if for all

F is strongly monotone, if there exists such that for all(iii)
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It is clear that every strongly monotone map is strictly monotone, and
every strictly monotone map is monotone.

The pseudomonotone counterparts of the above are defined as follows:

Definition 9.2 (i) F is pseudomonotone [28], if for all

or, equivalently,

(ii) F is strictly pseudomonotone [29], if for all

(iii) Let C be open. Then F is strongly pseudomonotone [21], if for
every and such that there exist
positive such that for all

In the definition of strong pseudomonotonicity we can equivalently
require that instead of

It is evident that a monotone (strictly monotone, strongly mono-
tone) map is pseudomonotone (strictly pseudomonotone, strongly pseu-
domonotone). Also, a strictly pseudomonotone map is pseudomonotone.
In order to compare strictly pseudomonotone with strongly pseudomono-
tone maps, we first show:

Proposition 9.1 Let C be open and convex and F be continuous. Then
F is pseudomonotone (respectively, strictly pseudomonotone) if and only
if, for every and such that there exists

such that for all

(respectively, and

Proof. Let F be pseudomonotone and be such that
Since C is open, there exists such that

for all If we set then obviously
from which we deduce that
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We now show the converse. Let be such that
Set

and

Note that and that, by continuity, Suppose
that If then by continuity of F, for all

sufficiently close to On the other hand, if then
we set By assumption, for all

sufficiently small, thus we find again that for all
sufficiently close to But this contradicts the definition of Thus,

and
For the second case, one direction is again easy, so we prove only

the converse. Let be such that
By the previous part, we know that F is pseudomonotone, thus

Suppose that Then setting
we deduce from our assumption that for every suffi-

ciently small thus By
pseudomonotonicity, i.e.,
a contradiction. Thus, and F is strictly pseudomono-
tone.

The following corollary now becomes obvious.

Corollary 9.1 Let C be open and convex. If F is strongly pseudomono-
tone and continuous, then F is strictly pseudomonotone.

We now recall various quasimonotonicity notions.

Definition 9.3 (i) F is quasimonotone [25, 29], if for all

(ii) Let C be convex. F is strictly quasimonotone [21], if F is quasi-
monotone and for all there exists such that

(iii) Let C be convex. F is semistrictly quasimonotone [21], if F is
quasimonotone and for all with the following implication
holds:
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The following implications are obvious from the definitions: a pseu-
domonotone map is semistrictly quasimonotone; a strictly pseudomono-
tone map is strictly quasimonotone. Let us now show:

Proposition 9.2 [21] A strictly quasimonotone map F is semistrictly
quasimonotone.

Proof. If for some then obviously
holds for every Since F is quasimonotone,

we deduce that or, equivalently,
By assumption of strict quasimonotonicity there exists a point

such that Thus, and
F is semistrictly quasimonotone.

Whenever F is continuous, the assumption of quasimonotonicity is
superfluous in the definition of semistrict quasimonotonicity.

Proposition 9.3 [21] Let C be convex. If is continuous
and such that for every with implication (9.2) holds, then
F is semistrictly quasimonotone.

Proof. We have to show that F is quasimonotone. If are
such that then we can find such that

or, equivalently, Using the same
argument, we can construct inductively a sequence such that

and Obviously, converges to as
By continuity, i.e., F is quasimonotone.

The following table gathers all implications between the nine (gener-
alized) monotonicity notions we encountered so far. We use the abbre-
viations m, pm, qm, str., ss. and s. for monotone, pseudomonotone,
quasimonotone, strongly, semistrictly and strictly, respectively. Some
implications hold under the assumption of continuity of F and/or con-
vexity of C.

We note that all implications are proper for general maps.
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It is useful to have in mind what happens in the special case
Actually, the following proposition holds.

Proposition 9.4 A function is:
(i) monotone if and only if it is increasing;
(ii) pseudomonotone if and only if there exist disjoint consecutive in-

tervals (possibly empty)  and such that and is
negative on zero on and positive on

(iii) quasimonotone if and only if there exist disjoint consecutive in-
tervals one of which may be empty, such that and
is nonpositive on and nonnegative on

Proof. Let us show (ii) as an example. Let
If choose any and Then By
pseudomonotonicity, hence Thus, is an
interval that has as right endpoint. By the same argument,

is empty or an interval with as left endpoint.
Consequently, is also an interval.

The case is not so special as it seems. In fact even in the general
case all generalized monotonicity properties that we en-

countered so far are in some sense one-dimensional. Indeed,
and are the projections of and on the straight
line passing through and respectively. Thus F is monotone, pseu-
domonotone or quasimonotone if and only if, roughly speaking, the pro-
jection of F on any straight line in C is monotone, pseudomonotone or
quasimonotone, respectively. See also [7] for a more precise formulation
of this fact, and [33] for a general result on bifunctions and set-valued
maps.

To each generalized monotonicity notion defined so far, there exists a
corresponding notion of generalized convexity. The reader may find the
definitions of convex, strictly convex, quasiconvex, strictly quasiconvex,
pseudoconvex, strictly pseudoconvex functions elsewhere in this volume
(see for instance [7]). In addition to these six generalized convexity
notions we recall three less known ones:

Definition 9.4 Let C be convex and be a function.
(i) is strongly convex [38] if there exists such that for every

and
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(ii) is semistrictly quasiconvex [1, 27] if for every
and every

Definition 9.5 Let C be open and convex. A differentiable function
is strongly pseudoconvex [1] if for every        and

such that and there exist positive numbers
and such that for all

These notions are interrelated as follows:

Proposition 9.5 Let C be open and convex and be differen-
tiable.

(i) If is strongly convex, then it is strongly pseudoconvex.
(ii) If is strongly pseudoconvex, then it is strictly pseudoconvex.

Proof. (i) For each and we have, setting and
in (9.3):

Taking the limit as we obtain

Now let and be such that
Choose such that for all Setting and

in (9.4) we obtain

i.e., is strongly pseudoconvex with
(ii) We recall that is strictly pseudoconvex [1] if for every

Suppose that are such that holds. We
set and

Using the same argument as in the proof of Proposition 9.1 we deduce
that and i.e., Since we just showed that
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is pseudoconvex. In particular, it is quasiconvex. The definition of
strong pseudoconvexity implies that there exists some
such that

By quasiconvexity,

Combining with relation (9.5), we deduce that as desired.

Other implications between the nine notions of (generalized) convexity
we mentioned are given in [1]. The following table shows all these impli-
cations where we use the abbreviations cx, pcx, qcx, s., ss. and str. to
stand for convex, pseudoconvex, quasiconvex, strictly, semistrictly and
strongly, respectively. Some implications hold under special assumptions
of continuity or differentiabilty.

We note that all implications are proper for general functions.
The analogy between the table for generalized convex functions and

the table for generalized monotone maps is not accidental. In fact, if
then generalized monotonicity of F is equivalent to generalized

convexity of

Theorem 9.1 Let C be open and convex and be differen-
tiable. Then is convex (respectively, strictly convex, strongly convex,
pseudoconvex, strictly pseudoconvex, quasiconvex, semistrictly quasicon-
vex, strictly quasiconvex) if and only if is monotone (respectively,
strictly monotone, strongly monotone, pseudomonotone, strictly pseu-
domonotone, quasimonotone, semistrictly quasimonotone, strictly quasi-
monotone).

If is twice differentiable, then  is strongly pseudoconvex if and only
if is strongly pseudomonotone.

Proof. The equivalence for the convex, strictly convex and strongly con-
vex case is standard knowledge; see for example [1]. The pseudoconvex,
strictly pseudoconvex and quasiconvex case was treated in [7].
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We show that is strictly quasiconvex if and only if is strictly
quasimonotone. Let be strictly quasimonotone and
Then is quasimonotone, hence is quasiconvex [7, 29]. It follows
that for every holds. If, say

we have to show that Indeed,
if then it is easy to verify that is constant on
This means that the function is constant on
[0, 1], hence

Thus for all which contradicts the strict
quasimonotonicity of

Conversely, if is strictly quasiconvex, then it is quasiconvex, hence
is quasimonotone. Further, if then strict quasiconvexity

of implies that the function is not constant
on [0, 1], hence for at least one It follows immedi-
ately that for some i.e., is strictly
quasimonotone.

Now we show that is semistrictly quasiconvex if and only if is
semistrictly quasimonotone. If is semistrictly quasimonotone, then
it is quasimonotone, hence is quasiconvex. Suppose that is not
semistrictly quasiconvex. Then there exist and

such that It is easy to see
that is constant on Set Then

Hence by the mean value theorem there exists such
that By the strict quasimonotonicity of there exists

such that We construct inductively a sequence
such that and Obviously hence

for some Since is constant on we should have
a contradiction.

The proof that semistrict quasiconvexity of implies semistrict quasi-
monotonicity of is similar to the one above and is left to the reader.

We now prove the last assertion, i.e., that strongly pseudoconvex
is equivalent to strongly pseudomonotone, provided that is twice
differentiable.

Assume that is strongly pseudomonotone. If and are
such that and then we can find and
such that for all Set
Then
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hence i.e.,

and is strongly pseudoconvex.
Assume that is strongly pseudoconvex. Take and as in

Definition 9.5. We set and write the Taylor expansion

By definition of we know that also, by
definition of holds for all Thus, (9.6)
entails

It follows that Hence for every there exists
such that for all or, equivalently,

holds. Thus, is strongly pseudomonotone.

Note that without the assumption that is twice differentiable, the
gradient of a strongly pseudoconvex function may not be strongly pseu-
domonotone [22].

We finish this section by a note on quasimonotone maps which are not
pseudomonotone. It is easy to construct such maps. For instance, the
function defined by is quasimonotone, but not
pseudomonotone. This function has zeros, and this plays an important
role. In fact, it is known that a quasimonotone map F defined on an
open convex subset of that has no zeros, is actually pseudomonotone
[7]. This is no longer true when C is not open. For example, we can
take and Then
F is quasimonotone, but not pseudomonotone. But here again we can
consider equivalently the projection of F onto C, and this map has zeros.
More precisely, there are points such that is perpendicular
to C in the sense that for all Can we construct
an example of a convex set C and a continuous quasimonotone, but not
pseudomonotone map F on C such that is never perpendicular to
C? The answer is yes, as shown by the following example, taken from
[23]: Set C= [0, 1] × [0, 1] and

This map is quasimonotone, but not pseudomonotone. It can be
shown that such a situation cannot occur if F is affine (see the last
section).
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The following proposition is useful when dealing with quasimonotone
maps that are not pseudomonotone:

Proposition 9.6 Suppose that is convex and is
quasimonotone and continuous (or, more generally, that its restriction
on every straight line segment in C is continuous). Let be such
that and Then

Proof. If (9.7) does not hold, then there exists such that
If we set we infer

easily from the assumptions that By quasimono-
tonicity, Taking the limit as we deduce that

a contradiction.

If in the above proposition, then (9.7) means that

is a supporting hyperplane of C at Thus, if F has no zeros, then
lies on the boundary of C. We thus recover the result that whenever F
is quasimonotone on an open convex set and F has no zeros, then F is
pseudomonotone (see [7, 30]).

3. Other kinds of generalized monotonicity

As we noted in the previous section, all generalized monotonicity no-
tions presented so far are in some sense one-dimensional; besides, the
careful reader should have noticed that most proofs contain a transcrip-
tion of the problem to one dimension through the introduction of a
function In recent years, new generalized monotonicity no-
tions were investigated, which involve instead of two points and are in
essence multi-dimensional. These are cyclic pseudomonotonicity, cyclic
quasimonotonicity and proper quasimonotonicity which were found to
be useful, especially for the study of variational inequalities. We refer
to Chapter 11 of this volume for details.

Another recent advance is the unification of the study of pseudomono-
tone maps in the sense introduced in the previous section, and the pseu-
domonotone maps in the sense of Brezis [4] which we will call topo-
logically pseudomonotone to avoid confusion. We give the definition in
Banach spaces, since the weak topology is involved. Let X be a Ba-
nach space, X* be its dual, denote the duality product and
be closed and convex. In such a setting, pseudomonotonicity of a map

is defined again by (9.2). We recall [4, 46]:
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Definition 9.6 A map is topologically pseudomonotone if
for each net and for all the assumptions

imply that

Note that in finite-dimensional spaces, any continuous map is topo-
logically pseudomonotone. This shows clearly the difference between
pseudomonotonicity as discussed in the previous section and topological
pseudomonotonicity. In view of this fact, it is rather astonishing that
Domokos and Kolumban [15] succeeded in treating both cases simulta-
neously, in relation to variational inequalities. Let us first recall that
a map is called hemicontinuous if for every the
function

is continuous at Note that hemicontinuity is almost always assumed
in order to show the existence of a solution of variational inequality
problems with pseudomonotone maps, see for instance [46].

Definition 9.7 A map is B-pseudomonotone if for each
net and for every the assumptions

imply that

The new notion is related to the older ones as follows:

Theorem 9.2 [15] (i) Every topologically pseudomonotone map is B-
pseudomonotone,

(ii) Every pseudomonotone, hemicontinuous map is B-pseudomono-
tone.

We also mention a simplified version of [15, Theorem 2]:

Theorem 9.3 Let be nonempty, weakly compact and convex. If
is B-pseudomonotone and continuous on the intersection

of C with every finite-dimensional subspace, then there exists
such that



Generalized Monotone Maps 401

As a consequence of Theorem 9.2, the above theorem generalizes some
theorems on the existence of a solution of variational inequalities, for
pseudomonotone and for topologically pseudomonotone maps.

Recently some other generalized monotonicity notions, closely related
to generalized convexity, were introduced. These include hypomonotone
and submonotone maps, related to convex and
convex functions, respectively. We refer the reader to [11, 12] for details.

4. Differentiable generalized monotone maps

Theorem 9.4 Let C be open and convex and be continu-
ously differentiable.

(i) F is quasimonotone if and only if conditions (Sdp) and (Bqr) hold;
(ii) F is pseudomonotone if and only if conditions (Sdp) and (Bpr)

hold.

We now present a characterization of differentiable strongly pseu-
domonotone maps.

Proposition 9.7 [21] Let C be open and convex and be
differentiable. Then F is strongly pseudomonotone if and only if for
every there exists such that

One of the most interesting problems in the study of generalized mono-
tonicity is to find characterizations of generalized monotone maps [44].
We will present here some of the results existing in the literature, for
three special cases: (a) the differentiable case, (b) the nondifferentiable
case and (c) the affine case.

For pseudomonotone and quasimonotone differentiable maps, neces-
sary and sufficient conditions have recently been found; these results
are presented in another chapter of this volume [7]. For later purposes,
we recall from there the main characterization theorem. Consider the
conditions:
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Proof. For every sufficiently small

thus

Now suppose that F is strongly pseudomonotone. For each
such that and choose (depending in
general on such that (9.1) holds. Then (9.9) entails that for sufficiently
small

Dividing by and taking we obtain
Since the set

is compact, we obtain that

i.e., (9.8) holds.
Conversely, suppose that (9.8) holds. We choose again such

that and and set in (9.9). Taking account
of (9.8), we get

For any there exists such that for every

We obtain immediately that i.e., F is strongly
pseudomonotone.

5. Nondifferentiable maps

We now present some necessary and/or sufficient conditions for a non-
differentiable map to be generalized monotone. We shall consider two
cases: (a) the map is locally Lipschitz and (b) the map is continuous.
The latter case is of course more general, but we begin with the locally
Lipschitz case because it will serve as an introduction to what follows.
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5.1 Locally Lipschitz maps

Let be open and convex, and be a locally Lips-
chitz map. Then Rademacher’s Theorem asserts that F is differentiable
almost everywhere on C, i.e., the set of points where F is not differ-
entiable has Lebesgue measure zero. The generalized Jacobian at any
point is defined as the set of matrices

where denotes the convex hull. Note that at points where F is
differentiable contains but may contain other elements
too, unless the components of F are regular at [5]. The elements of
F are called subgradients. Likewise, if is a locally Lipschitz
function, the subdifferential of at is defined by

The following mean value theorem holds. Part (i) is the well-known
Lebourg Mean Value Theorem.

Theorem 9.5 [5] (i) Let be locally Lipschitz. Then for every
there exists and such that

(ii) Let be locally Lipschitz. Then for every
there exists

such that

One can now show:

Theorem 9.6 [35] Let be locally Lipschitz. Then the
following are equivalent:

(i) F is monotone.
(ii) At each point at which F is differentiable, is positive

semidefinite.
(iii) For every the subgradients are positive semidef-

inite.

Proof. (i) (ii): Let F be differentiable at For every and
sufficiently small,
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It follows that

(ii) (iii):
(iii) (i):

This is evident in view of relation (9.10).
Suppose that all elements of are positive semidef-

inite for each Then for each the mean value theorem
implies that

By our assumption, each element of the convex hull is nonnegative,
thus i.e., F is monotone.

In the same manner, one can show:

Theorem 9.7 [35] A locally Lipschitz map F is strictly monotone if for
every the subgradients are positive definite.

Note that the converse is not true.
We now turn our attention to generalized monotone maps. For each

define

The following proposition holds:

Proposition 9.8 [35] Let F be locally Lipschitz.
(i) If F is strongly pseudomonotone, then for each and

such that one has
(ii) If for each and such that

one has then F is strongly pseudomonotone.

Proof. (i) Since F is strongly pseudomonotone, there exist and
such that for all holds. By the

mean value theorem, for each there exists

such that hence
This implies that Bearing in mind (9.12), we deduce that
there exists and such that Tak-
ing a sequence we obtain and a sequence
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such that Since is upper semicontin-
uous at [5], there exists such that B is a cluster point of

Hence which implies that
(ii) If F is not strongly pseudomonotone, then there exist
with such that for each positive one can

find such that Applying again the mean
value theorem, we can find A given by (9.12) such that
Working as in the first part of the proof, we obtain such
that Since is an arbitrary positive number, it follows
that a contradiction.

We further provide necessary and sufficient conditions for a map to
be quasimonotone or pseudomonotone. The interested reader may find
the proofs in [35].

Proposition 9.9 The map F is quasimonotone if and only if the fol-
lowing conditions hold for every and

Proposition 9.10 The map F is pseudomonotone if and only if the
following conditions hold for every and

The sufficient conditions may be improved [35]:

Proposition 9.11 Suppose that the following conditions hold for every

Then F is quasimonotone.

Proposition 9.12 Suppose that the following conditions hold for every
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Then F is pseudomonotone.

5.2 Continuous maps

In the more general case where F is continuous, but not necessarily
locally Lipschitz, necessary and sufficient conditions can still be found
with the help of approximate Jacobians. Let be open and convex,
and be continuous. Given let be the
function The two Dini directional derivatives of
are defined as follows:

Definition 9.8 A closed subset S of is an approximate Ja-
cobian of the map at if

Definition 9.9 A closed subset S of is a regular approxi-
mate Jacobian of the map at if

Note that (9.14) implies (9.13). Also, note that

and likewise Since (9.13) and
(9.14) must hold for all it is thus clear that they can also be written

and

respectively.
Approximate Jacobians are by no means unique. For instance, the

whole space is an approximate Jacobian of every function F
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at every point Whenever F is locally Lipschitz, the Clarke gen-
eralized Jacobian is one approximate Jacobian. In what follows,
the symbol is used to denote an arbitrary approximate Jacobian
of F at

The following mean value theorem holds:

Theorem 9.8 [26] Let be continuous and Sup-
pose that is an approximate Jacobian of F at each
Then

where denotes the closed convex hull. If each is
bounded, then may replace in the above relation.

Note that the theorem becomes trivial, and uninteresting, if we choose
for all The theorem becomes more inter-

esting if is small. In case F is locally Lipschitz, then the Clarke
generalized Jacobian is a bounded approximate Jacobian, hence
the above theorem generalizes Theorem 9.5 of the previous subsection.

Remark 9.1 Let S be an arbitrary subset of If we set
then it is easy to show that the following equality holds for

every

Note also that in the mean value theorem only convex hulls appear.
Thus we could suppose, with no harm of generality, that all approximate
Jacobians considered are convex sets. However we will follow the usual
practice and will not do so.

In the remaining part of this paragraph we will suppose that
and study the generalized monotonicity of F by using approximate

Jacobians. Let us begin with the monotone case:

Proposition 9.13 [26] Let be continuous and be
an approximate Jacobian of F at each

(i) If for each the matrices are positive semidefi-
nite, then F is monotone.

(ii) If for each the set is bounded, and its elements are
positive definite, then F is strictly monotone.
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Proof. (i) For every by the Mean Value Theorem,

Note that by our assumption,

Hence all elements of the set at the right-hand side of (9.16) are non-
negative. This implies that so F is monotone.

(ii) The assumption of boundedness implies that in (9.16) may
be replaced by Since every is positive defi-
nite, the expression is positive for every in
C. The convex combinations of such expressions are also positive, thus

and F is strictly monotone.

Because of the arbitrariness in the choice of one cannot hope
that the converse of the above proposition holds without any restriction
on As the following result shows, it is sufficient to assume that

is everywhere regular, or even less than that:

Proposition 9.14 [26] Let be continuous and be
an approximate Jacobian at every Suppose that is regular
at a dense subset K of C and that at each

If F is monotone, then for each the matrices are
positive definite.

Proof. For every and for all sufficiently small,
monotonicity of F implies that It follows
that By regularity,

Hence for each holds, i.e., M is positive
semidefinite.

If and then for every there exist by
assumption such that and We
just showed that hence
and M is positive semidefinite.

The following results have been established for quasimonotone maps
[26].
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Proposition 9.15 Let be continuous and be an

(i)
(ii) and for some imply the

existence of such that for all

There is also a kind of converse:

Proposition 9.16 [26] Let be continuous and be
a bounded approximate Jacobian at every Suppose that
is regular at a dense subset K of C and that at each

Assume further that the following conditions hold for each

and
for some imply the existence of such that
for all
Then F is quasimonotone.

Finally, we mention the analogous results for pseudomonotone maps
[26].

Proposition 9.17 Let be continuous and be an
approximate Jacobian at every If F is pseudomonotone, then

(i)
(ii)

implies the existence of such that for all
(i)
(ii)

Proposition 9.18 Let be continuous and be a
bounded approximate Jacobian at every Suppose that is
regular at a dense subset K of C and that at each

Assume further that the following conditions hold for each

and imply the exis-
tence of such that for all

(i)
(ii)

approximate Jacobian at every If F is quasimonotone, then
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Then F is pseudomonotone.

The last four propositions generalize the previously mentioned results
for locally Lipschitz maps and, of course, corresponding results for dif-
ferentiable maps [9, 30].

6. Affine maps

Generalized monotone affine maps of the form

where M is an matrix, and is convex, have
been studied by various authors [8, 10, 19, 20, 30, 37]1. We distinguish
between two cases, depending on whether M is symmetric or not neces-
sarily symmetric.

6.1 Generalized convex quadratic functions (M
symmetric)

We assume that is a solid convex set, i.e., int C is nonempty.
It is well known that the affine map F is the gradient of a function if
and only if M is symmetric. In this case, is quadratic and is given (up
to a constant) by

A complete characterization of quasiconvex functions on C is as
follows (for a related result obtained independently, see [16, 17])

Theorem 9.9 [40] A nonconvex function is
quasiconvex on a solid convex set if and only if

M has exactly one (simple) negative eigenvalue,

or where

(a)

(b)

(c)

solves and is an eigenvector associated
with the one negative eigenvalue of M.

1Very recently a relationship between arbitrary pseudomonotone maps T on such that
–T is also pseudomonotone on and certain affine maps has been derived in [3].
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The three conditions (a), (b) and (c) in Theorem 9.9 hold also under
the weaker assumption that is locally quasiconvex2 at least at one
point for which see [31, 32] for details.

Pseudoconvexity holds if or where are ob-
tained from by requiring the second inequality to be strict. Hence
on open convex sets C quasiconvex functions are pseudoconvex.

The function is strictly pseudoconvex if and only if is pseudocon-
vex and M is nonsingular.

For quadratic functions on open convex sets the diagram in Section 2
is simplified as follows [43]:

Like in the convex case, there are only two types of generalized convex
quadratic functions (on open convex sets), and they are distinguished
by whether M is nonsingular or singular.

An essential step in the proof of Theorem 9.9 is to show:

Lemma 9.1 [40] If  is nonconvex quasiconvex on a solid convex set
then

Hence quasiconvex quadratic functions are convexifiable through scal-
ing.

Lemma 9.1 also leads to a characterization of quasiconvex functions in
terms of an augmented Hessian [41] and a bordered Hessian [2, 6, 43, 45];
see also [42].

In the special case of finite criteria for quasiconvexity have
been derived. First these were obtained by Martos [36] with help of
so-called positive subdefinite matrices. These can also be derived by
specializing Theorem 9.9.

2A function is called locally quasiconvex at if there exists a neighborhood of
such that for all implies
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Theorem 9.10 [42] A nonconvex quadratic function
is quasiconvex on if and only if

(a)
(b)
(c)

M has exactly one (simple) negative eigenvalue,
there exists such that and

and

Finite criteria in terms of the principal minors of can also

be given [42].
For an extensive treatment of the various characterizations of gener-

alized convex quadratic functions we refer the reader to [1, Ch. 6]

6.2 Generalized monotone affine maps (M not
necessarily symmetric)

An affine map F is continuously differentiable with It turns
out that pseudomonotonicity of an affine map F requires only condition
(Sdp) which, written for affine maps, becomes

Proposition 9.19 [30] If condition (Sdp’) holds for every then
F is pseudomonotone. The converse also holds, provided that C is open.

Proof. Suppose that (Sdp’) holds for every but F is not pseu-
domonotone. Then there exist such that
and Set and consider the function

Note that and Hence, there exists such
that If we set then

and thus contradicting (Sdp’).
Conversely, let C be open and F be pseudomonotone. Suppose that

for some holds. By pseudomonotonicity
of F,

If we subtract the left from the right hand-side, we obtain

In fact, whenever C is open and convex, the above proposition can
be derived directly from Theorem 9.4. Indeed, it is easy to see that
conditions (Bpr) and (Bqr) are automatically satisfied if F is affine.
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This observation leads to the following immediate corollary of Theorem
9.4:

Proposition 9.20 [30] An affine map defined on an open convex subset
of is pseudomonotone if and only if it is quasimonotone.

Propositions 9.19 and 9.20 have another easy consequence.

Proposition 9.21 [30] Let C be open and convex and be
affine and quasimonotone. Then F is monotone if one of the following
holds:

for some(i)
(ii)

Proof. Since F is quasimonotone, it is also pseudomonotone. In case
for some Proposition 9.19 implies that

for all i.e., M is positive semidefinite. This is obviously
equivalent to monotonicity of F.

Now suppose that Given any choose any
and set and

Note that either or is a nonconstant affine function. In
the latter case, there exists such that Then Proposition
9.19 implies that Thus M is again positive semidefinite
and F is monotone.

In many cases of interest, the set C is not open. This happens for
instance in linear complementarity problems where C is the nonnegative
orthant In such a case the following result holds:

Proposition 9.22 Let C be convex with nonempty interior and F be
quasimonotone.

(a) If are such that and
then belongs to the boundary of C and

(b) If F has no zeros on the boundary of C, then F is pseudomonotone.

Proof. (a) Suppose that and Then
F is not pseudomonotone. If we suppose that then it is not
possible that since Proposition 9.21 would entail that F is
monotone. Thus belongs to the boundary of C, and we are done.

Now suppose that If we set we find that
and from which follows that
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Choose any and set Then
and Hence for

sufficiently small. Thus we may define

Note that Since F is quasimonotone on int C, in
virtue of Proposition 9.20 it is also pseudomonotone on int C. Hence,
applying Proposition 9.19 to we deduce that Taking
the limit as and using we obtain a
contradiction.

(b) Follows from (a).

We now mention some results from [8, 10] that link generalized mono-
tonicity of F to intrinsic properties of the matrix M. We first give some
definitions and notation.

Given a matrix D, its Moore-Penrose pseudoinverse is a uniquely
defined matrix which satisfies

Let be defined on a convex subset C of with
nonempty interior. We set:

and is the number of positive, negative and zero eigenvalues
of B, respectively,

The following result holds:

Proposition 9.23 [10] F is quasimonotone on C if and only if one of
the following conditions holds:

(i) (in which case B is positive semidefinite and F is monotone
on

(ii) and

A detailed analysis of case (ii) results in the following theorem:

Theorem 9.11 [10] F is quasimonotone on C (and pseudomonotone
on int C) if and only if one of the following conditions holds:
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(i) i.e., B is positive semidefinite and F is monotone on
(ii) D is

positive semidefinite, S is a closed convex set, and
(iii) and

where is a closed convex cone with nonempty interior;
and if is such that then either or

If M is symmetric, then D = B = M and and case (ii) in Theorem
9.11 cannot occur since In the symmetric case a nonmonotone
affine map is characterized by (iii) which recovers the earlier results for
generalized convex quadratic functions, in particular Theorem 9.9 and
its implications; see [40, 41, 42].

If M is nonsingular, case (ii) in Theorem 9.11 cannot occur either
since would imply

Of particular interest in Theorem 9.11 is the case because
of its relevance to complementarity problems. We need some additional
notation and definitions. Given we write

if and denote by and the vectors such that
and

A matrix M is called:

positive subdefinite if implies either or

copositive if for all

One can show the following characterization of generalized monotone
affine maps of the form

Theorem 9.12 [8] Let be an affine map.
(i) F is pseudomonotone on if and only if

(ii) F is quasimonotone on if and only if

We mention a result that characterizes pseudomonotone linear maps
on
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Proposition 9.24 [8] A linear map defined by an matrix M is
pseudomonotone on if and only if it is positive subdefinite and copos-
itive, with the additional assumption in case that when-
ever

The following result was shown in [8] as a consequence of the char-
acterization contained in Theorem 9.12. We present here a more direct
proof.

Proposition 9.25 Let be affine and quasimonotone on
If then F is pseudomonotone.

Proof. Suppose that F is not pseudomonotone. Then there exist
such that and From Proposition
9.22, it follows that i.e.,

For every we obtain Since
F is continuous, we can choose sufficiently close to
such that Then for any sufficiently close to
1, By quasimonotonicity
hence For we obtain
thus Likewise, the case gives Thus
we obtain finally

We deduce that for any in a small ball near It is
now easy to infer that a contradiction.

The assumption cannot be omitted in the above proposition, as
one can check by considering defined on by

We finally present another characterization of quasimonotone affine
maps. Set

Theorem 9.13 [8] Assume that M is not positive semidefinite. Then
is quasimonotone on if and only if exactly one of

the following conditions holds:
(i) for all and either and

with or and with
(ii)

and Let be such that Then and

In [8] also the question of feasibility and solvability of linear com-
plementarity problems is studied using the characterizations of pseu-
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domonotone and quasimonotone affine maps derived therein. The re-
sults extend earlier ones by Gowda on pseudomonotone affine maps and
matrices [18, 19, 20].
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GENERALIZED DERIVATIVES
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This chapter is devoted to the study of nonsmooth generalized convex
functions with the help of special classes of generalized derivatives. Sev-
eral results are presented on the links between generalized monotonicity
of the generalized derivatives and generalized convexity of the functions
under discussion. The abundance of the different notions of general-
ized derivatives has motivated an axiomatic treatment resulting, among
others, in the concept of first order approximation. The usefulness of
quasiconvex first order approximations in optimization theory is investi-
gated, in particular, generalized upper quasidifferentiable functions are
studied, quasiconvex Farkas Theorems and KKT-type optimality con-
ditions are elaborated.

Generalized convexity, generalized derivatives, first order quasiconvex
approximations, generalized upper quasidifferentiability, quasiconvex
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Abstract

Keywords:

1. Introduction
The core of the different topics discussed in this chapter is the non-

linear programming problem:
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where X denotes a locally convex Hausdorff topological vector space
the dual of which is denoted by X*. For the concepts we study in this
chapter this general setting is quite appropriate, for the results, however,
we have to impose sometimes additional assumptions on the space X.
For simplicity, readers may assume

The central problem with (NLP) is to find local or global minimizers
of over the feasible set F. The analysis of (NLP) is twofold. On the
one hand there is a need of tractable characterizations of the solutions,
while on the other hand there is a need of working algorithms by the
help of which (the) solutions can be found.

In the analysis of (NLP) the use of derivatives is inevitable. In smooth
problems the classical concepts of derivative (Fréchet-, Gâteaux- and
directional) has been proved one of the most useful tools.

Besides treating classical smooth problems, the mathematicians got
many impulses from other sciences and important real life problems in
the last decades in order to treat nonsmooth, nondifferentiable prob-
lems.

The analysis of such problems has definitely required some general-
izations of the derivative. Since the early 1960’s much effort has gone
into the development of a generalized kind of differentiation that can be
useful in the analysis of optimization problems. The subject has grown
rapidly since then.

One may distinguish two prominent approaches: the one works with
generalized directional derivatives using special combinations of the lim-
sup, liminf, sup and inf operations, while the other works with gener-
alized gradients, subgradients, subdifferentials. It should be mentioned
that the two approaches are linked very strongly, especially in those cases
when the generalized derivatives are either convex or quasiconvex.

We concentrate in this chapter only to generalized directional deriva-
tives, because the “subdifferential approach” is the topic of Chapter 11
of the present volume. The “subdifferential-approach” is discussed in
details in [2], [3], [44] and [54], too.

Some of the attempts have gone back to classical sources: to Dini
and Hadamard, whereas others provided quite new kinds of generalized
derivatives [7], [53], [54], [58], or abstract derivatives [17], [20], [27], [37].

The success of the above approach depends heavily on specific prop-
erties of the problem functions. The role of convexity and generalized
convexity in this respect is well known. The classical analysis of these
properties utilizes the Lagrange Mean Value Theorem, by the help of
which the increment is substituted by a suitable total deriva-
tive Fortunately in nonlinear analysis we still
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have powerful Mean Value Theorems, by the help of which we can find
“good approximates” for the increments under discussion.

This chapter is organized as follows: In several investigations on non-
smooth generalized convex functions the Dini derivatives proved to be
the best replacements for the gradient. It is the reason that first we
present results based on the Dini derivatives.

Section 2 gives a short account on the most important tools on Dini
derivatives serving as technical basis for the subsequent subsections.
Subsections 2.1 and 2.2 are devoted to the study of nonsmooth gen-
eralized convex functions and their characterizations with the help of
their Dini derivatives. Generalized upper quasidifferentiability is the
central theme of Subsection 2.3. This class of functions are defined via
the quasiconvexity of their upper Dini derivative and shares some nice
properties.

In nonsmooth analysis several other generalized derivatives proved to
be very useful: the Clarke derivative for locally Lipschitz functions, the
Rockafellar derivative for lower semicontinuous functions, the incident
derivative for lower semicontinuous quasiconvex functions, etc.

Section 3 provides a limited list on typical generalized derivatives with
the Rockafellar derivative in the focus and provides a way of using them
in characterizing different kinds of generalized convexity.

The abundance of the notions of generalized derivatives puts forward
the question of axiomatization of the derivative concept. The concept
of first order approximation was introduced with this aim and is dis-
cussed in Section 4. In Subsection 4.2.1 a Generalized Farkas Lemma is
presented for quasiconvex first order approximations. The section ends
with deriving Karush-Kuhn-Tucker type optimality conditions using first
order approximations and some results on steepest descent directions,
paving the way towards algorithmic design.

2. Dini derivatives

This section is devoted to Dini derivatives. The importance of them in
quasiconvex optimization was shown in several works of the two pioneers:
J.-P- Crouzeix [8]-[10], and W.E. Diewert [15]. Further results on the
topic can be found in [13], [14] and [21]-[23].

We recall that the directional upper and lower Dini derivatives of
at are defined as follows:
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A simple but very important consequence of the definition is the fol-
lowing inequality: for any one has

It should also be noted that the Dini derivatives are positively homo-
geneous in their second arguments, namely for all we have

It is well-known from the classical mathematical analysis, that con-
vexity of a differentiable function can be completely characterized via
the monotonicity of its derivative or gradient. The use of the famous La-
grange Mean Value Theorem (LMVT) cannot be ignored in this theory.
In nondifferentiable context it is no longer possible to apply the classic
LMVT. Fortunately we may use instead its extension, the Diewert’s
Mean Value Theorem (DMVT) ([15], Theorem 1, Corollary 1).

Theorem 10.1 (Diewert’s Mean Value Theorem) Let the function
be defined on the line segment and let the function

be lower semicontinuous on [0, 1]. Then there
exists such that

where

By the help of DMVT one can prove several important theorems
for nondifferentiable functions. The following implicit-function theorem
was proved by the author in [30] for Euclidean spaces. (See also [21],
Theorem 2.8.)

Let us consider and a direction Denote by L the
dimensional subspace of orthogonal to Then every

has a unique representation as where and We
may regard as an element of and identify with

Theorem 10.2 (Implicit Function Theorem) Let be continu-
ous on the open set Assume that any of the two conditions
holds.

Let for a certain and let be
upper semicontinuous in at

(a)
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(b) Let for a certain and let be
upper semicontinuous in at

Then there exist convex neighborhoods N and U of and respec-
tively and a unique function defined on N such that:

(i)

(ii)

(iii)

and

and

and

and

and

and

Another simple consequence of the DMVT, useful in studying qua-
siconvexity, is given in the following “Three Point Lemma”. It uses the
frequently used nonconstancy property.

Definition 10.1 We say that satisfies the nonconstancy property
(in short: NC-property) on the convex set if there is no line
segment in C along which is constant.

Lemma 10.1 (Three Point Lemma) Let be defined on the line
segment and let the function be lower
semicontinuous on [0, 1]. If there exists such
that

then there exist for which one has

If satisfies the NC-property on then (10.2) holds in a stronger
form

Proof. Let

and

Set

Since is lower semicontinuous, therefore
M and
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Case 1: Assume first that is constant over If K denotes that
constant, then Since for every it
follows that

Put and if and and if
It is easy to check that (10.2 ) holds with these choices.
Case 2: Assume now that is not constant over         Then there
exist such that By DMVT there exists

such that

Since it follows that If then
put and If then put and Taking
into account the positive homogeneity of the Dini derivative in its second
argument it is easy to check that (10.3) holds with these choices.

2.1 Dini derivatives and Generalized Convexity

In this subsection quasiconvexity and pseudoconvexity will be char-
acterized in terms of directional Dini derivatives.

Definition 10.2 [4] The function is called convex (CX), strictly
convex (SCX), quasiconvex (QCX), strictly quasiconvex (SQCX), semi-
strictly quasiconvex (SSQCX) on the convex set if for all

and the following conditions below hold,
respectively:

The following interrelations are immediate consequences of the defi-
nitions:
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The following statement, due to Crouzeix [8], supplements the above
interrelations and, in particular, will be very useful in further investiga-
tions.

Lemma 10.2 The function is (strictly) convex on the convex set
if and only if for all the function

is (strictly) quasiconvex.

Proof. Necessity: Obvious, since the sum of a (strictly) convex and a
linear function is always (strictly) convex and thus (strictly) quasiconvex.

Sufficiency: Assume that is quasiconvex on C
for all Suppose for contradiction that fails to be convex
on C. Then there exist two distinct points and a third point

in the open line segment such that

By virtue of the Hahn-Banach Extension Theorem you can always
find an appropriate such that

where This condition, however, contradicts to
the quasiconvexity of This contradiction proves the thesis. The
strict variant can be handled completely in the same way.

We recall, in view of further developments, the following classical
result due to Arrow and Enthoven [1].

Theorem 10.3 Let be differentiable on the convex set
Then is quasiconvex if and only if for all

It is easy to prove that if the function is quasiconvex on C, then
for all any of the following implications holds:

Furthermore it is obvious that
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The following simple example shows that, in general, the above im-
plications can not be reversed.

Example 10.1 Let

This function possesses both QCX(UDini) and QCX(LDini) but
fails to have property QCX. It can be proved that for radially lower
semicontinuous functions the three properties under consideration are
equivalent.

We recall that is called radially lower semicontinuous on the
convex set C, if for every the function

is lower semicontinuous.

Theorem 10.4 ([15], Theorem 4) Let be radially lower semicon-
tinuous on the convex set Then conditions QCX, QCX(UDini)
and QCX(LDini) are equivalent.

Proof. Since the implications QCX QCX(UDini) QCX(LDini)
are rather obvious it is sufficient to prove that QCX(LDini) implies
QCX.

Assume for contradiction that enjoys property QCX(LDini) but
fails to be quasiconvex. Then there exist and such
that

By the Three Point Lemma it follows the existence of
such that

It contradicts, however, the QCX(LDini) property. The thesis follows.

Modifying the Arrow-Enthoven’s characterization of differentiable qua-
siconvex functions given in Theorem 10.3, O.L. Mangasarian introduced
the property called pseudoconvexity.

Definition 10.3 [50] The differentiable function is called pseudo-
convex, strictly pseudoconvex on the convex set if for all

condition (PCX), (SPCX) holds, respectively:
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There are two possibilities to extend this notion for nondifferentiable
functions by means of the Dini derivatives. Diewert defined the lower-
Dini pseudoconvexity by replacing implications (PCX ) and ( S P C X )
with the following ones [15]: for all

whereas pseudoconvexity is defined in, [6, 10, 30, 33] by the following
implications: for all

Sometimes it is more convenient to use the following equivalent forms:

Taking into account inequality it is obvious that
PCX(UDini) PCX(LDini). A tricky example, due to Diewert
demonstrates that the reverse implication does not hold in general. (See
[15] Example 1 or [22] Example 8.)

Diewert’s example shows that his definition of pseudoconvexity em-
braces a wider class of functions then the other one.

It is well-known that for differentiable functions pseudoconvexity im-
plies quasiconvexity. Example 10.1 shows that it is no longer the case for
arbitrary functions. Function from this example is PCX(LDini)
but fails to be QCX. If, however, we restrict ourselves only to lower
semicontinuous functions, we shall have the desired result.

Theorem 10.5 Let be radially lower semicontinuous on the convex
set If is PCX(LDini) on C then is quasiconvex on C.
Since PCX(UDini) implies PCX(LDini) the statement of the theorem
holds for PCX(UDini) functions, as well.

Proof. Assume for contradiction that is pseudoconvex but fails to
be quasiconvex. Then there exist and such that

Let us consider defined in the proof of Lemma 10.1. It is
easy to check that and for every
Obviously If were constant over we would have
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and which is impossible by PCX(LDini).
By the Three Point Lemma it follows the existence of
such that

but it contradicts, again, the PCX(LDini) property. It proves the the-
sis.

Remark 10.1 Let us observe that strict pseudoconvexity always im-
plies quasiconvexity.

Pseudoconvexity, as it is well-known, is a remarkable property from
optimization point of view. Necessary optimality condition with respect
to minimization provides the concept of inf-stationarity.

Definition 10.4 A point is called an inf-stationary point of
over C if holds for every

It is obvious that if attains a local minimum at then is
an inf-stationary point of over C.

Theorem 10.6 Let be PCX(LDini) over the convex set
and let be inf-stationary point of over C. Then is a global
minimizer of over C.

Proof. The proof is an immediate consequence of the definitions.

The following theorem (which generalizes a result of Crouzeix and
Ferland ([12], Theorem 2.2]), proved by the author in [30], provides
sufficient condition for quasiconvex functions to be pseudoconvex.

Theorem 10.7 Let be radially upper semicontinuous quasiconvex
function defined over an open convex set If attains a global
minimum at whenever is an inf-stationary point of then

is PCX(LDini).

Proof. Let Assume that We shall prove that

From the hypothesis of the present theorem it follows that cannot
be an inf-stationary point of over C, consequently there exists a
(feasible) direction such that

By hypothesis the function is upper semicontinuous,
and thus there exists T > 0 such that for every
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we have Without loss of generality we may
assume that

For define

An easy calculation shows that belongs to the line segment
Since is quasiconvex, we therefore have for every that

and hence for

Since if the first term in the above maximum
tends to and thus

Since where we have

Taking limits as yields

By assumption This inequality along with (10.4) yields
the desired results.

From Theorems 10.5, 10.6 and 10.7 one can deduce the following char-
acterization of continuous pseudoconvex functions.

Theorem 10.8 Let be radially continuous on the open convex set
C. Then      is PC X(LDini) if and only if is quasiconvex on
C and has a global minimum at whenever is an inf-stationary
point of over C.
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Remark 10.2 The notion of inf-stationarity given in Definition 10.4
uses the lower Dini derivative. If one replaces it with the upper Dini
derivative you will obtain the “upper” version of inf-stationarity, which
is somewhat stronger then the “lower” one. If you replace PCX(LDini)
with PC X(UDini) and “lower” inf-stationarity with its “upper” version
in Theorems 10.6, 10.7 and 10.8, “upper” versions of the mentioned
theorems are obtained.

The characterization of functions via implicit functions is a useful tool
in several fields of mathematics, economics, etc. Such a characterization,
via the Hessian of the implicit function was elaborated by the author in
[31], [32], [38] and [39] for twice differentiable pseudoconvex functions.
Certain elements of this characterization can be extended for nonsmooth
functions by weakening the notion of smoothness.

Definition 10.5 A function defined on an open set is called
upper semismooth if it is continuous and whenever
either or is upper semicontinuous in at

Theorem 10.9 Let be defined and upper semismooth on the open
convex set          Then      is PCX(LDini) on C if and only if

(i)

(ii)

attains a global minimum at whenever is an inf-
stationary point of and

implies that is a convex function of
where is the implicit function defined in Theorem 10.2.

Proof. Throughout the proof we use the notation of Theorem 10.2.
Necessity: Let be PC X(LDini). Then (i) follows immediately
from Theorem 10.6. To prove (ii) let and Define

and

By Theorem 10.5 is quasiconvex on C and thus

From statements (i) and (ii) in Theorem 10.2, it follows that
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which proves the convexity of
Sufficiency. By Theorem 10.7 we need only to prove the quasiconvexity
of Let and assume that Set

for every We have to prove that for every
Assume for contradiction that

Define to be the largest maximizer, i.e.

It is obvious that and for every
Set According to (i) of the present theorem is

not an inf-stationary point of and thus there exists a direction
such that

Consider the function which is convex by hypothesis.
Without loss of the generality, we may assume that the points

and are appropriately close to that is
Since we have by Theorem 10.2 that
and Thus

This contradiction proves the thesis.

2.2 Dini Derivatives and Generalized
Monotonicity

Monotonicity plays an important role also in functional analysis, op-
erator theory, nonlinear analysis, optimization theory and related fields,
such as variational inequalities and general equilibrium problems. A
classical theorem from mathematical analysis claims that a differen-
tiable function is convex if and only if its gradient map is monotone.
This statement can be extended for nondifferentiable functions: a di-
rectionally differentiable function is convex if and only if its directional
derivative is monotone, or a lower semicontinuous function is convex if
and only if its convex subdifferential is a nonvoid monotone multifunc-
tion.
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Since the convexity assumption on the function can be weakened to
a certain kind of generalized convexity assumption without “destroy-
ing” the nice results valid for the convex case, therefore there have been
several attempts to weaken the monotonicity assumption to some kind
of generalized monotonicity concept. In 1976 Karamardian introduced
the notion of pseudomonotonicity for maps in [28]. Some years later in
1983, Hassouni introduced the concept of quasimonotonicity for multi-
functions [25]. The seminal paper of Karamardian and Schaible [29] from
1990, in which several kinds of generalized monotonicity concepts were
introduced for gradient maps, might be considered as the one opening a
new theory, the theory of generalized monotonicity.

These concepts were extended in nondifferentiable setting by the au-
thor in [34]-[36] and Bianchi in [5]. This subsection is devoted to these
investigations.

From an abstract standpoint any of the Dini derivatives is a bifunc-
tion where refers to a place and refers to a direction. Since
the domain of is always the whole space, therefore it is sufficient to
specify only the domain of We introduce now generalized monotonic-
ity concepts for bifunctions, which can also be used for any generalized
derivatives.

Definition 10.6 Let be a bifunction defined on the convex set
is called monotone, strictly monotone, quasimonotone,

strictly quasimonotone, semistrictly quasimonotone, pseudomonotone,
strictly pseudomonotone on C, if for every condition
(M), (SM), (QM), (SQM), (SSQM), (PM), (SPM) holds, respec-
tively.
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Remark 10.3 In the definition of (M) and (SM ) we adopt the follow-
ing rule:

The following chains of implications are immediate consequences of
the above definitions:

Remark 10.4 It should be mentioned that if is differentiable and
then the concepts introduced above coincide with

the ones introduced by Karamardian and Schaible [29] and Hadjisavvas
and Schaible [24]. (Semi)strict quasimonotonicity for bifunctions were
introduced and investigated by Bianchi [5].

The following lemma provides a very useful supplement to the above
mentioned interrelations.

Lemma 10.3 [44] The bifunction is monotone on C if and only
if the bifunction

is quasimonotone on C for all

Proof. Necessity: Assume that is monotone on C. Let
be arbitrary and set Since

therefore is also monotone and thus quasimonotone on C, as well.
Sufficiency: Let be quasimonotone for all This claim

is true for therefore is quasimonotone on C, as well.
Assume for contradiction that fails to be monotone. This means
that there exist two distinct points and in C such that

without loss of the generality we may assume that From
the quasimonotonicity of it follows that Taking
inequality (10.5) into account we get
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Let us assume first that is finite. Then in virtue of the
Hahn-Banach Extension Theorem we can find a such that

It follows immediately that

In case of we can also find  such that

If we consider then we have

which contradicts the assumption that is quasimonotone on C.
This contradiction proves the thesis.

Let us study first quasiconvex functions.

Theorem 10.10 Let be defined and radially lower semicontinuous
on the convex set C. Then is quasiconvex on C, if and only if any
of the following conditions holds:

(i)

(ii)

is quasimonotone on C,

is quasimonotone on C.

Proof. Sufficiency. (i): Let be quasimonotone on C. For con-
tradiction suppose that fails to be quasiconvex. Then it means that
there exist a line segment and a point in its interior,
such that

By DMVT there exist and satisfying conditions

and

Taking into account the positive homogeneity of the Dini derivative with
respect to its direction argument, the last two inequalities provide the
following ones:
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contradicting to the quasimonotonicity assumption.
The sufficiency of statement (ii) can be proved by the same way ap-

plying the relation
Necessity. (i): Assume that is quasiconvex. By Theorem 10.4,
possesses property QCX(LDini). Assume now that
By QCX(LDini) cannot hold. Hence we have
Applying again implication QCX(LDini) it follows that
which proves quasimonotonicity of the lower Dini derivative in this case.
The same reasoning can also be applied for the upper Dini derivative.

One can prove similar results with the same technique for other classes
of generalized convex functions: for (strictly) convex/pseudoconvex func-
tions see [40] and for (semi)strictly quasiconvex functions see [5], [23].

Theorem 10.11 Let be defined and radially lower semicontinu-
ous on the convex set C. Then is (strictly) convex, (semi)strictly
quasiconvex, (strictly) lower Dini pseudoconvex on C, if and only if

is (strictly) monotone, (semi)strictly quasimonotone, (strictly)
pseudomonotone on C, respectively.

Theorem 10.12 Let be defined and radially lower semicontinu-
ous on the convex set C. Then is (strictly) convex, (semi)strictly
quasiconvex, (strictly) upper Dini pseudoconvex on C, if and only if

is (strictly) monotone, (semi)strictly quasimonotone, (strictly)
pseudomonotone on C, respectively.

It might be surprising that characterization for convex functions can
be directly derived from characterization of quasiconvex functions.
Thanks to Lemmas 10.2, 10.3 and Theorem 10.10, it can easily be done.

Theorem 10.13 Let be defined and radially lower semicontinuous
on the convex set C. Then is convex on C if and only if any of the
following conditions holds:

(i)

(ii)

is monotone on C,

is monotone on C.

Proof. Let be arbitrary and let It is obvious
that

Necessity (i): Assume that is convex. Then, by Lemma 10.2, for
any the function is quasiconvex. It follows
by Theorem 10.10, that is quasimonotone.
By applying Lemma 10.3 we obtain that is monotone.
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Sufficiency (i): Assume that is monotone. By Lemma 10.3
is quasimonotone. It follows from Theorem 10.10 that

the function is quasiconvex. Since it holds for any
therefore, by considering Lemma 10.2 we obtain that is

convex.
The proof for condition (ii) is completely the same.

2.3 Generalized Upper Quasidifferentiable
Functions

The original notion of quasidifferentiability was introduced by B.N.
Pshenichnyi [55] in order to generalize the concept of convexity. We
recall that a function is said to be quasidifferentiable at by
Pshenichnyi if is directionally differentiable at and its directional
derivative is a convex function of the direction argument It
is well-known that convex functions, maximum of smooth functions are
quasidifferentiable.

Under the same name the concept of quasidifferentiability was gen-
eralized by V.F. Demyanov and A.M. Rubinov [16]. They consider the
class of directionally differentiable functions for which can
be written as a difference of two positively homogeneous convex func-
tions.

The author went out from Pshenichnyi’s starting point along another
path [33], [35].

Definition 10.7 The function is said to be generalized upper quasi-
differentiable at if its upper Dini derivative is finite for
each and quasiconvex in

The above concept is a generalization of Pshenichnyi’s definition inas-
much as this one is weakened at two points: the directional derivative

is replaced with the upper Dini derivative and instead of
convexity, quasiconvexity is required. It should be noted that the above
definition is, however, not a generalization of the Demyanov-Rubinov’s
concept.

Example 10.2 Consider the following Dirichlet-type function:
if is rational and if is irrational. It is easy to

check that hence is generalized upper quasidifferen-
tiable at You may observe that does not exist.

Quasiconvexity is a generalization of convexity; by this generalization,
however, many good properties, ensured by convexity, are lost. Conti-
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nuity is such a property. In order to avoid the drawbacks due to the
lack of continuity it is useful to impose some additional properties on
the Dini derivative

Definition 10.8 The generalized upper quasidifferentiable function
is called regular at if it possesses the following additional properties:

(i)

(ii)

is lower semicontinuous in

the convex cone is open.

Remark 10.5 Replacing with in the above definitions
the concept of (regular) generalized lower quasidifferentiability at a point
can be introduced.

One of the basic motivations to introduce the generalized upper qua-

16).

Theorem 10.14 Let the function be defined and quasiconvex in
a neighborhood of Then the upper Dini derivative is
quasiconvex in

It follows that if is quasiconvex and is finite for every
then is generalized upper quasidifferentiable at
Another strong motivation for creating the concept of generalized up-

per quasidifferentiability is the nice geometric background of the ex-
tremal properties of this class of functions. The central notion of it is
the quasisubdifferential, whose upper version will now be defined.

Let be generalized upper quasidifferentiable at and define
the functions and as follows:

By a result due to J.-P. Crouzeix ([9], Proposition 12 and Corollary
13) the functions and are positively homogeneous convex
functions. From optimization point of view the “negative part”
of may deserve more interest.

Unfortunately the function fails to be lower semicontinuous in
general, therefore, we deal only with regular upper quasidifferentiable
functions.

sidifferentiability is the following result of J.-P. Crouzeix ([9], Proposition
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In the regular case we have a representation formula

where denotes a closed convex set, called the upper qua-
sisubdifferential of at The subdifferential,upper quasisubdiffer-
ential has the following remarkable properties.

Theorem 10.15 [11] Let be generalized upper quasidifferentiable
at Then the following statements hold true:

(i)

(ii)

is a necessary condition for to be a local minimizer
of

If in addition is locally PCX(UDini) at then
is a sufficient condition for to be a local minimizer of

We recall that is called locally PCX(UDini) at when the
following implication holds on a neighborhood N of

Theorem 10.16 [33] Let the function be regular generalized upper
quasidifferentiable at where X is a real Hilbert space. If

and is of minimal norm then the direction

is the steepest normalized descent direction of at that is for every
one has

Optimality conditions in terms of upper quasisubdifferential can be
developed for the (NLP) problem, as well. The derivation of these
conditions will be discussed in section 10.25.

3. Other Classes of Generalized Derivatives
In nonsmooth analysis several other generalized derivatives proved to

be very useful: the Clarke derivative for locally Lipschitz functions, the
Rockafellar derivative for lower semicontinuous functions, the incident
derivative for quasiconvex functions, etc.

The present section provides a limited list on typical generalized deri-
vatives with the Rockafellar derivative in the focus and provides a way
of using them in characterizing different kinds of generalized convexity.
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The space X is specified in this section as real Banach space.
Besides the Dini derivatives, the Dini-Hadamard version of them can

still be considered as classic generalized derivatives.

Dini-Hadamard derivatives (upper and lower) are defined as:

The introduction of the Clarke and the Rockafellar derivatives opened
a new chapter in Nonsmooth Optimization and Nonlinear Analysis (see
[7], [59]). In their definition we use the following notation:

Clarke derivatives (upper and lower) are defined as:

The “limsup inf” and “liminf sup” operations were introduced by Rock-
afellar (see [58, 59]). The meaning of

operation, for instance, is the following

The meaning of the other operation is similar.

Rockafellar derivatives (upper and lower):
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weak Rockafellar derivatives:

Remark 10.6 It should be mentioned that for lower semicontinuous
function the convergence is equivalent to the simpler conver-
gence whose meaning is

The following theorem is very useful in further studies on the gener-
alized derivatives considered. For the proof consult [17].

Lemma 10.4 For all and one has

where the “largest” and “smallest” derivatives are defined as follows:

was introduced in [53] and called the dag derivative.
is frequently called as the Clarke-Rockafellar or circa derivative,

can also be found under the name incident derivative, whereas
can be referred to as contingent derivative [54].
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3.1 The Upper Rockafellar Derivative and
Generalized Convexity

The Clarke and Rockafellar derivatives play central role in Nonsmooth
Analysis, since they enjoy some very remarkable properties. A) The up-
per Rockafellar derivative is lower semicontinuous sublinear in its direc-
tion argument for lower semicontinuous functions. B) The upper Clarke
derivative is lower semicontinuous sublinear in its direction argument
for locally Lipschitzian functions. C) For locally Lipschitzian functions
they coincide.

Generalized convexity can be characterized by the upper Rockafellar
derivative, as well.

Theorem 10.17 Let be lower semicontinuous on the open convex
set Then each of the following statements are true:

(i)

(ii)

is convex on C iff is monotone on C,

is quasiconvex on C iff is quasimonotone on C.

The proof of (i) of the above theorem was given in [47], whereas
statement (ii) was proved in [48]. The proofs are strongly based on the
Zagrodny’s Approximate Mean Value Theorem [63].

3.2 Generalized Monotonicity and Generalized
Convexity

Generalized convexity can be characterized not only via Dini deriva-
tives and the Rockafellar derivatives, but also via other generalized
derivatives. In order to extend the statements of Theorems 10.13, 10.10
and 10.17 to other generalized derivatives, the following “majorizing
lemma” proves to be very useful.

Lemma 10.5 Let the bifunctions and be defined on the
set Let us have for all and

If is (strictly) monotone, quasimonotone, or (strictly) pseudo-
monotone on C, then is (strictly) monotone, quasimonotone, or
(strictly) pseudomonotone on C, respectively, as well.

The following result is a simple consequence of this lemma and The-
orem 10.17.
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Theorem 10.18 Let the bifunction be defined on the open con-
vex set C, on which the function is lower semicontinuous. Let for
all and have

Then any of the following statements holds true:

(i)

(ii)

is monotone on C if is convex on C,

is quasimonotone on C if is quasiconvex on C.

The above theorem can be applied to any members of the following
collection:

The following result will also be used in the sequel [44].

Lemma 10.6 Let the bifunction be defined on the open set C.
Set

Then

(i)

(ii)

the monotonicity of on C implies the monotonicity of
on C,

the quasimonotonicity of on C implies the quasimonoto-
nicity of on C.

We may also use any generalized derivatives to extend the pseudocon-
vexity concept of Mangasarian. In Subsection 2.1, the Diewert’s concept
was investigated. For locally Lipschitzian functions, pseudoconvexity
was defined in [26] via the following implication

These attempts motivate the following general treatment.

Definition 10.9 Let be a bifunction defined on a convex set
C. A function is called strictly

on C, if for any implications
hold, respectively:
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We have another very useful “majorizing lemma”.

Lemma 10.7 Let and the bifunctions and be de-
fined on the set Let us have for all and

Then (strict) of implies
(strict) of respectively.

The following result is an immediate consequence of Lemmas 10.5,
10.7 and Theorems 10.10, 10.11.

Theorem 10.19 Let the bifunction be defined on the convex set
C, on which the function is radially lower semicontinuous. Let for
all and have

Then each of the following statements are true:

(i)

(ii)

(iii)

is (strictly) convex on C if is (strictly) monotone on
C,

is quasiconvex on C if is quasimonotone on C,

is (strictly) on C if is (strictly) pseu-
domonotone on C.

The above theorem can be applied to any members of the following
collection:

Since for lower semicontinuous functions we have

(see [64]), therefore from Theorem 10.17 and Lemmas 10.5, 10.6 one can
infer the following results.

Theorem 10.20 Let be lower semicontinuous on the open convex
set Then the upper Rockafellar derivative is monotone,
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quasimonotone on C, if and only if the lower Dini-Hadamard derivative
is monotone, quasimonotone on C, respectively.

Theorem 10.21 Let the bifunction be defined on the convex set
C, on which the function be lower semicontinuous and let us have
for all and

Then each of the following statements are true:

(i)

(ii)

is convex on C if is monotone on C,

is quasiconvex on C if is quasimonotone on C.

The above theorem can be applied for any members of the following
collection:

Since the incident derivative lies between and
therefore, taking into account Theorems 10.18 and 10.21 we

have the following corollary.

Theorem 10.22 Let be lower semicontinuous on the open convex
set Then each of the following statements are true:

(ii)

(i) is convex on C iff is monotone on C,

is quasiconvex on C iff is quasimonotone on C.

4. First order approximations

The abundance of the notions of generalized derivatives puts forward
the question of axiomatization of the derivative concept. The concept
of first order approximation was introduced with this aim and shall be
discussed in this part. In subsection 4.2.1 a Generalized Farkas Lemma is
presented for quasiconvex first order approximations. The section ends
with deriving Karush-Kuhn-Tucker type optimality conditions using first
order approximations and some results on steepest descent paving the
way for algorithmic design.
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We are mainly concerned in this part with the derivation of necessary
optimality conditions for the following problem:

A frequently used scheme of deriving optimality conditions for (NLP)
is the following: Let be a local optimal solution of the problem and
N be a suitable neighborhood of it. Assume for sake of simplicity that
the first M constraints are active, whereas all of the others are inactive
in We assume furthermore that the inactive constraint functions are
upper semicontinuous at Then, in this case, the definition of local
optimality can be given as an implication:

Taking into account that for all this implication
can be written in a more suitable form:

According to a general treatment one approximates the increments
and with appropriate quantities

depending on and
Using these “approximations”, implication (10.6) is replaced by the

following:

where, for the sake of simplicity the reference to is omitted. It is
obvious that whenever implication (10.6) (10.7) holds, then condition
(10.7) is a necessary optimality condition for (NLP). The problem
of finding conditions ensuring implication (10.6) (10.7) belongs to
the realm of regularity conditions, whereas “dual” characterizations of
condition (10.7) leads to Generalized Farkas Theorems.

The results obtained for these problems crucially depend on the prop-
erties imposed on the problem-functions; however, there is a common
idea in most of the different approaches, namely the approximation of
the problem-functions by an appropriate derivative at a given point.

Derivative means in this context a certain kind of generalized direc-
tional derivatives and appropriate means that the derivative has some
“nice” properties, such as linearity, convexity, continuity, etc.
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There is a property that the generalized directional derivatives have
in common: they are positively homogeneous functions of the direction.

For differentiable functions the directional derivative is a linear func-
tion of the direction. For convex (or in more general for quasidifferen-
tiable) functions the directional derivative is a convex function of the
direction [55]. For locally Lipschitz functions the Clarke-derivative is
convex, as well [7].

These examples with many others show that the most developed
classes of the optimization problems are those which admit a certain
kind of convex generalized directional derivatives. The reason of this
seems to be very simple: Convex Analysis provides a very stable (geo-
metric) background for these classes.

The aim of the present section is to generalize certain “convex” results
along two lines.

(i) : The one is to treat the directional derivatives in an abstract way,
namely to consider them as special positively homogeneous functions of
the direction. This approach is not new (see, for instance [17], [20], [27]),
but the details are different.

(ii) : The other line is to extend the framework of the “convexity-
realm”: to replace the convexity assumption with the requirement of
quasiconvexity. Such an attempt has been made in [33] for the directional
Dini derivative.

The abstract treatment of Ioffe [27] or Giannessi [20] has mainly been
concerned with the convex case. The results of the present paper ob-
tained for the quasiconvex case could partly be applied for their treat-
ment, too.

4.1 Optimality Conditions

Let be a feasible solution of the (NLP) problem, so let For
the sake of simplicity suppose that the set F is locally convex at which
means that there exists a neighborhood G of such that the set
is convex.

In this case for any the half line
has initial section belonging entirely to F. denotes the cone
generated by the set M.) Since in our case does not
depend on the choice of the neighborhood G, simplifying the notation,
let us set

The elements of the convex cone are called feasible directions at
with respect to problem (NLP) .



Generalized Convexity and Generalized Derivatives 449

For the sake of convenience let us recall the definition of some well
known concepts having a crucial role in the sequel. The closed convex
cone

is called the tangent cone to F at ( is a sign for the closure
operation.)

Deriving optimality conditions the notion of descent directions is very
useful.

Definition 10.10 A vector is called a descent direction of the
function at if there exists such that for any one
has

Definition 10.11 A vector is called a weak descent direction of
the function at if for all there exists such that

The descent directions, weak descent directions of at form a
cone denoted by the symbol respectively. It is easy to
see that

It is quite obvious that if is a local optimal solution of problem
(NLP) then the following condition must hold:

Although this condition seems simple enough, the applicable deter-
mination or convenient description of the cones and is,
however, not an easy task in general. In order to get more tractable
optimality conditions a commonly used method is to approximate the
cone thus approximating the objective function at by
some kinds of its generalized derivatives.

The abstract scheme of this is the following: let denote a
function of the directions

Definition 10.12 The function is called first order app-
roximation of the function at if it possesses the following two
properties:

is positively homogeneous in

implies

(Ai)

(Aii)
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Generalized derivatives minorized by the lower Dini derivative are all
first order approximations in the above sense.

The concept of the first order approximation was introduced by Ioffe
[27] in a slightly different manner. He requires in his definition instead
of (Aii) the fulfillment of the following property:

(Aii*) for every

where denotes the upper Dini derivative. It is clear that (Aii*)
=> (Aii), so our definition is a bit more general than the one of Ioffe.

directions. Let us associate with the first order approxi-
mation the cone

called the cone of the directions of at The term
direction’ is justified by the inclusion

coming from property (Aii) and expressing that each direction
is a weak descent direction, as well. The inclusion (10.9) means that the
cone constitutes an “inner” approximation for thus
condition

is a necessary condition for to be a local minimizer of problem
(NLP) .

In most of the cases investigated so far the first order approximation
is supposed or proved to be continuous in d. This is the case

when X is finite dimensional and is convex in Out of the
consequences of the continuity we pick up the following two.

Definition 10.13 The first order approximation is called regu-
lar if it possesses the following two properties:

(Ri) is lower semicontinuous in

(Rii) is open.

By virtue of (Rii) for regular first order approximations the optimality
condition (10.10) is equivalent to condition
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4.1.1 Constraint Qualification. Consider again the nonlin-
ear programming problem:

We use the notation introduced at the beginning of this section. Con-
sider the two important implications

and

where It is obvious that whenever implication (10.12)
(10.13) holds, then condition (10.13) is a necessary optimality condi-
tion for (NLP). The problem of finding conditions ensuring implication
(10.12) (10.13) belongs to the realm of regularity conditions.

We shall now provide a general regularity condition, which fits well
to our abstract treatment. Put

and

Definition 10.14 The constraints are said
to satisfy constraint qualification (X) at with respect to

iff: are lower semicontinuous
first order approximations and

Lemma 10.8 Assume that the cone of the feasible directions, is
convex. Then if the constraint qualification (X) holds, then (10.12) im-
plies (10.13).

Proof. Since are first order approximations we
have and thus In virtue of
condition (CQ) it follows that On
the other hand (10.12) implies from which it follows
that which is equivalent to implication (10.13).
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4.2 Quasiconvex first order approximations

First order approximations may provide suitable setting for discussing
and deriving results important in the analysis of (NLP) . It is also obvi-
ous that if we do not impose special properties on the first order approx-
imations then this abstract framework remains rather poor. Convexity
is a celebrated property in this context, too.

Our aim with the subsequent parts to show that quasiconvex first
order approximations still provide a “rich structure”. In quasiconvex
analysis the incident derivative and the upper Dini derivative may serve
as quasiconvex first order approximations.

In the next part we derive a dual representation for implication (10.13).
To elaborate “dual” characterization for condition (10.13) is the realm
of Farkas Lemmas. (For historical details consult [45], [52].)

4.2.1 A Quasiconvex Farkas-Lemma. In the sequel we
consider only quasiconvex, lower semicontinuous and positively homoge-
neous and “approximations”.

Consider now the set T defined as:

which is a closed convex cone. In order to obtain dual characterization
for implication (10.13) we need the concept of the negative polar of a
cone and two important representation-theorems of Convex Analysis.

Definition 10.15 the negative polar of T, is defined as follows:

Lemma 10.9 ([57], Theorem 13.2) Let be a positively homoge-
neous lower semicontinuous convex function. Then there exists a convex
compact set such that

Lemma 10.10 (Crouzeix’ Representation Theorem) ([9]) Let
be a positively homogeneous lower semicontinuous qua-

siconvex function. Then there exist a convex compact set and
a nonbounded closed convex set such that
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and

Based on these representations we prove the following theorems.

Theorem 10.23 Let be positively homogeneous
lower semicontinuous quasiconvex functions and let

(i) If is positively homogeneous convex function, then implication
(10.13) is equivalent to the following inclusion:

(ii) If is lower semicontinuous positively homogeneous quasicon-
vex function, then implication (10.13) is equivalent to the following
inclusion:

Proof. Due to the hypothesis of the present theorem T is a closed convex
cone and coincides with its bipolar cone

(i): First we prove implication (10.18) (10.13). According to
(10.18) there exists such that

In virtue of Lemma 10.9 it is obvious that for all we have
and due to the definition of we have that

These two assertions prove implication (10.13).
We prove now that (10.13) (10.18), but we shall do it in an indirect

way by proving that Assume that (10.18) does not
hold, that is

Since is compact (and convex), therefore it is closed convex not con-
taining the origin. Let be the minimal norm element of this set. Prom
the extremal property of it follows that for any and the
following inequality holds (cf. [51], Theorem 4.7]):

For we obtain from (10.21) that
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By Lemma 10.9 it immediately follows that

We have another important consequence of (10.21): since is a cone
(10.21) can be satisfied only if for all holds. Since

therefore it follows that

(10.23) and (10.24) ensure that in the case considered (10.13) does not
hold.

(ii): We start with proving implication (10.19) (10.13). Assume
for contradiction that (10.19) holds but there exists such that

In virtue of (10.19) there exist two infinite sequences and
such that

Taking into account Lemma 10.10 it is obvious that for the given
we have

whereas, from the definition of it is clear that for the given
we also have

The two assertions above yield the following condition:

Since we have it is impossible. This contradiction proves
implication (10.19) (10.13).

Now we prove implication (10.13) (10.19) in the form that
 Assume that (10.19) does not hold, that is

Let denote the minimal norm element of As a consequence
of the extremal property of for all and the following
condition holds (cf. [51], Theorem 4.7]):

For (10.26) gives that:
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By Lemma 10.10 it follows that

(10.26) has one more important consequence: since is a cone, con-
dition (10.26) can hold if for all we have Since

therefore it is equivalent to the following containment:

(10.28) and (10.29) together prove that in the case considered implication
(10.13) does not hold.

The next result gives a tool for transforming Theorem 10.23 into gen-
eralized Farkas Theorems.

Lemma 10.11 (i): Let be positively homogeneous
convex functions. Then

(ii): Let be positively homogeneous lower semicon-
tinuous quasiconvex functions. Then

Proof. Let Then

(i): In this case is positively homogeneous and convex, as well.
Moreover

(10.32) is a well-known formula from Convex Analysis (cf. [55], Theorem
3.6). It can be proved very easily that

from which, taking into account (10.32), (10.30) is obtained.
If the compact convex set is polyhedral or does not contain the

origin, then the cone generated by itself is closed and thus, in this case,
the closure operation in (10.30) can be omitted.

(ii): In this case the max-function is also positively homogeneous
lower semicontinuous and quasiconvex and
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This formula can be proved as follows: by the Crouzeix’ Representation
Theorem we have that

and

Since holds for all and therefore, as a consequence of
the above formulas, we obtain that for all and

From the separation theorems of Convex Analysis it follows that this
inequality is equivalent to the following inclusion:

from which we immediately obtain that

We prove now the coincidence Assume for contradiction that
there exists such that and Since G is closed
and convex therefore can be strictly separated from G and thus there
exists such that

Since for all therefore we have

In virtue of the Crouzeix’ Representation Theorem it follows that
and from which we obtain that

On the other hand, the Crouzeix’ representation formula shows that

which is in contradiction to (10.34).
The relationship can be proved by the following sequence

of equivalences:
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It follows that from which, by the help of (10.33), (10.31)
can be obtained.

Now we are in the position to formulate some generalizations of the
Farkas Theorem, which are immediate consequences of Theorem 10.23
and Lemma 10.11. To ease the comparison with the “original” Farkas
Theorem let us recall an equivalent form of it in case of smooth (NLP)
problem ([18], [19], [52]):

Theorem 10.24 (Generalized Farkas Theorems)
A) Let be positively homogeneous convex functions.

(i) If is a positively homogeneous convex function, then (10.13)
is equivalent to the following condition:

(ii) If is a positively homogeneous lower semicontinuous quasicon-
vex function, then (10.13) is equivalent to the following condition:

B) Let be positively homogeneous lower semicontin-
uous quasiconvex functions.

(iii) If is a positively homogeneous convex function, then (10.13)
is equivalent to the following condition:

(iv) If is a positively homogeneous lower semicontinuous quasicon-
vex function, then (10.13) is equivalent to the following condition:

Remark 10.7 It should be mentioned that Farkas Theorem for posi-
tively homogeneous lower semicontinuous quasiconvex functions has re-
cently been elaborated in [60] and [61] by using a general “abstract
convexity” approach.

The application of the above results to obtain necessary optimality
conditions for certain classes of nonsmooth programming problems is
discussed in the next subsection and in more details in [35], [37].
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4.2.2 KKT-Type Theorems.

Theorem 10.25 Let be a local optimal solution of the (NLP)
problem and let the feasible set F be locally convex at Assume that
the active constraint and the objective functions admit quasiconvex reg-
ular first order approximations and at

 respectively, whereas the constraint functions inactive at a are upper
semicontinuous at  Assume furthermore that the active constraints sat-
isfy constraint qualification (CQ) with respect to
Then

Proof. From Lemma 10.8 it follows that in our case implication

is a necessary optimality condition. By virtue of B) ii) of the Generalized
Farkas Theorem we have the thesis.

Corollary 10.1 [35] Let be a local optimal solution of the (NLP)
problem and let the feasible set F be locally convex at Assume that
the active constraint and the objective functions are regular generalized
upper quasidifferentiable at  while the constraint functions, inactive at

are upper semicontinuous at Assume furthermore that the active
constraints satisfy constraint qualification (CQ) with respect to

Then

Remark 10.8 By the help of the Generalized Farkas Theorem one can
derive further variants of the KKT-type Theorem (see [45]).

4.2.3 Steepest Descent Directions. Theorem 10.23 provides
a dual characterization of implication

in form of It is well known that for convex generalized
derivatives condition,

has very interesting geometrical background based on the subdifferential
and the normal cone.

We assume that X is a real Hilbert space and start with recalling a
well-known theorem on the steepest descent direction (c.f. [42], [62]).
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Theorem 10.26 Let be a convex first order approximation of
at Then if and only if

If and is the minimal norm element of the closed
convex set then is the
normalized steepest descent direction of in the following sense:
for all one has

This theorem was extended for quasiconvex regular first order approx-
imation by the author in [37].

Theorem 10.27 Let be regular quasiconvex first order approx-
imation of at Then if and only if

If and is the minimal norm
element of the closed convex set then

is the normalized steepest descent direction of in
the following sense: for all one has
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Abstract This chapter is an introduction to generalized monotone multivalued
maps and their relation to generalized convex functions through subdif-
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1. Introduction
One of the cornerstones of Convex Analysis is the use of the sub-

differential of convex functions. The reason is of course that in most
problems arising in practice, convex functions are not differentiable, and
in this case the subdifferential (also called Fenchel-Moreau subdifferen-
tial) provides an elegant and powerful tool for their study. In spite of its
importance, the class of convex functions is a very small one. Since the
advances of B.N. Pshenichnyi in Nonsmooth Optimization [64] and F.
Clarke [14] who extended the notion of subdifferential to the class of lo-
cally Lipschitz functions, considerable effort has been devoted to create
subdifferentials that can be used in nonconvex problems. As is usual in
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cases of generalization, the result was the definition of a large number
of subdifferentials, each of which was introduced having in mind a par-
ticular application, or a property of the Fenchel-Moreau subdifferential
that one wishes to preserve. Of course, none of these subdifferentials is
best in all situations.

Given the variety of subdifferentials, it is remarkable that most of
them are suitable for characterizing generalized convex functions. In
fact, at first one has to introduce appropriate multivalued generaliza-
tions of the single valued generalized monotone maps. Having done so,
one has then to show that a function is generalized convex in some sense,
if and only if its subdifferential is generalized monotone in a correspond-
ing sense. The literature on this subject is vast, and not easy to follow.
The complexity of the field is mainly the result of the multitude of gen-
eralized monotonicity notions, the large number of subdifferentials, and
the different assumptions of continuity etc., used by each author. In an
effort to show the underlying unity, several authors proposed axiomatic
schemes that cover a large number of subdifferentials and showed that
many of the results are valid for all subdifferentials that fall into their
axiomatic schemes. Let us mention in this respect the work of Penot
[55, 57, 60], Aussel, Corvellec and Lassonde [2, 3] and Thibault and
Zagrodny [68].

A large part of this chapter is devoted to an exposition of the main
results on the relation of generalized convexity and generalized mono-
tonicity via subdifferential theory. We exclude from our exposition all
contributions not directly related to all three of these topics, such as:
results involving generalized derivatives rather than subdifferentials (see
Chapter 10 of this volume), the application of nonsmooth analytical tools
and generalized convexity to duality methods, Mathematical Economics,
Hamilton Jacobi-equations etc. (see [58] and Chapter 6 of this volume,
and the references therein), the calculus of subdifferentials adapted to
Generalized Convexity [62]. Even so, we will have to leave aside some im-
portant contributions on the integration of generalized monotone maps
[7], the characterization of quasiconvexity via the normal cones [4, 8] etc.

The plan of the chapter is as follows. The next section introduces the
various kinds of subdifferentials we are going to use. Section 3 studies
the relation of convexity to monotonicity, and some variants. Section 4
is devoted to quasiconvexity and quasimonotonicity, and Section 5 con-
cerns pseudoconvexity and pseudomonotonicity. Section 6 studies the
recent concept of proper quasimonotonicity, its relation to variational
inequalities, and explores the various connections between the notions
of generalized monotonicity. Section 7 presents a recently introduced
“quasiconvex” subdifferential and some of its properties. The last sec-
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tion contains some recent results on the maximality of pseudomonotone
maps.

Let us fix the notation. In what follows, X is a Banach space and X*
its dual. For simplicity, readers may assume that with no
loss of an important feature (besides, functional analytic arguments are
almost entirely missing in this chapter, except in the last section). Given

we denote by the segment The
open and half-open segments and are defined analo-
gously. Given we denote by int S, core S, co S respectively, the
interior, the algebraic interior and the convex hull of S. The set S is
called radially open if core S = S. For and will
denote the open ball of center and radius A cycle is a finite sequence

of elements of X such that
Given a set and              we will denote by               the normal

cone to C at i.e., the set

We will mainly consider multivalued maps T from X into X*, i.e.,
maps that associate to each element a subset (possibly
empty) of X*. We will denote such maps as The domain
of T is the set

Given an extended real-valued function and
we denote by (resp. the sublevel set (strict sublevel set):

The function is called radially continuous if its restriction to line seg-
ments is continuous.

2. Subdifferentials

We recall the definition of the subdifferential of a convex function
(here called Fenchel-Moreau subdifferential, to distinguish it from other
subdifferentials to be introduced later).

Let be a proper convex function with effective
domain (see Chapter 1 for the relevant
definitions). The Fenchel-Moreau subdifferential of at is
the set

while if
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The above definition makes use of the values of on the whole space.
However, it can be seen that the subdifferential depends only on the val-
ues of at a neighborhood of indeed, the following result is standard
in Convex Analysis [66, Th. 23.2]:

Proposition 11.1 For any proper convex function and any
the directional derivative

exists in In addition,

Many attempts to define a subdifferential for more general classes of
functions are inspired by relation (11.3). However, since the directional
derivative may not exist if the function is not convex, new kinds of
generalized derivatives are introduced. The generalization follows two
directions: first, instead of ordinary limits as in (11.2), one makes use of
upper or lower limits. Second, besides which approaches 0 from above,
also and may be replaced by vectors and which approach (in
some sense) and respectively. This creates a large number of possi-
ble generalized directional derivatives and an equal number of subdiffer-
entials. For instance, given a lower semicontinuous (lsc) function for
each the upper Dini derivative and the Clarke-Rockafellar
derivative are defined, respectively, by

and

Here, means that both and Both
derivatives are majorized by the “dag” derivative [57]

Given any generalized derivative the
corresponding subdifferential is the multivalued map
defined by
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for all and for all
Accordingly, one can define the upper Dini, the Clarke-Rockafellar,

and the dag subdifferentials of at thus denoted
and respectively. Note that since majorizes both and

is larger than and in the sense that and
Actually, is one of the largest subdifferentials.

Whenever is locally Lipschitz, the Clarke-Rockafellar derivative
equals the somewhat simpler Clarke derivative

and then is the Clarke subdifferential [15].
In many cases where the subdifferential is defined through a general-

ized directional derivative, the latter can be recovered from the subdif-
ferential. For instance, the Clarke subdifferential of a locally
Lipschitz function is always w*-compact and the Clarke derivative is
given by

An analogous statement holds for the directional derivative and the
subdifferential of convex functions. In such cases, many results in terms
of subdifferentials are equivalent to results in terms of the corresponding
generalized derivatives, see for instance [41, 42].

A subdifferential whose definition does not use a directional derivative,
is the Fréchet subdifferential (also called regular subdifferential [67])

defined by

where is some real valued function satisfying

One of the most basic tools of smooth or nonsmooth Analysis is the
Mean Value Theorem (MVT). If, say, is a differentiable
function, then the MVT asserts that for any there exists

such that The same result holds
for functions defined in more general spaces. It would be desirable that
something analogous holds for subdifferentials; for instance, it would be
nice if one could recover, at least in some sense, the value
by using the subdifferential of at some point Unfortunately,
this is patently false since for most subdifferentials it is possible that
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for all However, it was shown by Zagrodny in
one of the most far-reaching developments of Nonsmooth Analysis, that
a version of the Mean Value Theorem holds for the Clarke-Rockafellar
subdifferential, the main difference being the fact that instead of using a
point one has a sequence of points approaching some
Various versions of this theorem were shown later to be true also for
other subdifferentials. In fact, axiomatic schemes have been invented [3,
55, 68], that incorporate a large number of the existing subdifferentials,
and show the theorem to be true under suitable assumptions on the
space X.

In order to simplify our discussion, let us define an abstract subdiffer-
ential as follows:

Definition 11.1 An abstract subdifferential is any map which asso-
ciates to each lsc function and each a subset

of  X*, and has the properties:

(a) If is convex, then

(b) If is a local minimum of then

(c) For every one has

This definition is quite general and includes most known subdifferen-
tials, and in particular and We restrict the class of
subdifferentials we are going to use, to those satisfying something like
the Mean Value Theorem:

Definition 11.2 An abstract subdifferential is called MVT subdifferen-
tial if for all such that there exists and
sequences such that and

Note that in particular (11.7) implies that

A lot of the subdifferentials encountered in the literature are MVT
subdifferentials, provided that the Banach space has some standard reg-
ularity property [3]. In particular, is a MVT subdifferential in any
Banach space X, while and are MVT subdifferentials if the
space has an equivalent norm which is Fréchet (respectively, Gâteaux)
differentiable on X\{0}.

GENERALIZED CONVEXITY AND MONOTONICITY
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The class of MVT subdifferentials is extremely broad to be of real
use if we do not impose additional assumptions. If we define by

if is convex and if is not convex,
then it is obvious that is a MVT subdifferential, and in fact the
largest one. Such a subdifferential cannot be used to study any non-
convex function since it does not depend on the function. Small MVT
subdifferentials are more interesting [56] as they provide elements
that satisfy (11.7), while belonging to a relatively small class. Our usual
assumption will be that our subdifferential will be smaller than one of
the known subdifferentials, usually

3. Monotonicity and Convexity
Monotone maps (or “operators”) were used in partial differential equa-

tions since 70 years at least. However, the modern treatment of such
maps started around 1960 by Kachurovskii [38] and Minty [53] who were
probably the first to link monotone maps to convex functions. Soon af-
terwards, Browder [11] studied multivalued monotone maps and made
decisive steps in that direction. We refer the interested reader to the
treatise of Hu-Papageorgiou [36] for historical details and a modern pre-
sentation of the theory.

If is a lsc, proper convex function and an abstract
subdifferential then, according to Definition 11.1, It is well
known that in this case is a monotone map; in fact, it is also
cyclically monotone [65, 66]. Let us recall the appropriate definitions.

A multivalued map T : X X* is called:

1. Monotone, if for all and

It is called maximal monotone if there is no monotone extension of T
other than itself, i.e., whenever is a monotone map such
that for all then

2. Cyclically monotone, if for any cycle
and any

It is called maximal cyclically monotone if it has no cyclically monotone
extension other than itself.

3. Strictly monotone, if for all distinct and all
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4. Cyclically strictly monotone, if for any cycle
where at least two are distinct, and any

There are some obvious relations between these notions: Both strict
and cyclic monotonicity imply monotonicity. Also, cyclic strict mono-
tonicity implies strict monotonicity and cyclic monotonicity.

The convexity of a function is equivalent to the monotonicity of its
subdifferential, as long as the latter is a MVT subdifferential. This is
shown by the following theorem, which is more or less classical:

Theorem 11.1 Let be a lsc function and be a
MVT subdifferential. Then the following assertions are equivalent:
(i) is convex.
(ii) For all and all one has:

(iii) The subdifferential is a cyclically monotone map.
(iv) is a monotone map.

Proof. Implication (i) (ii) is a consequence of (11.1), since
whenever is convex. Implications (ii) (iii) (iv) can be found in most
textbooks on Convex Analysis, but we present a proof for the sake of
completeness: If (ii) holds, then for any cycle
in X, we have

Adding these inequalities we get relation (11.9).
If (iii) holds, then by considering a cycle consisting

of two points, we infer immediately (iv). We postpone the proof of
implication (iv) (i) until the next section.

Likewise, we can characterize strictly convex functions (see Chapter
2 of this book) by strict monotonicity:

Theorem 11.2 Let be a lsc function and a MVT
subdifferential. Consider the following assertions:
(i) The function is strictly convex.
(ii) For all distinct and one has
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(iii) is a cyclically strictly monotone map.
(iv) is a strictly monotone map.

Then (i) (ii) (iii ) (iv). If, in addition, for all there
exists such that then (iv) (i).

Proof. (i) (ii): If is strictly convex, then it is convex. Hence if
X are distinct, we can apply relation (11.10) to and

(ii) (iii): Let be a cycle in such that at
least two of the points are distinct; then for some If

then by condition (ii),
where at least one of the inequalities is strict. Adding

these inequalities, we deduce that (iii) holds.
(iii)   (iv): This is again obvious.
(iv)   (i): If is strictly monotone, then it is monotone. By Theorem

11.1 and Definition 11.1, is convex and is the Fenchel-Moreau
subdifferential. Suppose that is not strictly convex; then there exist
distinct such that for every

By assumption, we can find such
that Choose then by Theorem 11.1,

holds. It follows easily that
Likewise we deduce that hence

Now we repeat the argument and find a point such that
for some holds. It follows that

and then thus contradicting
the strict monotonicity of

The equivalence (i) (iv) was established in [49] under the slightly
less general assumption for all the same reference
contains a counterexample showing that the implication (iv) (i) does
not hold without some assumption on the domain of

Note that there is no relation between strict monotonicity and cyclic
monotonicity, as the two notions strengthen monotonicity in two differ-
ent ways. This can be seen by an easy example:

Example 11.1 Let the map be defined by

is strictly monotone since for all
However, it is not cyclically monotone as one can see by
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Figure 11.1. A strictly monotone map that is not cyclically monotone. The contour
integral around a circle centered at the origin is not zero.

considering the points and

We can understand better the situation if we combine facts from Con-
vex Analysis with Advanced Calculus: According to a classical theorem
of Rockafellar [66], a cyclically monotone map is the subdifferential of a
convex function if and only if it is maximal. Further, a continuous (cycli-
cally) monotone map from a reflexive Banach space to its dual is always
maximal (cyclically) monotone [72, Proposition 32.7, Vol. IIA]. Thus, if
a continuous vector field is cyclically monotone, then it is
the gradient of a proper convex function This corresponds
to well-known facts from vector Calculus: indeed, if T is continuous and
cyclically monotone, then it is an immediate consequence of the defi-
nition of the line integral that the contour integral along any
continuous closed curve C is nonpositive; by considering the same curve
with the opposite direction we deduce that This is exactly
the condition that guarantees that T is a gradient of a function. In the
example above, the contour integral along a circle centered at the origin
is not zero, as one can see by a look at the shape of the vector field shown
in Figure 11.1. For a detailed analysis of the relation of line integrals to
maximal monotonicity we refer the reader to [9, 69].

4. Quasimonotonicity and quasiconvexity

Multivalued quasimonotone maps were first introduced by Hassouni
[32]. Also, Hassouni and Ellaia [34] generalized a result of Karamar-
dian and Schaible [39] and established the connection between quasi-
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monotonicity of a locally Lipschitz function and quasiconvexity of its
Clarke subdifferential; an analogous connection was shown to hold for
lower semicontinuous functions by Luc [48]. Later on, multivalued quasi-
monotone maps were studied in connection with variational inequalities
and equilibrium problems, see [30, 31] and the references therein. Very
recently, it has been shown that quasimonotonicity, together with conti-
nuity along straight lines and a coercivity condition, is enough for show-
ing the existence of a solution to the variational inequality problem [5].
Also, cyclically quasimonotone maps were also introduced and studied
(see [45] for the single valued and [21, 23] for the multivalued case).

We recall the relevant definitions. A multivalued map T : X X* is
called:

1. Quasimonotone, if for all and the
following implication holds:

2. Cyclically quasimonotone, if for any cycle in X
and any the following implication holds:

Equivalently, T is cyclically quasimonotone if for any cycle
and any there exists some in

such that

It is obvious that a monotone map is quasimonotone, and a cyclically
monotone map is cyclically quasimonotone. Also, a cyclically quasi-
monotone map is quasimonotone. However, Example 11.1 shows that a
monotone or even strictly monotone map need not be cyclically quasi-
monotone.

Quasiconvexity of a function is equivalent to quasimonotonicity of the
subdifferential, under very mild conditions:

Theorem 11.3 Let be a lsc function and a MVT
subdifferential. Consider the following assertions:
(i) is quasiconvex;
(ii) If for some then for all

(iii) is a quasimonotone map;
(iv) is a cyclically quasimonotone map.
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Then (iv) (iii) (ii) (i). If then all four conditions are
equivalent.

Proof. Implication (iv) (iii) is trivial. Implications (iii) (ii) (i) are
shown in [1]. Implication (i) (ii) under the assumption is shown
in [60].

We show the remaining implication (ii) (iv). It is sufficient to show
that is cyclically quasimonotone. If not, then there is a cycle

and such that
for all From (ii) we deduce that

for all It follows that
Since it follows from the definition of that

Using the definition of we infer that there ex-
ist sequences and such that

Since is quasiconvex. From
we deduce that

However, since for sufficiently large we have
Hence, (ii) implies that

a contradiction.

Implication (i) (iii) for the case was shown in [48], see also
[2].

Note that some restriction to the size of the subdifferential is necessary
in order to have (i) (iv) or (i) (iii) in Theorem 11.3. For instance, if

then obviously the implication does not hold. Further, we
note that property (ii), which roughly corresponds to property (ii) in
Theorem 11.1 for convex functions, means that if then
for all in the open half-space is non-decreasing
along the half-line stemming from in the direction i.e., the function

is non-decreasing.
The following continuity result from [26] (see also [24]) will be useful

in the sequel:

Proposition 11.2 If is quasiconvex, lsc and radially continuous, then
it is continuous.

Proof. Since is lsc, it suffices to show that it is also upper semi-
continuous, i.e., that for every the strict sublevel set

is open. For any let be such that
Since is radially continuous, for any we can

find such that is contained in the sublevel set
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Hence belongs to the algebraic interior of the closed convex set
For closed convex sets in Banach spaces the algebraic and the topolog-
ical interior coincide [35, pg 139]. It follows that
Hence is open.

Convex functions can be characterized through quasiconvexity, as the
following result of Crouzeix [20] shows:

Proposition 11.3 A function is convex if and only
if for every is quasiconvex.

Proof. If is convex, then obviously is convex, hence quasiconvex.
Conversely, let be quasiconvex for each For any
and choose such that

If, say, then by quasiconvexity
of we have:

Hence,

We are now in position to present the missing part of the proof of
Theorem 11.1:

Proof of (iv) (i) in Theorem 11.1. If is monotone then obviously
for any is monotone. Hence, by Theorem
11.3, is quasiconvex. By Proposition 11.3, is convex.

The above proof is contained in [2]. The equivalence of convexity of
a function to monotonicity of its Clarke-Rockafellar subdifferential was
established in [17] for reflexive Banach spaces and in [46] for general
Banach spaces; see also [18].

Semistrictly or strictly quasiconvex functions can also be characterized
by means of their subdifferential. We first define the corresponding
generalized monotonicity notions. A multivalued map T : X X*
is called [50]:

1. Semistrictly quasimonotone if it is quasimonotone and for any
distinct the following implication holds:
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2. Strictly quasimonotone if it is quasimonotone and for any distinct
there exist and such that

An equivalent formulation of (11.14) is the following: If
then

If D (T) is convex (or more generally, if for all
is dense in it can be easily seen that a strictly quasimono-

tone map is semistrictly quasimonotone; also, a strictly monotone map
is strictly quasimonotone.

The following characterizations were shown in [27] and in slightly
less general form in [22]. Also, some of the implications were shown
previously in [50].

Theorem 11.4 Let be a lsc function and a MVT
subdifferential such that Consider the following assertions:
(a) is semistrictly quasiconvex.
(b) For all the following implication holds:

i.e., is strictly increasing along the segment
(c) is semistrictly quasimonotone.

Then If is radially continuous, then (c) (b) (a). If
is locally Lipschitz and then all three assertions are equivalent.

Theorem 11.5 Let be lsc and radially continuous, and be a MVT
subdifferential such that If is strictly quasimonotone, then
is strictly quasiconvex. Conversely, if and is locally Lipschitz
and strictly quasiconvex, then is strictly quasimonotone.

5. Pseudomonotonicity and pseudoconvexity

The usual definition of pseudoconvexity presupposes differentiability
of the function involved (see Chapter 2). For non-differentiable func-
tions, one can find some non-equivalent definitions in the literature
[54, 59]. Here we will use the definition from [23] (see also [1]):

Definition 11.3 Given a MVT subdifferential  a lsc function is
called pseudoconvex (with respect to if for every the follow-
ing implication holds:
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An equivalent formulation of pseudoconvexity is given below:

Proposition 11.4 Let be a MVT subdifferential and a lsc function
Consider the following assertions:

(a) is pseudoconvex;
(b) dom is convex and for every the following implication
holds:

(c) is radially continuous and for every (11.18) holds.
Then (c) (b) (a).

Proof. (a) (b): We have only to prove that dom is convex. If not,
there exist and such that By lower
semicontinuity of there exists such that for all

According to Definition 11.2, there exist and sequences
and such that For sufficiently

large, intersects Choose Using the
pseudoconvexity of we deduce that a contradiction.
Hence, dom is convex.

(b) (a): We first show that is quasiconvex. If not, then there
exist and such that

Since is lower semicontinuous, there exists
such that for all Note that

since otherwise (11.18) would imply that is a global minimum, thus
contradicting Hence, by Definition 11.1, is not a local
minimum. We deduce that there exists such that

Since is a MVT subdifferential, there exist a sequence con-
verging to some and such that
Since it follows that or
Using (11.18) we infer that and by lower semicontinuity,

But this contradicts with the fact that
Hence is quasiconvex. For as in (11.18), clearly

implies that for all hence, (11.17) holds.
(c) (a): According to Proposition 3.1 in [59], is quasiconvex; hence,

as in the previous part, we infer that is pseudoconvex.

Note that (a) (c) does not hold in the proposition above. For in-
stance, assume that Then for the lsc function
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the subdifferential is

Thus, is pseudoconvex and has convex domain without being contin-
uous.

Let us see how pseudoconvexity compares with other generalized con-
vexity notions. First, a lsc convex function is pseudoconvex: to see this,
combine Theorem 11.1 with Proposition 11.4. We also have:

Proposition 11.5 Let be a MVT subdifferential and a lsc pseudo-
convex function. Then
(i) is quasiconvex,
(ii) every local minimum is a global minimum,
(iii) if is radially continuous, then it is semistrictly quasiconvex.

Proof. (i) This is an immediate consequence of Theorem 11.3.
(ii) If is a local minimum, then by Definition 11.1,

Setting in (11.17) we infer that is a global minimum.
(iii) By part (i) of this proof, is quasiconvex. Also, by Proposition

11.2, is continuous. Suppose that is not semistrictly quasiconvex.
Then there exist and such
that
By continuity, there exists such that for all with

For any with set
Then one has and Hence

It follows that i.e., is a local minimum of By
part (ii),   is also a global minimum, thus contradicting

As expected, pseudoconvex functions can be characterized by a corre-
sponding property (pseudomonotonicity) of their subdifferential. There
are mainly two notions of pseudomonotonicity that appear in the litera-
ture. One is the pseudomonotonicity of maps in the sense of Brezis and
Browder [10, 11] whose definition relies mainly on topological properties;
see Chapter 12 of this book, where these maps are called “topologically
pseudomonotone”. The other is the notion defined by Karamardian in
the single valued, and by Yao in the multivalued case. Let us recall some
definitions.

A multivalued map T : X X* is called:
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1. Pseudomonotone [41], if for all and
the following implication holds:

2. Cyclically pseudomonotone [21] if for any cycle in
X and any the following implication holds:

Equivalently, T is cyclically pseudomonotone if for any cycle
the following implication holds:

Considering a cycle consisting of two points, one can see that cyclically
pseudomonotone maps are pseudomonotone. Also, it is obvious that a
pseudomonotone map is quasimonotone; actually, under an additional
assumption on the domain, we have more:

Proposition 11.6 Let T : X X* be a pseudomonotone map. If
D (T) is convex (or more generally, if for all
is dense in then T is semistrictly quasimonotone.

Proof. T is obviously quasimonotone. For any distinct
and such that choose
Obviously, If then by pseudomonotonicity,

Hence, i.e., T satisfies (11.14).

A theorem analogous to Theorem 11.3 holds:

Theorem 11.6 Suppose that is a lsc, radially continuous function
and a MVT subdifferential. Then the following assertions are equiva-
lent:
(i) is pseudoconvex,
(ii) is cyclically pseudomonotone,
(iii) is pseudomonotone.

Proof. (i) (ii): If     is not cyclically pseudomonotone, then there exist
points and such that for
all and By definition of pseu-
doconvexity, the former gives
hence By Proposition 11.5, is semistrictly quasi-
convex. Applying now Theorem 11.4 we get from that

a contradiction.
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(ii) (iii): Obvious.
(iii) (i): This is shown in Theorem 4.1 of [59].

Remark. Note that implications (i) (ii) (iii) can also be derived
without radial continuity, provided that Indeed, to show (i) (ii),
suppose that are as in the first part of the above proof.
As before, we get

From we deduce that there exists such that
for all Since we deduce that

Using the definition of (cf. relation (11.6)) we
infer that there exist sequences and such that

Since is also quasiconvex, we deduce that for all
In particular, no can be a global minimum. On the other
hand, by lower semicontinuity, and a fortiori

This is true for all near hence is a local minimum. By
Proposition 11.5, is also a global minimum. This contradicts the fact
that no member of is a global minimum. Hence, (i) (ii) is
true, while (ii) (iii) is obvious.

Theorem 11.6 was shown under various settings and forms in several
papers; see for instance [1, 23, 43, 50, 59].

Pseudoconvexity and pseudomonotonicity have their “strict” coun-
terparts. A function will be called strictly pseudoconvex if for every

the following implication holds:

A result similar to Proposition 11.4 holds. Condition (b) below is
a slightly different definition of strict pseudoconvexity, introduced by
Penot and Quang [59].

Proposition 11.7 Let be a MVT subdifferential and a lsc, radially
continuous function The following assertions are equivalent:
(a) is strictly pseudoconvex;
(b) For every the following implication holds:

Proof. We have only to prove that (b) (a). If relation (11.22) holds,
then by Proposition 11.4, is pseudoconvex; further, by Proposition
11.5 it is semistrictly quasiconvex. Consequently, if for
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some then implies that for all
i.e. (11.21) holds.

We now compare with other generalized convexity notions. For locally
Lipschitz functions, part (ii) of the following proposition is contained in
[59].

Proposition 11.8 Let be a continuous function and a MVT subd-
ifferential.
(i) If is strictly convex, then it is strictly pseudoconvex.
(ii) If is strictly pseudoconvex and for all there exists

such that then is strictly quasiconvex.

Proof. (i) This is a consequence of Theorem 11.2 and Proposition 11.7.
(ii) We know already by Proposition 11.5 that is semistrictly qua-

siconvex. Thus, we have only to prove that for every with
and every one has Suppose that
for some then from semistrict quasiconvexity it follows

immediately that is constant on Now choose such
that and It is obvious that and

have opposite sign. If, say, then by strict
pseudoconvexity we get a contradiction.

Let us compare the various notions of generalized convexity intro-
duced so far. The following implications hold (some of them need extra
continuity assumptions) and none other. We use the abbreviations “s.”
and “ss.” for “strict” and “semistrict” respectively:

A multivalued map T is called strictly pseudomonotone [70] if for all
distinct and all the following implica-
tion holds:

It is clear that a strictly pseudomonotone map is pseudomonotone
and that a strictly monotone map is strictly pseudomonotone. We also
have:
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Proposition 11.9 If T is strictly pseudomonotone with convex domain,
then T is strictly quasimonotone.

Proof. Obviously, a strictly pseudomonotone map T is quasimonotone.
If T is not strictly quasimonotone then there would exist
such that for all and Hence, if we
choose arbitrary and
then This contradicts (11.23).

In order to prove a characterization of strictly pseudomonotone func-
tions, we need a lemma:

Lemma 11.1 Let be lsc and assume that its subdifferential is a
pseudomonotone map. If and then

Proof. Choose such that for all
Since is also quasimonotone, by Theorem 11.3 one has
for all In particular Suppose that

Then would be a local minimum of hence by
Definition 11.1. However, pseudomonotonicity and imply
that for all a contradiction.

Proposition 11.10 Let be lsc and a MVT subdifferential. If is
strictly pseudoconvex, then is strictly pseudomonotone. Conversely,
if is strictly pseudomonotone and for all there exists

such that then is strictly pseudoconvex.

Proof. The first part of the theorem is an easy consequence of the def-
initions (see also [59]). For the second part, suppose that for some

and one has For any
choose such that and By strict pseu-
domonotonicity we have hence On
the other hand, is pseudomonotone. From Lemma 11.1 we deduce
that Finally, we note that is quasimonotone, hence
by Theorem 11.3, implies that Thus,

i.e. is strictly pseudoconvex.

In case is locally Lipschitz the above Proposition was established in
[59].

6. Proper quasimonotonicity
Cyclic generalized monotonicity of a map T is defined by considering

the quantity where are subsequent elements of a
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cycle and If we consider instead the quantity
where is a point in the interior of the cycle, we get a notion which is
in general weaker, but sometimes equivalent to the corresponding gen-
eralized monotonicity notion:

Definition 11.4 A map T : X X* is called:

1. Properly monotone, if for every finite sequence in
X, every and every with and

the following inequality holds:

2.   Properly pseudomonotone if for every and as
before, the following implication holds:

3. Properly quasimonotone, if for every and as
before, the following implication holds:

or equivalently, if for every  and as before, there exists
such that

Note that in the definitions above, the points can be
equivalently be assumed to belong to D (T); this of course is everywhere
obvious, but needs a moment’s thought for relation (11.26).

It is evident that proper monotonicity implies proper pseudomono-
tonicity, which in turn implies proper quasimonotonicity. We also have:

Proposition 11.11 Let T : X X* be a map.
1. T is properly monotone if and only if it is monotone.
2. If D (T) is convex, then T is properly pseudomonotone if and only

if it is pseudomonotone.

Proof. If T is properly monotone (respectively, properly pseudomono-
tone), then if we use two points and we conclude
immediately that T is monotone (respectively, pseudomonotone).
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1. Suppose that T is monotone. Then for any
any and any with

and we calculate:

By monotonicity of T, the last expression is nonpositive. Hence, T is
properly monotone.

2. Suppose that T is pseudomonotone and D (T) is convex. If T is
not properly pseudomonotone, then there exist

and with and
such that

By assumption, hence we may choose Since T
is pseudomonotone, relations (11.27) imply

Thus, a contradiction.

If D (T) is not convex, T may be pseudomonotone without being
properly pseudomonotone (see Chapter 14 of this book).

In contrast to proper monotonicity and proper pseudomonotonicity,
proper quasimonotonicity is distinct from quasimonotonicity. Properly
quasimonotone maps are obviously quasimonotone, but the converse is
not necessarily true. To see this, consider the map de-
fined as follows. Let and set

and on
Then T is quasimonotone but not properly quasimono-

tone (take On may modify slightly this example to make
T continuous, so this behavior is not related to discontinuity.

On the other hand, proper quasimonotonicity is weaker than many
other generalized monotonicity notions:

Proposition 11.12 If T is cyclically quasimonotone, or semistrictly
quasimonotone, then it is properly quasimonotone.

Proof. Suppose that T is not properly quasimonotone. Then there exist
and with
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and such that

We show that T is neither cyclically quasimonotone nor semistrictly

quasimonotone. Set Then implies

that It follows that for some

must hold. We set Using the same

argument, we define inductively a sequence such that

for all Since the set is finite, there exist
such that If we consider the finite sequence

relation (11.30) means that T is not cyclically
quasimonotone.

To show that T is not semistrictly quasimonotone, note that (11.29)
implies that there exists such that for all one has:

If T is semistrictly quasimonotone, then implies that
there exist and such that
hence Since it
follows that for some we must have Since
T is quasimonotone, we infer that for all in
contradiction to (11.31).

Since proper quasimonotonicity implies quasimonotonicity and is im-
plied by cyclic quasimonotonicity, we infer immediately from Theorem
11.3 the following characterization of quasiconvex functions:

Theorem 11.7 Let be a MVT subdifferential such that A lsc
function is quasiconvex if and only if  is properly
quasimonotone.

Thus, quasiconvexity can be characterized either by quasimonotonic-
ity or by proper quasimonotonicity of its subdifferential. Historically,
quasimonotonicity was the first to be found, certainly because it has
a simpler, basically one-dimensional definition. However, proper quasi-
monotonicity is often more useful, at least in relation to Minty varia-
tional inequalities. Given a subset K of X and a multivalued map T, an
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element is called a solution of the Minty Variational Inequality
Problem (MVIP) for K if

Given a set we recall that a map G : A X is called a KKM
map if for every
It is straightforward to check that a multivalued map T : X X* is
properly quasimonotone if and only if the multivalued map
defined by

is KKM. This observation has important consequences, as shown by the
following theorem, due essentially to John [37].

Theorem 11.8 Let T : X X* be a map with convex domain. The
following are equivalent:
(i) T is properly quasimonotone,
(ii) For every nonempty, weakly compact, convex subset S of X, the
MVIP for S has a solution,
(iii) For every there exists
such that

Proof. (i) (ii). Since T is properly quasimonotone, the map is
KKM. Consequently, the map G : S S defined by

is also KKM. The values of G are nonempty and weakly
compact; hence, by the Ky Fan Lemma (see [44] or next chapter for
instance), It is obvious that any element of
is a solution of the MVIP for S.

(ii) (iii). It is sufficient to set
(iii) (i). We reproduce the proof of [37]. We show that for any

and there exists such that
(11.26) holds, by using induction with respect to For this is
evident. Assume that this is true for and let and
be as above. Let be the element whose existence is asserted by (iii).
If then obviously satisfies (11.26). If then the straight
line through and intersects the border of at two
points at least; one of them, which we will denote by is such that

Since belongs to the convex hull of of the points
by the induction hypothesis there exists

such that
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Since we have also

we immediately infer that (11.26) holds.

Since D (T) is convex, the set S and the points in the
above theorem can be equivalently assumed to be contained in D (T).

The following table summarizes the relations between the various
kinds of generalized monotonicity.

We used the abbreviations “c.”, “p.”, “s.” , “ss.” and “mon.” for
“cyclically”, “properly”, “strictly”, “semistrictly” and “monotone”, re-
spectively. Some of the implications require the assumption that D (T)
is convex (or more generally, that for any is
dense in in which case we mark the implication by an asterisk.
Finally, some of the implications become equivalence relations in case T
is the subdifferential of a lsc function; these are marked by ~.

7. A quasiconvex subdifferential

Besides the “all-purpose” subdifferentials defined before, there are
some subdifferentials that were designed specifically for certain classes
of functions and are not included in our definition of an abstract subdif-
ferential. In particular, many subdifferentials have been defined for the
class of quasiconvex functions. Such is the subdifferential of Greenberg-
Pierskalla [25], the tangential of Crouzeix [20], the weak lower subdif-
ferential of Martinez-Legaz [51], and the Q-subdifferential of Martinez-
Legaz and Sach [52]. All these subdifferentials have some nice proper-
ties. For instance, the nonemptyness of the subdifferential on a dense
subset of the domain of the function implies that the function is qua-
siconvex, and this partially justifies their denomination as quasiconvex
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subdifferentials. But they also have some drawbacks. For instance, the
Greenberg-Pierskalla, tangential, and weak lower subdifferentials are too
big; the Q-subdifferential is small, but it is probably too small since when
the function is quasiconvex, one has to impose severe restrictions to infer
that the subdifferential is nonempty on a dense subset of the function’s
domain. In this section we will define a subdifferential which remedies
these drawbacks.

Given a lsc proper function we define
(resp. to be the normal cone to the

sublevel (resp. strict sublevel) set corresponding to the value It
is easy to check the following equivalences:

Let us fix a MVT subdifferential such that (actually,
is a good choice).

Definition 11.5 [24] The quasiconvex subdifferential of at
is the following subset of X*:

If then we set

Let us explore the properties of First, note that is a cyclically
quasimonotone map; indeed, if not, then there exists a cycle

and such that
for all From (11.33) we infer that which leads to
the contradiction Since it follows that is
a cyclically quasimonotone map for any lsc proper function (compare
with Theorem (11.3)). But what distinguishes this subdifferential, is the
following result:

Theorem 11.9 [24] Let be a lsc radially continuous function (respec-
tively, is a lsc function with convex domain and its sublevel sets have
nonempty interior). Then the following are equivalent:
(i) is quasiconvex;
(ii)
(iii) has the property detailed in Definition 11.2 (Mean Value The-
orem);
(iv) The domain of is dense in dom
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The equivalence (i) (ii) means that whenever is a continuous qua-
siconvex function, then is simply the subdifferential further, this
happens only for quasiconvex functions, provided they are continuous.
The equivalence (i) (iv) is a characterization of quasiconvexity based
solely on the domain of

If is a global minimum of a proper lsc function then
and in particular Since always holds,

it follows that If is continuous and quasiconvex, then
equivalence (i) (ii) in the above theorem and Definition 11.1 imply that

also holds for local minima.
The quasiconvex subdifferential obeys some nice calculus rules for the

supremum of a family of functions and the composition of functions; see
[24] for details.

8. Maximal pseudomonotone maps

As already said, the subdifferential of a convex function is not only
monotone, but also maximal monotone. This is a classical result of
Rockafellar [66], with many applications, since maximal monotone maps
enjoy important continuity properties and play a preponderant role in
variational inequalities. At first look, it seems that maximality is not a
relevant property of generalized monotone maps. For instance, let us ten-
tatively define maximal pseudomonotone maps as those pseudomonotone
maps that admit no pseudomonotone extension other than themselves.
Let be a continuously differentiable pseudoconvex function
such that for for and
for The subdifferential of is the single valued pseudomonotone
map and it is not maximal pseudomonotone since the
following map is a pseudomonotone extension:

Note that has no pseudomonotone extension, and contains all
positive multiples of Note also that an essential feature of single
valued pseudomonotone maps is that if we multiply them by a positive
function, then the resulting map is also pseudomonotone. This motivates
a new definition of maximality, given below. But first let us recall some
other definitions and introduce some additional notation for this section.
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For any we set and A
map T is called radially upper semicontinuous (rusc) if for all
and the map is upper semicontinuous (as a
multivalued map) at 0. For instance, if the restriction of T to straight
lines is upper semicontinuous with respect to the weak* topology in X*,
then T is rusc.

We now introduce an equivalence relation on the set of all pseu-
domonotone maps from X to X* as follows: T ~ S if:

T and S have the same domain,

For all and

For all with

The use of the term “equivalent” is due to the relation to variational
inequalities. Given a convex subset K of X, we denote by S (T, K) the
set of solutions of the Stampacchia variational inequality:

It is easy to check that, if and are equivalent pseudomonotone
maps, then In fact, the converse is also true [28]:

Theorem 11.10 Let be pseudomonotone maps. If then
for every convex subset K of X. Conversely, if
for every convex subset K of X and the maps

have convex values, then

Based on equivalence, we define maximality as follows.

Definition 11.6 A pseudomonotone map T will be called D-maximal
pseudomonotone if there exists an equivalent pseudomonotone map S
whose graph is not strictly contained in the graph of another pseudomo-
notone map with the same domain.

The above means that if is a pseudomonotone map such that
and for all then

Given a pseudomonotone map T : X X*, if is such that
then for all Set

It can be easily shown that the map defined by
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(where is the normal cone of at is equivalent to T. In
fact, is the largest element in the equivalence class of T with respect to
domain inclusion. Thus, T is D-maximal pseudomonotone if and only if

has no pseudomonotone extension with the same domain, apart from
itself.

In case of a convex domain, the following proposition gives a very
simple characterization of maximality [28].

Proposition 11.13 Let T be pseudomonotone, with convex domain.
Then T is D-maximal pseudomonotone if and only if every pseudomono-
tone extension of T with the same domain is equivalent to T.

The following result from [29] is central for the considerations that
follow:

Theorem 11.11 Let T be pseudomonotone and rusc, D (T) be radially
open and assume that is and convex for all
Then T is D–maximal pseudomonotone.

An immediate result of this theorem is the following:

Corollary 11.1 Let be a pseudoconvex, locally
Lipschitz function. Then is a D–maximal pseudomonotone map.

Proof. Since is locally Lipschitz, it is known that dom is open,
is and convex for every

and finally that is usc in the strong×weak* topology of X ×
X* [15]. Also, according to Theorem 11.6, is pseudomonotone.
Hence, by Theorem 11.11, is D–maximal.

A well-known feature of maximal monotone maps is that they are
upper semicontinuous in the interior of their domain, with respect to
the in X*. One may expect that something analogous
holds for D–maximal pseudomonotone maps. However, it is not true
that every maximal pseudomonotone map has an equivalent map which
is even rusc. To see this, consider the single valued map
defined by

Then T is maximal pseudomonotone but has no equivalent rusc map.
Nevertheless, the following proposition shows that pseudomonotonicity
“helps” continuity:
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Proposition 11.14 [29] Let be a pseudomonotone map
with compact convex values, rusc on D(T). Suppose that D (T) is an
open convex set. Then there exists a pseudomonotone map usc on

with compact convex values, such that If T is single
valued, then can also be chosen single valued.

The following corollary is an immediate result of the proposition:

Corollary 11.2 If  is a single valued, radially con-
tinuous pseudomonotone map with open, convex domain
then there exists a function and a continuous map

such that for all

Thus, in case we have to solve a Stampacchia Variational Inequality
Problem (VIP) with a pseudomonotone, single valued map T, the as-
sumption that T is continuous along straight lines is not really weaker
than the assumption that it is continuous on finite dimensional sub-
spaces; indeed, given any such subspace E we may replace the projec-
tion E*TE of T on E by an equivalent continuous map and solve
the problem for then a limit procedure as in Theorem 2.1 of [19] can
ensure that the original VIP has a solution. Analogous considerations
hold in the multivalued case.

We close with a note on lower semicontinuity. Lower semicontinuity of
multivalued maps is almost never used for monotone maps; the reason
is a theorem of Rockafellar, which states that a lower semicontinuous
monotone map is actually single valued on the interior of its domain.
Something analogous holds for pseudomonotone maps. Let us call T
radially lower semicontinuous at if for all the map

is lower semicontinuous (as a multivalued map) at 0.

Proposition 11.15 Let T be a pseudomonotone map, which is radially
lower semicontinuous at Then or there exists

such that

Proof. If not, then there exist such that
there exists no with Hence there exists such
that Since T is radially lower semicontinuous,
there exists a sequence and such
that Hence, for sufficiently large, i.e.,

Using pseudomonotonicity we infer that
i.e., a contradiction.

An analogous result holds for quasimonotone maps.
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By applying the same proof as for monotone maps [36], we obtain
that, topologically, the set of points at which T cannot be made single
valued by equivalence, is very “thin”.

Corollary 11.3 [29] Let T be pseudomonotone, usc with
values. Suppose that X is separable and int Then the set

is of the first category.
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1. Introduction
Given a mapping from into itself, the complementarity problem

relative to denoted is the following system

where means that all the components of are nonnegative and
is the usual scalar product in Geometrically, the complementarity
problem involves finding a nonnegative vector such that the image

is also nonnegative and is orthogonal to When is nonlinear,
is called a nonlinear complementarity problem. In the case where

is an affine transformation, i.e. for some and
is said to be a linear complementarity problem and

is denoted by the pair M).
It is interesting to see how the complementarity problem gets its name

by the following remarks. For any mapping there is a
pairing between the coordinates of a vector and its image If

are the component functions of then we call and
complementary variables or complements of each other. Let

Then (12.1) becomes the following equivalent system

We define A solution of (12.3) is said to be
nondegenerate if at most of its components equal zero. If is a
nondegenerate solution of (12.3), then the sets

are complementary subsets of Also, regardless of whether is a
nondegenerate solution of (12.2), if it is a solution of (12.3), the sets A
and B defined in (12.4) are disjoint subsets of For details, see [26]
and [24].

We remark that behind the identification of the complementarity
problem in the early 1960’s was the Kuhn-Tucker theorem for nonlinear
programming problem which gives the necessary conditions of optimal-
ity when certain conditions of differentiability and regularity are met.
We also observe that in 1961 Dorn [35] showed that if M is a positive-
definite but not necessarily symmetric matrix, then the minimum value
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of the following quadratic programming problem

is zero. Dorn’s paper was the first paper which treats the complemen-
tarity problem as an independent problem.

Dorn’s result was generalized by Dantzig and Cottle [31] in 1963 to
the case where all the principal minors of the matrix M are positive.
The result obtained by Dantzig and Cottle [31] in 1963 was further
generalized by Cottle [22, 23] in 1964 and 1966, respectively, to a certain
class of nonlinear functions.

The complementarity problem can be further generalized to
more general spaces other than the finite-dimensional space Such
idea was initiated by Habetler and Price [42] and was later refined by
Karamardian [55] whose development is the following.

Let X be a locally convex Hausdorff topological vector space over
and let Y be another vector space over Let K be a convex cone in
X with polar which is also a convex cone

where denotes a bilinear form on X × Y. If is a mapping from X
into Y, then the complementarity problem relative to and K, denoted

is the following system

If we introduce preorders and in X and Y, respectively by
the following definitions

and

then we can rewrite the system (12.5) alternately as the following system

It should be noted that the preorder defined by (12.6) is a partial
order, that is, it is a reflexive, antisymmetric and transitive relation if
and only if the convex cone K is pointed, that is,
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and the preorder defined by (12.7) is a partial order if the convex
cone K has nonempty interior, i.e.

Clearly, in the nonnegative orthant defined by

is a closed convex cone and in the ordinary case where

Therefore, the notation as defined in (12.1) is

an abbreviation for
It is worth noting that the complementarity problem has very use-

ful applications in various fields such as optimization, economics, game
theory, mechanics, engineering, elasticity, free boundary problems and
equilibrium problems etc. See, for example [24], [25]-[49] and the refer-
ences therein. In particular, Lemke [64] employed the complementarity
problem as a method to solve matrix games in 1965 and Ingleton [48]
gave applications of the complementarity problem in engineering.

We now turn to another problem which is very closely related to the
complementarity problem. Again, we start with the finite-dimensional
setting. Let K denote a (closed convex) subset of and suppose

is a given function. The variational inequality, denoted
is to satisfy the following conditions

A vector for which (12.9) holds is said to be a solution to the varia-
tional inequality Roughly speaking, the variational inequality
(12.9) states that the vector must be at an acute angle with all fea-
sible vectors emanating from It is easy to see that is a solution
to if and only if the vector is inward normal to K at
that is, belongs to the normal cone where

The variational inequality was introduced by Hartmann and Stam-
pacchia [46] in 1966, and was later expanded by Stampacchia in several
important papers [65, 67, 82]. It is interesting to remark that in 1966
Karamardian also obtained existence results for variational inequalities
in his Ph.D dissertation [54] where he used the fixed-point theory which
is totally different from that used by Hartmann and Stampacchia [46].

Like complementarity problems, we can also consider the variational
inequality in a more general space setting. Let X denote a locally convex
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Hausdorff topological vector space over and X* denote the topolog-
ical dual of X. Let be the pairing between X and X*. If K is a
closed convex subset of X and is a given operator, then the
variational inequality, denoted V I(T, K), is to find in K such that

Since it is easy to see that when then the
problem (12.10) reduces to the finite-dimensional variational inequality
(12.9).

It is interesting to observe that most of early studies of the varia-
tional inequality were set in the context of calculus of variations as well
as optimal control theory and in connection with the solution of free
boundary value problems which are posed in the form of partial dif-
ferential equations. Readers who are interested in these materials are
referred to the books by Kinderlehrer and Stampacchia [60], Baiocchi
and Capelo [3] as well as Isac [49], respectively, where a complete and
thorough introduction to these applications of variational inequalities
in infinite-dimensional metric spaces is given. On the other hand the
survey paper by Harker and Pang [45] provides an excellent article for
the theory, algorithms and applications of variational inequalities and
complementarity problems in finite-dimensional spaces setting.

It should be pointed out that the complementarity problem (12.5) and
the variational inequality (12.10) are closely related. Karamardian [55]
was the first to establish the relationship between these problems which
states that if K is a convex cone, then the complementarity problem
CP(T, K) with Y = X* and the variational inequality (12.10) VI(T, K)
have precisely the same solutions, that is solves the problem
CP(T, K) if and only if solves the problems V I(T, K). Despite the
above fact that the complementarity problem is a special case of varia-
tional inequality, the early developments of these two problems followed
quite different paths. The main distinction is the space setting in which
these two problems were studied. Variational inequality is usually in
infinite-dimensional metric spaces, e.g., Hilbert spaces or reflexive Ba-
nach spaces, and the space setting of the complementarity problem is
finite-dimensional Euclidean space.

Due to Karamardian’s result on the equivalence of the complementar-
ity problem and the variational inequality, most of the existence results
for complementarity problem are based on the corresponding existence
results for variational inequality. But it should be observed that the
domain of variational inequality is not necessarily unbounded whereas
the domain of the complementarity problem is always unbounded since
it is a cone. Consequently, it is usually a difficult task to obtain exis-
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tence results for complementarity problem without the aid of variational
inequality.

The first existence result of finite-dimensional variational inequality
was obtained independently by Hartmann and Stampacchia [46] and by
Karamardian [54] in 1966, respectively, which states that if the set K
is compact, convex and the mapping is continuous, then the varia-
tional inequality has a solution. For variational inequality in
infinite-dimensional spaces, monotonicity assumption on the operators
is usually needed to derive existence results. Recent research shows that
monotonicity assumption can be relaxed to generalized monotonicity as-
sumption. It is our goal of this chapter to report recent results mainly
on existence for complementarity problems and variational inequalities
in infinite-dimensional spaces under generalized monotonicity, especially,
(algebraic) pseudomonotonicity.

The organization of the remainder of this chapter is as follows. In Sec-
tion 2, we give the definition of pseudomonotone mappings from which
several existence results of variational and complementarity problems
are derived. Uniqueness of solutions is discussed and applications to
optimization problems and to the post-critical equilibrium state of a
thin elastic plate are given. In Section 3, instead of algebraic pseu-
domonotonicity considered in Sections 2 and 3, we consider topologi-
cal pseudomonotonicity and the variational inequality for topologically
pseudomonotone operators. Again, existence results are obtained and
some applications are given. In Section 4, we discuss several possible ex-
tensions of complementarity problems and variational inequalities. Sev-
eral existence and uniqueness results are derived. Finally in Section 5,
we discuss the equivalence of complementarity problems like nonlinear
programs, least element problems, etc, for pseudomonotone operators.

2. Complementarity Problems and Variational
Inequalities for Pseudomonotone Mappings

In this section, we shall consider complementarity problems and vari-
ational inequalities for pseudomonotone mappings in the setting of Ba-
nach spaces. More precisely, let B be a real Banach space with norm
B* its topological conjugate space endowed with weak* topology,
the pairing between and Let K be a nonempty subset
of B and T be an operator from K into B*. The variational inequality,
denoted V I(T, K), is the following system
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In the case where K is a convex cone of B, with

The complementarity problem relative to T and K, denoted CP(T, K),
is the following system

In the sequel, for any real number denotes the absolute value
of For int(D), and denote the interior, the closure
and complement of D, respectively. For denotes the
relative interior of E in F. A subset of a Banach space is said to be solid
if it has a nonempty interior.

For the relationship between complementarity problems and varia-
tional inequalities, we have the following result

Proposition 12.1 Let K be a convex cone of a Banach space B, and
let be an operator. Then the following statements are
equivalent.

(i) is a solution of CP(T, K),
(ii) is a solution of V I(T, K).

Proof. If (i) holds, then it is obvious to see that is a solution of
V I(T, K). Conversely if (ii) holds, then

Setting in turn and in (12.11), we obtain that
and therefore for all Hence (i)

is established.

Therefore, one approach to study the complementarity problem is
by studying the variational inequality over closed convex cones due to
Proposition 12.1.

We remark that the first existence result for the problem V I(T, K)
was established by Hartmann and Stampacchia [46] in 1966 which asserts
that the V I(T, K) will possess a solution given that T is continuous, B is
a finite-dimensional Euclidean space and K is a nonempty compact con-
vex set. Since then, many extensions of this result have been obtained
by many authors, e.g., Kinderlehrer and Stampacchia [60, Theorem 1-4,
p.84] for the corresponding result in a reflexive Banach space assuming
the monotonicity of operators; Holmes [47, Corollary, p.187] for a gen-
eral variational inequality result in a locally convex space; Théra [84,
Theorem] for an existence result without the monotonicity assumption
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in a Banach space; Barbu and Precupanu [4, Theorem 2-6, p.133] for
an existence result under the pseudomonotonicity assumption (in the
sense of Brézis); and Yao [91, Theorem 2.1] for an existence result with-
out monotonicity assumption and without using the Ky Fan minimax
inequality theorem. It is worth noting that most of the existence re-
sults for the problem V I(T, K) in infinite-dimensional spaces require
the monotonicity assumption of the operator under consideration.

The purpose of this section is to present some existence results for
the problems V I(T, K) and CP(T, K) for pseudomonotone operators
(in the sense of Karamardian) in Banach spaces. Uniqueness results will
be obtained and some applications to optimization problems and the
study of the post-critical equilibrium state of a thin elastic plate subject
to unilateral conditions are given.

Recall that is said to be monotone if

and strictly monotone if equality in (12.12) implies Let us use
symbols and to denote the norm convergence, the weak
convergence and the weak* convergence, respectively, i.e. if

for all and if for all

Definition 12.1 Let K be a convex subset of B and Then
(i) The operator T is hemicontinuous on K if T is continuous on

line segments in K, i.e., for every pair of points the following
function is continuous

(ii) The operator T is continuous on finite-dimensional subspaces if
for any finite-dimensional subspace M of B with the re-
stricted operator is continuous from the norm topology
of to the weak* topology of B*.

(iii)  The operator T is demicontinuous on K if implies

It is easy to see that the following implications hold.
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We also note that if T is monotone and hemicontinuous on K, then
it is continuous on finite-dimensional subspaces on K. See, e.g., [82].
Consequently if B is finite-dimensional and is monotone
and hemicontinuous on B then T is itself continuous.

Definition 12.2 Let K be a subset of B and Then T is
pseudomonotone if for every pair of points we have

Clearly, monotone operators are pseudomonotone but not conversely
as the following example shows [58] :

It should be also remarked that the notion of pseudomonotonicity
was essentially initiated by Brézis, Nirenberg and Stampacchia [13] in
1972 without the name of pseudomonotonicity which was coined later
by Karamardian [56] in 1976.

It should also be observed that there exists operator which is both
pseudomonotone and hemicontinuous and yet it is not continuous on
finite-dimensional subspaces. See, e.g., [85].

2.1 Existence

Before we state and prove existence results for problems V I(T, K)
and CP(T, K), we need the following lemma.

Lemma 12.1 Let K be a closed convex subset in the real Banach space
B, and let be pseudomonotone and hemicontinuous.

Then is a solution of VI(T, K) , i.e.,

if and only if

Proof. If is a solution of VI(T, K), then it follows by pseudomono-
tonicity of T that for all Conversely, for
and let us set Since it
follows



510 GENERALIZED CONVEXITY AND MONOTONICITY

Letting in (12.13) and by hemicontinuity of T, one deduces that
Thus is a solution to VI(T, K).

Lemma 12.1 was originally proved by Minty [68] for the case of varia-
tional inequality for monotone operators in Hilbert space, and was later
generalized by Karamardian [57] to the case of pseudomonotone map-
pings.

Now we can state and prove the first existence result of this section.

Theorem 12.1 Let K be a weakly compact and convex subset in the
real Banach space B, and be a pseudomonotone and hemi-
continuous operator. Then the problem VI(T, K) has a solution, i.e.,
there exists such that

Moreover, the set of solutions to (12.14) is nonempty weakly compact
and convex.

Proof. Consider for the following nonempty sets

We have to show as a first step that Since T is pseu-

domonotone, then Also since is a closed set, it
follows that

Let be a finite subset of K and let

be arbitrary. Then with and Assume for

contradiction that Then

From this it follows,

a contradiction. Thus, and since for

arbitrary is compact, it follows from the Ky Fan Lemma
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that Therefore, from relation (12.15),

Now, let Then Consequently,

from Lemma 12.1, one deduces that and hence

is a solution to VI(T, K). Furthermore, the solution set is

which is weakly compact and convex.

As a consequence of Theorem 12.1, we have the following corollary.

Corollary 12.1 Let K be a weakly compact and convex subset in the
real reflexive Banach space B and be monotone. Suppose
that for every pair of points we have

Then the problem VI(T, K) has a solution and the solution set is
nonempty weakly compact and convex.

Proof. We shall show that the operator T satisfying (12.16) is demicon-
tinuous from which the result follows from Theorem 12.1. To this end,
let and Since T is monotone, it is locally bounded at

(See, e.g., [11, Theorem 2]). Hence we may assume that is
bounded. Since B is reflexive, we may assume without loss of generality
that for some For any since T is monotone,
we have

For any let with By substituting into
(12.17) and dividing by we have

from which and (12.16) it follows that

Consequently, for all Therefore, and
hence T is demicontinuous on K.

For VI(T, K) where K may not be weakly compact, we have the
following result.
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Theorem 12.2 Let K be a closed convex subset in the real Banach space
B and which is pseudomonotone and hemicontinuous.
Suppose T satisfies the following coercivity condition : there exists a
nonempty weakly compact and convex subset C of K satisfying for each

there exists such that Then VI(T, K)
has at least one solution.

Proof. Let be a finite subset of K and consider the
convex subset which is compact since C a is convex
and compact subset of B, see [8, Theorem 15 ]. Then, from Theorem
12.1, one has

We argue that Otherwise and by the coercivity as-
sumption, there exists such that which contradicts
relation (12.18).

Now, consider for the following nonempty sets

It follows from (12.18) that and therefore

Since T is pseudomonotone,

Thus, the family of closed subsets has the finite intersec-

tion property. Since C is compact,

Let Then Hence from

Lemma 12.1, one deduces that is a solution to VI(T, K).

It is interesting to note that if the real Banach space B is reflexive,
then the sufficient condition for the existence of solution to the varia-
tional inequality in Theorem 12.2 turns out to be also necessary as the
following result shows.

Theorem 12.3 Let K be a closed convex subset in the real reflexive
Banach space B, and which is pseudomonotone and con-
tinuous on finite-dimensional subspaces. Then the following statements
are equivalent :
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(i) The problem VI(T, K) has a solution.
(ii) There exists a weakly compact and convex subset C of K with

satisfying the following condition : for each
there exists such that

The proof of Theorem 12.3 can be found in [87].
More existence results for the problem VI(T, K) can be derived from

Theorem 12.2. Let us recall some definitions.

Definition 12.3 Let K be a subset of a Banach space B and

(i) T is coercive if there exists such that

(ii) T is weakly coercive if there exists such that

(iii)  T is if there exists an increasing function
with and as such that

(iv) T is strongly monotone if  for some in (iii).

Obviously, we have the following implications

Proposition 12.2 (i) If T is weakly coercive, then

(ii) If B is a reflexive Banach space and T is weakly coercive then there
exists a weakly compact convex subset C of K such that
for all
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Proof. (i) The proof is direct from the definition of T being weakly
coercive.

(ii) Since T is weakly coercive, then by (i) one has

Thus, such that with one has
Set which is a weakly compact subset of B. Then for

one has

The following result is then an easy consequence of Theorem 12.2 and
Proposition 12.2.

Corollary 12.2 Let K be a closed convex subset in the real reflexive Ba-
nach space B and which is pseudo-monotone and hemicon-
tinuous. If T is coercive or weakly coercive, then the problem VI(T, K)
has a solution.

Corollary 12.2 can be employed to derive existence results of zeros of
operators as the following result indicates.

Corollary 12.3 Let B be a real reflexive Banach space and
be pseudomonotone and hemicontinuous. If T is also coercive or weakly
coercive, then T has a zero, i.e., there exists such that

Proof. By Corollary 12.2, we know that there exists such that

Since is arbitrary, the standard trick gives

Now we derive some existence results of solutions of complementarity
problems. The following result is an easy consequence of Theorem 12.2
and Proposition 12.1.

Theorem 12.4 Let K be a closed convex cone in the real Banach space
B. Let be pseudomonotone and hemicontinuous. Suppose
T satisfies the following coercivity condition : there exists a nonempty
weakly compact and convex subset C of K satisfying for each
there exists such that Then the complementarity
problem has a solution.

The next result is a generalization of a result of Karamardian [56,
Theorem 4-1] to infinite-dimensional spaces.
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Theorem 12.5 Let K be a pointed solid closed convex cone in the real
Banach space B. Let be pseudomonotone and hemicontin-
uous. Suppose that there exists such that Then
the complementarity problem has a solution.

The proof of this theorem can be found in [43], [27].
We remark that results similar to Theorem 12.5 in topological vector

space setting have been proved by Allen [1, Theorem 4] and Borwein [9,
Thoerem 10], respectively.

2.2 Uniqueness

Uniqueness results for variational inequalities and complementarity
problems can be obtained by imposing some more restrictive assumption,
e.g., strict pseudomonotonicity, on the operator under consideration.
In 1960, Stampacchia [82] showed that the variational inequality has a
unique solution if the mapping under consideration is strictly monotone.
In Banach space, strict monotonicity requires that

for any two distinct elements in the domain of the mapping T. To
motivate the suitable assumptions under which the variational inequality
will possess a unique solution, let us suppose that the problem VI(T, K)
has two solutions, say, and Then

and

In particular, we have

and

Adding (12.19) and (12.20) together, we obtain

Therefore, if we assume T to be strictly monotone, then (12.21) can
not hold unless and in this case the solution is then unique.

With the above observation, we can state the following result.
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Lemma 12.2 If is strictly monotone, then the problem
VI(T, K) has at most one solution.

Lemma 12.2 can be extended to the peudomonotone case. Before
we state some uniqueness results for pseudomonotone operators, let us
recall some more definitions.

Definition 12.4 Let K be a nonempty subset of the real Banach space
B and

(i) The operator T is strictly pseudomonotone on K if for every dis-
tinct pair of points we have

(ii) The operator T is on K if, there exist
and with for and

such that for every pair of points we have

(iii) The operator T is strongly pseudomonotone if for some
in (ii).

Clearly, we have the following implications.

The concept of strict and strong pseudomonotonicity were introduced
by Karamardian and Schaible [58] in 1990.

Now we can extend Lemma 12.2 to pseudomonotone operators.

Lemma 12.3 Let K be a nonempty subset of the real Banach space B
and If T is strictly pseudomonotone, then the problem
VI(T, K) has at most one solution.

Proof. Suppose that VI(T , K) has two distinct solutions, say and
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Then

and

Since T is strictly pseudomonotone, we have from (12.22) that

and hence which contradicts (12.23). Therefore
VI(T, K) can have at most one solution.

From Theorem 12.1, and Lemma 12.3, we have the following unique-
ness result for the problem VI(T, K).

Theorem 12.6 Let K be a weakly compact convex subset of a real Ba-
nach space B and which is strictly pseudomonotone and
hemicontinuous. Then the problem VI(T, K) has a unique solution.

It is interesting to observe that the variational inequality problem has
a unique solution for mappings as the following result
shows.

Theorem 12.7 Let K be a closed convex set in a reflexive Banach space
B and Suppose T is and hemicontin-
uous. Then the variational inequality problem VI(T, K) has a unique
solution.

Proof. Without loss of generality, we may assume For each
positive integer let be the closed ball with center at 0 and radius
Let Then is closed bounded and convex for each By
Theorem 12.1, since implies pseudomonotonicity,
there exists such that

Since for each by of T, we have

from which it follows that for all Consequently, the
sequence is bounded. Without loss of generality, we may assume
that is weakly convergent to some For any let
be such that Then from (12.24) we have
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and hence by Lemma 12.1

Letting in (12.25), we have

and by Lemma 12.1 again

As in (12.26) is arbitrary, we conclude that is a solution to
VI(T, K). Since implies strict pseudomonotonic-
ity, the result then follows from Lemma 12.3.

Now from the above results, one can derive some uniqueness results
of solutions to complementarity problems.

Lemma 12.4 Let K be a closed convex cone of a real Banach space B
and If T is strictly pseudomonotone, then the complemen-
tarity problem CP(T, K) has at most one solution.

Lemma 12.4 is a direct consequence of Proposition 12.1 and Lemma 12.3.
The following uniqueness result can be proved by the same argument

as that in Theorem 12.7.

Theorem 12.8 Let K be a closed convex cone in a real reflexive Ba-
nach space B and which is hemicontinuous. If T is ei-
ther or strongly pseudomonotone, then the problem
CP(T, K) has a unique solution.

The following result is a consequence of Theorem 12.8.

Corollary 12.4 Let K be a closed convex cone in a real reflexive Ba-
nach space B and Suppose T is strongly monotone and
hemicontinuous. Then the complementarity problem CP(T, K) has a
unique solution.

More uniqueness result can be obtained by combining Lemma 12.4
and Theorem 12.4.

Theorem 12.9 Let K be a closed convex cone in the real Banach space
B. Let be strictly pseudomonotone and hemicontinuous.
Suppose T satisfies the following coercivity condition : there exists a
nonempty weakly compact and convex subset C of K satisfying for each
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there exists such that Then the
complementarity problem has a unique solution.

We remark that in finite-dimensional spaces, more uniqueness results
can be obtained. Instead of strict monotonicity or strict pseudomono-
tonicity, one can employ the concepts of P-functions and uniform P-
functions. The notion of P-function was introduced by Moré and Rhein-
boldt [71] in 1973 and the notion of uniform P-functions was introduced
by Megiddo and Kojima [70] in 1977. Readers who are interested in this
topic are referred to [71], [70] and the references therein.

2.3 Applications to Optimization Problems
Here, we are interested in the existence of a solution to the following

problem :

where K is a closed convex subset of a Banach space and is a real
function defined on K. We shall employ results derived in previous
sections to obtain existence and uniqueness results of problem (P) for
generalized convex functions.

Let us first recall the following definitions. Let be an open subset
of a real Banach space B and The function is said to be
Fréchet-differentiable, F-differentiable for short, at if there is an

such that

where as The functional is called the
F-derivative of at the point The function is F-differentiable on

if is F-differentiable at each The function is continuously
differentiable on if is F-differentiable on and is
continuous. Also the function is said to be Gâteaux-differentiable,
G-differentiable for short, at if there exists such that

The functional is called the G-derivative of at the point
and is G-differentiable on if is G-differentiable at each

It should be observed that F-differentiability implies G-differentiability
and in this case Conversely, if is G-differentiable in a neigh-
borhood of and is continuous at then is F-differentiable.
For details, see, e.g., [33, Proposition 7.5].
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Again, let be a nonempty convex subset of a real Banach space B
and The function is said to be quasiconvex on if for
every pair of points we have

It is easy to see that is quasiconvex if and only if for each real
number the following level set of is convex

For G-differentiable functions, we have the following characterization
of quasiconvexity in terms of G-derivatives.

Theorem 12.10 ([87, Theorem 6.3]) Let be an open convex subset
of a real Banach space B and be G-differentiable. Then the
following statements are equivalent :

(i) is quasiconvex on
(ii) If and then

We remark that in the case that B is finite-dimensional, Karamardian
and Schaible used the quasimonotonicity of the F-derivative to charac-
terize F-differentiable quasiconvex functions. See [58].

Definition 12.5 Let be an open subset of a real Banach space B and
be G-differentiable.

(i) The function is pseudoconvex on if for every pair of points
we have

(ii) is strictly pseudoconvex if for every pair of distinct points

(iii) is strongly pseudoconvex if there exists such that for
every pair of points we have

The concepts of strict and strong pseudoconvexity were introduced
by Karamardian and Schaible [58] in 1990. Also, we have the following
implication.
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For details of proof, see, e.g., [87, Lemma 6.5]. It is interesting to
observe that the class of pseudoconvex functions is significant in the
following sense. Consider the problem (P) again. If the function is
pseudoconvex in an open set containing K, then any solutions of the
problem is a global minimum of the problem (P) and in
particular every point with zero G-derivative is a global minimum.

It is well known that a G-differentiable function from an open convex
subset of a real Banach space B into is convex if and only if the
operator is monotone. See, e.g., [36, Proposition 5.5, p.25].
We can also use pseudomonotonicity of G-derivatives to characterize
pseudoconvex functions as the following result illustrates.

Theorem 12.11 [87, Theorem 6.6] Let be an open convex subset of
a real Banach space B and be G-differentiable. Then the
following statements are equivalent :

(i) The function is pseudoconvex on
(ii) The operator is pseudomonotone.

Now we have the first existence result for the problem (P) by Corollary
12.2 and Theorem 12.11.

Theorem 12.12 Let K be a closed convex subset of a real reflexive
Banach space B and let be a G-differentiable function from an open
convex set containing K into Suppose that is weakly
coercive, pseudomonotone and hemicontinuous. Then the problem (P)
has a solution.

The next result is immediate from Theorem 12.12.

Corollary 12.5 Let K be a closed convex subset of a real reflexive Ba-
nach space B and be a function from an open convex set containing
K into Suppose that is continuously differentiable on and is
pseudomonotone and weakly coercive on Then the problem (P) has a
solution.

Finally, let us consider the uniqueness question of solutions of the
problem (P). First we have the following results characterizing strictly
and strongly pseudoconvex functions.

Theorem 12.13 ([87, Theorems 6.9, 6.10]) Let be an open convex
subset of a real Banach space B and be a G-differentiate function
on Then, is strictly pseudoconvex if and only if is strictly
pseudomonotone.
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We then state the following uniqueness result for the problem (P).

Theorem 12.14 Let K be a closed convex subset of a real reflexive
Banach space B and be a G-differentiable function from an open convex
set containing K into Then the problem (P) possesses a unique
solution under each of the following conditions.

(i) is strictly pseudomonotone, weakly coercive and hemicontinu-
ous.

(ii) is strongly pseudomonotone and hemicontinuous.

Proof. The assertion of (i) follows from Corollary 12.2, Lemma 12.3 and
Theorem 12.13 (i).

The assertion of (ii) follows from Theorem 12.8 and Theorem 12.13
(ii).

2.4 Application to the study of a mathematical
model for mechanical problems

In this subsection, we shall consider some applications of existence
results established in the previous section to a class of nonlinear com-
plementarity problems and in particular to the study of the post-critical
equilibrium state of a thin elastic plate subject to unilateral conditions.

Let K be a closed convex cone in a real Hilbert space H and let
be two mappings. The nonlinear complementarity

problem, denoted NCP(T, K), is the following system :

where for each Such problem was
studied by Isac and Théra [52] and was used as a mathematical model
for mechanical problems.

The following result is then a consequence of Theorem 12.4.

Theorem 12.15 Suppose that the mapping T is pseudomonotone and
hemicontinuous. If there exists such that for with
there exists satisfying and

then the NCP(T, K) has a solution.

It is worth nothing that the closed convex cone K in Theorem 12.15
need not be necessarily pointed, and the mapping T need not be the
one-sided Gâteaux directional derivative of a functional defined on K
(See [52, Theorem 3.1]).
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Another application is as follows. Let be a thin elastic plate whose
thickness is supposed to be constant and which rests without friction on
a flat rigid support. The material is also assumed to be homogeneous
and isotropic. Mathematically, may be identified as a bounded domain
(i.e. an open and connected set) in The plate is assumed to be
clamped on and simply supported on where is the
boundary of which is supposed to be sufficiently regular.

We assume that a lateral variable load where is positive and
increasing which represents the magnitude of lateral loading, is applied
to the boundary of Consider the following Sobolev space

equipped with the norm and let E be the closed subspace of
defined as follows :

where denotes the normal to exterior to and denotes the

normal exterior derivative. We can equip E with the inner product
defined by a continuous bilinear form on E × E such that the associated
norm is equivalent to the initial norm See, e.g., [52]. For a fixed

the post-critical equilibrium state of the plate subject to unilateral
conditions is governed by the following variational inequality:

where the set

represents all the admissible vertical displacements of the plate; is
exactly the intensity of the lateral load L is a self-adjoint linear com-
pact operator defined by the nature of the load applied on the boundary
of and G is a bounded nonlinear continuous operator connected with
the expansive properties of the plate. In practice, the mapping G is also
supposed to be a Gâteaux derivative of a nonlinear functional such
that See, e.g., [34]. In this case, is a trivial solution of
the problem (12.27).

Since K is a closed convex cone, by Proposition 12.1, problem (12.27)
is equivalent to the nonlinear complementarity problem NCP(T, K)
where
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Hence by Theorem 12.4, we have the following existence result for
problem (12.27) and therefore the existence of the post-critical equilib-
rium state of a thin elastic plate subjected to unilateral conditions.

Theorem 12.16 Suppose that the mapping T defined (12.28) is pseu-
domonotone and there exists such that for with
there exists satisfying and Then there
exists a solution to the problem (12.27).

It should be remarked that if the mapping G is monotone and the
mapping L is dissipative (i.e. –L is monotone), then the problem (12.27)
has a unique solution because in this case the mapping T is strongly
monotone.

We close this section by pointing out that results derived in this sec-
tion can be employed to get more existence and uniqueness results for the
generalized complementarity problem in Banach spaces. We will leave
this work to readers who are interested in this part and refer readers to
references [45, 58, 43, 44, 87, 5, 10, 32, 50, 83, 72] and the references
therein.

3. Variational Inequalities for Topologically
Pseudomonotone Mappings

This section will be concerned with another notion of pseudomono-
tonicity for operators, which is a topological notion, much older than the
one cited in the previous sections. In order to make a difference we will
call it topological pseudomonotonicity, in short
We will reserve the pseudomonotonicity appellation to the algebraic no-
tion introduced before.

The notion of topological pseudomonotonicity was introduced by Bré-
zis [12] in 1968 for nonlinear operators and it contains many monotone-
like operators which were used by Minty [68, 69] and Browder [14] in
order to obtain existence theorems for quasi-linear elliptic and parabolic
partial differential equations.

Definition 12.6 An operator is called topologically
pseudomonotone on the subset K of the real Banach space B if, for each

and each sequence in K,

imply
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This definition seems to be obscure. However, we shall see that it
is a quite natural notion due to Proposition 12.4 which states that if

is a nonlinear operator on a real reflexive Banach space
such that

where is monotone and hemicontinuous, and
is strongly continuous, i.e., implies as
then T is topologically pseudomonotone.

Hence, one can say that: the theory of topologically pseudomonotone
operators unifies both monotonicity arguments and compactness argu-
ments.

Another definition of topological pseudomonotonicity which has been
used by Aubin [2] in a more general setting and involves the previous
one is the following.

Definition 12.7 [2] Let K be a closed subset of a topological vector
space X and a real function defined on K × K. We shall say that is
topologically pseudomonotone if for any generalized sequence (i.e. net)

satisfying

and

its limit satisfies

When X is a reflexive Banach space and where
T is an operator mapping K into X*, then T is topologically pseu-
domonotone iff is topologically pseudomonotone. To see this we use
the following lemma, see e.g. [15, Proposition 7.2]

Lemma 12.5 (Kaplansky) If D is a bounded subset of a reflexive Ba-
nach space, then any element in the weak closure of D is a limit of a
weakly convergent sequence of D.

It is also obvious that in Definition 12.7, if is lower semicontinuous
with respect to its first argument then it is topologically pseudomono-
tone.

In Section 3.2, we will present some existence results on existence
of solutions of variational inequalities associated to topologically pseu-
domonotone operators. The approach used is based on the Ky Fan



526 GENERALIZED CONVEXITY AND MONOTONICITY

lemma and its extension as shown by Brézis, Nirenberg and Stampac-
chia [13]. An other approach based on the Galerkin method was used
by Browder [15] and Brézis [12].

3.1 Properties of Topologically Peudomonotone
Operators

Let us recall the following definitions

Definition 12.8 Let B be a real Banach space and a
nonlinear operator.

(i) T satisfies condition if for each sequence

(ii) T satisfies condition (S) if for each sequence

We remark that the notion of operator of was introduced by
Browder [15]. Typical examples of operators satisfying the condi-
tion are uniformly monotone operators, i.e.,

where is a positive real function with and as
Indeed, It follows from the uniform monotonicity of T that

Hence

and from the properties of one deduces that

The following result gives some necessary conditions for an operator
to be topologically pseudomonotone.

Proposition 12.3 Let be an operator on the real Banach
space B. The following properties hold :

(i) If T is monotone and hemicontinuous, then T is topologically pseu-
domonotone.

(ii) If T is strongly continuous, then T is topologically pseudomono-
tone.
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(iii) If T is demicontinuous and satisfies the condition then T
is topologically pseudomonotone.

(iv) If T is continuous and then T is topologically
pseudomonotone.

Proof.
(i) Let be a sequence in B such that and

Since the operator T is monotone, it follows that

From the fact that as and relations (12.29)
and (12.30) one deduces that

Set for and arbitrary. The
monotonicity of T yields

and hence

This implies

From the hemicontinuity of T, by letting one obtains

and hence T is topologically pseudomonotone.
(ii) From the strong continuity of T, one has that if then

Hence
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(iii) Let be a sequence in B such that and

This implies that

Since the operator T satisfies the condition, as
From the demicontinuity of T, one deduces that and hence

(iv) This follows from (ii) since on finite-dimensional Banach spaces
the weak convergence and the strong convergence coincide.

We have the following result on the additivity of topologically peu-
domonotone operators, which leads us also to have a characterization of
the topological pseudomonotonicity notion.

Proposition 12.4 Let be operators on the real Banach
space B.

(i) If and    are topologically pseudomonotone, then is also
topologically pseudomonotone.

(ii) If is monotone and hemicontinuous and is strongly contin-
uous, then is topologically pseudomonotone.

Proof.
(i) Let be a sequence in B such that and

This implies that

Indeed, if then there exists a subsequence

also denoted by such that

Therefore, from (12.31) one deduces Since

is topologically pseudomonotone,
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Letting we obtain the contradiction Similarly we
must have

Since and are topologically pseudomonotone, from (12.32) we
conclude that, for

and consequently

Therefore is topologically pseudomonotone.
(ii) This follows directly from (i) and from Proposition 12.3 (i) and

(ii).

The previous proposition leads us to have a characterization of the
notion of topological pseudomonotonicity. More precisely, this notion
can be seen as a combination between monotonicity and compactness
arguments. Note also that this notion is reserved by addition which is
not the case for the pseudomonotonicity in the algebraic sense introduced
in Section 3. This makes the topological pseudomonotonicity in some
cases more useful for studying some mixed variational inequalities.

We can summarize the above properties by the following implications.

3.2 Existence Results for Topologically
Pseudomonotone Variational Inequalities

In this section, we will present the approach given by Brézis, Nirenberg
and Stampacchia [13] to solve variational inequalities associated to a
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topologically pseudomonotone operator. Their approach is based on
Lemma 12.6 which is a slight extension of the Ky Fan Lemma. An other
approach based on the Galerkin method was used by Browder [15] and
Brézis [12].

Lemma 12.6 [13] Let K be an arbitrary set in X a Hausdorff topolog-
ical vector space. To each let a set in E be given satisfying

(i) is compact for some in K.
(ii) The convex hull of every finite subset of K is con-

tained in the corresponding union

(iii) For every the intersection of with any finite dimen-
sional subspace is closed.

(iv) For every convex subset D of X we have

Then

Assumptions (iii) and (iv) of Lemma 12.6 are satisfied if is closed
for each In this case we obtain the Ky Fan Lemma [37].

Now we present the following result due to Brézis, Nirenberg and
Stampacchia [13] which includes both the Ky Fan minimax principle
and general variational inequalities.

Theorem 12.17 [13] Let K be a closed convex subset of a Hausdorff
topological vector space X and let be a real valued function defined on
K × K such that

(i) for all
(ii) For every fixed the set is convex.
(iii) For every fixed the function is up-

per semicontinuous on the intersection of K with any finite-dimensional
subspace of X.

(iv) For each and any convergent net on K with
if for each then

(v) There is a compact subset L of X and such that
for

Then there exists such that
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We note that if is topologically pseudomonotone in the sense of
Definition 12.7 and K is compact, then condition (iv) of Theorem 12.17
is satisfied.

In the case where is topologically pseudomonotone, Aubin [2, The-
orem 1, p.413] obtained a similar result to Theorem 12.17 by using tech-
niques related to minimax type inequalities.

When X is a reflexive Banach space endowed with its weak topology,
Theorem 12.17 holds if condition (iv) is replaced by :

for each and any convergent sequence on K with
if for each

then

Now we will employ Theorem 12.17 to solve the following mixed vari-
ational inequality : Find such that

Theorem 12.18 [13] Let K be a closed convex subset of a Hausdorff
topological vector space X,T : K X* be such that whenever is a
net converging to with then

for all Assume that T is continuous on finite-
dimensional subspaces and that is a convex and lower semicontinuous
function. Furthermore, if there exists a compact subset L of X and

such that

Then the solution set of (12.33) is nonempty.

4. Extension

There are several extensions of the variational inequality VI(T,K)
and the complementarity problem CP(T,K). These extensions basically
involve replacing either the fixed set K or the mapping T by multi-
valued mappings. See, e.g., [3, 39, 20, 17, 18, 19, 79, 92, 75, 88, 40,
53, 89, 73]. In this section, we shall consider variational inequality and
complementarity problems associated to a multi-valued mapping. Some
main existence results will be presented when the multi-valued mapping
is pseudomonotone.

To begin, let B be a real Banach space, K a nonempty subset of B
and where denotes the family of all nonempty subsets
of The generalized variational inequality, denoted G V I ( T , K ) , is
to find such that there exists satisfying the following
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property :

Several existence results for the GVI(T,K) have been derived in the
literature. For example, Aubin [2], Brézis [12], Browder [15, 16], Shih
and Tan [81] gave an existence result of GVI(T ,K) for monotone op-
erators; Guo and Yao [41] gave an existence result for nonmonotone
operators; Cubiotti and Yao [29] gave some more existence results for
operators satisfying conditions. In the following, we shall employ
the celebrated Ky Fan Lemma [37] which is an infinite-dimensional gen-
eralization of the KKM Theorem [62], to derive a very general existence
result for the GVI(T,K) involving multi-valued pseudomonotone oper-
ators.

4.1 Existence and Uniqueness for GVI(T,K)

Let K be a nonempty subset of the real Banach space B and
Recall that the operator T is monotone if

Also the operator T is said to be pseudomonotone [90] if for every
pair of distinct points and any we have

The concept of multi-valued pseudomonotone operators was intro-
duced by Saigal [79] in a finite-dimensional space setting and it is clear
that if the multi-valued operator is monotone then it is pseudomonotone
as the case for single-valued mappings.

Definition 12.9 Let X, Y be topological spaces and The
operator T is upper semicontinuous at if for any open set V in
Y containing there is an open neighborhood U of in X such that

for all The operator T is upper semicontinuous on X if
it is upper semicontinuous at each point of X.

The following celebrated Ky Fan Lemma will play a crucial role in
proving the existence result of the GVI(T, K).

Theorem 12.19 ([37, Lemma 6.1]) In a Hausdorff topological vector
space, let Y be a convex set and For each let
be a closed subset of Y such that the convex hull of every finite subset
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of X is contained in the corresponding union If

there is a point such that is compact, then

We also need the following Kneser minimax theorem.

Theorem 12.20 ([63]) Let X be a nonempty convex set in a vector
space, and let Y be a nonempty compact convex subset of a Hausdorff
topological vector space. Suppose that is a real-valued function on
X x X such that for each fixed is lower semicontinuous
and convex on Y, and for each fixed is concave on X.
Then

Now we can state and prove the following existence result for the
generalized variational inequality.

Theorem 12.21 Let K be a nonempty closed convex subset of the real
reflexive Banach space B. Suppose that is pseudomonotone
such that is a nonempty weakly compact subset of B* and T is upper
semicontinuous from the line segments in K to the weak topology of B*.
Assume in addition that either K is bounded or there exists bounded
subset C of K and such that for any

Then there exists such that

If in addition the set is convex, then the GVI(T,K) has as a
solution, i.e., there exists such that

Proof. Define two multi-valued operators F, by

for each The proof of inequality (12.35) is divided into the
following five steps.
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(i) The convex hull of every finite subset of K is contained

in the corresponding union Indeed, let be in the convex hull

of Then

for some and then

from which it follows that

which is a contradiction.
(ii) for all Indeed, for each let

Since the set is weakly compact, there exists such that

and hence

By the pseudomonotonicity of T, we have

Therefore

and consequently, Therefore
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as claimed.
(iii) We note that, since B is reflexive, the

weak and weak* topologies of B* coincide. Therefore by [81, Lemma 2],

The inclusion

follows from Step (ii).
(iv) The weak closure of is a weakly compact subset of

K. If K is bounded, the conclusion follows from the fact that since B is
reflexive, K is itself weakly compact. Suppose that K is not bounded.
If is not bounded, then there exists a point such that

and it follows from (12.34) that

which is a contradiction. Therefore, is bounded and hence
is a weakly compact subset of K as claimed.

(v) There exists such that

By Steps (i) and (iv) and Theorem 12.19, we have that

For fixed since the real function

is convex and lower semicontinuous on B, it is also convex and weakly
lower semicontinuous. Therefore, is weakly closed in K, and hence

from which it follows that
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Therefore, by Step (iii), we also have that

Hence, there exists such that

The proof of inequality (12.35) is now completed.
If, in addition, the set is also convex, by Theorem 12.20, we have

We note that the real function

is convex and weakly lower semicontinuous on B*. Since is weakly
compact, it follows from (12.36) that there exists such that

or

Hence is a solution of the problem GVI(T, K).

Remark. By a similar argument to one in the proof of Proposition 12.2,
one can easily show that if there exists such that

then there exists a bounded subset C of K such that for any

The following corollary is an immediate consequence of Theorem 12.21.

Corollary 12.6 Let K be a nonempty closed convex subset of the real
reflexive Banach space B. Suppose that is pseudomonotone
such that is weakly compact and convex for each and T is upper
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semicontinuous from the line segments in K into the weak topology of
B*. If there exists such that

then the GVI(T,K) has a solution.

Recall that a single-valued operator is called hemicon-
tinuous if it is continuous from the line segments in K into the weak*
topology of B*. The following existence result for the VI(T, K) is then
again a consequence of Theorem 12.21.

Corollary 12.7 Let K be a nonempty closed convex subset of the real
reflexive Banach space B. Suppose that is hemicontinuous
and pseudomonotone. Assume in addition that either K is bounded or
there exists such that

Then the variational inequality VI(T, K) has a solution.

Now we turn to the uniqueness of the solution of the generalized vari-
ational inequality. Let us first recall the concepts of strict, and strong
pseudomonotonicity of multi-valued operators, respectively, introduced
by Yao [90].

Definition 12.10 Let K be a nonempty subset of the real Banach space
B and

(i) The operator T is strictly pseudomonotone on K if, for every pair
of distinct points and any we have

(ii) The operator T is on K if there exist
and with

such that, for every pair of distinct points and any
we have

(iii) The operator T is strongly pseudomonotone if for some
in (ii).
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The concept of strict and strong pseudomonotonicity of multi-valued
operators in Definition 12.10 are generalizations of the concepts of strict
and strong pseudomonotonicity of single-valued mappings, respectively,
introduced by Karamardian and Schaible [58].

Lemma 12.7 Let K be a nonempty subset of the real Banach space B
and If T is strictly pseudomonotone, then the GVI(T, K)
can have at most one solution.

Proof. Suppose on the contrary that the GVI(T, K) has two distinct
solutions, say, and Then there exists and such that

In particular, we have

Since T is strictly pseudomonotone, it follows from (12.37) that

from which it follows that

which is a contradiction to (12.38). Hence the GVI(T,K) can have at
most one solution.

The following uniqueness result follows from Lemma 12.7 and Theo-
rem 12.21.

Theorem 12.22 Let K be a nonempty closed convex subset of the real
reflexive Banach space B. Suppose that is strictly pseu-
domonotone such that is weakly compact and convex for each
and T is upper semicontinuous from the line segments in K into the
weak topology of B*. Assume that either K is bounded or there exists

such that
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Then the GVI(T, K) has a unique solution.

We have more uniqueness results for and strongly
pseudomonotone operators.

Theorem 12.23 ([90, Theorem 3.2, Corollary 3.1]) Let K be a non-
empty closed convex subset of the real reflexive Banach space B and

such that is weakly compact and convex for each
and T is upper semicontinuous from the line segments in K into

the weak topology of B*. If T is either or strongly
pseudomonotone, then the GVI(T, K) has a unique solution.

We observe that Theorem 12.23 is not a consequence of Theorem
12.22. We also note that few uniqueness results for the GVI(T, K) have
been derived in the literature. The uniqueness results presented in this
section to our best knowledge are the most recent ones. More efforts
should be put in this direction.

4.2 GVI(T,K) for Multi-valued Topologically
Pseudomonotone Operators

In this section, we first introduce the topological pseudomonotonicity
notion for multi-valued operators (See, e.g., Browder [15], Zeidler [93,
p.913]). Some existence results of GVI(T, K) are then presented.

Definition 12.11 Let K be a closed convex subset of a real reflexive
Banach space B. The multi-valued operator is said to be
topologically pseudomonotone if the following holds:

Let for all and suppose that such that

Then, for each there exists such that
and

We have the following property of multi-valued topologically pseu-
domonotone operators which represents an extension to the multi-valued
case of the same property in the single-valued case.

Proposition 12.5 Let be monotone and upper semicontu-
ous on line segments in the nonempty closed convex subset K of the real
reflexive Banach space B. If for each the set is nonempty,
convex and closed in B*, then T is topologically pseudomonotone.
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Proof. We refer to Kluge [61, p.93] by using a similar argument as in
the proof of Proposition 12.3.

The property of the sum of two single-valued topologically pseu-
domonotone operators is also reserved for multi-valued topologically
pseudomonotone operators as shown by the following proposition.

Proposition 12.6 Let be topologically pseudomono-
tone on the real reflexive Banach space B. Then, the sum

is also topologically pseudomonotone.

Proof. The proof is similar to the one of Proposition 12.4 (i).

Now, we again consider the following generalized variational inequality
GVI(T, K) :

where K is a subset of a real Banach space B and
We have the following existence result for (12.39) where T is a topo-

logically pseudomonotone operator.

Theorem 12.24 Let B be a real reflexive Banach space and
a multi-valued operator with nonempty bounded closed convex values,

where K is a closed convex subset of B.
Suppose that :
(i) Either K is bounded or there exist and such that

(ii) T is topologically pseudomonotone and upper semicontinuous on
the intersection of K with any finite-dimensional subspaces of B.

Then the problem GVI(T,K) has a solution.

Proof. We shall apply Theorem 12.17 with B endowed with its weak
topology and defined by

Assumptions (ii) and (v) of Theorem 12.17 are immediate. On the
other hand, from the topological pseudomonotonicity of T one deduces
that is topologically pseudomonotone and hence one can easily verify
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that satisfies assumption (iv) of Theorem 12.17. So we need only to
verify that is upper semicontinuous on the intersection of K with
finite-dimensional subspaces of X. This follows from Berge Theorem [6,
p.122].

Therefore, from Theorem 12.17, there exists such that

Since is convex compact, from [7, Lemma1], we conclude that
there exists such that for all Hence the
GVI(T, K) has a solution.

4.3 Generalized Quasi-variational Inequality

Recently Chowdhury and Tan [21] gave an extension of the definition
of topological pseudomonotonicity related to a multi-valued operator.
They introduced this notion specially to study the following generalized
quasi-variational inequality on a paracompact set K in a locally convex
Hausdorff topological vector space X :

where and
As we can see that problem (12.40) reduces to the generalized varia-

tional inequality problem when for all

Definition 12.12 Let X be a topological vector space, K a nonempty
subset of X and If then

(i) T is said to be topologically if for each
and each net in K converging to with

we have

for all
(ii) T is said to be strongly topologically if for

each continuous function for each and every
net in K converging to with
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we have

(iii) T is said to be topologically strongly pseudomonotone, if
in (ii).

Clearly, T is topologically 0-pseudomonotone if and only if the func-
tion defined on K × K by is topologically pseu-

domonotone in the sense of Definition 12.7. Also, it is easy to see that if T
is strongly topologically pseudomonotone then

is topologically pseudomonotone.

Proposition 12.7 Let K be a nonempty subset of a topological vector
space X. If is monotone and continuous from the relative
weak topology on K to the weak* topology on X*, then T is strongly
topologically pseudomonotone.

Proof. Let us consider any arbitrary continuous function
Suppose is a net in K converging to and

Then for any and there are with

and

Choose with Then, since T is monotone, we have

so that
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It follows that

As is arbitrary, we now have

Hence T is strongly topologically pseudomonotone.

The following result due to Chowdhury and Tan [21] is related to the
existence of solutions of (12.40) associated to a strongly topologically
h-pseudomonotone operator.

Theorem 12.25 Let X be a locally convex Hausdorff topological vector
space, K be a nonempty paracompact convex subset of X and

be convex. Let be upper semicontinuous such that
each is compact convex and be stronly topologically

and upper semicontinous from co(A) to the weak*
topology on X* for each finite set A in K such that is weak* compact
and convex. Suppose that the set

is open in K. Suppose further that there exist a nonempty compact subset
B of K and a point such that

Then there exist and such that
for all

For the proof of this theorem we refer to [21].

4.4 The Generalized Complementarity Problem
In this section, we shall consider a generalization of the complemen-

tarity problem for multi-valued operators. Existence and uniqueness
results will be obtained by employing the results presented in Section
4.1. More specifically, let K be a closed convex cone in a real Banach
space B and The generalized complementarity problem,
denoted GCP(T, K), is to find such that there is satisfying
the following properties :
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The problem GCP(T, K) was originally introduced by Saigal [79] in
the finite-dimensional space setting. We remark that there are very few
results either on existence or the algorithmic aspect for GCP(T, K) in
the literature. The results presented in this section are efforts in this
direction.

As in the single-valued case, one can expect that both problems
GVI(T, K) and GCP(T, K) have the same solution set if the under-
lying set K is a closed convex cone as the following result shows. Since
the proof is very similar to the proof of single-valued case, it will be
omitted.

Lemma 12.8 Let K be a closed convex cone in the real Banach space B
and Then the problems GVI(T,K) and GCP(T,K) have
the same solution set.

Combining Corollary 12.7 and Lemma 12.8, we have the following
existence result for the GCP(T, K).

Theorem 12.26 Let K be a closed convex cone in the real reflexive
Banach space B and Suppose that T is pseudomonotone
such that is weakly compact and convex for each and T is upper
semicontinuous from the line segments in K into the weak topology of
B*. If there exists such that

then the GCP(T,K) has a solution.

We also have the following uniqueness result for GCP(T, K) which is
a consequence of Theorem 12.23 and Lemma 12.8.

Theorem 12.27 Let K be a closed convex cone in the real reflexive
Banach space B and Suppose that T is upper semicon-
tinuous from the line segments in K into the weak topology of B* and

is weakly compact and convex for each If T is either
or strongly pseudomonotone, then the GCP(T, K) has

a unique solution.

We refer readers to [39, 20, 79, 92, 73, 66, 74] for more results on
various types of generalized complementarity problems.
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5. Equivalence of Complementarity Problems
and Least Element Problems

This final section devotes to the equivalence of the complementarity
problem, the least element problem and related problems under suitable
assumptions. These equivalences are important in the sense that we
can use new methods to study complementarity problems by these con-
nections. Also, problems like least element problems and other related
problems can be studied by the complementarity problems.

To start our discussion, let K be a closed convex cone in a real Banach
space B. As we mentioned in the Introduction, one can define preorders
induced by K on B and K* on B*, respectively, which are denoted by
the same symbol that is

Nonzero elements of K and K* are said to be positive, and is
said to be strictly positive if for all The space
B is said to be a vector lattice with respect to if each pair of point

has a unique infimum characterized by the following properties

We note that if B is a vector lattice with respect to induced by
K, so is B* with respect to induced by K*. See, e.g., [59, Appendix,
p.224-231].

Let a closed convex cone and be
given. We denote by F the feasible set of T with respect to K, that is,

We shall consider in this section the following five problems.

(I) Nonlinear program : For a given find such that
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(II) Least element problem : find

(III) Complementarity problem : Find

(IV) Variational inequality : Find

(V) Unilateral minimization problem : Find

In [78], Riddel considered the equivalences of the above five problems
for strictly monotone Z-map in Banach lattices. Instead of strict mono-
tonicity, we shall use strict pseudomonotonicity to derive equivalences
of the above five problems.

First let us recall the following definitions.

Definition 12.13 ([78]) Let B be a real Banach space which is also a
vector lattice with positive cone K, and let Then T is said
to be a Z-mapping relative to K provided

It should be observed that Definition 12.13 reduces to the definition
of condition Z introduced by Cryer and Dempster [30] when T is linear.
Also when B is finite-dimensional and K is the nonnegative orthant, T
is a Z-mapping relative to K if and only if T is off-diagonally antitone
in the sense of Rheinboldt [77].

Definition 12.14 ([78]) Let K be a nonempty convex subset of the real
Banach space B and The operator T is positive at infinity
if for any there exists a positive real number such that

for every such that

We have the following translation property of pseudomonotone oper-
ators.

Lemma 12.9 ([80]) Let K be a convex cone of the real Banach space B
and If T is pseudomonotone or strictly pseudomonotone,
then the operator defined by

such that

for all

such that

such that

for all

such that
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for fixed is also pseudomonotone or strictly pseudomonotone,
respectively.

We have the following existence and uniqueness result of variational
inequality which is a consequence of Theorem 12.4 and Lemma 12.3.

Theorem 12.28 Let K be a closed and convex cone of a real reflexive
Banach space and Suppose that T is pseudomonotone,
hemicontinuous and positive at infinity. Then there exists such
that

Furthermore, if in addition T is strictly pseudomonotone, the solution
is unique.

Next, we employ Theorem 12.28 to derive the following existence re-
sult for perturbed variational inequalities.

Corollary 12.8 Let K be a closed and convex cone of a real reflexive
Banach space and . Suppose that T is pseudomonotone,
hemicontinuous and positive at infinity. Then for each fixed
there exists such that

If in addition, T is strictly pseudomonotone, then for each fixed
the problem has a unique solution.

Proof. For fixed let us define by

Clearly, is hemicontinuous and it is also pseudomonotone by
Lemma 12.9. Now let us show that is positive at infinity. Let

and define then for all such
that one has Hence using
that T is positive at infinity, one has

Therefore, Hence by Theorem 12.28, one deduces
that has a solution.

If in addition T is strictly pseudomonotone, then by Lemma 12.9,
is also strictly pseudomonotone. Therefore has a unique

solution.

Now we give a sequence of propositions each with its own hypotheses
and from these propositions, we will derive the main result of this section.
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Proposition 12.8 Let be the G-derivative of the function
Then any solution of (V) is also a solution of (IV). If, in

addition, T is pseudomonotone, then conversely any solution of (IV) is
also a solution of (V).

Proof. The first part of the proposition can be found in [78].
Conversely, suppose in addition that T is pseudomonotone. If is

any solution of (IV), then

By Theorem 12.11, is pseudoconvex. By the pseudoconvexity of
we then have

Hence is also a solution of (V).

Proposition 12.9 Let Then is a solution of (III) if
and only if is a solution of (IV)

Proof. The result follows from [55, Lemma 3.1].

Proposition 12.10 Suppose that is strictly pseudomono-
tone and a Z-mapping relative to K. Then any solution of (IV) is also
a solution of (II).

Proof. Suppose that is a solution of (IV). Then

By Proposition 12.9, is a solution of (III) and hence For
any fixed we claim that Indeed, let Since

and B is a vector lattice with respect to or
equivalently, Substituting into (12.41), we get

If then by (12.42) and the strict pseudomonotonicity of T, we
have

Now since As
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On the other hand, the trio and satisfy

Consequently, by the fact that T is a Z-mapping, we have

from which it follows that

By adding (12.44) and (12.45), we obtain

and hence

which is a contradiction to (12.43). As a result, we conclude that
and hence for all Therefore is a solution of (II) and the
proof is complete.

Proposition 12.11 Let and be arbitrary. Then
any solution of (II) is also a solution of (I).

Proof. Let be a solution of (II). Then for any Hence
Since we have and thus

Consequently, is a solution of (I).

Proposition 12.12 Let B be reflexive, be a Z-mapping
relative to K. Assume that T is strictly pseudomonotone, hemicontin-
uous and positive at infinity. Then for any pair and we
have i.e. F is a

Proof. Suppose that and and let It remains
to show that or equivalently, since and

By Proposition 12.8, there exists such that

For any which is a convex cone, Thus by (12.46),
we have
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Thus We now claim that Indeed, let
Since and we have So

and thus Using in (12.46), we get

Suppose Then by the strict pseudomonotonicity of T and
(12.47), we have

Note that

The definition of a Z – mapping gives

Since and we have

or

Adding (12.49) and (12.50), we obtain

from which it follows that

which is in contradiction to (12.48). As a result, we must have
and by the definition of we conclude that as claimed.

Repeating the above argument with in place of one can show that
Thus But on the other hand,

so and the proof is complete.

Proposition 12.13 Let B be reflexive, be a Z-mapping rel-
ative to K. Assume that T is strictly pseudomonotone, hemicontinuous
and positive at infinity. Let be strictly positive. Then problem
(I) corresponding to has at most one solution, and any solution of (I)
is also a solution of (II).

Proof. Suppose and are both solutions of the problem (I) :
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By the Proposition 12.13‚ we know Since is strictly
positive‚

with strict inequality if But since is a solution‚ we must
have Similarly and thus by the uniqueness of

Suppose now is a solution of (I) corresponding to and let
From Proposition 12.12 again‚ By the optimality of and
the positivity of we have

Consequently‚ solves (I). By the uniqueness‚ and so
for all Hence is a solution of (II).

Now by combining Propositions 12.8-12.13‚ we can state the main
result of this section.

Theorem 12.29 Let K be a closed convex cone of a real reflexive Ba-
nach space B which is also a vector lattice with respect to the order
induced by K. Let be a Z-mapping relative to K and as-
sume that T is strictly pseudomonotone‚ hemicontinuous and positive at
infinity. If is strictly positive‚ then there exists a unique
which is a solution of problems (I) – (IV). If in addition‚ T is the G-
derivative of then is also a unique solution of problem
(V).

It is not difficult to check that any strongly pseudomonotone operator
is also positive at infinity. See‚ e.g.‚ [80]. Consequently‚ the following
result follows immediately from Theorem 12.29.

Corollary 12.9 Let K be a closed convex cone of a real reflexive Banach
space B which is also a vector lattice with respect to the order induced
by K. Let be a Z-mapping relative to K. Assume that T
is strongly pseudomonotone and hemicontinuous. If is strictly
positive‚ then there exists a unique which is a solution of problems
(I) – (IV).  If in addition‚ T is the G-derivative of then
is also a unique solution of problem (V).

Example. Let be defined as
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Then one can easly see that T is strictly pseudomonotone‚ hemicon-
tinuous and a Z-mapping relative to We note that T is not
monotone since

for and

We remark that in Hilbert space‚ the complementarity problem is also
equivalent to fixed point problem. See‚ e.g.‚ [49].
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Abstract This chapter is devoted to equilibrium problems and variational inequal-
ities under generalized monotonicity assumptions on cost functions. We
present basic existence and uniqueness results of solutions both for scalar
and for vector problems. Relationships between generalized monotonic-
ity properties of cost functions of these problems are also considered.
Moreover‚ we describe basic approaches to construct iterative solution
methods‚ including their convergence properties.
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1. Introduction

Let K be a nonempty subset of a topological space E and let
be an equilibrium bifunction‚ i.e.‚ for all

Then one can define the equilibrium problem (EP) which is to find an
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element such that

To our knowledge‚ this formulation of EP was considered first by Nikaido
and Isoda in [155] as a generalization of the Nash equilibrium problem
in non-cooperative games. EP of the form (13.1) provides a general and
convenient format to write and investigate not only various problems
arising in applications‚ but also many well known general problems in
Nonlinear Analysis‚ such as optimization‚ saddle point‚ fixed point‚ com-
plementarity and variational inequality problems; see e.g. [156‚ 10‚ 22].
Among these problems‚ we should pay special attention to variational
inequalities. We recall that the variational inequality problem (VI) is to
find an element such that

where G is a (multivalued) mapping from K into the dual space
denotes the duality pairing between and E. This problem (with a
single valued mapping) was considered first by Fichera [63] and Stam-
pacchia [178]. They introduced VI in order to study certain problems in
Mathematical Physics. Such problems are described in detail in [56‚ 71].
Afterwards‚ a great number of direct applications of VIs were revealed
in other fields‚ such as Economics‚ Transportation and Operations Re-
search; e.g. see [84‚ 62‚ 68‚ 150]. On the one hand‚ VI seems to be
merely a particular case of EP‚ especially in the single-valued case. In
fact‚ it then suffices to set in (13.1). On the
other hand‚ it is possible to make the reverse transformation if
possesses certain (sub) differentiability properties. Generally speaking‚
VI (13.2) can be viewed as the differential form of EP (13.1). In addi-
tion‚ VI enjoys some additional nice properties‚ such as the linearity in
which enables one to simplify the derivation of certain results in theory
and the construction of iterative solution methods in comparison with
those for EP. Thus‚ we shall consider both problems in this chapter.

Traditionally‚ most works on various aspects of EPs and VIs were de-
voted to monotone problems. Note that both EP with monotone and
VI with monotone G possess certain additional nice properties which do
not hold in the generalized monotone case. For instance‚ it is well known
that the sum of any number of convex functions is convex‚ but the sim-
ilar assertion is not true for quasiconvex (or pseudoconvex) functions.
Analogously‚ the sum of quasimonotone (or pseudomonotone) mappings
need not be quasimonotone (or‚ respectively‚ pseudomonotone) in gen-
eral. Hence‚ studying and/or solving generalized monotone EPs and
VIs meets certain additional difficulties in comparison with those in the
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monotone case. However‚ the monotonicity assumption turned out to
be too restrictive for many applied problems‚ especially in Economics
and Operations Research. During the 90’s‚ generalized monotone EPs
and VIs were being investigated rather extensively and great progress
has been achieved in various aspects related to this field. In particu-
lar‚ various characterizations of generalized monotonicity were studied
by many researchers; e.g. see [98‚ 108‚ 39‚ 38‚ 143‚ 170‚ 171‚ 172] and
references therein. This assertion also applies to a great number of ex-
tensions of the usual EPs and VIs‚ in particular‚ to vector EPs and VIs.
In the vector case‚ the inequalities (13.1) and (13.2) should be consid-
ered not in but in some ordered vector space. Vector VIs are closely
related with vector optimization problems; see e.g. [33‚ 140‚ 88‚ 68‚ 67].
Giannessi [65] first introduced the vector variational inequality in finite-
dimensional spaces. Vector EPs can be also regarded as an extension of
vector VIs. However‚ vector EPs are also originated in non-cooperative
games where scalar utility functions are replaced with either preference
relations [61] or vector functions [20] and in saddle point theory for
multicriteria optimization; see e.g. [184] and [163‚ Chapter 4]. To our
knowledge‚ the general vector equilibrium problem was considered first
by Konnov [113].

In this chapter‚ we intend to present the basic results in the theory and
the construction of solution methods for EPs and VIs under generalized
monotonicity assumptions. We do not attempt to describe the most
general form of results. We aim to explain the essence of the main
approaches‚ so that any interested reader can evaluate the modern state
of this promising field as a whole. For the same reason‚ we give somewhat
weakened versions of several results in comparison with the original ones.

2. Equilibrium Problems
We begin our considerations from the general EP of the form (13.1).

Throughout this section‚ we suppose that the following basic assump-
tions hold:

(A1) K is a nonempty‚ convex and closed subset of a real topological
vector space E;

(A2) is an equilibrium bifunction.
We denote by the set of solutions of EP (13.1).

2.1 General existence results for EPs
The existence results of solutions for EPs are traditionally based on

suitable fixed point type theorems. Ky Fan [57‚ Lemma 1] presented a
so-called matching theorem‚ which turned out to be especially helpful
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and fruitful in deriving various existence results for equilibrium type
problems. This result‚ which is also known as Ky Fan’s Lemma‚ is
an infinite-dimensional extension of the classical Knaster-Kuratowski-
Mazurkiewicz theorem [106]. We give a somewhat more general variant
of Ky Fan’s Lemma from [59‚ Corollary 1]. As usual‚ for a set A‚ we
denote by conv A its convex hull.

Proposition 13.1 Let X be an arbitrary set in a topological vector
space Y. To each let a closed set in Y be given such
that‚ for every finite subset of X‚ one has

If is compact for at least one then

We extract the basic property of the mapping Q from Proposition
13.1 in a separate definition.

Definition 13.1 (e.g. see [78]) Let Q be a multivalued mapping from a
set X into a set Y‚ The mapping Q is said to be a KKM-map‚
if‚ for each finite subset of X‚ (13.3) holds.

Thus‚ each KKM-map‚ under the additional compactness assumption‚
possesses the finite intersection property. In order to obtain existence
results for EP we need to recall convexity and continuity properties of
scalar functions.

Definition 13.2 (e.g. see [147‚ 9]) Let be a function. The
function is said to be

(a) convex‚ if for each pair of points and for all
we have

(b) quasiconvex‚ if for each pair of points and for all
we have

(c) semistrictly quasiconvex‚ if for each pair of points such
that and for all we have
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(d) explicitly quasiconvex‚ if it is both quasiconvex and semistrictly
quasiconvex;

(e) lower (respectively‚ upper) semicontinuous‚ if for each sequence
we have

(respectively‚

From the definitions one can conclude that the following implications
hold:

Moreover‚ each lower semicontinuous and semistrictly quasiconvex func-
tion is clearly explicitly quasiconvex. We are now ready to establish a
general existence result for EP (13.1)‚ which is also known as Ky Fan’s
inequality (see [58]).

Theorem 13.1 Suppose that the following assumptions hold:
(a) K is compact;
(b) is quasiconvex for each
(c) is upper semicontinuous for each

Then EP (13.1) is solvable.

The proof is based on verifying the fact that the set-valued mapping
defined by

satisfies all the conditions of Proposition 13.1. Clearly‚ is compact
since is upper semicontinuous and K is compact. Next‚ from the
quasiconvexity of it follows that A is KKM. Hence‚

due to Proposition 13.1‚ as desired.
By using a coercivity condition‚ we can obtain an existence result on

unbounded sets; see [24‚ Theorem 1] and also [149].

Theorem 13.2 Suppose that there exist a compact subset L of E and
a point such that

If‚ in addition‚ assumptions (b) and (c) of Theorem 13.1 hold‚ then EP
(13.1) is solvable.
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In fact‚ noticing that because of (13.4) and (13.5)‚ we
conclude that is compact and the assertion of this theorem becomes
true due to the same argument as that in the proof of Theorem 13.1.

Coercivity condition (13.5) can be somewhat relaxed; see e.g. [1‚
Theorem 2]. Nevertheless‚ the combination of the upper semicontinu-
ity of and the compactness of K (or L) in the same topology
seems too restrictive in an infinite-dimensional space setting regardless
of the choice of any topology in E. One of the most popular approaches
to overcome these difficulties consists in employing monotonicity type
properties of

2.2 Generalized monotonicity and dual
equilibrium problems

We first recall the definitions of (generalized) monotonicity properties
for bifunctions.

Definition 13.3 [10‚ 149‚ 22‚ 18] A bifunction is said
to be

(a) monotone‚ if for all we have

(b) pseudomonotone‚ if for all we have

(c) strictly pseudomonotone‚ if for all we have

(d) quasimonotone‚ if for all we have

(e) strictly quasimonotone‚ if is quasimonotone and for all
there exists such that

From the definitions one can conclude that the following implications
hold:
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Let us consider the so-called dual equilibrium problem (DEP) which
is to find an element such that

(e.g. see [125]). We denote by the set of solutions of this problem. To
our knowledge‚ the pair of problems (13.1) and (13.6) was considered first
in [12‚ p.88] as an equal two-person game. Taking into account the fact
that is an equilibrium bifunction‚ it is easy to see that points
and are solutions to EP (13.1) and DEP (13.6)‚ respectively‚ if
and only if they constitute a saddle point of i.e.‚

Equivalently‚ employing the usual duality principle for saddle point prob-
lems (see [153])‚ we conclude that EP (13.1) coincides with the primal
problem:

whereas DEP (13.5) coincides with its dual:

Note that need not be quasiconcave in so that we cannot apply the
well-known minimax theorems (see [153‚ 107]) in order to establish the
existence of saddle points in (13.7). Nevertheless‚ the quasiconcavity of

can be replaced by generalized monotonicity of First we give
relationships between the solution sets of the primal and dual problems.

Definition 13.4 A function is said to be
(a) if its restriction on line segments of K is upper

semicontinuous;
(b) hemicontinuous‚ if its restriction on line segments of K is contin-

uous.

Remark 13.1 Throughout this paper we use the simplest definitions of
hemicontinuity type properties (see e.g. [83]). At the same time‚ there
exist somewhat different definitions of the same properties (see [125]).
For instance‚ a function is called if for
all the function defined on [0‚1]‚ is
upper semicontinuous at It is not too hard to verify that both the
definitions present the same class of functions.

Suppose that is explicitly quasiconvex for each and
is and choose arbitrary and
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Set for If for some
then‚ by explicit quasiconvexity‚ we have

i.e. a contradiction. Hence

for each Taking the limit in this inequality we obtain
i.e. which in turn gives The reverse

inclusion is clearly true if is pseudomonotone. Thus‚ we have proven
the basic relationship between EP and DEP‚ which is also known as
Minty’s Lemma (see [10‚ Section 10.1]) and can be formulated precisely
as follows; e.g. see [18].

Lemma 13.1 (i) If is pseudomonotone‚ then
(ii) If is explicitly quasiconvex for each and is

for each then

Thus‚ under the assumptions of Lemma 13.1‚ the existence of solutions
to either EP or DEP implies that there exists a saddle point in (13.7)
and that the optimal solutions of both problems coincide.

2.3 Existence and uniqueness results for
pseudomonotone EPs

Taking the results above as a basis‚ we now deduce existence and
uniqueness results for EP (13.1) with being pseudomonotone. If we
suppose that either K is compact or the coercivity condition (13.5) holds‚
then‚ following the proofs of Theorems 13.1 and 13.2‚ we conclude that

if is quasiconvex. Set

Then‚ the pseudomonotonicity of and the lower semicontinuity of
imply that

i.e.‚ DEP (13.6) is solvable. Applying now Lemma 13.1 (ii)‚ we obtain
the following existence result for EPs.
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Theorem 13.3 [24‚ 18] Suppose that the following assumptions hold:
(a) either K is compact or there exist a compact subset L of E and a

point such that (13.5) holds;
(b) is semistrictly quasiconvex and lower semicontinuous for

each
(c) is for each
(d) is pseudomonotone.

Then‚ EP (13.1) and DEP (13.6) are solvable.

Note that assumption (b) of Theorem 13.1 is replaced with somewhat
stronger one in Theorem 13.3‚ but assumption (c) of Theorems 13.1 and
13.2 is stronger essentially than that of Theorem 13.3.

The set of solutions of DEP possesses additional useful properties‚
which turn out to be true for EP in the pseudomonotone case. The
following lemma is a slight modification of the corresponding results
from [18] and [117‚ Proposition 5.2].

Lemma 13.2 (i) If is quasiconvex for each then is
convex.

(ii) If is lower semicontinuous for each then is
closed.

Combining Lemmas 13.1‚ 13.2 and Theorem 13.3 yields the following.

Corollary 13.1 Suppose that assumptions (a) – (d) of Theorem 13.3
hold. Then the sets of solutions of EP (13.1) and DEP (13.6) coincide
and are nonempty, convex and compact.

Next‚ it is easy to see that strict pseudomonotonicity implies the
uniqueness of solutions for EP‚ as the following proposition states.

Proposition 13.2 Suppose is strictly pseudomonotone. Then EP
(13.1) has at most one solution.

Therefore‚ if assumptions (a) – (c) of Theorem 13.3 hold and is
strictly pseudomonotone‚ then both EP (13.1) and DEP (13.6) have a
unique and common solution.

2.4 Existence and uniqueness results for
quasimonotone EPs

The approach above can be also applied to quasimonotone EPs. Al-
though the implication does not hold if is quasimonotone‚
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it was shown in [82] that either EP (13.1) is solvable or the key inclusion

holds under the assumptions of Theorem 13.3 with replacing pseudomo-
notonicity and by quasimonotonicity and hemiconti-
nuity‚ respectively‚ if‚ in addition‚ the relative interior of K‚ denoted by
rai K‚ is nonempty. Therefore‚ we can apply Ky Fan’s Lemma in order
to establish an existence result in the quasimonotone case as well.

Theorem 13.4 (see [18‚ Theorem 3.1] and [82‚ Theorem 2.1]) Suppose
that the following assumptions hold:

(a) either K is compact or there exist a compact subset L of E and a
point such that (13.5) holds;

(b) is semistrictly quasiconvex and lower semicontinuous for
each

(c) is hemicontinuous for each
(d) is quasimonotone;
(e)

Then EP (13.1) is solvable.

Although the assertions of Corollary 13.1 are not true in the quasi-
monotone case‚ it is possible to obtain their weakened analogues and a
uniqueness result for the set of non-trivial solutions

Proposition 13.3 [18‚ Theorem 4.1] Suppose that is quasimonotone‚
is semistrictly quasiconvex for each and is hemi-

continuous for Then:

(i)
(ii) the closure of is contained in
(iii) if‚ in addition‚ is strictly quasimonotone‚ then has at most

one element.

2.5 Further generalizations

The results above can be generalized in several directions. In partic-
ular‚ it is possible to consider similar duality relationships between EP
(13.1) and another DEP with some different bifunction
That is‚ we can define the problem of finding an element such
that
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and introduce analogues of the (generalized) monotonicity properties
which involve two‚ rather than one‚ bifunctions. Then‚ following the
proofs of the results above‚ we can obtain their various extensions. This
approach turned out to be very fruitful‚ especially in deriving existence
results for vector problems; see [21‚ 157‚ 158‚ 82‚ 125].

Next‚ it is possible to replace the usual continuity‚ quasiconvexity and
generalized monotonicity properties with more general formulations in
terms of the corresponding level sets. For instance‚ the assertions of
Theorems 13.3 and 13.4 remain valid‚ if we replace assumptions (b) and
(c) with the following:

if and then

for all and for all

the set defined by (13.9)‚ is closed for each
the set is closed for all

see [82]. This approach was developed by many authors; e.g. see [198‚ 54‚
158‚ 195‚ 30‚ 55‚ 17] and references therein. Of course‚ assumptions
and are more general‚ but assumptions (b) and (c) seem to be more
convenient for their verification. Nevertheless‚ we can choose the most
suitable set of conditions for each specific problem under consideration.

It should be also noted that there exist a number of various coercivity
conditions which modify and specify the condition (13.5) for various set-
tings (e.g. see [1‚ 21‚ 22‚ 138‚ 195] and references therein)‚ thus allowing
to remove the explicit compactness assumption.

3. Variational Inequalities with Single-Valued
Mappings

In this section‚ we consider VI (13.2) in the case where the cost map-
ping G is single-valued. Then VI (13.2) can be equivalently rewritten as
follows: Find an element such that

where is a given mapping. Throughout this section‚ we
shall suppose that

(B1) K is a nonempty‚ convex and closed subset of a real Banach
space E.

We restrict ourselves to a Banach space setting for the sake of sim-
plicity.
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3.1 General existence results and dual VIs
Although the first existence results for single-valued VIs were based on

the Brouwer fixed point theorem (see [85‚ 139])‚ we shall obtain similar
results directly from the existence results for EPs described in Section
2. In fact‚ letting to be defined by

we see that EP (13.1) coincides with VI (13.10)‚ moreover‚ is now
clearly affine and continuous. We need only to specify some continuity
properties for mappings.

Definition 13.5 Let Y be a real topological vector space. A mapping
is said to be

(a) hemicontinuous‚ if Q is continuous on line segments of K;
(b) if and the restriction of Q on line

segments of K is continuous with respect to the weak* topology on
(c) if and the restriction of Q on line seg-

ments of K is upper semicontinuous with respect to the weak* topology
on

Theorem 13.5 Suppose that the following assumptions hold:
(a) either K is compact or there exist a compact subset L of E and a

point such that

(b) G is a continuous mapping from the strong topology in E to the
weak* topology in
Then VI (13.10) is solvable.

The proof follows directly from Theorems 13.1 and 13.2‚ since
in (13.11) is now upper semicontinuous. For further modifications and
extensions of this theorem see e.g. [154‚ 104‚ 1‚ 10‚ 7‚ 22]. Again‚ in order
to weaken the assumptions of Theorem 13.5‚ we make use of monotonic-
ity type properties for G.

Definition 13.6 [91‚ 159‚ 96‚ 97‚ 80] A mapping is said to
be

(a) monotone‚ if for all we have

(b) pseudomonotone‚ if for all we have
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(c) strictly pseudomonotone‚ if for all we have

(d) quasimonotone‚ if for all we have

(e) strictly quasimonotone‚ if it is quasimonotone and for all distinct
there exists such that

From the definitions we obtain the following implications:

It is easy to see that Definition 13.3 reduces to Definition 13.6 if is
defined by (13.11). Now‚ by analogy with DEP (13.6)‚ we can define the
dual variational inequality problem (DVI) which is to find an element

such that

Clearly‚ (13.6) with being defined by (13.11) coincides with (13.13).
We denote by and the sets of solutions of problems (13.10) and
(13.13)‚ respectively. First‚ from the definition of DVI (13.13) we obtain
the following immediately.

Lemma 13.3 The set of solutions to DVI (13.13) is convex and closed.

Next‚ applying (13.11) in Lemma 13.1‚ we obtain some relationship
between VI and DVI‚ which is also known as Minty’s Lemma; see [148‚
95].

Lemma 13.4 (i) If G is pseudomonotone‚ then
(ii) If G is then

The proof of part (ii) needs additional explanations. In fact‚ using
the same argument as in the proof of Lemma 13.1 (ii) we obtain (13.8).
On account of (13.11)‚ it means that
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for each where and Hence‚

and‚ by taking the limit in this inequality yields

i.e.‚ as desired.
On account of the assertions of Minty’s Lemma‚ the problem (13.13)

is also called the Minty variational inequality; see e.g. [66‚ 109].

3.2 Existence and uniqueness results for
generalized monotone VIs

By using the representation (13.11) and the assertions of Lemmas 13.3
and 13.4‚ we can obtain existence results of solutions for VI and DVI
as analogues of Theorems 13.3 and 13.4‚ and Corollary 13.1‚ the weak
topology being chosen in E.

Theorem 13.6 (see [191]) Suppose that the following assumptions hold:
(a) either K is weakly compact‚ or there exists a weakly compact subset

L of E and a point such that (13.12) holds;
(b) G is
(c) G is pseudomonotone.

Then the sets of solutions to VI (13.10) and DVI (13.13) coincide and
are nonempty‚ convex and weakly compact.

In fact‚ following the proof of Theorem 13.3 and using (13.11)‚ we see
that Applying now Lemma 13.4 (ii) gives hence

On account of Lemma 13.3‚ we now see that both solution sets
are convex and weakly compact.

Thus‚ the pseudomonotonicity assumption of G enables us to replace
the continuity assumption (b) of Theorem 13.5 with the
of G. Similarly‚ applying (13.11) in Proposition 13.2 gives a uniqueness
result.

Proposition 13.4 Suppose G is strictly pseudomonotone. Then VI
(13.10) has at most one solution.

We now specify the result of Theorem 13.4 to VI (13.10) with G being
quasimonotone.

Theorem 13.7 Suppose that the following assumptions hold:
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(a) either K is weakly compact‚ or there exist a weakly compact subset
L of E and a point such that (13.12) holds;

(b) G is
(c) G is quasimonotone;
(d)

Then VI (13.10) is solvable.

In fact‚ assumptions (a)‚ (b)‚ (d) and (e) of Theorem 13.4 with
being defined by (13.11) are now satisfied. Moreover‚
of G also implies that is hemicontinuous‚ and the result follows.
The result can be viewed as a modification of those in [81].

Recently‚ Luc [142] strengthened the existence results from Theorems
13.6 and 13.7. He showed that it is sufficient for G to possess the corre-
sponding generalized monotonicity properties on a dense subset of K.

Generalized monotonicity of a separable product of mappings was
studied in [40‚ 41]. Several specializations of generalized monotonicity
concepts for VIs defined on a product sets were suggested in [15‚ 124]. In
[124]‚ the corresponding existence results‚ which are based on applying
Ky Fan’s Lemma‚ are also given.

From the considerations above it is clear that the existence of solu-
tions to the initial VI (13.10) is closely related with that of the dual
problem (13.13) even regardless of generalized monotonicity properties
of the cost mapping. Besides‚ the existence of solutions to DVI deserves
a separate consideration due to its essential role in the convergence the-
ory of iterative methods (see [117] and references therein). In fact‚ it
is not so easy to verify condition (13.13) directly in many cases. It is
more suitable to find generalized monotonicity properties which guaran-
tee for DVI (13.13) to be solvable. From Theorem 13.6 we conclude that
pseudomonotonicity is sufficient if assumptions (a) and (b) hold. The
problem is to weaken this sufficient condition.

Definition 13.7 (see [80‚ 49]) A mapping is said to be
(a) explicitly quasimonotone‚ if it is quasimonotone and for any dis-

tinct the following implication holds:

(b) properly quasimonotone‚ if for every finite set
and every there exists such that

Note that any mapping satisfying property (a) is called semistrictly
quasimonotone in [80]‚ but we use the name “explicit quasimonotonic-
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ity”‚ since it corresponds to the original definition of explicit quasicon-
vexity (see (d) and (c) in Definition 13.2).

It is easy to see that each properly quasimonotone mapping is quasi-
monotone. Moreover‚ it was shown in [47] that each explicitly quasi-
monotone mapping is properly quasimonotone. On the other hand‚
it was shown in [121] that each pseudomonotone mapping is explicitly
quasimonotone and that each affine quasimonotone mapping is explic-
itly quasimonotone. Thus‚ explicit and proper quasimonotonicity can
be viewed as intermediate concepts between pseudo- and quasi- mono-
tonicity ones. Various properties of affine generalized monotone maps
were investigated in [76‚ 77‚ 98‚ 170‚ 172‚ 42‚ 44].

We now give an existence result for DVI (13.13) under explicit quasi-
monotonicity. This result was proved first in [121] under several addi-
tional assumptions and afterwards strengthened in [47].

Theorem 13.8 Suppose that the following assumptions hold:
(a) either K is weakly compact or there exist a weakly compact subset

L of E and a point such that

(b) G is explicitly quasimonotone.
Then DVI (13.13) is solvable.

Furthermore‚ it was shown in [47] that the assertion of Theorem 13.8
remains valid if (b) is replaced by

G is properly quasimonotone.
However‚ this result cannot be extended to the quasimonotone case.

The corresponding counter-example was given in [121‚ Example 6.2]. In
addition‚ it was shown in [90] that given a mapping is properly quasi-
monotone‚ if and only if DVI is solvable on each nonempty‚ convex and
compact subset K of a finite-dimensional Euclidean space. On the other
hand‚ the cost mapping in solvable DVI need not be even quasimono-
tone; see e.g. [115‚ Example 2.1]. Therefore‚ the class of quasimonotone
mappings and the class of mappings which provide for DVI (13.13) to
be solvable under certain coercivity assumptions have nonempty inter-
section‚ but they do not contain each other.

3.3 Variational inequalities and related problems

We now discuss briefly relationships between VIs with single-valued
cost mapping and other general problems of Nonlinear Analysis. We
consider ways of transformation of such problems to VI and generalized
monotonicity properties of cost mappings of the transformed problem.
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For instance‚ it is well known that VI (13.10) with K = E reduces to
the nonlinear (operator) equation:

Next‚ if K is a cone in E‚ then VI (13.10) is equivalent to the nonlinear
complementarity problem (NCP): Find such that

where is the conjugate cone to K;
see [94]. Hence‚ we can use all the above results of this section to study
these problems.

We now turn to the well-known optimization problem which is to find
an element such that

where is a given function. First we recall an additional
generalized convexity property for differentiable functions.

Definition 13.8 (see [147‚ 9]) Let be a differentiable func-
tion. The function is said to be pseudoconvex on K‚ if for each pair of
points we have

Here and below denotes the gradientmap of
From Definitions 13.2 and 13.8 it follows that pseudoconvexity implies

quasiconvexity‚ and that each convex differentiable function is pseudo-
convex. The following proposition collects relationships between con-
vexity and monotonicity type properties for functions and their gradi-
entmaps‚ respectively.

Proposition 13.5 (see [9‚ 96‚ 80‚ 170]) Let be a differen-
tiable function. The function is convex (respectively‚ pseudoconvex‚
explicitly quasiconvex‚ quasiconvex) if and only if its gradientmap
is monotone (respectively‚ pseudomonotone‚ explicitly quasimonotone‚
quasimonotone).

Note that the gradientmaps of generalized convex functions in fact
possess stronger monotonicity type properties‚ such as proper quasi-
monotonicity in the quasiconvex case and cyclical monotonicity in the
convex case; see [159‚ 164‚ 49‚ 50].

Now we give the well-known differentiable optimality condition for
optimization problem (13.14).
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Theorem 13.9 (see [147]) Suppose is a differentiable func-
tion.

(i) Problem (13.14) implies VI (13.10) with
(ii) If is pseudoconvex‚ then VI (13.10) with implies prob-

lem (13.14).

Thus‚ the optimization problem (13.14) with  being generalized con-
vex can be regarded as a particular case of VI (13.10) with G being
generalized monotone. Some relationships between problem (13.14) and
DVI (13.13) were presented in [89‚ 109].

It has been mentioned that EP (13.1) with being defined by (13.11)
becomes equivalent to VI (13.10). We now consider the conditions which
admit the reverse transformation. To this end‚ we suppose that
is differentiable for each and set

This mapping was introduced by Rosen in [167]. If is an equilibrium
bifunction‚ each solution of EP (13.1) also solves the minimization
problem (13.14)‚ where Applying now Theorem 13.9‚
we obtain optimality conditions for EP (13.1).

Theorem 13.10 (see‚ e.g. [117]) Suppose that is an
equilibrium bifunction‚ is differentiable for each Then:

(i) EP (13.1) implies VI (13.10) with G being defined by (13.15);
(ii) if‚ in addition‚ is pseudoconvex for each then EP

(13.1) is equivalent to VI (13.10) with G being defined by (13.15)‚ and
DEP (13.6)‚ (13.15) implies DVI (13.13).

We now also give the relationship between generalized monotonicity
properties for bifunctions and mappings (see [117‚ Proposition 2.2] and
[122‚ Proposition 2.1.17]).

Proposition 13.6 Suppose that is an equilibrium
bifunction‚ is convex and differentiable for each If
is monotone (respectively‚ pseudomonotone‚ strictly pseudomonotone‚
quasimonotone‚ strictly quasimonotone‚ explicitly quasimonotone)‚ then
the mapping G‚ defined by (13.15)‚ is also monotone (respectively‚ pseu-
domonotone‚ quasimonotone‚ strictly quasimonotone‚ explicitly quasi-
monotone).

Thus‚ under the assumptions of Proposition 13.6‚ EP (13.1) can be
replaced by equivalent VI with the cost mapping possessing the same
(generalized) monotonicity property as that of Note that the re-
verse assertions are not true in general; e.g. see [122‚ Example 3.2.7].



First we note that it is possible to establish existence and uniqueness
results of solutions to VI (13.2) by using the corresponding results of
Section 2 applied to the following equilibrium bifunction:

Clearly, (13.16) extends (13.11) to the multivalued case. Note that the
supremum in (13.16) is always attainable because of (B2). Obviously,
VI (13.2) implies EP (13.1), (13.16). Conversely, if solves EP
(13.1), (13.16), then

or equivalently,

In order to obtain (13.2) we can now apply Kneser’s minimax theorem,
which is formulated as follows.

Proposition 13.7 [107] Let X be a nonempty convex subset in a vector
space, and let Y be a nonempty compact convex subset of a Hausdorff
topological vector space. Suppose that is a real-valued function on
X × Y such that is convex and lower semicontinuous for each

and is concave for each Then,
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Hence, it seems reasonable to make use of generalized monotone VIs for
investigation and solution of certain classes of EPs. Some additional
monotonicity type properties of mappings G of the form (13.15) were
investigated in [187].

4. Variational Inequalities with Multi-Valued
Mappings

In this section, we consider VI (13.2) also in a Banach space set-
ting. Namely, throughout this section we suppose that Assumption (B1)
holds and that

(B2) is a mapping with nonempty, convex and weakly*
compact values.

4.1 Generalized monotonicity and dual
variational inequalities



If we set Y = K, then all the
assumptions of Proposition 13.7 will be satisfied and we obtain (13.2).
Thus, we have established the following equivalence result.

Lemma 13.5 VI (13.2) is equivalent to EP (13.1), (13.16).

In order to apply the results of Section 2 to VI (13.2), we need to pro-
vide the corresponding properties of the bifunction in (13.16). Clearly,

is convex and lower semicontinuous for each since it is
the supremum of affine functions (see e.g. [51, Chapter 1, Section 2]).
We recall several continuity type properties for multivalued mappings.

Definition 13.9 (see [13, 154, 83, 126]) Let Y be a topological vector
space. A mapping is said to be

(a) upper semicontinuous, if for each point and for each open
set Z (in the corresponding topology) such that there is a
neighborhood X of such that whenever

(b) upper hemicontinuous, if its restriction on line segments of K is
upper semicontinuous;

(c) if and the restriction of Q on line seg-
ments of K is upper semicontinuous with respect to the weak* topology
on

Since the existence results for VIs without monotonicity type proper-
ties require too restrictive assumptions in infinite-dimensional spaces (see
Theorem 13.5 and also [7, Theorem 9.9]), we give these results with the
help of generalized monotonicity properties for multivalued mappings.

Definition 13.10 (see [25, 169, 192, 141, 47]) A mapping
is said to be

(a) monotone, if for all and for all we
have

(b) pseudomonotone, if for all  and for all
we have

(c) strictly pseudomonotone, if for all distinct  and for all
we have

(d) quasimonotone, if for all and for all
we have
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(e) strictly quasimonotone, if it is quasimonotone and for all distinct
there exists such that

From the definitions we obtain the following implications:

In the single-valued case, these definitions reduce to those in Definition
13.6. Besides, they can be obtained equivalently from those in Definition
13.3 by using (13.16). Combining (13.6) and (13.16), we can also define
the dual variational inequality problem (DVI) in the multivalued case,
which is to find an element such that

We denote by K* and the sets of solutions of problems (13.2)
and (13.17), respectively. By analogy with the proof of Lemma 13.4,
applying (13.16) in Lemma 13.1, we obtain the following multi-valued
variant of Minty’s Lemma; see e.g. [173, 192].

Lemma 13.6 (i) If G is pseudomonotone, then
(ii) If G is then

From the definition of DVI (13.17) we obtain the following useful
characterization of its solution set.

Lemma 13.7 The set is convex and closed.
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4.2 Existence and uniqueness results for
multivalued generalized monotone VIs

First we note that applying (13.16) in Theorem 13.3 with respect to
weak topology in E and taking into account Lemma 13.6, we can estab-
lish the general existence result for pseudomonotone VIs. In addition,
taking into account Lemmas 13.5, 13.6, and 13.7, we obtain the general
characterization of solution sets.

Theorem 13.11 (see [60, 192, 126]) Suppose that the following as-
sumptions hold:

(a) either K is weakly compact, or there exist a weakly compact subset
L of E and a point such that



(b) G is
(c) G is pseudomonotone.

Then the sets of solutions to VI (13.2) and DVI (13.17) coincide and
are nonempty, convex and weakly compact.

Moreover, applying (13.16) in Proposition 13.2 yields a uniqueness
result.

Proposition 13.8 Suppose G is strictly pseudomonotone. Then VI
(13.2) has at most one solution.

Observe that the existence result above is due to applying Ky Fan’s
Lemma to the mappings A and B, defined by (13.4), (13.16) and (13.9),
(13.16), respectively. These mappings can be equivalently redefined as
follows:

and

Replacing with the set

we can somewhat weaken the generalized monotonicity properties which
provide the existence of solutions to VI (13.2). First we need to define
such weakened properties.

Definition 13.11 [53, 45] A mapping is said to be
(a) weakly pseudomonotone, if for all the inequality

for some implies for some
(b) weakly quasimonotone, if for all the relation

for some implies for some

Obviously, each pseudomonotone (respectively, quasimonotone) map-
ping is weakly pseudomonotone (respectively, quasimonotone), but the
reverse assertions are not true in general.

Next, using the same argument as in the proof of Theorems 13.1 and
13.2, we see that A is KKM. Hence, if either K is weakly compact or
condition (13.18) holds, then
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where denotes the weak closure of a set A. If G is weakly pseu-
domonotone, we have whereas the strong compactness of

implies that is weakly compact. It now follows that

But of G yields

thus extending the assertion of Lemma 13.6 (ii). Therefore, we have
obtained the following existence result, which can be viewed as a modi-
fication of Theorem 13.11.

Theorem 13.12 (see [53, 126, 30]) Suppose that the following assump-
tions hold:

(a) either K is weakly compact, or there exist a weakly compact subset
L of E and a point such that (13.18) holds;

(b) G is
(c) G is weakly pseudomonotone and has strongly compact values.

Then, VI (13.2) is solvable.

There exist a number of various coercivity conditions for VIs which
modify and specify conditions (13.12) and (13.18) for many different
settings; e.g. see [84, 192, 195, 83]. Crouzeix [37] and Daniilidis and
Hadjisavvas [48] studied the situations where coercivity conditions are
not only sufficient, but necessary for solvability of VIs. In particular, it
was shown in [48] that several different coercivity conditions, including
(13.18), are equivalent to each other and also to the fact that K* is
nonempty and bounded, if E is reflexive, G is upper hemicontinuous
and pseudomonotone.

Next, it is possible to obtain an existence result for quasimonotone
VIs in a reflexive Banach space setting. The corresponding theorem
was established in [45] and is based on the direct application of Ky
Fan’s Lemma to the mappings A and defined by (13.19) and (13.21),
respectively. We first recall that a point is called an inner point
of K if for all the following implication holds:

(see [197]). We denote by inn K the set of all inner points of K. Under
Assumption (B1), we must have Moreover,
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For more detailed description of properties of inner points, see [197, 23,
81].

Theorem 13.13 Suppose that the following assumptions hold:
(a) either K is bounded, or there exists such that for all

with there exists a point such that and

(b) G is upper hemicontinuous;
(c) G is weakly quasimonotone and has strongly compact values;
(d) E is reflexive and

Then, VI (13.2) has a solution.

On account of Theorem 13.11, DVI (13.17) is solvable if G is pseu-
domonotone and and the coercivity condition (13.18)
holds. We also can weaken these sufficient conditions for solvability of
DVI. First we give the multivalued analogues of the properties from
Definition 13.7.

Definition 13.12 (see [47, 49]) A mapping is said to be
(a) explicitly quasimonotone, if it is quasimonotone and for any dis-

tinct the following implication holds:

(b) properly quasimonotone, if for every finite set
and every there exists such that

Obviously, Definition 13.12 reduces to Definition 13.7 in case G is
single-valued. By definition, each properly quasimonotone mapping is
quasimonotone. It was shown in [121] and [47] that each pseudomono-
tone mapping is explicitly quasimonotone and that each explicitly quasi-
monotone mapping is properly quasimonotone, respectively. The reverse
assertions are not true in general, but it follows from [121, Lemma 3.2]
that explicit and proper quasimonotonicity become equivalent to the
usual quasimonotonicity in the affine case. The existence of solutions
for DVI (13.17) under quasimonotonicity type assumptions was investi-
gated in [121] and [47]. The counter-example from [121, Example 6.2]
shows that the quasimonotonicity is not sufficient for DVI (13.17) to
be solvable. Nevertheless, Theorems 13.11 and 13.12 in [121] show that
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In this subsection, we discuss briefly relationships between VIs with
multi-valued mappings and other problems of Nonlinear Analysis. For
instance, from the definition it follows that VI (13.2) reduces to the
multivalued inclusion

in case K = E. Also, if K is a cone in E, then VI (13.2) becomes
equivalent to multivalued NCP; e.g. see [94, 84]. We now discuss the
relationship between VI (13.2) and the optimization problem (13.14)
where is not necessarily differentiable. For the sake of simplicity, we
shall consider the case where is locally Lipschitz.

Definition 13.13 (see [36, 7]) Let is said to be locally
Lipschitz, if for each point there exists a neighborhood X of
such that is Lipschitz continuous on X.

If in (13.14) is locally Lipschitz, then the gradientmap can be
replaced by the Clarke subdifferential (see [36]). We recall that each
locally Lipschitz function is subdifferentiable, i.e. its Clarke subdifferen-
tial is nonempty at each point of its domain. We now recall the definition
of pseudoconvexity for nondifferentiable functions.

Definition 13.14 [162] Let be a locally Lipschitz
function. The function is said to be pseudoconvex on K, if for each
pair of points we have
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4.3 Variational inequalities and related problems

the explicit quasimonotonicity can be sufficient under certain additional
assumptions. We now give the strongest existence result for DVI under
proper quasimonotonicity, which was obtained in [47].

Theorem 13.14 Suppose that the following assumptions hold:
(a) either K is weakly compact or there exist a weakly compact subset

L of E and a point such that for every there exists
with

(b) G is properly quasimonotone.
Then, DVI (13.17) is solvable.

Moreover, it was shown in [90] that given a mapping is properly quasi-
monotone, if and only if DVI is solvable on each nonempty, convex and
compact subset K of a finite-dimensional Euclidean space.



From the definition it follows that each locally Lipschitz and pseudo-
convex function is explicitly quasiconvex (see [162, 47]). The following
proposition presents relationships between convexity and monotonicity
type properties in the nonsmooth case.

Proposition 13.9  (see [36, 86, 141, 8, 162, 47]) Let
be a locally Lipschitz function. The function is convex (respectively,
pseudoconvex, explicitly quasiconvex, quasiconvex) if and only if its
Clarke subdifferential is monotone (respectively, pseudomonotone, ex-
plicitly quasimonotone, quasimonotone).

Note that the subdifferential of a (generalized) convex function pos-
sesses certain additional cyclical monotonicity type properties; see e.g.
[164, 166, 135, 49, 47] and references therein. The following well known
optimality condition for problem (13.14) shows that VI (13.2) is closely
related with optimization problems.

Theorem 13.15 Suppose is a locally Lipschitz
function. Then:

(i) [36] Problem (13.14) implies VI (13.2) with
(ii) If is pseudoconvex, then VI (13.2) with implies (13.14).

Clearly, assertion (ii) follows from the definition of pseudoconvexity.
On account of Proposition 13.9, we conclude that optimization problems
with (generalized) convex functions can be viewed as instances of VIs
with (generalized) monotone mappings.

Lemma 13.5 presents a way to transform VI (13.2) into an equivalent
EP. Now we consider the conditions which provide the reverse transfor-
mation in the case there is non differentiable. Namely, set

In the differentiable case (13.22) clearly reduces to (13.15). Using the
same argument as that in the proof of Theorem 13.10 and applying now
Theorem 13.15, we obtain the relationship between EP (respectively,
DEP) and VI (respectively, DVI) in the non-differentiable case.

Theorem 13.16 (see [117]) Suppose that is an equi-
librium bifunction, is locally Lipschitz for each Then:

(i) EP (13.1) implies VI (13.2) with G being defined by (13.22);
(ii) if, an addition, is pseudoconvex for each then EP

(13.1) is equivalent to VI (13.2) with G beind defined by (13.22), and
DEP (13.6) implies DVI (13.17).
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The following proposition gives relationships between (generalized)
monotonicity properties for G and in (13.22), thus extending Propo-
sition 13.6.

Proposition 13.10 (see [117, Proposition 2.2] and [122, Proposition
2.1.17]) Suppose that is an equilibrium bifunction,
is convex for each If is monotone (respectively, pseudomono-
tone, strictly pseudomonotone, quasimonotone, strictly quasimonotone,
explicitly quasimonotone), the same is true for the mapping G, defined
by (13.22).

Thus, convexity of allows one to convert the initial EP with (gen-
eralized) monotone bifunction into an equivalent VI, its cost mapping
satisfying the same (generalized) monotonicity property. Again, the re-
verse assertion is not true in general; see [122, Example 3.2.7].
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5. Iterative Methods for Variational Inequalities
In this section, we consider several approaches to construct iterative

methods which converge to a solution of VI under generalized monotonic-
ity assumptions. Due to the assertions of Theorems 13.10 and 13.16 and,
also, Propositions 13.6 and 13.10, such methods can be applied for EPs
if their cost bifunctions are convex in the second variable and possess
the same monotonicity type properties. To simplify the exposition, we
restrict ourselves to a Euclidean space setting. Namely, throughout this
section we suppose that

(C1) K is a nonempty, convex and closed subset of the real
space

First we note that constructing solution methods for generalized mono-
tone VIs meets certain difficulties since, for instance, the sum of quasi-
monotone (or pseudomonotone) mappings need not be quasimonotone
(or, respectively, pseudomonotone) in general. For this reason, one can-
not use the Tikhonov regularization method (see [185, 11]), the usual
proximal point method (see [146, 165]) and, also, various Lagrangian-
based methods (see e.g. [160, 93]). Next, convergence properties of the
averaging method (see [26]) and the descent methods using merit func-
tions (see [64]) are also based essentially on the monotonicity arguments.
Thus, there are few general approaches which provide convergence of the
corresponding methods for generalized monotone VIs.

5.1 Traditional approaches
First we consider iterative methods which were designed for solving

the optimization problem (13.14). It is well known that most of such



methods (see e.g. [70, 84, 160]) are convergent to a solution of the
corresponding VI which expresses the necessary optimality condition for
problem (13.14) without any additional convexity type properties. More
precisely, the usual gradient projection method

where the stepsize is chosen with an Armijo-type rule, generates
a sequence whose limit points are solutions of VI (13.10) with
(see e.g. [14, Chapter 1]). Here and below denotes the projection
mapping onto K. Generalized monotonicity of due to Proposition
13.5 and Theorem 13.9, only provides convergence to a solution of the
optimization problem (13.14). Hence, each limit point of the projection
method

with being chosen properly will be a solution of VI (13.10) if G is
integrable and possesses certain continuity properties. However, this is
not the case if G is not integrable. In fact, the same method (13.23) does
not provide convergence even in the non-integrable monotone case, for
instance, when with A being skew-symmetric, regardless
of the stepsize choice (e.g. see [122, Example 1.2.1]). Nevertheless, the
method (13.23) becomes convergent if we replace monotonicity of G with
the following assumption:

(C2) VI (13.10) is solvable, and for every           we have

This property has clear geometric sense: the angle between and
has to be acute at each non-optimal point Hence, it is possible

to choose so that the distance from to a solution
is less than that from The corresponding convergence result can be
formulated as follows; see [75, Chapter 5].

Theorem 13.17 Suppose that is a continuous mapping
and assumption (C2) holds. If a sequence is generated by method
(13.23) where

then it converges to a solution of VI (13.10).

Note that the inequality (13.24) is also known in Economics as the
revealed preference property and was intensively investigated by many
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authors (see e.g. [6]). It is clear that strict pseudomonotonicity of G
implies (13.24). Moreover, each pseudomonotone integrable G also satis-
fies (13.24). In [29, 43], several classes of mappings which are intermedi-
ate between strict monotone (respectively, strict pseudomonotone) and
monotone (respectively, pseudomonotone) ones and provide for (13.24)
to hold are considered in detail.

The assertion of Theorem 13.17 can be extended to the multivalued
case. Namely, (13.23) and (13.24) are then rewritten respectively as

and

A sequence which is generated by (13.26) and (13.25) will converge
to a point of K* if (13.27) holds and G is an upper semicontinuous map-
ping with nonempty, convex and compact values; see [75, Chapter 5].
It should be noted that rule (13.25) leads to very slow convergence of
the method. Hence, we need to apply other approaches to attain more
rapid convergence and to weaken sufficient conditions for convergence.
Namely, we intend to describe several methods with the following suffi-
cient condition (see [110]):

(C3) for problem (13.10) or (13.2).
From Theorems 13.6, 13.8, 13.11, and 13.14 it follows that (C3) is

weaker essentially than (C2). We will consider the general nonlinear
case. The case where G is affine and pseudomonotone was studied by
Gowda [76, 77]. In particular, Gowda showed that the Lemke method
[133] can be applied directly to solve such VIs.
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5.2 The extragradient and modified proximal
point methods

Let us consider the single-valued VI (13.10). First we recall some
strengthened (pseudo) monotonicity properties.

Definition 13.15 (see [25, 97]) A mapping is said to be
(a) strongly monotone with modulus if for all we

have

(b) strongly pseudomonotone with modulus if for all
we have



From the definitions it follows that strong monotonicity implies mono-
tonicity and strong pseudomonotonicity. In turn, strong monotonicity
implies strict monotonicity, but the reverse assertions are not true.

The idea of the extragradient method by Korpelevich [128] consists
in replacing the usual projection iteration (13.23) with the double pro-
jection iteration

with This method was applied first to monotone VIs, and
afterwards extended to VIs satisfying (C3) (see [5]). In fact, even in the
latter case, there exists such that the angle between

and is acute for every hence sequence
generated by process (13.28) will converge to a solution if was chosen
properly. Note that one needs to choose the same stepsize for two
subiterations simultaneously. In [128, 5], the value of was suggested
to be fixed: where L is a Lipschitz constant for G. A
linesearch procedure for (13.28) was proposed in [103]. From the results
of [5] it follows that the extragradient method attains a linear rate of
convergence if G is strongly pseudomonotone (see also [186, 136]).

It has been mentioned that the usual proximal point method, generally
speaking, cannot be applied to non-monotone problems. Nevertheless,
Billups and Ferris [19] presented a modification of this method for VI
(13.10) in the case where K is a box-constrained set and (C3) is satisfied.
The idea is to replace the initial VI (13.10) with a sequence of perturbed
problems which have the cost mapping and
are solved with a prescribed accuracy. However, since G need not be
monotone, we cannot choose an arbitrary as in the classical proximal
point method. It was suggested in [19] to choose large enough to
provide for to be strongly monotone and solve each auxiliary VI
with mapping by a SQP type algorithm. Then the main iteration
sequence will converge to a solution under Assumption (C3). It is clear
that the efficiency of such a method depends strongly on the choice of the
algorithm for inner subproblems and its accuracy, and, also, the strategy
of changing the basic parameter The results of numerical experiments
on several test problems presented in [19] show that the method is more
robust than other SQP type methods.

It would be of interest to extend this approach to more general classes
of VIs and verify other algorithms for solving inner subproblems.
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5.3 Center type methods

The idea of this class of methods can be explained as follows. We
recall that a set C is said to be solid if its interior intC is nonempty.



Suppose that we can associate to each iterate a solid set such that
and and, also, a vector such that

Letting

we obtain the sequence of sets

whose volumes, under a suitable choice of will tend to zero, thus
providing the convergence of the method. For instance, if we set to
be the center of gravity, then the volume of will reduce in a linear
rate; see [134]. Let us consider VI (13.10) where the feasible set K is
defined as follows:

where is a convex, but not necessarily differentiable, function
and suppose that (C3)  holds and there exists a point such that

i.e. the Slater constraint qualification is satisfied. In order to apply
the method of centers of gravity to solve this problem it is sufficient to
choose

Then, due to (C3) and the subgradient property, the key relation (13.29)
holds, thus providing convergence. However, the implementation of this
method is very difficult when There are two main approaches to
simplify this method. The first is to choose the sets to be “regular” in
the sense of computation of their centers of gravity. For example, one can
choose an ellipsoid or a simplex in The most known is the ellipsoid
method, which was proposed first by Yudin and Nemirovskii [196] and
Shor [174] for convex programming and afterwards adjusted for saddle
point problems and VIs (see [152, 175, 176, 151]). Then each set is
an ellipsoid and we have to replace rule (13.30) with the following:

It is well known (see [151]) that the volumes of will also tend to zero
in a linear rate, but the convergence is slower than that of the method
of centers of gravity and depends strongly on the dimensionality of the
problem. The second approach consists in replacing the precise “cen-
ter” of with its approximation in some sense. The general framework
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involving both the approaches was described in [144]. We now give an
example of the method which follows the second approach and is based
on the computation of approximate analytic centers; see [72]. This algo-
rithm is applied to VI (13.10) where K is a full-dimensional polyhedron,
i.e.,

Algorithm 5.1 Step 0: Set

Step 1 (Computation of an approximate analytic center): Find as
an approximate maximizer of the dual potential over

Step 2 (Stopping criterion): Compute
If stop.

Step 3 (Generation of a cutting plane): Set

and go to Step 1.

However, most of such algorithms do not provide convergence of their
iteration sequences to a solution of VI (13.10) only under Assumption
(C3). It is possible to attain convergence with respect to some merit
function (see [151, Theorem 1]). Otherwise, one needs either to intro-
duce additional assumptions such as (13.24) or to incorporate auxiliary
linesearch procedures (see [145]) to provide strict cutting planes for non-
optimal points.

The idea of various proximal level methods (see [74, 132, 105]) is rather
close to that of the center methods. In fact, they are based on sequential
updating a polyhedral approximation of a non-smooth merit function
for VI and computing the prox-center of the corresponding level sets.
These methods possess the same convergence properties with respect to
the initial VI.

It should be also noted that all the center and bundle type methods
can be easily extended to the multivalued VI (13.2); see e.g. [151, 52,
74, 132, 105]. It is sufficient to replace with an arbitrary element
of this set in the above considerations.
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5.4 Combined relaxation methods
The idea of combined relaxation (CR) methods consists in defining

the next iterate as the projection of the current iterate onto a



hyperplane which separates strictly and the solution set. Clearly,
then the distance to all solutions will decrease. This approach to solve
VI was proposed first by Konnov [110] where it was also noticed that
the parameters of the hyperplane can be found with the help of
an iteration of any relaxation method. Namely, several implementable
methods whose auxiliary procedures were based on an iteration of the
projection method, the Frank-Wolfe method, and the Newton method
were presented in [110]. It was also observed in [110] that all these
methods ensure convergence to a solution of VI (13.10) under Assump-
tion (C3). Afterwards, CR methods were developed in several direc-
tions. Within the general CR framework, different rules for determin-
ing the separating hyperplane and auxiliary procedures were presented;
see [115, 119, 120, 122] and also [87, 177, 179, 180]. To illustrate this
approach, we describe one of the CR methods which was proposed in
[180, 177, 87, 120] in somewhat different variants.

Algorithm 5.2 Step 0: Choose a point numbers
and a sequence of positive definite matrices Set

Step 1 (Auxiliary procedure): Compute as the smallest non-negative
integer such that

where is a (unique) solution to the auxiliary VI:

Set
Step 2 (Determining the hyperplane). If stop. Otherwise set

Step 3 (Main iteration): Set and go
to Step 1.

It was shown in [120], that the point in this algorithm is the
projection of onto the hyperplane

(1) strictly separating and K* if (C3) holds. It follows that
converges to a solution of VI (13.10). Moreover, the rate of convergence
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is linear under certain strong pseudomonotonicity type assumptions (see
[120, 122]). Note that problem (13.32) corresponds to an iteration of the
projection method if and an iteration of the Newton method if

Varying the rules of choosing we obtain various
auxiliary procedures within the same Algorithm 5.2.

This approach can be easily extended to the case of multivalued VI
(13.2); see [111, 112, 114, 118, 122]. It suffices to replace the auxiliary
procedure for computing the parameters of the separating hyperplane

which is now based on an iteration of the relaxation subgradient
method. In addition to (C3), we suppose that the feasible set K is
defined by (13.31), where is a convex, but not necessarily
differentiable, function; G is an upper semicontinuous mapping with
nonempty, convex and compact values; and that the Slater constraint
qualification is satisfied, i.e., there exists a point such that
Set

Then the corresponding CR method can be described as follows.

Algorithm 5.3 Step 0: Choose a point numbers
and sequences and Set

Step 1 (Auxiliary procedure):
Step 1.1 : Choose from set
Step 1.2: If set and go

to Step 1. (null step)
Step 1.3: Set choose If

then set and go to Step 2. (descent step)
Otherwise, set

and go to Step 1.2.
Step 2 (Main iteration): Set

and go to Step 1.

In contrast to the previous algorithm, Algorithm 5.3 combines the
direction finding procedure with tuning the tolerances and Also, it
does not involve any linesearch. Nevertheless, it was shown in [112, 114]
(see also [122, Sections 2.3 and 2.4]) that Algorithm 5.3 converges to a
solution of VI (13.2), (13.31) under the assumptions above and attains
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We begin our considerations in a topological vector space setting.
Throughout this section, we suppose that Assumption (A1) holds. Also,
we suppose that

(D1) F is a real topological vector space with a partial order induced
by a pointed closed convex and solid cone C.

Therefore, is equivalent to is equivalent
to and is equivalent to Next, we
suppose that

(D2) is a bifunction such that for every

Thus, (D2) can be viewed as an extension of the notion of the scalar
equilibrium bifunction. Being based on the scalar problems (13.1) and
(13.6), we now define their vector analogues. Namely, the vector equi-
librium problem (VEP) is to find an element such that
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a linear rate of convergence under certain additional assumptions. Note
that Algorithm 5.3 is completely implementable even for nonlinearly
constrained problems. Its convergence properties are based on the fact
that VI (13.2), (13.31) is now equivalent to the inclusion

which in turn becomes equivalent to the dual problem of finding a point
of such that

(cf. (13.17)) due to (C3).

6. Vector Equilibrium Problems and Vector
Variational Inequalities with Single-Valued
Mappings

In this section, we consider vector extensions of EP (13.1) and VI
(13.10). However, scalar concepts of convexity and (generalized) mono-
tonicity admit several different vector extensions; see e.g. [140, 88, 182,
109, 67]. For this reason, we give our analysis for one of the most popu-
lar variants and hope that any interested reader will be able to make the
corresponding modifications in dealing with other variants of the same
concepts and problems.

6.1 Formulations of problems and generalized
monotonicity for vector bifunctions



The dual vector equilibrium problem (DVEP) is to find an element
such that

We denote by and the sets of solutions to problems (13.33) and
(13.34), respectively. We intend to present existence results of solutions
for VEPs by employing the same Ky Fan Lemma, hence it is necessary
to recall vector analogues of some definitions from Section 2.

Definition 13.16 (e.g. see [140, 88, 182, 16]) Let be a
function. The function is said to be

(a) convex, if for each pair of points and for all
we have

(b) quasiconvex, if for each pair of points and for all
we have

(c) explicitly quasiconvex, if it is quasiconvex and for each pair of
points such that and for all we have

(d) lower (respectively, upper) semicontinuous, if for all the
set (respectively, the set is
closed;

(e) if its restriction on line segments of K is upper
semicontinuous;

(f) hemicontinuous, if its restriction on line segments of K is contin-
uous.

From the definitions one can conclude that the following implications
hold:

For other kinds of convexity and continuity type concepts see e.g. [140,
181, 183, 127]. Now we turn to monotonicity type properties.

Definition 13.17 [16, 83] A bifunction is said to be
(a) monotone, if for all we have

(b) pseudomonotone, if for all we have
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Existence results of solutions for vector problems which are based
upon employing generalized monotonicity concepts also enable one to
essentally weaken continuity and compactness assumptions in compari-
son with the general results; e.g. see [31, 188, 158, 131, 102]. In order to
obtain such existence results of solutions for VEP (13.33) it is sufficient
to replace the mappings defined by (13.4) and (13.9),
with the following:

and

respectively, and verify the conditions of Proposition 13.1 for these map-
pings. Note that

Hence, using the same argument as in the proof of Lemma 13.1, we
obtain its analogue for the vector case.

Lemma 13.8 [16, 127] (i) If T is pseudomonotone, then
(ii) If is explicitly quasiconvex for each and is

for each then

Next, taking into account (13.33)–(13.37) and using the argument
similar to that in the proof of Theorem 13.5, we obtain an existence
result for pseudomonotone VEPs.

Equilibrium Problems and Variational Inequalities 595

or equivalently,

6.2 Existence results for generalized monotone
VEPs

(c) quasimonotone, if for all we have

From the definitions we obviously have the following implications:

but the reverse assertions are not true in general as in the scalar case.



Theorem 13.18 [16, 82, 127] Suppose that the following assumptions
hold:

(a) either K is compact or there exist a compact subset L of E and a
point such that

(b) is explicitly quasiconvex and lower semicontinuous for each

(c) is for each
(d) T is pseudomonotone.

Then, VEP (13.33) and DVEP (13.34) are solvable and have the same
solution sets.

Note that assumption (b) of Theorem 13.18 implies that is closed
for each hence the solution sets of VEP (13.33) and DVEP
(13.34) are also closed, but they need not be convex even under stronger
monotonicity and convexity assumptions on T; e.g. see [16, Remark 3.4].

To obtain existence results in the quasimonotone case, we need a
somewhat stronger concept of explicit quasiconvexity; see [16, 82].

Definition 13.18 A function is said to be qua-
siconvex, if it is quasiconvex and for each pair of points such
that and for some we have

Theorem 13.19 [82] Suppose that the following assumptions hold:
(a) either K is compact or there exist a compact subset L of E and a

point such that (13.38) holds;
(b) is quasiconvex and lower semicontinuous for

each
(c) is hemicontinuous for each
(d) T is quasimonotone;
(e)

Then VEP (13.1) is solvable.

Thus, Theorem 13.19 is a vector analogue of Theorem 13.4.
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6.3 Existence results for vector variational
inequalities with single-valued mappings

In the scalar case, equilibrium problems extend variational inequal-
ities. Similarly, vector variational inequalities can be viewed as some



specialization of VEP (13.33). Suppose that Assumptions (B1) and
(D1) hold and that E and F are Banach spaces. Denote by
the space of all linear continuous mappings from E into F and consider
a mapping Then, letting T to be defined by

in (13.33), we see that (13.33) reduces to the following vector variational
inequality problem (VVI): Find an element such that

Analogously, letting (13.39) in (13.34), we obtain the dual vector varia-
tional inequality problem (DVVI): Find an element such that

We denote by K* and the sets of solutions to problems (13.40) and
(13.41), respectively. It is clear that VVI (13.40) and DVVI (13.41) are
vector extensions of the scalar problems (13.10) and (13.13), respectively.
VVI of the form (13.40) is one of the most investigated equilibrium type
problems; see e.g. [65, 32, 33, 35, 31, 188, 68, 46, 194, 109, 67]. At the
same time, by using the representation (13.39), we can specialize the
existence results from Subsection 6.2 for VVI (13.40). First we note that

in (13.39) is clearly convex (even affine). Next, applying (13.39)
in Definition 13.17, we can obtain the monotonicity type properties for
G.

Definition 13.19 [65, 129, 46] A mapping is said to
be

(a) monotone, if for all we have

(b) pseudomonotone, if for all we have

or equivalently,

(c) quasimonotone, if for all we have
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We need also certain continuity properties for mappings.

Definition 13.20 A mapping is said to be
if its restriction on line segments of K is upper semicontinuous

with respect to a given topology on

We shall apply the weak topology in E, the strong topology in F,
and the strong operator topology in For this reason, we need
the concept of a completely continuous mapping. We recall that a map-
ping is said to be completely continuous if it maps each
weakly convergent sequence into a strongly convergent sequence. Ap-
plying (13.39) in Lemma 13.8 and using the argument similar to that in
the proof of Lemma 13.4, we obtain their analogue for VVIs.

Lemma 13.9 (see [35, 31, 194]) (i) If G is pseudomonotone, then

(ii) If G is then

Similarly, combining (13.39) with (13.35) and (13.36), we specialize
Theorem 13.18 for pseudomonotone VVIs.

Theorem 13.20 [194, 46] Suppose that the following assumptions hold:
(a) either K is weakly compact, or there exist a weakly compact subset

L of E and a point such that

(b) G is and has completely continuous values;
(c) G is pseudomonotone.

Then VVI (13.40) and DVVI (13.41) are solvable and have the same
solution sets.

In the quasimonotone case, it is possible to strengthen the existence
result for VVIs in comparison with that of Theorem 13.19 with using
(13.39).

Theorem 13.21 (see [46]) Suppose that the following assumptions hold:
(a) either K is weakly compact, or E is reflexive and there exist a

number and a point with such that

(b) G is hemicontinuous with respect to the strong operator topology
in and has completely continuous values;

(c) G is quasimonotone;
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(d)
Then VVI (13.40) is solvable.

Together with VEPs and VVIs described in this section, there are a
great number of their generalizations and modifications, which are also
extensively investigated. For example, the cone C can be replaced with
its “moving” analogue or/and the bifunction T and the mapping
G can be supposed to be multivalued; see e.g. [31, 194, 46, 137, 126, 30,
127, 129, 82, 83, 131, 3, 67]. The multivalued and moving case for VVIs
will be considered in the next section in more detail.

In addition to the direct applications of mathching type theorems to
deriving existence results for vector problems, Oettli [157] suggested an-
other approach which is based on preliminary reducing them to scalar
ones and considering new generalized monotonicity type concepts which
are based on two, rather than one, functions. This approach was fur-
ther developed in [158, 82]. Existence results for VEPs and VVIs which
are based on vector extensions of these new generalized monotonicity
concepts were obtained in [158, 127, 123]. Various coercivity condi-
tions for VVIs and VEPs are considered in [194, 137, 126, 4, 3, 102].
Another field of investigations is related to various modifications of
vector inequalities in defining the corresponding VVIs and VEPs; see
[4, 158, 2, 190, 193, 109, 67, 69].

In the vector-valued case, there are no such simple relationships be-
tween generalized convexity of functions and generalized monotonicity
of their derivatives, as those in the scalar case presented in Propositions
13.5 and 13.9 (see e.g. [88]). A scalarization approach to overcome
these difficulties was developed in [27, 28, 109, 168]. Several relation-
ships between vector optimization problems and primal (dual) VVIs were
presented in [66, 109].

In [123], the relationships between monotonicity properties of vector
bifunctions and mappings which are similar to those in Propositions
13.6 and 13.10 were established in the case where F is a Kantorovich
space (see [92] for definitions). It should be also mentioned that various
applications of VVIs and VEPs were considered by many researchers;
e.g. see [33, 113, 188, 189, 190, 73, 161, 116, 34, 31, 68, 99, 100, 101].

Equilibrium Problems and Variational Inequalities 599

Note that (13.43) can be viewed as a specialization of coercivity con-
dition (13.42) in a reflexive space setting.

6.4 Further generalizations and modifications



In the multivalued vector case, we have to consider two different for-
mulations of a variational inequality. Namely, a point is said to
be a weak solution to the vector variational inequality problem (VVI) if

Also, a point is said to be a strong solution to VVI if

In the case where (13.45)
reduces to (13.2), whereas (13.44) reduces to (13.1) where is defined
by (13.16). Thus, both problems coincide if G has convex and weakly*
compact values, as Lemma 13.5 states. However, this assertion is not
in general true with respect to problems (13.44) and (13.45). Clearly,
(13.45) implies (13.44), but the reverse assertion is not true. We also
define the dual vector variational inequality problem (DVVI) as follows:
Find an element such that

We denote by and the sets of solutions to problems (13.44),
(13.45) and (13.46), respectively. We shall also need definitions of gener-
alized monotonicity properties and continuity properties for vector mul-
tivalued mappings.

Definition 13.21 (see [79, 129, 46, 126]) A mapping
is said to be
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7. Vector Variational Inequalities with
Multi-Valued Mappings

In this section, we consider vector generalizations of VI (13.2). For
simplicity, we also restrict our considerations to a Banach space set-
ting. Namely, throughout this section we suppose that Assumption (B1)
holds and also that

(E1) C is a multivalued mapping from K into a real Banach space F
such that is a closed convex and solid cone of F for each

(E2) G is a multivalued mapping from K into such that
is a nonempty set of completely continuous operators.

Next, we shall apply the weak topology in E, the strong topology in
F, and the strong operator topology in

7.1 Formulations of problems and existence
results
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(a) monotone, if for all and for all we
have

(b) pseudomonotone, if for all and for all
we have

(c) weakly pseudomonotone, if for all the relation

implies

(d) weakly quasimonotone, if for all the relation

implies

From the definitions it follows that the following implications hold:

but the reverse assertion is not true in general.

Definition 13.22 A mapping is said to be
if its restriction on line segments of K is upper semicontinuous

with respect to a given topology on

Using the definitions above and argument similar to that in Lemma
13.1, we obtain its vector analogue.

Lemma 13.10 [126] (i) If G is pseudomonotone, then
(ii) If G is then

Unfortunately, in the multivalued vector case, it is not possible to
obtain existence results directly from the corresponding results for VEP
(13.33). Nevertheless, we can redefine the mappings
from (13.19) and (13.21) as follows:

and
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Observe that

Hence, we can obtain existence results of solutions for VVI (13.44) by
verifying the conditions of Proposition 13.1 and using the argument sim-
ilar to those in the proofs of Theorems 13.3 and 13.11.

Theorem 13.22 [126, 46, 82] Suppose that the following assumptions
hold:

(a) either K is weakly compact, or E is reflexive and there exist a
number and a point with such that

for all
(b) the graph of the mapping is sequentially closed

in the (weak) × (norm) topology on E × F;
(c) G is
(d) G is weakly pseudomonotone and has compact values.

Then VVI (13.44) and DVVI (13.46) are solvable and have the same
solution sets.

In the pseudomonotone case, the assertion of this theorem can be
somewhat strengthened. In fact, it is sufficient to redefine the mapping

from (13.20) as follows:

and replace with B in our considerations. This approach yields the
following existence result.

Theorem 13.23 [126] The assertion of Theorem 13.22 remains true if
we replace assumption (d) with the following:

G is pseudomonotone.

In the quasimonotone case, we have the following vector extension of
Theorem 13.13.

Theorem 13.24 [46, 82] Suppose that assumptions (a) and (b) of The-
orem 13.22 hold and also that

G is upper hemicontinuous;
G is weakly quasimonotone and has compact values.

(e)
Then VVI (13.44) is solvable.
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7.2 Scalarization of VVIs
In order to derive existence of strong solutions to VVI (13.44), a scalar-

ization technique was proposed in [126]. It is based on maintaining cer-
tain generalized monotonicity properties for a scalarized VI.

Given an element and a mapping we can
define the scalarized mapping by

for all and Also, set

Definition 13.23 [126] Suppose D is a given set in the space F. A
mapping is said to be

(a) (D)-pseudomonotone, if for all and for all
we have

(b) weakly (D)-pseudomonotone, if for all the relation

implies

(c) weakly if there exists and such that

Lemma 13.11 [126] Suppose that is
(respectively, weakly for some

Then the mapping is pseudomonotone (respectively, weakly pseu-
domonotone).

Thus, we can reduce VVI (13.44) to a scalar VI and obtain existence
results by applying Theorems 13.11 and 13.12. Set

Theorem 13.25 [126] Suppose that the following assumptions hold:
(a) either K is weakly compact or there exists an element

such that G is weakly
(b) G is
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(c) G is weakly with respect to the same

(d) G has compact and convex values.
Then VVI (13.45) is solvable.

Again, in the pseudomonotone case, the assertion of this theorem can
be somewhat strenghtened.

Theorem 13.26 [126] Suppose that assumptions (a) and (b) of Theo-
rem 13.25 hold and also that

(c') G is with respect to the same
(d') G has convex values.

Then VVI (13.45) is solvable.

Note that, under the assumptions of Theorems 13.25 or 13.26, ele-
ments of need not be completely continuous operators. Next, re-
placing pseudomonotonicity with quasimonotonicity and using Theorem
13.24, we can obtain existence results of strong solutions for multivalued
quasimonotone VVIs in the same manner.

Other scalarization techniques for VVIs were considered in [109, 88,
66, 193, 73, 130, 69, 168].
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Probably the first use of generalized monotonicity in economics was
made already 70 years ago. Even more remarkable, it occurred indepen-
dently and almost at the same time in two seminal articles. The one,
by Georgescu-Roegen [13], dealt with the concept of a local preference
in consumer theory, the other, by Wald [45], contained the first rigorous
proof of the existence of a competitive general equilibrium. We shall
outline their contributions in this introduction, borrowing some insights
from the illuminating papers by Shafer [42] and Kuhn [32].

Abstract

Keywords:

This chapter presents some uses of generalized concavity and generalized
monotonicity in consumer theory and general equilibrium theory. The
first part emphasizes the relationship between generalized monotonic-
ity properties of individual demand and axioms of revealed preference
theory. The second part points out the relevance of pseudomonotone
market excess demand to a well-behaved general equilibrium model. It
is shown that this property can be derived from assumptions on the
distribution of individual (excess) demands.

Consumer, demand, economy, equilibrium, generalized monotonicity,
preference, revealed preference, utility, variational inequality.

1. Introduction
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1.1 Georgescu-Roegen’s Local Preferences
Imagine a consumer who considers alternative consumption bundles in

a neighborhood of some given vector that describes the amounts
of consumption goods initially given. The consumer is able to dis-
tinguish the possible directions in which he can move away from ac-
cording to his taste. More precisely, there are three kinds of directions:
Preference, nonpreference, and indifference. This idea had been already
formalized in [2] by postulating the existence of a (row) vector
such that a direction is a preference (resp. nonpreference, indif-
ference) direction if and only if

It should be emphasized that these comparisons are supposed to be
possible only locally. The consumer may not be able to compare with
a bundle that is very different from In addition, the vector
typically varies with (otherwise, one would obtain the special case of
a global preference representing perfect substitutes).

Assume now that is contained in some given set that
represents the consumer’s feasible bundles. Georgescu-Roegen calls
an “equilibrium position or a point of saturation” relative to X if no
direction away from to any other alternative in X is one of preference,
i.e. if

Thus, is an equilibrium consumption bundle if, in modern terminology,
is a solution to the Stampacchia variational inequality problem with

respect to on X.1

By assuming that the consumer always selects such an equilibrium out
of a set of alternatives provided it exists, Georgescu-Roegen’s concept of
a local preference could be a foundation of a demand theory. However,
for that he needed existence of an equilibrium bundle, at least in budget
sets determined by prices and income.

Since he also wanted the equilibrium to be stable, he formulated an-
other assumption that he called the “principle of persisting nonprefer-
ence ”:

If the consumer moves away from an arbitrary bundle to a bundle
such that is not a preference direction, then is a nonpreference

direction at Formally stated, this principle says

1 Notice the reverse inequality compared to the usual definition. This convention is employed
throughout the chapter.
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or, by denoting

Clearly, this property is nothing else than strict pseudomonotonicity of

In a sequel contribution, Georgescu-Roegen [14] employed a slightly
different formulation of his principle of persisting nonpreference:

An indifference or nonpreference direction remains one of indifference
or nonpreference if the consumer extends his consumption according to
that direction, or, formally,

i.e. is pseudomonotone.
Georgescu-Roegen has also shown that the set of equilibrium points

relative to a feasible set X is convex. In addition, he observed that these
equilibria are, in modern terminology, solutions to the Minty variational
inequality problem with respect to on X.

More surprisingly, Georgescu-Roegen [14] proved the existence of a
consumption equilibrium in a simplex. Of course, he assumed continu-
ity of which, as we know, is sufficient for the existence of a solution to
the Stampacchia variational inequality problem with respect to How-
ever, he did not use any advanced argument like Brouwer’s fixed point
theorem. Instead, he succeeded by induction on the dimension of the
simplex. For that, he used pseudomonotonicity of Actually, it is the
same idea that Wald employed in [45] in order to prove the existence of
a competitive equilibrium of a production economy.

1.2 Wald’s Equilibrium Existence Proof
Wald considered a general equilibrium model of a production economy

where the production sector is characterized by fixed input coefficients.
Its origin is the simplification of Walras’ famous production equations in
[7], [8], [46], and [39]. We shall present here a slightly different version
of his model that is due to Kuhn [32]. For a historically closer but
nevertheless modern treatment we refer to Hildenbrand [18].

The economic environment is described by pure factors of pro-
duction which are available in fixed positive amounts

and which can be used to produce final commodities
The production of one unit of commodity requires units

2In this chapter, all notions of (generalized) monotonicity are defined in the sense of gener-
alizing a nonincreasing real valued function of one real variable.
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of the primary resource i.e. the production sector is characterized by
the input coefficient matrix

Assume that price vectors for final commodities
and for factors are given. Then the output vector

maximizes profits if unit costs are greater or equal
than output price, equality being implied by a nonzero output quantity,
i.e. if

where prices are represented by row vectors, quantities by column vec-
tors.

All factor markets are in (free disposal) equilibrium if on every market
demand is less than or equal to supply, equality being implied by a
positive factor price, i.e. if

By the duality theory of linear programming, it is well known that (14.1)
and (14.2) are equivalent to the statement that and solve the dual
problems

and

or, equivalently, that and satisfy the conditions

It remains to close the model by an equilibrium condition for the
product markets. According to Schlesinger’s modification of Cassel’s
equations this is accomplished by assuming the existence of an inverse
demand function i.e. by

which means that the vector of final commodities is demanded if and
only if their prices are given by

It was essentially the system of conditions (14.1), (14.2), and (14.3)
for which Wald proved the existence of a solution His proof
is based on the following assumptions:

(W1)

(W2)

For every there exists such that

is continuous.
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(W3) For every such that

Assumption (W1) guarantees that the production possibilities are bound-
ed, i.e. is bounded. This implies for any the
existence of an element that maximizes on X, i.e. the primal
linear programming problem mentioned above has the optimal solution

By the duality theorem of linear programming, it follows that the dual
problem can be solved by some Consequently, satisfies
(14.1) and (14.2) but not necessarily

Thus, we have to find a vector that maximizes on X, i.e.
we look for such that for all

or, equivalently,

In modern terminology, we have to solve a variational inequality prob-
lem. Assumption (W2) guarantees the existence of a solution which, as
Kuhn [32] has shown, can be proved by applying Kakutani’s fixed point
theorem. However, this result was not available to Wald.

On the other hand, we have not used (W3) which states that is
strictly pseudomonotone. Obviously, this assumption is not necessary
for an existence proof. What was its use for Wald?

The crucial point is that strict pseudomonotonicity of ensures a
unique solution to the variational inequality problem with respect to
on every convex subset of X. It is this consequence that enabled Wald
to prove existence by induction on the number of final commodities.

Remember that Georgescu-Roegen proceeded in the same way. An
elementary induction proof that resembles their contributions has been
given in [27] for the general case of a pseudomonotone variational in-
equality problem on a compact and convex subset of a finite dimensional
Euclidean space.

1.3 An Outline of this Chapter
In the sequel, we shall present some uses of generalized concavity and

generalized monotonicity in the same two fields of research that contain
the contributions by Georgescu-Roegen and Wald, i.e. consumer theory
and general equilibrium theory. Of course, it is not claimed that there are



no applications in other fields as, for example, game theory.3 However,
since we want to focus on generalized monotonicity, we have selected
those which seem to be more relevant to that part of the subject. The
reader who is interested in more applications of generalized concavity is
referred to [4].

Part 2 deals with consumer theory. The first section introduces the
classical approach which employs the notion of a utility function that
represents a transitive preference relation. We stress the role played by
quasiconcavity or pseudoconcavity of that function.

Section 2.2 considers the central concept of demand. It is shown
that the demand relation derived from a transitive preference displays
generalized monotonicity properties that are, in the economic literature,
well known as axioms of revealed preference theory.

In the final section of this part, we extend the classical approach by
studying nontransitive preferences (a convenient abbreviation for “not
necessarily transitive” which would be the correct expression). If these
relations are convex (resp. semistrictly or strictly convex), various gen-
eralized monotonicity properties of demand arise quite naturally. Like
in the case of transitive preferences, these are related to well known
revealed preference axioms. However, in order to obtain a fully satis-
factory revealed preference theory, some open problems have still to be
solved. The section concludes with the first order characterization of
pseudomonotone continuously differentiable demand that will be used
in the two final sections of this chapter.

Part 3 deals with general equilibrium theory. Its first section points
out the relationship to variational inequalities (see e.g. [10]). In par-
ticular, the relevance of pseudomonotone excess demand to the stability
of an equilibrium is recognized by its representability as a solution to
a Minty variational inequality problem. The main insight can be easily
visualized by a ball in a pseudoconvex landscape (see Figure 1 below).

If the ball moves according to the force of gravity, it will move away
from any point like A or C towards B. As a rest point with respect to
the movement of the ball, B represents an equilibrium of the physical
system. It is unique if the landscape is strictly pseudoconvex. If there
is a flat region around B, the set of equilibria is at least convex.

Notice that these conclusions are not valid if the landscape is only
(semistrictly) quasiconvex. Indeed, that case allows a vanishing slope
at points like A or C such that these could be equilibria too (although
not stable ones if the quasiconvexity is semistrict). On the other hand,

3See e.g. the excellent survey by Harker and Pang in [15].
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Figure 1

observe that a (strictly) convex landscape is not needed for stability.
This observation is important since an economic system may satisfy
conditions that ensure a pseudomonotone excess demand but fails to
fulfill stronger requirements implying monotonicity.

The final Sections 3.2 and 3.3 provide two standard examples for
a general equilibrium model. We shall not present the most general
versions. For example, set-valued excess demand as well as production
will not be considered.4 This seems to be acceptable in order to convey
the main idea as simply as possible.

While Section 3.1 points out the importance of a pseudomonotone
excess demand function for a well-behaved economic model, Sections
3.2 and 3.3 investigate conditions that ensure this property. It will be
argued there that distributional assumptions are appropriate in order to
reach that goal. In this respect, the presentation will follow closely the
contributions by Hildenbrand [17] and Jerison [25].

2. Consumer Theory

2.1 Preference and Utility

We consider an economy with a finite (typically large) number of con-
sumption goods. A vector describing the consumption
of units of commodity for is called a consumption bundle.

The traditional approach (see e.g. [36]) assumes that a consumer’s
taste is characterized by a binary relation on the consumption set
with the following two basic properties.

Completeness:

4For such an exposition of general equilibrium theory, [36] is highly recommended.
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Transitivity:

The relation is called the consumer’s preference. For
is interpreted as is at least as good as or is weakly preferred to

While transitivity follows naturally from this interpretation, com-
pleteness means that the consumer is able to compare any two commod-
ity bundles. Observe that the latter property implies that is reflexive,
i.e. for all

There are two other relations that can be derived from
The strict preference is defined by

and interpreted as is better than
If but not and are called to be indifferent which is

denoted by Obviously, if and only if and
Usually, it is also assumed that is continuous, i.e. (as a subset

of is closed in
Continuous preferences are precisely those relations on which can

be represented by a continuous real valued function on i.e. we obtain

Proposition 14.1 A binary relation is a continuous preference if
and only if there is a continuous function such that for all

Proof. It is obvious that a relation satisfying (14.5) for a continuous
function is complete, transitive, and continuous. A proof of the reverse
implication can be found in [12].

A real valued function that satisfies (14.5) is called a utility rep-
resentation (or utility function) of the preference Observe that any
monotone transformation of also represents i.e. is far from being
unique. In the sequel, we suppose that is some fixed continuous utility
function representing the continuous preference

In many cases it is natural to assume that the consumption of goods
are desirable, at least if they are consumed together. This is made precise
by

Definition 14.1 The preference (resp. the utility function is called

(1) monotone if for all  implies (resp.
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Definition 14.2 The preference (resp. the utility function ) is called
locally nonsatiated with respect to if for every neigh-
borhood N (w.r.t. X) of there is such that (resp.

is locally nonsatiated if it is locally nonsa-
tiated with respect to at every

The ultimate goal of consumer theory is to derive a useful theory
of demand from the hypothesis that a consumer maximizes utility on
(convex) budget sets. For that, the following basic notions of convexity
turn out to be important.

Definition 14.3 The preference is called

convex, if implies

semistrictly convex, if implies

for all such that and all

Obviously, (3) implies (2) and, by continuity of (2) implies (1). The
latter implication is proved in [12] where a somewhat different terminol-
ogy is used. The notation employed here seems to be more appropriate
because of the following straightforward relationship(cf.[4]).

Proposition 14.2 The preference is (strictly, semistrictly) convex if
and only if the utility representation of is (strictly, semistrictly)
quasiconcave.

The economic rationale for convexity are “nonincreasing (decreasing)
rates of substitution”. This property is easily explained for the case of
two commodities. Consider a monotone and convex preference on
Convexity means that the set X of all bundles that are weakly preferred
to some consumption bundle is convex, i.e. it typically looks like X in
Figure 2 below.

The boundary of X consists of all bundles that are indifferent to
Compare now the amount of good 2 that would compensate the con-
sumer for consuming one unit less of good 1 at the two points and

means for and means and5

strictly monotone if for all implies (resp.(2)

There is a weaker assumption that allows the presence of some “bads”.

strictly convex, if implies

(1)

(2)

(3)
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Figure 2

By convexity, it cannot be larger at than at (it is actually smaller at
if the preference is strictly convex). The quite intuitive interpretation

is that additional consumption is less valuable if the quantity already
consumed is larger.

What is added to convexity if the preference is semistrictly convex?
An answer is provided by the following characterization.

Proposition 14.3 Let the preference be convex. Then is semistrictly
convex if and only if for every convex subset X of  the preference
is locally nonsatiated with respect to X at any that is not a global
satiation point of X, i.e. at any such that there is with

Proof. Let be semistrictly convex and let X be a convex subset of
Assume that such that Since for

arbitrary small there is with in every neighborhood
of Thus, is locally nonsatiated w.r.t. X at

In order to prove the converse, assume that is not semistrictly
convex, i.e. there are and such that and

It will be shown that for
all (see Fig. 3).

Observe that implies that since otherwise, by
convexity of From it follows, again by convexity of
that and, by transitivity,
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Figure 3

Consequently, is locally satiated at with respect to the line seg-
ment although y is not a global satiation point of that convex set.

The most important implication of a convex preference is the con-
vexity (or uniqueness in case of strictly convex preferences) of the set
of utility maximizers on a convex set. This property is crucial for the
proof of the existence of a market equilibrium. Moreover, it characterizes
continuous (strictly) convex preferences as shown by

Proposition 14.4 Let be a continuous utility function. Then

is quasiconcave if and only if for every convex subset X of
the set is convex.

is strictly quasiconcave if and only if for every convex subset X
of there is at most one such that for all

(1)

(2)

Proof. (1) Let be quasiconcave and let X be an arbitrary convex subset
of If then and, by quasiconcavity of

for all and all i.e.

In order to prove the converse, assume that is not quasiconcave,
i.e. there are and such that and

Define by

(see Figure 4 below).
By continuity of and exist. Furthermore,

Thus, for we obtain
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Figure 4

Since X* is not convex, (1) is
proved.

(2) Let be strictly quasiconcave and let X be an arbitrary convex
subset of If maximize on X, then It
follows that since otherwise i.e.

and would not maximize on X.
Now, assume that is not strictly quasiconcave, i.e. there are

and such that and
If there are and such that

then is not quasiconcave
and we can apply part (1). Otherwise, either
for all or for all In the first
case, and maximize on

In the second case, and maximize on
Since in both cases there are two

maximizers, (2) is proved.

Let us now assume that the utility function is differentiable. In
that case it is desirable to determine a utility maximizing consumption
bundle by a simple first order condition. In general, however, we only
obtain the following separate necessary and sufficient conditions.

Proposition 14.5 Let be differentiable and let X be a convex subset
of Then, for the condition

is necessary, and the condition
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is sufficient for to maximize on X.6

Proof. If maximizes on X, then for any such that
and any the inequality holds.
Hence,

which proves that (N) is necessary.
In order to show that (S) is sufficient, assume that does not max-

imize on X, i.e. there exists such that By the
mean value theorem there exists such that

For it follows that and,
consequently, Thus, we obtain,
which contradicts (S).

Condition (N) means that is a solution to the Stampacchia vari-
ational inequality problem with respect to on X and condition (S)
means that is a solution to the Minty variational inequality problem
with respect to on X (see [31]). Clearly, (N) is a simpler condition
than (S) since it requires knowledge of the gradient of only at
Therefore, we would be in a nice situation if would have the property
that (N) implies (S).

It is known (see [26]) that (N) implies (S) for any convex subset X of
if and only if the gradient map of is pseudomonotone, i.e. if

for all
It is also known that pseudomonotonicity of the gradient map is equiv-

alent to pseudoconcavity of Put differently, the pseudoconcave utility
functions are precisely those functions for which (N) characterizes a util-
ity maximizing element for every convex subset of

Fortunately, the difference between pseudo- and quasiconcavity is not
large. Indeed, as shown in [9], if the gradient of does not vanish on an
open and convex domain X, then is pseudoconcave on X if and only
if is quasiconcave on X.

6 denotes the Jacobian matrix of at i.e.
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2.2 Demand and Revealed Preference
Let be a market price vector for the various

consumption goods and let the consumer’s wealth be given by
Then his budget set consists of all bundles that are not more
expensive than i.e.

where the price vector is always considered as a row vector.
The utility maximization hypothesis states that the consumer chooses

a consumption bundle such that

The set of all such is called the consumer’s demand at the price
vector and wealth Since for all one can
represent all possible budget sets by restricting the wealth to be equal
to one. Put differently, is interpreted as the vector of the price-income
ratios. Thus, the demand relation derived from the
utility function is defined by

where
Clearly, can be equivalently described as a set-valued mapping

from into i.e. for each

What properties of can be deduced from An answer is provided
by

Proposition 14.6 Let be continuous. Then the following properties
can be derived:

is an upper hemicontinuous and compact-valued correspondence,
i. e. for all and for any sequence
such that converges to there is a subsequence of which
converges to

If is locally nonsatiated, then the budget identity
holds for every i.e. for all
Moreover, satisfies the Generalized Axiom of Revealed Prefer-
ence (GARP), i.e. for any the inequali-
ties

(1)

(2)
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imply that

If is quasiconcave, then is convex-valued.

If is strictly quasiconcave, then contains only one element,
i.e. can be identified with a continuous function from into

Moreover, satisfies the Strong Axiom of Revealed Preference
(SARP), i.e. for any the inequalities

and imply that

(3)

(4)

Proof. (1) Since the budget sets are compact, continuity of implies that
is nonempty and compact for each The budget correspondence

from into is obviously continuous. Hence, by the maximum
theorem (see [5]), is upper hemicontinuous.

(2) If there is a neighborhood N of such that Local
nonsatiation implies the existence of with Since

does not maximize on
From it follows that Hence,

and thus By assumption, this inequality holds for
Consequently,

If one would have or, equivalently,
then, by local nonsatiation, contradicting
Therefore,

(3) This follows immediately from Proposition 14.4 (1).
(4) The first part follows immediately from Proposition 14.4 (2).
As in the proof of (2), the inequalities for
imply that By strict quasiconcavity of

implies the existence of such that
Since maximizes on cannot be a bundle in

Hence, by convexity of i.e. Since
it follows that i.e.

It is obvious that SARP implies GARP but that the reverse is not true.
For example, if are chosen such that and
then satisfies GARP but not SARP.

While SARP was introduced by Houthakker [21], GARP has been
formulated by Varian [44] as equivalent to the following condition of
cyclical consistency which is due to Afriat [1]:

For any the inequalities
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imply that for (mod n).
Afriat has also shown that any finite demand relation

for is cyclically consistent if and only
if there exist real numbers such that

Put differently, by setting for the transformed
demand relation is cyclically monotone. It
is easy to see that any demand relation which is transformable (in the
sense above) into a cyclically monotone one satisfies GARP. Indeed,

With regard to the above equivalences, it seems to be quite appropri-
ate to denote the generalized monotonicity property described by GARP
as cyclic pseudomonotonicity. Actually, this term was first used by Dani-
ilidis and Hadjisavvas [11] for a general set-valued mapping displaying
that property.7

Analogously, SARP might be called strict cyclic pseudomonotonicity
since it generalizes the property that

if for at least one
Observe that if the utility function is neither locally nonsatiated nor

strictly quasiconcave, no generalized monotonicity property can be de-
duced. For example, a constant utility function is even semistrictly
quasiconcave but puts no restriction on demand since for
all

An important question is now whether the properties of that were
deduced from certain properties of in Proposition 14.6 actually char-
acterize demand relations derived from utility maximization. For exam-
ple, if is a continuous demand function satisfying the

7To be precise, GARP means that where denotes the set-valued mapping cor-
responding to the inverse demand relation, is cyclically pseudomonotone in the sense of
Daniilidis and Hadjisavvas.
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budget identity and SARP, does there exist a continuous, locally nonsa-
tiated, and strictly quasiconcave utility function such that

Such questions are typically posed in the theory of revealed preference
that tries to replace conditions on unobservable characteristics as pref-
erence and utility by conditions on the (in principle) observable demand
relation. The main concepts are introduced by

Definition 14.4 A demand relation is rationalized by a
utility function (or by the corresponding preference relation) if
If actually we say that strongly rationalizes

While the concept of rationalizability should be interpreted as a con-
sistency of the “demand observations” with an underlying utility that is
maximized, strong rationalizability corresponds to a characterization of
demand relations derived from the utility maximization hypothesis.

Unfortunately, demand functions derived from a continuous and strict-
ly quasiconcave utility function (even if it is locally nonsatiated) cannot
be characterized by SARP. This can be seen from the following example
due to Hurwicz and Richter [22] and depicted in Figure 5 below.

Figure 5

For any budget line given by is chosen as the point for
which the budget line is tangent at to the curve on which is located.
Obviously, satisfies the budget identity and is continuous. Since it
is not difficult to verify that this demand function can be derived from
maximizing an upper semicontinuous utility function it satisfies SARP.
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However, as shown by Hurwicz and Richter [22], it cannot be strongly
rationalized by a continuous utility function.

Of course, as Houthakker [21] has already observed, if additional as-
sumptions (e.g. is “income Lipschitzian” and satisfies a boundary
condition) are satisfied, then strict rationalizability by a continuous,
monotone, and strictly quasiconcave utility function is possible, see e.g.
[34]. On the other hand, these conditions are not necessary. To summa-
rize, there is no way to characterize strong rationalizability of a demand
function by a continuous, locally nonsatiated, and strictly quasiconcave
utility function.

However, with regard to the weaker requirement of rationalizability,
there is a remarkable result due to Afriat [1] and reformulated by Varian
[44].

Proposition 14.7 For a finite demand relation
the following properties are

equivalent:

can be rationalized by a locally nonsatiated utility function.

satisfies the budget identity and GARP.

can be rationalized by a continuous, monotone, and concave
utility function.

(i)

(ii)

(iii)

Proof. See [44].

By the equivalence of (i) and (iii), if a finite demand relation can
be rationalized by a nontrivial (i.e. locally nonsatiated) utility function
at all, then it can be rationalized by a very nice one (in the sense of
the properties given in (iii) ). Put differently, continuity, monotonicity,
and concavity cannot be revealed by only a finite number of demand
observations.

An analogous result characterizing finite demand relations that satisfy
SARP is proved in [37].

2.3 Nontransitive Preference

It is well known from empirical studies that consumers often do not be-
have in accordance with a transitive preference relation. Consequently,
one should abandon the transitivity axiom. However, is there still a
useful theory of demand in that case? Or does it lead to no behavioral
restrictions at all?

First, suppose that the preference is neither assumed to be locally
nonsatiated nor strictly convex. Then, as we have seen in the previous
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section, demand is only restricted by the budget set, even with transi-
tivity, completeness, and continuity. In order to exclude trivial prefer-
ences, one has to maintain at least the condition of local nonsatiation.
However, without transitivity, demand is only restricted by the budget
identity even if completeness, continuity, and monotonicity are assumed.
Indeed, an example is given by defining to be strictly preferred to iff

The conclusion is that some convexity assumption may be needed to
obtain nontrivial implications for demand. On the other hand, what
kind of restrictions can be expected in that case?

Apart from the budget identity, obvious candidates are generalized
monotonicity properties that are weaker than GARP or SARP but are
similar in spirit. Actually, this was the basic idea of Samuelson [38] who
formulated the following consistency postulate on a demand relation
which was later called the Weak Axiom of Revealed Preference (WARP):

For any two consumption bundles such that

Samuelson justified this condition by a simple argument. If
and means that  has been chosen at while could have

been chosen and is not equal to then this should be interpreted
as is strictly revealed preferred to Hence, consistent behaviour
should imply that must not be strictly revealed preferred to i.e.

for
The problem of this interpretation is the same as for SARP. It does

not allow that two different bundles in a budget set are chosen because
they are considered to be indifferent.

This objection is taken into account by weakening WARP (which
is equivalent to strict pseudomonotonicity of inverse demand) to pseu-
domonotonicity of inverse demand. We call a demand relation pseu-
domonotone if

for any
If and is now interpreted as is weakly

revealed preferred to but as “strictly revealed preferred” if the strict
inequality holds, then this property means that must not be strictly
revealed preferred to if is weakly revealed preferred to Although
this kind of consistency seems to be quite sensible, there is obviously a
slightly weaker requirement. The postulate that and cannot be both
strictly revealed preferred to each other is formalized by
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for all
Of course, this is equivalent to quasimonotonicity of the inverse de-

mand relation.
In the sequel, the relationship between convexity assumptions on the

preference relation and generalized monotonicity properties of demand
will be studied in detail.

A preference is now defined as a complete binary relation R on
i.e. we simply drop the transitivity axiom. Like in the transitive case,

is interpreted as is at least as good as The relation “better
than” is denoted by P and, as in (14.4), defined by

Of course, completeness of R implies that iff Moreover, we
define and

Additional possible properties of R are collected in

Definition 14.5 A preference R is called

upper continuous, if is closed for every

continuous, if R is closed in

locally nonsatiated, if for every and every neighborhood N
of there is such that

(strictly) monotone, if

convex, if is convex for every
If, in addition, for all and for all

then R is called semistrictly convex.

strictly convex, if and imply that
for all

It is easy to show that the convexity conditions (5) and (6) are equiv-
alent to those in Definition 14.3 if R is transitive.

The demand relation induced by R is defined analogously to the tran-
sitive case.

Definition 14.6 Let R be a preference. Then the demand relation
derived from R is given by

(1)

(2)

(3)

(4)

(5)

(6)
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and equivalently considered as the set-valued mapping

defined by

In contrast to the transitive case, upper continuity alone is not suffi-
cient for being a correspondence from into i.e.
for all However, a weak convexity condition on the sets allows
the application of the KKM-Lemma to obtain that property of In
the economic literature, this observation is due to Sonnenschein [43] and
presented in the following

Lemma 14.1 Let R be an upper continuous preference. If R has the
KKM-property, i.e.

(i) the convex hull of finitely many elements in is

always contained in

or, equivalently,

(ii) for all

then for all

Proof. The equivalence of (i) and (ii) is obvious. By definition,
iff Since is compact and the sets

are closed, the intersection is nonempty if all finite intersections
are nonempty. Clearly, the latter property is guaranteed by the KKM-
Lemma.

There is no doubt that an operational definition of a “nontransitive
consumer” should at least imply nonempty sets Observe, how-
ever, that the example mentioned above iff satisfies the
conditions of Lemma 14.1 but does only predict for

It will turn out that convex preferences put further restrictions on
demand. Moreover, they also ensure that is a correspondence as
shown first by

Lemma 14.2 If the preference R is upper continuous, locally nonsa-
tiated, and convex, then R has the KKM-property.

Proof. Assume that the claim is not true, i.e. there are

and with such that for and
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By upper continuity of R, the sets

are open and, consequently, their intersection is

also open.
From it follows that there is a neighborhood N of such

that for all Since, by completeness of R, implies

for we obtain by convexity of

R. Hence, R cannot be locally nonsatiated.

Corollary 14.1 Let R be an upper continuous, locally nonsatiated, and
convex preference. Then is a compact- and convex-valued correspon-
dence from into

Moreover, is upper hemicontinuous if R is continuous.

Proof. The first part follows immediately from Lemma 14.1 and Lemma
14.2 since, by upper continuity and convexity of R,

is compact and convex.
The second part is implied by the maximum theorem of Berge [5]

which is easily adapted to maxima of binary relations.

Proposition 14.8 Let R be a locally nonsatiated preference. If, in ad-
dition, R is

(1) convex, then is properly quasimonotone, i.e. for arbitrary

and with there

exists such that for

In particular, is quasimonotone.

(2) semistrictly convex, then is properly pseudomonotone, i.e. for

arbitrary and with

the following implication holds for

In particular, is pseudomonotone.

1
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(3) strictly convex, then is properly strictly pseudomonotone, i.e.
for arbitrary and with

the following implication holds for

In particular, satisfies WARP.

Proof. (1) If is not properly quasimonotone, there exist

such that for with

and the inequality holds for Hence,

there is a neighborhood N of with for all and
every This implies for all and every From convexity
of R, it follows that for all contradicting that R is locally
nonsatiated.

is quasimonotone: Assume that If
then By proper quasimonotonicity,

which implies Hence,
(2) If is not properly pseudomonotone, there exist

such that for with

and the inequalities hold for and

for some
Assume that implies (this will be shown below).

Since implies we can conclude, by semistrict

convexity of R and induction, that which contradicts

reflexivity of R.
It remains to show that and implies
Assume that does not hold. Since we obtain, by definition

of P, that Local nonsatiation of R implies the existence of
such that Since R is semistrictly convex, for all

For close to 1, where
However, contradicts

is pseudomonotone: Assume that If
then By proper pseudomonotonicity,

which implies or equivalently,
(3) Assume that and that for

with and the inequality holds
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for By strict convexity of R and induction, it follows that

if not all are equal. This contradicts reflexivity of R.

satisfies WARP: Assume that Then
and imply and

By proper strict pseudomonotonicity of

The notions of proper quasimonotonicity and proper pseudomono-
tonicity have been introduced by Daniilidis and Hadjisavvas [11]. They
also have shown that pseudomonotonicity on a convex domain is equiva-
lent to proper pseudomonotonicity and, in addition, that such an equiv-
alence does not hold for quasimonotonicity.

In general, all three pairwise generalized monotonicity notions are
weaker than the corresponding proper ones. This is shown by the fol-
lowing

Observe first, that for Furthermore,
and Hence, satisfies

WARP.

On the other hand, for we obtain for

Thus, is not properly quasimonotone.
This example shows, that even the strongest pairwise generalized

monotonicity notion does not imply the weakest proper one.

The natural question arises whether the necessary properties of a de-
mand relation derived from a locally nonsatiated and (strictly, semistrict-
ly) convex preference R are also sufficient in the sense of revealed pref-
erence theory. Analogously to Definition 14.4, a demand relation is
rationalized (resp. strongly rationalized) by a (not necessarily transitive)
preference R if (resp.

It has been shown in [28] that a demand correspondence satisfying
the budget identity can be rationalized by an upper continuous, mono-
tone, and convex preference if and only if is quasimonotone.

However, according to the spirit of revealed preference theory, it is
desirable to have rationalizability results for finite demand relations.
Indeed, if is interpreted as a set of observed choices, then it is hard to

Example. Let where
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imagine that is a demand correspondence which would require demand
observations for all price vectors.

From this viewpoint, there is a result in [28] stating that an arbitrary
(in particular finite) demand relation satisfying the budget identity is
properly quasimonotone if and only if it is rationalized by a reflexive,
upper continuous, monotone, and convex relation R.

Unfortunately, this result is not satisfactory. It does not ensure the
existence of rationalizing preference since R is not complete.

Put differently, it is desirable to solve the following open

Problem: Let be a finite demand rela-
tion such that for all Does there exist a locally
nonsatiated, upper continuous, and convex (resp. semistrictly convex,
strictly convex) preference that rationalizes if and only if is properly
quasimonotone (resp. pseudomonotone, strictly pseudomonotone)?

At least, there is a result analogous to Proposition 14.7. In order to
present it, we have to introduce the generalization of the utility repre-
sentation to the nontransitive case which is due to Shafer [40].

Definition 14.7 A real-valued function defined on is called
a (numerical) representation of the preference R if for all  the
following conditions are satisfied:

(1)
(2)

Notice that a utility representation of a transitive preference
yields a representation in this sense by defining
It is also obvious that any preference R can be represented. Defining
the indifference relation I by iff and completeness of R
implies Since R is represented by
the function that takes the values 1 on P, 0 on I, and –1 on

On the other hand, it is clear that any skew-symmetric function
induces a complete preference which is represented

by (define If R is continuous then is also
continuous. Conversely, it has been shown in [40] that every continuous
preference has a continuous representation. Put differently, describing a
“nontransitive consumer” by a continuous preference is equivalent to a
description by a continuous and skew-symmetric real-valued bifunction
on Of course, the relationship is not one-to-one since any sign-
preserving transformation of a representation of R also represents R.

Corresponding to the possible properties of a preference R, we say
that the representation is nonsatiated, if for every there exists
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such that (observe that this is weaker than local
nonsatiation).

Since strict monotonicity means if we call the
stronger condition

strong monotonicity of
Finally, a concave utility representation is generalized by a concave-

convex  representation, i.e. for every the function
is concave (resp. is convex).
Saying that rationalizes if rationalizes we can state

Proposition 14.9 For a finite demand relation
the following conditions are equivalent:

There exists a nonsatiated, concave-convex representation that ra-
tionalizes

is monotone transformable, i.e. there exist real numbers
such that

for all

There exists a continuous, strongly monotone, concave-convex rep-
resentation that rationalizes

Proof. See [29].

Notice that monotone transformability by the numbers means that
the relation is monotone. Thus, this prop-
erty is completely analogous to the transformability into a cyclically
monotone relation which has been observed as equivalent to GARP.

As shown in [29], monotone transformability is a generalized mono-
tonicity property that is weaker than cyclic pseudomonotonicity but
stronger than proper pseudomonotonicity. Corresponding to the open
problem above, proper pseudomonotone (resp. quasimonotone, strictly
pseudomonotone) demand relations might be those which are ratio-
nalized by semistrictly quasiconcave-quasiconvex (resp. quasiconcave-
quasiconvex, strictly quasiconcave-quasiconvex) representations.

We turn now to the case of continuously differentiable demand func-
tions. Their foundation on properties of the underlying preference will
not be considered here. For that, we refer to [35] or, with regard to

(i)

(ii)

(iii)
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the nontransitive case, to [3]. Instead, we shall derive some first order
implications of pseudomonotonicity that will be used in Section 3.

Let the demand relation be represented by the continuous differen-
tiable function i.e. iff As before,
we assume the budget identity for all

Remember that we have normalized the representation of the budget
sets by choosing wealth equal to one. Consequently, demand
at the price vector and arbitrary wealth can be derived from by

By definition, is homogeneous of degree 0 in and
and satisfies the budget identity for all and

Now assume that is pseudomonotone as defined above. We claim
that this is equivalent to the “weak WARP ” (WWA)8 for the demand
function i.e.

for all

Indeed, by setting and it follows that
is equivalent to and that is
equivalent to

In a straightforward way, WWA implies that, for fixed wealth the
function is pseudomonotone. By homogeneity of it is easy to
see that the reverse implication also holds, i.e. if is pseudomono-
tone for some then satisfies WWA.

Since does not vanish, pseudomonotonicity of is equiv-
alent to the following first order condition (see [9]):

For all the Jacobian matrix is negative semidefi-
nite on i.e. for all

There is a similar first order condition that involves the Slutsky matrix
of at which is defined by

This matrix is derived from the income compensated demand function
at that is defined by

8In the economic literature, the abbreviation WWA has come into use since it was introduced
in [30].
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Indeed, by the chain rule of differentiation, it is easy to check that
is equal to the Jacobian evaluated at

The Slutsky matrix can be interpreted as a measure of substitutability
of the commodities if prices change in such a way that real income (given
by the initially demanded bundle) stays the same. For example, if income
compensated demand does not change there is no substitution at all, i.e.
the Slutsky matrix is zero.

The first order characterizations of WWA can now be summarized in

Proposition 14.10 If is continuously differentiable then the following
conditions are equivalent:

satisfies WWA.

For some (resp. all) the Jacobian matrices of the
function are negative semidefinite on

For all and the Slutsky matrix is negative semidefi-
nite, i.e.

(i)

(ii)

(iii)

Proof. The equivalence of (i) and (ii) has been already mentioned before
and was first proved by Hildenbrand and Jerison [19].

In order to prove that (ii) implies (iii), observe that any can be
written as where such that
It is not difficult to check that the budget identity implies
and that homogeneity of implies By definition of

it follows that
since
Assume now (iii) and consider the Slutsky equation

Thus, if then

The first order characterization of WWA by the negative semidefi-
niteness of the Slutsky matrices is due to Kihlstrom, Mas-Colell, and
Sonnenschein [30] and probably the first one obtained for a generalized
monotonicity property.

3. General Equilibrium Theory

3.1 Variational Inequalities and Economic
Equilibrium

Consider below the graphical illustration of a competitive equilibrium
on a market for a certain commodity that is well known from all elemen-
tary textbooks (Figure 6).
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Figure 6

It is assumed that for any given market price there are quantities
and of that commodity which describe demand and supply

for the commodity at An equilibrium on this market is a price for
which demand equals supply, i.e. such that

The situation depicted in Figure 6 is a nice one. There is a unique
equilibrium price that is stable with respect to a price adjustment ac-
cording to the sign of excess demand: If the price increases in the case
that demand exceeds supply and decreases in the opposite case, then
the price always adjusts towards Denoting the excess demand by

we obtain for every the inequality

i.e. is a solution to the Minty variational inequality problem with
respect to the excess demand function E.

Of course, this is a very simple example in which a certain market is
considered separately. In reality, there are markets for a large number
of commodities and demand and supply on each market may depend in
general on all prices.

In order to model such an environment, we consider a comprehensive
collection of commodities and an excess demand function
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defined on a convex set P of price vectors Of course,
is interpreted as the excess demand for commodity at the market

prices At the moment, we are not concerned about a derivation
of these functions from a model of individual behaviour, i.e. they are
simply taken as given.

With regard to the domain P, it is often assumed that i.e.
negative prices are excluded. However, in general this is too restrictive
(see e.g. [41]).

If an equilibrium is given by a price vector such
that i.e. demand equals supply on each market . In the
case that E is defined on the appropriate concept is a free-
disposal equilibrium, i.e. such that and
Such a is also known as a solution to the nonlinear complementary
problem with respect to E and allows a negative excess demand
for commodity if the price is equal to zero.

In general, an equilibrium for the excess demand function
is a solution to the Stampacchia variational inequality problem for E,
i.e. a price vector such that for all

We remark that this definition is easily extended to the case of an
excess demand correspondence by using the same solution concept for
multi-valued mappings.

The relevance of generalized monotonicity to the theory of general
economic equilibrium is demonstrated by the following results.

The first one is of course well known from the theory of variational
inequalities (see e.g. [26]).

Proposition 14.11 Let be continuous.

If E is pseudomonotone then is an equilibrium for E if
and only if solves the Minty variational inequality problem with
respect to E, i.e. for all

In particular, the set of equilibria is convex.

If E is strictly pseudomonotone then is an equilibrium for
E if and only if solves the strict Minty variational inequality
problem with respect to E, i.e. for all such that

(1)

(2)
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In particular, there is at most one equilibrium .

It should be noticed that pseudomonotonicity (resp. strict pseu-
domonotonicity) of E is also necessary if the set of equilibria are required
to be convex (resp. to contain at most one element) for any restriction
of E to a (one-dimensional) convex subset of P (see [26]).

Proposition 14.11 implies the next result that was suggested in [26]
and proved in [31].

Proposition 14.12 Let be continuously differentiable on
the open convex domain P. If E is (strictly) pseudomonotone and is
an equilibrium for E, then

is a (globally asymptotically) stable solution of the autonomous dynam-
ical system

on P.

Proof. Define Since V is obviously positive definite
and

Proposition 14.11 implies if E is pseudomono-
tone (resp. strictly pseudomonotone). Thus, V is a (strict) Liapunov
function for on P which proves the claim (see Theorem 1 in Chapter
9, §3 in [20]).

The differential equation in Proposition 14.12 has a straight-
forward economic interpretation. If is not an equilibrium price vector
then prices adjust according to the sign of excess demand, i.e. a cer-
tain commodity price increases in case of excess demand and decreases
in case of excess supply for that commodity. This price adjustment is
known as the Walrasian tâtonnement process.

In the following sections we investigate two examples for an excess
demand function. They will be derived from specific economic models
such that one can ask for conditions that imply excess demand to be
(strictly) pseudomonotone. For convenience, production activities are
not considered. These are taken into account in a survey by Brighi and
John [6].

3.2 Distribution Economies

A simple economic model that nevertheless allows to develop a non-
trivial general equilibrium theory had been already suggested by Cassel
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[7], [8] and was later explicitly formulated by Malinvaud [33] who called
it a distribution economy.

Its simplicity is due to the assumption that there is an exogenously
given vector which represents a fixed supply of consumption
goods. These goods are demanded by a finite set H of consumers (or
households) who are described by their wealth and by their
demand function

We assume that for each the demand function
is continuous and satisfies the budget identity

for all and
Given the individual characteristics the aggregate (or

market) demand function defined by

is continuous and satisfies the aggregate budget identity

where denotes aggregate wealth.

The aggregate (or market) excess demand function
is then given by

As a basic requirement, we have to ensure the existence of an equilib-
rium.

Proposition 14.13 Assume that the consumption sector
satisfies the following boundary condition:

For each sequence of price vectors in that converges to
some the sequence is unbounded for at
least one consumer

Then, for any there exists an equilibrium of the distribution
economy

Proof. For each define for

Since is a nonempty, convex and

compact subset of
By the fundamental existence theorem of Hartman and Stampacchia
[16], for each there is such that for all
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In particular,

This implies that the sequence and, consequently, all se-
quences are bounded.

Since is a sequence in the bounded set
there is a subsequence converging to some

By the boundary condition, i.e.

Obviously, the boundary condition in Proposition 14.13 that ensures
the existence of an equilibrium means that each commodity is desir-
able for at least one consumer. From an economic viewpoint, such an
assumption is not strong.

We have seen that an equilibrium is necessarily an equilib-
rium with respect to the restricted excess demand function

where It turns out that is (strictly)
pseudomonotone if the corresponding property holds for the aggregate
demand function F. Applying Proposition 14.11 yields

Proposition 14.14 If the aggregate demand function F is pseudomono-
tone, then the set of all equilibria is nonempty, compact and convex.
There is a unique equilibrium if F is strictly pseudomonotone.

Proof. The equilibrium set is compact as a closed subset of a bounded
set. The convexity (resp. uniqueness) property follows from Proposition
14.11 if we show that (strict) pseudomonotonicity of F implies (strict)
pseudomonotonicity of

In order to prove this, consider such that and
Since it follows that

If F is pseudomonotone, and, thus,
Analogously, strict pseudomonotonicity

implies that the inequalities are strict.

What conditions ensure that aggregate demand is pseudomonotone?
If there were only one consumer, then this property would be implied by

Consider an arbitrary Then there is some such that
for Hence, for and, by continuity of
E, It follows that for all
Defining by and for we obtain

i.e. Thus and, consequently,

Since this inequality holds for all From
and it follows that
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the Weak Axiom of Revealed Preference. However, pseudomonotonic-
ity is not additive. Of course, assuming monotone individual demand
functions is even sufficient for monotone aggregate demand. Since this
assumption is too strong, one has to look for another solution to the
problem.

A promising approach, convincingly presented by Hildenbrand [17], is
to take the distribution of the individual characteristics into account. In
his book, he has derived various (generalized) monotonicity properties
of aggregate demand by postulating different kinds of heterogeneous
consumption sectors.

One of these is the hypothesis of increasing dispersion of households’
demands. It was already studied by Jerison [23], [24] and implies that
market demand is (strictly) pseudomonotone.

We choose to present another hypothesis in this section which even im-
plies monotonicity of market demand. The reason is that pseudomono-
tonicity of market demand, although sufficient for a well-behaved excess
demand function on the restricted domain S, does not yield such nice
properties on

In particular, we obtain the following negative result.

Proposition 14.15 Assume that is not monotone at
some with strictly positive demand i.e.
for some other Then there is a supply vector such that the dis-
tribution economy given by F and has an equilibrium which is not a
solution to the Minty variational inequality problem with respect to the
excess demand E on

Proof. If is chosen equal to then i.e. is an equilibrium.
On the other hand,

In order to exclude the case described in the proposition above, we
need a condition that guarantees monotonicity of market demand. Since
we do not want to impose this property on individual demand, from
which it would follow trivially for aggregate demand, such a condition
also provides an example that aggregation may create properties that
are not satisfied at the individual level.

In the sequel, we assume that all demand functions are contin-
uously differentiable. Consequently, the market demand function F is
also continuously differentiable.

It is known that F is monotone if the Jacobian matrix is neg-
ative semidefinite for every Moreover, if all these matrices are
negative definite, then F is strictly monotone.
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By definition of aggregate demand,

which, by the Slutsky decomposition (see (14.6))

implies that

where

Assuming that all consumers satisfy WWA, the individual Slutsky
matrices are negative semidefinite and, thus, is also
negative semidefinite.

In order to establish the negative semidefiniteness of it remains
to show that is positive semidefinite.

The matrix is positive semidefinite if and only if its symmetrized
matrix

is positive semidefinite.
By the product rule of differentiation, we obtain

or, in matrix notation,

Let be an arbitrary vector in Then

Now observe that

where denotes the second moment of a set of numbers.

and
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Imagine the hypothetical situation that the wealth of each con-
sumer increases by a small amount This will lead to the demand
vectors Consider the set of numbers

and define

By definition, it follows immediately that

Consequently, implies and is positive
semidefinite if for all

What is the interpretation of the latter condition? The numbers
represent the orthogonal projections of the

demand vectors onto the straight line through
the origin with direction The second moment can be interpreted as
a measure of spread around zero of this set of numbers. If, for small

the spread of the demand vectors is increasing in the direction
It implies that
Now, we say that the demand sector satisfies the hypothesis of (strictly)

increasing spread around the origin, if (resp. > 0) for ev-
ery and every i.e. if the spread of the demand vectors

is (strictly) increasing in every direction. Thus we have proved

Proposition 14.16 The aggregate demand function of the consumption
sector given by is (strictly) monotone provided that the hy-
pothesis of (strictly) increasing spread holds.

For a detailed discussion and justification of the hypothesis of increas-
ing spread we refer to [17].

3.3 Exchange Economies

In contrast to the concept of a distribution economy, an exchange
economy is characterized by private ownership of the commodities sup-
plied and by wealth that is dependent on prices. More precisely, the
economy is given by a set H of households (or consumers) who are, for
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each described by a demand function and an initial endow-
ment

For any price vector the wealth of consumer is
determined by the value of his endowments at that price, i.e.
Thus, the demand of at is given by

Assuming that is homogeneous of degree 0 in and i.e.,
for and satisfies the budget identity

we can conclude that is homogeneous of degree 0
in i.e. for and that

Aggregate demand is then defined by

Clearly, D is homogeneous of degree 0 and satisfies Walras’ Law, i.e.
where is the vector of total endowments.

An equilibrium of the exchange economy is a price vector
such that

Equivalently, is a zero of the aggregate excess demand function
defined by

Again, Z is homogeneous of degree 0 and satisfies Walras’ Law, i.e.
for all

Observe that Z can be also written as the sum of the individual excess
demand functions, i.e.

where
By homogeneity of Z, if is an equilibrium then is also an

equilibrium for every If we say that there is a unique equilibrium,
it means uniqueness up to positive scalar multiples. Put differently,
only relative prices can be uniquely determined by an equilibrium of an
exchange economy.

In order to prove the existence of an equilibrium, prices can be nor-
malized by restricting the domain P to the open unit simplex
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Using this restriction, the proof of the next result
is essentially analogous to the proof of Proposition 14.13.

Proposition 14.17 Assume that the individual demand functions
are continuous and satisfy the following boundary condition:

For every sequence of price vectors in that converges to
some and every wealth sequence that converges
to some the sequence is unbounded.

Then there exists an equilibrium of the exchange economy
provided that the aggregate endowment vector is strictly pos-

itive.

Proof. For each define a subset of S by
for Since for all each is
nonempty, convex, and compact. By continuity of Z, the existence result
by Hartman and Stampacchia [16] implies that there is, for each

such that for every In particular,

It follows that i.e. the sequence is bounded.

Consequently, all sequences are bounded.
The sequence in S has a subsequence that converges

to some Hence, for every converges to
However, for some since otherwise

contradicting

By the boundary condition, i.e. From the
definition of the sets it follows that an arbitrary is an element
of for all greater or equal than some Hence,
for and, by continuity of Z,

This implies for all in particular for
defined by and for Thus, for

Since and it follows that

Of course, existence is only a minimal requirement. It is desirable
that there is a unique equilibrium in S which, in addition, should display
some stability property, for example, to be a Minty equilibrium point
with respect to Z.
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Here, the situation is more difficult than in the case of a distribu-
tion economy. Even if one is willing to accept that all consumers have
strictly monotone demand functions (which implies a strictly monotone
market demand), the problem is that wealth is dependent on prices and
endowments. It turns out that the distribution of endowments matters
a lot.9

Consequently, one has to rely on distributional assumptions in order
to obtain a uniqueness result. Such an assumption has been introduced
by Jerison [25] and will be presented below.

We suppose that all demand functions are continuously differen-
tiable and satisfy WWA (see Section 2.3). From the Slutsky equation

we obtain by the chain rule of differentiation a similar decomposition of
the Jacobian of individual excess demand,

Now imagine that, hypothetically, the nominal wealth increases
by for each and denote by

the excess demand of consumer after this increase. The mean excess
demand of the wealthier population is then given by

Let be an arbitrary vector in The dispersion of excess
demand at in the direction is defined as the variance of the real
variable i.e.

Clearly, for denotes the dispersion of excess demand for
the actual situation.

9The standard example where uniqueness is likely to fail is an economy with two commodities
and two consumers such that each consumer owns only one of these commodities and has
also a relatively high propensity to consume the same commodity.
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Definition 14.8 The exchange economy satisfies the hypothesis of in-
creasing dispersion of excess demands (IDED), if for all and
all such that

Notice that IDED does not imply particular restrictions on the distri-
bution of the demand functions or the distribution of endowments
It is a hypothesis on the joint distribution of individual characteristics

Let us illustrate this point by a simple example with two goods
and two consumers.

Example. The utility functions of the agents and are respectively
and Accordingly, their

demands are given by

(1) We shall consider first the case where the vectors of initial endow-
ments are and If the hypothesis is
trivially satisfied in the two goods case. Therefore, let us focus on the
price vectors at which Z vanishes, i.e. in the present example.
This case is depicted in Fig. 7a where the dashed line represents the
budget line of each agent after a generalized increase in income by the
amount and are the Engel curves of the two agents.

Figure 7a

Fig. 7b translates the above example in terms of excess demand and
clearly shows that IDED is violated.
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Figure 7b

(2) Now consider the case where the vectors of initial endowments are
reversed, i.e. and The marginal distributions
of and are the same as before, but the joint distribution is different.
This case is shown in Fig. 8a.

Figure 8a

Fig. 8b shows that the dispersion of excess demand is increasing so
that IDED holds. We notice that the individual characteristics are the
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same as in (1), except for their joint distribution. (1) and (2) thus show
that IDED does not depend on the particular shape of the Engel curves.

Figure 8b

The following result which is due to Jerison [25] shows that IDED
implies a well-behaved aggregate demand of an exchange economy.

Proposition 14.18 Assume that the exchange economy given by
satisfies, in addition to assumptions which ensure existence

of an equilibrium, the hypothesis IDED.
Then, there is (up to positive scalar multiples) a unique equilibrium

Moreover, the aggregate excess demand function satisfies Wald’s Axiom,
i.e. for all such that

in particular, for every price vector which is not an equi-
librium.

Proof. Our first aim is to prove that is negative definite on the
subspace of that is orthogonal to and i.e. for
all such that

From the Slutsky decomposition of the individual excess demands
(14.7) it follows that

where we have used the abbreviation
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Since we have assumed that the individual demand functions satisfy
WWA, the sum of negative semidefinite matrices is negative
semidefinite. It remains to show that the matrix

is positive definite on or, equivalently, that
has this property.

In order to prove this, observe first that

where cov denotes the covariance matrix of the individual excess
demands This implies

where

Since the last term is equal to
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it follows from the assumption that

By IDED, Hence, is positive definite on
and thus we have proved that is negative definite on

It was shown by Kihlstrom, Mas-Colell, and Sonnenschein [30] (The-
orem 4) that this implies Wald’s Axiom for Z, i.e. and

implies
In particular, it follows by Walras’ Law that Z is pseudomonotone,

i.e.

for all
Hence, the set of equilibrium prices is convex by Proposition 14.11.

It remains to prove uniqueness.
Assume that and are two different equilibria. Setting

we obtain for all since the equilibrium set is
convex. This implies

For is negative definite on i.e. rank
By homogeneity of Z, Thus, is collinear with resp.
is collinear with

Observe that the conclusions of Proposition 14.18 only need that
is negative definite on This has been shown by using

the decomposition

and by proving that IDED implies the positive definiteness of on
that subspace (knowing that is negative semidefinite).

Alternatively, one can assume that is even negative definite on
(it cannot be negative definite on the whole space since, by homogene-
ity, and weaken IDED by the hypothesis of nondecreasing
dispersion of excess demands (NDED) (see [25]), i.e. for
all and such that

The stronger assumption on can be easily justified. It means
that there is always substitution between two commodities in case of a
relative price change. Although it may be restrictive condition for an
individual, it is an acceptable assumption for aggregate demand.
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Affine hull

finitely generated, 6
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C-affine minorant, 53

Affinely independent vectors, 8
Aggregate demand, 650
Algorithm

dual Dinkelbach-type, 378
primal Dinkelbach-type, 359

Along-rays property, 300
Augmented Lagrangian, 254
Axiom of Revealed Preference

Generalized (GARP), 632
Strong (SARP), 633
Weak (WARP), 637
Weak Weak (WWA), 645

Bifunction (vector-valued)
monotone, 595
pseudomonotone, 595
quasimonotone, 595

Bifunction, 434
equilibrium, 559
monotone, 434, 564

strictly monotone, 434
pseudomonotone, 434, 564

strictly pseudomonotone, 434, 564
topologically pseudomonotone, 525

quasimonotone, 434, 564
semistrictly quasimonotone, 434
strictly quasimonotone, 434, 564

Bipolar of a set, 27
Bordered matrix, 98
Budget set, 632

252
Canonic hull operation, 10
Closure of a function, 47
Combination of vectors

affine, 6
canonical, 11

convex, 11
linear, 6
strict canonical, 11

Commodity bundle, 263
Condition (S), 526
Condition 526
Cone, 9, 197

base of, 197
correct, 198
normal, 467
pointed, 197
positive polar, 197
recession, 200
strictly positive polar, 197
ubiquitous, 198

Constraint qualification, 161
Consumption bundle, 625
Consumption set, 625
Convex cone generated by a set, 10
Convex hull

finitely generated, 10
generated by a set, 10
operation, 10

Cycle, 467

Decreasing net, 198
Demand correspondence, 269

Walrasian, 269
Demand relation, 632, 638

rationalized, 635
Derivative

Clarke, 469
upper and lower, 441

Clarke-Rockafellar, 468
contingent, 442

lower, 201
upper, 201

dag, 442, 468
Dini-Hadamard (upper and lower), 441
directional, 133, 468

lower (or lower Dini), 208, 406, 423
upper (or upper Dini), 208, 406, 423

incident, 442
lower Dini, 132
Rockafellar (upper and lower), 441
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upper Dini, 132, 468
weak Rockafellar, 442

Descent direction, 449
direction, 450

weak descent direction, 449
Dispersion of excess demand, 657

increasing (IDED), 658
nondecreasing (NDED), 662

Distribution economy, 650
Dual operator, 249
Duality, 249

convex, 238
Fenchel, 241
Lagrangian, 240
perturbational, 240
Toland-Singer, 241

Effective domain of a function, 30
Ekeland’s variational principle, 219
Epigraph, 29, 123

strict, 30, 123
Equilibrium, 648
Evenly convex hull

generated by a set, 10
operation, 10

Excess demand, 647
Exchange economy, 654
Extended semi-norm, 251

hull, 243
Feasible direction, 448
Fenchel-Moreau L-conjugate, 298
Finsler-Debreu Lemma, 101
First order approximation, 449

regular, 450
Function (vector-valued)

180
C-pseudoinvex, 186
convex, 203, 594

C-convex, 169
strictly convex, 203

epigragh, 203
graph, 203
hemicontinuous, 594
increasing, 203
invex, 209

C-invex, 185
lower level set of, 203
lower semicontinuous, 594
non-decreasing, 203
pseudoconvex, 206

170
170

170
strictly pseudoconvex, 206

quasiconvex, 206, 594
C-quasiconvex, 169
explicitly quasiconvex, 594
s-explicitly quasiconvex, 596

semistrictly quasiconvex, 206
strictly quasiconvex, 206

subdifferential of, 204
594

upper semicontinuous, 594
Function

continuous, 244
abstract convex, 295
abstract linear, 299
abstract quasiconvex, 296
additive min-type, 303
almost everywhere differentiable, 135
biconjugate, 46

53
C-affine, 53

243
246

53
53

co-radiant, 251
Cobb-Douglas, 109, 245
conjugate, 46

bi-C-conjugate, 59
59

continuous along the lines, 132
convex, 30, 89, 426, 562

convex transformable, 109
strictly convex, 89, 426
strongly convex, 394

convex-along-rays, 245, 300
convexifiable, 109, 411
coupling, 242
elementary, 295
expenditure function, 267

243
F-differentiable, 519
Fréchet-differentiable, 133, 519
G-differentiable, 519
Gâteaux-differentiable, 133, 519

weakly, 133
generalized upper quasidifferentiable, 438

regular, 439
hemicontinuous, 132, 565
hull function, 31

convex hull function, 31
evenly quasiconvex hull function, 34
l.s.c. convex hull function, 41
l.s.c. hull function, 36
l.s.c. quasiconvex hull function, 41
quasiconvex hull function, 33

ICAR (increasing and convex-along-rays),
245, 301

indicator function, 248
indirect utility function, 264
invex, 158

pre-invex, 160
IPH, 301
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Lagrangian, 240
Lipschitz continuous, 52
lower semicontinuous, 34, 124, 563
lower semicontinuous-along-rays, 300
lsc, 124
multiplicative min-type, 301
multiplicative potential function, 113
needle type, 244
nondecreasing with respect to a cone, 129
P-function, 321
perturbation function, 70, 252
positively homogeneous, 30, 300
proper, 31
pseudoconvex, 91, 153, 428, 575

139
139

444
lower Dini pseudoconvex, 429
pseudoconvex at a point, 155
strictly 444
strictly pseudoconvex, 91, 428
strongly pseudoconvex, 395, 520
upper Dini pseudoconvex, 429

pseudoconvex (nonsmooth), 478, 584
strictly pseudoconvex, 482

pseudolinear, 165
quadratic, 410

generalized convex, 110, 410
quasiaffine, 254, 308

evenly quasiaffine, 255, 311
quasiconcave, 254, 308

evenly quasiconcave, 255
quasiconvex, 32, 89, 124, 153, 254, 426,

562
evenly quasiconvex, 32, 124, 255, 311
explicitly quasiconvex, 563

444
quasiconvex at a point, 155
semistrictly quasiconvex at a point, 155
semistrictly quasiconvex, 153, 395, 426
strictly quasiconvex, 90, 124, 426, 562

quasidifferentiable, 438
quasilinear, 165
radially continuous, 132, 467
radially lower semicontinuous, 428
scaling function, 109
smallest weakly increasing, 223
subaffine, 313
sublinear, 47

565
upper semicontinuous, 34, 124, 563
upper semismooth, 432
usc, 124
utility function, 263
weakly increasing, 223

Gauge, 27
Generalized quasi-variational inequality, 541

Generalized Slater condition, 74

H-convex hull, 295
Halfspace, 9
Hull Cancellation Property, 279
Hull of a set, 126

closed, 126
closed convex, 126
convex, 126
evenly convex, 126

Indirect preorder, 275
Inequality

asymptotically sharp, 322
Hadamard, 319
Hadamard-type, 319
sharp, 322

Inertia of a matrix, 97

Jacobian
approximate, 199, 406

regular, 406
Clarke’s generalized, 199, 407
generalized, 403

Lagrangian perturbation scheme, 72
Linear hull

finitely generated, 6
generated by a set, 6
operation, 6

Linear subspace, 5
Linearly independent vectors, 8
Local-global property, 215
Lower-level set, 32

strict lower-level set, 32

Map (multi-valued), 467
monotone, 247

closed, 353
compact, 201
domain of, 201, 467
graph of, 201
KKM, 488, 562
monotone, 269, 471, 578

cyclically monotone, 471
cyclically strictly monotone, 472
maximal cyclically monotone, 471
maximal monotone, 471
properly monotone, 485
strictly monotone, 471

pseudomonotone, 481, 578
537

cyclically pseudomonotone, 481
D-maximal pseudomonotone, 492
equivalent pseudomonotone maps, 492
properly pseudomonotone, 485
strictly pseudomonotone, 483, 579
strongly pseudomonotone, 537
strongly topologically

h-pseudomonotone, 541
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strongly topologically pseudomonotone,
542

topologically h-pseudomonotone, 541
topologically pseudomonotone, 539
weakly pseudomonotone, 580

quasimonotone, 269, 475, 579
cyclically quasimonotone, 269, 475
explicitly quasimonotone, 582
properly quasimonotone, 485, 582
semistrictly quasimonotone, 477
strictly quasimonotone, 478, 579
weakly quasimonotone, 580

radially lower semicontinuous, 494
radially upper semicontinuous, 492
rusc, 492

578
upper hemicontinuous, 578
upper semicontinuous, 201, 532, 578

Map (operator-valued)
(D)-pseudomonotone, 603
monotone, 205, 597, 601

maximal monotone, 205
pseudomonotone, 209, 598, 601

strictly pseudomonotone, 209
weakly pseudomonotone, 601

quasimonotone, 208, 598
strictly quasimonotone, 209
weakly quasimonotone, 601

598, 601
weakly (D)-pseudomonotone, 603
weakly v-coercive, 603

Map (single-valued)
affine, 7
coercive, 513

weakly coercive, 513
demicontinuous, 508
hemicontinuous, 400, 508, 570
linear, 7
monotone, 94, 390, 570

513
strictly monotone, 390
strongly monotone, 390, 513, 588
uniformly monotone, 526

monotone transformable, 110
positive at infinity, 546
pseudomonotone, 94, 391, 570

affine pseudomonotone, 415
B-pseudomonotone, 400

516
linear pseudomonotone, 415
strictly pseudomonotone, 94, 391, 516,

571
strongly pseudomonotone, 391, 516, 588
topologically pseudomonotone, 400, 524

quasimonotone, 94, 392, 571
semistrictly quasimonotone, 392
strictly quasimonotone, 392, 571

topical, 303
570
570

Z-map, 546
Mapping, see map
Matrix

copositive, 415
positive subdefinite, 415
Slutsky, 645

Maximum probability model, 341
Mereau-Paquet’s type conditions, 109
Method

combined relaxation, 591
cutting angle, 319
cutting plane, 318
ellipsoid, 589
extragradient, 588
generalized cutting plane, 318
of approximate analytic centers, 590
of centers of gravity, 589
projection, 586

Minkowski duality, 298
Minkowski functional, 27
Minkowski sum, 5
Mixed strategies, 63
Monotonicity of a function, 129
Moore-Penrose pseudoinverse, 414

Normal subset, 301
Normal vector, 23

operator, see map
Optimality conditions

F. John (vector case), 179
F. John, 162
Kuhn-Tucker (vector case), 179
Kuhn-Tucker, 157

Order relation compatible with a linear
structure, 259

Order
lexicographic, 197
ubiquitous, 197
usual, 197

Orthogonal complement, 26

Partial order, 196
linear, 197

Point
denting, 226
efficient, 173, 210

properly efficient, 211
superefficient, 211
weakly efficient, 173, 210

ideal, 210
inf-stationary, 430
inner, 582
of continuity, 226
Pareto optimal, 173

weakly Pareto optimal, 173
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relative interior, 15
Polar of a set, 27
Positive element, 545

strictly positive element, 545
Preference, 626, 638

continuous, 626, 638
convex, 627, 638

semistrictly, 627
strictly, 627, 638

local, 620
locally nonsatiated, 627, 638
monotone, 626, 638

strictly, 627
nontransitive, 636
(numerical) representation of a, 643
relation, 263
strict, 626
transitive, 626
upper continuous, 638
utility representation of a, 626

Principle of preservation of inequalities, 316
Problem

convex (vector), 224
differentiable vector, 216
complementarity, 502

generalized complementarity, 543
linear complementarity, 502

conic convex programming, 72
dual, 252
dual equilibrium, 565
dual optimization, 70
dual variational inequality, 571
dual vector equilibrium, 594
dual vector variational inequality, 597, 600
equilibrium, 559
generalized geometric programming, 72
Lagrangian dual, 72
least element, 545
linear programming, 72
minimum norm, 21
nonlinear complementarity, 575
nonlinear programming, 72
optimization, 575
perturbed, 239
primal optimization, 70
quasiconvex (vector), 225
surrogate dual, 262
unilateral minimization, 546
variational inequality, 560

Minty, 488
Stampacchia, 492

vector equilibrium, 594
vector variational inequality, 597

strong solution of, 600
weak solution of, 600

Program
fractional

(dual) max-min, 346
generalized, 337
multi-objective, 338
multi-ratio convex, 337
multi-ratio linear, 337
(primal) min-max, 338
single-ratio concave, 337
single-ratio convex, 337
single-ratio linear, 337
single-ratio quadratic, 337
single-ratio, 337
sum-of-ratios, 338

stochastic mathematical, 341
Proper separation between a set and a

vector, 24
Properly separated convex sets, 24
Pure strategies, 62

Q-linearly convergent sequence, 365
Q-superlinearly convergent sequence, 365

Regularizations of a function, 126
Relative boundary, 23
Roy’s Identity, 271

Scalarization, 223
Schur’s complement, 97
Separating hyperplane, 23
Set

160
abstract convex, 296
affine, 5
C–compact, 198
C–complete, 198
C–semicompact, 198
closure of, 13
contractible, 227
convex, 9

evenly convex, 10, 124, 255
strictly convex, 207

dimension of, 9
downward, 303
interior of, 13
radially open, 467
regular, 15
relative interior of, 15, 124
relatively open, 15
star-shaped, 155
strongly C–complete, 198
support set, 295

Solution
efficient, 214

properly efficient, 214
weakly efficient, 214

ideal, 214
Steepest descent direction, 440
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Subdifferential, 238, 403
abstract, 470

246
Clarke, 469
Clarke-Rockafellar, 469
dag, 469
Fenchel (see also Fenchel-Moreau), 121
Fenchel-Moreau, 467
Fréchet, 469
L-subdifferential, 297
MVT, 470
quasi-subdifferential, 258
quasiconvex, 490
upper Dini, 469
upper quasisubdifferential, 440

Subgradient, 48, 238
246

Subgradient (of a map), 403
Subgradient set (see also subdifferential), 48
Sublevel set, 467

strict, 467
Support function, 27
Support set, 295
Support set of a function at a point, 297
Supremal generator, 305

Theorem
bipolar, 28
Caratheodory’s, 12

Crouzeix’ Representation, 452
Diewert’s Mean Value, 424
Fenchel-Moreau, 47
Generalized Farkas, 457
Hahn-Banach, 23
implicit function, 424
Kaplansky, 525
Karush-Kuhn-Tucker type, 458
Kneser minimax, 533
Ky Fan Lemma, 532
Lagrange-Sylvester law on inertia, 97
Lebourg mean value, 403
mean value (for maps), 403
mean value (for vector-valued functions),

200, 216
open mapping, 216
Rademacher’s, 403
Sion’s minimax, 66
Three Point Lemma, 425

Topical mapping, 303

Unit simplex, 14
Utility maximization hypothesis, 632

Variational inequality, 504
generalized, 531

Vector lattice, 545

Walras’ law, 655

Young transform, 244
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