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Preface

This volume comprises papers from the following five workshops that were part of the
complete program for the International Conference on Extending Database Technology
(EDBT) held in Heraklion, Greece, March 2004

ICDE/EDBT Joint Ph.D. Workshop (PhD)

Database Technologies for Handling XML-information on the Web (DataX)
Pervasive Information Management (PIM)

Peer-to-Peer Computing and Databases (P2P&DB)

Clustering Information Over the Web (ClustWeb)

Together, the five workshops featured 61 high-quality papers selected from approx-
imately 180 submissions. It was, therefore, difficult to decide on the papers that were to
be accepted for presentation. We believe that the accepted papers substantially contribute
to their particular fields of research. The workshops were an excellent basis for intense
and highly fruitful discussions. The quality and quantity of papers show that the areas
of interest for the workshops are highly active. A large number of excellent researchers
are working on the aforementioned fields producing research output that is not only of
interest for other researchers but also for industry. The organizers and participants of
the workshops were highly satisfied with the output. The high quality of the presenters
and workshop participants contributed to the success of each workshop. The amazing
environment of Heraklion and the location of the EDBT conference also contributed to
the overall success. Last, but not least, our sincere thanks to the conference organizers
— the organizing team was always willing to help and if there were things that did not
work, assistance was quickly available.

On the basis of the reviews and discussions during the workshops, 55 authors were
asked to submit revised versions of their workshop papers for these LNCS postproceed-
ings. When revising their papers, authors were asked to consider not only the com-
ments of the reviewers but also the comments of other workshop participants. The
revised papers underwent a second reviewing process before they were accepted for
these postproceedings.

ICDE/EDBT Ph.D. Workshop (PhD)

Continuing in its tradition, the Ph.D. Workshop brought together Ph.D. students in the
field of database technology outside of the ICDE/EDBT conference series. It offers Ph.D.
students the opportunity to present, discuss, and receive feedback on their research in a
constructive and international environment.

For the first time the Ph.D. Workshop was actually a real distributed event. The first
session was held in conjunction with the 9th International Conference on Extending
Database Technology (EDBT) on March 18, 2004, in Heraklion (Greece). The second



VI Preface

session was held in conjunction with the 20th International Conference on Data Engi-
neering (ICDE) on March 29, 2004, in Boston (USA).

As for the statistics: we received 86 submissions (from 21 countries). After a careful
review process (each paper was evaluated by three committee members followed by
an online discussion), 21 papers were selected for presentation at the workshop, out
of which 18 contributors were invited to submit revised and extended versions of their
papers for these proceedings.
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Program Committee
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Database Technologies for Handling XML-Information on the Web
(DataX)

Since XML was proposed by the W3Cin 1998, the database community has been working
on ways to manage semistructured information by extending traditional database systems
and by proposing new native XML-based systems in order to store, maintain, exchange,
and securely access XML documents. DataX brought together experts from several
fields of information technology to discuss new interesting results and applications of
XML data management. An invited paper reports the current assessment of the area
and outlines the promising challenges for the next few years. Moreover, the technical
program addresses important topics concerning querying and indexing of XML sources
along with the evolution of XML schema and applications. Finally, a panel deals with
important questions in XML data management.
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External Reviewers

Bernd Amann Elio Masciari Cristina Sirangelo
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Ela Hunt Mark Roantree Pierangelo Veltri
Anne Laurent Awny Sayed Alessandro Verri
Paolo Manghi Carlo Sartiani Ning Zhang

Pervasive Information Management (PIM)

Wireless connectivity, along with increasingly small and powerful mobile devices and
sensors, enables a wide range of new applications that will radically change the way
information is managed and processed today. Information becomes ubiquitous, highly
distributed and at the same time accessible from everywhere at any time. Information
access takes place in highly dynamic and unstable networks. Nevertheless, users and
application developers will expect information processing to continue under similar
guarantees as those offered by today’s stationary and more or less centralized systems,
even if some nodes of the pervasive information network are (temporarily) disconnected
and/or are in motion. Examples of these guarantees are those given by database manage-
ment systems, e.g., consistency and durability of data. Additional challenges stem from
the fact that mobile devices, in particular embedded devices and sensors, are less power-
ful than their stationary counterparts; they are smaller (resulting, for example, in smaller
in- and output devices and less available storage), have restricted energy supplies, and
communicate via expensive and unreliable wireless communication media.

The papers accepted for this postconference proceedings address a broad range of
issues in pervasive information systems. New and existing concepts and techniques are
developed in the light of the rapidly increasing mobility of users and the great advances
in system infrastructures, mobile devices, and sensor technologies.
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Peer-to-Peer Computing and Databases (P2P&DB)

The P2P paradigm holds many promises: it couples naturally with the Internet, the uni-
versal knowledge and service exchange medium; it favors scalability, by allowing the
seamless plugging of data, services and computational resources into the global system;
it increases system resilience, by avoiding unique points of failures; and it can speed
up global access by distributing the indexing and query processing tasks to multiple
computing nodes. This is all in contrast to the centralized architecture of current sys-
tems offering global access, such as search engines, Web directories, or mediators. The
potential for progress is very encouraging, and there are already several systems that
subscribe to the P2P computing paradigm, to some degree. On a theoretical level, re-
searchers have started looking into models and algorithms to tackle basic problems in
the P2P framework, as witnessed by the increasing number of papers in international
workshops and conferences. This workshop, co-located with EDBT 2004 and focused
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on peer-to-peer systems and database computing, was no exception. It attracted quality
papers, most of which provoked lively discussions amongst the participants.

Workshop Chairs

Carlo Meghini
Nicolas Spyratos
Yannis Tzitzikas

Program Committee

Karl Aberer
Anastasia Analyti
Paolo Atzeni

Diego Calvanese
Vassilis Christophides
Norbert Fuhr
Mohand-Said Hacid
Hatem Haddad
Klaus P. Jantke
Ross King

Matthias Klusch
Manolis Koubarakis
Heikki Mannila
John Mylopoulos
Wolfgang Nejdl
Evaggelia Pitoura
Philippe Rigaux
Thomas Risse
Marie-Christine Rousset
Luciano Serafini
Vagan Terziyan

External Reviewers

Josenildo Costa da Silva
Philippe Cudré-Mauroux
Sarunas Girdzijauskas

ISTI-CNR (Italy)
University of Paris-Sud (France)
University of Namur (Belgium)

EPFL Lausanne (Switzerland)
ICS-FORTH (Greece)

University of Rome 3 (Italy)

Free University of Bozen-Bolzano (Italy)
ICS-FORTH (Greece)

University of Duisburg (Germany)
University Claude Bernard Lyon 1 (France)
VTT (Finland)

DFKI GmbH (Germany)

Austrian Research Centers (Austria)
DFKI GmbH (Germany)

Technical University of Crete (Greece)
Helsinki University of Technology (Finland)
University of Toronto (Canada)
University of Hannover (Germany)
University of loannina (Greece)
University of Paris-Sud (France)

IPSI Fraunhofer (Germany)

University of Paris-Sud (France)
Cultural Institute of Trentino (Italy)
University of Jyviskyld (Finland)

Henrik Nottelmann
Loris Penserini
Christos Tryfonopoulos

Predrag KneZevi¢
Georgia Koloniari
Jafar Movahedi

Clustering Information over the Web (ClustWeb)

Web data management has become a critical emerging research area, due to the expo-
nential increase in the information circulation and dissemination over the Web. Web data
mining is an evolving field of high interest to a wide academic and technical community.
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The ClustWeb workshop focused on the topic of clustering information over the Web,
as an emerging topic in current Web data mining efforts. The papers presented and the
panel presentation contributed to understanding the role of clustering mechanisms and
methodologies in accessing Web information (such as documents, link paths, and users
on the Web). The topics of the workshop are summarized in:

clustering structured Web sources,

similarity ranking on the Web graph,

clustering query logs (in search engines), towards dissemination of information,
protecting Web data in the framework of clustering

The ClustWeb workshop addressed the issues involved in the effect of Web data clus-
tering on increasing Web information accessibility, decreasing lengths in Web navigation
pathways, improving Web user request servicing, integrating various data representation
standards, and extending current Web information organization practices.
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Querying Sliding Windows
Over Online Data Streams*

Lukasz Golab

School of Computer Science,
University of Waterloo, Ontario, Canada
lgolab@uwaterloo.ca

Abstract. A data stream is a real-time, continuous, ordered sequence of items
generated by sources such as sensor networks, Internet traffic flow, credit card
transaction logs, and on-line financial tickers. Processing continuous queries over
data streams introduces a number of research problems, one of which concerns
evaluating queries over sliding windows defined on the inputs. In this paper, we
describe our research on sliding window query processing, with an emphasis on
query models and algebras, physical and logical optimization, efficient processing
of multiple windowed queries, and generating approximate answers. We outline
previous work in streaming query processing and sliding window algorithms,
summarize our contributions to date, and identify directions for future work.

1 Introduction

Traditional databases have been used in applications that require persistent data storage
and complex querying. Usually, a database consists of a set of unordered objects that are
relatively static, with insertions, updates, and deletions occurring less frequently than
queries. Queries are executed when posed and the answer reflects the current state of the
database. However, a growing list of applications receive and process data as a sequence
(stream) of items. This change was instigated by the following trends:

— the increasing ubiquity of wireless computing devices, envisioned to form sensor
nets and collectively transmit a vast amount of information [1, 26],

— the increasing volume, popularity, and volatility of the World Wide Web, particularly
on-line data feeds such as news, sports, and financial tickers [11, 35],

— the overwhelming volume of transaction logs (e.g. telephone call records, credit
card transactions, or Web usage logs) that, even when processed off-line, may be so
large as to restrict processing to one sequential scan of the data [13],

— the recent interest in the Internet measurement community to use a data management
system for on-line analysis of network traffic [14,31].

A data stream is a real-time, continuous, ordered sequence of items. Processing
queries over data streams, which are expected to run continuously and return new answers
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as new data arrive, introduces novel challenges such as adapting query plans in response
to changing stream arrival rates, sharing resources among similar queries, and generating
approximate answers in limited space. Additionally, some continuous queries are not
computable in bounded memory (e.g. Cartesian product of two infinite streams), some
relational operators are blocking because they must consume the entire input before
any results are produced (e.g. join or group-by), and some users may be interested only
in the most recent data. These three problems may be solved by restricting the range
of continuous queries to a sliding window of manageable size. In count-based sliding
windows, only the last IV tuples are of interest, whereas time-based sliding windows
contain tuples which have arrived in the last 7" time units.

Sliding windows solve some of the difficulties caused by processing on-line data
streams, but implementing windowed operators also raises additional issues. The fun-
damental problem is that as the window slides forward, old results must be removed
in addition to appending new results generated by newly arrived tuples. For example,
computing the maximum value in an infinite stream is trivial, but doing so in a sliding
window of size N requires (2(N') space—consider a sequence of non-increasing values,
in which the oldest item in any given window is the maximum and must be replaced
whenever the window moves forward. In general, the result set of a windowed operator
can change in four ways. The arrival of a new tuple may add new tuples to the answer
(e.g. join) or remove tuples from the answer (e.g. set difference). Moreover, an expired
tuple may cause the removal of tuples in the result set (e.g. aggregates) or the addition
of new tuples to the result set (e.g. set difference) [23].

The goal of this research is to examine the problems and trade-offs involved in
sliding window query processing, and evaluate possible solutions. The particular research
questions which we aim to answer are as follows.

— How should a data stream be modeled, which operators should be included in a
windowed algebra, and which useful rewritings could a windowed algebra allow in
logical query optimization?

— How should relational operators be modified to function effectively over sliding
windows?

— What opportunities exist for shared evaluation of multiple windowed queries?

— What is the best load shedding strategy (e.g. dropping tuples or approximating the
answer) for multiple windowed queries if the stream arrival rates are too high and
the system is unable to keep up?

The remainder of this paper discusses previous work in sliding window query pro-
cessing in Sect. 2, our contributions to date in Sect. 3, and directions for future work in
Sect. 4. More details on this topic and on other issues in data stream management may
be found in our recent survey [20].

2 Related Work

2.1 Query Languages and Semantics

All proposed data stream systems recognize the importance of sliding windows. The
STREAM system includes CQL, which is an SQL-based query language for contin-



Querying Sliding Windows Over Online Data Streams 3

uous queries [2]. CQL includes three types of operators: relation-to-relation, stream-
to-relation, and relation-to-stream. Standard SQL is used to express relation-to-relation
operators, and the SQL-99 windowing constructs serve as stream-to-relation operators
by reducing an infinite stream to a finite table containing the most recent window of
items. The relation-to-stream operators—Istream, Dstream, and Rstream—are
used to convert static relations and sliding windows to an output stream. The Istream
operator returns a stream of all those tuples which exist in the given relation at the cur-
rent time, but did not exist at the current time minus one. Similarly, Dstream returns a
stream of tuples that existed in the given relation in the previous time unit, but not at the
current time. The Rstream operator streams the contents of the entire relation at the
current time. Furthermore, time-based and count-based windows are supported, as are
partitioned windows defined by splitting a window into groups and defining a separate
count-based window on each group. Since stream algebras rely on time and ordering,
synchronizing and comparing timestamps of tuples generated by remote sources is also
discussed within the STREAM project—this problem is referred to as query heartbeat
generation [29].

TelegraphCQ uses another SQL-like query language (called StreaQuel), augmented
with a for-loop construct that specifies the window length and frequency of query re-
execution as the window moves forward (or backward, or as one endpoint moves forward
and the other moves backward) [9]. Moreover, GSQL is a streaming query language
employed by AT&T Gigascope, which is a stream database for network applications [14].
GSQL is a subset of SQL that restricts all inputs and outputs to be streaming, requires
an ordering attribute for each stream, allows binary windowed joins, and includes an
order-preserving stream union.

An interesting alternative to declarative streaming query languages is the “boxes
and arrows” interface of the Aurora stream processing system [1]. An Aurora query
plan consists of boxes corresponding to query operators, and arrows connecting the
operators and specifying data flow. The Aurora algebra, called SQuALl, includes seven
operators, four of which are order-sensitive. The three order-insensitive operators are
projection, union, and map, the last applying an arbitrary function to each of the tuples
in the stream or a window thereof. The other four operators require an order spec-
ification, which includes the ordered field and a slack parameter. The latter defines
the maximum disorder in the stream, e.g. a slack of two means that each tuple in the
stream is either in sorted order, or at most two positions or two time units away from
being in sorted order. The four order-sensitive operators are buffered sort (which takes
an almost-sorted stream and the slack parameter, and outputs the stream in sorted or-
der), windowed aggregates (in which the user can specify how often to advance the
window and re-evaluate the aggregate), binary band join (which joins tuples whose
timestamps are at most ¢ units apart), and resample (which generates missing stream
values by interpolation, e.g. given tuples with timestamps 1 and 3, a new tuple with
timestamp 2 can be generated with an attribute value that is an average! of the other
two tuples’ values).

! Other resampling functions are also possible, e.g. the maximum, minimum, or weighted
average of the two neighbouring data values.
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2.2 Windowed Query Processing and Optimization

The basic window model was introduced in [35] to compute simple aggregates and was
recently extended to windowed burst detection [36]. In this approach, the sliding window
is partitioned into buckets (called basic windows), and only a summary and a timestamp
are stored in each basic window. When the timestamp of the oldest basic window expires,
a new basic window is inserted in its place, and the aggregate is updated using the new
set of summaries. For instance, the windowed average may be incrementally maintained
by storing partial sums and counts in each basic window.

A variation of the basic window model is presented in [8], with basic windows
of various sizes arranged in a wavelet-like tree. For example, if the window size is
sixteen tuples, the root stores summary information about all sixteen tuples, the left child
summarizes tuples one through eight, the right child summarizes tuples nine through
sixteen, and so on down to the leaves. If detailed information is required only for the
newest tuples in the window, those subtrees (or leaves) which would normally summarize
older tuples may be omitted from the tree.

Rather than waiting until the newest basic window fills up to refresh query results, [16]
shows that restricting the sizes of the basic windows to powers of two and imposing a limit
on the number of basic windows of each size yields an algorithm that approximates simple
aggregates using logarithmic space. This algorithm has been used to approximately
compute the windowed sum [16], windowed histogram [27], aggregates over time-based
windows [12], as well as variance and k-medians clustering inside a window [6].

Recent work on sliding window joins includes binary windowed join algorithms
[25], which extend the pipelined symmetric hash join [33], windowed join algorithms
for tracking moving objects in sensor networks [22], and shared evaluation of windowed
joins with various window sizes [24].

Previous work on sliding window query optimization consists of indexing techniques
for sliding windows stored on disk [28], load shedding strategies for conjunctive queries
[4], windowed joins [15,30], and windowed aggregates [5], on-the-fly reordering of
multi-way join plans [7, 34], as well as shared query processing by indexing query pred-
icates [10] and by pre-computing aggregates shared by multiple queries [3]. Moreover,
punctuations® [32] may be used instead of sliding windows to bound the memory re-
quirements of some queries, or in conjunction with windows to avoid storing and later
having to expire tuples that will not contribute to the query result and may be dropped
immediately.

3 Results to Date

This section summarizes our existing research results. Thus far, we have focused on
windowed join processing, indexing sliding windows stored in main memory, and in-
cremental evaluation of complex windowed aggregates.

% A punctuation is a constraint that is encoded as a data item within a stream. Punctuations may
be used to specify conditions that will be obeyed by all future tuples, e.g. no more tuples with
attribute value greater than ten will appear in the remainder of the stream.
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3.1 Windowed Joins

In [21], we developed a general framework and presented specific algorithms for evalu-
ating joins over multiple sliding windows, given the constraint that all windows and hash
tables must fit in main memory. Various window-specific issues that arise during join
execution were considered, such as immediate or periodic generation of new results,
immediate or periodic expiration of stale tuples out of the windows and hash tables,
nested-loops or hash-based execution, and expiration techniques for time-based and
count-based windows. Fundamentally, our algorithms extend the binary pipelined sym-
metric hash join [33] to multiple inputs and to deal with the aforementioned windowing
issues during join processing.

We also developed a join ordering heuristic that considers stream arrival rates, win-
dow sizes, distinct value counts, and the frequency of query re-evaluation and expiration
to choose an efficient execution order within our multi-join operator. The heuristic is
based on ordering the most selective join first, but we have shown that other parameters
must also be considered in some situations, such as those where one or more streams ar-
rive much faster than others. Experiments with stand-alone prototypes of our multi-join
algorithms validated our cost model and ordering heuristic, and showed that building
large hash tables on the input windows is beneficial only if periodic expiration of stale
tuples is performed.

3.2 Windowed Indices and Storage Structures

Since we have discovered in [21] that maintenance costs of windowed indices may be
prohibitive if implemented without care, we investigated indexing further in [19]. As
was the case with our join operators, we focused on main-memory query processing and
returning exact answers. We used the basic window model [35], originally proposed for
computing windowed aggregates, to define storage structures and query semantics for
sliding windows. We proposed a circular array of pointers to basic windows as a default
storage structure—as shown in Fig.1—and outlined several possibilities for storing the
individual basic windows. The possibilities include storing individual tuples, distinct
values and their multiplicities, or groups of distinct values and group multiplicities (range
histograms) inside basic windows. We argued that the basic window model provides the
only feasible index maintenance strategy (periodic insertion and deletion) as well as
a natural approximation technique: if the system is unable to re-evaluate all queries
after each basic window is appended, the basic window size can be increased, thereby
decreasing system load but also increasing the delay in reporting answers generated by
newly arrived tuples.

To motivate the need for two types of windowed indices, we classified streaming
operators into four types based on the nature of the input and output: infinite versus
windowed. Operators whose inputs and outputs are both infinite include on-the-fly se-
lection. A windowed join is an example of a windowed-input, infinite-output operator as
the inputs must be windowed to fit in finite memory, but output tuples may be streamed
directly to the user. A windowed-output operator may have infinite or windowed input,
and materializes the last window of results. Of those operators which require windowing
the input, some are incrementally computable (e.g. simple aggregates), but others need
to scan the entire window during re-evaluation. The latter may be further classified into
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Fig. 1. Sliding window implemented as a circular array of pointers to basic windows. The newest
basic window is temporarily buffered until it fills up, at which time it is inserted into the data
structure by overwriting the pointer to the oldest basic window

set-valued operators (e.g. windowed intersection) that require access to distinct values
in the window and their multiplicities, and attribute-valued operators (e.g. windowed
join followed by a selection on another attribute) that need access to individual tuples
during re-execution. Thus, some operators may benefit from set-valued indices, and oth-
ers from attribute-valued indices. We proposed and evaluated solutions for both types
of windowed indices in [19], including an approximation scheme for set-valued queries
whereby we store range histograms in each basic window and, for example, return a win-
dowed intersection in terms of intersecting ranges rather than intersecting distinct values.

3.3 Aggregates over Sliding Windows

When a sliding window is divided into basic windows, only distributive and algebraic
aggregates may be computed incrementally. Complex aggregates, such as finding the &k
most frequent items or all items that occur with a frequency above a threshold 7, may
need access to the entire window in the worst case. In [17], we gave an algorithm that uses
the basic window model to find frequently occurring items in sliding windows, provided
that the distribution of item types follows the power law (at least approximately). We
tested our algorithm on IP traffic traces and obtained encouraging results.

In [18], we proposed three statistical models for the distribution of item types in
data streams, and presented algorithms for finding frequent items in sliding windows
with multinomially-distributed item frequencies. In what we call the adversarial model,
items from various categories arrive at random, without conforming to any underlying
distribution. This is the most general and difficult scenario, in which complex aggregates
over sliding windows are typically maintained by periodically scanning the window
and recomputing the answer. In the stochastic model, a stream is assumed to contain
an arbitrary probability distribution, whose type and parameters remain fixed across
the lifetime of the stream. In this model, maintaining statistics over sliding windows
measures the variance of the distribution in the current window relative to the expected
frequencies. Finally, in the drifting model the relative frequencies of the categories are
assumed to vary over the lifetime of the stream, provided that they vary sufficiently
slowly that for any given sliding window (of some fixed size) excerpted from the stream,
with high probability the window could have been generated by a stochastic model.
The drifting model is particularly suitable to sliding windows because the distribution
is allowed to change, yet we may assume a stochastic model within a single sliding
window without introducing significant error.
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4 Directions for Future Research

We now outline our plans for future work in the area of sliding window query processing.
We are interested in defining query semantics and an algebra over sliding windows, im-
plementing sliding window operators, sharing resources during the execution of multiple
windowed queries, and generating approximate answers with provable error guarantees.

4.1 Sliding Window Algebras and Query Semantics

In our previous work, the basic window model was used to specify query re-execution
strategies. We intend to investigate whether this model may also be used to define a
sliding window algebra, and in particular, whether incorporating the notion of (bulk)
insertion and expiration into the algebra could be beneficial. This line of reasoning
is closely related to StreaQuel, where the user may specify how often to advance the
window and re-execute queries, to the SQuAl algebra, which includes explicit references
to out-of-order tuple arrival, and to the notion of negative tuples [23], which may be used
to implicitly expire old tuples out of their windows, i.e. rather than physically deleting
a tuple, the presence of a negative tuple in the output stream would be understood to
mean that the corresponding “real” tuple is no longer valid. Moreover, the notion of
punctuations, or stream constraints in general, is also a candidate for direct inclusion
into the algebra.

Another issue in streaming and windowed algebras concerns modeling various no-
tions of time, order, and sequencing. Most of the proposed algebras and query languages
are extensions of SQL and the relational model, augmented with windowing constructs.
We are interested in applying insights from temporal, time series, sequence, array, and
probabilistic® data models to the sliding window model, though fully-featured temporal
logics are likely to be too powerful and impractical for on-line streams.

The basic window model is a possible solution for relaxing the notion of order in
data streams: order across basic windows is preserved, but tuples inside a particular
basic window can be considered as having arrived roughly at the same time. That is,
rather than storing timestamps with each distinct tuple, only one timestamp is stored
per basic window, meaning that each basic window is an unordered multiset. However,
one problem with this model is that if the basic windows are defined in terms of time,
then it is not possible to recover arbitrary count-based windows from the time-based
partitions, and vice versa. For example, if the window is divided into basic windows
that span one minute each, and the first two basic windows store one hundred tuples
each, then it is impossible to select a count-based window of the last 150 tuples—this
window should include the first fifty tuples in the second basic window, but there is no
way to determine which tuples are the “first fifty” if order within the basic window is not
preserved. Another consequence of the basic window model is that sharing a data stream
among queries that are interested in windows with slightly different sizes is constrained
in that the window sizes of interest must be multiples of the individual basic window size.

Lastly, we want to investigate the relative power and complexity of sliding window
algebras derived from general stream algebras and vice versa. In what may be called rop-

3 Streaming measurements generated by primitive devices may be inaccurate.
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down stream algebra design, one starts with a general streaming algebra, which is then
restricted to form a sliding window algebra. In bottom-up stream algebra design, a sliding
window algebra is developed first, followed by non-windowed streaming operators. It
is unclear whether one method is easier (conceptually and computationally) than the
other. For example, the Cartesian product is straightforward to evaluate over sliding
windows, but intractable over infinite streams. Conversely, aggregates such as minimum
and maximum may be evaluated on-the-fly in the infinite stream model, but require the
storage of the entire window in the sliding window model.

4.2 Sliding Window Operators

We have already implemented some windowed operators (joins and simple aggregates)
and indices that should be of use in any streaming system, regardless of the underlying
algebra. We intend to continue this implementation and develop query rewritings involv-
ing physical operators (in addition to algebraic rewritings). Again, we want to exploit the
basic window model to design efficient re-evaluation strategies for windowed operators.
One issue in this context is that some operators, such as the sliding window join, may not
benefit from periodic re-execution as prescribed by the basic window technique—the
pipelined symmetric hash join [33] can in fact process a new tuple immediately upon
arrival.

We also plan to extend our classification of windowed operators from [19] and better
characterize groups of operators that can be efficiently executed over sliding windows.
For example, some windowed-input operators may be implemented as infinite-input
operators if one considers the input window to be an infinite stream of insertions and
deletions (deletions may be implemented as negative tuples generated on the input stream
[24]). This could be significant if there exists a general processing strategy for infinite-
input operators that is more efficient than a processing strategy designed specifically for
windowed-input operators.

Further research in implementing windowed operators may include storing some
(or all) windows on disk as the access and update patterns of sliding windows should
give rise to novel cache replacement and prefetching strategies. However, storing the
windows on disk may be inappropriate for applications that deal with very high stream
arrival rates (e.g. Internet traffic monitoring at a core router). Thus, it may be more
practical to calculate approximate answers using the available main memory rather than
computing exact answers using secondary storage.

4.3 Sliding Window Query Optimization

Possible optimization techniques include deriving functional dependencies over data
streams, maintaining materialized views of continuous windowed queries, and ensur-
ing scalability in the number of queries and stream arrival rates. In terms of scalable
multi-query processing, an interesting open problem was proposed in [10]: sharing data
structures for computing windowed aggregate queries with different select-project-join
clauses. Coping with high arrival rates usually involves load shedding and providing
approximate answers that are cheaper to compute. Our current, admittedly simple, load
shedding solution was described above and consists of two steps: (a) enlarging the basic
window size if the system is unable to re-execute continuous queries with the current



Querying Sliding Windows Over Online Data Streams 9

frequency, and (b) summarizing distinct attribute values into groups when answering set-
valued queries. Since sliding windows may be considered as approximations to infinite
streams, we plan to study the effects of “approximating the approximation”, e.g. shed-
ding load by prematurely evicting tuples from their windows. The goal in this context is
to present provable error guarantees on the results of windowed query plans consisting
of multiple approximate operators.

5 Conclusions

This research is aimed at solving a challenging and practical problem in data stream
management systems: sliding window query processing. Building on our initial work
on sliding window operators and indices using the basic window model, we plan to
extend our research to sliding window query algebras and semantics, logical and physical
query optimization, generating approximate statistics over sliding windows with error
guarantees, and shared evaluation of multiple windowed queries. We envision our current
and expected contributions to be compatible with any data stream management system
that requires support for sliding windows. Such systems are expected to gain considerable
popularity as the data stream model finds widespread use in real-time Internet traffic
measurement, next-generation sensor networks, and on-line transaction log processing.
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Abstract. In today’s global village, it is critical that the key information tools,
such as web search engines, e-Commerce portals and e-Governance, work across
multiple natural languages, seamlessly. We propose a new flexible architecture
— Multilingual Information processing on Relational Architecture (MIRA)
— that supports the multilingual processing functionality of the primary storage
mechanism for such deployments — the relational database systems, effectively
and efficiently. We propose new linguistic matching operators that enhances the
standard lexicographic matching of database systems into phonetic and semantic
domains. We further show that the performance of the systems may be made
language-neutral. Our proposed architecture is based on standards and hence
amenable for easy implementation in any type of query processing and information
retrieval systems. In this paper, we present our approach to implement the above
architecture and outline the host of research issues that are opened up due to the
inherently fuzzy nature of the alternative matching semantics.

1 Introduction

In an increasingly multilingual digital world', the key information and commerce ap-
plications, such as e-Commerce portals, digital libraries, search engines etc., must work
across multiple natural languages, seamlessly. A critical requirement to achieve this goal
is that the principal underlying data source — relational database management systems —
should manage multilingual data effectively and efficiently. Our proposal, Multilingual
Information processing on Relational Architecture (MIRA), attempts to enhance the
relational database systems with multilingual features and to make the query perfor-
mance nearly language neutral. Further, our proposed architecture is amenable for easy
implementation in any type of query processing and information retrieval systems.
Specifically, we propose multilingual operators that extend and complement the
standard lexicographic matching operator, to match text strings across languages based
on enhanced matching semantics. We propose a phonetic matching operator that matches
proper names, after transforming them to equivalent phonemic strings, and a semantic
matching operator that matches attributes based on their meanings, transformed using

! Currently, two-thirds of Internet users are non-native English speakers [1] and it is predicted
that the majority of web-data will be multilingual by 2010 [2].

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 12-23, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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ontological hierarchies. In both cases, the performance of the operators is shown to be
at a level acceptable for online user interaction. Further, to make the performance of
queries on multilingual data comparable to monolingual processing, we propose a new
compressed storage format that results in a near language-neutral performance when
implemented on commercial database systems.

The alternative semantics for the matching operators and the inherently fuzzy nature
of such matching opened up several interesting issues that may be possible extensions
of our current research. We are also expanding the scope of our application domains, to
test the viability of our multilingual architecture.

2 A Sample Multilingual Application

Consider a hypothetical e-Commerce application — Books.com that sells books across
the globe, with a sample product catalog in multiple languages as shown in Figure 1.
The product catalog shown may be considered as a logical view assembled from data
from several databases (each aligned with the local language needs), but searchable in a
unified manner for multilingual users.

Author Author_FN Title Price Calegory Language
Curant Will farial History of Civilization S 149 00| History English
72 i sorsangairs F o s | pefeles O3 e IMR 250 | # V48 ad | Tamil
Aclams Laurie 5_ Arte DT Rinascita Ttaliana £ 75 00 | Arti Fini Italian
Lebrun Francois=s L'Histoire De La France £ 18.95 | Hstora French

D 6 gaig maac e I . Lt SAR o5 F. Jsas | Arabic
Gilderhus Mark T. Histary and Histarians £ 35.00 | Hstodography | Fnglish
ETeE AT T U T INR 175 | sfema Hinal
Ecappen Floewopives TToevide oo [Midoeo £ 1200 | Moo Greck
Mehru Jawahar]al Letters tao My Daughtor £ 15.00 | Autcblography | English

Fig. 1. Hypothetical Books.com Catalog

2.1 Multilingual Name Searches

In this environment, suppose a user wants to search for the works of an author in all
(or a specified set of) languages. The SQL:1999 compliant query requiring specification
of the authors name in several languages is undesirable, due to requirement of lexical
resources in each of the languages and high error levels in data input even when working
on mono-lingual data®. We propose a simple query syntax, as shown in Figure 2, that takes
input name in one language, namely English, but returns all phonemically equivalent
names in the user-specified set of languages, namely, English, Hindi, Arabic and
Tamil.

A sample phonetic query and the corresponding answer set, when issued on
Books.com, are given in Figure 2. The returned tuples have in Author column the multi-
lexical strings that are phonemically close to the query string in English, namely, Nehru.

% The error rate for name attributes in English is estimated to be approximately 3% [9].
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The specification of ALL for the list of languages would have brought all records con-
taining author names that are phonetically equivalent to Nehru, irrespective of the
languages. The Threshold parameter specified in the query determines the quality of
matches, as described later in the paper.

SELECT Author, Title, Language FROM Books
WHERE Author LexEQUAL ‘Nehru’ Threshold 0.25
IN { English, Hindi, Arabic, Tamil }

Author Title Language
Nehru Letters to My Daughter English
Liman 24, TS mgT E Tamil
Erea W U W Hindi

Fig. 2. A Sample LexEQUAL Query and Result Set

We refer matching on multilexical text strings, based on their phonemic equivalence
as Multilexical Phonemic Matching. Though restricted to proper names, such matching
represent a significant part of the user query strings in text databases and search engines,
as proper and generic names constitute a fifth of normal corpora [9].

2.2 Multilingual Concept Searches

Consider the query to retrieve all Histoxry books in Books.com, in a set of languages
of users choice. The current SQL:1999 compliant query, having the selection condi-
tion as Category = "History" would return only those books that have Category
as History, in English. A multilingual user may be served better if all the History
books in all the languages (or in a set of languages specified by her) are returned. A
simple SQL query, as given in Figure 3, and the corresponding result set may be
desirable.

SELECT Author, Title, Category FROM Books
WHERE Category SemEQUAL ‘History’
IN{ English, Hindi, French, Tamil }

Author Title Category
Durant Histery of Civilization History
Gilderhus History and Historians Historiography
Lebrun L'Histoire De La France Histoire
Nehru Letters to My Daughter Autobiography
FiEh 0, e O3 mer ) i e

Fig. 3. A Sample SemEQUAL Query and Result Set

The output contains all books that have their category values that are semantically
equivalent to History in English. Note that in addition to all books with Category
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having a value equivalent to History, the categories that are subsumed by History>
are also retrieved. We refer matching text strings based on their generalized meanings,
irrespective of the languages, as Multilingual Semantic Matching.

It should be specially noted here that though our solution methodology is designed
for matching multilingual strings, it is equally applicable for extending the standard
matching semantics of mono-lingual text strings. For example, the LeXEQUAL operator
may be used for matching the English name Catherine and all its variations, such
as Kathrin and Katerina. Similarly, the SemEQUAL operator, may be used for
matching Disk Drive with Computer Storage Devices.

3 MIRA Implementation Strategy

In this section, we outline our strategy for implementing the MIRA architecture. We
explain the ontology of text data in relational systems and show how we define the
semantics for the new operators for phonemic and semantic matching of multilingual
text data.

PRoastic Valis \| ( Sinple Corpepts ] ( Complay Data “
Proper Name Singular Concepts Documents
.’.'Siring-\i" s

Semantic Domain

..-Text Data

7, \ Representation Domain
[ wiimEg 2 -Lﬂf‘:ﬁ‘:fégﬂ'
Links

'-' anguuge st / 1

Is—A
§ (nira-Longuoge) §
(alized Em:odln 5 /

— WIE 2 T

Lexicographic {w b e el Rpeursive Clasune
L&?r".l"ﬁamﬂr Smng,l Characfer String J Onclogy) | and Set—ifeniersiii

{ Tonaten ,

tin IPA Ab%n:lhuh 4

Fig. 4. Ontology for Text Data

Our view of storage and semantics of textual information in databases is shown in
Figure 4. The semantics of what gets stored is sketched in the top part of the figure, and
how the text data is stored is outlined by the lower half of the figure. Multilingual text
strings are stored in a normalized alphabet (such as English, Hindi, Arabic, Chinese, etc.)
and orthogonally in a specific encoding (such as ASCII, Unicode, etc.). Semantically, the
text attributes may represent a wide variety of information, from simple strings to full
documents; however, we consider only two specific type of attributes; first, those that
store proper names, whose value is primarily in the vocalization of the name, tagged as

3 Historiography (the study of of history writing and written histories) and
Autobiography are considered as specialized branches of Hi story itself.
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Proper Names in the figure above. Second, those that lend themselves to be described
using ontological hierarchies, tagged as Singular Concepts above. We broadly classify all
other attributes as Documents which may require more sophisticated Natural Language
Processing algorithms that process the documents on complex semantics.

3.1 Phonemic Matching Strategy

In this section we briefly sketch our phonetic matching approach that extends earlier
works in monolingual world [16] to matching of multilingual names. We further en-
hance the performance of such matching by defining a phonemic index based on the
classic Soundex algorithm [10] and by adopting g-gram techniques [7] that has been
successfully used in approximate matching of monolingual names to multilingual world.
Interested readers are referred to [13—15] for details of the matching algorithm and its
performance.

LexEQUAL (S;, Sr, e)

Input: Strings S;, Sr, Error Threshold, e
Languages with TTP transformations, Sz

1. L; «+ Language of S;;L, < Language of S;;

2. ifL; € Scand L, € S; then

3 T,«transform(S;,L,); T;-<transform(S,.,L.);

4. Smaller — (| T, | <|T- | ?|T1| : |T+]);

5 if editdistance (7}, T;.) < (e * Smaller)

6 then return TRUE else return FALSE;

7. else return NORESOURCE;

editdistance(S., Sr)
Input: String S, String Sr
Output: Edit-distance k
Ly~ |Sc|s Lr | Sr|;
Create DistMatrix[L;, L,] and initialize to Zero;
for i from O to L; do DistMatrix[i, 0] < i;
for j from O to L, do DistMatrix[0, j| — j;
for i from 1 to L; do
for j from 1 to L,. do

A e

DistMatrix[i — 1, j]+InsCost(SL;)
7. DistMatrix[i, j| < Min DistMatrix[i — 1,5 — 1]+SubC()st(SRj,SLi)
DistMatrix[i, j — 1]+DelCost(Sr;)

8. return DistMatrix[L;, L,];

Fig. 5. The LexEQUAL Algorithm

We propose a phonemic matching strategy (shown as dotted line in Figure 4) in
LexEQUAL operator, as follows: First, the multilingual text strings are transformed to
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their equivalent phonemic representations in International Phonetic Alphabet (IPA)* [3],
obtained using standard text-to-phoneme (TTP) converters. The phoneme strings are
stored in the Unicode [4] encoding format, as specified by Unicode Consortium, using
basic Latin and IPA supplement code charts. The resulting phoneme strings represent a
normalized form of proper names across languages, thus providing a means of compar-
ison. Further, when the text data is stored in multiple scripts, this may be the only means
of comparing them. Since the phoneme sets of two languages are seldom identical, we
employ approximate matching techniques to match the phoneme strings. Thus, the mul-
tilexical comparisons are inherently fuzzy, making it only possible to produce a likely,
but not perfect, set of answers with respect to the user’s intentions.

In the algorithm shown in Figure 5, the LeXEQUAL operator accepts two fo-be-
compared multilingual text strings and a User Match Threshold parameter that deter-
mines the quality of match, as inputs. The strings are transformed to their equivalent
phonemic strings in IPA [3] alphabet by the Transform function, implemented using
standard TTP converters. The editdistance function computes the traditional Leven-
shtein edit distance or a modified distance metric, as appropriate. The value for the user
match threshold parameter may be fixed by application administrators, depending on
the domain and the application requirements.

LexEQUAL Match Quality. While the performance of above algorithm can be opti-
mized, we emphasize that the ideal parameters will depend on the data set and the domain
of interest. The User Match Threshold and Cost Matrix (the replacement cost between
a given pair of characters) parameters may be tuned at user or application level, based
on the characteristics of the domain. We detail our experiments and a methodology for
tuning the parameters for optimal matching in [15].

LexEQUAL Operator Performance. Since the approximate matching implemented
as UDF affects the query run-times adversely, we outline two different techniques for
improving the performance of the query processing — the Q-Gram Filters and an Approx-
imate Phonetic Index. Both these techniques cheaply return a set of candidate strings,
which are further processed using the expensive UDF calls to weed out the false-positives.
Our experimental results show that these techniques vastly improve the performance of
phonetic matching.

3.2 Semantic Matching Strategy

Our strategy for matching multilingual data based on semantics in SemEQUAL opera-
tor is as shown in Figure 6. First, we convert the query string to a set of concepts using
a standard linguistic resources, such as WordNet [5]. The WordNet is a lexico-semantic
database that provides, the context for all noun word-forms in standard taxonomical hier-
archies covering all concepts expressible in a language. We propose to leverage the rich
semantic hierarchies available in WordNet and match two different word forms, based on
the concept that they map on to in WordNet’s taxonomic hierarchy. Further, the matching

* IPA provides a complete set of phonemes of all the world’s languages, thus providing a common
representation for the vocalization of the proper name.
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may be on specializations of the meaning of the query string, using semantic closure’

computed using WordNet. In addition to English WordNet, there are several initiatives
such as Euro-WordNet and Indo-WordNet around the world [6], to interlink concepts of
WordNets in different languages. Once the multilingual word forms are mapped onto
semantic primitives using WordNet of the appropriate language, the resulting semantic
primitives may be compared for equivalence, generalization or specialization based on
the common concept hierarchy between the languages.

SemEQUAL (Stringpata, StringQuery, 7r)
Input: Strings Stringpata, StringQuery
Set of Target Languages 7

Output: TRUE or FALSE

[Optional] Gloss of Matched Synset
(Lp,Lq) < LangOf (Stringpata, StringqQuery);
Wp Wg) < WordNetOf (Lp,Lqg);
Sp « Synset of Stringpaia in Wp; So «— Synset of StringqQuery in Wo;
TCq «+ TransitiveClosure(So, 7¢);
if 7Co N Sp is not empty then

return TRUE else return FALSE;
6. [Opt.] return Gloss of the Matched Synset;

el

TransitiveClosure (S, 7;)
Input: String S, Target Language Set 7.
Output: The specializations of S

1. Ls « Language of String S
2. W, «— WordNet of Language Ls;
3. S «— S¢ « Synsets of S in We; Sy« ¢;
4. repeat until no change in S:
5. for every element s in S¢
6. Snx Sy U hypernyms of s
U Synsets linked to s through
InterLangIndex to L € 7,
not yet traversed to;
7. S—SUSN; Sc — Sn; S — ¢
8. return S

Fig. 6. The SemEQUAL Algorithm

The SemEQUAL function takes as input, strings Stringpatq and Stringguery. The
transitive closures are computed by the TransitiveClosure function, using Is-A rela-
tionships within a language and using Inter-Language-Index across languages.
In the implementation, only the WordNets corresponding to the target languages spec-
ified in the query are traversed. Once the transitive closure is computed, set-processing

> The semantic closure of a concept in a taxonomic (or ontological) hierarchy, is the set of nodes
reachable from a given node, by tracing the parent-chi1ld relationships.
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routines are used for computing set-memberships. The output is TRUE if the specified
matching condition is met. Since the query string, St7ingQuery, may match on any one of
the several synsets (which are possible semantics of the same word form), SemEQUAL
may be made optionally to return the Gloss of the synset on which the Stringguery is
matched.

The transitive closure function is implemented using the recursive SQL feature
defined in SQL:1999 [8], which was found to be adequate functionally to imple-
ment the SemEQUAL operator. However, as expected, the cost of computing se-
mantic closures was high. Since the linguistic ontological hierarchies are typically
large (containing as much as 100,000 concepts), and since the domain-specific on-
tologies are typically much smaller than the WordNet ontology, our experiments
with WordNet ontological hierarchies may provide a worst-case performance sce-
nario for SemEQUAL matching.

SemEQUAL Operator Performance. We first analyzed the performance of SemE-
QUAL, expressed using standard SQL:1999 features, in relational database systems. A
direct implementation on three commercial database systems indicates that supporting
multilingual semantic processing is unacceptably slow. However, by tuning the schema
and access structures to match the characteristics of WordNet, we are able to bring the
response times down to a few milliseconds, which we expect to be sufficient for most
applications. The details of our implementations and optimization techniques would be
published in a forthcoming technical report.

3.3 General Multilingual Query Performance

While most commercial database systems support management of multilingual data, we
found that the relative performance in handling multilingual data, compared with stan-
dard Latin based scripts was upto 300% slower. A comprehensive study of the differential
performance of popular database management systems with respect to multilingual data
is given in [12]. Worse, we found that the query optimizer’s prediction accuracy differs
substantially between them. We analyzed the parameters contributing to the slowdown
and narrowed down the differential performance to primarily the storage size of the
Unicode format and its effect on in-memory processing, and secondarily due to the
Unicode-specific function call overheads.

To alleviate the primary problem, We propose Cuniform, a compressed format that
is trivially convertible to Unicode, yet occupying equivalent storage space when the
data is expressed in native ASCII-based scripts. Our initial experimental results with
Cuniform indicate that it largely eliminates the performance degradation for multilingual
scripts with small repertoires, and makes the performance of queries nearly language-
neutral, for languages with small repertoire. Further, by partitioning the multilingual
data in language specific tables, we may be able to achieve a higher performance than
monolingual data, under certain assumptions on the distribution of data among different
languages.
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4 MIRA Implementation Architecture

Our proposed architecture for multilingual query processing is shown in Figure 7. The
shaded boxes emphasize the new processing modules, and the iconized boxes represent
resources (lexical or semantic) that are to be installed.

LexEQUAL SemEQUAL

o < (‘Quary
uery “ategory
String >

Match

Threshold Approximate Matched

Matching Reiﬁrl;lve Record]s]
Matched Function Closure
String/s]
v A
v A
v A
[ Transaction Manager

*
== e — % | saL
" L) N
nicode <P | Database | 4> 1999
Map Codes Hierarchy

Fig.7. MIRA Architecture

4.1 Design Goals for MIRA

We define the following design goals for the MIRA architecture, to implement the
multilingual features and performance requirements in a usable, useful and scalable
manner.

Relational Systems Oriented. Our focus is on relational database systems due to their
popularity as data repositories for most operational data.

Attribute Data Oriented. Our architecture will focus on processing attribute-level data,
for supporting multilingual keyword searches.

Standards Based. We rely on standard linguistic resources to promote uniformity and
consistency across different information processing systems.

Light-Weight Processing Components. Our architecture will focus on OLTP environ-
ments, and hence light-weight components for handling text data.

Customizable Matching. The matching quality must be customizable by users, de-
pending on the domain and application requirements.

Modular and Dynamic Architecture. The linguistic resources must be easily added,
to make MIRA language aware, dynamically.
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5 Conclusion and Future Research Issues

In our thesis, we propose an architecture for processing multilingual data transparently
across languages, on the traditional information processing platforms, such as relational
database management systems. A survey on the functionality and performance of the
current systems indicate that the state-of-the-art falls short of these requirements on
several counts, motivating our research on multi-lingual database systems.

From the efficiency perspective, we profiled in [12] the performance of standard re-
lational operators (e.g. Select, Join) applied on multilingual data in commercial database
systems. Our results showed that severe performance penalties may be incurred, upto
about 300%, when compared against equivalent query processing on ASCII based data.
We proposed efficient compressed storage format, Cuniform, to reduce these penalties
and demonstrated that the query processing can be made nearly language-neutral.

From the functionality perspective, we introduced a new SQL multilingual operator
called LexEQUAL [13-15], for syntactic matching of attribute data across languages. We
confirmed the feasibility of our strategy by measuring the quality metrics, namely Recall
and Precision, in matching a real, tagged multilingual data set. Further, we showed that
the poor performance associated with the UDF implementation of approximate matching
may be improved by orders of magnitude, by employing optimization techniques. We
also proposed a new SQL operator - SemEQUAL, intended for matching multilingual
text attribute data based on their meanings, leveraging the rich taxonomic hierarchies
in cross-linked WordNets in different natural languages. Our experiments with Word-
Net on three commercial database systems, confirmed the utility of the SemEQUAL
operator, but underscored the inefficiencies in computing transitive closure, an essential
component for semantic matching. By tuning the storage and access structures to match
the characteristics of resources in the linguistic domain, we speeded up the closure com-
putation by 2 to 3 orders of magnitude — to a few milliseconds — making the operator
viable for supporting user online query processing.

In summary, in the performance area, we have profiled and optimized the multilingual
performance of popular database systems. In the functional area, we have defined two
operators — namely, LeXEQUAL for phonetic matching and SemEQUAL for semantic
matching of multilingual attributes, and shown that they may be efficiently implemented
on existing relational database management systems. We expect that such operators may
effectively and efficiently complement the standard lexicographic matching, thereby
representing a first step towards the ultimate objective of achieving complete multilingual
functionality in database systems.

5.1 Research Issues

The following open issues are being addressed as a part of our current research.

Real-Life Application and Multilingual Performance Suites. We need to identify a
real-life application that can benefit from the multilingual processing and establish user
work-flows using the multilingual operators. Such an application may provide a test-
bed for performance suites to calibrate and compare different database management
systems on multilingual performance [11], along the lines of TPC benchmarks for OLTP
applications.
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Automatic Fine-tuning of Phonetic Match Quality. In LexEQUAL operator for pho-
netic matching, clearly the parameters for the best match quality depends on the phoneme
set of the languages being considered and the requirements of the application domain.
For example, a Homeland Security application may require tighter matches, where as a
Telephone Subscriber Search application may be willing to tolerate much looser matches.
We are currently automating the determination of optimal match parameters, based on
user-defined training sets.

Approximate Indexes for Efficient Searches. Several approximate indexing method-
ologies offer search capability on pre-generated phonemic strings corresponding to
names. We define the Search Efficiency of an index tree as the fraction of data elements in
the database that were examined. The search efficiency indicates the effectiveness of the
index structure in narrowing down the search. However, we find that all the approximate
indexes are inefficient in searches, as shown in Figure 8. For example, about 75% of the
strings in the database are retrieved as candidate matches for a user match threshold of
0.5, while less than 1% of the database are real matches.

Approximate string searching
100

90 ; : - 4

"VPTree" —&—
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it distance ° © °
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Fig. 8. Search Efficiency of Approximate Indexes

We are exploring the better partitioning and clustering techniques for building effec-
tive approximate indexes, to improve the search efficiency.

Domain-Specific Ontologies. While our performance experiments in semantic match-
ing with WordNet taxonomic hierarchies had established performance characteristics of
SemEQUAL, we expect the domain-specific ontologies to be more useful in semantic
searching applications. Experiments (for performance and tightness) must be conducted
using smaller and more precise domain specific ontologies, to ascertain the value of
SemEQUAL operator.
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Abstract. Many users and applications require the integration of semi-structured
data from autonomous, heterogeneous Web sources. Over the last years mediator
systems have emerged that use domain knowledge to overcome the problem of
structural heterogeneity. However, many users of these systems do not have a
thorough knowledge of the complex global schemas and of the comprehensive
query languages. Consequently, easy-to-use query interfaces like keyword search
and browsing have to be supported. The aim of the proposed PhD project is the
index-based realization of keyword searches in concept-based mediator systems.
In order to avoid unnecessary source queries an index structure is maintained on
the global level and used during query planning and processing.

1 Research Problem

Nowadays, many search requests require the usage of information from different, dis-
tributed, and autonomous (Web) sources. Applications can be found in scientific as well
as e-commerce environments. Prominent examples are the integration of biological data
sources, digital libraries, but also the search for stolen cultural assets is distributed over
many sources', which drives this work. Many of these sources provide structured query
interfaces, but cannot be indexed by Web search engines. Furthermore, most of them are
not cooperative and provide semantically similar data in different structural representa-
tion. Consequently, there is still a need for systems, that integrate these semi-structured
data sources into a global, integrated, not materialized view.

In the last years mediator systems have been proposed that use domain knowledge
as an integration anchor to overcome the problems of structural heterogeneity (e.g [20]).
These systems allow querying the sources with complex query languages and use com-
plex integration models. During using the concept-based mediator prototype YACOB [23],
which integrates several sources about stolen cultural assets, the experiences showed,
normal users have difficulties to handle the concept schema, even if a graphical query
interface based on browsing the global concept schema is provided. In fact, a simple
keyword search was required, that comprises the meta data, here called concept level, as

! For instance, data about stolen cultural assets during World War II is distributed over at least
15 sites (http://www.lostart.de/links).

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 24-33, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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well as the data, called instance level. This requirement led to the problem, how to map
efficiently the keywords to structured source queries (in our case XPath). The proposed
idea of this work is the usage of a global keyword index, which maps keywords to global
query expressions that are decomposed by the mediator system to source queries, subse-
quently. Summarizing, the tasks of the PhD project are the identification of an effective
keyword index structure, to provide an index-based query planning and processing, and
to develop techniques to maintain the index structure in the context of autonomous,
uncooperative Web sources.

2 State of the Art

The mediator architecture was introduced by Wiederhold [26] and has been utilized for
integrating semi-structured data sources over the last years. Most prominent examples are
TSIMMIS [13] and Information Manifold [19]. The MIX mediator system [6] represents
a successor of TSIMMIS, which integrates XML data sources. All mentioned mediator
systems integrate the local sources on structural level.

Integration systems using domain knowledge are e.g. KIND [20], SIMS [4], Context
mediator [14] and the XML mediator STYX [3]. The systems uses different models
to represent domain knowledge, e.g. subset of F-Logic, LOOM or ontologies. The in-
tegration approaches range from modeling local and global data in semantic concepts
to mapping local XML fragments to global concepts. All systems support only simple
“like”-queries on attribute level. Another direction in querying and using semantic
data is the Semantic Web. Several languages are provided in this context (an overview is
given in [21]).

Abiteboul requests for semi-structured query languages IR-style keyword query op-
erators comprising schema data as well as instance data [1]. Several approaches follow
this requirement [11,25]. Furthermore, relevant to our research are keyword queries
over structured databases, like relational systems [2, 8, 16,22]. However, all systems
deal only with centralized databases systems.

Data has to be obtained from the sources in order to build and maintain indexes on
the global level. The standard crawling architecture [5] has to be refined for reducing
costs and supporting sources, that cannot be crawled. Index update costs can be reduced
by concentrating only on interesting parts of index and data. That leads to focused
crawling [10,24]. Some sources do not allow the complete crawling, but the provide
limited query interfaces for accessing the data. They build the so called “Hidden Web”
or “Deep Web” [7]. In order to index these sources special protocols were developed
(e.g. [15]) or techniques like query-based sampling [9, 17] are used.

3 Proposed Approach

The PhD project is based on the YAcoB mediator [23], a concept-based integration
system. The system uses a two-level integration model: the concept model describes the
domain knowledge using concept hierarchies and their associated properties. Special
data values are expressed as category hierarchies.
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Formally, the model is summarized as follows. A set of classes is defined as 7 =
URI x Name with URI the set of uniform resource identifier and Name the set of valid
names. The set of classes is distinguished into two disjoint subsets: concepts (C C 7)
describe kinds of instances, and categories (V C 7 and VN C = () describe sets of data
values, so called synonyms.

Properties are assigned to categories. The set of properties is defined as P =
Name x C x (C UV U {L}) with one property consisting of a name, a concept it is
assigned to, and either a concept, category, or the set of literals (£) as instance domain.
Moreover, concepts and categories are organized in disjoint specialization hierarchies.
The subClassOf relationship is defined as is.a C 7 x 7 with: if tois_at; : t; €
C Aty € CVity €V Aty € V. Furthermore, properties are “inherited” by subconcepts,
ie. if cois,acy Acy,co € C : V(p,c1,2) € P : A(p,ca,x) € P). A concept schema
CS = (C,P,V) consists of a set of concepts C, a set of properties P, and a set of
categories V.

As the local sources export their data in XML, the instance model follows the semi-
structured model OEM [13]. The extension of a concept ¢ is denoted as ext(c) = {o =
(id, elem,val) | c.name = elem A (p,c,x) € P : Ji € val : i.elem = p}. The local
sources are integrated by specifying mappings, which describe how a local source sup-
ports a global concept. The mappings realize the GLaV approach [12] and are expressed
in RDF, too. In detail, concept mappings, property, and category mappings define how
one source supports the concept schema. Join mappings define intra-source relationships
as joins over the global concept schema. Besides conventional join operations, similarity
join operations can be specified, whose index support is discussed in the further work
(Sec. 3.2).

The query language — CQuery — is concept-based and uses the known FLWR nota-
tion. CQuery comprises (i) selection of concepts using selection predicates, path expres-
sions, and set operations between concept sets (FOR clause), (ii) obtaining and filtering
instances (LET and WHERE clauses), and (iii) combining and projecting the results
(RETURN clause). The following example returns information of all instances that are
associated to the concept painting (or to one of the subconcepts) and contain “van
Gogh” in the property artist.

FOR S$c IN concept[name='painting’]/*

LET Se := extension($c)
WHERE S$e/artist = ’‘van Gogh’
RETURN

<painting>$e</painting>

The complete description of the query planning/processing is not possible here be-
cause of given space limitation The interested reader is referred to [23]. The processing
starts with translating the query into an algebraic expression. The necessary concepts
are determined, and subsequently for each concept the instance expression (WHERE and
RETURN clause) is evaluated and the results are combined. Using some heuristics the
number of concepts is limited, and by applying the different mappings the global query
is decomposed into source XPath queries. Finally, the results are combined using the
outer union operation ().
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3.1 Keyword Search

A keyword query consists of a set of keywords K TV, and returns a set of global, integrated
instances, that contain each of the keywords at least once in an associated meta data object
(concept name, property name) or in a property value (category name or literal). Formally,
the keyword search can be defined as: Given a set of keywords KW = {kwy, ... , kw,}
and a concept schema C'S = {C, P, V}, the result set Oxy of global instances is
defined as:

Oxw = {o= (id,elem,x)|3c € C: o € ext(c)A
N, (contains(c.name, kw;) V 3¢’ € ®f ,(c) : contains(c .name, kw;) v
(pres)EP contains(p, kw; )V
Jv €V : v.name = x A contains(v, kw;) V ' € & (v) : contains(v', kw;)V
ocontains(o, kw;) )}.

The predicate contains(string, kw) evaluates to true, if the keyword kw is contained
in string. The predicate ocontains(object, kw) evaluates to true, if the keyword kw is
contained in a value of the object or in the value of one of the subobjects, i.e. the keyword
is contained as a value of a property. The expression @:S' , returns all super-concepts or
super-categories, i.e. it computes the transitive closure over the is_a relationship.

Consider the example keyword query {painting, gogh, flowers}. Possible matching
objects are a painting object with artist “Gogh” and a title containing “flower”, a book
object with a title “Van Gogh’s work™ written by an author “Flowers”, or another painting
object with artist “Gogh” and the motif category “Flowers”. The keyword search as
defined here assumes no additional structural information are given, which rises the
following problems addressed in the PhD project:

Extension of the Query Language. The query language as well as the correspond-
ing algebra was extended by two constructs: the ~= operator and a refinement of the
extension function. The ~= operator evaluates to true, if a keyword is contained
in the compared object. It can be used for selecting concepts, properties and categories
on the concept level as well as for filtering instance values. The extension function
is used to return instances for a given list of concepts. The general keyword search is
realized by passing keywords to the extension function, which returns instances that
satisfy the above given keyword condition. The following example searches instances
that contain the keywords “painting flowers gogh”.

FOR $c IN concept/* # select all concepts
LET Se := extension(S$c, 'painting flowers gogh’)
RETURN

<painting>$e</painting>

This query is translated into the expression

v Tproj (4¢)

gecgetQExpr(C,{panting flowers,gogh})
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FOR $c IN concept/*
LET $e := extension($c,’'gogh flowers painting’)
RETURN

<paintings>$e</paintings>

keyword query

Keyword Index query
reformulation

Oy tistm 'g0gh’ and(ext (paintings) )

structured queries title~= flowers’

Query Planner
o query
Heuristics/Rules decomposition
Keyword Index
/Ipainting/author[ @name~="gogh"]
/Ipainting]title ~="flowers" and author~="gogh"]
source queries /ffinearts/drawings[name~="flowers"]

/Ipaintings[ @artist~="gogh" and @name~="flowers"]

Fig. 1. Keyword query processing

with C all concepts existent in the schema and getQExpr(C, K'W) a function returning
a set of query expression of the form c.,nq(ext(c)), which are explained below. The
operation 4 is the outer union operation.

Index-Based Keyword Query Processing. A general keyword query without structural
information is processed in two steps:

(1) reformulating the unstructured keyword query in structured global algebra expres-
sion, and
(i) decomposing these expressions into source queries, which are sent to the sources.

Step (i) is executed in the function getQExpr. The returned set comprises expressions
of the form o..,q4(ext(c)). A predicate is defined as

c/property = k if k € V A k.name ~= kw

pred;; = .
c/property ~= kw otherwise

and the conjunctions as conj; = pred;; A ... Apred;;. Then cond is defined as cond =

conji V ...V conj,,. Using, the provided mappings the result query expressions are

decomposed into XPath expressions in step (ii), which are executed by the sources. Fig. 1

illustrates the evaluation showing an example query.

The naive implementation of step (i) results in a combinatorial explosion. Therefore,
we need information about the existence of the keywords and their different contexts.
A context of a keyword is identified by the associated concept, a property as well as
a category or an instance value and the type of the keyword. The kind of the string,
where the keyword was extracted from, specifies the type of the keyword. In detail, the
type is either a concept keyword, category keyword, a property keyword, or an instance
value keyword. Fig. 2 shows extracted keywords from a small example. The keywords
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cultual asset | cultural
asset

fine arts | fine

arts

keyword | role | concept | property paintings drawings
fine o finearts |-
paintings |r paintings | - keywords from
title " paintings | title concept level
vincent ry paintings | artist i - ey . - - - - -
gogh r, paintings | artist 1 1 keywords from
flowers |r, paintings | artist van s1 215 Tarascon s1 2 instance level
pantings |r, paintings | title Gogh s1 70 sun 2 40
albrecht s2 122 flowers s2 90 extracted keyword
i diirer s2 12 gras s2 7 .
Keyword index vincent  s1 87 | |vincent s3 3 associated
flowers  s3 7 paintings  s2 4 is_a relationship
_ea Pl S

Fig. 2. Keyword index

are stored in an inverted index which comprises the keywords and their corresponding
contexts. For instance, the keyword “flowers” occurs in an instance value and its context
is specified by (concept: paintings, property: title). Based on this information a
global query expression can be deduced to extract all instances supporting the keyword.
For the given example, the query is oyige~—fiowers (€Xt(paintings)). That approach allows
the easy implementation of the index within a relational database system.

The complete keyword query evaluation starts with the selection of the desired con-
cepts. Then, the necessary query expressions are generated by function getQExpr for
a set of keywords and the preselected concepts. For each query expression a possible
further instance expression is added and the final expression is evaluated by the query
processor of the mediator.

In detail, the function getQExpr works as illustrated in Fig. 3. Given are a set of
concepts C' and a set of keywords KW. Initially, all index entries (E.4,¢) containing
one of the keywords in KW are selected. Keywords found in meta objects (concept and
category names) correspond also to sub-concepts and sub-categories, respectively. For
example, the keyword “cultural” of the concept “cultural asset” applies to all direct and
indirect subconcepts, e.g. “painting”.

The next steps are executed separately for each found concept. If the current concept
does not comprise entries for each keyword in KW it will be not processed, because
no object can be found in the extension containing all keywords. Otherwise, we build
all combinations of entries, i.e. of queries, that each given keyword occurs at least once.
That is achieved by grouping the entries into sets E},,, for each keyword kw; € KW,
1 = 1,...,n. Subsequently, the Cartesian product is computed. As each index entry
corresponds to a predicate, one can interpret the result Cond as Disjunctive Normal Form.
That means, each entry in Cond is a set of entries, which is translated to a conjunction
of predicates, which are disjunctively connected in turn (function translateToQExpr).
As parts of the global instances can originate from different sources, the index stores
also the source of a instance value keyword supporting the creation of source queries.
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Input:
C - set of concepts
KW = {kw, ..., kw,} - set of keywords
Output:
QFE — query expression of the form oconq (ext(c))
Given:
T — set of index entries e = (kw, role, concept, property, category)

function getQExpr(C,KW)
QE =10
/*including entries for sub-concepts and sub-categories */
Eeana = selectindexEntries(K' W ,7)
/% Assume Ce,,, the set of concepts occurring in Ecana */
for each c € C¢_,, do
if Ecana comprises for concept c entries for each kw; € KW do

Cond := ()
/* build sets of entries for each keyword*/
Eyw, :={e: e € Euna, e.kw = kw; Ne.concept =c},i=1,...,n

/* compute Cartesian product of entries */
Cond := Ey, X ... X Egu,
/* build query expressions */
QF := QF U translateToQExpr(Cond)
od
od

Fig. 3. getQExpr function evaluation

Evaluation. A first implementation within the YACOB prototype was used to evaluate
the proposed approach. We evaluated the effectiveness of the index according to the
reduction of source queries using real data sets. Using real® and generated query mixes
showed a significant reduction of the number of source queries, e.g. the average number
of source queries decreased from original 63 to 2.8 for queries comprising two keywords.
That behavior is due to the distribution of the keywords over the different concepts. The
distribution is normally not uniform but rather similar to a Zipf distribution [27], i.e. most
keywords occur in one concept extension and only few occur in almost all concepts. As
we cannot assume the index is complete in a real scenario, we tested partial indexes,
which showed also a good performance according to the reduction of source queries as
well as in order to provide a good recall.

3.2 Further Work

In the previous section we described the index-based keyword search. However, the
present solution uses a static index, therefore the following issues are still in progress or
planned for the future:

2 Extracted from an access-log file of the Web database http: //www.lostart.de.
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Maintenance. The local sources are assumed to be autonomous and uncooperative,
i.e. neither do they allow a complete access to the data, nor do they provide the required
information. Therefore, different maintenance methods are proposed: (i) a query-based
sampling approach is used to (re-)build the indexes periodically. (i7) Extracting frequency
information during query processing, that means, results of user queries are analyzed
during runtime to improve the current index. The expected overhead can be reduced by
using periodically the content of the semantic cache of the system [18] instead analyzing
every query result. (iif) Using a focused crawling approach: that is, an overview about
the frequency distribution of queries is maintained.

Based on this model, the index is periodically built and updated. All approaches
showed in experiments advantages and disadvantages, therefore a hybrid approach is
desired.

Ranked Queries. The present approach supports boolean keyword search in combi-
nation of browsing the concept hierarchies. The combination allows a fast restriction of
the result set sizes. Furthermore, the result set is subdivided into parts defined by the
concept level.

However, there is still a need for ranking. The ranking should be based on the place-
ment in the global concept hierarchy, i.e. an instance found in a sibling concept is less
relevant, and the ranking of the instances returned by the sources. The approach requires
the combination and the weighting of different ranks, but also offers new optimizations,
like e.g. top-N operators.

Similarity Queries. A second kind of text search includes similarity queries, i.e. to
a given string all strings within a given distance are considered as similar. One popular
measure is the edit or Levenshtein distance. Similarity queries can be used by the user
directly or by integration operations which have to find duplicates. Unfortunately, most
local sources do not support similarity queries directly, but substring or keyword queries.
Hence, one has to map similarity queries to substring queries.

The filtering technique is one well-known approach to do this mapping. Assuming k
errors are allowed between two strings, one can decompose the comparison string k + 1
substrings. The union of the results of these k + 1 substring queries contains all matching
strings. To minimize the size of this preselection result, the most selective combination of
substring queries has to be found. Therefore, one has to maintain frequency information
on global level to make selectivity estimations.

Depending on the kind of substrings, possible structures are count-suffix trees, g-
gram tables, or again keyword tables. In first tests, g-gram seemed to be most promising
according to maintenance costs and query costs. Similar to the keyword search building
and maintenance issues arise. Thus, the proposed methods of the keyword search can be
generalized to this and possibly to other problems.

Further Evaluation. The additional techniques and algorithms are to be evaluated us-
ing the prototype implementation. Especially, we want to test the adaptability to changing
sources and workloads. Furthermore, the maintenance overhead has to be evaluated for
different strategies.
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4 Conclusion

The proposed work investigates the problem of index-supported keyword search over vir-
tually integrated data. The integration system is an ontology-based mediator, as described
before in the literature. A keyword search strategy has been developed. This integration
allows a more efficient usage of the integrated data than browsing and structured queries
alone. Furthermore, it does not require to materialize the data of the different sources
into one site. Tests with a prototype in a static scenario showed promising results. Ideas
for maintaining the global index based on techniques known from search engines have
to be adopted to the proposed approach.

In order to complement the keyword search we pointed out the support of similarity
queries. Here, global string similarity queries can be supported even if the source does
not support them. Frequencies of occurrences of substrings have to maintained on the
global site, which rises similar problems as for the keyword search. Hence, we can
generalize our approach to more problems.
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Exploiting Mined Semantic Relations
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Abstract. In this paper we show the current state of the ongoing research concern-
ing our prototype for a search engine on semi-structured data incorporating rules
mined on extracted structured data. We illuminate some ideas from the research
field of data mining and how to apply them to the retrieval process. Additionally,
we show technical aspects and features of our search engine.

1 Introduction

Today’s web search engines are still following the paradigm of keyword based search.
Although this is the best choice for large scale web search engines, in terms of throughput
and scalability, it inherently limits their abilities to accomplish more meaningful query
tasks. On the other hand, XML query engines (e.g., based on XQuery or XPath) have
powerful query capabilities but at the same time their dedication to XML or even more
powerful languages and data formats like RDF and OWL with a global schema is their
weakness, due to the fact that most web information is still stored in diverse formats and
does not conform to common schemas. These formats include static and also dynamically
generated HTML documents that are only accessible through portal interfaces.

In this work we implement a new kind of search engine that works on semi-structured
data and exploits rules mined in extracted structured information for query expansion.
The search engine utilizes a light-weight but nevertheless expressive query language.
First we briefly clarify some important aspects of the problem we try to solve:

— Used Corpus and Its Internal Representation (Section 3): We want to comprise
as many data sources as possible, including HTML and XML. Thus we can not
make strong assumptions about the data format and our internal representation can
only include the least common denominator of these data formats. Furthermore we
want to integrate information contained in autonomous sources like web portals.

— Types of Queries That can (should) be Effectively Answered by Our System
(Section 2): Very often queries aim to find certain objects or more generally concepts
having special properties, e.g. a book with the title *Database systems’ or a car with
the make ’Audi’. We refer to this kind of query as a ’Concept-based query’.

— Inclusion of Statistical Meta Data (Section 4): Meta data plays a crucial role in
our approach since statistical meta data collected during document indexing is used
for query formulation and for query processing. We try to analyze this information
and exploit contained regularities.

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 34—43, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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— Query Processing (Section 5): We sketch our used query language and describe the
evaluation process of a concept-based query. Furthermore we show how information
obtained by analyzing the meta data is used to improve the query result.

The Main Research Question in the Context of This Work Is: How can we exploit
structured (meta)data, that has been automatically extracted and transformed during
indexing for semantically meaningful ’Concept-based’ querying on semi-structured het-
erogeneous data without making great demands on the data sources. This research ques-
tion involves techniques used in data mining in combination with emerging approaches
in information retrieval.

In the following sections we show not only how to investigate this research ques-
tion but also how a possible approach could be integrated in our search engine that is
prototypically implemented and is still "under construction’.

2 Concept-Based Search

Almost all web search engines support keyword based search, but this style of query
is strongly limited in its expressiveness. The keywords in a query do not have any
semantic interconnection other than boolean operators. Examples for desirable semantic
connections are the following: one term is a synonym for another term or - like in our
system - one term describes a concept or concept property while the other one is an
instance value or a refinement of the first term. This fact also limits today’s search
engines in their ability to encompass Deep Web sources due to the fact that they are
unable to assign keywords to matching form fields. Note that XML query languages,
on the other hand, would easily support this feature, by interpreting some keywords
as element names (i.e., XML tags), corresponding to concepts, and others as element
contents, corresponding to instance values.

As an example, we consider the domain of car advertisements. Suppose we are
looking for a brochure about the (car) Audi A4. For this information demand a typical
query posed to a web search engine would be brochure Audi A4. This query could be
ambiguous not only for a computer but also for a human user, because A4 is also a
paper format. It is not clear whether we are looking for an A4 brochure about Audi or a
brochure about an Audi A4.

If we can only use keywords to express this query, there is no way to specify this
semantic relationship. With the query language of our system, however, a solution would
be a more elaborated query like car = 'Audi A4’ AND brochure or Audi = 'A4’ AND
brochure or an even more elaborated query like carmake="AUDI’ AND car.model="A4’
AND brochure.format="A4".

3 Data Sources

As we want to include diverse data formats and autonomous data sources we have to
transform them into a common format.
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3.1 Restructuring Data

To include as many semi-structured data formats as possible we have to restrict ourselves
to the least common denominator. This is the mean of nesting to express semantical
relations. Of course XML has this feature, but almost every kind of semi-structured
data format either has this property or other structural features can be exploited to
generate such a nested structure that encodes latent relations between textual parts.
HTML, for example, partly supports such nesting. A simple transformation of HTML
to XML would not solve the problem resp. express the internal sematic stuture of the
document since the main drawback of HTML - in its current version - is that it focusses
on visual representation, not on structure. This well known shortcoming does not imply
that HTML contains no structure information at all but it has to be interpreted, analyzed
and transformed or annotated. Because of this the transformation of XML into HTML
is mainly based on heuristics that mimic the cognition of a human while viewing a
document. To check the applicability of these heuristics we apply additional techniques
like classification of HTML tables (Section 4).

If XML were already ubiquitously used, the semantic relationships among query
terms could be reflected by associating them with specific tags along the hierarchical
structure of documents. However, there are many ways to encode the same information
in an XML document, e.g. by using different tags or a different structure. Figure 1 gives
an example for the diversity that one may face for the information carmake="Audi’ AND
carmodel="A4".

“Cars
<make=Audiz/make=
zmodel=aAd</model=

<fcars

=Aud model="A4" /=

Fig. 1. Different ways of expressing information in XML

To cope with this structural and annotational diversity in non-schematic XML data,
our system supports ontology-based similarity comparisons among different tag names
and structures, and we answer queries by ranked result lists that reflect different similarity
values. This feature was already present in our earlier work on ranked retrieval of XML
data [9]; in this work we apply it to arbitrary web data, not just to XML repositories. To
this end we transform HTML pages and other web formats into “semantically” annotated
XML documents. Obviously, without solving an “Al-complete” problem, the resulting
annotations are often not that insightful (e.g., when creating a tag “section” or “heading”),
but in some cases relatively simple heuristics can lead to meaningful XML data with a
more clear structure than the original HTML or Latex documents.

The following example (Figure 2) shows some of the heuristics that we use in our
transformation component. Headers (for example the tag 4/) are used in HTML in a
way such that the text belonging to the header is a sibling node. Our system trans-
forms the HTML code by including the text belonging to the header as a child node of
a tag representing the original header. Another example for our heuristics, with richer
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semantics, is the transformation of the HTML code <b>Make:</b>Audi into the

following structure: <Make>Audi</Make>. This is based on the heuristics that a
bold term with a colon is the concept (descriptor) of the following string.

VEHICLE INFORMATION

<car»
Year: 2000 - <informationz
Make: ALDI <year>2000</year>
Model: A4 <make>AUDI</make>
Mileage: 20915 <model=Ad4</model>
VIN: WAUACZBD0YAD <mileage>20915</mileage>
Stock NO:P612 - 61920 <price untit="%$">14998</price:
Price: $14,988.00 <colors...</colars
Int Color: Gray </information>
Ext Color: Teal . _ <Features>
Warranty: Call for Details <item>1.8T Engine</items
Search Other Dealen <item=Automatic Transmissiol
ehicle History Che <items...</items

E SPECIFIC FEATURES </Features>

Ission, Dual Air Bags, Warranty, Tachometer, ¥ <fcar>
10f, Heated Seats, Rear Defroster, Tinted Glass,

Fig. 2. Sample transformation from HTML to XML

We have implemented a framework with different modules to convert various data for-
mats into XML. Currently these modules are HTML2XML (for XML) and PDF2XML
(for PDF). Other modules are under development. These modules are mainly based on
heuristic rules.

3.2 Web Services and the Deep Web

Many information sources are not accessible via crawling. Rather one needs to fill
out a query form for retrieving documents that are dynamically generated from some
underlying databases. The key difficulty in automatically generating meaningful queries
against such web portals is to assign the appropriate values (which may be given merely
as a set of keywords) to the available parameters of the form. For this task, our system
first analyzes the interface (e.g., the HTML form) to determine the available parameters
[6]. The result of the analysis is stored as meta information in a registry maintained by our
search engine and used to generate wrappers that encapsulate the portal interface as a web
service [8]. Thus, each HTML form that we can successfully analyze is represented by
a WSDL interface in our system (see [4] for more details on generating web services).
For example, a form with a field labeled “model” and a pull-down menu of possible
values to be queried would be represented as an explicit web service parameter with
an enumeration type. When our search engine receives a query for the keyword A4, it
compares this term with the parameter names and values in enumeration types, and can
successfully map A4 to the car model parameter.

4 Collecting Meta Information

In parallel to the indexing process we want to collect and analyze meta data to support
the query formulation as well as the query processing step. We especially want to exploit
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statistical information about structured data that we extracted during the indexing process
by using various techniques.

First we try to detect tables in our source data that could contain statistical - perhaps
semanticlly meaningful - information. Since tables are mostly used for layout purposes
this is a complicated problem. In our work we adopted the work presented in [10] to
discover relevant table structures by classification. This classification is based on layout,
content type and word group features like the average number of cells or the the average
content length of cell values. Furthermore we apply an XPath-clustering algorithm (like
proposed in [2]) to identify record structured information units within pages containing
no tables. This is done by grouping XPath expressions with the same prefix'. Additionally
we analyze HTML forms and extract the contained information?. The result of applying
these techniques to a single page is a partially incomplete table schema (the extracted
header information of the table if available) and the corresponding data records contained
in the table. We insert our collected record structured data into a global table with open
schema. This means that our global schema is extended if new rows are inserted that
cannot be mapped onto an existing column.

During data extraction errors may occur when extracting the property descriptors
(e.g. determining the table headers may fail or they might be missing at all) as well
as during the extraction of instance data. For many subtasks algorithms and solutions
are well known provided the correct abstraction. If we extract information consisting of
some extracted property names (table header) with corresponding values (contained in
the table body) and one ’column’ without label but also with the corresponding values we
can consider this value column as the probability distribution of a random variable. As a
consequence we only have to compare this probability distribution with the distributions
of possible candiate columns in our global schema. This can be done by computing the
well known Kullbach-Leibler divergence of two value distributions p and g:

Dl = 3 p(m)logffjj)

reX ( )

As aresult we get a table with a schema comprising all attributes that we have found
so far. This table is very sparse. For this reason it is possible to determine clusters that
can be indentified by sharing many properties (not values) since instances of completely
different concepts (e.g. cars or books) do not share any property (make & model vs. title
& author) at all.

Because of the size of this global table (especially the number of attributes) exten-
sive computations are costly and time-consuming. For this reason partitioning the table
permits to pursuit a divide-and-conquer approach.

We try to partition our global table into partial tables with minimum overlapping
of the specified attributes. Since every partial table only contains information about a
special concept we refer to such a partial table as a concept cluster. Once we collected,
preprocessed and splitted our meta information we want to use data mining techniques to

! This feature is also ongoing work but is beyond the scope of this paper.
2 E.g., on a search form for cars we can extract the descriptors MAKE, MODEL, POWER with
corresponding values if specified in the form (MAKE has possible values: Acura, Audi...).
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discover relevant relationships among these attribute values. Because of the assignment
of values to special properties we are looking for relationships between values assigned
to different dimensions. This problem can be investigated by methods of the field of
association analysis namley mining for multidimensional association rules as well as
stochastical means.

Table 1. Extracted table content

(CAR)|MAKE|MODEL |POWER [YEAR
I Audi |A6TDI |103 1995
I - 100 CC |85 1981
I3 - TDI - -

Iy - - 78 1993
Is Audi {100 103 1994
Is Audi |- 103 1995
I7 Audi {100 CC |85 1982
Is VW  |TDI - -

Consider the example values shown in Table 1 specifying eight extracted instances
with their extracted schema (MAKE,MODEL,POWER,YEAR). I; and I5 have almost
no similarity by simply comparing the specified values. But if we analyzed our collected
meta data we would find out that MODEL 100CC only occurs together with MAKE
Audi. Because of this fact we simply could virtually add MAKE Audi to instance I5.
The same analysis for I3 would show that occurence of TDI limits the possible values
for MAKE to AUDI and VW. So we could bear in mind both completations. In contrast
year 1993 would lead to multiple possible completions and therefore is useless to infer
anything at all. We see that only some values for property p; would determine a value
for property p;.

This means that dependencies between properties could exist in this table comparable
to functional dependencies. Functional dependencies are very strong dependencies since
they have to hold for all values. To discover more general dependencies we consider two
properties as random variables. Similarly to the task of mining for functional dependen-
cies the Chi-square dependence test only returns an overall measure for the dependency
of random variables describing properties. To discover more general dependencies of
two properties we construct their contingency table.

If we considered the values shown in table 2 as conditional probabilities, the prob-
ability PIMAKE = AUDIIMODEL = A4) would be 0.97. But we also could
consider every subset of properties, e.g.

P(MAKE = AUDI|MODEL = A4, Y EAR = 1998).

In terms of data mining we could interpret the contingency table shown above as a
two dimensional data cube. This would lead to the rule

MODEL = A4 — MAKFE = Audi
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Table 2. Contingency table

Property MAKE/MODEL
(CAR) |A4|100(TDI
AUDI |97 |61 (38

vw 10 |12 |47
OPEL 0 |2
0.3/0 (13

]

with confidence 0.97 that is equivalent to the conditional probability shown above?.
Currently we explore different approaches and techniques from data mining [1] and
database technologies namely discovering functional dependencies [7].

S Structured Querying of Unstructured Information

In this section we briefly sketch the query language used in our system and the query
evaluation process using the mined relations.

5.1 Query Language

The internal query language of of our system resembles a highly simplified version of
mainstream languages like SQL, XPath, or XQuery. Search conditions refer to concepts
and values, which correspond to element names and contents in an XML setting and
attribute names and values in an SQL setting. Unlike the established languages, however,
we have added a similarity operator ~ that can be applied to concepts and values and was
first introduced in the XXL query language [9]. This operator expands a term in the query
with similar terms, supplied by an ontology. For example, a search for element names or
contentterms ~car would not only return cars but also minivans and other highly similar
results. For efficiency, the system supports only conjunctions of search conditions, no
negations and no disjunctions. We believe that this is sufficient to cover almost all queries
that web or intranet users would pose. Pages or XML elements that satisfy one or more
search conditions are bound to variables, and by using a variable as a prefix in other
conditions we can specify when multiple conditions must be satisfied by the same page.
To express that different pages should be connected (with a small distance), we use the
variables in path expressions, as if all data were truly XML. In contrast to XPath or
XQuery, a path expression can be satisfied across document boundaries; so we consider
connectivity in a global data graph. Our query language includes the following types of
conditions:

— Keyword Conditions: Simple keyword search is supported because of its benefit
for querying data without global schema or even unknown strucuture (see also [3, 5]
for keyword search in an XML context). An example for finding a page or XML
element that contains the words “Audi A4” is: A [keyword]="Audi A4’.

* support(A — B) = P(AN B)
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— Concept-Value Conditions: This condition has the form concept = value and
would be the preferred type of searching if all web or intranet data were richly
annotated with concepts corresponding to XML tags and values appearing in ele-
ment or attribute contents. The comparison operator could be generalized to include
type-specific comparisons (e.g., on dates). An example for this condition type is
location=Cologne.

— Similarity Conditions: It is possible to use the similarity operator ~ with every
concept or value term, to include similar terms as approximate matches. The query
A.%car = BMW notonly searches cars, but may also return matches with element
names like “automobile”, “limousine”, “motorbike”, etc.

— Path Conditions: We support two kinds of path conditions. Reachability through a
single link is expressed by a dot notation combining multiple variables, and reacha-
bility through a path of arbitrary length uses the wildcard symbol ’#’. These condi-
tions take into consideration hyperlinks, the parent-child relationship within XML
documents, and also arbitrary XPointer or XLink references across document bound-
aries.

5.2  Query Processing and Ranked Retrieval

Internally the query processor transforms a query into an operator tree consisting of
Java objects. A concept-value condition is evaluated by first looking up the occurrences
of both the concept name and the value in the index and then comparing the relative
positions of each occurrence pair. In a good match, the concept is found "above’ the
value with regard to the document structure; that is, the value should occur in a child
node or a descendant of the node that matches the concept name. The distance between
the two matches is reflected in the scoring of a result.

Simple keyword conditions without ~ operator are fulfilled if the keyword occurs on
a page. If the similarity operator is used and therefore this query condition is expanded
with similiar terms a page is matched if one of these terms is found. The score for this
condition depends on the similarity of the matched term compared to the original query
term.

Path conditions (i.e., reachability through a single link or arbitrary path) refer to mul-
tiple pages bound to different variables. Whenever the query processor has determined
candidate matches for local conditions and bound to variables, it tests the path condition
using the materialized transitive closure, and discards candidates that are not connected
or too far apart. The score of a path condition is based on the path length between the
considered pages.

The order in which conditions are evaluated is determined by a coarse selectivity
estimation using simple statistics about term frequencies. Portals are included if the
concepts of one or more concept-value conditions can be matched with parameter de-
scriptors of generated Web Services. In this case the corresponding values can be simply
filled in or it is tried to match them with predefined values*. When portals are included
into the search, the corresponding Web Services are invoked during query evaluation and
their results are stored and indexed in a temporary table. The query processor treats the

* E.g., if the value in a HTML form is choosen by selecting a value of a selection box.
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page with the query form and a result page returned by the portal as a single logical unit.
This way, a result page is bound to the corresponding variable even if some conditions
are actually satisfied by the query submission page (e.g., names of concepts appearing
as labels in the form and values appearing in the result page).

An approach for expanding the query using our analyzed metadata data could be
implemented as follows:

Once a user submitted a query we try to map the concepts of the query conditions
onto columns (representing properties) in our global meta data table. This can lead to
several candidates. Subsequently we try to map the specified value onto an instance value
for this row. If this is not possible we cannot expand our query and evaluate our query
as described in the second part of this section.

If we succeed we are able to determine the concept clusters that contain this attribute
and select rules containing the corresponding property on their left side. We sort the
rules by increasing confidence °.

First the query is evaluated without expansion. If results are retrieved the result
is presented together with possible query extensions to the user. The user can refine
his query with additional query extensions. If no results are found by the initial query
the query is automatically expanded by the rule with the highest confidence. This is
iteratively done until results are found or no more rules for extension are available.

Additionally these rules are used to build consistent parameter assignments for portal
interfaces, e.g. the meta data could be used to choose the value *Audi’ for the parameter
’Make’ although the query simply is "car=A4’. The overall ranking of a query match is
computed on basis of the partial scores for all conditions, using a simple probabilistic
model with independence assumptions.

6 Conclusion

The major contribution of this work is the application of data mining techniques to auto-
matically extracted statistical information from structured elements of semi-structured
data and the integration of these techniques into our prototype for a new kind of concept-
based search engine. In addition we provide seamless integration of different data for-
mats and autonomous data sources like deep web portals. Open issues are the selection
of appropriate techniques for discovering useful dependencies within a large corpus of
extracted data.
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Abstract. In this paper, we address the problem of scalable distributed similar-
ity searching. Our work is based on single-site metric space indexing algorithms.
They provide efficient way to perform range and nearest neighbor queries on arbi-
trary data in general metric spaces. The metric spaces are excellent abstraction that
allows comparison of very complex objects (such as audio files, DNA sequences,
texts). We have exploited the SDDS (Scalable and Distributed Data Structures)
paradigms and P2P (Peer to Peer) systems to form a metric space similarity search-
ing structure in distributed environment. Our proposed method is fully scalable
without any centralized part and it allows performing similarity queries on stored
data.

1 Introduction

The problem of retrieving elements from a set of objects, which are close to a given query
(using some similarity criterion), has a lot of applications — from pattern recognition to
textual and multimedia information retrieval. The most general abstraction to implement
such criterion is the metric space.

The advantage of the metric space approach to the data searching is its “extensibility”,
because in this way, we are able to perform both exact match and similarity queries on
any collection of metric objects. Since any vector space is covered by a metric space
with a proper distance function (for example the Euclidean distance), even the high-
dimensional vector spaces are handled easily. Furthermore, there are also many metric
functions able to quantify similarity between complex objects, such as free text or multi-
media object features, that are very difficult to manage otherwise. For example, consider
the edit distance, the Hausdorff distance, or the Jacard coefficient. The problem has
recently attracted a lot of researchers to develop techniques to structure collections of
metric objects in such a way so that the search requests are performed efficiently — see
the recent surveys [1] and [4].

Though metric indexes are able to speedup retrieval considerably, the processing
time is still an open problem. The evaluation metric distance functions can also take
a considerable amount of computational time, and to search the partitioned space, we
usually have to compute distances (using the metric function) between many objects.
The time to compute a distance can also depend on the size of compared objects. For
example, the edit distance, used to compare strings, has complexity O(n - m), where n
and m represent the number of characters in the compared strings.

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 44-53, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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The distributed computer environment of present days is a suitable framework for
parallel processing. With such infrastructure, parallel distance computations would en-
hance the search response time considerably. Modern computer networks have a large
enough bandwidth, so it is becoming more expensive for an application to access a local
disk than to access RAM of another computer on the network. In this paper, we try to
apply current approaches to the distributed data processing — Scalable and Distributed
Data Structures, SDDS, and Peer to Peer, P2P, communication — to the metric space
indexing.

The rest of this paper is organized as follows. All necessary definitions for metric
spaces and distributed data structures are presented in Sect. 2.1 and 2.2. Section 3 sur-
veys the most significant papers for our research. The overview of goals, we want to
accomplish, can be found in Sect. 4. The design of our scalable distributed structure
for similarity searching in metric spaces is proposed in Sect. 5 and some preliminary
experiments are shown in Sect. 6.

2 Preliminaries

2.1 Metric Space

Metric space is pair compound of a set of objects (A) and a so-called metric function
(d), which computes “distance” between any pair of objects from the set (i.e. the smaller
distance, the closer or more similar are the objects). The distance is a positive real number
and the function d has following properties:

Vee A:d(z,x) =0 reflexivity
Ve,y € A:d(z,y) >0 strict positiveness
Ve,y € A:d(x,y) =d(y,x) symmetry

Ve,y,z € A:d(x,y) < d(z,z) + d(z,y) triangle inequality

There are two basic types for similarity search. The first is the range or proximity
search. Its goal is to retrieve all objects which have distance from query object ¢ at most
the specified range r.

{re A|d(g,x) <r}

We usually look for similar objects when searching in metric space, i.e. we look
for the nearest neighbor object. We can extend this query to return n nearest neighbor
objects to the query object q. The result is then a subset X:

KCA:|IKl=nAVueK,veA—-K:d(q,u) <d(q,v)

There are also other types of similarity queries (for example similarity join [3]).
However, we use only the two previously mentioned queries in our research.

2.2 Scalable and Distributed Data Structures

The Scalable and Distributed Data Structures (SDDS) paradigm was first specified in [6].
In this article were also defined the most important properties that every SDDS should
satisfy:
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scalability ~ — data expand to new network nodes gracefully, and only when net-
work nodes already used are efficiently loaded

no hot-spot  — there is no master site that must be accessed for resolving the address
of the searched objects, e.g., there is no centralized directory

independence — the file access and maintenance primitives, e.g., search, insertion,
split, etc., never require atomic updates to multiple nodes.

2.3 Peer to Peer Systems

We can define peer to peer (P2P) systems as distributed systems without any centralized
control or hierarchical organization, where the software running at each node is equiv-
alent in functionality. Data in the system are distributed among the participating nodes.
Every node joined in P2P both hold data and perform queries.

P2P systems are popular because of the many benefits they offer: adaptation, self-
organization, load-balancing, fault-tolerance, availability through massive replication,
and the ability to pool together and harness large amounts of resources. For example,
file-sharing P2P systems distribute the main cost of sharing data, i.e. bandwidth and
storage, across all the peers in the network, thereby allowing them to scale without the
need for powerful and expensive servers.

3 Related Work

3.1 Scalable and Distributed Data Structures

The first SDDS proposed was the Distributed Linear Hashing (LH*) [6], which uses
linear hashing to split file among network sites. The hashing of primary key of the
file produces an identifier of the network site, which should hold the record. Every
site maintains two values needed for linear hashing function (local “view” of the site).
However, this information can be out of date. Therefore, there was proposed an updating
mechanism called Image Adjustment Message (IAM), which allows on use correcting
the values.

Another hash-based algorithm was the Distributed Dynamic Hashing (DDH) [2],
based on dynamic hashing. The advantage of DDH over LH* is that it can immediately
split any bucket (LH* according to LH can split only the bucket with token).

The last algorithm, we would like to mention in this section, is the Distributed Ran-
dom Tree method (DRT) [5], which has introduced the approach to distribute a common
binary search tree. The structure maintains the linear order of keys (as opposed to LH*)
and it is thus able to perform range and nearest neighbor queries gracefully.

3.2 Peer to Peer Systems

As far as we know, no P2P system is currently using the metric space as the routing key.
However, a vector space based Content Addressable Network (CAN) [8] was proposed.
The CAN can route the query through the nodes using navigation, which stores all the
“in touch” neighbors at every site. The neighbor node, which is closer to the query
target, is chosen from the routing table and the query is forwarded (routed) there. We



Distributed and Scalable Similarity Searching in Metric Spaces 47

P, P,
°

° i .
° ° ° SPLIT Y °
° P, 1 OPZ
° ° o ! °
B, e ® B!

Fig. 1. Split of the bucket and modification of the tree

cannot describe all current P2P networks and all the research on this field due to space
limitations of this paper, however we will at least cite a survey [7].

3.3 Metric Space Searching Methods

The idea of exploiting the metric spaces for similarity searching is quite old. Therefore,
we will describe only the Generalized Hyperplane Tree (GHT) structure [9], because
our proposed algorithms relay on this structure and we will refer to the description later.
Other relevant methods can be found in the survey “Searching in Metric Spaces” [1].

GHT is a binary tree that allows storing metric space objects and quickly performing
similarity search on them. The objects are kept in buckets of fixed capacity that are
pointed from leaf nodes of the tree. Inner tree nodes contain pointers to a selected pair
of objects (pivots). Elements closer to the first pivot go into left subtree and the objects
nearest to the second one, into the right subtree.

We start by building a tree with only one root node pointing to a bucket By. When
the bucket By is full we must split it: we create a new empty bucket B; and move some
objects (exactly one half if possible) into it to obtain space in By (see Fig. 1). We can do
that by choosing a pair of pivots P; and P, (P} # P») from B, and moving into bucket
B all objects O that satisfy the following condition.

d(P1,0) > d(P3, 0) (1)

Pivots P; and P, will be associated with a new root node and thus the tree will grow
one level up. This split algorithm can be applied on any node and it is an autonomous
operation (no other tree nodes need to be modified).

When we Insert a new object O we first traverse GHT to find the correct bucket. At
each inner node, we test the condition (1): if it is true, we take the right branch; otherwise,
the left branch is taken. This is done until a leaf node is found. Then we insert O into
the pointed bucket and we split it, if necessary.

In order to perform a Range Search with query object Q and radius r, we recursively
traverse GHT following the left child of each inner node if condition (2) is satisfied and
right child if condition (3) is true.

d(P1,Q) +r > d(P2,Q) — r 3)
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Note that, since both the above conditions can be simultaneously satisfied (i.e., both
the left and right subtree can be traversed) eventually more than one bucket can contain
qualified objects.

The Nearest Neighbor is based on range searches with estimated radiuses. However,
we will not describe the exact algorithm due to space limitations.

4 Objectives

Nearly all scalable and distributed structures proposed so far are aimed at primary key
(attribute) search.However, there are many classes of objects that cannot be compared
(for similarity) with just one attribute and the mapping to vector space has vast number
of dimensions.

On the other side, the indexing techniques for metric spaces proposed so far use
the centralized paradigm. Thus the scalability of such system is limited, because the
number of computations necessary to satisfy a query grows with the file. Moreover, the
centralized system has only a limited storage (either RAM or disks).

Therefore, the aim of our research is to combine the scalability of the distributed
approach with the extensibility of the metric space indexing. The designed structure
should scale gracefully through utilizing new nodes of the distributed environment. The
search time should remain (nearly) constant for performed queries — the query could
utilize more distributed nodes in order to retrieve results.

Moreover, the structure should be able to search in different types of objects. It
should support primary key search with exact or range match, vector spaces with any
dimension or even more complicated sets of objects, which only supports some similarity
measurement. All those mentioned methods are easily transformed to a generic metric
space with appropriate distance function.

S Proposed Approach - GHT#*

Our distributed similarity searching structure — GHT* — is based on GHT (the metric
space part) and it exploits the techniques of DRT, DDH and CAN (the distributed part).

5.1 Architecture

The distributed environment is composed of network nodes (peers), which hold metric
objects, execute similarity queries on stored data and communicate with other peers.
Every peer is uniquely identified by its identificator PID.

Peers hold data in a set of buckets. Each bucket has a unique identifier within a
peer, designated as BID. Each peer also maintains a GHT-like tree structure called
the address search tree (AST). It is used to route similarity range queries through the
distributed network.

5.2 Address Search Tree

AST is a slightly modified GHT (defined in Sect. 3.3). Since buckets are distributed
among the peers, peers have different bucket associations. In general, the tree leaf nodes



Distributed and Scalable Similarity Searching in Metric Spaces 49

PID: 2
Address search tree BID: 1 BID: 2

BRI
Bssss]
o]

Peer storage area

J

Fig. 2. Peer internal structure with address search tree and storage area with buckets full of objects

contain either a PID, if the bucket is on another peer, or a BID, if the bucket is held on
the current peer. Figure 2 illustrates the peer internal structure.

Each peer has its own “view” of the distributed structure represented by its AST. The
view may be out-of-date (in a way that some branches of the tree are missing), because
any peer can split a bucket any time. This may cause sending insertion or search requests
to incorrect peers, but this is not a problem. Whenever such misaddressing occurs, the
request is forwarded to the correct peer and the caller is informed using update message
(see Sect. 5.4).

When a peer wants to insert a new object, it first uses its local AST,, and it finds a leaf
node using the GHT pruning. If the leaf contains a BID, the inserting object is stored in the
bucket BID located on the current peer — split is used if necessary. Otherwise (i.e. when
PID pointer is found), the insert request is sent (forwarded) to a more appropriate peer
PID. The same strategy is recursively used when an insert request is received through
forwarding.

In order to perform a range search we again traverse the AST of the current peer. In
general, we obtain a set of PIDs and a set of BIDs, because, as explained in Sect. 3.3, the
execution of a range query may follow both the subtrees of an internal node in the AST.
In this case, the query message is sent to all peers from the set of PIDs. All the buckets
from the set of BIDs on current peer are tested for matching objects.

5.3 Bucket Splitting

Since the bucket capacity is limited, it must be split when an overflow occurs. Suppose
a bucket in the peer with PID = j overflows, the splitting is performed in the three
following steps. First, we create a new bucket on either the peer j or another active peer
(see Sect. ). Second, for the created bucket, we choose a pair of pivots and we update the
AST. This is performed using the dynamic pivot decision algorithm (not presented in this
paper due to space limitations). Finally, we move some objects from current bucket to
the new one according to the new pivots (the move is driven by condition (1) described
in Sect. 3.3).

We do not address the reverse operation (joining the buckets after data removal) in
this paper, because it is not properly solved yet. The problem is, that the AST of the other
nodes may retain the old information about the two joined buckets. We are working on
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this issue now and the promising solution is the time—stamping of the nodes, so that the
wrong path can be detected.

5.4 Update Message

The update message is sent to update the “view” of a peer, represented by its AST,
whenever a misaddressing occurs. Such situation happens when the PID instead of the
BID is found during the AST traversal and the request is forwarded. In this case, the
receiving peer can have a more up to date view in its AST, so the sender’s view must be
updated.

The update message contains a subtree of the AST node representing the upgrade
needed for the caller’s “view”. All necessary pivot objects are sent along with the update
message.

5.5 Peer Joins

New peers may join the network any time and perform insert and query operations. In
particular each joining peer J must know at least one other peer R already connected
to the P2P network. Insert or range requests from J are sent to peer R (because peer
J has an empty AST at the beginning), which either solves the request itself or uses
the forwarding mechanism. The AST of node J is updated with the returned update
messages during the operations and it becomes more accurate after a few inserts or
range searches.

The peers that joined the network also offer their storage and computational ca-
pacity. This capacity is utilized by the structure during splits to scale gracefully over
more peers. In Section 5.3 we have provided the split algorithm, which may require
allocation of a bucket on a different peer. Such peer is chosen from the joined peers as
follows.

Every peer with an unallocated storage capacity has to inform the other peers in
the network. The peer adds a short description to every insert or range search request
message it issues, so that the information spreads quickly among other peers in the
network. The peers with some allocated buckets remember PIDs from the description
and whenever they need to split a bucket onto another peer, they simply choose from
the remembered ones. That information may become out-of-date, if the destination peer
was contacted by another peer already. In that case the peer picks up next PID from the
remembered ones and continues until the list is empty or a peer with available storage
is found.

The peer leaving is not fully described here, because it is still in design phase. The
peers, which did not use their available storage, can be removed safely. There are two
problems with the peers that maintain some data. First, such a peer have to move the
stored data to other peer with available storage capacity. This is not a big problem, since
the peer has remembered peers with available capacity. Second, updates to the AST are
needed. This is still an open problem, however, we are investigating the possibility of
using the similar technique as for the bucket rejoining.
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Fig. 3. Overall load of the structure during insertions (left) and number of peers and buckets
responsible for holding the data (right)

6 Experimental Results

In this section we present a preliminary experimental evaluation based on a Java imple-
mentation of the proposed GHT* structure. For the preliminary evaluation and testing
purposes, we have used a data—set of 10000 45—dimensional vectors and the Lo distance
function has been used. The vectors were synthetically generated with uniform distribu-
tion of distances. We are preparing more exhaustive experiments with larger data—sets
and different metrics (for example edit distance for comparing texts or color histogram
similarity function used to compare images). We also plan a comparative study with
centralized metric space indexing techniques and distributed data structures (primary
key and vector space).

We have chosen the available capacity at each peer to 5 buckets per peer at maximum
with the maximal capacity of 100 objects per bucket. Objects were added using insert
operation from different peers throughout the network, so that there were enough of
peers with available capacity at any time.

We have measured the overall statistics of the structure first. The statistics was col-
lected after every insertion. The left side of Fig. 3 is showing the overall load of the struc-
ture — i.e. the ratio between the number of inserted objects and the capacity of all active
buckets. The second graph in Fig. 3 is displaying the evolution of the storage — number
of peers that maintain a part of the structure and the overall number of buckets used.

We have achieved nearly 60% of overall structure load, which is a good result con-
sidering the distribution of the objects of the metric space used. However, in general
these results strongly depend on the type of metric space used, on the actual distribution
of the objects in the space, and on the pivot decision technique used. We can also see,
that the evolution of the storage is linear with the number of inserted objects.

The main feature of GHT* is the ability to perform similarity searches. We have
executed range searches on the entire data—set stored in GHT*. We have made two
different sets of tests: one with a small radius, which returned about 10 object in average
and another one with a bigger radius, which returned approximately 200 objects in
average. We have executed both the types of query with 20 random generated query
objects on a fresh peer (which has no knowledge of the structure, and hence has no AST
at the start time).
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The number of distance computations needed to address the correct buckets during
the range search is shown on the left graphs in Fig. 4. The shaded bar represent the number
of computations in the AST of the peer, which issued the query, the lighter part displays
the computations in AST during forwarding. Those computations are performed on other
peers to resolve the misaddressing. We do not mention the computations evaluated in
every matching bucket (needed to get the exact objects that satisfy the query), since the
number is highly dependent on the actual storage technique used in the bucket.

The right part of Fig. 4 is showing the number of peers and buckets accessed during
the range query. We can see that the peer made addressing errors first and the queried
peers have to perform some additional computations to correct the query. There is also
the difference between small radius, which access only a few buckets and thus the peer
is learning the “view” slowly, and the bigger radius, where the client has almost correct
view after just a few queries.

7 Conclusion

As far as we know there has not been proposed metric space indexing structure, which
uses distributed environment. Our structure is a first try to combine existing techniques
for distributed searching and metric space indexing.

The GHT* structure allows storing data sets from any metric space and has many
essential properties of the SDDS and P2P approaches. It is scalable — every peer can
anytime perform an autonomous split gracefully distributing the structure over more
peers. It has no hot spot — all peers use as precise addressing as possible and they all
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learn from misaddressing. Updates are performed locally and splitting never requires
sending multiple messages to many peers. Finally, every peer can store data and perform
similarity range queries at the same time.

We have implemented the first version of GHT* and performed some basic experi-
ments. Even thought our experiments are still in the preliminary phase, we can conclude
that the structure matches all the desired properties and thus it is able to perform metric
space similarity search in the distributed environment. Future research concerns studies
on the efficiency of the parallel processing, update operations, as well as some other
forms of similarity search, such as the nearest neighbor queries.
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Abstract. Patterns are concise, but rich in semantic, representation of data (data
mining results, multimedia features, Web structural information, etc.). Only few
approaches exist to deal with heterogeneous patterns, even if this is an hot topic
in most data-intensive and distributed applications. The aim of this thesis is to
investigate the potentiality of pattern-based management. In particular, we plan
to define sufficiently expressive pattern data models and languages to cope with
different types of patterns. Besides, investigation of architectural issues concern-
ing the usage of the proposed model and languages in centralized and advanced
distributed environments will be exploited.

1 Introduction

The increasing opportunity of quickly collecting and cheaply storing large volumes of
data, and the need for extracting concise information to be efficiently manipulated and
intuitively analyzed, are posing new requirements for data management systems in both
industrial and scientific applications. The determining property of such raw data is the
vastness of their volume; moreover, a significant degree of heterogeneity may be present.

Clearly, data in such huge volumes do not constitute knowledge per se, i.e. little useful
information can be deduced simply by their observation, so they hardly can be directly
exploited by human beings. Thus, more elaborate techniques are required to extract the
hidden knowledge and make these data valuable for end-users. A usual approach to deal
with such huge quantity of data is to reduce the available data to knowledge artifacts
(i.e., clusters, rules, frequent itemsets, etc.) through data processing methods (pattern
recognition, data mining, knowledge extraction) that reduce data size while preserving
as much as possible hidden/interesting information. These knowledge artifacts are also
called patterns.

Several approaches have been proposed in the literature to cope with knowledge
extraction and management problems. However, they usually consider a single type of
knowledge artifact and mainly deal with the problem of defining languages for pattern
extraction. Little emphasis has been posed in defining an overall environment to represent
and efficiently manage different types of patterns.

As far as we know, the first general approach for pattern handling has been proposed
in the context of the PANDA European project [25], which introduces the reference
architecture and the logical foundations for pattern management. Results achieved in
PANDA constitute the starting point of this work.

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 54-65, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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Table 1. Examples of patterns

Application Raw data Type of pattern
market-basket analysis sales transactions item association rules
signal processing complex signals recurrent waveforms
mobile objects monitoring| measured trajectories equations
information retrieval documents keyword frequencies
image recognition image database image features
market segmentation user profiles user clusters
music retrieval music scores, audio files| rhythm, melody, harmony
system monitoring system output stream failure patterns
financial brokerage trading records stock trends
click-stream analysis web-server logs sequences of clicks
epidemiology clinical records symptom-diagnosis correlations
risk evaluation customer records decision trees

The aim of this PhD research work is to investigate the potentiality of pattern-based
management systems. To this purpose, we plan to define sufficiently expressive pattern
data models and languages to cope with different types of patterns. Architectural issues
concerning storage and retrieval will also be investigated. In addition, since the capability
to manage different types of patterns is much more important for data-intensive and
distributed applications, we plan to exploit the usage of the proposed framework in
distributed environments, considering the GRID as a special case.

This document is organized as follows. In Section 2, the pattern-based management
problem is first introduced, then related work is discussed pointing out limitations of
the current proposals. In Section 3, the goals of the thesis are presented in more details.
Preliminary results already achieved are then presented in Section 4. Finally, Section 5
presents some concluding remarks.

2 Pattern Based Management: The Problem

Patterns can be thought as artifacts which effectively describe subsets of raw data (i.e.
they are compact) by isolating and emphasizing some interesting properties (i.e. they
are rich in semantics).

There are many different applicational contexts from which patterns can be generated
and many different types of patterns. Some examples of patterns arising in different
application domains are reported in Table 1.

Recently, pattern management issues are becoming much more important not only
in centralized architectures but also in distributed ones. For example, the diffusion of
the Web and the improvement of networking technologies speed up the requirement
for distributed knowledge discovery and management systems. In such environments,
it could be very useful to combine various types of knowledge under an homogeneous
framework. As an example, a company, which produces food products and sells them
through the Web, may be interested in combining knowledge concerning users which
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navigate its Web site, for example in the form of clusters, association rules, etc., generated
by aclickstream analysis, with information concerning groups of products, generated, for
instance, by a clustering technique. However, surprisely, the problem of directly storing
and querying pattern-bases has received very limited attention so far in the commercial
world and the database community.

In general, pattern management requires: (i) the definition of a model to represent
patterns, (ii) specific languages to manipulate them, and (iii) the appropriate architectural
support.

2.1 Pattern Model

A logical model for patterns must be general enough to represent in an homogeneous
way different types of patterns extracted from different real-world application domains.
As a minimum requirement, it must provide the representation of the pattern structure,
some pattern measures, qualifying how well the pattern represents raw data, and raw
data from which it has been generated.

Several approaches have been proposed to model (specific types of) patterns. Among
them, we recall: (i) the Predictive Model Markup Language (PMML) [21], that uses
XML to represent data mining models (i.e. the mining methodology used with mining
parameters); (ii) the Java Data Mining API [18], that addresses the need for procedural
support of all the existing and evolving data mining standards; (iii) the SQL/MM standard
[17], by which mining models are represented as SQL types and made accessible through
SQL syntax; (iv) Common Warehouse Model [10], whose main purpose is to enable easy
interchange of warehouse and business intelligence metadata.

All the previous approaches seem not adequate to represent and handle different
classes of patterns in a flexible, effective, and coherent way. Indeed, they consider a
given list of predefined pattern types and they do not propose a general approach to
pattern modeling.

Besides, the problem of mapping patterns against raw data is not considered, both
from a modeling and a computational point of view. A specific mention is deserved
by inductive databases, where data and rules inducted from data are uniformly repre-
sented and manipulated [22]. Under this approach, only association rules are considered.
Furthermore, there is no clear separation between raw data and patterns.

The first attempt to introduce a Pattern-Base Management System (PBMS), capable
of modeling, storing, and handling heterogeneous types of patterns, is related to the
PANDA (PAtterns for Next-generation DAtabase systems) project. Indeed in PANDA,
a pattern is modeled by: the structure, that qualifies the pattern by locating it within
a pattern space; the measure, that quantifies the quality of the raw data representation
achieved by the pattern itself; the source, describing the raw data the pattern relates to;
the formula, describing the (approximate) mapping between the raw data space and the
pattern space.

Although this approach represents an important step toward a unified pattern model,
it still suffers of some limitations. First of all, relationships among raw data and patterns
are not sufficiently formalized in the PANDA model. In particular, issues concerning
the usage of different languages, leading to different expressive power and complexity
results, for the formula representation have not been considered. Moreover, since raw
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data may change, synchronization between patterns and source data is an important
issue not taken into account in PANDA. Another open issue is how advanced semantic
information over raw data, such as ontologies, can be used in pattern representation. This
issue has been considered only in the context of association rules [20] but no general
approach has been proposed yet.

2.2 Pattern Languages

The difference in semantics between patterns and raw data discourages from adopting
the same query language for both. Since raw data are managed by traditional DBMSs,
they can be queried and retrieved using traditional query languages. On the other side,
to retrieve patterns, a specific pattern query language has to be defined, capable of
capitalizing on the peculiar semantics of patterns as defined in the model. Besides a
pattern query language, there is also the need for a pattern manipulation language, by
which patterns can be inserted, deleted, and updated.

Most of the limitations concerning existing pattern languages derive from the fact
that few approaches exist to deal with heterogeneous patterns in a unified framework
[12,22]. Indeed, many of the proposed languages deal with specific types of patterns (in
general, association rules) [6, 13—16,20]. As far as we know, no pattern manipulation
and query languages have been proposed yet to cope with heterogeneous patterns in a
more general way.

2.3 Architectural Issues

From an architectural point of view, once a unified logical framework for pattern man-
agement has been defined, pattern storage and retrieval aspects have to be considered.
In the PANDA project, three different storage schemes have been considered, based on
relational, object-relational, and XML models. However, as far as we know, no specific
physical model for patterns has been defined yet even if, due to pattern characteristics,
ad-hoc storage and indexing techniques could greatly improve pattern query processing.

Besides the management of patterns in centralized architectures, pattern manage-
ment is becoming an hot topic also for distributed environments. An important example
is represented by the innovative paradigm of GRID computing [7], that complements
Semantic Web with an infrastructure to handle large-scale distributed enterprise infor-
mation systems. An important issue in this context is how heterogeneous resources of
the GRID can be effectively managed. To this purpose, “GRID intelligence” [7] refers
to an emerging research field that addresses how the data and information available on a
GRID can be effectively acquired, preprocessed, represented, interchanged, integrated,
and converted into useful knowledge. In this context, patterns play a fundamental role.

Since the concept of “Grid Intelligence” is a very recent one, only preliminary results
have been obtained so far. The Knowledge Grid [7, 8] is a first proposal concerning how
GRID services can be extended to deal with patterns management. However, problems
concerning how such patterns should be modeled and efficiently retrieved have not been
investigated yet.
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3 The PhD Proposal

The PhD work started in March 2003, during my participation to the PANDA European
project (2001-2004) [25]. It concerns three different aspects of pattern management,
briefly discussed in the following.

3.1 Pattern Model

The first goal of the thesis is the development of a pattern data model, to represent pattern
types and their instances. The model must be general enough to cope with different types
of patterns. In defining such model, we start from the model proposed in PANDA [23]
and we try to overcome some of the limitations identified in Section 2.1.

First of all, we plan to propose languages for formula specification (representing
relationships between raw data and patterns) and to analyze their expressive power. To
this purpose, we plan to consider constraint query languages [19].

Moreover, synchronization issues between pattern and raw data will be investigated.
To this purpose, the pattern logical model will be enriched with temporal aspects to
support the notions of transaction and validity time [24]. In the PBMS context, the
pattern transaction time is the instant of time at which a pattern is generated and inserted
in the PBMS. On the other hand, the concept of validity time has to be defined with
respect to the validity time associated with the set of raw data the pattern represents.

Then, we plan to investigate how advanced semantic information over raw data, such
as ontologies, can be used in pattern representation.

Finally, we plan to investigate the expressive power of the proposed model to under-
stand which types of patterns can be represented. This of course depends on the language
used to define pattern components.

3.2 Pattern Languages

We plan to define languages to manipulate and query patterns represented according to
the proposed model. These issues have only been preliminarily investigated in PANDA
[4], where the basic operations for pattern manipulation and retrieval have been identified.
In the context of this thesis, we plan to formally define those languages, investigating
expressive power and complexity issues.

In a pattern management system, traditional manipulation operations, such as inser-
tion, deletion and update, have to be re-interpreted. In particular, the insertion operation
corresponds to a pattern extraction process: new patterns are generated starting from
raw data. Finally, pattern updates have to reflect modifications that occurred in the raw
dataset associated with the pattern.

On the query language side, we plan to propose a calculus and an algebra for patterns,
supporting both operations over patterns and operations binding patterns with raw data
(so called cross-over queries). To this purpose, we plan to consider some existing calculus
and algebra for complex objects, such as those presented in [1, 11] and extend them to
cope with specific pattern components (see Section 4). Expressive power and equivalence
of the proposed languages will also be investigated.
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3.3 Architectural Goals

From an architectural point of view, we plan to propose a storage strategy for patterns
and to investigate issues concerning the usage of such strategy during query processing.

Then, as a case study, we plan to investigate the potentiality of using the proposed
pattern model and languages in the context of a distributed knowledge management
environment, considering the GRID architecture as a special case. In particular, we
plan to analyze how pattern management can be useful to represent GRID metadata, to
handle GRID derived knowledge, and to support the mining process within the GRID
environment.

4 Preliminary Results

In the following, we present in more details some preliminary results, obtained in the
first period of my PhD work. The obtained results refer to the PBMS architecture defined
in the context of the PANDA project [25].

A Pattern-Base Management System (PBMS) is a system for handling (i.e., storing,
processing, and retrieving) patterns defined over raw data, to efficiently support pattern
matching and pattern-related operations generating intensional information.

Figure 1 (taken from [23]) shows the reference architecture for a PBMS. On the
bottom layer, a set of devices produce data, which are then organized and stored within
databases or files. Knowledge discovery algorithms are applied over these data and
generate patterns to be fed into the PBMS.

Within the PBMS, it is worth to distinguish three different layers. The pattern layer is
populated with patterns. The fype layer holds built-in and user-defined types for patterns.
The class layer holds definitions of pattern classes, i.e., collections of semantically
related patterns.

4.1 The Model

The model is based on the concepts of pattern types, patterns and pattern class [3, 4, 23].
A pattern type represents the intensional form of patterns, giving a formal description
of their structure and relationship with source data. It is defined as a tuple composed of
the following elements:

— the structure schema s, which defines the pattern space by describing the structure
of the patterns instances of the pattern type;

— the source schema d, which defines the related source space by describing the dataset
from which patterns, instances of the pattern type being defined, are constructed;

— the measure schema m, which describes the measures which quantify the quality of
the source data representation achieved by the pattern; the role of this component
is to enable the user to evaluate how accurate and significant for a given application
each pattern is;

— the formula f, which describes the relationship between the source space and the
pattern space, thus carrying the semantics of the pattern. Inside f, attributes are
interpreted as free variables ranging over the components of either the source or the
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Fig. 1. The PBMS architecture

pattern space. Note that, though in some particular domains f may exactly express
the inter-space relationship, in most cases it will describe it only approximatively.

Note that the proposed approach to pattern modeling is parametric on the language
adopted for formulas, thus the achievable semantics for patterns strongly depends on
the expressivity of the chosen language. In the following examples, we use a constraint
calculus based on polynomial constraints which seems suitable for several types of
patterns [19].

Patterns are instances of a specific pattern type. Thus, they are composed of the
following elements:

— a pattern identifier (pid);

— astructure (s) that positions the pattern within the pattern space defined by its pattern
type;

— adata source (d) that identifies the specific dataset from which the pattern has been
generated;
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— ameasure (m) that estimates the quality of the raw data representation achieved by
the pattern;
— aformula (f) which relates the pattern to the source data.

In particular, the formula is obtained by the formula f in the pattern type by: (i)
instantiating each attribute appearing in ss with the corresponding value specified in s,
and (ii) letting the attributes appearing in ds range over the source space.

Example 1. Givenadomain D of values and a set of product sales transactions, a possible
pattern type for modeling association rules over strings representing products is the
following:

: AssociationRule

: TUPLE(head : SET(STRING), body : SET(STRING))

: BAG(transaction : SET(STRING))

: TUPLE(confidence : REAL, support : REAL)

:Vz(x € head V x € body = x € transaction)

3

\S QU »

Assume that raw data include a relational table sales which stores sales transactions
of a shop, having the following schema (transactionld, article, quantity). Using an
extended SQL syntax to denote the dataset, an example of pattern instance for pattern
type AssociationRule is the following:

pid : 512
s : (head = {/Boots’}, body = {’Socks’, Hat’})

d :'SELECT SETOF(article) AS transaction
FROM sales
GROUP BY transactionld’

m : (confidence = 0.75, support = 0.55)

[ :Vz(z € {'Boots’, Socks’,"Hat'} = x € transaction)

In the pattern formula, transaction ranges over the data source space. On the other

hand the values given to head and body within the structure are used to bind variables
head and body in the formula of pattern type AssociationRule. o

A class is a set of semantically related patterns and constitutes the key concept in
defining a pattern query language. A class is defined for a given pattern type and contains
only patterns of that type. It is important to note that a specific pattern may belong to
any number of classes.

Example 2. Consider Example 1. The Apriori algorithm described in [2] could be used
to generate relevant association rules from the dataset D intensionally described by the
following SQL query:

SELECT SETOF(article) AS transaction

FROM sales

GROUP BY transactionld.



62 A. Maddalena

Then, all the generated patterns could be inserted in a class called SaleRules for
pattern type AssociationRule defined in Example 1. Note that the collection of patterns
associated with the class can be later extended to include rules generated from a different
dataset, let’s say D', representing for instance the sales transaction recorded in a different
store. O

To increase the expressivity of the logical model some interesting relationships be-
tween patterns have also been introduced (for formal details see [4]).

Among them, we recall: specialization, a sort of IS-A relationship (e.g. clusters of
integer points can be seen as a specialization of generic clusters of points); composition,
between a pattern and those used to define its structure; refinement, between a pattern
and those belonging to its source component; in such case, the pattern data source is a
collection of other patterns. Composition and refinement are key concepts in defining
complex patterns.

Example 3. The following pattern type models clusters of association rules:

n :ClusterOfRules
ss :representative : AssociationRule
ds :SET(rule : AssociationRule)
ms :TUPLE(deviationOnConfidence : REAL, deviationOnSupport : REAL)

f :rule.ss.head = representative.ss.head

Note that there is a refinement relationship between patterns of type ClusterOfRules
and patterns of type AssociationRule, because the data source of a cluster of rules
consists into a set of association rules.

In addition, since the representative of each cluster is an association rule, there exists
a composition relationship between those two pattern types. a

4.2 Pattern Languages

As we have already discussed (see Section 3.2), languages for patterns have to deal with
both pattern manipulation and querying issues. Several preliminary results concerning
pattern languages have already been achieved [4, 5].

In particular, in [5] several operators useful to manipulate patterns have been identi-
fied and a preliminary proposal for an algebra for querying patterns has been presented.
On the other side, in [9] the pattern model [3, 4, 23] and pattern manipulation operators
proposed in [5] have been used to show how clustering results can be represented and
managed under the proposed pattern framework.

In the following, the basic characteristics of the pattern query language and the
pattern manipulation language are discussed (for additional technical details we refer
the interested reader to [4, 5]).

The Pattern Query Language. The pattern query language supports the user in retriev-
ing patterns from the Pattern Based Management System. Queries are executed against
classes.

We defined some preliminary algebraic operators for pattern manipulation.
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Besides typical relational operators (such as renaming, set-based operators), projec-
tion has been revisited to project out structure and measure components.

Selection allows one to select patterns belonging to a certain class satisfying a cer-
tain condition, involving any possible pattern component. Similarity predicates are also
supported.

Operators providing a way to navigate hierarchies defined by the modeled relation-
ships are also provided. Among them, we recall the drill-down and the roll-up operators,
that, similarly to the ones defined for the data warehousing context, allow one to change
the level of details of a certain pattern by navigating the refinement relationship. Con-
cerning the composition relationship, we recall the decomposition operator, returning
for each pattern a component pattern associated with a certain attribute of its structure.

Finally, join operators are proposed to combine patterns belonging to two different
classes, thus generating new patterns instances of new pattern types. To perform a join
operation the user has to specify a join predicate and a composition function. The join
predicate expresses the condition over which the join is based, whereas the composition
function defines the pattern type of the result.

The proposed language also supports operations binding patterns with raw data. Such
operations are usually known as cross-over queries since for their execution two different
systems - the PBMS and the system where raw data are stored - have to be used. Among
them, we recall the drill-through operator which allows one to navigate from the pattern
layer to the raw data layer, through pattern data sources and formulas, and the covering
operator, which allows one to determine whether a fixed pattern represents a specified
data source.

The Pattern Manipulation Language. A pattern manipulation language must provide
the user primitives to generate patterns, by applying a mining process to raw data or from
the scratch, and to insert them in the Pattern Based Management System. Besides that, it
has to support pattern deletion and update. Moreover, since a pattern can be inserted in
several classes, pattern generation and insertion into a class are defined as two distinct
operators.

In defining the previous operators, traditional manipulation operators (insertion, dele-
tion, and update) have been re-interpreted for the new context.

More precisely, pattern insertion is represented by an extraction operator, that allows
one to extract a pattern from a raw dataset by applying a specific mining function. Patterns
can also be generated by recomputing pattern measures against a new dataset or directly
inserted in the Pattern Based Management System by the user, that in this case must be
able to specify all pattern components.

The delete operation has the standard meaning, i.e., patterns satisfying specific con-
ditions are selected and removed from the Pattern Based Management System. Since a
pattern may belong to different classes, two versions of the delete operator are provided.
The first one implements a restricted approach removing patterns from the PBMS only
when they are inserted in no classes. The second one cascadely removes patterns from
all classes they belong to and from the PBMS.

Finally, pattern updates have to reflect modifications occurred in the raw data dataset
to patterns. Among update operators, we recall synchronization, which performs the re-
computation of pattern measures to reflect modifications that occurred in its data source.
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5 Concluding Remarks

The aim of this thesis is to investigate the potentiality of pattern-based management
systems, developing pattern data and physical models and languages. The usage of the
proposed model and languages in centralized and advanced distributed environments
will also been exploited. Even if the importance of these issues has been recognized
in the scientific literature, only few approaches have been proposed so far to deal with
pattern management in an homogeneous way.

The PhD work started in March 2003, thus only preliminary results have been ob-
tained up to now, some of which in the context of the PANDA European project [25].
In the next two years, we plan to further investigate model and architectural issues, as
pointed out in Section 3.
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Abstract. The Semantic Web pursues interoperability at syntactic and semantic
levels, to face the proliferation of data files with different purposes and represen-
tation formats. One challenge is how to represent such data, to allow users and
applications to easily find, use and combine them. The paper proposes an infras-
tructure to meet those goals. The basis of the proposal is the notion of digital
content components that extends the Software Engineering software component.
The infrastructure offers tools to combine and extend these components, upon
user request, managing them within dynamic repositories. The infrastructure adopt
XML and RDF standards to foster interoperability, composition, adaptation and
documentation of content data. This work was motivated by reuse needs observed
in two specific application domains: education and agro-environmental planning.

1 Introduction

The reuse of digital content is an issue that is attracting increasing attention. In the context
of this work, reuse can be defined as the practice of use an existing content object to
build a new digital artifact using the object’s content partial or totally [7, 13]. Reuse
advantages include productivity improvement and cost reduction on development and
maintenance. Furthermore, frequency of reuse may be a quality indicator, and content
units designed for reuse can be quickly reconfigured.

On the other hand, there are several obstacles to supporting reuse; perhaps the most
serious is the problem of proliferation of data, systems and users. Several directions are
being followed towards solving these problems. One direction, which is investigated
in this paper, is to exploit the advances in the area of software component reuse, from
Software Engineering, combining them with database research on the Semantic Web
and interoperability.

The Semantic Web [9] foresees a new generation of Web-based systems, where
semantic descriptions of data and services will booster interoperability. In parallel, Soft-
ware Engineering has reached a high level of maturity concerning reuse units, by devel-
oping the technology of software components. Our idea is to extend these principles, to
comprise any digital content. From now on, this extended notion of component will be
called digital content component; the term will be used in this paper to denote any kind
of data e.g., pieces of software but also texts, audio, video, a result of a database query,
and so forth.

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 66-77, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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Software components are built by assembling code into a standard package that en-
capsulates implementation details. Well defined interfaces are associated with the pack-
age structure. These interfaces define how the component will be adopted and adapted
into a new application, and how it will relate with other components and its execution
environment.

By the same token, our proposal for a digital component structure involves the en-
capsulation of specific data representations into a package with a standard format, and
public interfaces that support relationships among components.

Though the advantages of such generalization are evident, there remains the prob-
lem of putting it into practice. Thus, the paper is concerned with three main issues,
having digital content reuse and interoperability in mind. The first issue concerns es-
tablishing a model to represent a digital content component, adopting interoperability
standards preconized by the Semantic Web initiative. The second defines a strategy to
store and index large volume of these components in a database. Finally it is neces-
sary to build a framework to implement and manage content components. Our research
has been motivated by reuse needs experienced by work developed at the State Uni-
versity of Campinas, Brazil (UNICAMP) in two application domains: education and
agro-environmental planning.

The remainder of this text is organized as follows. Section 2 introduces related work.
Section 3 presents the proposed digital content component model and discusses storage
and implementation considerations. Finally, Section 4 presents concluding remarks and
the present stage of this work.

2 Related Work

Related work involves research on software components and reusability in Software En-
gineering, and standards for digital content and interoperability in the Semantic Web. We
discuss some attempts in these directions, starting from the software notion of component
and evolving to the database concept of repository.

2.1 Packages

Content reuse can be enhanced via assembly into a standard package for distribution. In
our work, package is defined as a structure that delimitates, organizes and describes one
or more pieces of digital content suitable to reuse.

This packaging approach has already been adopted in the educational domains. The
main example is the IMS Content Packaging Information Model [19], and based on that,
the SCORM - Sharable Content Object Reference Model [5], a proposal to structure and
distribute educational content in a package content form. Both aim at reusability, inter-
operability, location and adaptation facilities. They use XML to describe a hierarchical
structure of each content package and their respective educational metadata. Metadata
representation follows an IEEE standard for educational metadata, named LOM — Learn-
ing Object Metadata [8]. LOM has been coded in XML [23], with subsequent studies to
represent LOM in RDF [10].
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The adoption of open standards for component package structure and interface def-
inition is a key approach to achieve interoperability. Within the Semantic Web context,
XML and RDF are complementary standards, adequate to syntactic and semantic inter-
operability, respectively [4].

2.2  From Packages to Components

The package structure has limited capabilities. An evolution of this concept is achieved
when packages are designed not only to transport content via a standard container, but
to be connected with other packages and interact with them and their environment. This
corresponds to the concept of component.

The component concept is often associated with the software component concept,
which deals with software code. There is no agreement on the definition of the software
component concept, though definitions are closely related [2].

Like a package, a component is designed to be a unit of independent deployment.
There is a clear division between the content (encapsulated software implementation)
and some external structure where this content is encapsulated.

However, components have higher specialized external structures, which publish
component functionality by explicit contractual interfaces. To interact and work together,
component structure and interface follow a model that specifies design constraints.

2.3 Component Repositories

Component reuse can only become effective with adoption of a structure to store and
manage components in an efficient way. Many research initiatives concern component
storage and retrieval, especially on techniques to index components. Indexation can be
content-based or structure-based.

Prieto-Diaz [11] confronts two classification principles borrowed from library sci-
ence, to apply in component indexation. First, the enumerative method uses a classifica-
tion tree to organize components in categories and sub-categories. Second, the faceted
method describes components by a set of attributes (named facets); each facet is spec-
ified by setting a pertinent term value (comparable to attribute value, but restricted on
a list of possible values). Another option is using ontologies [20] to represent domain
knowledge associated with components.

Still another indexation solution uses component structure. The basic method relies
on component signature match [24], but it can be refined by a formal specification of
component behavior, used as a basis to behavior match [25].

3 A Proposal for Digital Content Components

3.1 Components’ Life Cycles

Any digital component infrastructure must support the entire cycle of component pro-
duction, storage, retrieval and use — see Fig. 1. Production comprises the well known
software component production process, which we propose to extend to any piece of data
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the user wants to share. Such components can be assembled automatically, or guided
by the user, through a tool named packager. The figure shows packager modules that
encapsulate distinct kinds of content components — spreadsheets, workflows, maps, etc. A
packager takes the form of a plugin attached to a software, which deals with the content, or
an independent module specialized to process some file formats. Components are stored
in a dynamic repository, and managed by a repository manager, which is accessed by
users to retrieve and combine them. Again in the figure, a developer uses an authoring tool
to compose distinct components — workflow, maps and workflow runtime engine — into
an executable unit to produce a map. This specific example reproduces a scenario we deal
with in UNICAMP, but without support of content components. In this scenario, experts
specify workflows to generate maps for environmental planning based on combining
several kinds of data. These workflows can then be run to produce distinct kinds of
environmental plans.
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Fig. 1. Diagram of content component cycle for production/storage/use

The starting point for our work is the Anima project, an infrastructure for software
components [ 14] developed by the first author. Anima is being used to create educational
tools in several schools in the city of Salvador, Brazil. Anima comprises the complete
cycle illustrated in Fig. 1, but restricted to software components and without database
support. It provides support to building applications via component composition and uses
RDF to represent component packages, including interface specification and component
metadata. This allows applications to deal with software components implemented in
different languages. An Anima application can be represented via a network of com-
ponents whose configurations are stored in an XML file. This file can be dynamically
converted into applications implemented in specific languages throughout XSLT sheets.
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Moreover, Anima provides support to component execution and intercommunication via
an XML based protocol.

With this background in mind, our research considers three aspects of content com-
ponents: representation, storage/retrieval management and use.

3.2 Component Representation

Content Component Structure

A component’s structure is defined to be a unit, composed of four distinct parts: (i) The
content itself, in its original format; (ii) an XML specification of the internal structure
used for component organization, based on SCORM [5], which allows a hierarchical
description of components and sub-components; (iii) an RDF specification of component
interfaces; (iv) RDF metadata to describe functionality, applicability, use restrictions,
etc. Components can be recursively constructed from composition of other components,
each of which in turn is structured by the same four parts. It is important to point out that
XML has been proposed for aspect (ii), whereas all others are to be specified in RDF.
These choices are based in the following criteria.

The internal organization structure follows a schema whose format and interpretation
applies to all components. XML is a better choice in this case, where it acts as structuring
element. Additionally, it allows inclusion of links to external pieces, allowing reuse by
reference, as explained in [7]. External referenced entities include data generated by
remote units, Web services, etc.

RDF is the choice to represent the interface and metadata, since descriptions and
taxonomies are involved. RDF descriptions will promote straightforward indexation
and component management support, and can be extended to represent ontologies with
OWL [18]. RDF metadata with digital signature can ensure component provenance, and
thus be used to control component quality based on the source.

Figure 2 shows a partial example of a component specification for encapsulating
rainfall data. The content part stores a list of geographic positions for the rainfall stations
coded in XML. The metadata part represents component’s title and category. Specific
terms employed — such as “XML Rainfall Station List” — are extracted from domain-
dependent ontologies (e.g., see [12]).

The interface part shows three inputs and two outputs. All inputs are categorized
as simple messages without parameters (“single”). Outputs describe in RDF how the
contents are formatted (type arrow) for a given ontological context within a domain on-
tology (category arrow). This shows output should always contemplate not only syntactic
information (i.e., XML schema), but also semantics (ontology terms).

This four-part structure for component representation, which extends the Software
Engineering concept of software component to any kind of content, and promotes inter-
operability, is an important contribution of this work. Related work deals with some of
these aspects in an isolated form, without an integration perspective.

Categories of Content Components

We differentiate between two kinds of component — process and passive components. A
process component is a specific kind of digital content component. It encapsulates any
kind of process description (sequences of instructions or plans) that can be executed by



Managing Dynamic Repositories for Digital Content Components 71
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Fig. 2. Diagram of content component structure

a computer. Therefore, they usually define an input interface, and their results change
according to different input values. The component of Fig. 2 is a non-process (passive)
component, and contains data that can be used by a process component. A passive
component’s interface matches the input interfaces of process components enabled to
use its contents.

In order to illustrate content component categories, we will borrow an example
from scientific applications. In this context, scientists are interested not only in reusing
results, but in sharing the whole process of experiment development. This originated the
notion of scientific workflows (e.g. [1]), to specify and record experiments; this allows,
among others, experiment reproducibility and therefore reuse. The WOODSS system
[15], developed by us, follows this approach: it enables the capture of activities in agro-
environmental planning to be stored as scientific workflows, which can be later edited,
composed and re-executed.

WOODSS’ users manage two main kinds of file: maps and workflows. The same
workflow can be executed using different input maps. Workflows are an example of our
process components, whereas maps are typically passive components. In our analogy,
a “workflow component” can be linked to different passive “map components”. Fur-
thermore, one may envisage defining interfaces to workflows, in RDF, that will impose
conditions on input files — e.g., indicating maps that can be acceptable as input.

Any digital content can potentially be packed in a component. The two requisites
for packaging are: existence of an appropriate packager for its format and, for process
components, existence of a runtime module enabled to run it. By the same token, two
or more components can be attached and packed into a higher level component. For
instance, consider a workflow component that receives two inputs: a map and a value v.
It applies a sequence of filters to the map, based on value v — and generates another map
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as output. These components can be stored separately or composed into a more complex
component that will deal with the specific map, and accept only input v.

Most process components cannot be executed directly, due to their need for inter-
preters or runtime modules, not embedded into their environment. In such cases, comple-
mentary attached components can perform this task. These complementary components
are named companion components. Process components, moreover serve as compan-
ions to passive components, i.e., a passive component needs some sort of code to be
processed.

The choice of the appropriate companion component to be associated to another
(passive or process) component is determined by the application manager, and is influ-
enced by the context. This allows dynamic component companion binding. Since this
binding is defined by the application manager, it is transparent to end users. This allows
a homogeneous treatment of passive and active components from the user’s perspective.

Using the Components
Content components can be used in many ways. Three forms of expected use are:
component insertion, content insertion and application construction.

In the first approach, components are inserted into documents or multimedia pro-
ductions as content pieces. This use of components can be compared with the insertion
of DDE/OLE objects into Windows documents, or insertion of embedded objects (such
as Java applets) into Web pages. The components inserted are commonly passive com-
ponents, or process components attached to passive components. For instance, a map
component attached to a workflow component can be inserted in a scientific report.

The content insertion approach is similar to component insertion. However, the client
unpacks component content and only this content is inserted into document or multi-
media production, without component structure and metadata. In this approach, content
components are used like content packages.

In the third usage form — application construction — components are used as basic
blocks to construct applications. Here, just like in software component composition, an
application is built from a network of interconnected components, following an archi-
tectural style [17].

This style guides digital content component usage and composition principles for
construction of applications. A software architecture using components defines a con-
figuration which involves components and connectors to bind components together. Our
principles combine the Anima model for component composition with some aspects of
the architectural style of C2 [22] — a message-based connection style for GUI software.

In our architecture each component is an independently executing peer, with its own
state and thread of control. Components can only communicate asynchronously with
other components via connectors — they can not use other forms of direct communication.
Connectors transport messages; messages must offer support for at least XML, but can
support another formats too (especially for performance purposes).

A message contains label, type and parameters represented in XML. The types’ for-
mats are defined by an XML schema and described by an associated RDF resource. The
same schemes, taxonomies and descriptions are used in component interface description.
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Figure 3 presents an example which combines process and passive components into
an application intended to display informations about a set of rainfall stations. A modified
version of the component illustrated in Fig. 2 will be used here, with some additional
informations about the stations.

To compose components together the application adopts an architectural style named
publish/subscribe [6]. Publish/subscribe style is based on messages produced by com-
ponents and distributed by a message manager. Components subscribe to events they are
interested in. Events are signalled by messages. In the example of Fig. 3, five components
are subscribing to events (represented by a large arrow).

Publishers are components that raise events by publishing a message that is forwarded
to every component that subscribes to that event. In the example, there are two visual
software components (at the left side) that play a role of buttons and publish messages
when the user clicks on them. The messages (“access” and “next”) are dispatched to
XML Rainfall Station List component, which subscribed to these events.

The “access” message induces the component to produce a “list” output message,
which contains the list of all rainfall stations. Two components containing XSL
stylesheets receive this message and convert it to a report and to a graphical represen-
tation of the rainfall station positions. The message “next” contains one rainfall station
(the next of the sequence) and follows an equivalent path. This composition results in a
browser of rainfall station lists.

subscribe (list) output
List Button XEBEishioiRepor Rainfall Station
i Set Report
—p list I?I report
g access|—#» —
7 —
? : subscribe (list) e
Vzzzzzzz subscribe (access, next) 5
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Fig. 3. Configuration that illustrates a content component composition

The configuration of components and connectors to form the application is stored in
an XML document. This document contains the initial configuration of each component
involved and the connectors configurations.

The representation of the connectors in the XML document depends on the archi-
tecture used to compose the components. In the publish/subscribe architecture, each
connection is associated with a component subscription.

The framework of content components is designed to be flexible enough to adopt
more than one architecture. Each kind of architecture is described and classified in a
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taxonomy by an RDF description. An XML schema determines the format used in the
XML file that stores the configuration. Based on the RDF description the framework
determines the role played by the components and connectors and how the configuration
file will be interpreted.

3.3 Component Storage and Retrieval Management

A digital content component is a combination of raw data, XML data and RDF data.
The solution requires devising a database capable to interpret and manage each format,
since XML and RDF data will be used for indexation and internal structure exploration
purposes.

There are many possible solutions to this problem. They involve, among others, con-
siderations and tradeoffs between constructing a native XML DBMS versus a relational
DBMS that maps XML (and RDF) data to their structure and vice-versa. The data can be
dynamically mapped from XML and RDF to a relational database and vice-versa. Shan-
mugasundaram [16] proposes a process to map XML to a relational database, which
unifies many partial solutions to this problem. RDF, on the other hand, is based in a
strong connected network of interdependent description elements. Therefore, besides
the mapping, it is necessary to devise a model to retrieve coherent fragments of RDF
data [3], preventing the transfer of large data volumes for each query.

Other possible solutions are the use of a native XML database, alone or combined with
a relational database. On the one hand XML data can be stored and indexed in a native
way, on the other hand there are limitations to current XML database implementations,
such as the need for consistency mechanisms, transaction support, etc. To store RDF data
in an XML database will require a costly process to code and decode the descriptions
from XML data.

One of the purposes of this project will be to identify the best storage solution, as
well to combine it with a procedure to index and retrieve components. It will result
in a dynamic component repository, in the sense that components may be dynamically
combined. Indexation will be based on adapting and combining three techniques to the
context of content component: use of ontologies [20], component signature match [24]
and behavior match [25].

In many cases the connection of two components will need other intermediate compo-
nents, responsible for adaptations and conversions. The component repository manager
can find such components comparing input/output interfaces; however, this process can
produce many options for the same connection. Metadata associated with components
can then be used to help choose the adequate component configuration, e.g., for a given
quality requirement.

Another direction is to use the notion of DBMS monitoring to track the rate of use of
each repository component, and the rate of adopted combinations. This will help guide
the search for adequate component combination, based on previous experience, and can
indicate the quality of component, based on its use rate.

3.4 Reference Implementation Framework

The project includes a construction of a reference implementation framework to: pro-
vide an infrastructure for components execution and intercommunication; interact with
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a database to store/retrieve components; and provide support to component insertion,
adaptation and reuse by applications. This framework will be based in the Anima infras-
tructure [14].

The Anima model is being extended to support any kind of content. This work in-
cludes the extension of Anima’s software component model — presently based on mod-
ules coded in some program language — to deal with other types of process components,
such as workflows and spreadsheets, which can act in many cases like software compo-
nents. The construction of a workflow runtime component will be based in WOODSS. A
spreadsheet runtime will explore a bridge to a spreadsheet system, such as the Universal
Network Objects (UNO) [21], an interface-based component model of the OpenOffice
system.

4 Concluding Remarks

This project combines work in Software Engineering with Semantic Web and database
interoperability efforts. The main contribution is the formulation of an integrated view
over these research areas, taking advantage from progress in the software components
area to support development of applications in the Semantic Web. Another contribu-
tion is the four-part structure and the use of RDF to promote component specification
interoperability, which will enhance component storage and indexation over different
languages and standards.

The work proposed, under development, is based on previous experience in construc-
tion component-based applications for the educational domain [14], and on the use of
scientific workflows, stored in databases, for reuse and interoperability of environmental
applications [15].
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Abstract. Research on recommender systems has primarily addressed centralized
scenarios and largely ignored open, decentralized systems where remote informa-
tion distribution prevails. The absence of superordinate authorities having full
access and control introduces some serious issues requiring novel approaches and
methods. Hence, our primary objective targets the successful deployment and inte-
gration of recommender system facilities for Semantic Web applications, making
use of novel technologies and concepts and incorporating them into one coherent
framework.

1 Introduction

Automated recommender systems intend to provide people with recommendations
of products they might appreciate, taking into account their past product ratings profile
and history of purchase or interest. Most successful systems apply so-called social
filtering techniques [9], dubbed collaborative filtering [6]. These systems identify
similar users and make recommendations based upon products people utterly
fancy.

Unfortunately, common collaborative filtering methods fail when transplanted into
decentralized scenarios. Analyzing the issues specific to these domains, we believe that
two novel approaches may alleviate the prevailing problems, namely trust networks,
along with trust propagation mechanisms, and taxonomy-driven profile generation and
filtering. One aspect of our work hence addresses the conception of suitable components,
specifically tailored to suit our decentralized setting, while another regards the seamless
integration of these latter building bricks into one single, unified framework. Empirical
analysis and performance evaluations are conducted at all stages.

2 Research Issues

Deploying recommender systems into the Semantic Web implies diverse, multi-faceted
issues, some of them being inherent to decentralized systems in general, others being
specific. Hereby, our devised Semantic Web recommender system performs all recom-
mendation computations locally for one given user. Its principal difference from generic,
centralized approaches refers to information storage, supposing all user and rating data
distributed throughout the Semantic Web. Hence its decentralized nature. We thus come
to identify several research issues:

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 78-89, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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— Ontological Commitment. Basically, the Semantic Web is made up of machine-

readable content distributed all over the Web. In order to ensure that agents can
understand and reason about the respective information, semantic interoperability
via ontologies or common content models must be established. For instance, FOAF
[5], an acronym for “Friend of a Friend”, defines an ontology for establishing simple
social networks and represents an open standard agents can rely upon.
Interaction Facilities. Decentralized recommender systems have primarily been
subject to multi-agent research projects. In suchlike settings, environment models
are agent-centric, enabling agents to directly communicate with their peers and thus
making synchronous message exchange feasible. The Semantic Web, being an ag-
gregation of distributed metadata, constitutes an inherently data-centric environment
model. Messages are exchanged by publishing or updating documents encoded in
RDF, OWL, or similar formats. Hence, the communication becomes restricted to
asynchronous message exchange only.

Security and Credibility. Closed communities generally possess efficient means to
control the users’ identity and penalize malevolent behavior. Decentralized systems,
among those peer-to-peer networks, open marketplaces and the Semantic Web, like-
wise, cannot prevent deception and insincerity. Spoofing and identity forging thus
become facile to achieve [22]. Hence, some subjective means enabling each indi-
vidual to decide which peers and content to rely upon are needed.

Computational Complexity and Scalability. Centralized systems allow for es-
timating and limiting the community size and may thus tailor their filtering sys-
tems to ensure scalability. Note that user similarity assessment, which is an integral
part of collaborative filtering [6], implies some computation-intensive processes.
The Semantic Web will once contain millions of machine-readable homepages.
Computing similarity measures for all these “individuals” thus becomes infeasible.
Consequently, scalability can only be ensured when restricting these computations
to sufficiently narrow neighborhoods. Intelligent filtering mechanisms are needed,
still ensuring reasonable recall, i.e., not sacrificing too many relevant, like-minded
agents.

Low Profile Overlap. Interest profiles are generally represented by vectors indicat-
ing the user’s opinion for every product. In order to reduce dimensionality and ensure
profile overlap, some centralized systems like Ringo [20] require users to rate small
subsets of the overall product space. These mandatory assessments, provisional tools
for creating overlap-ensuring profiles, imply additional efforts for prospective users.
Other recommenders, among those GroupLens and MovieLens [14], operate in do-
mains where product sets are comparatively small. On the Semantic Web, virtually
no restrictions can be imposed on agents regarding which items to rate. Hence, new
approaches to ensure profile overlap are needed in order to make profile similarity
measures meaningful.

Proposed Approach

Endeavors to ensure semantical interoperability through ontologies constitute the corner-
stone of Semantic Web conception and have been subject to numerous research projects.
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We do not concentrate our efforts on this aspect but suppose data compatibility from
the outset. Our interest rather focuses on handling computational complexity, security,
data-centric message passing, and profile vector overlap. Hereby, our approach builds
upon two fundamental notions, namely taxonomy-driven interest profile assembly and
trust networks. The exploitation of synergies of both intrinsically separate concepts helps
us leverage recommender system facilities into the Semantic Web.

3.1 Information Model

The infrastructure of the Semantic Web defines interlinked XML-documents made up
of machine-readable metadata. Our information model presented below well complies
with its design goals and allows facile mapping into RDF, OWL, etc.:

- Setofagents A = {a1, as, ..., ay,}. Set Acontains all agents part of the community.
Globally unique identifiers are assigned through URIs.

— Set of products B = {b1,bs, ..., b, }. All products considered are comprised in
set B. Hereby, unique identifiers may refer to product descriptions from an online
shop agreed upon, such as Amazon.com, or globally accepted codes, like ISBNs in
case of books.

— Set of partial trust functions 7' = {t1,to,...,t,}. Every agent a; € A has one
partial trust function ¢; : A — [—1, —&—1]l that assigns continuous trust values to its
peers. Functions ¢; € A are partial since agents generally only rate small subsets of
the overall community, hence rendering ¢; sparse:

p, if trust(a;,a;) =p
tila;) = { L, if no trust sta]tement for a; from a; M
) J 7
We define high values for ¢;(a;) to denote high trust from a; in a;, and negative
values to express distrust, respectively. Values around zero indicate the absence of
trust, not to be confused with explicit distrust [11].

— Set of partial rating functions R = {rq,r9,...,7,}. In addition to functions
t; € T, every a; € A has one partial function r; : B — [—1,+1]* that expresses
his liking or dislike of product b, € B. No person can rate every available product,
so functions r; € B are necessarily partial.

p, if rates(a;,br) = p

ri(be) = { 1,ifno rat(ing for) by, from a; )

Intuitively, high positive values for r; (b, ) denote that a,; highly appreciates by, while
negative values express dislike, respectively.

- Taxonomy C over set D = {d;,ds,...,d;}. Set D contains categories for product

classification. Each category d. € D represents one specific topic that products by, €

B may fall into. Topics express broad or narrow categories. The partial taxonomic

order C' : D — 2P retrieves all immediate sub-categories C(d.) C D for topics

d. € D.Hereby, we require that C'(d.)NC(dy,) = @ holds foralld.,dy, € D,e # h,

hence imposing tree-like structuring, similar to single-inheritance class hierarchies

known from object-oriented languages. Leaf topics d, are topics with zero outdegree,

formally C'(d.) = L, i.e., most specific categories. Furthermore, taxonomy C' has
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exactly one top element T, which represents the most general topic and has zero
indegree.

— Descriptor assignment function f : B — 2. Function f assigns a set D), C
D of product topics to every product b, € B. Note that products may possess
several descriptors, for classification into one single category generally entails loss
of precision.

We suppose all information about agents a;, their trust relationships ¢; and ratings
r; stored in machine-readable homepages distributed throughout the Web. Contrarily,
taxonomy C/, set B of products and descriptor assignment function f must hold globally
and therefore offer public accessibility. Central maintenance of this information hence
becomes inevitable. Later on, we will demonstrate that such sources of information for
product categorization already exist for certain application domains.

3.2 Trust-Based Neighborhood Formation

The computation of trust-based neighborhoods constitutes one pivotal pillar of our ap-
proach. Clearly, neighborhoods are subjective, reflecting every agent a}s very beliefs
about the accorded trustworthiness of immediate peers. The incorporation of trust-based
social networks basically addresses two of the above-stated issues, namely security and
credibility of information provided, and computational complexity:

Maintaining Security and Credibility. Trust renders automatic recommendation gen-
eration for a; secure, making a; rely upon opinions from peers deemed trustworthy only.
Note that in general, collaborative filtering tends to be highly susceptive to manipula-
tion. For instance, malicious agents a; can accomplish high similarity with a; simply
by copying its rating profile [16].

Dealing with application scenarios subject to central control and monitoring, attacks
on recommender systems only pose minor concerns. Contrarily, on the Semantic Web,
where, according to Tim Berners-Lee, “anyone can say anything about anything”, attack-
resistance and robustness may become an important criterion for recommender systems.
Hence, as Marsh [11] already indicated, trust makes agents “less vulnerable to others”.

Computational Complexity Reduction. However, for our scenario, trust also serves
another purpose, namely that of detecting similar peers. Neighborhood formation based
upon common collaborative filtering techniques requires O(| A|?) time complexity and
thus lacks scalability for decentralized scenarios. Contrarily, trust-driven neighborhood
formation schemes actually do scale well. However, substituting common neighborhood
formation approaches only makes sense when ensuring that trust also reflects similarity
to a certain extent:

Recent studies by Swearingen and Sinha [21] provided empirical evidence that people
tend to rely upon recommendations received from trusted fellows, i.e., friends, family
members etc., more than upon online recommender systems. Moreover, own research
endeavors [22] revealed that trust and interest similarity tend to positively correlate,
justifying trust as an appropriate supplement or surrogate for collaborative filtering.
Results from social psychology back our findings, since positive association between
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Fig. 1. All Consuming’s largest trust network cluster

attitudinal similarity and interpersonal attraction has effectively become one of this
discipline’s most reliable findings [3].

Massa [12] conducted experiments on top of the well-known Epinions rating com-
munity (http://www.epinions.com), revealing that similarity computation based upon
common collaborative filtering approaches fails when supposing very large product sets,
hence making neighborhood formation impossible. Operating on the same data, Massa
found that “trust-aware techniques can produce trust scores for very high numbers of
peers”. Neighborhood formation thus becomes more facile to achieve.

Figure 1 shows the largest cluster of the All Consuming community trust network, vi-
sualized with layouting tools we implemented for that purpose. Note that approximately
95% of all members are part of the latter cluster, isolating comparatively few peers and
levelling the ground for effective neighborhood formation.

Trust Propagation Models. Trust-based neighborhood detection for a;, using those
“trust-aware techniques” mentioned by Massa, implies deriving trust values for peers
a; not directly trusted by a;, but one of the persons the latter agent trusts directly or
indirectly. Note that functions ¢, (a; ) are commonly sparse, providing values for only few
aj compared to A’s overall community size. Hence, trust metrics exploit the “conditional
transitivity” property of trust [1] and allow for rendering trust functions dense.
Numerous scalar metrics [4, 10] have been proposed for computing trust between
two given individuals a; and a;. We hereby denote computed trust weights by t§(a;) as
opposed to explicit trust ¢;(a;). However, our approach requires metrics that compute
nearest trust neighbors, and not evaluate trust values for any two given agents. We hence
opt for local group trust metrics [23], which have only been attracting marginal interest
until now. The most important and most well-known local group trust metric is Levien’s
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Advogato metric [10]. However, the metric can only make boolean decisions with respect
to trustworthiness, classifying agents into trusted and untrusted ones.

Appleseed [23], our own novel proposal for local group trust computation, allows
more fine-grained analysis, assigning continuous trust weights for peers within trust
computation range. Rankings thus become feasible. Appleseed’s principal concepts de-
rive from spreading activation models [18], which have been conceived for modelling
human semantic memory. Appleseed operates on partial trust graph information, explor-
ing the social network within predefined ranges only and allowing the neighborhood
detection process ro retain scalability. Hereby, high ranks are accorded to trustworthy
peers, i.e., those agents which are largely trusted by others with high trustworthiness,
similar to PageRank [17]. These ranks are used later on for selecting agents deemed
suitable for making recommendations.

3.3 Taxonomy-Driven Similarity Metrics

Trust allows selecting peers with overall above-average interest similarity. However, for
each active user, some peers having completely opposed interests generally exist. The
proposition that interpersonal attraction, and hence trust, implies attitudinal similarity
does not always hold true. Supplementary filtering thus becomes indispensable. Two
approaches are conceivable:

— User-User Closeness. Additional filtering based upon profile similarity c(a;, a;)
between agents a;, a; is applied to the neighborhood of a;’s trustworthy peers. The
resulting set of peers only contains trusted peers which are guaranteed to resemble
the active user a;.

— Product-User Relevance. Instead of pruning the very neighborhood, one could also
consider the set of all products by, appreciated by at least one of a;’s neighbors and
dispose of those products not fitting the interest profile of a;. We hereby denote the
relevance of by, for a; by cp(a;, bg).

For both cases, the filtering task faces the problem of low profile overlap by virtue
of information sparseness and potentially large product sets [12]. In order to alleviate
the prevailing issue, we propose taxonomy-driven profile computation [22, 24], which
allows to derive similarity between users a; and a; even though these peers have not rated
one product in common. Moreover, our novel filtering method also permits to compute
similarity between two products by, by,.

Profile Generation. Our approach to taxonomy-driven generation of interest profiles
[22, 24] extends basic ideas derived from Middleton’s ontology-enhanced content-based
filtering method [13]. In contrast to generic feature-based filtering, product categories
still play an important role, but we have them arranged in a taxonomy and not separate
from each other. Products by, bear topic descriptors dj, € f(by) that relate these by, to
taxonomic nodes. Several classifications per product are possible, hence | f(b;)| > 1.
Each product the user likes infers some interest score for those di,, € f(by). Since these
categories dy, are arranged in taxonomy C', we can also infer a fractional interest for all
super-topics of dy, . Hereby, remote super-topics are accorded less interest score than
super-topics close to dy, . Assume that (pg, p1, . .., p,) gives the path from top element
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[ Archaelogy ] [ Astronomy ] [ Medicine ] [Mathematvcs]

[ App:\led ][ Pure ][ Hus:ory ]

Fig. 2. Small fragment from the Amazon.com book taxonomy

po = T tonode p; = dy, . Function sib(p) returns the number of p’s siblings, while
sco(p) returns p’s score:

 sco(pman)
sib(pm1) +1

Scores are normalized, i.e., all topic score that a;’s profile assigns to nodes from
taxonomy C' amounts to some fixed value s. Hence, high product ratings from agents
with short product rating histories have higher impact on profile generation than product
ratings from persons issuing rife ratings. Score s is divided evenly among all products that
contribute to a;’s profile makeup. Factor « permits fine-tuning the extent of super-topic
score inference, depending on the underlying taxonomy’s depth and granularity.

Vm € {0,1,...,q — 1} : sco(pm) = & 3)

Example 1 (Topic Score Assignment). Suppose the taxonomy given in Figure 2 which
represents a tiny fragment from the Amazon.com book taxonomy, and propagation factor
k = 1. Let user a; have mentioned 4 books, namely Matrix Analysis, Fermat’s Enigma,
Snow Crash, and Neuromancer. For Matrix Analysis, 5 topic descriptors are given, one
of them pointing to leaf topic ALGEBRA within our small taxonomy.

Suppose that s = 1000 defines the overall accorded profile score. Then the score
assigned to descriptor Algebra amounts to s / (4 - 5) = 50. Ancestors of leaf Algebra
are Pure, Mathematics, Science, and top element Books. Score 50 hence must be
divided among these topics according to Equation 3. Score 29.087 becomes accorded to
topic Algebra. Likewise, we get 14.543 for topic Pure, 4.848 for Mathematics, 1.212
for Science, and 0.303 for top element Books. These values are then used to build the
profile vector of user a;.

Success or failure of our approach largely depends upon taxonomy C used for clas-
sification. The more thoroughly crafted and fine-grained the latter taxonomy, the more
meaningful our profile information becomes. Clearly, topic descriptors f(by) for prod-
ucts b; must be chosen skillfully, too. By virtue of inference of fractional interest for
super-topics, one may establish high user similarity for users which have not even rated
one single product in common, as has been indicated before. According to our scheme,
the more score two profiles have accumulated in same branches, the higher their com-
puted similarity.
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Similarity Computation. Taxonomy-driven interest profiles form the grounding for
our novel filtering paradigm. Similarity computation between agents a;, a;, and between
agents a; and products by, respectively, requires some distance metric.

For our approach, we apply common nearest-neighbor techniques, namely Pearson
correlation [6, 20] and cosine distance known from information retrieval. Hereby, profile
vectors map category score vectors from C' instead of plain product-rating vectors. High
similarity evolves from interest in many identical or related branches, whereas negative
correlation indicates diverging interests.

For instance, suppose a; reads literature about Applied Mathematics only, and
a; about Algebra, then their computed similarity will be high, considering significant
branch overlap from node Mathematics onward.

3.4 Recommendation Generation

We already indicated that two alternative designs are viable for post-filtering trust
neighborhoods. We opt for product-user relevance, i.e., deferring supplementary
neighborhood filtering into the recommendation process. We hence consider all peers
part of the trust neighborhood, but weed out products not matching the active user
a;’s profile.

The relevance of some product by, one of a;’s trusted peers recommends then depends
on various factors, the two most important aspects being the following ones:

— Accorded trust ¢{(a;) of peers a; mentioning b,. Trust-based neighborhood for-
mation substitutes finding nearest neighbors based upon interest similarity. Likewise,
similarity ranks c(a;, a;) become replaced by trust weights t7(a;) for computing
the predicted relevance of by, for a;.

— Content-based relevance c;(a;, by,) of product by, for user a;. Besides mere trust-
worthiness of peers a; rating product by, the content-based relevance of by, for the
active user a; is likewise important, e.g., one may consider the situation where even
close friends recommend products not fitting our interest profile at all.

Since both functions, i.e., t7(a;) and cy(a;, by), operate on completely different
scales, the conversion of these absolute weights into ranks seems appropriate. For in-
stance, the trusted agent a; with highest trust weight ¢§(a;) obtains rank 1, and so forth.
Likewise, the product by with highest similarity c;(a;, by ) to the active user a;’s interest
profile becomes top-ranked.

Besides merging trustworthiness and content-based relevance ranks, other factors
involved comprise product rating frequency and product description richness. Product
rating frequency intends to reward products b, recommended by numerous trusted peers,
while description richness penalizes products bearing overly general taxonomic descrip-
tions. The final ranks of products by, eventually constitute the foundation for assembling
top-/NV recommendation lists for the active user a;.

! Supposing implicit product ratings only, the generation of taxonomy-driven profiles
for products bi equates profile generation for pseudo-user ag having implicitly rated by
only.
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3.5 Supplementary Fine-Tuning

Taxonomy-driven profile generation renders another mechanism, dubbed “topic diver-
sification” [24], feasible. Hereby, our novel approach, optionally applicable on top of
recommendation generation, allows rearrangement of the active user a;’s recommen-
dation list in order to better reflect a;’s full range of interests, considering the impact
of specific topics a; implicitly declares interest in. For instance, suppose that novels
classifying under Modern German Poetry have twice the share of Social Psychology in
a'i’s reading list. Then post-processing of a;’s recommendation list by means of topic
diversification procedures allows to fully account for that fact.

To our best knowledge, no similar approaches exist or have been documented in
literature affiliated with recommender systems. Moreover, topic diversification becomes
even more valuable when making recommendations across diverse domains of interest,
e.g., books, DVDs, apparel, etc.

Other enhancements include considering explicit product ratings for recommenda-
tion generation whenever available. However, note that most scenarios only allow for
collecting implicit ratings, e.g., purchase data, product mentions, etc., rather than explicit
ones.

4 Real-World Deployment

Section 3.1 exposed our envisioned information infrastructure. We will show that such
an architecture may actually come into life and become an integral part of the Semantic
Web:

— Social Networks. FOAF defines machine-readable homepages based upon RDF
and allows weaving acquaintance networks. Golbeck [5] proposed some modifica-
tions making FOAF support “real” trust relationships instead of mere acquaintance-
ship.

— Product Rating Information. Moreover, FOAF networks seamlessly integrate with
so-called “weblogs”, which are steadily gaining momentum. These personalized
“online diaries” are especially valuable with respect to product rating information.
For instance, some crawlers extract certain hyperlinks from weblogs and analyze
their makeup and content. Hereby, those referring to product pages from large cat-
alogs like Amazon.com (http://www.amazon.com) count as implicit votes for these
goods. Mappings between hyperlinks and some sort of unique identifier are required
for diverse catalogs, though. Unique identifiers exist for some product groups like
books, which are given “International Standard Book Numbers”, i.e., ISBNs. Ef-
forts to enhance weblogs with explicit, machine-readable rating information have
also been proposed and are becoming increasingly popular. For instance, BLAM!
(http://www.pmbrowser.info/hublog/) allows creating book ratings and helps em-
bedding these into machine-readable weblogs.

— Product Classification Taxonomies. Besides user-centric information, i.e., agent
a;’s trust relationships ¢; and product ratings r;, taxonomies for product classifica-
tion play an important role within our approach. Luckily, these taxonomies exist for
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certain domains. Amazon.com defines an extensive, fine-grained and deeply-nested
taxonomy for books, containing thousands of topics. More important, Amazon.com
provides books with subject descriptors referring to the latter taxonomy. Similar
taxonomies exist for DVDs, CDs, and videos. Standardization efforts for product
classification are channelled through the “United Nations Standard Products and
Services Code” project (http://www.unspsc.org/). However, the UNSPSC’s taxon-
omy provides much less information and nesting than, for instance, Amazon.com’s
taxonomy for books.

5 Experimental Setting

We created an experimental environment simulating the infrastructure proposed above.
Hereby, by means of crawlers and screen scrapers, we gathered information from vari-
ous trust-aware online communities like All Consuming (http://www.allconsuming.net),
and Advogato (http://www.advogato.org), extracting information about approximately
10, 000 users a;, their trust relationships ¢; and implicit product ratings r;. Ratings were
obtained from All Consuming only.

Moreover, we captured Amazon.com’s huge book taxonomy, made up of 13,525
hierarchically arranged topics d., and categorization data about 11,031 books b, that
All Consuming community members mentioned. Tailored crawlers search the Web for
weblogs and ensure data freshness. All our experiments and empirical evaluations were
based upon this “real-world” data.

6 Related Work

Recommender systems have begun attracting major research interest during the early
nineties [6]. Nowadays, commercial and industrial systems are rife and wide-spread,
detailed comparisons concerning features and approaches are given in [19]. Recom-
mender systems differ from each other mainly through their filtering method. Hereby,
distinctions between three types of filtering systems are made [6], namely collaborative,
content-based and economic. Collaborative filtering systems [20] generate recommenda-
tions obtained from persons having similar interests. Content-based filtering only takes
into account descriptions of products, based upon metadata and extracted features. Eco-
nomic filtering has seen little practical application until now and exerts marginal impact
only.

Modern recommender systems are hybrid, combining both content-based and col-
laborative filtering facilities in one single framework. Fab [2] counts among the first
popular hybrid systems, more recent approaches have been depicted in [7] and [13].
Our filtering approach, comprising taxonomy-based profile generation and similarity
computation, also exploits both content-based and collaborative filtering facilities. Trust
networks add another supplementary level of filtering.

Initial attempts have been taken towards transplanting recommender systems into
decentralized scenarios. Olsson [15] gives an extensive overview of existing approaches.
Kautz et al. [9] extract implicit social network structures from the Web, using them
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as foundations for recommender system services operating on top of these networks.
Jensen et al. [8] propose an approach called “explicit peer-based systems”, which makes
recommendations based upon friends’ opinions.

7 Future Directions

Our past efforts have mainly focused on designing suitable trust metrics for computing
trust neighborhoods [23], and conceiving metrics for making collaborative filtering ap-
plicable to decentralized architectures [22]. Moreover, we have shaped and synthesized
an extensive infrastructure based upon “real-world” data from various communities and
online stores.

Until now, our analysis has been largely confined to the book domain only. Future
research will also include movies and other specific product groups and investigate the
intrinsic differences between these groups. For instance, Amazon.com’s taxonomy for
DVD classification contains more topics than its book counterpart, though being less
deep. We would like to better understand the impact that taxonomy structure may have
upon profile generation and similarity computation.

Moreover, owing to the fact that our novel taxonomy-driven filtering approach yields
excellent results compared to generic benchmark systems when dealing with information
sparseness [24], we are planning to investigate our filtering paradigm’s performance
when applied to dense product rating datasets, likewise.
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Abstract. Trust negotiation is a promising approach for establishing trust in open
systems like the Internet, where sensitive interactions may often occur between
entities with no prior knowledge of each other. In this paper we present the work
carried on so far in the area of trust negotiation as part of the Ph.D. activity. More
precisely, we describe Trust-X’, the XML based framework for trust negotiations
we have developed, and emphasize the open issues to be covered.

1 Introduction

The extensive use of the web for exchanging information and requiring or offering
services require to deeply redesign the way access control is usually performed. In a
conventional system, the identity of subjects is the main common access control mech-
anism used to make authorization decisions. Every entity that can access such systems
has one or more identities in that domain. The underlying assumption is that entities
in the system already know each other, and no trust issue arises. Therefore, the system
relies on party identities to grant or deny authorizations. Even if in some contexts there
is trust issue, like in traditional client-server systems, the trust establishment is often
one-directional, in the sense that the server is a well-known service provider. Before
requesting any service, the client must prove it is qualified for that service. In this case,
trust establishment is often handled by uni-directional access control methods.

This paradigm is not suitable for open environments, where most of the interactions
occur between strangers that do not know each other before the interaction takes place.
The entities need not only to authenticate each other, but also to trust each other in order
to exchange sensitive information and resources. Interactions are further complicated by
the fact that usually the interacting entities belong to different security domains and/or do
not have any pre existing relationships. In order to address such issues, trust negotiation
[10] has been proposed as a new authorization model for open systems. The goal of a
trust negotiation is to allow parties having no pre existing relationship to confidently
perform sensitive interactions. In trust negotiation mutual trust is established through
mutual exchange of properties of the parties, certified by digital credentials. Disclosure
of credentials, in turn, is usually protected through the use of policies that specify which
credentials must be received before the requested credential can be disclosed.

In this paper we present the work carried on in the area of trust negotiation as part of
the Ph.D. activity. The remainder of this paper is organized as follows. In Section 2 we
summarize the trust negotiation model, and discuss relevant open issues to be covered.

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 90-99, 2004.
(© Springer-Verlag Berlin Heidelberg 2004



Trust Negotiation Systems 91

In Section 3 we give an overview of Trust-X, the core system for support of negotiations
we have developed in the beginning of our Ph.D. activity. In Section 4 we focus on
the new extensions we have recently added to the system, on the basis of the analysis
performed over this preliminary version and an in-depth comparison of our system with
the existing ones. Finally in Section 5 we point out the main issues we plan to investigate
in future.

2 Open Issues in Trust Negotiations

Trust negotiation is an emerging and promising approach to establish trust between
strangers in order to exchange sensitive resources. The notion of resource in trust nego-
tiation comprises any sensitive object (e.g., health records, credit card numbers) whose
disclosure needs to be protected. The approach of automated trust negotiation essentially
differs from traditional identity based access control systems mainly in the following
aspects:

— Theinvolved parties are unknown to each other and usually belong to different security
domains. Trust is dynamically established on the basis of parties properties, which are
implemented using digital credentials. Digital credentials must be unforgeable and
verifiable. To ensure such properties credentials are digitally signed using PKI [11].
Typically, a digital credential contains a set of attributes specified using name/value
pairs. The document is signed using the issuer’s private key and can be verified using
the issuer’s public key. The X.509 V3 standard [9] is the most used technique for
encoding digital credentials.

— Every party can define ad hoc access control policies to control sensitive resource
disclosure, known as disclosure policies. Disclosure policies inform a negotiation
counterpart of the credentials to disclose to advance the negotiation. Essentially, dis-
closure policies state the conditions that the counterpart should satisfy, and are ex-
pressed as constraints against the credentials possessed and on associated attributes.
Further, depending on their contents, credentials may be sensitive. For example, a
credential may contain non-public attributes about an individual such as a credit card
number.

— Parties establish trust directly without involving trusted third parties, other than cre-
dential issuers. The trust negotiation approach can employ a peer-to-peer architecture:
all entities may possess sensitive resources to be protected and can act as clients as
well as servers during different negotiations. Thus, they all must be equipped with a
compliant negotiation system. Trust negotiation is triggered when a party acting as
the client makes a request to the party acting as a server and controlling access to a
sensitive resource according to an access control policy. Trust is thus incrementally
built by iteratively disclosing digital credentials, in order to verify properties of the
negotiating parties.

— The runtime system for trust negotiation includes a negotiation manager at each party
to control all aspects of a negotiation. The manager may adopt a strategy to determine
which credentials to disclose and when. The core of the system is a compliance
checker, the module empowered to test whether disclosure policies are satisfied.
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Although quite simple at first glance, a number of interesting theoretical and practical
issues arise when dealing with trust negotiation systems, concerning aspects like policy
language expressiveness and the associated infrastructures supporting trust negotiation
processes. A first issue concerns the development of a solid and theoretical underpin-
ning theory for trust languages and algorithms. A trust negotiation language should be
powerful enough to express a wide range of protection requirements, including support
for credential chains and authentication of the submitter. For what concern negotiation
systems, the challenge is to devise solutions trading off among several requirements,
often in conflict with each other. On one hand such systems should be flexible, scalable
and portable, on the other hand they should support advanced functions, such as support
for credential chains, authentication of multiple identities, complex compliance checker
mode whose efficient implementation is often difficult. In particular, the compliance
checker should be able to interpret a remote policy and check whether there exists a set
of local credentials that satisfy the received policy, and the communication and compu-
tation costs should be not prohibitive. The system should also be strong enough to limit
damages caused by intruders attacks or interception. Finally, completeness and termi-
nation are also desiderable properties: a negotiation should always succeed whenever
possible, and efficiently terminate whenever a successful negotiation is not possible.

Trust negotiation for web-based applications has been recognized as an interesting
and challenge research area to explore, and it has been the subject to intensive work in the
recent years. As aresult, a variety of systems and prototypes have been recently developed
[6,8, 12, 14]. However, all these proposals mainly focus on one of the aspects of trust
negotiation, such as for instance policy and credential specification, or the selection
of the negotiation strategy, but none of them provide a comprehensive solution to trust
negotiation. Furthermore, most of the systems are based on some unrealistic assumptions
that limit the applicability of the approach. For instance, TN systems usually assume that
all the credentials associated with a party are at the user sites. However, in a large number
of application environments credential storage is not centralized. None of the existing
systems address how to obtain credentials, assuming that the entity disclosing credentials
has full responsibility for obtaining and caching them locally. No real protection against
attacks on negotiating parties is provided, such as credential theft or man identity theft
[11]. The shortcomings we have identified in trust negotiation systems grew out of our
analysis of existing trust negotiation systems [6, 8, 12, 14].

Such survey [3] led us devising Trust-X, an XML-based framework supporting trust
negotiation in a comprehensive and sound manner. In designing the framework we were
first guided by the design criteria outlined in [10]: our goal was to address many of the
trust negotiation requirements identified by the authors. In addition to the desiderata
referred in [10], we have identified other dimensions in [3], such as the efficiency and
the need of privacy protection mechanisms. We further elaborate on such issues and the
solutions we have devised in next sections.

3 Core Trust-X

Trust-X aims at providing a comprehensive infrastructure for trust negotiation, com-
posed by a complete and expressive syntax formalized by the most used representation
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language (e.g. XML) and supported by an efficient and modular engine. The language,
called X-TNL, has been presented in [4] and has been developed to provide a powerful
and complete language supporting negotiations. X'-TNL certificates are the means to
convey information about the profile of the parties involved in the negotiation. A cer-
tificate can be either a credential or a declaration. The notion of certificate allows us
to better support information exchange, and distinguish from certificates that need a
digital signature of Authorities and those where digital signature is of the owner (owner
and issuer are the same entity). A credential is a set of properties of a party certified
by a Certification Authority (CA) and digitally signed by the issuer, according to the
standard defined by W3C for XML Signatures [1]. X'-TNL simplifies the task of cre-
dential specification because it provides a set of templates called credential types, for
the specification of credentials with similar structure. A credential type is modeled as a
DTD and a credential as a valid document with respect to the corresponding credential
type.

Declarations, instead, are set of data without any certification, which use improves
language flexibility and expressive power. Declarations, indeed, can encode data pro-
viding auxiliary information that are commonly required during negotiation process and
that can not be modeled by credentials. (Examples of these information regard personal
preferences and needs). All certificates associated with a party are collected into a unique
XML document, called X'- Pro file. Each X'-Profile is organized into Data sets, to opti-
mize X'-profile organization. Each data set collects a class of credentials and declarations
referring to a particular aspect of the life of their owner, and can thus facilitate certificate
retrieval and exchange during negotiation.

A fundamental construct of X'-TNL is given by disclosure policies, that encode se-
curity requirements. Disclosure policies state the conditions under which a resource can
be released during a negotiation. Conditions are expressed as constraints on the certifi-
cates possessed by the parties involved in the negotiation and on their attributes. Each
party adopts its own Trust-X disclosure policies to regulate release of local information
(that is, credentials or even policies through policy chains) and access to services. Sim-
ilar to certificates, disclosure policies are encoded using XML. Additionally, Trust-X
policies have been formalized as logical rules, to simplify the encoding of compliance
checker and runtime systems algorithms. Expressing credentials and security policies
using XML has several advantages. First, the protection of Web data and their security
related information is uniform, in that credentials and policies are XML documents and
thus can be protected using the same mechanisms developed for the protection of con-
ventional XML documents. Furthermore, the use of an XML formalism for specifying
credentials facilitates credential submission and distribution, as well as their verification
by use of a query language such as XQuery [1]. Also, X-TNL addresses the problem of
vocabulary agreement, by using XML Namespaces. The use of namespaces combined
with the certificate type system helps trust negotiation software to correctly interpret
different credentials, even if they are issued by entities which do not share a common
ontology.

Trust-X also comprises an architecture for negotiation management which is sym-
metric and peer-to-peer, as shown in Figure 1. A Trust-X negotiation consists of a set of
phases, sequentially executed. The idea is to disclose policies at first, in order to limit
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Fig. 1. Architecture for Trust-X'. Modules supported only by the Extended Trust-X are shadowed

credential release, and then disclose only those credentials that are necessary for the
negotiation success. This distinction results in an effective protection of all the resources
involved during negotiations: certificates and services are disclosed only after a complete
counterpart policies evaluation, that is, only when the parties have found a sequence of
certificate disclosure that make it possible to release the requested resource. The key
phase of a Trust-X negotiation is thus the policy evaluation phase which consists of a
bilateral and ordered policy exchange. The goal is to determine a sequence of creden-
tials, called trust sequence, satisfying disclosure policies of both parties. During this
phase, both client and server communicate disclosure policies adopted for the involved
resources, until both client and server determine one or more set of policies that can be
satisfied for all the resources and/or certificates involved. The policy evaluation phase is
mostly executed by the Compliance Checker, whose goal is the evaluation of remote
policies with respect to local policies and certificates,' and the selection of the strategy
for carrying out the remainder of the negotiation.

More precisely, the flow of operations executed by the various Trust-X modules for
processing a remote disclosure policy is sketched in Figure 2. To simplify the process a

COMPLIANCE
CHECKER

TREE
ﬁ MANAGER
—
” Policy I]DI:>
X-Profile Base Policy Reply

Fig. 2. Processing a disclosure policy

Dig@cs

data structure is used, the negotiation tree, managed by the tree manager. A negotiation
tree keeps track of the progress of the policy exchange, specifying a set of negotiation

! Certificates can be locally available in the X-Profile or can be retrieved through certificate
chains.
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paths, where each path denotes a possible trust sequence. The path also keeps track of
which certificates may contribute to the success of the negotiation, and of the correct order
of certificate exchange. The policy evaluation phase ends when at least one trust sequence
(corresponding to a path in the tree) is found, if there is compatibility between the policies
of the parties. Once a trust sequence has been determined, the credential exchange phase
is effectively executed. Functions required to carry out certificate disclosure include
verification of certificate contents, checking for revocation, authentication of ownership
(for credentials). The process ends with the disclosure of the requested resource or, if
any unforeseen event happens, an interruption.

4 Extended Trust-X

Although quite comprehensive and innovative, Trust-X, as it was initially designed,
had some missing features and weaknesses. For example, no mechanisms for efficiently
carrying on negotiations was provided and a limited number of strategies were supported.
No confidentiality of policies was actually achieved. Further, a deep analysis of our
proposal let us understand that deferring the actual disclosure of certificates represented
a potential privacy breach, since there are no guarantees about counterpart honesty until
the end of the process. During policy exchange it was no possible to determine whether
a party was lying or not until the actual credentials disclosure. Thus, the receiver might
infer that the counterpart can satisfy the request, obtaining clues about the possession of
sensitive credentials, even if it never actually obtains the credential. As a result, once a
certificate offer appeared in a potential solution in the policy evaluation stage, the other
party is practically free to invent policies and false promises to extract that certificate
later during a failing certificate exchange phase. On the basis of such analysis the initial
version of Trust-X" has been enhanced in various ways, to both improve negotiation
efficiency and flexibility as well as to support privacy and policies protection. We have
then compared the resulting system with the other relevant negotiation frameworks. A
summary of our analysis is reported in Table 1. As shown, all the presented languages
have a well formed semantics, and all but TPL are monotonic. The specification of
credential combination for expressing policies is also a requirement satisfied by all the
proposed languages. The remaining requirements are all supported only by subsets of
the analyzed systems. There is no system that address all requirements, however, thanks
to the enhancements in the extended version, Trust-X results one of the best suited
framework for trust negotiations.

Efficiency. Although the scenario we refer to is an open environment, we have identified
a number of contexts in which the same type of negotiations will be likely executed
several times between the same parties. In such contexts negotiations may be carried
out following efficient and fast procedures, without jeopardizing negotiation security or
resource protection. To support both trust and efficient negotiations, Trust-X" has thus
been extended to include the notion of frust ticket as well as the concept of sequence
caching.

Trust tickets are a powerful means to reduce as much as possible the number of
certificates and policies that need to be exchanged during negotiations. Trust tickets are
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Table 1. Comparison of Trust-X" with trust negotiation systems (Key: Y-Yes, N- No, P-Partial
support)

[Requirements [PSPL|TPL [Trust- X[KeyNote|Trust Builder
Well-defined semantics Y Y Y Y Y
Monotonicity Y Y (DTPL)|Y Y Y
Credential combinations Y Y Y Y Y
Constraints on attribute values|Y Y Y N Y
Inter-credential constraints Y Y Y N Y
Credential chains Y Y P N N
Authentication Y N N N N
Who submits? N N N N N
Sensitive Policies Y N Y N Y
Compliance Checker Modes |Y P Y N P
Credential Validity Y Y Y Y Y
Credential ownership N N | N Y
Unified formalism N Y Y Y N
Interoperable language N Y Y Y N
Fast policy evaluation N N Y N N

generated by each of the involved parties at the end of a successful negotiation and issued
to the corresponding counterpart and locally stored by their owners into their X'~ Profile,
in a specific Data Set. A trust ticket certifies that parties have already successfully ended
a negotiation for that resource, that is, they possess the necessary certificates to acquire
the resource. The idea is that when a party asks for a resource, it can first be asked for
a trust ticket for that resource. In this way parties can easily prove that they are trusted
entities and thus they have all the requirements for successfully negotiating the requested
resource. Note that the aim of trust tickets is completely different from that of tickets used
by authentication services (e.g., Kerberos [11]). Trust tickets are used to certify that two
parties have already successfully negotiated a resource and thus subsequent negotiations
for the same resource can be simplified. By contrast, the ticket mechanism exploited
by authentication services is not used to grant accesses to a resource. Rather, it is only
used to denote that a client has been authenticated by the authentication server. Another
mechanism we have introduced to efficiently carry on negotiations is based on the concept
of sequence caching. By analyzing common trust negotiation applications, we have
realized that in many scenarios there will be standard, off-the-shelf policies available for
common, widely used resources (e.g., VISA cards, passports). In case of negotiations
involving these common resources the sequences of certificates to be disclosed will be
only regulated by such standard and predictable policies. In such cases it is possible to
cache the sequences of certificates more often exchanged, instead of recalculating them
for each negotiation. To better manage sequence reuse and storage each cached sequence
is complemented by a set of additional information, to be used to determine the sequence
usage. Under this approach during a negotiation, upon the end of introductory phase, a
trust sequence previously cached is thus suggested by one of the parties. The applicability
of a sequence is verified on the basis of the counterpart information collected during
the first negotiation interactions. To support sequence caching, the basic architecture
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of Trust-X, as shown in Figure 1, had to be consequently modified, by the addition
of a module in charge of caching and suggesting the sequences. Such module, named
sequence prediction module, consists of two main components: the cache memory and
the prediction algorithm, which verifies whether this strategy can be applied to a specific
negotiation. The cache memory collects all trust sequences recently executed that can
be directly reused.

Policy Protection. Disclosure policies play a key role in trust negotiation. Unlike tra-
ditional decentralized systems, where policies are public or immediately available, dis-
closure policies may need to be disclosed gradually during negotiations, according to
the level of trust reached so far by the parties. As pointed our by a number of researchers
involved in the trust negotiation area [12—14], realistic disclosure policies tend indeed
to contain sensitive information, because the details of a policy for disclosure certain
set of credentials provide hints about credential content. Thus, to avoid unnecessary
information leakage, in [2] we have introduced the concept of policy prerequisites. The
idea of policy preconditions is to protect sensitive policies by introducing an order in
policy disclosure. A disclosure policy is now specified by a possibly empty set of pol-
icy preconditions and a rule. The rule specifies which properties a party should possess
either for obtaining access to a resource managed by the other party or for letting the
other party to disclose the subsequent policy for the same resource. Policies belonging
to a precondition set are related to the same resource of the policy with which they are
associated. A further relevant use of precondition policies is that protection needs for a
resource can be organized according to several policies logically linked (one policy is
a precondition for the following and so on) and gradually disclosed during the policy
evaluation phase of a negotiation. Modeling policy protection adds complexity to the
algorithms and data structures proposed in the first version of Trust-X. The negotiation
tree indeed has now to keep track of the order in which the nodes should be considered,
on the basis of the policies precondition satisfaction. Further, determining a solution is
now more complex since it requires to find a portion of the tree, named view, denoting
a sequence of certificates which corresponding chain of policies are all satisfied.>

Privacy Protection. Another issue we have recently investigated concerns privacy [5],
since it is today one of the major concerns of users exchanging information through
the Web. Indeed, one of the main weakness of trust negotiation systems is the lack
of control or safeguard of personal information once it has been disclosed. Nothing
is usually specified about the use of the information disclosed during a negotiation.
Sensitive information obtained during the negotiation process may be distributed or sold
to unauthorized parties later on. Another issue related with privacy arises because of
sensitive attributes (e.g., age, credit rating and so on). A credential may contain several
sensitive attributes, and very often just a subset of them is required to satisfy a counterpart
policy. However, when a credential is exchanged, the receiver anyway gathers all the
information contained in the credential. On the basis of such analysis, we have identified
anumber of innovative features that may be added to the Trust-X system, for preventing
information leakage and limit privacy vulnerability. Such features include the support

2 The formalization and a suite of algorithms supporting such approach can be found in [2].
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different credential formats, each of which may provide a different degree of privacy
protection, the notion of context associated with a policy, which allows one to both
express privacy policies and to convey information which can be used to speed up the
negotiation process. We also have begun to incorporate of our framework with the P3P
[7] platform to support automated privacy protection.

5 Future Work

We plan to extend the work carried on so far in the area of trust negotiations along several
directions. For what concern privacy, we wish to provide full support for P3P policies, to
be exchanged at various steps of the negotiation. Our goal is, following the W3C guiding
principle, to built the P3P system into a framework designed to facilitate data transfer. We
are currently refining the suite of strategies supported by Trust-AX’, to allow one to trade-
off among efficiency, robustness, and privacy requirements. Other extensions include the
development of mechanisms and modules to semi-automatically design privacy policies
to be associated with disclosure policies, and techniques for recovery upon negotiation
failures. Another interesting issue we will explore concerns the use of Trust-X" in mo-
bile environments. Although the problem of trust negotiations performed using desktop
computers has been thoroughly explored, the issue of negotiations involving mobile de-
vices is still an unexplored research area. This is anyway a promising and challenging
research area, since it is expected that the number of wireless clients accessing Internet
will rapidly increase in the next few years leading to an environment where the number
of wireless clients accessing the Internet to perform mobile transactions will greatly
exceed the number of clients accessing the Internet through networked computers. The
development of a system supporting negotiations for mobile users presents significant
challenges, mainly arising from the need of migrating trust negotiation concepts and
their complex requirements into a mobile context. In this direction, we have identified
a number of possible approaches to support mobile trust negotiations. Extending nego-
tiation systems for the management of mobile users requires, for instance, to provide
resource-compatibility with the resource constrained devices, that typically characterize
these systems. We have already developed a prototype of core Trust-X on a platform
based on Java and the Oracle DBMS. Future work also includes a full implementation of
the system, to perform an extensive evaluation of the proposed strategies. Such prototype
system will allow us to develop a systematic benchmark to asses the system performance
under a variety of conditions.
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Abstract. In this paper, we aim to develop a framework for continuous query
processing in spatio-temporal databases. The proposed framework distinguishes
itself from other query processors by employing two main paradigms: (1) Scal-
ability in terms of the number of concurrent continuous spatio-temporal queries.
(2) Incremental evaluation of continuous spatio-temporal queries. Scalability is
achieved thorough employing a shared execution paradigm. Incremental evalua-
tion is achieved through computing only the updates to the previously reported
answer. We distinguish between two types of updates; positive updates and neg-
ative updates. Positive or negative updates indicate that a certain object should
be added to or removed from the previously reported answer, respectively. The
proposed framework is applicable to a wide variety of continuous spatio-temporal
queries where we do not have any constraints about the mutability of objects and
queries (i.e., both objects and queries can be either stationary or moving) or the
movement representation (i.e., movement can be represented either by sampling
or trajectory).

1 Introduction

The rapid increase of spatio-temporal applications calls for new query processing tech-
niques to deal with both the spatial and temporal domains. Examples of spatio-temporal
applications include location-aware services, traffic monitoring, enhanced 911 service,
and multimedia databases. Unlike traditional databases, spatio-temporal databases have
the following distinguishing characteristics: (1) Most of spatio-temporal queries are
continuous in nature. Unlike snapshot queries that are evaluated only once, continu-
ous queries require continuous evaluation as the query result becomes invalid with the
change of information [33]. (2) A large number of mobile and stationary objects, and
consequently a large number of mobile and stationary concurrent continuous queries.
(3) Any delay of the query response results in an obsolete answer. For example, consider
a query that asks about the moving objects that lie in a certain region. If the query answer
is delayed, the answer may be outdated where objects are continuously changing their
locations.

Spatio-temporal databases need to support a wide variety of continuous spatio-
temporal queries. For example, a continuous spatio-temporal range query may have
various forms depending on the mutability of objects and queries. In addition, a range
query may ask about the past, present, or the future. A naive way to process continuous

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 100-111, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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spatio-temporal queries is to abstract the continuous queries into a series of snapshot
spatio-temporal queries. Snapshot queries are issued to the server (e.g., a location-aware
server) every 1" seconds. The naive approach incurs redundant processing where there
may be only a slight change in the query answer between any two consecutive evalua-
tions.

1.1 Motivation

The main objective in my PhD is to build a location-aware server [1, 18,21] that has
the ability to efficiently process a large number of stationary and moving objects and
queries. In our attempt to build the location-aware server [1], we face the following
challenges:

— Most of the existing query processing techniques focus on solving special cases of
continuous spatio-temporal queries, e.g., [28, 30, 35,36] are valid only for moving
queries on stationary objects, [4, 8, 10, 23] are valid only for stationary range queries.
Also, [15,17,23,28] are valid only for sampling while [2, 25, 30, 31] require a tra-
jectory representation. Trying to support a wide variety of spatio-temporal queries in
a location-aware server results in implementing a variety of specific algorithms with
different access structures. Maintaining different access structures and algorithms
degrades the performance of the location-aware server.

— Most of the existing spatio-temporal algorithms focus on evaluating only one spatio-
temporal query (e.g., [2, 14, 16,28, 30, 32, 35, 36]). In a typical location-aware server
[1, 18], there is a huge number of concurrently outstanding continuous spatio-temporal
queries. Handling each query as an individual entity dramatically degrades the per-
formance of the location-aware server.

— Most of the existing algorithms for continuous spatio-temporal queries model the
continuous queries as a series of snapshot queries. Different approaches (e.g., valid
time [36], valid region [35], safe region [23], safe period [8], No-Action region [34],
and trajectory model [30]) are employed to allow for longer time intervals T be-
tween any two consecutive evaluations of spatio-temporal queries. Reissuing the
spatio-temporal queries, even with longer time intervals, incurs redundant process-
ing between each two consecutive executions, hence degrading the performance of a
location-aware server.

— Most of the existing algorithms for continuous spatio-temporal queries require that
the location-aware server sends a complete answer to the client with each reevalua-
tion. In a typical location-aware server, query results are sent to clients via satellite
servers [11]. Sending the whole answer each time consumes the network bandwidth
and results in network congestion at the server side, thus degrading the ability of the
server to process more queries.

Based on these challenges, we specify our goal as not to propose another spatio-
temporal algorithm for very specific spatio-temporal queries. Instead, we aim to develop
a general framework for spatio-temporal query processing that is scalable, incremental,
and applicable to a wide variety of spatio-temporal queries.
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1.2 The PhD Contribution

Although my PhD contributions are geared towards building scalable location-aware
servers [1, 18], the main ideas and concepts can be utilized individually or together
for any other spatio-temporal application. In general, the PhD contributions can be
summarized as follows:

1. We go beyond the idea of reevaluating continuous spatio-temporal queries for every
change of information. Instead, we employ an incremental evaluation paradigm that
updates the query answer rather than evaluating it. By employing the incremental
evaluation paradigm, we achieve two goals: (a) Reducing the required computations
to evaluate continuous spatio-temporal queries. (b) Better utilization of the network
bandwidth where we limit the data sent to queries to only the updates rather than the
whole query answer.

2. We distinguish between two types of updates; positive updates and negative updates.
Positive or negative updates indicate that a certain object should be added to or
removed from the previously reported answer, respectively.

3. We support a wide variety of continuous spatio-temporal queries through a general
framework. The proposed framework does not make any assumptions about the mu-
tability of objects and queries or the movement representation.

4. We employ the shared execution paradigm as a means of achieving scalability in
terms of the number of concurrently executed continuous queries.

5. We employ a recovery algorithm for out-of-sync clients; clients that are disconnected
from the server for a short period of time. The recovery algorithm aims to keep
out-of-sync clients updated with their results whenever they reconnect to the system.

6. We aim to realize our spatio-temporal query processor inside the Predator [27]
database management system. In addition, we use a storage manager that is based on
Shore [5] to store information and access structures for moving objects and moving
queries.

1.3 Environment

This PhD work is part of the Pervasive Location-Aware Computing Environments project
(PLACE, for short) [1], developed at Purdue University. The PLACE server receives
information from moving objects and moving queries through GPS-like devices. In
addition, the PLACE server keeps track of the locations of stationary objects (e.g., gas
stations, hospitals, etc.). Once a moving object or query sends new information, the old
information becomes persistent and is stored in a repository server.

The PLACE server [21] is implemented on top of the NILE query processor [13]; an
extended version of the PREDATOR database management system [27] to handle con-
tinuously incoming data. For more details about the architecture and the query processor
of the PLACE server, the reader is referred to [18, 20, 21].

2 Related Work

Most of the recent research in spatio-temporal query processing (e.g., [2, 16, 28, 30, 35,
36]) focus on continuously evaluating one spatio-temporal query at a time. Issues of
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scalability, incremental evaluation, mutability of both objects and queries, and client
overhead are examples of challenges that either are overlooked wholly or partially by
these approaches. Mainly, three different approaches are investigated: (1) The validity
of the results. With each query answer, the server returns a valid time [36] or a valid
region [35] of the answer. Once the valid time is expired or the client goes out of the
valid region, the client resubmits the continuous query for reevaluation. The time 7'
between each two consecutive evaluations relies on the accuracy of the valid time and
the valid region. (2) Caching the results. The main idea is to cache the previous result
either in the client side [28] or in the server side [16]. Previously cached results are used
to prune the search for the new results of k-nearest-neighbor queries [28] and range
queries [16]. (3) Precomputing the result. If the trajectory of the query movement is
known apriori, then by using computational geometry for stationary objects [30] or
velocity information for moving objects [16], we can identify which objects will be
nearest-neighbors [2, 30] to or within a range [16, 25] from the query trajectory. If the
trajectory information is changed, then the query needs to be reevaluated. The time T’
between each two consecutive evaluations relies on the accuracy of determining the
future trajectory.

There is lot of research in optimizing the execution of multiple queries in traditional
databases [26], continuous web queries [7], and continuous streaming queries [6, 12].
Optimization techniques for evaluating a set of continuous spatio-temporal queries are
recently addressed for centralized [23] and distributed environments [4, 8]. Distributed
environments assume that clients have computational and storage capabilities to share
query processing with the server. The main idea of [4, 8] is to ship some part of the
query processing down to the moving objects, while the server mainly acts as a mediator
among moving objects. This assumption is not always realistic. In many cases, clients
use cheap, low battery, and passive devices that do not have any computational or storage
capabilities. For centralized environments, the Q-Index [23] does not assume any client
overhead. The main idea of the Q-index is to build an R-tree-like [9] index structure on
the queries instead of the objects. Then, at each time interval 7', moving objects probe
the Q-index to find the queries they belong to. The Q-index is limited in two aspects:
(1) It performs reevaluation of all the queries every 7" time units. (2) It is applicable only
for stationary queries.

In general, spatio-temporal queries can be evaluated using a spatio-temporal access
method [19]. The TPR-tree [25] and its variants (e.g., the RFXP _tree [24] and the TPR*-
tree [31]) are used to index objects with future trajectories. However, there are no special
mechanisms to support the continuous spatio-temporal queries in any of these access
methods.

Our proposed framework distinguishes itself from other approaches, where we go
beyond the idea of reevaluating continuous queries. Instead, we use incremental eval-
uation to compute only the updates of the previously reported result. In addition, un-
like [4, 8], we do not assume any computational capabilities on the client side. Moreover,
our framework is scalable to support a large number of concurrently outstanding
continuous queries and can deal with many variations of continuous spatio-temporal
queries.
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3 Scalable Incremental Processing of Continuous Spatio-Temporal
Queries

In this section, we present a scalable and incremental framework for continuously eval-
uating continuous spatio-temporal queries. The scalability is achieved by employing a
shared execution paradigm for continuous spatio-temporal queries [18,20]. With the
shared execution, queries are indexed in the same way as data. Thus, evaluating a set
of concurrent continuous spatio-temporal queries is reduced to a join between a set of
moving objects and a set of moving queries [34]. Figure 1 gives an example of having a
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Fig. 1. Shared execution of continuous queries

shared plan (Figure 1b) for two concurrent continuous queries (Figure 1a). Incremental
evaluation is achieved through computing only the updates to the previously reported
answer. We distinguish between two types of updates; positive updates and negative
updates. A positive update of the form (@, +A) indicates that object A needs to be
added to the answer set of query (). Similarly, a negative update of the form (Q, —A)
indicates that object A is no longer part of the answer set of query Q. In general, we
distinguish between three types of objects: Stationary objects, moving objects, and pre-
dictive objects. Moving objects can send only their current locations, while predictive
objects have the ability to report their velocity vector. Thus, their future location can be
predicted. Similarly, we have the same classification of queries, i.e., stationary, moving,
and predictive queries.

3.1 Algorithms and Data Structures

The main idea of the continuous query processor is to treat both objects and queries
similarly. Thus, we store both objects and queries in the same data structure. We use a
simple grid structure that divides the space evenly into N x N equal sized grid cells.
We utilize one grid structure that holds both objects and queries. Stationary and moving
objects are mapped to specific grid cells using their locations. Predictive objects and all
query types are clipped to multiple grid cells that overlap with the movement trajectory
or query region, respectively.

An object entry O has the form (OID,loc,t,QList), where OID is the object
identifier, loc is the recent location of the object, ¢ is the timestamp of the recently



Continuous Query Processing in Spatio-Temporal Databases 105

reported location [oc, and ) List is the list of the queries that O is satisfying. A query
@ 1is clipped to all grid cells that ) overlaps with. For any grid cell C, a query entry
has the form (Q1D, region, t, OList), where Q1D is the query identifier, region is the
recent rectangular region of () that intersects with C, ¢ is the timestamp of the recently
reported region, and O List is the list of objects in C' that satisfy Q.region. k-nearest-
neighbor queries are stored in the grid structure by considering the query region as the
smallest circular region that contains the k nearest objects. Simple grid structures are
commonly used to support different spatio-temporal queries (e.g., range queries [8],
future queries [29], and aggregate queries [10]). In addition to the grid structure, we
keep track of two auxiliary data structures; the object index and the query index. The
object and query indexes are indexed on the OI D and QI D, respectively, and are used
to provide the ability for searching the old locations of moving objects and queries given
their identifiers. Using auxiliary data structures to keep track of the old locations is
utilized in the LUR-tree [15] as a linked list and in the frequently updated R-tree [17]
as a hash table.

Since a typical location-aware server receives a massive amount of updates from
moving objects and queries, it becomes a huge overhead to handle each update indi-
vidually. Thus, we buffer a set of updates from moving objects and queries for bulk
processing. Basically the bulk processing is reduced to a spatial join between a set of
objects (either stationary or moving) and a set of queries (either stationary or moving).
Since, we are utilizing a grid structure, we use a spatial join algorithm similar to the one
proposed in [22]. For each moving query ), we keep track of the old (A,;4) and new
(Anew) query regions. A set of negative updates are produced for all objects that are
in Q.OList and lie in the area A,y — Ayew- Then, we need only to evaluate the area
Apew — Aolg to produce a set of positive updates. The area A, N Agig does not need
to be reevaluated where the query result of this area is already reported to ) before. The
efficiency of this incremental approach comes from the fact that the area A,,¢,, N Agyq 1S
much larger than A,,.,, — A,4. For any moving object O, we check the set of candidate
queries that can intersect with the new location of O. Candidate queries are the queries
that are stored in the same grid cell with O. The queries that are joined with O are
compared with O.Q) List to determine the set of positive and negative updates to be sent
to the clients.

3.2 Examples

Example 1 (Spatio-Temporal Range-Queries). Figure 2a gives a snapshot of the database
at time Ty with nine moving objects, p; to py, and five continuous range queries, ()1 to
Q@s5. At time T} (Figure 2b), only the objects p1, p2, p3, and py and the queries 1, @3,
and Q5 change their locations. The old query locations are plotted with dotted borders.
Black objects are stationary, while white objects are moving. As a result of the change of
database status from T} to 717, the location-aware server reports the following updates:

(Q1,—p5), (Q2, —p1), (@3, +p2), (@3, —p7), (@3, —p6), (Q3, +ps), and (Qu, —p4).

Example 2 (Spatio-Temporal k-NN Queries). Figure 3a gives an example of two kNN
queries where k = 3 issued at points (01 and (2. Assuming that both queries are issued
at time Tj, we compute the first-time answer using any of the traditional algorithms of
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(a) Snapshot at time T, (b) Snapshot at time T,
Fig. 2. Range queries
kNN queries. For (1, the answer would be Q1 = p1, p2, p3 while for @), the answer

would be Q2 = ps, ps, p7. In this case, we present ()1 and ()2 as circular range queries
with radius equal to the distance of the kth neighbor. Later, at time 7} (Figure 3b), objects

(a) Snapshot at time T, (b) Snapshot at time T,

Fig. 3. k-NN queries

p4 and p; are moved. For (1, object py intersects with the query region. This results
in invalidating the furthest neighbor of )1, which is p;. Thus, two update tuples are
reported (Q1, —p1) and (Q1, +p4). For @2, the object p; was part of the answer at time
Ty. However, after p; moves, we find that pg becomes more near to ()5 than p;. Thus,
two updates are reported, (2, —p7) and (Q2, +ps). Notice that unlike range queries,
k-NN queries can change their location and size over time.

Example 3 (Predictive Spatio-Temporal Range-Queries). Figure 4a gives an example of
querying the future. Five moving objects p; to ps, have the ability to report their current
locations at time Ty and a velocity vector that is used to predict their future locations
at times 77 and 75. The range query @ is interested in objects that will intersect with
its region at time 75 > Tj. At time Tj the rectangular query region is joined with the
lines representation of the moving objects. The returned answer set of @ is (p1, ps3). At
T (Figure 4b), only the objects p2, p3, and p4 change their locations. Based on the new
information, we report only the positive update (@, +p2) and negative update (Q), —ps3)
that indicate that po is considered now as part of the answer set of () while p3 is no
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(b) Snapshot at time T]

i i i i i
(a) Snapshot at time Tn

Fig. 4. Predictive queries

longer in the answer set of (). Notice that no tuples are produced for object p; where it
does not change its information from the previously reported result at time 7j.

3.3 Out-of-Sync Clients

Mobile objects tend to be disconnected and reconnected several times from the server for
some reasons beyond their control, i.e., being out of battery, losing communication sig-
nals, being in a congested network, etc. This out-of-sync behavior may lead to erroneous
query results in any incremental approach. Figure 5 gives an example of erroneous query

P, P, By

Fig. 5. Example of Out-of-Sync queries

result. The answer of query () that is stored at both the client and server at time 77 is
(p1, p2) - Attime T5, the client is disconnected from the server. However, the server keeps
computing the answer of @), and sends the negative update (@), —p2 ). Since the client is
disconnected, the client could not receive this negative update. Notice the inconsistency
of the stored result at the server side (p2) and the client side (py, p2). Similarly, at time
T3, the client is still disconnected. The client is connected again at time 7. The server
computes the incremental result from 73 and sends only the positive update (Q, +p4).
At this time, the client is able to update its result to be (p1, p2, ps). However, this is a
wrong answer, where the correct answer is kept at the server (p1 , D3, p4).

A naive solution for the out-of-sync problem is once the client wakes up, it empties its
previous result and sends a wakeup message to the server. The server replies by the query
answer stored at the server side. For example, in Figure 5, at time 7, the location-aware
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server will send the whole answer (p1, ps, p4). This approach is simple to implement
and process in the server side. However, it may result in significant delay due to the
network cost in sending the whole answer. Consider a moving query with hundreds of
objects in its result that gets disconnected for a short period of time. Although, the query
has missed a couple of points during its disconnected time, the server would send the
complete answer to the query.

To deal with out-of-sync clients, we maintain a repository of committed query an-
swers. An answer is considered committed if it is guaranteed that the client has received
it. Once the client wakes up from the disconnected mode, it sends a wakeup message to
the server. Then, the server compares the latest answer for the query with the committed
answer, and sends the difference of the answer in the form of positive and negative up-
dates. For example, in Figure 5, the server stores the committed answer of @) at time 7T}
as (p1, p2). Then, at time T}, the server compares the current answer with the committed
one, and send the updates (Q), —p2, +ps, +p4). Once the server receives any information
from a moving query, it considers its latest answer as a committed one. However, sta-
tionary queries are required to send explicit commit message to the location-aware server
to enable committing the latest result. Commit messages can be sent at the convenient
times of the clients.

4 Experimental Performance

In this section, we present a preliminary experiment that shows the promising perfor-
mance of the continuous query processor. Figure 6 compares between the size incremen-
tal answer returned by utilizing the incremental approach and the size of the complete
answer. We use the Network-based Generator of Moving Objects [3] to generate a set of
100K moving objects and 100K moving queries. The output of the generator is a set of
moving objects that move on the road network of a given city. We choose some points
randomly and consider them as centers of square queries.

The location-aware server buffers the received updates from moving objects and
queries and evaluates them every 5 seconds. Figure 6a gives the effect of the number of
moving objects that reported a change of location within the last 5 seconds. The size of
the complete answer is constant and is orders of magnitude of the size of the worst-case
incremental answer. In Figure 6b, the query side length varies from 0.01 to 0.02. The size
of the complete answer increases dramatically to up to seven times that of the incremental

Answer Size (KBytes)

cremental Evaluatio:
Complete ansi

0
12 3 4 5 6 7 8 9 10 1 1.2 1.4 1.6 1.8
Update rate for objects (%) Query side length (x0.01)

(a) Moving objects (%) (b) Query size

Fig. 6. The answer size
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result. The saving in the size of the answer directly affects the communication cost from
the server to the clients.

5 Conclusion

In this paper, we presented a scalable and incremental framework for continuous query
processing in location-aware servers as an application of spatio-temporal databases.
Mainly, we emphasize on the scalability and incremental evaluation of continuous spatio-
temporal queries. The applicability of the proposed framework to a wide variety of
continuous spatio-temporal queries is discussed. A recovery mechanism for updating
the results of clients that are disconnected from the server for a short period of time
is presented. Preliminary results show that the size of the result of the incremental
approach is around 10% of the size of a complete result. Thus, the proposed scalable
and incremental framework has promising savings in both computational processing and
network bandwidth.
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Abstract. Distributed steam processing is necessary for a large class of stream-
based applications. To exploit the full power of distributed computation, effective
load distribution techniques must be developed to optimize the system perfor-
mance and cope with time-varying loads. When traditional load balancing or load
sharing strategies are applied to such systems, we find that they either fall short
in achieving good load distribution or fail to maintain good task partition in the
long run.

In this paper, we study two important issues of dynamic load distribution in
the context of data-intensive stream processing. The first one is how to allocate
processing resources for push-based tasks such that the average end-to-end data
processing latency can be minimized. The second issue is how to maintain a good
load distribution dynamically for long running continuous queries. We propose a
new hybrid load distribution strategy that addresses the above concerns by load
clustering. To achieve scalability, our algorithm is completely decentralized and
asynchronous.

1 Introduction

Stream based continuous query processing fits a large class of new applications, such
as sensor networks, location tracking, network management and financial data online
analysis. In these systems, data are pushed to a stream processing engine from external
sources and then “flow through” the continuous query operators as they get processed.
Stream-based applications usually involve large volumes of data and require timely re-
sponse, which makes scalability a key requirement to such systems. Loosely coupled
shared nothing distributed systems can provide high performance, scalability and ex-
tensibility with low cost. Furthermore, many stream-based applications are naturally
distributed. For these reasons, distributed stream processing becomes important.

One of the biggest issues for distributed computing is the development of effective
load distribution techniques that can fully exploit the potential power of available re-
sources. However, this problem has not yet been fully studied in the context of push-based
stream processing. In this paper, we focus on the dynamic load distribution problem for
data-intensive continuous queries. In particular, we try to answer the following two
questions:

— First, for push-based systems, how to distribute load so that the average end to end
data processing latency can be minimized?

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 112—120, 2004.
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— Second, as the load changes, how to maintain a good load distribution effectively
and efficiently?

When traditional load balancing and load sharing approaches are applied in this
setting, we find that they either fall short in achieving good load distribution or fail to
maintain good task partitions dynamically. First, consider the load balancing strategy,
which tries to equalize the load among all the processing nodes. Load balancing is
commonly used in pull-based systems to achieve speed up, where data can be pulled
faster if more resources are available. However, it can not achieve the same kind of speed
up in push-based systems. This is because in such systems, the input data rates are decided
by the external sources. After certain threshold, resource utilization is irrelevant to load
distribution. On the other hand, if a task can be processed by n servers (also called nodes),
then processing it on more than n nodes will incur extra data communication overhead
unnecessarily. For systems with high input data rates, the inter-node data transfer delays
can be significant compared to the intra-node data processing delays and queuing delays.
Thus for such systems, we must try to minimize the data transfer cost instead of equally
distributing load among all the servers. One simple way to do this is to run a task at a
single node first, and then offload to other nodes if the node gets overloaded. Such an
approach is load sharing based. However, a big potential problem for load sharing is
that as the load varies, connected query graphs may get “cut” and “pasted” from node
to node and thus results in long term bad task partition [12].

Based upon the above observations, we propose a new load distribution scheme
that aims at minimizing the data communication delays for data-intensive tasks. Here
we assume that the intra-node data processing and queuing delays are relatively small
compared to intra-node data transfer delays. In particular, our algorithm tries to cluster
load on a small set of nodes as long as no node gets overloaded. At the same time, to ensure
long term partition quality, we constantly balance load between nodes with existing inter-
node streams and only allow operators on the boundaries to be transferred between those
nodes. Moreover, to minimize load re-distribution overhead, a load transfer process is
only invoked if its benefit is larger than some threshold.

In the implementation of the above algorithm, we restrict our attention to decen-
tralized schemes since a centralized load distributor creates a hot spot and limits the
scalability of the system. Also, for this initial work, we only focus on inter-operator
distributed processing. The smallest load transfer unit is each single operator.

The rest of this paper is organized as the following. Section 2 introduces the system
model and some assumptions. Our basic algorithm is introduced in Sect. 3 and its imple-
mentation issues are discussed in in Sect. 4. Section 5 present the result of a preliminary
experiment. Section 6 introduces the related works. Finally the conclusions and future
directions are summarized in Section 7.

2 Problem Description
2.1 System Model

In this paper, we assume a cluster of loosely coupled homogeneous machines as the
stream processing servers. Each processing node (server) has its private resources (CPU,
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memory and disks). All nodes are connected by a high bandwidth network. Assume
network bandwidth is not a bottleneck but the network transfer delays are not negligible.

A task is represented by a directed loop free connected query graph. Each vertex
of the graph represents a continuous query operator. Each arc represents a data stream
flowing between the operators. Data streams are pushed to the cluster from external data
sources. When a task is partitioned over multiple nodes, those nodes form a processing
group. Each connected sub-query graph on a single node is also called an independent
graph. An inter-node arc is also called a cutting edge if its direction is not important.

The operators considered in this paper are filters, unions, user defined functions,
windowed aggregation and windowed join. They are also abstracted as unary or binary
operators with or without internal states. We assume that any operator can be processed
at any node. The cost to transfer those operators depends on the size of their states.

2.2 Domain Partition

To avoid message flooding by load information exchange, the whole system is divided
into small overlapped load distribution domains. More specifically, each node will select
certain number of nodes to form its own domain. Those selected nodes will report their
load information to the selector node (also called listener node) periodically or upon
change. The maximum number of listener nodes a node can have is fixed in the system.
A node can only send load to or request load from nodes in its domain. Nodes with
direct dataflow between them are called neighbors (or logical neighbors). The domain
of a node includes all its neighbors and some non-neighbor nodes. Each node updates
its domain periodically or based on need.

2.3 Load Representation

In our system, the loads of operators and nodes are represented by functions of time. We
represent time as time intervals (Ty, 71, T, . .. ). The load {(T}, O) of operator O at time
interval T}, is the processing time of O during time interval 7}, divided by the length of
T}.. The load of a node is defined as the total load of all its operators. We assume that
other system overhead (such as scheduling, statistics monitoring and load distribution
overhead) can be controlled below certain threshold.

2.4 Problem Description

The optimization goal here is to find a dynamic load distribution algorithm that can
minimize the average end-to-end latency for data-intensive stream processing. In addi-
tion, we require that the algorithm must be decentralized and the decisions should only
depend on local information instead of global knowledge.

3 Algorithm Overview

In this section, we introduce the basic scheme of our dynamic load distribution algorithm.

As mentioned earlier, for data-intensive tasks, minimizing the average end-to-end
latency can be achieved by minimizing network transfer delays (given no node is over-
loaded). Thus, the main idea of our algorithm is to partition connected query graphs into
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minimum number of connected sub-query graphs and keep the nodes that are processing
those sub-query graphs moderately loaded. In addition, when a node pushes load to other
nodes, it selects operators that can minimize the number of cutting edges between the
nodes.

We define four load states based on the load level of the nodes. They are under loaded,
moderately loaded, heavily loaded and overloaded. The moderately loaded state is the
desired state that we like the nodes to work at. When a node gets heavily loaded, it will
try to offload independent query graphs to under loaded nodes. Such load transfers can
prevent the node from getting overloaded without creating new cutting edges. When a
node enters the overloaded state, it is allowed to partition its query graphs and offload to
any nodes to its domain. An overloaded node will balance load with as fewer numbers of
nodes as possible as long as none of them is over loaded. If a node is under loaded, it will
merge adjacent sub-query graphs with its under loaded logical neighbors to minimize
the number of cutting edges. This is called load coalescing.

To maintain good task partition dynamically, we only allow connected sub-query
graphs along the border arcs to be transferred between logical neighbors. To minimize
the change that a node gets overloaded and avoid “cut-and-paste” load transfer between
non-neighbor nodes in the same processing group, we let all nodes constantly balance
load with its logical neighbors. By this effort, the load levels of nodes in the same
processing group can be roughly the same. Then, when an overloaded node offloads to
other nodes, it will select nodes not in its processing group with high probability.

In summary, our strategy combines load sharing, load coalescing and logical neighbor
load balancing in one scheme. We call it the hybrid dynamic load distribution approach.
In the next section, we will discuss how to implement this algorithm in a decentralized
asynchronous setting.

4 Implementation Issues

In a decentralized load distribution algorithm, each node has its own load distributor
and all nodes follows the same algorithm. Our load distribution algorithm contains the
following components:

— Domain selection policy that determines how to form and update a node’s load
distribution domain.

— Load evaluation policy that determines how to evaluate the load of a node and the
operators on it.

— Information exchange policy that determines how to exchange load information
between nodes.

— Decision policy that determines when to transfer load, to which node to transfer,
and how much load to transfer.

— Load selection policy that determines which operators to transfer.

— Load transfer policy that determines how to send and receive load from other
nodes.

Due to space limitation, we will skip the domain selection policy, information ex-
change policy and the load transfer policy. For the rest policies, some important issues
are highlighted in the followings.
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4.1 Load Evaluation and Forecasting

In order to make load distribution decision, a node must first know the load information
of itself and of nodes in its domain. The load of a node is a function of time. Each
node can measure its current load level and keep a history of its past load. However, the
load distribution decisions should be based on the future load instead of the load level
of current time. Otherwise, the nodes may overreact to temporary load fluctuations.
Moreover, if future load is available and a node finds that it is going to get overloaded,
it can pre-offload before its performance gets really bad. Unfortunately, in a push based
system, the future load function is usually unavailable. In this paper, we propose a load
forecasting scheme that uses the past loads to predict the future loads as the follows.

Using the history load {(T},—;), ..., {(Tn—1), [(Tn) at time T, certain forecasting
algorithm can be used to estimate the future load (T}, 1), {(Thi2)s - L(Thik). The
average value of future load is then used for load distribution decision. A number of
forecasting algorithms can be used here, for example, local extrapolation, exponential
smoothing, moving average and auto-regression. Which one makes the best prediction
is application dependent. When no prior knowledge is available, we run several simple
predictors at the same time and compare their past predictors. The best predictor is then
selected on the fly.

4.2 Asynchronous Decision Policy

A load transfer decision making is triggered whenever the load information of a node gets
updated or if it receives a load update message from other nodes. The actual load transfer
can be either sender initiated or receiver initiated. Here, we use different strategies for
different kinds of load transfers. For load balancing between logical neighbors, we
prefer a receiver initiated mode so that load distribution burden can be relieved from
more loaded nodes. Thus, each time a node makes decisions, it checks whether it has
logical neighbors whose load levels are higher than its own load level more than certain
threshold. If so, the node will balance load among them and request load from the sender
nodes. For load pushing by overloaded or heavily loaded nodes, we prefer sender initiate
load transfer. This is because in those cases, only the sender nodes know to which nodes
they should offload and how much load to transfer. For load coalescing, we would like
the node with lowest load level among its neighborhood to push load to its under loaded
neighbor with next lowest load level. Otherwise, if we allow an under loaded node to
push load to a neighbor with lower load level, then conflict may happen if the neighbor
node requests load from it at the same time by load balancing.

4.3 Load Selection

After the receiver node and the amount of load transfer are determined, a sender node
must select appropriate operators to transfer so that the data communication cost and
load transfer cost can be minimized. In addition, the load sum of selected operators
should be as close to the desired amount as possible. Finding the optimal solution for
such a problem is NP hard [7]. Here, we use a local greedy approach to expand connected
sub-query graphs from border arcs.

The greedy algorithm will choose operators that introduce minimum number of
cutting edges first. If there is a tie, the operator with smaller state size will be chosen
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to minimize load transfer cost. To avoid the situation that operator with large state size
being transferred frequently, we require that those operators can only be transferred if
its processing node is overloaded and there are no operators with small state size on the
node.

4.4 Stability

Obviously, the total load of the selected operators will not be exactly the desired amount.
To ensure stability, we require that a node cannot send load more than specified amount.
But then, if a sender node cannot transfer enough load to a receiver node, they may
constantly try to transfer load between each other. To avoid such situation, we require
that a node can only make subsequent transfer decisions after certain amount of time or
if its actual load level changes significantly.

4.5 Conflict Avoidance

Since the above load transfer decisions are made asynchronously, two or several nodes
may send load to the same node at the same time. This is called a conflict problem. We use
a simple scheme that randomizes the load decision-making time to avoid conflictions. It
turns out to be very effective.

4.6 Sender Delayed Load Transfer

Even without conflicts, some loads can still be sent back and forth between nodes. To
solve this problem, synchronous load balancing algorithms usually use two phases load
transfer: the optimal amount of load transfer is determined in the first phase and the
actual load transfer happens at the second phase. In our asynchronous implementation,
we achieve similar result by letting the sender node delay the actual load transfer for
certain amount of time. The delay time is decided from the sender node’s load level.

S Preliminary Experiment

To experiment on our algorithm, we implement a distributed stream processing simula-
tor using the CSIM18 Simulation Engine. A simulated network and stream processing
engines are implemented in the simulator. The operators tested are filters, unions, win-
dowed aggregates and windowed joins. Here, we present a preliminary experiment that
compares the performance of our hybrid algorithm with the traditional load balancing
and load sharing algorithms.

In this experiment, three connected query graphs are assigned to a system with 20
nodes. Each query graph contains 20 operators. Each node uses a round robin scheduler
to schedule the operators. At the beginning of the experiment, each connected query
graphs is assigned to a random node. The input data rates increase slowly during a
warm up period of 20 simulation second. In this period, the processing nodes gather the
statistics of the query graphs and distribute load when necessary. During time period
30sec to 200 sec, we increase the input data rates to four times the original rates and then
let them drop back . Figure 1 shows the average end to end latency of three different
algorithms as functions of time after the warm up period.
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Fig. 1. Dynamic performance comparison for three algorithms

The experiment result shows that after the warm up period, both the hybrid algo-
rithm and the load sharing algorithm converge to initial distributions with low average
end-to-end latency. This is because they create cutting edges only when some node
gets overloaded and thus results in small data transfer delay. On the contrary, the load
balancing algorithm creates cutting edges even when it is not necessary.

Aside from static performance, the hybrid algorithm also achieves good dynamic
performance. No matter the load increases or decrease, it can always adapt to the changes.
In comparison to this, the load sharing strategy can not adapt well when load decreases.
This is because it does not merge load among under loaded nodes.

6 Related Work

Our system model is based on the newly developed stream-based data processing en-
gines. These systems mainly focus on efficient continuous query processing in a single
server [2,4,10]. A scalable distributed stream processing model is introduced in [5].
Our work is an extension of [5], which focuses on the load distribution problem of this
system. Nevertheless, our work is also general enough to be applied to other push-based
distributed or parallel dataflow systems.

The load balancing problem for parallel continuous query processing has been studied
in [13]. They consider a single operator processed by multiple servers and adjust data
partitions adaptively using a centralized controller so that the workloads of different
servers are balanced dynamically. Our work is complementary to theirs since we focus
on inter-operator load distribution instead of intra-operator parallelism and our algorithm
is decentralized.

Operator placement has been studied in traditional parallel database systems in the
context of pipelined parallelism [6]. These works are mostly static or dynamic just before
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execution [1, 11]. Also, traditional database systems are pull-based. Thus load balancing
are commonly used. In this paper, we study new dynamic load distribution schemes for
long running push-based system instead.

Works on dynamic load distribution strategies for other distributed or parallel systems
provide a lot of useful information for us. Former efforts either fall into the category
of dynamic load balancing [8, 14, 15] or load sharing [9]. Load sharing strategies are
usually used for load distribution without task partition. When data communication costs
are considered, dynamic load balancing is commonly used. Due to the high overhead,
their applications are often limited to large scientific computations and simulations.
Most of the works are particularly targeted at mesh repartitioning. These tasks are also
pull-based. As far as we know, none of them has combined different strategies in a push
based setting.

7 Conclusions and Future Directions

The combination of push-based and long-running nature of continuous queries intro-
duces new challenges to the load distribution problem. Our investigation has led to the
development of a new dynamic load distribution scheme that is aimed at minimizing net-
work transfer latency by load clustering. A scalable decentralized implementation of this
algorithm is presented in this paper. We also propose initial solutions for different issues
in this framework such as load forecasting, operator selection and conflict avoidance.

There are still a lot of works can be extended from the current scheme. First, in this
paper, we assume that the data processing delays and queuing delays are relatively small
in comparison to the network delays. In some cases, per tuple data processing delay
can also be relatively large. For example, some operators may involve table lookup on
disks and some operators may require complex computations. If the input rates for these
operators are bursting, then queuing delay can become a major part of end-to-end latency.
In these cases, only consider minimizing network transfer delay by load clustering will
not be sufficient and appropriate. Thus, in our next step, we will expend our work to
address the above problem using queuing analysis.

Secondly, we have only applied our algorithm on inter-operator level load distribution
so far. Since intra-operator distributed processing usually requires centralized control,
how to incorporate it in a decentralized peer to peer system is a very challenging problem.
We would like to explore this problem in the future works.

Finally, it is worth mentioning that another advantage of load clustering is that it
can provide more intra-node processing optimization opportunities. For example, some
scheduling algorithm schedules connected sub-query graphs instead of each individual
operator to minimize context switching overhead [3]. Studying load distribution strate-
gies under such context is also challenging and interesting.
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Abstract. In this paper, I summarize my research on optimizing XML queries.
This work has two components: the first component is the definition of a logi-
cal algebra and logical optimization techniques. This algebra can be translated
into different physical algebras such as native or extended-relational algebras.
The second component is the design of physical storage structures and physical
optimization techniques.

1 Introduction

XML has grown from a markup language for special-purpose documents to a standard
for the interchange of heterogeneous data over the Web, a common language for dis-
tributed computation, and a universal data format to provide users with different views of
data by transforming between different formats. All of these increase the volume of data
encoded in XML, consequently increasing the need for database management support
for XML documents. An essential concern is how to store and query potentially huge
amounts of XML data efficiently.

There are generally two approaches to providing database support for XML data
management: extended-relational approach and native XML approach. In the extended-
relational approach, XML documents are transformed to relational data, and XQuery
expressions are translated to SQL expressions. The space for XML query optimization is
on the XQuery-to-SQL translation and the SQL expression itself. On the other hand, in
the native XML approach, XML documents are managed without any relational database
support. XML data are simply modeled as labeled, ordered, rooted trees. Any query on
XML data is then translated into a series of operations on XML trees. The optimization
is therefore on the translation and the operations themselves.

Both of these approaches have their own advantages and disadvantages. For example,
the extended-relational approach is heavily dependent on the physical level representa-
tion (e.g., interval encoding [5]) of XML data. Existing translation schemes are either
generally inefficient in processing tree structured data, or require significant amount of
work on update. On the other hand, the native XML approach benefits from the fact that
one can design new storage structures and define new operators to satisfy both query
and update requirements. The downside of the native approach is its lack of maturity,
especially in the optimization techniques.

In this paper, I propose a novel approach to compromise between the above two
approaches by defining a logical algebra that captures the semantics of XQuery. The

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 121-132, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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definition of the logical algebra should be general enough so that it can be implemented
by the extended-relational or the native approach. A set of rewrite rules and a cost model
should also be defined so that equivalent execution plans could be deduced and their
costs could be estimated. Another major part of my thesis will be the development of
physical optimization techniques that deal with storage structures and access methods.
The aim of my Ph.D. research is, thus, to develop XML query processing and optimiza-
tion techniques, in particular those techniques that are not only provably efficient in
theory, but also empirically verifiably so in practice.

2 Significant Research Problems

In my Ph.D. research, I am concentrating on two research questions:

1. How to define a logical algebra and logical optimization rules that can be used by an
extended-relational or native optimizer.

2. How to design physical storage structures and access methods in support of this
logical algebra for efficient query processing.

XQuery is a functional programming language, thus it can be evaluated as any other
functional programming language and enjoys their optimization techniques. However,
since XQuery is designed as a database query language, one should bear in mind that the
input data could be massive. To efficiently evaluate XQuery expressions against large
amounts of data, we follow the traditional database query model:

— Define a logical algebra and rewrite rules for the query language.

— Design new physical storage structures if needed.

— For each logical operator, many physical operators (access methods) that implement
the same functionalities could also be defined. These physical operators have differ-
ent performances depending on the physical data distributions and the presence of
auxiliary data (e.g., indexes).

— A cost model is also needed as a basis of choosing the optimal physical query plan.

In this paper, I shall present my preliminary study of the first three issues in the above
list. The cost model is left as my future work.

3 Logical Algebra

3.1 Problem Definition

A logical algebra can be thought of as a specification that captures the semantics of
XQuery expressions so that the primary concern of the physical operators is how to satisfy
the specification. The algebra must be sound (the translation of XQuery expressions
into algebraic expressions must be correct) and complete (any XQuery expression can
be translated into an algebraic expression). There are several problems that need to be
considered when defining the algebra:
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Sorts: The data model defined by W3C is a sequence of tree nodes. This implies that
at least two sorts, List and TreeNode, are needed as indicated by the W3C’s XQuery
Formal Semantics [6]. However, we shall see that more sorts, such as NestedList and
Tree, are necessary or convenient.

Operators: As usual, the algebra includes a set of operators, defined by their signatures
and semantics. These should be closed under the sorts we define. I shall investigate
well-known operations on these sorts, as well as defining new operations, and rewrite
rules based on them.

Completeness vs. Safety: The completeness property requires that any XQuery
expression can be translated into an algebraic expression that returns the same
result. However, since XQuery is Turing-complete [9], which introduces possibly non-
terminating expressions, a complete algebra will be unsafe. To avoid this problem, I
identify a subclass of XQuery that does not include recursive functions, and define a
complete algebra for this subclass only. To expand to a larger subclass, one can define
additional (maybe higher-order) operators based on this algebra.

Other issues such as type checking and error/exception handling are outside the scope
of my thesis. The definition of rewrite rules is leaf as future work.

3.2 Preliminary Results

Sorts. The input and output of an XQuery expression defined by XQuery data model
is a flar sequence of tree nodes. Since there are no nested sequences, it seems that it is
sufficient to define operators over two sorts: List (representing flat list) and TreeNode,
together with other primitive sorts such as Integer, Boolean and String. However, flat
list operations are not efficient in manipulating trees, which can be thought of as nested
lists. For example, Fig. 1(a) is an XQuery expression taken from XQuery Use Cases.
The output of the expression conforms to the tree schema shown in Fig. 1(b), where the
root is labeled as results, which has zero or more children labeled result, under
which there are two children (subtrees) whose values depend on the value of St and
$a. The leaf nodes labeled with { } are placeholders that can be replaced by the value
(subtree) of the enclosed expression.

<result> {

for $b in document ("bib.xml") results
/bib/book
let 5t in $b/title d
let 5%a in Sb/author result”
return
<result> {3t} {$a} </result:> //////// \x\\\\\x
} </results> { st} { sa}
(a) An example XQuery expression (b) Output tree of the expression

Fig. 1. An XQuery expression and its output schema
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The edit label ¢ is an expression that evaluates the values for the variable(s) to replace
the placeholder(s). It can be translated more formally into a list comprehension:

p=1[(5t,%a)| $b « doc () /bib/book; $t « $b/title; $a « $b/author]

The output of the comprehension is a list of 2-tuples (i.e., nested list), instead of a flat list
of tree nodes. Relying on the W3C’s data model over flat lists, the list comprehension
can be evaluated either by iterating over each element in $b, during which St and $a
are evaluated accordingly, or by first creating a long list for each St and $a in a batch,
then joining them based on their structural relationship. Both of these strategies are not
optimal since the first (pipelining) approach suffers from exponential runtime (to the size
of the query) in the worst case [7], while the join-based approach needs an additional
structural join [13].

On the other hand, generalizing the input and output as nested lists enables a single
operator to implement the above list comprehension as a whole. A physical tree pattern
matching operator (introduced later), for example, could implement the list compre-
hension with a single scan of the input data without the need for structural joins. This
efficiency benefit necessitates a new sort NestedList that allows arbitrary level of nest-
ings. It is straightforward to convert a nested list to a tree. However, there are no labels
on the converted tree nodes. Therefore, it is necessary to define another sort Tree that
represents labeled trees. In our algebra, an input XML document is of sort Tree; while
some of the intermediate results could be of sort NestedList.

In addition, we also need sorts such as PatternGraph and SchemaTree, which are
used to translate path expressions and constructor expressions, respectively. The sort
PatternGraph captures the constraints specified by one or more path expressions. For
example, the path expression /a[b] [c] can be modeled as a pattern graph that has
four vertices labeled with root, a, b and c, and three directed edges (root,a), (a,b),
and (a,c). The three edges are all labeled with “/”, which means that the “from” and “to”
vertices are in parent-child relationship. The vertex a is marked as returning vertex,
which means that the tree nodes matched with this vertex should be returned.

Definition 1 (PatternGraph). A PatternGraph is a labeled, directed graph, which is
denoted by a 5-tuple P = (¥, V, A, R, Q) , where X is a finite alphabet representing
element (attribute, etc.) names, V and A are the sets of vertices and arcs (directed
edges) in the graph, respectively, R is the set of binary relations between vertices, and
O C Vs a set of output vertices indicating that all matching vertices should be output
as results.

For each vertexv € V:

— v is labeled with  or a set of characters in X, where x ¢ X.
— v is associated with a list (may be empty) of (<,1) tuples, where < is a comparison
operator and l is a numerical or string literal.

Each arc (s,t) € Ais labeled with a relation v € R, which indicates that (s,t) is
in relation r.
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The sort SchemaTree (cf. Fig. 1(b)) represents a labeled tree that is extracted from
XQuery constructor expressions. This labeled tree structure specifies the schema of an
out XML document. Each node in the schema tree is labeled with an element name,
with an optional wildcard symbol * or ?. A node could be marked as a placeholder, in
which case its node label should be an algebraic expression. All arcs in the tree represent
parent-child relationship, so there is no label on the arcs.

Definition 2 (SchemaTree). An SchemaTree is a labeled tree structure, which is
denoted by a 4-tuple O = (X N, A, E), where X is a set of finite alphabet representing
element/attribute names, N is a set of tree nodes, A is a set of tree arcs, and £ is a set
of (XQuery/algebraic) expressions.

Each leaf-node in N is labeled with a character in X (in which case it is an empty
element/attribute) or an expression in E. For each non-leaf node, it is labeled with a
character in Y. (in which case it is called a constructor-node) or a boolean-valued
expression in £ (in which case it is called an if-node).

Each arc in A may (or may not) be labeled with an expression in £.

In addition to path expression and constructor expression, FLWOR expression
is another type of major expression. The uniqueness of FLWOR expression is that
it is the only kind of expression that can introduce new variables. Since variables
can be referenced by other expressions in some scope, it is necessary to define a
scope-wise sort Env to keep track of all the defined variables and their bounded
values constitute. The sort Env can be thought of as a NestedList (or unlabeled
tree) with additional variable bindings to each level in the nesting.

Definition 3 (Env). An environment (Env) is a layered, balanced tree structure, which
is denoted by a 3-tuple £ = (N, A, V), where N is a set of nodes, A is a set of arcs,
and V is a set of variables. All tree nodes at the same level from the root forms a layer.
Each layer is either associated with a variable in N, or a boolean formula. All nodes in
the same layer have the same cardinality relationship, i.e., the parent-child relationship
between layers x and x + 1 is either one-to-one or one-to-many, but not mixed. A path
from the root to a leaf is called a total variable bindings, which include the bindings for
all variables and boolean formula introduced in the where-clause.

Example 1. The following FLWOR expression:

for $a in E1, Sb in E2
let $c := E3, $d := E4
for Se in E5
return E6

generates a nested list ($Sa, ($b, Sc, $d, ($e) ) ). Variables in this nested list from
left to right are nested in different levels (as indicated in Fig. 2). Whether there is a
opening parenthesis “(” between two variables determines how the tree is constructed.
If there is a “(”, every list item in the value bounded to the second variable is a child
of the first variable binding. This corresponds to a for-clause style of binding values.
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If there is no “(”, the list value of the second variable as a whole is a child of the first
variable binding. A possible environment instantiated from this nested list is shown in
Fig. 2.

%a in El al a2 a3
//\\. f"l““"‘
_________________ et B e e e e o TR
= \—\ iz I S
$b in E2 11 olz h2l b3l B3z b33
--------------- s s e el
$c = E3 all cl2 czl a3l e32 ¢33
--------------- S S SR
$d = E4 dlz dlz da21 dil 43z 433
FNen AN AN
_____________________ g5, i SN -- - \______}_..\K__..__.__....._ SR— Y
$e in ES elll «112 =113 =121 122 2211 =212 e3ll e312 321 322 &323 =331

Fig. 2. An example environment by the schema ($a, ($b, $c, $d, (Se)))

The environment forms a forest, in which the number of trees is the number of val-
ues instantiating $Sa. The list of nodes at each level are generated by the expression
at the left-hand-side, given the input nodes at its top levels: the first-level nodes are
generated by the expression E1, and the second-level nodes are generated by the ex-
pression E2 given the input of the nodes at the first level, and so on. This environment
actually specifies 13 possible value assignments (each corresponding to a path from a
root the a leaf) to the five variables. Therefore, to obtain the final result, the expres-
sion E6 is evaluated once for each of these paths, and their results are concatenated
together.

Operators. The XQuery data model has already defined functions and operations for
each sort (data type). We can use these as the operators over the predefined sorts in our
algebra. In addition, we need to define operators for the newly introduced sorts. In rela-
tional algebra, some operators are schema-related (7 and p, etc.), and some operators are
value-related (o, X, sorting, etc.). In our XML algebra, we also define operators in these
two categories, but some operators may examine both schema and value information (cf.
Table 1).

The operators listed in the structure-based and value-based have extended but very
similar semantics to the relational operators. For example, o° selects tree nodes whose tag

[TPRL]

names are “s”, and X° join two lists of nodes if their structural relationships
are “s”.

The two hybrid operators involve both types of information and thus have more
complex semantics. The tree pattern matching (TPM) operator (7) takes an XML tree
and a pattern graph as input, and produces a nested list as output. The semantics of 7
operator is to find all nodes in the input tree that satisfy all the constraints specified
by the pattern graph. The resulting nodes are output as a nested list according to their

structural relationships in the input tree (i.e., two nodes are immediately nested in the
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Table 1. Operators

Category Operator Signature Short Description

o®  List — List selection based on tag names
structure- X*®  List x List — List structural join
based n*  List — NestedList tree navigation along axis s
value- c”  List — List selection based on values
based MY List x List — List value-based join

List x PatternGraph — NestedList tree pattern matching

hybrid NestedList x SchemaTree — Tree tree construction operator

output nested list iff they are in immediate ancestor-descendant relationship in the
input tree). This operator is particularly interesting and I shall introduce this physical
optimization technique in Section 4.

The construction operator () takes a NestedList and SchemaTree as input, and
produce a labeled Tree (which represent an XML document). Among the parameters,
the NestedList is the intermediate results (tree without node labels) obtained by other
operators, and the SchemaTree is the schema information that indicates how the inter-
mediate results should be labeled.

These two operators, 7 and -, reside on the bottom and top of the execution plan,
respectively. The 7 operators process the input XML documents and produce intermedi-
ate results (nested lists). The v operator takes the intermediate results together with the
output schema, and produces the resulting XML document. The other operators reside
in the middle in the execution plan, and serve as transformation tools on the intermediate
results.

4 Physical Storage and Operators

4.1 Problem Definition

Database query execution is I/O-expensive, and physical optimization concentrates on
reducing I/O costs based on the physical storage scheme and data distribution. Unlike
relational databases, XML data are ordered and hierarchically organized. More impor-
tantly, the XML schema is more flexible and allows mixed content. Existing extended-
relational approaches shred XML documents into small pieces (elements) and store them
without considering their structural relationships. To answer queries related to structural
constraints, it is necessary to perform a structural join on each structural constraint,
which could pose optimization difficulties. To efficiently answer such queries, we need
to study the following problems:

Path Expressions: Path expression is arguably the most natural way to query tree-
structure data. It deserves attention because, first, it is one of the most heavily used
expressions in XQuery, and its performance will greatly affect the overall performance.
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Fig. 3. Storing an XML tree as a string

Second, it is significantly different from relational query languages, so it may require
new optimization techniques.

Physical Storage Structures: As discussed above, relational storage structure is invari-
ant to ordering. Therefore, a new storage scheme taking into consideration the ordering
of a an tree structure may be advantageous for relational storage structure.

4.2 Preliminary Results

Storage Systems. To answer path queries, we have designed a succinct XML physical
storage scheme [15], in which schema information (tree structure consisting of tags) and
data information (element contents attached to the leaves of the subject tree) are stored
separately. The reason for the separation is that, first, the physical management issues
are much easier when we consider only one type of data — the tree structure without
variable-length element contents is more regular and can be managed more efficiently,
and content-based indexes (such as B trees and suffix trees) can be created only on
the content information without worrying about its structure. Second, queries can be
decomposed into operations that operate on these two types of information individu-
ally, and the final result can be composed by the partial results from the two classes of
operators.

Another requirement for the storage structure design is to efficiently answer tree-
structure related queries. The rationale is to cluster XML elements at the physical
level based on one of the “local” structural relationships (say parent-child). The idea
is to linearize the tree nodes in pre-order but keep balanced parentheses to denote
the beginning and ending of a subtree. This clustering method makes update easier
since each update only affects a local sub-string. Furthermore, pre-order of the tree
nodes coincides with the streaming XML element arrival order. So the path query
evaluation algorithm (outlined in Section 4.2) can also be used in the streaming
context.
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Fig. 3 illustrates the string representation of a tree. Each character in the string
represents a node in the tree, and the characters are ordered by the pre-order traversal
of the tree. During the per-order traversal, the end of a subtree is presented by a right
parenthesis ‘)’ in the string. It is well-known that any tree can be represented by such a
string, and vice versa [10]. To conform to the paged I/O model, the string can be divided
into pages as well. In each page, a page header keeps track of the lowest (10) and highest
(hi) levels of all nodes in the page. This information is used to save unnecessary 1/O’s
when traversing the tree (See [15] for more details).

Path Expression Evaluation. We have also identified a subset of the path expression,
which we call next-of-kin (NoK) expressions, consisting of only those local structural
relationships (/ and following-siblings). The evaluation of NoK expressions (a.k.a. NoK
pattern matching) can be performed efficiently based on our physical storage structures
without the need for structural joins. The NoK pattern matching calls two primitive tree
traversal operations (FIRST-CHILD and FOLLOWING-SIBLING as shown in Algorithm 1).
It can be proved that only a single scan of the input data is needed for the NoK pattern
matching.

Algorithm 1 NoK Pattern Matching

NPM(proot, snode, R)

1 if proot is the returning node

2 then LisT-APPEND(R, snode);
3 S < all frontier children of proot;
4 u < FIrsT-CHILD(snode);
5 repeat
6 for each s € S that matches u with both tag
name and value constraints
7 do
8 b «— NPM(s, u, R);
9 if b = true
10 then S — S\ {s};
11 delete s and its incident arcs
from the pattern tree;
12 insert new frontiers caused by
deleting s;
13 u «— FOLLOWING-SIBLING(u);
14 until w = N1L or S = ()
15 if S#0
16 then R — (;
17 return false;

18 return true;

Given a general path expression, we first partition it into interconnected NoK ex-
pressions, to which we apply the more efficient navigational pattern matching algorithm.



130 N. Zhang

Then, we join the results of the NoK pattern matching based on their structural relation-
ships, just as in the join-based approach. Experimental results show that our approach
outperforms existing join-based approaches and a state-of-the-art commercial native
XML management system [15].

5 Related Work

The definition of our algebra is inspired by previous algebras (in particular, YAT alge-
bra [4] and TAX algebra [3, 8]). In YAT algebra, operators can be separated into three
categories: (1) Bind operators take a collection of XML documents and produce a set
of structures called Tab, which are —1NF relations, as output. (2) Then any standard
relational operators (such as Selection, Projection, Join, and Union) can be applied
to the Tab structure. (3) Finally, Tree operators are applied to Tab structures to generate
new nested XML documents. In our algebra, we also define some “border” operators that
insulate other more “relational-style” operators from the tree data model. Therefore, we
can reuse the optimization techniques developed for relational databases. In addition, as
discussed in Section 3.2, more sorts and operators are needed to support efficient query
processing.

In TAX algebra [8], the input, as well as the output, of any operator is a collection
of labeled trees. A great difficulty for this approach is that trees are more heterogeneous
than tuples (relations). When defining operators, specifying the objects (tree nodes)
to manipulate is therefore much more difficult than that for tuples. By comparison,
relational algebra specifies attributes by their names or their positions in the tuple;
while TAX algebra specifies tree nodes by a tree pattern (or generalized tree pattern
in [3]), to specify certain nodes by giving the constraints that these nodes should satisfy.
Therefore, TAX algebra generalizes relational algebra in terms of how to specify objects
to manipulate, but also introduces complexity at the same time. We shall see that in some
cases, a pattern tree is an overkill for some intermediate results, which can be represented
by lists or nested lists and thus can be manipulated more efficiently by operations on
these specialized data structures.

Previous research on the evaluation and optimization of path expressions fall into two
classes. Navigational approaches traverse the tree structure and test whether a tree node
satisfies the constraints specified by the path expression [12]. Join-based approaches first
selectalist of XML tree nodes that satisfy the node-associated constraints for each pattern
tree node, and then pairwise join the lists based on their structural relationships [1,2, 11,
14]. Compared to the navigational techniques, join-based approaches are more scalable
and enjoy optimization techniques from the relational database technology. However,
there are inevitable difficulties because join-based approach usually results in many
structural joins. In Section 4, we follow a novel approach that combines the advantages
of both navigational and join-based approaches.

6 Open Problems and Planned Work

In this paper, I have presented my preliminary work on the definition of algebra and
design of physical storage and optimization techniques. What remains is to define a
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complete set of operators, prove the soundness and completeness properties in a large
fragment of XQuery (basically XQuery without recursive functions), and develop log-
ical optimization techniques. Another primary goal of my research is to demonstrate
how extensively this algebra accommodates optimization techniques, and how effective
these techniques are in practice. I will justify the efficiency of the algebra by defining
rewrite rules and investigating different evaluating strategies such as lazy evaluation
(or output-oriented) strategy. We have shown (as in Fig. 1(b)) that the output template
(SchemaTree) can be extracted from an XQuery expression. The remaining work is
to show how to further generate an execution plan by backward (from output to input)
analysis.
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Abstract. Similarity retrieval is an important paradigm for searching in environ-
ments where exact match has little meaning. Moreover, in order to enlarge the
set of data types for which the similarity search can efficiently be performed, the
mathematical notion of metric space provides a useful abstraction of similarity.
In this paper, we present a novel access structure for similarity search in arbitrary
metric spaces, called D-Index. D-Index supports easy insertions and deletions and
bounded search costs for range queries with radius up to p. D-Index also supports
disk memories, thus, it is able to deal with large archives. However, the partition-
ing principles employed in the D-Index are not very optimal since they produce
high number of empty partitions. We propose several strategies of partitioning
and, finally, compare them.

1 Introduction

Searching has always been one of the most prominent data processing operations because
of its useful purpose of delivering required information efficiently. However, exact match
retrieval, typical for traditional databases, is not sufficient or feasible for present appli-
cations, such as multimedia information retrieval, data mining, machine learning, and
genome databases. What seems to be more useful, if not necessary, is to base the search
paradigm on a form of proximity, or dissimilarity of a query and data objects. Roughly
speaking, objects that are near a given query object form the query response set. In this
place, the notion of mathematical metric space provides a useful abstraction of nearness.

Several storage structures, such as [2, 3, 6, 9], have been designed to support efficient
similarity search execution over large collections of metric data where only a distance
measure of pairs of objects is possible to quantify. However, the performance is still
not satisfactory. Though all of the indexes are trees, many tree branches have to be
traversed to solve a query, because similarity queries are basically range queries that
typically cover data from several tree nodes or some other content-specific partitions.
In principle, if many data partitions need to be accessed for a query region, they are
not contrasted enough and such partitioning is not useful from the search point of view.
Recently, the excluded middle vantage point strategy for partitioning of metric data has
been proposed to develop an index structure [12] called Excluded Middle Vantage Point
Forest, which creates a forest of one path search trees.

In this article, we describe recently proposed similarity search structure, called D-
Index [8], which uses this strategy. The organization stores data objects in buckets with

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 133-143, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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direct access to avoid hierarchical bucket dependencies. Such organization also results
in a very efficient insertion and deletion of objects. Though similarity constraints of
queries can be defined arbitrarily, the structure is extremely efficient for queries searching
for very close objects. We point out issues related to the design of the D-Index. In
particular, we propose three strategies to combine partitioning principles which lead to
better behavior of D-Index.

2 Related Work

The urgent need of indexing techniques that support execution of similarity queries led
to the application of spatial access methods (SAMs) such as R-Tree. Unsatisfactory
performance of R-Trees on high dimensional vector spaces lead to the further develop-
ment. New access structures for searching high dimensional spaces, e.g. iDistance [13]
or Pyramid [1] were proposed and analyzed. They both outperform R-Trees and demon-
strate significant speedup. However, SAMs are limited by the following assumptions
on which they rely: i) objects are represented by vectors in a multidimensional vector
space, ii) the similarity between a pair of objects is often based on an L,, metric, e.g.
Euclidean distance, which does not introduce any kind of correlation. Moreover, SAMs
assume that the distance function can be trivially evaluated by means of time, which is
not always the case of multimedia data, e.g. the distance of strings is measured by the
edit distance, which has the complexity O(n?). Finally, SAMs usually optimize only
the number of access to disk memories, not the number of distance evaluations.

A more general approach to the similarity based searching is an index structure that
operates in metric spaces. Note that in metric spaces we can only state the distance
between two objects and a metric function is often considered as a CPU demanding
operation. Uhlmann [10] proposes metric tree that partitions the metric space using
the relative distances of objects. This technique is improved in [11] and vantage point
tree is proposed. A further improvement of this concept has recently been presented by
Yianilos [12]. This approach is based on the excluded middle vantage point strategy and
creates a forest of vantage point trees. This principle is also exploited in the D-Index.
The main contribution of indexing methods based on metric spaces is that they are not
limited to the usage on vector spaces, thus, they can be applied on other domains, such
as text strings or XML documents, without any additional nontrivial transformation to
a vector space.

Although the number of access structures for metric spaces is impressive, see a recent
survey [5] most of them suffer from being intrinsically static, which limits their applica-
bility in dynamic environments. Contrary to SAM, presented metric trees optimize only
the number of distance computations. Zezula et al proposed M-Tree [6] that optimizes
both CPU and I/O costs.

3 Searching in Metric Spaces

A convenient way to assess similarity between two objects is to apply metric functions
to decide the closeness of objects as a distance, that is the objects’ dissimilarity. A
metric space M = (D,d) is defined by a domain of objects (elements, points) D
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and a total (distance) function d — a non-negative (d(x,y) > 0 with d(z,y) = 0 iff
x = y) and symmetric (d(x,y) = d(y, x)) function that satisfies the triangle inequality
(d(z,y) < d(z,z) + d(z,y), Vz,y,z € D). We assume that the maximum distance
never exceeds d T, thus we consider a bounded metric space.

In general, the problem of indexing in metric spaces can be defined as follows:
given a set X C D in the metric space M, preprocess or structure the elements of
X so that similarity queries can be answered efficiently. For a query object ¢ € D,
two fundamental similarity queries can be defined. A range query retrieves all elements
within distance r to g, that is, the set {z € X, d(q,z) < r}. A nearest neighbor query
retrieves the h closest elements to ¢, that is a set R C X such that |R| = h and
Ve e Ry € X — R,d(q,z) < d(q,y).

For the space constraints of this article, we consider only the similarity range search
operations here. In the following, we first define partitioning principles and then outline
the ideas of the D-index. Next, we provide the range search algorithms. Finally, we
present a sketch of comparison with M-Tree.

3.1 General Approach: Separable Partitioning

To achieve the objectives, the partitioning principle of D-Index is based on a mapping
function, which is called the p-split function, where p is a real number constrained as
0 < p < d*. In order to gradually explain the concept of p-split functions, we first
define a first order p-split function and its properties.

Definition 1. Given a metric space (D,d), a first order p-split function s'-* is the
mapping s** : D — {0,1,—}, such that for arbitrary different objects x,y € D,
sbP(x) = 0 A sbP(y) = 1 = d(z,y) > 2p (separable property) and py >
p1 AsbPr(z) # — A sVPi(y) = — = d(x,y) > pa — p1 (symmetry property).

In other words, the p-split function assigns to each object of the space D one of the
symbols 0, 1, or —.

The concept of p-split functions can, of course, be generalized by concatenating n
first order p-split functions with the purpose of obtaining a split function of order n.

Definition 2. Given n first order p-split functlons 511 . s,le in the metric space
(D, d), a p-split function of order n s™" = (s1*, sy’ p, N Y 2 = {0,1,—}"
is the mapping, such that for arbitrary different objects x,y € D, Vi sz Plz) £ — A
siP(y) # — A sP(x) # s(y) = d(x,y) > 2p (separable property) and
p2 > p1 AVisiP(z) £ — A Tj s}’pl(y) = — = d(z,y) > p2 — p1 (symmetry
property).

An obvious consequence of the p- split function definitions is that by combining n
first order p-split functions s}’p ,...,85P which satisfy the separable and symmetric
properties, we obtain a p-split function of order n s™# which also demonstrates the
separable and symmetric properties. We often refer to the number of symbols generated
by s™7, that is the parameter n, as the order of the p-split function. In order to obtain
an addressing scheme with direct access, another function that transforms the p-split

strings into integers is defined as follows.
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Separable Separable

(a)

bps(xo )=0 Separable
bps(x,)=1
bps(x,)=- Exclusion
X

Separable
set 3

Fig. 1. The bps split function (a) and the combination of two bps functions (b)

Definition 3. Given a string b =(by,...,b,) of n elements 0, 1, or —, the function
(-y : {0,1, =} — [0..2"] is specified as:

<b> _ { [b17b27' - 7bn]2 = Z?:l znijbj’ ifvj bj # —

2™ otherwise

When all the elements are different from ‘—’, the function (b) simply translates the
string b into an integer by interpreting it as a binary number (which is always < 2"),
otherwise the function returns 2.

By means of the p-split function and the (-) operator, we can assign an integer number
1 (0 <4 < 2™) to each object x € D, i.e., the function can group objects from X C D
in 2" + 1 disjoint subsets.

Though several different types of first order p-split functions are proposed, analyzed,
and evaluated in [7], the ball partitioning split (bps) originally proposed in [12] under the
name excluded middle partitioning, provided the smallest exclusion set. For this reason,
this approach is also applied in the D-Index and can be characterized as follows.

The ball partitioning p-split function bps uses one reference object (pivot) z,, and the
medium distance d,, to partition a data set into three subsets, see Figure 1a. The result of
the bps function gives the unique identification of the set to which the object « belongs:

0 ifd(z,xy) <dpm—p
bps(x) =< 1 ifd(z,zy) > dp + p
— otherwise

The subset of objects characterized by the symbol *—’ is called the exclusion set,
while the subsets of objects characterized by the symbols 0 and 1 are the separable sets,
because any range query with radius not larger than p cannot find qualifying objects in
both the subsets.

To obtain more separable sets we define higher order p-split function as a combination
of several bps functions, where the resulting exclusion set is the union of the exclusion
sets of the original split functions. Furthermore, the new separable sets are obtained as
the intersection of all possible pairs of separable sets of the original functions. Figure 1b
gives an illustration of this idea for the case of two split functions. Several strategies of
combining p-split functions are discussed in Section 4.
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3.2 D-Index

The basic idea of the D-Index is to create a multilevel storage and retrieval structure that
uses several p-split functions, one for each level, to create an array of buckets for storing
objects. On the first level, we use a p-split function for separating objects of the whole
data set. For any other level, objects mapped to the exclusion bucket of the previous level
are the candidates for storage in separable buckets of this level. Finally, the exclusion
bucket of the last level forms the exclusion bucket of the whole D-Index structure. It is
worth noting that the p-split functions of individual levels use the same p. Moreover,
split functions can have different order, typically decreasing with the level, allowing the
D-Index structure to have levels with a different number of buckets. In particular, from
the structure point of view you can observe the buckets organized as the following two
dimensional array consisting of 1 + Z?zl 2™ elements.

Bio,B11,...,B12mi 1
Bao, B2, .., Baama 1

BrosBris--- s Bramn—1,Ep

All separable buckets are included, but only the Fj, exclusion bucket is present —
exclusion buckets F; ., are recursively re-partitioned on level ¢ + 1. Then, for each row
1 (i.e. the D-Index level), 2™ buckets are defined and are separable up to 2p, thus we
are sure that there do not exist two buckets at the same level i both containing relevant
objects for any similarity range query with radius r < p.

In order to deal with overflow problems and growing files, buckets are implemented
as elastic buckets and consist of the necessary number of fixed-size blocks (pages) —
basic disk access units.

Range Search. Given arange query @ = R(q, r), we define a simple search algorithm.
This algorithm, however, evaluates only limited queries with r < p.

Algorithm 1. Search

fori=1toh
return all objects x such that v € QN B,

end for
return all objects x such that x € Q N Ey;

("% (@))’

During the elaboration of the algorithm we manipulate the value of parameter p of
split functions. When we use p = 0 the function (s7"%(¢)) always gives a value smaller
than 2. Consequently, one separable bucket on each level ¢ is determined. Finally,
the algorithm also accesses the exclusion bucket of the whole structure. The algorithm

requires h + 1 bucket accesses, which forms the upper bound on the search.

Generic Range Search. Algorithm 1 requires to access one bucket at each level of the D-
Index, plus the exclusion bucket. In the following two situations, however, the number
of accesses can even be reduced: i) if the query region is contained in the exclusion
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partition of the level 7, then the query cannot have objects in the separable buckets of this
level and only the next level must be considered, ii) if the query region is contained in
a separable partition of the level ¢ the following levels, as well as, the exclusion bucket
need not be accessed, thus the search terminates on this level.

Another drawback of the simple algorithm is that it works only for search radii up
to p. However, with additional computational effort queries with » > p can also be
executed. Indeed, such queries can be executed by evaluating the split function s"¢«~7. In

case s"¢~ " returns a string without any ‘—’, the result is contained in the single bucket
B 4rq-ry plus, possibly, the exclusion bucket.
Let us now consider that the string returned contains at least one ‘—’. We indicate

s

this string as b = (by,...,b,) with b; = {0, 1, —}. In case there is only one b; = ‘—’,
we must access all buckets B, whose index is obtained by substituting‘—’ with 0 and 1.
For this purpose, we define the function G that returns all identifications of buckets that
must be accessed. For example, G returns the set {(001), (011) } for the string ‘0—1". In
the most general case, we must substitute in the string b all the ‘—’ with zeros and ones
and generate all possible combinations.

Given a query region @ = R(q,7,) withq € Dandr, < d*.Anadvanced algorithm
can execute the similarity range query as follows.

Algorithm 2. Range Search

0l.for i=1toh
02. if <s;”i’p+r" (g)) < 2™ then (exclusively in a separable bucket)

03. return all objects x such that x € Q N Bi7<87.ni‘,n+7‘q (q)>; exit;
04.  endif '

05.  ifry < pthen (search radius up to p)

06. if (s]"""7"(g)) < 2™ then(not exclusively in an exclusion b.)
07. return all objects x such that x € Q N Bi’<sw,pﬂ-q @)

08. end if '

09.  else (search radius greater than p)

10. let{l1,ls,..., 1} = G(s;"""" "(q))

11. return all objects x such that x € QN By y,,...,x € QN By ,;
12.  endif

13. end for

14. return all objects x such that x € Q N Ey;

In general, Algorithm 2 considers all D-Index levels and eventually also accesses
the global exclusion bucket. However, the test on the line 02 can discover the exclusive
containment of the query region in a separable bucket and terminate the search earlier.
Otherwise, the algorithm proceeds according to the size of the query radius. If » < p
there are two possibilities. If the test on line 06 is satisfied one separable bucket is
accessed. Otherwise no separable bucket is accessed on this level because the query
region is from this level point of view exclusively in the exclusion zone. Provided the
search radius is greater than p, more separable buckets are accessed on a specific level.
Unless terminated earlier, the algorithm accesses the exclusion bucket at line 14.
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3.3 Comparison

We have compared the D-Index with other index structures, particularly, we considered
M-Tree! [6] and a sequential organization (SEQ). According to [5], these are the only
types of index structures for metric data that use disk memories to store objects. We
have conducted the experiments on 45-dimensional vectors of image color features
compared by the quadratic distance measure. The data set consisted of 11,000 objects
and had practically normal distribution. We have measured average performance over
50 different query objects considering numerous similarity range queries. The results
are shown in Figure 2.

Distance Computations (a) Block Accesses (b)

12000 T T T 1000 T T T
900
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700
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400
300 £
200
100
1 0 1 1 1
0 5 10 15 20 0 5 10 15 20
Search radius (x100) Search radius (x100)

10000

8000

6000

4000

2000

0

Fig. 2. Comparison of the range search efficiency in the number of distance computations (a) and
the number of block accesses (b)

For all tested queries, i.e. retrieving subsets up to 20% of the database, the D-Index
always needed less distance computations than the M-tree and the number of block
accesses of the M-tree was significantly higher than for the D-Index. This is obvious
since the M-Tree has nodes with fixed capacity? while the bucket in D-Index consists
of necessary number of blocks (the size of blocks is fixed). The superior performance
in the terms of distance computations can be attributed to the fact that the D-Index also
applies the pivot-based filtering techniques, which significantly reduce the number of
distance computation, for details see [8]. Moreover, the D-Index uses the same pivots in
the partitioning, i.e. p-split functions, and in the filtering technique to further reduce the
number of distance evaluations. Figure 2b demonstrates another interesting observation:
to run the exact match query, i.e. range search with » = 0, the D-Index only needs to
access one block. As a comparison, the M-Tree needs one half of the SEQ. Notice that
the exact match search is used to locate an object to be deleted and forms the main cost
of delete operations. In this respect, the D-Index is able to manage deletions much more
efficiently than the M-tree. In this case, the advantage of the D-Index over the M-Tree is
caused by its structure. The M-Tree must traverse the tree and access all internal nodes
along the search path. However, the D-Index computes p-split functions, which does

! The software is available at http://www-db.deis.unibo.it/research/Mtree/
% Overflow problems are solved with node splits. Thus, after a split there is approximately 50%
of space wasted in the new nodes, which need not be filled anymore.
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not require any disk accesses and directly determines the bucket to access. Due to the
applied pivot-based algorithm, all object in blocks of buckets are sorted according to
the distance to a pivot. Consequently, the D-Index is able to locate a block in the bucket
where the object to delete resides without any additional block accesses.

We have also performed scalability tests over the same data collection but ranging
from 100,000 to 600,000 objects. For these experiments, the D-Index structure was
defined by 37 pivots and 74 buckets.The D-Index was strictly linear, that is, the costs to
evaluate a query grow linearly with the data size. The M-Tree was slightly better than
the D-Index but this is attributed to the fact that M-Tree is incrementally reorganizing
its structure while the D-Index structure is using a constant structure. The development
of a dynamic structure of D-Index is our main research issue. This problem is partially
discussed in the next section.

4 Improved Partitioning Strategies

In this stage, we emphasize the main drawback of the D-Index access structure and sketch
some possible solutions. The experiments revealed that the D-Index is very efficient and
outperforms the others nearly in all situations. However, its partitioning principles are not
very optimal and produce unbalanced partitions. In particular, we concern the problem
of selecting reference objects (pivots). Next, we deal with the issue of combining several
rho-split functions into a single mapping function.

The problem of choosing pivots is important for any search technique in the general
metric space, because all such algorithms need, directly or indirectly, some "anchors"
for partitioning and search pruning. It is well known that the way in which pivots are
selected affects the performance of proper algorithms. This has been recognized and
demonstrated by several researchers [2, 11]. Recently, the problem was systematically
studied in [4], and several strategies for selecting pivots have been proposed and tested.
The generic conclusion is that good pivots are i) far away from the remaining objects of
the metric space and ii) far away from each other pivot. In the D-Index, we also use this
technique to select pivots.

The design of D-Index structure requires specification of several p-split functions
which are usually combinations of bps functions. In general, the idealized split function
should produce balanced buckets each containing nearly the same number of objects and
minimize the size of the exclusion bucket. Figure 3 presents three possible strategies to
combine two bps functions. The first technique, depicted in (a) is utilized in the D-Index
and uses the pivot p; and d,, = 7 to divide the space into two separable partitions.
Next, these two partitions are repartitioned using a different bps function which applies
a different pivot p, and d,,, = r2, however, the same for both the partitions. As a result,
we obtain four separable buckets. We refer to this method as the strict strategy.

The second strategy in (b) differs from the first one in one aspect. It makes use of
the pivot p, in the second function as well, but two different values of d,,, r% and r%
are applied for the left and the right partition, respectively. The hypothesis behind is
that by manipulations with the parameter d,,, we can achieve better balanced buckets,
diminish empty buckets and decrease the occupation of exclusion sets. We refer to this
as the variable d,, strategy.
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Fig. 3. Different strategies of combining two bps split functions

To complete the list of split policies, we introduce the third strategy which modifies
also the pivot. In details, this technique can be viewed as the application of three in-
dependent bps functions instead of two in the previous methods. The first bps function
specified with the pivot p; and radius r; produces two separable partitions. These two
parts are separately divided using the next two bps functions, that is, the left one uses bps
function with py and r5 while the right set is split using p3 and 5. In this way, we get four
separable buckets. However, the major disadvantage of this approach is enormous mem-
ory requirements, e.g. for 128 separable buckets we need 127 different pivots, which is
in a sharp contrast with the other strategies that need log(128) = 7 pivots only to define
the same number of buckets. The memory requirements are not the only issue: the more
pivots we have the more distance computations we must evaluate during both insert and
search operations. Since we optimize the costs in terms of distance computations, such
the behavior is not desired. For this reason, we neglect this strategy. In the following,
we compare the first two approaches, strict and variable d,,, strategies.

4.1 Experimental Evaluation

In order to test properties of strict and variable d,,, strategies, we have considered the
collection of 45-dimensional vectors consisting of 11,000 objects again. We created two
one-level D-Index structures one for each strategy and organized the dataset. At this
point, it is important to remark that buckets are fixed in size, specifically, each bucket is
able to store 500 objects at maximum. Table 1 shows the results for both methods. We
have examined several properties: the number of needed pivots — | P|, the symbol |E]|
denotes the percentage of exclusion bucket occupation, | B| is the average occupation of
separable buckets, the number of empty buckets is denoted by |{}|, and the number of
non-empty buckets is 211 — [{}].

Table 1. Results for different strategies of combining split functions

strategy [[|PI| |E| | |B| [I{}I[2"" — {3
strict__|| 9 [36.40%[27.16%[463| 49
variable d,, || 5 [33.76%48.23%]| 0 32




142 V. Dohnal

The strict strategy applied 9 pivots and produced the structure consisting of 512 buck-
ets. The average bucket occupation | E| was 27.16%, that is, about 136 objects accommo-
dated in a bucket. The remaining objects fell into the exclusion set, thus, the occupation of
exclusion bucket was 36.40%. The worst parameter observed was that the strict strategy
produced 463 empty buckets, which is 90.40% of all buckets. This is in a sharp contrast
with the requirements for a good split function which should produce balanced split.

The variable d,,, technique performed much better. The number of pivots used to
partition the dataset was only 5, which leads to 32 buckets in total. The average bucket
occupation was 48.23% that is much higher than that for the strict strategy. The occu-
pation of exclusion bucket decreased to 33.76%. Finally, the most promising fact is that
the variable d,,, diminished all empty buckets.

All in all, the results confirm our hypothesis that the variable d,,, strategy leads to
a better balanced partitioning. It also reduces the occupation of the exclusion bucket,
moreover, it diminishes all empty buckets. To sum up, the variable d,, strategy outper-
forms the strict strategy and uses much less pivots to achieve the same partitioning. On
the other hand, the variable d,, strategy introduces additional computational overhead,
however, these costs do not include any supplementary distance computations and can
be neglected. To conclude, the variable d,, strategy is promising and we will implement
it to create a dynamic structure of the D-Index.

5 Concluding Remarks

Metric spaces have recently become an important paradigm for similarity search and
many index structures supporting execution of similarity queries have been proposed.
However, most of the existing structures are limited to operate in main memory only,
so they do not scale up to high volumes of data. We have concentrated on the case
where indexed data are stored on disks and we have compared a novel index structure
for similarity range and nearest neighbor queries called D-Index with other disk-based
approaches. Contrary to other index structures, such as the M-tree, the D-Index stores and
deletes any object with one block access cost, so it is particularly suitable for dynamic
data environments. Compared to the M-tree, it typically needs less distance computations
and much less disk accesses to execute a query. We have also discussed the design issues
of the D-Index and proposed several partitioning strategies. The experiments revealed
that the variable d,,, strategy provides the best partitioning.

We will concentrate on possibilities of implementing a dynamic structure of the
D-Index that would allow automatic updates of split functions to achieve an optimal
design of structure for various applications. We will report results in the near future. The
multilevel hashing structure of the D-Index inherently offers parallel and distributed
implementations. This is our next research direction.
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Abstract. In spite of the advances in caching, query optimization, and object
persistence techniques in the past few years, the cost of interactions of large-
scale data-intensive applications with a relational database where the persistent
objects are implemented remains a performance bottleneck. To reduce the cost of
such interactions, we present a read-ahead scheme, which allows the application
to reduce the number of database roundtrips by retrieving the data before it is
actually needed by the transactions in the applications.

We focus on designing generic rules for determining the efficient sequences of
SQL statements for read-ahead queries on relational databases, such that the rules
would be useful across application domains and data-access patterns. This paper
explains our research methodology for generating generic access patterns and
studying the parameters that influence the costs of various combinations of read-
ahead SQL statements that implement the generic access patterns of applications.

1 Introduction

The objective of this project is to develop new methods for improving a range of per-
formance metrics in modern relational databases. The main direction of the project is to
design efficient scalable techniques for increasing the throughput of database accesses
and minimizing the cost of database interactions, by reading ahead of time the data
before it is actually needed by the transactions in the data-intensive applications.

Relational databases are the most popular and commonly used DBMSs in the en-
terprise, so minimizing the cost of interactions between large-scale data-intensive ap-
plications and relational databases will result in considerable gains in performance of
applications. Each data access operation results in one or several relatively expensive
physical disk accesses and network overhead that reduce the total throughput in terms
of business transactions performed in a unit of time.

Traditional caching and prefetching techniques are heavily used to efficiently handle
database queries, which process large number of data objects or Web documents [1, 8].
The technique of prefetching refers to the process of guessing an application’s future
requests for data and getting those data into the cache before they are actually referenced.
Caching is used to store the actively referenced data objects, thereby avoids unnecessary
requests to the database. However, even with caching, if an access to a non-cached data
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(© Springer-Verlag Berlin Heidelberg 2004
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item (e.g., uncacheable data, compulsory misses) occurs that entails a round-trip to the
database, performance will suffer. [2] provides a feeling for the performance penalty
of relational databases with and without the technique of prefetching. According to the
experiments described in [2], the retrieval time of data is up to 5.5 times faster to get rows
in a batch of 100 rows than a row at a time. Simple prefetch mechanisms, which create
read-ahead threads for certain queries that return large quantities of data sequentially
from a single table, are already used in commercial data servers or application servers.

The prefetching technique of reading ahead of time, which we refer to as read-aheads
in the rest of the paper, is used to reduce the number of database roundtrips either by
augmenting the current query to include the answer to the next queries or to gener-
ate additional queries that are likely to come next. In current application servers, some
read-ahead techniques are already used by object managers or containers. However,
these techniques should be used systematically, because incorrect guessing reduces the
throughput of the server, and the overhead examining the query for possible concatena-
tions increases the latency. Current object managers that are responsible for accessing
the database cannot efficiently benefit from the application’s context descriptions. In this
respect, we want to help such object managers to maximize the probability of correct
guessing and to have efficient database interactions by finding the rules of thumb re-
garding what strategies to use to determine efficient sequences of SQL statements. We
want to provide a systematic vision for state-of-the-art read-ahead techniques.

2 Motivation and Problem Formulation

Our goal is to bring the potentially accessible data to application’s environment in the
most efficient way in terms of maximal throughput and minimal database interaction cost.
We use relational structure of data such as table relationships and data dependencies,
and access patterns of the applications to predict the potentially accesssible data that has
the lowest retrieval cost. We separate this original problem into two parts.

1. Design generic rules for determining the efficient sequences of SQL statements for
read-ahead queries on relational databases, such that the rules would be useful across
application domains and data-access patterns.

2. Develop efficient and scalable algorithms for fine-tuning the read-ahead access rules
in each particular application.

We seek rules of thumb that would be applicable accross application domains and
data-access patterns. To derive such generic domain-independent rules, we need to study
the parameters that influence the costs of various combinations of read-ahead SQL state-
ments that implement the generic access patterns. These generic domain-independent
rules are then fine-tuned according to the data-access patterns of particular applications.

In the first phase of our project, we look for break-even points for efficient sequences
of SQL statements by discovering new parameters and by exploring known parameters
such as the size of data in the tables (number of rows and columns), the complexity of SQL
calls (e.g., number of joins, presence of subqueries), presence of indexed columns, shape
of the graph we are trying to retrieve (in a depth-first manner or breadth-first manner),
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and network latency (in later stages of the project). Break-even points correspond to
parameter values that are used in constructing efficient sequences of SQL statements,
which give maximal throughput with minimal database interaction cost including data-
retrieval time. As an outcome of this phase, we will have rules of thumb applicable across
applications regarding what strategies to use for efficient sequences of SQL statements.
At present, we don’t consider the caching aspects of the problem to answer subsequent
queries from the results that were prefetched. In addition to this, we don’t consider read-
aheads for batch queries. For example, instead of focusing on queries such as find the
name of all customers, we focus on queries such as find the name of the customer with
given ID .

Example 2.1 We consider a simple financial services data model for our examples [10].
According to this model, there can be many banks, and each customer can have multiple
accounts in different banks. Relations Person and Organization store detailed informa-
tion about customers of the banks. The relation Customer stores the common attributes
of persons and organizations. The relation Account stores account information for cus-
tomers in various banks. In the first and second transactions, we consider a customer
representative who issues three and two data-access requests, respectively for the same
customer from the database (The data-access requests are abbreviated with uppercase
letters).

Transaction 1:

A Find the city and SSN of (person) customer ‘0011111°.
B Find the total amount of money that customer ‘0011111" has in all his accounts.
C Find the routing numbers of the banks where customer ‘0011111” has accounts.

Transaction 2:

D Find the name of customer ‘0011111°.
C Find the routing numbers of the banks where customer ‘0011111 has accounts.

For Transaction 1, request A requires two joins on tables for Customer, Person and
Address without any read-aheads as in Figure 1. With read-aheads, it will be a smart
choice to also bring data from Account table as in Figure 2, because request B that comes
after A, requires data in the Account table. So using just one SQL statement with three
joins as in Figure 2, we answer the first two requests A and B. For request C, we need to
access the Bank_Customers table, so we need another SQL statement to fetch the data.
As aresult, with two SQL statements as in Figure 2 (three joins for the first statement and
no joins for the second statement), we are able to answer the requests in Transaction 1.
As another option, we can bring all the graph data in just one SQL statement by joining
all the required tables at once; but in this case we will have a more complex query shown
in Figure 3. This example shows the trade off between some of the parameters, such as
the cost of the join operation versus the number of database roundtrips. Although the
SQL statement in Figure 3 requires one database roundtrip, we may choose to use two
SQL statements as in Figure 2 because these statements need fewer join operations in
total and thus may result in lower total roundtrip time for large databases.
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select Address.city, Person.ssn

from Customer, Person, Address

where Person.customerld=Customer.customerld
and Customer.addressld=Address.addressld
and Customer.customerld= ‘0011111’

Fig. 1. SQL statement for Transaction 1: A

AB: C:

select Person.ssn, Address.city, sum(amount) select routingNumber

from Customer, Account, Person, Address from Bank_Customers
where Person.customerld=Customer.customerld where customerld="0011111’

and Customer.addressld=Address.addressld
and Customer.customerld=Account.customerld
and Customer.customerld= ‘00111171’

group by Person.ssn, Address.city

Fig. 2. SQL statements for Transaction 1: AB and C

select Address.city, Person.ssn, Bank_Customers.routingNumber, sum(amount)

from Customer, Account, Person, Address, Bank_Customers

where Person.customerld=Customer.customerld and Customer.addressld=Address.addressld
and Customer.customerld=Account.customerld and Customer.customerld= ‘0011111’

and Customer.customerld=Bank_Customers.customerld

group by Person.ssn, Address.city, Bank_Customers .routingNumber

Fig. 3. SQL statement for Transaction 1: ABC

As the above example illustrates, our goal is not to find the minimal number of data-
access statements, but to find the efficient number of simplest data-access statements. For
example, one very complex data-access statement can bring all the data by reading ahead
of time at one roundtrip, but this statement may not result in the maximal throughput
due to the cost of the join operations. Also this data-access statement can bring the data
that may never be needed by the application.

In subsequent phases of the project, we will explore the effect of object-to-relational
mapping technique on our generic domain-independent rules and will develop and test
learning algorithms to increase the efficieny of our generic rules for the data-access
patterns of particular applications.

3 Related Work

In [11], various types of prefetching are characterized according to its short-term and
long-term benefits. In short-term prefetching, future accesses to data are predicted ac-
cording to the cache’s recent access history. In long-term prefetching, global object
access patterns are used to identify valuable objects that are worth prefetching (i.e., if
an objectis accessed by one client, itis likely that it will be accessed by other clients) [11].
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Both prefetching techniques are mainly used in reducing the latency used in loading web
pages [4]. In our work, we use long-term prefetching that also uses data-access costs to
identify cheap and valuable prefething sequences.

Prefetching is used to either pre-load the data needed for the subsequent queries for
the given workload or load a specific collection of objects related to the requested object.
The former case requires a more complex mechanism to track the cache contents and
an analysis of which parts of the previous query is contained in the subsequent query,
is required. [5] addresses the former case as an optimization for computing overlapping
queries that generate Web pages (e.g., online shopping, where users narrow down their
search space as they navigate through a sequence of pages). Predicate-based caching
also serves the same idea where current cache content is used to answer future queries
[7]. The approach in [12] uses the transition probabilities for each query to find the
most probable query that can appear after the current query. So while executing the
current query, they also execute the most probable subsequent query by using probable
parameters and query pattern. In our approach, we take into account the cost of the
data-access statements and parameters that affect this cost, to find the efficient sequence
SQL statements.

[9] proposes to use a predictive cache to recognize and exploit access patterns for
applications by incorporating prefetching mechanism with cache replacement mecha-
nism to eliminate erroneous or least-likely prefetches. [6] also aims to ‘pre-cache’ the
objects that are likely to be subsequently accessed by the application. Haas et al. pro-
pose a heuristic approach to cache and prefetch the objects whose object identifiers were
returned as part of the query, so they make prefetching decisions according to the object
identifiers found in the result set of the query. However, instead of focusing on finding
the most beneficial prefetches, their goal is to find the cost of caching the prefetched
objects. They incorporate the prefetching process into query processing to find the best
execution plan by considering the cost of caching the prefetched tuples.

[2] specifically addresses the prefetching technique on relational databases where
persistent objects are implemented. They use the context of an object as a predictor
for future accesses in navigational applications. This context describes the structure in
which the object was fetched. Main prefetching methods are listed (e.g., prefetching all
the attributes of the requested object(s)). The results are applicable accross application
domains, because they use generic access patterns that are applicable across a wide range
of applications. However, they only make one-level prefetching for referenced objects,
so they don’t actually answer the ‘how deep’ question for read-aheads. Their overall goal
is to minimize database latency for future data-access statements, so they don’t explore
the cost of efficient sequence of data-access statements.

We explore the cost of data-access statements to find efficient generic data-access
patterns. None of the previous work consider the prefetching problem both with query op-
timization parameters and navigational access patterns, such as following a relationship,
at the same time. Also by providing a mechanism for merging simple data-access state-
ments to find an efficient sequence of data-access statement, we actually use a different
aspect for multi-query optimization [3] where dependencies or common subexpressions
between the queries in a sequence are explored and computed.
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4 Proposed Approach

Applications use objects, but these objects are mapped to tuples of the appropriate tables.
In relational databases, the objects accessed by the applications are always associated
with each other. Most of the time, the data in the database is accessed according to these
associations, and again most of the time these associations are intuitive and work just as
you would expect. This is an important observation for the first phase of our project in
which we don’t specifically use data-access patterns of particular applications. Instead,
for the first phase of the project, our goal is to come up with generic read-ahead rules
that are applicable across applications. An important property of applications for systems
such as health-care, financial, or human resources is repetitive usage of the same query
templates. For example, an application can request the due date of a credit card payment
after requesting the balance, or it can request the transactions of the same card in the last
billing period. The similar associations and dependencies that can be found in different
domains form a basis for guessing the useful generic access patterns in our project.

Generic access patterns aren’t enough to determine the most beneficial and efficient
read-ahead scheme configuration. These patterns are helpful to determine the useful
sequence of SQL statements. On the other hand, we need to find efficient sequences
of (merged) SQL statements. Finding such efficient sequences includes answering the
following questions:

1. How much to read ahead? This question requires figuring out which tables and
table columns may be subsequently accessed, and how the structure of data (e.g.,
existence of an indexed attribute) and relational constraints affect the structure of a
read-ahead query.

2. How deep to read ahead? This question requires figuring out the levels of the object
hierarchy that may be subsequently accessed. How does the number of joins affect
the efficiency of sequence of SQL statements?

3. In what direction to read ahead? In each level of the object hierarchy, each object can
be associated with many different objects. This question requires figuring out the
trade-off of typical directions of the traversal on the object hierarchy that is stored
in the relational database.

5 Research Methodology

We construct a testbed to experiment with the parameters that affect the cost of SQL
statements used while reading ahead of time. The focus of our case study is to discover
and experiment with the data-access patterns of financial applications with parameters
that are related to the structure of the data in the database. For this case study, we use a
slightly modified version of the standard data model for financial services (e.g., banking
and investment services) as described in [10]. Some of the main entities of this model
are shown in Figure 4. We use Oracle 9i as our data server to implement the entire data
model which has 55 tables and maximum fan-out of 7 relationships. After creating a
sample database for this model, we list possible query templates for the model. Here,
we list some query templates.
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Find the attributes of a given customer

Find the accounts for a given customer

Find the agreements to which a given financial product(s) is related

Find the assets of a given customer that are used for loan agreements

Find the account transactions of a given account

Find the names of the customers that have more than a given number of accounts

The above list can be easily extended. By using these potential query templates, we
can come up with meaningful generic access sequences for the database.

Fig. 4. Some entities in the financial services model

We generate SQL statements that implement access patterns, which are part of the
given access sequence. To generate various combinations of SQL statements for the
given access sequence with read-ahead functionality, we can use the following prefetch
methods:

Prefetch only primary keys of the associated objects

Prefetch primary and non-primary foreign keys

Prefetch key and non-key attributes, or only non-key attributes

Prefetch via traversing the inheritance-extension, one-to-many association (i.e., ag-
gregation), or many-to-many type of relationships

We model the data accesses as a directed graph. In this directed graph, vertices corre-
spond to simple data-access statements and edges correspond to transition probabilities
between the statements. These probabilities can be calculated and updated using access
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log files of the database server. For example, if we consider each data-access request
used in Example 2.1 as simple data-access statement,we obtain the simple data-access
statement transition graph in Figure 5. Based on this simple hypothetical transition
graph, whenever A is accessed there is a 40% chance that B will be accessed next. We
assume an acylic graph that can have multiple sources and sinks for the first phase of
the project.

To initialize large transition graphs for financial services applications, we generate
vertices by using above query templates and generate edges with random probabilities by
above prefetch methods that use generic associations and dependencies among relations.

We need to merge simple data-access statements to find optimal sequences of SQL
statements for the given access sequence. There are two principle ways to combine two
or more SQL statements. Either the statements are executed at the same time or they
are executed one after the other. We call the first combination merged execution and
denote it by operator *; the second combination represents sequential execution and
is denoted by operator +. We can apply * repeatedly to describe access patterns, and
apply + repeatedly to combine patterns to form the access sequence. By definition, * is
commutative, while + is not, and * has precedence over +. For example, if we have an
access sequence ADEF for a larger graph in Figure 6, we can come up with compound
statements such as A*D*E+F, A*D*E*F, A*C*D+E*F, A*B*D+E*F, A+ D*E*F and
so on. By using large acyclic graphs, we can consider more complex access patterns. To
find efficient compound statements, we derive a benefit formula, which takes into account
the processing cost and the probabilities of each simple and compound statements that
can generate the given access sequence. This formula also includes a risk factor, which
aims to balance the cost and usefullness of the generated sequence. According to the
query workload or even type of applications, the risk factor can change.

Fig.5. Query transition graph for Fig.6. A sample query transition
Example 2.1 graph

By using the results of the benefit formula and the computed cost of an access se-
quence, e.g., processing cost for A+ D+E+F, we will determine rules of thumb regarding
what strategies to use for efficient sequences of SQL statements for the financial services
domain. Then, we will test and fine-tune the rules on other application domains.
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6 Discussion

The results of our work can be used to effectively preload associated dataset of a requested
object that may be subsequently accessed. Our work can also be integrated with query
optimizers to find the efficient execution plans for compound SQL statements. This
integration provides us another aspect for multi-query optimization.

This work can also be integrated with Container Managed Persistence containers or
Java Data Object drivers as a performance tuning technique. Using this technique, we
will be able to get ahead of time the working set of objects for the current transaction
in very concurrent environments. Also this work can be helpful in determining the right
cache size for systems that use prefetching.

One of the important implementation challenges is to merge simple SQL statements
on-the-fly to experiment with the compound SQL statements. This isn’t a trivial task,
because it requires the detailed knowledge of the relational structure of data. Even for the
statements that are syntactically similar, we can have different merged SQL statements.

We use applications’ common behaviours and the cost of database interactions to
generate read-ahead rules that can provide a significant performance gain for systems
where many concurrent data-intensive read-only applications access huge databases.
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Abstract. Application areas beyond (simple) administrative tasks are dominated
by custom built solutions. Tasks like multimedia analysis require a view on data
different from that offered by most database management systems: the set based
data model may no longer suffice.

To address this issue we introduce RAM: a multidimensional array database
system. The concept of an array database system is not new, however our approach
differs from earlier work in that we realize this new view on data by mapping it
onto a traditional relational schema. This approach unites the strengths of existing
database systems with the added benefits of bulk array processing.

1 Motivation

Application areas beyond (simple) administrative tasks are dominated by custom built
solutions, and, if used at all, database management systems are only used for persistent
storage.

Past experience with the implementation of multimedia retrieval and analysis in a
database setting, see e.g. [10, 11], have proved the potential value of set-oriented query
processing techniques for multimedia analysis. However, the efficient manipulation of the
(inherently ordered) media data requires non-trivial data storage schemes. The resulting
query plans are rarely intuitive, while deriving such plans is a laborious and error-prone
process: it is difficult to keep track of the relationship between the operations in the
relational query and the steps in the original algorithms.

For these reasons, multimedia analysis applications are often implemented using
specialized mathematical environments, such as Matlab [12]. While this provides an
array data structure suited for the task, it is not ideal. The interface offered is an impera-
tive programming language; this makes development error-prone, time consuming, and,
resulting applications are not scalable beyond main memory capacity without explicit
user intervention'. In addition, data-management facilities are limited to rudimentary
use of files for persistent storage, lacking the features commonly provided by database
management systems.

We seek a solution to these problems by introducing array data structures in a database
environment.

! User intervention like explicit division of the data into separate chunks and alteration of algo-
rithms to deal with fragmented data.

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 154-165, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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1.1 Research Objective

The hypothesis behind our research is that the architecture of a relational database system
is a suitable basis for the development of a multi-dimensional database system. The query
optimization and storage layers provide the opportunities to construct a solution which in
practice provides performance close to a dedicated implementation, while reducing the
burden on the programmer: a DBMS allows application programmers to abstract from
complex issues such as data management and efficient evaluation of complex queries.

The main research objective is summarized as follows: “How can support for stor-
age and efficient processing of multi-dimensional arrays be integrated into a relational
database management system?”.

The first issue to address is the actual storage and manipulation of array structures
in a relational database environment.

Second, scalability is a large challenge in the database community. In practice, cur-
rent database systems fail on large data-sets. A typical system can hardly manage more
than a few gigabytes, let alone the daunting volumes of large scale scientific problems
and comprehensive multimedia archives. We belief that array processing helps to im-
prove scalability of database systems because the clear structure and (more) predictable
processing patterns allow for efficient memory management.

Finally, it can be expected that query evaluation over array structures performed
in a foreign environment, the relational paradigm, comes at a cost. The efficiency of
query evaluation is an important requirement for a usable system however, and must be
maintained. While the existing query optimization layer in the database system itself
contributes to the efficient processing of arrays, this may not be good enough. Therefore
we explore suitable storage methods, specific array-query optimization, and, the possible
addition of new low level operators.

The research is experimental: lessons learned in practice through the construction of
a prototype system direct the research. Key elements, such as the query translators and
optimizers, are being developed and tested on various real-world test cases. Additionally,
the prototype is being deployed in the development of multimedia retrieval systems:
practical performance is an essential part of result validation.

2 Related Work

Arrays have been defined as an operational data structure in many instances, ranging
from low level programming language definitions to related work on query languages for
arrays. Efforts that formalize arrays and array manipulation beyond simple operational
descriptions include the theory of arrays [8] and a mathematics of arrays [9]. Both have
close ties with array oriented programming languages, such as APL and FORTRAN.
Arrays have been popular for a long time for scientific and high-performance com-
puting: their simple structure allows for automatic program parallelization on SIMD
type parallel architectures. From a language theoretic point of view, arrays have been
a popular topic in the functional language community: functional array operations can
be elegantly expressed and are applicable in a wide variety of computational problems.
Finally, the database community provided a steady supply of research results on array
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oriented databases, both in the context of specialized applications, such as multidimen-
sional databases for OLAP, as in more general array oriented database systems. Examples
of work on general purpose array database systems include: the array query language
AQL [5], the RasDaMan DBMS [1], and, the array manipulation language AML [6].

3 The RAM System

The RAM system is a prototype system that is being developed as part of the research?.
Instead of developing an array database system from scratch, we aim at adding arrays to
an existing database system: mapping arrays to relations. This way the array extensions
naturally blend in with existing database functionality.

To enable concise expression of array specific queries the RAM system implements
a comprehension based array-query language (see [2]) similar to the language found in
AQL [5]. Support for this language is isolated in a separate front-end that communicates
to the DBMS itself through the native relational language it supports. This approach is
consistent with the layered design of MonetDB [7], the principle target system for RAM,
which allows for front-ends supporting different query languages to be placed on-top of
a generic relational kernel.

The front-end does not translate the array comprehensions directly into the relational
query language of the backend: queries are translated into an intermediate array-algebra
before the final transformation to the relational domain. This array algebra is a simple
language comprised of 6 basic operators.

This intermediate language is utilized by a traditional System-R style optimizer
specifically geared towards optimization of array queries. Through application of rewrit-
ing rules the optimizer searches for a (more) optimal query plan by minimizing inter-
mediate result sizes. In addition, the optimizer makes strategic decisions about data
fragmentation, arrays are divided into chunks based on high-level access patterns, to
streamline processing at the lower levels.

By adding the array functionality into a relational DBMS we can reuse existing
storage and evaluation primitives. By storing array data as relations the full spectrum
of relational operations can be applied to that array data. This indirectly guarantees
complete query and data-management functionality: the RAM front-end focuses solely
on problems inherent to the array domain.

Relational Storage. The obvious method to store an array in a relational database
is to model the relation between indexes and values explicitly, as depicted in Figure 1.
Unfortunately, the large storage overhead introduced by explicitly storing D index values
for each value in a D-dimensional array makes this mapping generally impractical due
to the induced processing cost in I/O and memory usage.

Development of a relational mapping for arrays, that is both suitable for efficient
processing and space efficient, is part of our ongoing research. The current prototype
compresses the multiple index columns into a single column by enumerating the array

2 A discussion of the first prototype RAM implementation is presented in [13].
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Fig. 1. An array(a), its relational equivalent(b), and, the relation with compressed index(c)

indexes in a row-major manner: also depicted in Figure 1. The storage scheme is com-
pact, and, allows the reconstruction of the full index vector on demand when needed.
Furthermore, the enumerated index values can be used directly in many cases, reducing
the amount of data that to be processed, resulting in more efficient query evaluation.

3.1 Distinguishing Features of RAM

Previous efforts toward array oriented database systems were based on the development
of complete array-DBMS from the ground up. The RAM system follows an alternative
approach and is based on a standard layered approach: array support relies on an existing
relational architecture.

A benefit of this approach is the time saved by not recreating functionality readily
available, which leads to several distinct advantages. First, common DBMS functionality
such as transactional control and data integrity is readily available. Second, existing query
optimizers for set-based queries are reused and may offer the benefit of optimizations
not directly associated with normal array processing. Third, it integrates data storage and
query processing functionality for both domains, array and sets. Finally, it allows us to
isolate the core array functionality in the array portion of the system while the relational
engine ensures complete functionality.

Array manipulation is centered around the manipulation of index-values, bulk func-
tion application, and, array lookups. Isolation of this core array functionality in a separate
unit allows for a clean model and hence a strict focus on array processing and query
optimization. Additional functionality like the selection of a set of relevant values from
an array can be left to the underlying relational system.

Similarly, it allows a clear separation of concerns regarding physical execution:
whereas existing relational operator implementations and optimizers take care of physi-
cal execution, utilizing a computer systems resources at maximum efficiency, the RAM
system development focuses on optimizations specific to array queries only. For ex-
ample: determination of a high-level fragmentation strategy that focuses on avoiding
(re-)computation based on array specific processing patterns. The DBMS layer takes
care of scalability within the thus created array fragments.

3.2 Discussion

A concern with relational mapping of foreign data structures is the issue of efficiency: a
(slight) loss of performance can be expected. Performance of the early prototype utilizing
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a commercial SQL based DBMS was problematic: partially due to the very large SQL
queries generated, and, partially due to the lack of native support for our ordered array
data.

Previous research in the database field has shown that when specialized support for
sequences is added to relational systems, the performance of queries over ordered data
can be dramatically improved, see e.g. [4].

We investigated ways to overcome the performance issues with MonetDB: the Mon-
etDB database kernel offers native support for dense sequences. As expected this package
performed significantly better, reasonably close to the efficiency of a specialized tool,
see [13]. The datasets used are sufficiently large to force the system to resort to sec-
ondary storage. This supports the assumption that it is primarily the native support for
sequences that provides the required performance and not MonetDB’s design based on
a main memory architecture.

4 Current Status

The current version of the prototype RAM system offers full query translation to SQL
and MIL, the query language of MonetDB. Nevertheless, it is a work in progress: the
array data model, high-level query language, and, the intermediate array algebra have
been developed; whereas the query optimizer and relational translators are still being
actively developed.

4.1 The Array

Mathematically, an array A is defined as a many-to-one function A : D4 — 74 over
array indexes, multi-dimensional discrete numeric vectors. What distinguishes arrays
from other classes of functions are the restrictions imposed on their domain (the set of
values D for which a function is defined). An array’s range (the range of a function f is
defined as the set of all values that f can take as its argument varies over D) plays a less
prominent role in array theory.

The domain of an array, called its shape (S), is a set of multi-dimensional discrete
numeric vectors defined by a dense n-dimensional hyper rectangle in N . For notational
convenience we restrict this further by imposing that the lower bound of each of the
hyper-cubes axes is 0. This allows unambiguous definition of the domain of an axis
by its length alone. In array terminology: the shape of an array is determined by the
combination of its valence |S| (the number of dimensions) and the lengths of each of its
axes.

Definition 1 (Shape). A n-dimensional shape S is a vector of n natural numbers, de-
noting axis lengths, that uniquely defines a compact hypercube in N{} located at the
origin.

In RAM array shape is deliberately not modeled as a one dimensional array of
numbers: from a theoretical point of view an unessential restriction. However, modeling
shape as an array introduces uncalled-for complexity in query processing.
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Definition 2 (Index Value). An index value is a vector @ € S (the notation © used for
index vectors is shorthand for (io, i1, ..., i(n—1)))-

The shape is the domain of an array. An array relates each of the index values
implied by its shape to some value. Following common collection-type terminology,
we call these values an array’s elements. The most important restriction imposed on an
array’s elements is that all elements in a single array must be of the same type.

Definition 3 (Element Type). An array’s element type, T4, defines the type of the el-
ements of that array. Arrays contain elements of atomic type defined in the database
layer, i.e. T € {char,int, float, ...}, or arrays.

The way in which RAM deals with nested array structures is omitted from this
discussion for simplicity.

Definition 4 (Array). An array A is a function A : Sq4 — T4 which defines a many-
to-one relation between the index values in a shape Sa and elements of a particular

type T4.

Note that these definitions allow for infinite structures: arrays with infinite valance,
arrays with infinite length axes, and, even infinitely nested arrays. However, in practice,
physical limitations restrict arrays to finite structures.

Definition 5 (Valence). The valence |Sa| of an array A is defined as the number of
dimensions in its shape.

Definition 6 (Size). The size |A| of an array A is defined as the number of elements it
contains. Array size can easily be derived given its shape: |A| = lei‘(‘)l Si.

The regular structure of an array guarantees that a number of basic properties, such
as valence and size, can be computed given the array’s description only. Although trivial,
the fact that these properties can easily be computed is valuable for the analysis (and
optimization) of array expressions.

4.2 The RAM Query Language

The RAM query language is composed of two complementary components: methods to
extract values from arrays, and, methods to construct arrays. Value extraction is supported
through array application: arrays are functions that can be applied to index values to
yield results. For array construction the RAM query language supports a generative
comprehension style constructor and a constructive concatenation operator.

The query language presented to the user contains rudimentary data management
primitives, e.g. primitives to persistently store arrays, or, permanently delete arrays.
However, for clarity we focus solely on the core of the language: array expressions.

The RAM query language uses a functional paradigm: arrays are immutable once
created, therefore functions (over arrays) have no side-effects. Effectively, this decision
excludes update primitives from the language; arrays can be created once and subse-
quently queried, but never altered. This behavior seems reasonable, since the expected
use of the query language is oriented toward computation (the use of existing arrays to
compute completely new arrays containing new values), not data management.
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Value Extraction. RAM allows value extraction from arrays through functional appli-
cation: for a one dimensional array A, A(x) yields the value associated with location x
in the array. The language is flexible and allows arrays to be applied to any expression
that results in an integer value. Such expressions typically contain integer variables,
constants and arrays with 7 = int.

Arrays have a finite domain (its shape) and it is trivial to construct vectors beyond
this domain. However, application of an array to an index vector beyond its domain is
undefined. Two solutions for this problem are readily available: such an application can
be considered invalid (either guaranteeing that they do not occur, or, producing runtime
errors when they do), or, such an application could yield a undefined value. For RAM
we have chosen the latter *: V2 ¢ Sa : A(7) = nil.

Array Generation. The RAM array constructor allows the definition of new arrays in
terms of other arrays, functions over scalar values, and constant values. This is realized
by defining both the shape of the array and a function that specifies the value of each
cell given its array index. The constructor is based on a comprehension syntax which
provides a simple, but nevertheless powerful, syntax to generate arrays.

It appears that comprehensions are a convenient and intuitive way of expressing
queries (see [2]): most user languages for databases are based on (set-) comprehension.
For example, the set-comprehension {z|x € D, Cy,Cy, ..., C,} is easily recognized in
the SQL variant SELECT * FROM D WHERE C; AND Cy AND ... AND Cy;.

Array-comprehension is based on the same formalism as set-comprehension. How-
ever, the semantics of set-comprehension and array-comprehension are fundamentally
different for two reasons. First, a set-comprehension {z|z € D,Cy,Cs, ..., C,} speci-
fies which elements from D are part of the result through selection conditions C, Cs, . . . ,
C',. The array constructor is a generative construct: it generates a new array through spec-
ification of its shape and the function over its index values. Second, a set-comprehension
simply defines a set of values, whereas the result of an array-comprehension defines a
(multi dimensionally) ordered and indexed collection of values.

The RAM array constructor syntax has the following form:

Definition 7 (Array Comprehension). The comprehension:
A= [flio,- - in—1))lio < 8%, i1y <S4 )

specifies an array A with shape Sa and ¥(iq, . .., i(n—1)) € Sa : A(io, ... i(m—1)) =
[ioy ..., im—1)), where n = |S4|.

An n-dimensional array is defined by specifying its shape S4 and associating its
indexes7 = (ig, . . ., in—1) with their cell values f (7). Function f may apply the operators
defined on the base type in the database layer to values indexed in previously defined
arrays, the index values themselves, as well as constant values. Since we defined the
array indexes as consecutive ranges of natural numbers starting from 0, the shape of the
array is defined completely by giving its index generators:

3 In databases, the value nil has a variety of meanings, such as ‘undefined’ and ‘unknown’. In
this case nil denotes ‘undefined’
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Definition 8 (Index Generator). An index generatori; < S ]A defines a dense sequence
of integers starting at 0: {i;|i; € Ng,i; < Sf;‘}. The expression Sf;l is a constant-
expression using only standard integer mathematics, numerical constants, and, existing
array-shapes.

The RAM comprehension syntax is inspired by a similar construct in NRCA, the low
level array language that supports the Array Query Language AQL [5]. The semantics of
the comprehension syntax are simple and best explained through an example: consider
the comprehension [z + 3 x y|z < 3,y < 3]. It defines an array with shape [3, 3] and
binds the (result of) function  + 3 - y to each of its cells. The resulting array can be
visualized as follows:

w
>~
t

Array Construction. The concatenation operator is a typical example of a ‘constructive’
operator: it makes larger arrays from smaller components.

The RAM concatenation operator ++ operates over multi-dimensional arrays. It
merges two arrays by appending the second array to the first. A prerequisite for applying
the concatenation over two arrays A and B is that their value types match, 74 = 73,
and they have compatible shape: identical valence, and, all but the last (highest order)
axes have the same length.

Definition 9 (Operator: Multi-Dimensional Concatenation). A and B are arrays
with the same element type.

A++B =[if(in, < S}) then A7)
else Big, ..., in—1,in —SH)|T < Sa ® Sp]

where: n=|Sal-1,84©8p =[S%,...,85 1, 8% + S}

The concatenation operator is not commutative, i.e. A+ +B # B + + A, aresult of
the order defined over array elements.
The following example demonstrates concatenating a [2, 2]- and a [2, 1] array:

A|B
a5 4 (XY = [O]D
XY

The fact that the concatenation operator operates over the highest order axis of arrays
is an arbitrary choice. The impact of this choice is that concatenation of two arrays
over a dimension other than the last one requires a preceding array transformation,
e.g. transposing the source arrays to make the concatenation dimension the last one,
and after concatenation transposing the result to reconstruct the dimension order of the
source arrays:
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T T\ 7T
<AB ++>
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4.3 Intermediate Algebra

The RAM array algebra consists of a small set of operators, sufficient to express the
query language. It contains functionality to generate new arrays given a shape, and, the
functionality to manipulate existing arrays.

The first two operators generate new arrays given a shape. The const operator fills a
new array with a constant value, whereas the grid operator creates an array with numbers
taken from its index values.

Definition 10 (Algebra: Const). The const operator creates a new array of a given
shape filled with a constant value.

const(S,c) =[cli< S|

Example 1 (Algebra: const).

=)
=)
(=)

const([3,2],0) =

=)
=)
=)

Definition 11 (Algebra: Grid). The grid operator creates a new array of a given shape
filled with values taken from its index values.

grid(S,j) = [i; [t < S ]

Example 2 (Algebra: grid).

0(1|2 0]0|0

The next pair of operators deals with function application. The map operator applies
a function (offered by the DBMS) to a set of aligned arrays, whereas the apply operator
applies an array (which is a function) to a set of aligned index arrays. Aligned arrays are
a representation of multi-valued attributes, this is needed since RAM does not support
compound element types such as tuples.

Definition 12 (Aligned Array). Aligned arrays are arrays with identical shape rep-
resenting related data: in these arrays elements with corresponding index-vectors are
related.

Using aligned arrays, multiple arrays can be used to represent a single array with
tuple-elements.

Example 3 (Aligned arrays).
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Definition 13 (Algebra: Map). The map operator creates a new array of which each
element is the result of applying a given function to aligned elements in a set of arrays.

map(f, AL,..., Ak) = [f(AL(D),..., A@)|t < Sa] ,

where: SAa=841=...= 84

Example 4 (Algebra: map).

I
w
N

[=2)
—
=)

Definition 14 (Algebra: Apply). The apply operator creates a new array of which each
element is the result of applying a given array to aligned elements in a set of index-arrays.

apply(A, I1,...,Ik) = [A(J1(2),...,I(2)|t < S1] ,

where: Sr=8Sn=...=8n, k= |SA|,V7 ¢ Sa: A(f) = nil

Example 5 (Algebra: apply).

A|B

1
apply(a ) = ClAl

The choice operator allows elements from two distinct sources (arrays) to be merged
into a single result.

Definition 15 (Algebra: Choice). The apply operator creates a new array of which
each element is

choice(C, A, B) = [if(C(7)) then A(7) else B(1)|t < S¢] ,

where: Sa =8 =8c,74 = T, Tc = boolean

Example 6 (Algebra: choice).

choice(

| Ol W
[
o
IS

Definition 16 (Algebra: Aggregate). The aggregate operator applies an aggregation
function over the first j axes of an array.

aggregate(g, j, A) = [g([A@) i, - - - i5-1])|i5, - -y in-1] ,

where: n=|Sal
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Example 7 (Algebra: aggregate).

o[3
aggregate(sum, 1, =[3[5]7}

These 6 operators are sufficient to express anything a user can specify in the RAM
query language. In certain cases however, alternative operators may lead to more conve-
nient solutions. An example of such an operation is concatenation. From a minimalistic
point of view, the concatenation operation is superfluous (Definition 9 defines it using
choice). However, concatenation is an operation that allows for an efficient mapping to
the backend by exploiting the union operation offered by the relational paradigm.

Definition 17 (Algebra: Concat).
concat(A,B) = A+ +B

Concatenation is only one example of a common operation granted direct mapping to
the backend. Implementation of specialized mappings for other common operations is
future work. However, the algebra will only be extended if there is sufficient evidence
that doing so results in significant improvements.

5 Future Work

The RAM system in its current form is a fully functional prototype. However, some of its
components are still under development, such as the RAM optimizer and the mapping
to the relational backend.

The relational mapping component itself presents ample opportunities for the devel-
opment of alternative mapping schemes and efficient relational query plans. However,
our research focuses primarily on the problems associated with array processing itself.
At present, the existing mapping appears to be sufficiently effective. Further exploration
of alternative mappings is postponed in favor of addressing the array query optimization
problem.

Early experiments have revealed several simple transformation rules that already
result in effective optimizations, see [3]. One of the additional challenges to be tackled
is effectively exploiting reoccurring patterns in subsequent queries, like those in the steps
of an iterative analysis algorithm®.

Another problem to be addressed is fragmentation. Whereas the underlying relational
system can be trusted to handle large array fragments efficiently, arrays still have to be
split into fragments that correspond with associated access patterns at a high level to
maximize effectiveness. Such fragmentation opens a world of opportunities such as
coarse-grained lazy evaluation and streamlined block based processing: investigation of
these opportunities is planned.

* An example of such an algorithm, used in our own multimedia retrieval applications, is the
EM algorithm.
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Abstract. Data warchouses (DWs) can become inconsistent when some dimen-
sional constraints are not satisfied by the dimension instances. In this paper, we
present preliminary results about the effects of the violation of partitioning con-
straints in homogeneous dimension instances over aggregation queries, and in par-
ticular over the summarizability property (SUMM) of the DWs. We are interested
in finding ways to retrieve consistent answers even when the DW is inconsistent.
We give a notion of repair for inconsistent instances based on a notion of prioritized
minimization. We also describe a notion of consistent answer in DWs.

1 Introduction

Data warehouses (DWs) are data repositories that integrate data from different sources
and also keep historical data. They can be queried by OLAP (On-Line Analytical Pro-
cessing) systems, which in particular, require aggregation of data stored in the DW [4].

The DWs consist mainly of dimensions and facts. Dimensions reflect the way in which
the data is organized. Some some typical dimensions are time, location, customers, etc.
The facts correspond to quantitative data related with (a finite number of) dimensions, for
example facts related with sales may be associated to the dimensions time, and location,
and should be understood as the sales done by the locations in certain periods of time.

DWs can be modelled and implemented by using a relational (ROLAP) or a mul-
tidimensional (MOLAP) approach. The multidimensional approach is better than the
relational one to support data aggregation, because aggregations can be computed in
a straightforward way from the multidimensional structure. We base our work on the
multidimensional model proposed in [7], where dimensions are modelled by hierarchy
schemas together with a set of constraints, while the facts are represented by tables that
refer to the dimensions. In this paper we only consider basic dimension schemas, called
strictly homogeneous dimension schemas (cf. section 2).

Usually, dimensions are considered the static part of the DW, whereas the facts are
considered the dynamic part, in the sense that the update operations affect mainly the
fact tables. However, in [8, 9] the need to update dimensions is analyzed. They argue that
dimensions have to be adapted to changes in data sources or in the business structure.
They define a set of update operators for homogeneous dimension schemas and instances.

In the presence of such update operations, DWs may become inconsistent with re-
spect to dimension constraints. We are interested in studying the effects of violations

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 166—176, 2004.
(© Springer-Verlag Berlin Heidelberg 2004



Handling Inconsistencies in Data Warehouses 167

of a specific class of dimension constraints, the so-called partitioning constraints in
homogeneous dimension instances (from now on, homogeneous instances) on aggrega-
tion queries. These constraints are fundamental for enforcing navigability properties in
dimension schemas. One of the effects we will analyze in detail is how the violation
of constraints affects the SUMM property of the DWs. The latter is the capability of
correctly computing queries (cube views) using others pre-computed aggregate views.
We will concentrate on queries with aggregation functions, which perform grouping of
attributes and return a value for each group.

This analysis has been done on the basis of examples and theoretical work. We will
use DB2 data warehousing technology to implement our concepts and mechanisms for
CQA.

We also intent to retrieve consistent answers to queries even when the DW is in-
consistent. Of course, a characterization of such answers becomes necessary. In order
to do this, we use the concept of repair of a DW that is inconsistent wrt the dimension
constraints. A concept of repair was first introduced in [1] in the context of relational
databases and first order integrity constraints. In that framework, a repair is another
database instance that minimally differs from the original instance (wrt inclusion of sets
of tuples inserted or deleted into/from the original database) and satisfies the given set
of integrity constraints. In [2] it is defined the set of consistent answers to aggregation
queries with scalar functions (that return a single value for an entire relation). That set is
defined as an optimal interval [a, b] such that the evaluation of the query on every repair
of the database returns a value v such that ¢ < v < b.

We will show that these previous notions of repair are not suitable for the DW
framework. In consequence, we give a new definition of repair and consistent answer for
multidimensional DWs subject to a set of partitioning constraints and for queries with
aggregation functions. DW repairs are used as an auxiliary concept to characterize the
consistent answers.

We get dimension instances repairs wrt partitioning constraints by introducing mini-
mal changes over the original inconsistent dimension instances. In order to achieve this,
and given that we are considering hierarchical representations with multiple levels, we
explore the notion of prioritized minimization (as given in [12]). After that, we give a
preliminary definition of consistent answer for such kind of queries. Intuitively, a con-
sistent answer to a query with aggregation function is a set of attributes grouped together
with an interval, as defined in [2], for each aggregation function.

For future research we leave the development of a methodology for computing repairs
(if necessary, because this should be avoided whenever possible due to its complexity)
and consistent answers. In addition, we will extend this study to heterogeneous dimension
schemas [7].

2 Preliminaries

A hierarchy schema is a directed acyclic graph (C, ), where C'is a set of categories, and
/" is a child/parent relation between categories (edges in the graph), * is the transitive
and reflexive closure of . For simplicity, categories do not have any attributes, and
there is a distinguished top category named All, whose only element is {all}, that is
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reachable from all other categories. The category at the lowest level is named the bottom
category.

Example 1. The figure 1(a) shows the National Parks hierarchy schema, with:

— C = {Park, Type, Location, Country, All},
— /" consists of the edges {(Park, Type), (Park, Location), (Type, Country), (Location,
Country),(Country, All)}; and

- =" U{(Park,Park), (Type, Type), (Park, Country), ...}. ]
All all all
Country Canada Canada USA
Type Location Alberta Oregon Alberta Oregon
P T AT
Park Banff Jasper Crater Lake ~ Banff Jasper Crater Lake
a) b) ¢)

Fig. 1. a) Hierarchy schema b),c) Dimension Instances

The hierarchy schema has a domain D that can be infinite, whose elements have a
unique name. An instance over a hierarchy schema is defined as a first order logic (FOL)
structure of the form 1.

D=(D,CP,...,CP AUP all® AP <P <", )

where D is the domain of the herbrand structure [13], whose elements k must be inter-
preted with their own values. CP,...,CP AlIP C D, are unary predicates that repre-
sent categories, and All” is the top category, with element {all”}. AP C {p;; | i,j =
1,...,m}, where each p;; represents an edge between the categories ¢ and j on the hier-
archy schema. < C D x D is the child/parent relation between elements of categories.
<*D C D x D is the reflexive and transitive closure of <. In this sense, <*D can be
seen as an interpreted relation name, which has a fixed interpretation depending on the
interpretation of <”. A dimension instance D indicates relationships between elements
of categories which must be connected in the hierarchy schema. This is achieved through
the set of the p;;, in the sense that: D |= p;; < p;; € AP.

Example 2. D= (D, Park(-)?, Type(-)P, Location(-)P, Country(-)P, All(-)P, all”,
AP <P <" is an instance for the hierarchy schema (a) in Figure 1, where D is
composed by names for parks, types, locations, countries, and:
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- ParkP = {Banff, Jasper, CraterLake}, Type? = {P,S},
— Location® = { Alberta, Oregon}, Country® = { Canada, USA}, AlI° = {all”}
- AD = {pparktyp67 Pparklocation s Ptypecountys Plocationcountry pcountryAll}
- <P = {(Banff, P), (Banff, Alberta), (Jasper, P), (Jasper, Alberta),
(CraterLake, S), (CraterLake, Oregon), (P, Canada), (S,USA),
(Alberta, Canada), (Oregon, USA), (Canada, All), (USA, All)}.
Figure 1(b) illustrates this instance.
- <*P=<Dy {(Banff, Banff), (Banff,Canada)... } O

A roll-up function is the mapping of the relation <* between elements of C;, C;
categories. It is expressed by:

RE (D) = {(x,y)|Ci(x) A Ci(y) A <y} @)

This function is fundamental for computing aggregation of data.
Dimension instances must satisfy a set of conditions [7]. The partitioning property
is one of them. It is defined by:

V(z,y,2)(Ci(x) NCj(y) NCij(2) N <"y Ao <"z —y=2) 3)

It enforces that roll-up functions are functional, and so they allow for the correct
computation of aggregations. The SUMM property says that a category C' can be com-
puted from other category C’ in a dimension instance D if and only if: RS, ;0m (D) =
R pttom (D) > RE, (D) [7].

We call specific dimensions constraints those constraints that model hierarchy
schemas [7]. Those constraints are used to specify paths and the existence of distin-
guished elements in the categories. Homogeneous schemas are those modelled by the
into constraints, which establish all the paths as mandatory. In those schemas, roll-up
functions are expected to be total between elements of categories. A schema is called
strictly homogeneous when it has one bottom category.

Finally, we concentrate on queries with aggregation functions of the form 4.

SELECTA,,... Ay, af

FROMT,Ry,...R,,

WHERE {joins conditions and others conditions}

GROUPBY Aq,...A,,, 4)
where Ay, ... A, are attributes of the facts table T or of roll-up functions R;, ... R,,

(they will be treated as tables), and af is one of: MIN, MAX, COUNT,SUM, AVG, COUNT,
applied to one attribute A; # Ay,... Ap,.

3 The Need for DW Repairs and Consistent Answers

In general, DWs are conceived as collections of materialized views whose main sources
are operational databases. As consequence, much effort has been centered in keeping
consistency between the sources and the DW [5, 6, 15, 17]. To the best of our knowledge,
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the first work related to consistency in dimension schemas in the sense of [7] is presented
in [11]. They argue that a dimension schema is consistent if their instances satisfy the
partitioning condition. That notion of consistency is used to guide the update operations
on dimension schemas that keep that property satisfied. However, there has been no work
so far that tackles the problem of already having an inconsistent dimension instance with
respect to a specific class of constraints, but still being able to provide consistent answers,
in a sense similar to the notion of consistent answer introduced in [1-3] for relational
databases. In this regard, the work presented here is the first attempt to handle the problem
of consistent query answering (CQA) in DWs.

The concept of repair was already defined in [1] in the context of relational
databases. However, that notion does not capture the minimality required by the
natural process of repairing multidimensional DWs. This is the case even if we
represent the DW as an instance of a relational DB (the ROLAP approach). We
show this with an example.

Example 3. Figure 2 shows a snowflake schema [4] for the National Parks dimension.
“PK” indicates the primary key for each table, and the following first order integrity
constraint enforce the partitioning property:

IC: Vxzyzwv Park(z,y,z) A Type(y, w) A Country(w)A

Location(z,v) A Country(v) — w = v
Assume we have the following dimension instance 7:

— Park ={(Banff, P, Alberta), (Jasper, P, Alberta), (CraterLake, P, Oregon)},
- Type = {(P, Canada)},

— Location = {(Alberta, Canaday), (Oregon, USA)},

— Country = {Canada, USA}.

LOCATION
A 4

PK |ID Location

PARK

COUNTRY

ID_Country

PK |1D_Park

ID_Type — TYPE

ID_Location PK |ID Type

ID_Country

PK |1D_Country

Fig. 2. Snowflake schema

Instance r does not satisfy the IC because Canada # US A, and:

r =Park(CraterLake, P, Oregon) A Type(P, Canada) A Country(Canada)A
Location(Oregon, USA) A Country(USA)
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The only possible repair in the relational sense of [1] is obtained by deleting Park
(CraterLake, P, Oregon). However, if we apply this change in the multidimensional
representation it implies to delete the pairs (CraterLake, P) of the roll-up function RITD‘ZfZ
and (CraterLake,Oregon) of RE2°%¥°™  which is not a minimal repair since it is enough
to reestablish consistence to delete just one of them. In section 4 we show that to delete

both pairs is not a minimal change. ]

We will show that good repairs for DWs are obtained by doing minimal deletion of
pairs in the roll-up functions involved in the violations of constraints. The problem in the
relational model is that a tuple can contain many pairs of those functions (in example 3
a tuple contains two pairs). In that sense, relational model does not allow us to work on
a granularity lower than a tuple. Our definition of repair (section 4.1) captures exactly
the minimality of changes desired for DWs. We achieve this by identifying the roll-up
functions involved in the violations of partitioning constraints, defining a prioritized
set of roll-up functions (inspired by the notion of prioritized minimization given in
[12]), then those set of functions are manipulated (deletion of pairs) in order to achieve
consistence. The repairs are those that reestablish the consistence by doing minimal
changes over the prioritized roll-up functions.

On the other side, the importance of the summarizability property of DWs has been
analyzed [10, 14]. In [14] a particular class of heterogeneous hierarchies is transformed
into homogeneous hierarchies to support summarizability. This is achieved by inserting
null values, fusioning other values, and introducing new categories when partitioning
constraints are violated. Although these operations, which allow us to get summarizabil-
ity, could be used for repairing inconsistent DWs, they do not produce minimal repairs.
In addition, the fusion of values may produce undesired changes in the semantic of the
dimension instances.

4 Repairs and Semantically Correct Answers in DWs

Let us show by means of an example how the unsatisfied partitioning constraints (PC)
may affect query answering.

Example 4. Let D be the instance in figure 1(c), and PC : V (z,y, z)(Park(z) A
Country(y) A Country(z) Nx <* y ANz <* z — y = z). Here, D ¥ PC. As a
consequence, the roll-up function: R5°“""™Y = {(Banff, Canada), (Jasper, Canada),

(CraterLake, Canada), (CraterLake, USA)} is not functional.

Suppose the facts table Sales= {(Banff, 5000), (Jasper, 5000), (CraterLake, 10000)}
stores sales for national parks, and consider the aggregation query @Q: “Give the SUM
(sales) group by country”. The answer for @ is: {(Canada, 20000), (USA, 10000)}. O

Clearly, this result presents an anomaly, the sales of the park Crater Lake are added
twice, as sales of Canada and also as sales of USA. Now, let us explore how that violation
affects the summarization property.
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Example 5. Consider the following materialized views and roll-up functions:

— Sales-Type = {(P, 20000)}, Sales-Loc = {(Alberta, 10000), (Oregon, 10000) }

— R0 = {(P, Canada)}, RY 0wt = {(Alberta, Canada)(Oregon, USA)}

The answers to Q: “Give the SUM(sales) group by country” are {(Canada, 20000)}
and {(Canada, 10000), (USA, 10000)}, using the respective views and roll-up functions.
However, by the summarizability property, the answers must be similar, specially in
homogeneous instances, where a category is summarizable from any of the categories
below it [7]. O

Given an homogeneous instance D satisfying the basic properties of the graph struc-
ture [7], and a set of partitioning constraints PC', we claim:

Theorem 1. D |= PC ifand only if D = SUMM. a

This result is important because we can verify summarizability by testing satisfiability
of partitioning constraints. This test could be easily performed by using views. In that
way, we could identify the elements participating in violations and use that information
to fix the dimension instance.

4.1 Dimension Instances Repairs

Partitioning constraints can be seen as functional dependencies (FD) in relational databases.
The general way to repair inconsistent databases wrt to FDs is by deleting the tuples
participating in the violations [2]. However, in dimension instances, there are no tuples
in the sense of relational databases, but there exist dimension tuples [7], so we could
consider as tuples the pairs in the roll-up functions between elements.

Dimension instances form a hierarchy of roll-up functions. In consequence, we
should identify from which roll-up functions pairs are to be deleted in order to get a
good repair. Inspired by the notion of prioritized minimization given in [12], we propose
to minimize changes, but assigning higher priority to lower categories. For this purpose,
we define first levels of categories on a dimension instance, and to each level we asso-
ciate a set of roll-up functions. Specifically, given a dimension instance D of the form
(1) with maximum distance n among the categories of the graph, we define

Definition 1. A level L; with 0 < ¢ < n is a set of elements belonging to categories
with distance ¢ (in the hierarchy schema) to the bottom category. For each level L; there
exists a set R; C<! defined by: R; := {(a,b)la < bA Cj(a) € L; A Cy(b) € Lit1},
where {C}, Cj} are categories of D. O

Example 6. For the instances of the figure 3(a):

- Lo = {Banff, Jasper, CraterLake},
— Ry = {(Banff, P), (Banff, Alberta), (Jasper, P), (Jasper, Alberta),
(CraterLake, Oregon)}. ]

! The child/parent relation among categories elements.
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Definition 2. The distance A between two dimension instances D1, D> on the set R;

with 0 < ¢ < n is defined by: A;(D1,D2) = {(a,b)|(((a,b) € Rip,) A ((a,b) &
i)V (((a,b) € Rip,) A(a,b) & Ripy))}-

Given adimension instance D, we define: Dy <p; Dy < A;(D,D;) C A;(D, D3).

O

Example 7. Let D, D1, D be the instances in figures 1(c), 3(a), and 3(c), respectively.
It holds:

- Ao(D,Dy) = {(CraterLake, P)},
- Ao(D, Dy) = {(CraterLake, P), (CraterLake, Oregon)},
— Dy <p, Da, because Ag(D, D) C Ay(D, D>). o

Definition 3. Let D, D, D, be dimension instances over the hierarchy schema H with
domain D. It holds: Dy <p Dy iff: 3i (Ax(D,D;1) = A(D,D2),k < i) A (D1 <p
Dy)). ]

Definition 4. Given a dimension instance D, and a set of partitioning constraints PC,
a repair of D wrt PC' is a dimension instance D’, such that D’ = PC, and D’ is <p-
minimal in the class of dimension instances that satisfy PC'". The set of repairs of D is

denoted by Repairs p(D). a
Example 8. Figures 3(a),(b) show the repairs for the instances in figure 1(c). O0
all all all
Canada Canada  USA Canada
e NN e \
Alberta  Oregon P Alberta Oregon Alberta  Oregon

\

Banff Jasper Crater Lake Banff Jasper  Crater Lake Banff Jasper
a) b) c)

Fig. 3. Dimension Instances

4.2 Consistent Answers

Definition 5. Given a dimension instance D, a set of partitioning constraints PC, and
a set of repairs Repairs p(D), the execution of the aggregation query () over each
D' € Repairs p (D) generates a set of pre-answers for each D', PregCD’ ={Q((D) |
D' € Repairs p(D)}. O
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The pre-answers are a set of tuples: < Ay, ..., A,, Aggr >, where Ay, ..., A, are
attributes of the group-by clause of ), and Aggr is the value for the aggregation function
afonD.

Example 9. Consider the repairs in example 8, the sets of pre-answers for @ in example
4 are: {(Canada, 10000), (USA,10000)} and {(Canada,20000)}, respectively. 0

Definition 6. A consistent answer to an aggregation query (), over a
dimension instance D wrt to a set of partitioning constraints PC), is a set of tuples
< Ai,...,A,,r(Aggr) >, where < Aj,..., A, > are the attributes of the group-by
clause of Q, and r(Aggr) is arange [a, b] of values, a is the greatest-lower-bound (glb),
and b is the least-upper-bound (lub) for Aggr in Pregc (D')forall D' € Repairs p (D).

O

Example 10. A consistent answer in example 4 is: {(Canada, {10000,20000}),
(USA, {0,10000}). O

5 Future Work

A repair is a minimal consistent dimension instance wrt to partitioning constraints. How-
ever, a repair is not an homogeneous instance (see figures 3(a), (b)), because some roll-up
functions are modified and they are not total anymore. Furthermore, the summarizability
property cannot be reestablished in the repairs. However, we could obtain total functions
and also summarizability by introducing “dummy” elements in some categories in the
repairs, as in [14]. We are analyzing the possible advantages of implementing this idea
in the query answering process for DWs. We are also studying the method proposed in
[14] to repair DWs and compute consistent answers. We want to see if we get the same
consistent answers even when the concept of repair is different.

We could also improve the definition of repairs by using knowledge from equality
atoms constraints [7], which impose the existence of certain distinguished elements in
the categories. We could require those repairs to satisfy those constraints to get more
accurate repairs.

We are developing a methodology for computing consistent answers. We have con-
sidered to use the knowledge from partitioning constraints and roll-up functions to com-
pute them, avoiding the computation of all the possible repairs, which is known to be
inefficient [1-3].

This is a preliminary study that we will extend to heterogeneous dimension schemas
[7], where the situation could be a bit different; mainly because those schemas relax
some conditions, becoming more vulnerable to inconsistencies. We already explored
update operations over heterogeneous schemas, finding some differences wrt updating
homogeneous schemas. Those results will be included in a future publication.

The problem of retrieving consistent answers to aggregation queries is not a new
issue, it was already studied for scalar aggregation functions in [2] for relational databases
under functional dependencies. We are working on the extension of this work to handle
referential constraints in addition to the FDs. We think that future results for this kind
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of databases will be useful in the context of DWs, in particular, in the case where OLAP
operators and DWs are implemented on top of relational databases (ROLAP).

On other side, we are interested in optimizing the query answering process in DWs
by taking advantage of aggregation constraints [16]. Also the issue of CQA wrt to
aggregation constraints is open. Experiments and implementations will be done on the
DB2 platform.
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Abstract. In this work, we investigate mechanisms to support data sharing and
querying in a peer-to-peer data management system, that is, a peer-to-peer system
where each peer manages its own data. To support data sharing, we propose the
use of mapping tables which list pairs of corresponding data values that reside
in different peers. Our work illustrates how automated tools can help manage
the tables between multiple peers by inferring new tables from existing ones and
by checking their consistency. In terms of querying, we propose a framework in
which users pose queries only with respect to their local peer. Then, we provide
a rewriting mechanism that uses mapping tables to translate a locally expressed
query to a set of queries over the acquainted peers.

1 Introduction

Peer-to-peer computing consists of an open-ended network of distributed computational
peers, where each peer exchanges data and services with a set of other peers, called its
acquaintances. The peer-to-peer paradigm, initially popularized by file-sharing systems
such as Napster [1] and Gnutella [2], offers an alternative to traditional architectures
found in distributed systems and the web. Distributed systems are rich in services but
require considerable overhead to launch and have a relatively static, controlled architec-
ture. In contrast, the web offers a dynamic, anyone-to-anyone architecture with minimum
startup costs but limited services. Combining the advantages of both architectures, peer-
to-peer offers an evolving architecture where peers come and go, choose with whom
they interact, and enjoy some traditional distributed services with less startup cost.

Each peer-to-peer system provides two basic services to its peers. First, it offers to
its peers the ability to share data with each other. Second, it offers the ability for peers
to query each other’s contents. Our objective is to investigate mechanisms that can be
used to support these two services in the context of a peer-to-peer data management
system, that is, a peer-to-peer system where each peer manages its own data. In the past,
database research has dealt with similar issues in the context of multidatabase systems
[10]. However, the solutions provided there are not directly applicable to peer-to-peer
data management systems. This is mainly due to the following three features of the new
paradigm: the lack of centralized control; the transience of the inter-peer connections;
the limited cooperation among the peers.

Traditionally, in multidatabase systems, data integration and exchange between het-
erogeneous data sources is provided mainly through the use of inter-schema mappings

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 177-186, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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(generalized view definitions often called global-or-local-as-view (GLAV) mappings)
that specify how the schemas of the sources are related [17,21]. Given two sources S;
and Ss, to construct a mapping m between them, the sources must be willing to share at
least portions of their schemas and cooperate in establishing and managing the mappings.
Management of mappings becomes an issue when the participating sources change their
schemas [24]. Then, the mappings must be updated to reflect the changes. Our work
considers peer-to-peer settings in which cooperation between sources to establish such
schema mappings is either not desirable (perhaps for privacy reasons) or not feasible
(since sources might belong to different worlds [18]). In such settings, we consider an
alternative and more flexible form of mappings, called mapping tables. Mapping tables
are data-level mappings which list pairs of corresponding values between two sources.
Our work motivates the use of mapping tables in peer-to-peer environments and shows
that the maintenance of these tables can be automated [15]. In terms of query answering,
existing approaches assume that a query posed on source S can be answered locally
(using S7’s database) and in addition, it can be translated, using the schema-level map-
ping m, into a query on So. However, this environment makes the (implicit) assumption
that the answer to the query that So provides can be made to conform to the schema
of S;. Our work makes no such assumption but relies on mapping tables to translate
structured queries between peer databases that may contain related data that overlaps
little, if at all [14].

Contributions

To the best of our knowledge, our work is the first to address the problem of data sharing
between heterogeneous sources. Data sharing deals with the exchange of data between
heterogeneous sources whose data need not be interdependent and may represent dif-
ferent real world domains. It may not be possible or desirable to transform such data
to fit a common schema. As such, data sharing differs from the well-studied problems
of data integration [17] and data exchange [11]. Both of the latter two problems use
schema-level mappings to express the relationships between source schemas. In data
integration, these mappings are used, at run time, to conform the data of one source to
the schema of another. In data exchange, the mappings are used to populate a target
schema with the data of a source schema.

Our work investigates the use of mapping tables as the primary mechanism for data
sharing between peers [15]. Currently, mapping tables provide the basis for data shar-
ing in peer-to-peer data management systems such as the ones found in the domain of
biological databases [9]. Still, the creation of mapping tables is a time-consuming and
manual process performed by a set of expert curators. We are aware of no data manage-
ment tools currently designed to facilitate the creation, maintenance and management
of these tables. Our work illustrates how automated tools can help manage mappings
between multiple sources by inferring new mappings and checking their consistency. In
practice, inferring new mappings proves useful when two peers first become acquainted.
The system is able to use existing mappings in the network of peers to associate the val-
ues of the newly acquainted peers. This task requires no human intervention and, thus, it
alleviates the need for a human curator. Checking consistency of mappings is important
in order to detect and report possible errors in existing mappings. Without automated
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support, curators edit, copy, or merge mappings that come from a variety of sources and
it can be a cumbersome task to make sure that the associations of one mapping do not
conflict with the ones expressed by another. Our approach offers an automated way to
detect these inconsistencies.

In terms of query answering, we propose a framework in which users pose queries
only with respect to their local peer schema. Then, we provide a rewriting mechanism
that uses mapping tables to translate a locally expressed query to a set of queries that
can be executed in the acquainted peers. Although the idea of query translation is not
novel, the context in which it is applied is. Traditional views or schema mappings are
queries (or pairs of queries), so query translation involves manipulating relatively small
queries. Mapping tables however contain data and may be very large. Query translation
in our environment involves manipulating these large tables.

An important contribution of our work is the use of a common formalism for both data
sharing and for query answering. Through this formalism, we are able to represent both
mapping tables and queries. This uniformity offers a number of advantages including
the ability to store in a peer database both queries and their translations and the ability to
reuse algorithms that were developed for our data sharing setting during query answering.

For the purposes of our work, and in order to test the applicability of our ideas, we
have implemented our solutions on a prototype peer-to-peer data management system
in which each peer is a data management system with its own schema and data. Peers
communicate using a Gnutella-like protocol which is customized to our specific needs.
For our experiments, we use two different domains, namely, biological databases and
flight reservation information.

Outline

Section 2 offers an overview of the database literature on peer-to-peer systems. Section
3 presents an overview of our main results and the paper concludes in Section 4 with a
discussion of our future work. The work presented in this article is part of the Hyperion
project! [6] at the University of Toronto.

2 State of the Art

To put our work in perspective, it proves useful to introduce a classification of existing
peer-to-peer systems. We classify such systems into two categories based on the behav-
iors and characteristics of the peers within each system. Distinguishing characteristic of
the peers in the first system category is that these are altruistic. In more detail, systems
in this category often rely on the architecture and the services of systems like CAN [22],
CHORD [23] or Tapestry [25]. An example of such a system is OceanStore [3] while
relies on Tapestry to provide distributed file storage. A peer that joins such systems offers
its computational or storage resources to it. The system often decides the set of peers
with which the new peer will be acquainted. Furthermore, the system can decide the data

! In Greek mythology, Hyperion [high-peer-ee-on] is the Titan of light. His name literally means
"dweller on high" or "the one above". He was the father of Helius (the sun), Selene (the moon),
and Eos (the dawn).
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contents of the peer and where these data should be replicated (to increase availability).
Due to this replication, the data stored in a peer are available even after the particular peer
leaves the system. In term of research, some of the main issues here are the efficiency
of the lookup and routing services, and how to maintain this efficiency in the presence
of peer arrivals and departures.

In the second category of systems, peers are selfish. Here, each peer brings into the
system its own data and decides independently with which of the other peers it will be
acquainted. Once the peer leaves the systems, its data usually become unavailable to the
other peers. Our own work in the context of the Hyperion project, is classified in this
second category of systems. Our main focus is on the data management issues that arise in
this environment. As an example, we are interested on the issue of heterogeneity. While
in the previous category of systems, peers are assumed to have the same underlying
format (or schema) to represent their data, here each peer might use a different data
representation. We do not consider the efficiency of routing schemes and the scalability
of our solutions to tens of thousands of peers. One reason for this is that the size, in
terms of number of peers, of the systems we consider is considerably smaller.

In what follows we review some of the work in peer-to-peer data management which
is the main focus of this thesis. Bernstein et al [7] introduce the Local Relational Model
(LRM), a data model designed for peer-to-peer applications. The model’s aim is to
support semantic interoperability between relational databases in the absence of a global
schema. The proposed model makes use of domain relations which are equivalent to the
notion of mapping tables. However, no provision is described to manage these relations.

Lenzerini [17] describes a general framework for modeling data integration appli-
cations which can also be used to represent peer-to-peer applications. An important
difference between this work and ours is that the former uses schema-level mappings
between the peers, while our work relies mainly of data-level mappings. Thus, the two
works are complimentary.

Our initial work on mapping tables shows how these can be used in support of
keyword-based searches within peer-to-peer systems. Our current work extends these
results to consider the use of mapping tables to support structured queries. The work of
Huebsch et al [13] also supports structured queries but the assumption there is that all
peers share the same schema.

In Piazza, associations between peers are expressed through either global-as-view
(GAV) or local-as-view (LAV) mappings [12, 19]. During query answering, both types
of mappings are used to translate queries between peers. Our work on query translation
is complimentary to Piazza since our solutions do not rely on GAV/LAV mappings but
assume that the only associations available between peers are in the form of mapping
tables. An important distinction between the two proposals is that in Piazza the data
retrieved from the peer-to-peer network always conform to the schema of the peer where
the user-query is initiated. Our work, on the other hand, makes no such assumption.

Ng et al [20] propose an alternative approach to query translation in peer-to-peer
environments. Initially, the authors assign a set of descriptive keywords to each schema
element of a peer schema. Then, the schema elements of different peers are associated
if they have a similar set of descriptive keywords. Once schema element associations
are established, the translation of queries between different peers is performed by using
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associated schema elements. An important limitation of the approach is the underlying
assumption that descriptive keywords are used consistently throughout the peer-to-peer
network. Thus, unlike our work, their solutions cannot handle differences in the vocab-
ularies of the peers.

The work of Chang and Garcia-Molina [8] deals with the translation of queries be-
tween heterogeneous sources. The authors use syntactic rules to map selection predicates
from one database to that of another. At first glance, mapping tables look like materi-
alizations of these syntactic rules. However, the two constructs operate under different
assumptions. As an example, a syntactic rule that maps two selection predicates ignores
the intricacies of this mapping at the data level, that is, the fact that at that level the
mapping between values might be incomplete or be many-to-many. Part of our work
on mapping tables addresses exactly these issues. Our approach also offers a uniform
representation both for the rules, i.e., the mappings at the data level, the queries, and for
the mappings between translated queries.

Aberer et al [4] introduce a formal framework to assess the quality of peer mappings
by measuring the quality of query rewritings that are obtained from these mappings.
The mappings considered by the authors are similar, in spirit, to mapping tables since
they have the form of functions that map the values of attributes belonging to acquainted
peers. However, the focus of this work is more on the assessment of the quality of the
mappings, and less on the mappings themselves and how these can be used to perform
rewriting. Our work, on the other hand, focuses on these latter issues. Thus, the two
approaches are complimentary.

3 Status of Current Work

This work was developed within the framework of the Hyperion project [6] at the Uni-
versity of Toronto. Thus, before we move on to the main topics of the thesis, we offer an
overview of Hyperion and we present its main design principles. This, in turn, allows us
to put our solutions in context since it shows the environment within which our solutions
are designed to work.

3.1 The Hyperion Architecture

The objective of the Hyperion project is to facilitate data sharing between autonomous
and heterogeneous sources that are organized in a peer-to-peer fashion. Source autonomy
is an important requirement in practice. Sources that join a peer-to-peer network are
usually not willing to compromise their autonomy while doing so. As an example,
consider biological data sources where each peer source belongs to a different research
group or institute. Although each group is willing, due to mutual benefit, to share its data
with other groups, it is often not willing to alter its data representation or its internal
naming scheme. Which brings us to the next issue, namely, heterogeneity, as a by-product
of source autonomy.

In such settings, the approach taken by Hyperion to address the above issues is to
augment each source with an interoperability layer. The layer, shown in Figure 1, consists
mainly of three modules which we briefly describe here:
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Fig. 1. The Hyperion interoperability layer

Manager

— Acquaintance Manager: The objective of the acquaintance manager is to resolve
heterogeneity issues that arise between a pair of peer sources that are acquainted. To
this end, the module maintains any possible schema-level (GLAV) mappings between
the schemas of the sources. However, since such mappings are not always available,
or possible, it also maintains possible data-level mappings, in the form of mapping
tables. Mapping tables respect peer autonomy since they do not impose constraints
on the peer schemas. They are minimally invasive in that they do not restrict the
operation of peers in anyway beyond the agreement on values expressed in the ta-
bles. The first part of our thesis deals with the maintenance of these tables within the
acquaintance manager.

— Query Manager: One of the guiding principles in Hyperion is that a user should
only be aware and knowledgeable of her own local peer schema. As a result, all user
queries are expressed with respect to this schema and it is the responsibility of the
system to retrieve additional related results from the peer-to-peer network. The query
manager is responsible for rewriting the locally expressed queries to ones that can
be executed with respect to the schemas of other peers. The second part of our thesis
focuses on how this translation can be performed through the use of mapping tables.

— Rule Manager: The objective of the rule manager is to provide mechanisms that
can be used by peers in order to coordinate updates between them. Our proposal
is to achieve such coordination through the use of Event-Condition-Action (ECA)
rules. Providing update coordination in a peer-to-peer environment presents some
interesting technical challenges. However, since this work in not part of our thesis,
we will not elaborate any further.

In what follows, we provide more details about our solutions for the first two modules
of Hyperion.

3.2 Mapping Tables

Mapping tables are the primary mechanism for data sharing between peers. In what
follows we offer an overview of our work on mapping tables [15, 16].
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Consider two peers S7 and S5 that expose attributes U and V' respectively. Then, a
mapping table m is a relation over the attributes X UY, where X C UandY C V
are non-empty sets of attributes from the two peers. A tuple (z,y) in the mapping table
indicates that the value z, in the domain of X, is associated with the value ¥, in the
domain of Y. We impose no restrictions on the association between values, and thus the
recorded associations can be one-to-one, one-to-many or many-to-many.

Starting from this simple idea of associating values between different domains, our
framework offers a number of extensions including the ability to use variables. Variables
offer a compact and convenient way to represent common associations between values,
such as, the identity association. For example, a tuple (v1, v1) in mapping table m, where
v1 denotes a variable, represents the fact that every value in the domain of X is associated
to itself in the domain of Y. The introduction of variables in mapping tables necessitates
the use of valuations [5] in order to determine the set of Y -values with which a certain
X-value is associated. Formally, given a valuation p of the variables of mapping table
m, avalue x € wx (p(m)) is associated with a certain set of values in the domain of Y,
namely, with the set 7y (0 x—,(p(m))).

Up to this point, we concerned ourselves only with the X -values appearing in the
mapping table and how these are associated. What about the X -values that do not appear
in the table? What can we say about their associations? Our work investigates alternative
semantics for mapping tables to address these and related issues. Through the alternative
semantics, we are able to specify whether the missing X -values can be associated either
to any Y -value (open-world semantics) or to no Y -value (closed-world semantics).

3.3 Mapping Constraints

Mapping tables, by definition, represent value correspondences. Part of our contribution
is the treatment of mapping tables as constraints on the exchange of information between
sources. This is achieved by using the associations of values, recorded in the tables, to
constrain the association of tuples in the two peers. Formally, consider again peers S
and Ss and let ¢1[U] and ¢5[V] denote tuples of the two peers, respectively. Then, tuple
t; with ¢1[X] = z can be mapped, with respect to mapping table m and valuation p,
only to tuples ¢5 in peer Sy for which t2[Y] € my (0 x=s(p(m))).

An important benefit of mapping constraints is our ability to automatically maintain
and combine multiple constraints over a network of peers. Still, an obstacle that hinders
the immediate deployment of our techniques is the high complexity of the inference and
consistency problems for mapping constraints. Specifically, our investigation shows that
the inference problem for mapping constraints is NP-complete even under restrictions
that can be considered severe. To reduce the complexity of the problem, we provide a
solution that applies over paths. We perform inference over these paths and we show
experimentally that our algorithm works efficiently in practice. Furthermore, our exper-
iments show that there is added benefit to consider alternative paths in a peer-to-peer
network since we are able, in practice, to infer additional data associations.

3.4 Query Translation

Our work on peer-to-peer query answering starts with the investigation of the query
answering semantics [14]. In brief, the proposed semantics allow for query answers that
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need not conform to a common schema. As such, our query semantics are consistent
with the requirements of the data-sharing problem.

The execution of queries over the peer-to-peer network requires the translation of
queries between peers. This translation relies solely on the use of mapping tables. Specifi-
cally, in our work we show how mapping tables can be used to translate select-project-join
queries, where the selection formula is positive, i.e., it has no negation and it consists
of conjunctions and disjunctions of atoms of the form (A = B) and (A = a), where
A and B are attribute names and a is a constant. We consider both sound translations
(which only retrieve correct answers) and complete translations (which retrieve all cor-
rect answers, and no incorrect answers). In this setting, we investigate the complexity
of testing for sound translations and we show that the problem is I7}-complete, in the
size of the query. Since large queries rarely occur in practice, the high complexity is
not an obstacle and as evidence we provide an implementation of the algorithm that
works efficiently. We also propose and implement algorithms for computing sound and
complete translations, and we offer experimental results that show the efficiency of these
algorithms.

One of the advantages of our approach is that we use the same underlying for-
malism to represent both mapping tables and queries. Specifically, we introduce the
notion of T-queries which is a tabular representation of queries and we show that for
each select-join query, where the selection formula is positive, we can have an equiv-
alent T-query. Our solutions deal with projection independently since we show that
the issues involved in projection are orthogonal to those for the other two operators.
The introduction of T-queries offers a number of advantages including simplicity of
implementation of the proposed algorithms due to the uniformity of representation.
Furthermore, by representing queries as tables, we are able to store as part of our
database both the queries themselves, and the query translations. Our system attempts
to take advantage of these past, stored, translations during the process of translating
a new query. The objective is to reuse, if possible, the stored translations to reduce
the time to compute a translation for the query under consideration. Our experiments
prove that this technique is effective and results in considerable savings in terms of
computation time.

4 Conclusions and Future Work

The objective of this thesis was to investigate mechanisms to support data sharing and
querying in peer-to-peer data management systems. To this end, we proposed the use
mapping tables as a mechanism to address the heterogeneity of the peers while respecting
peer autonomy. We described briefly how automated tools can help manage the tables
between multiple peers by inferring new tables from existing ones and by checking their
consistency. In terms of querying, we proposed a framework in which users pose queries
only with respect to their local peer. Then, we outlined our rewriting mechanism which
uses mapping tables to translate a locally expressed query to a set of queries over the
acquainted peers.

In terms of future work, there are a number of issues to address in the area of data
sharing through the use of mapping tables. Specifically, our current semantics of mapping
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tables do not accommodate for NULL values and we intend to investigate how NULLs
can be incorporated into these semantics.

In the current implementation, the mapping table inference algorithm accepts as
input a path of peers and, by using the mapping tables along the path, it computes as
output a set of inferred mapping tables. Since the peers on the path are autonomous, they
can update their corresponding mapping tables independently and without notifying any
other peer. These updates may influence the mapping tables that can be inferred along
the path. Currently, to reflect the effect of the updates on the inferred mapping tables,
one must re-execute the inference algorithm. Clearly, this approach is not optimal since
a large portion of the previously inferred mapping tables remains unaffected by the
updates. Thus, what is required is an incremental inference algorithm that detects the
updates in the mapping tables of the path and determines which inferred mapping tables
are affected by these updates and how these tables need to be updated.

Our query language currently does not support negation. As part of our future work,
we intend to investigate how we can incorporate this operator. Such an extension will
require a corresponding extension in the semantics of mapping tables. This is because
our solutions rely on the same underlying formalism to represent mapping tables and
queries.
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Abstract. Highly heterogeneous XML data collections that do not have a global
schema, as arising, for example, in federations of digital libraries or scientific data
repositories, cannot be effectively queried with XQuery or XPath alone, but rather
require a ranked retrieval approach. As known from ample work in the IR field,
relevance feedback provided by the user that drives automatic query refinement
or expansion can often lead to improved search result quality (e.g., precision or
recall). In this paper we present a framework for feedback-driven XML query
refinement and address several building blocks including reweighting of query
conditions and ontology-based query expansion. We point out the issues that arise
specifically in the XML context and cannot be simply addressed by straightforward
use of traditional IR techniques, and we present our approaches towards tackling
them.

1 Introduction

1.1 Motivation

Ranked retrieval systems for heterogeneous XML data with both structural search con-
ditions and keyword conditions have been developed recently across digital libraries,
federations of scientific data repositories, and hopefully portions of the ultimate Web
(XRank [8], XIRQL [6], XXL [13, 14], etc.). These systems are based on pre-defined
similarity measures for elementary conditions and then use rank aggregation techniques
to produced ranked results lists. Due to the users’ lack of information on the structure
and terminology of the underlying diverse data sources, users can often not avoid posing
overly broad or overly narrow initial queries, thus facing either too many or too few
results.

For the user, it is much more appropriate and easier to provide a relevance judgment on
the best results of an initial query execution, and then refine the query, either interactively
or automatically by the system. This calls for applying relevance feedback technology
[1,2,9,11,12,16] in the new area of XML retrieval. The key question is how to generate
arefined query appropriately based on a user’s feedback in order to obtain more relevant
results among the top-k result list.

As an example, suppose we have the following portion of XML document collection
(Figure 1) with research activities and bibliographic information after crawling and
indexing some scientists’ homepages.

The user may submit the following query in order to find researchers who work in
Germany on the field of Information Retrieval (IR). The query is expressed in the XXL

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 187-196, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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Fig. 1. Structurally diverse XML data graph
language [14], but could be posed in a similar way in other languages such as XIRQL
[6] or XRank [8].

SELECT * FROM INDEX
WHERE ~department AS $H
AND $H/country = ”Germany”
AND $H/#/~research AS $R
AND $R ~ "IR”;

Here °/’ stands for path concatenation, "#’ for arbitrary paths of XML elements, ’~’
for semantic similarity conditions on XML element (or attribute) names as well as XML
element (or attribute) contents, and $H’ for variable condition. We refer to [14] for
details.

XXL queries contain exact and vague conditions. In the above query, the path-
matching condition $H/ country and the element-content condition =" Germany” are
exact, the other four conditions are vague: 1) #, 2) ~department, 3) ~research,
4) ~ "IR”. In the following we focus on the vague conditions.

The sample query is decomposed into four elementary sub-queries, each of which
is binded with a weight indicating its relative importance. (see weight assignment in
section 2.1 and architecture of XXL in section 4.)

Each of elementary sub-queries is evaluated by system locally and scored based
on IR-style tf * idf measures for element contents and general ontological similarity
measure for element names. The total score of an XML path with regard to the entire
query is computed in a simple probabilistic manner as the product of the local scores,
(for all conditions are combined in a conjunctive manner. See section 2.1 for how to
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combine weights and scores.) Here using maximum is one option to avoid result
redundancy. To give an impression on how overall scores are computed based on local
scores, we show a sample result list:

Result 1: (overall=0.8)
/department;1/ (scientific_work/project);0.8/IR;1

Result 2: (overall=0.7)
/institute;1l/publication/paper;0.7/IR;1

Result 3: (overall=0.6*1*0.9=0.54)
/institute;1/links_to_friends;0.6/research;1/F-measure;0.9

Result 4: (overall=max(0.48,0.42)=0.48)
/department/chair;0.6/ (scientific_work/project);0.8/IR;1
/department/links_to_friends;0.6/grant;0.7/IR;1

In the result set from the first round of query execution, the attached numbers to
each blocks of meta-data from index are scores given by the engine, either as local
measurements on element path (some are shown as rectangle in Figure 2) and element
content (shown as circle), or as overall.

In such a ranked retrieval model, the aggregation of, possibly weighted, scores of
sub-queries is often subjective to the user and thus should be personalized at runtime.
Relevance feedback can help to automatically tune weights and other options of the
query execution engine to the user’s specific information needs.

In an XML setting we have much richer opportunities for relevance feedback than
in a traditional text-only IR environment. Consider the sample results for our example
query shown in Figure 2. At the document level, the user may mark results 1, 2, and
4 as positively relevant. At the element level, the user has much more fine-grained
control over positive and negative feedback. For example, in results 1 and 4, the path
scientific_work/project ispositive. Inresult 2, after zooming into the content,
the user may find out that the paper is mainly about “Database Systems” instead of
“Information Retrieval”, so it is assessed as negative. Finally, in results 3 and 4, the tag
name links_to_friends is assessed as negative.

Our opportunity now is to exploit this kind of feedback for automatically refining
the initial query into a better suited query such as:

SELECT * FROM INDEX

WHERE (department; 1.0 | institute;1.0 | chair;0.8) AS $H ::1.0

AND $H/country = "Germany” ::0.6

AND $H/(research;1.0 | (scientific_-work/project);0.95 | project;0.8 | grant;0.7
| paper;0.7)/# AS $R ::0.8

AND $R ~ ("IR”|”F-measure”) ::0.9;

Here the numbers after ™::” that are attached to the various search conditions are
weights that are used in the total scoring function (see section 2.1) to reflect the relative
importance of the various conditions. The numbers after ’;” are weights used for local
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Fig. 2. Sample retrieval results, with computed similarity scores and user’s feedback at both doc-
ument level (marked with ++, ——) and element level (marked with +,—)

scoring function in query expansion. The symbol ’|” denotes disjunction. Thus the new
query uses query expansion to reach out for semantically relevant data that uses diverse
terminology different from the terms in the original query. Query expansion is a standard
technique in IR, but note that in our approach it is used not just for XML content terms,
but also for XML element names and it is driven by query-specific ontological similarity
measures [13].

1.2 Research Objectives
The objectives in this Ph.D. project are twofold:

Feedback Capturing: A systematic study is required on how to capture and exploit
different kinds of feedback interactions like:

Binary feedback vs. non-binary feedback:

1. Binary feedback means (+), (—) are the only two values of feedback.
2. Non-binary feedback means using a multivalued relevance scale, e.g. (+2), (+1),

and (—2) mean “highly relevant”, ”marginally relevant”, and “’not at all relevant”
respectively.

Feedback for different granularities:

1. feedback only on entire documents,
2. feedback on documents as well as elements,
3. feedback on documents, elements, and also entire paths.
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Query Modification: The aim is to develop a formal foundation for a comprehensive
query refinement framework in XML retrieval, with an efficient implementation and
an experimental evaluation of benefits, tradeoffs, and fine-tuning options. We currently
focus on the following two techniques:

Reweighting of Elementary Query Conditions: Reweight on both exact conditions and
vague ones after feedback. Furthermore, remove a elementary condition completely from
the query if its weight is lower than a certain threshold.

Expansion of Elementary Query Conditions: Introduce local disjunctions for element
content conditions (keywords or phrases) and element names based on personalized
ontology. Another example is adding new variable condition as intermediate if necessary.

2 Query Refinement Model

We take the following steps in our current query refinement model:

1. Distinguish different types of elementary vague conditions:

C—conditions (Content conditions, e.g., ~ “I R”),

T-conditions (Tag conditions, e.g., ~research),

P—conditions (Path conditions, e.g., #),

V—conditions (Variable conditions, e.g., SH).

2. Obtain feedback for each vague condition (identified by VaguelD), with different
granularities, e.g., single XML element level, block of path/tree/sub-graph level
(over several XML elements), or document level.

3. Compute statistics over positive and negative docs (i.e., feedback on each result
entry), and then adjust weights of conditions for the total scoring function and/or
expand the query.

4. Refine query appropriately.

These steps are explained further in Sections 2.1 through 2.3.

2.1 Weight Adjustment

To compute an overall ranking score for each result document (or path within a document
or even across multiple documents, which is supported by XXL [14]), individual scores
of the elementary conditions in the query are combined and weighted by their relative
importance, using the following scoring model or weighted sum or more such as in [5]:

m+n

Score(Q)overa = H ((SCO’I“e(qhd))weight(qi)) )

i=1

where d is a candidate document or element/path/tree/sub-graph, and query @ = (g1, . . .,
Gms Qm+1s - - - s @m-+n)- Bach g; is an elementary condition, where ¢, . . ., ¢,,, are exact
conditions (each score is either O or 1) and g, 41, - - - , @m+n are vague conditions (each
score is between 0 and 1). For the example in Section 1.1, m=2 and n=4. In the first
round of iteration all conditions q1, . . ., ¢m .+, are assigned the same weight as 1.0. In
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subsequent rounds, based on positive and negative user feedback after each iteration, we
will adjust each weight(q; ), which will influence the overall score in the next iteration.
Normalization is followed when necessary so that Zﬁt"(weight(qi)) = 1 in certain
scoring models. The weights are determined by using linear regression to minimize the

error between the system-computed score and the user assessment.

2.2 Local Query Expansion

We do local query expansion on each sub-query by broadening the vague condition
based on an ontology index and then trying to disambiguate the sub-query with the help
of user feedback. We expand elementary vague conditions into local disjunctions with
corresponding weights for each candidate.

For example, the content condition ~ ”IR” could be expanded into ( IR;1.0 |
(Vector Space Model);0.7 | (Information Retrieval);1.0 ),the
content condition "Germany” as ( Germany;1.0 | Deutschland;1.0 ), (
see section 2.3 for variable conditions and path conditions ), and the tag condition
~researchcould be expandedinto ( (scientific_work/project);0.95
| research;1.0 | project;0.8 ).

As pointed out in [13, 15], the idea of ontology-driven query expansion is to identify
strongly related concepts in a directed ontology graph. In more detail, consider an ontol-
ogy graph with concepts as nodes, synonyms as separate explicit nodes, synonym edges
with weight 1, and hypernym or hyponym edges with weights derived from correlation
measures over corpus statistics between 0 and 1 (assume, for simpler presentation, that
there are no polysems.). The personalized ontology graph is the source that gives us
candidate terms for query expansion if the similarity weight is higher than a certain
threshold.

Ontology-Based Query Expansion: Our query expansion approach is based on both
ontological knowledge for initialization and human feedback for modification:

1. Evaluate the query with expansion driven by the original ontology from the Global
Ontology Index (GOI), see architecture in section 4.

2. After the first round of feedback, construct a Query-specific Ontology Index (QOI)
as a small portion of GOI by making a copy of all the necessary information.

3. Add the query as an extra node, and add edges with high weight (e.g., 1) to concepts
with positive feedback, also add edges with low weight (e.g., 0) to concepts with
negative feedback.

4. After each round of query re-execution plus user feedback, modify the QOI graph.

For the query ~research and some sample results with feedback, the result of local
query expansion might be adding positive edges: (¢ — research; 1), (¢ — project;0.8),
and negative edges: (¢ — teaching;0), (¢ — lecture;0), shown in Figure 3. This mod-
ified ontology graph will be used as the source for query expansion. Based on Fig-
ure 3, ~research will be expanded as (research;1l |scientific_work;1l
|project;0.8 |grant;0.7 |fund;0.54 |teaching;0 |lecture;0).

Terms that received negative feedbacks are still among the list for filter purposes,
even if their weight is zero.
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Fig. 3. Sample query-specific ontology (QOI) graph with an inserted node q: ~research, all con-
nections are directed and weighted

Further Issues on Expansion: In this subsection, we briefly point out some further
questions on ontology-based query expansion among many.

1. How to choose the best candidates for expansion?
Use thresholds on distance measures between original query terms and expansion
candidates, and use correlation measures such as Cosine measures or Euclidian
distance or Kullback-Leibler divergence.

2. How to do disambiguation, i.e., how to map query words onto concepts in the
presence of polysems?
Rely on word context (from query and documents with positive feedback) and con-
cept context in ontology (e.g., descriptions of hyponyms, siblings, etc.), see [13] for
more details.

3. How to keep direct and transitive weights consistent while updating the ontology
graph?
So far: sim/(z,y) = max{sim(p)| all paths p from z to y} , i.e., the strongest path
with query-specific additional edges determines the similarity. This works fine for
additional positive edges, but not for additional negative edges.

2.3 Global Query Expansion

Global query expansion includes adding new conjunctive conditions to the query. Using
the example of section 1.1, a new elementary condition (SH/city AS $X) withinitial
weight 1.0 could be possibly added based on feedback information analysis, in order to
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catch user’s information need. In the same example, the path condition (/#) could be
possibly expanded into (/#/Publications AS $SP AND $SP/#).

2.4 Long-Term Profiling

As one of long-term goals, we plan to exploit query logs [4] and user profiles [3], etc.,
as they can be regarded as implicit user feedback. In general, the derived information
about a user’s interest profile can be used for adaptive ranking of search results. The
information about a user’s activities can be collected on the client side (e.g., using a
browser-embedded ActiveX component) or on the server side (e.g., using session logs).

3 Interaction with Feedback Information and Guidance of Users

A good user interface is also important, in order to show ranked result lists, zoom in and
zoom out on some portion of XML data, obtain the user’s subjective feedback at the
document level or element level (or others, such as path/tag/content combination), show
the possible query expansion candidates, and provide implicit or explicit user guidance
according to individual preferences.

At present we simply use a two-dimensional graph layout for showing the XML data
of ranked results from XML retrieval engine, plus pop-up menu for relevance feedback.
A next step could be studying richer visual techniques for navigation in large collections
of XML data. For this purpose, the Cone Tree technique, or a commercial product named
Inxight Star Tree (hyperbolic technique in [10]) could be of interest.

4 System Architecture

Figure 4 depicts the architecture of the XXL search engine and the extensions for rele-
vance feedback that we are currently working on.

— XXL Applet handles the user interface.

— The Query Logs Manager (QLM) maintains implicit information of user’s interest.

The Scoring Model (SM) maintains the parameters of overall scoring function and

the weights of all elementary query conditions.

The Query-specific Ontology Index (QOI) maintains the candidate terms for query

expansion.

The Feedback Manager (FbM) collects all the information from user’s feedback with

different granularities, does statistical computation, maintains necessary information

for query refinement, and updates QOI and SM, etc.

— The Query Processor (QP) is the kernel of a XML retrieval system [14]. It parsers
and executes query, generates result lists based on local score evaluation (by access-
ing Element-Content-Index, Element-Path-Index and Global-Ontology-Index) and
overall weighted score evaluation by accessing SM, refines query by accessing QOI
and FbM, etc.
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Fig. 4. Architecture of the XXL Search Engine with relevance feedback support
5 [Evaluation Plan

Our evaluation plan is to participate in the proposed Relevance Feedback Track at INEX
2004 [7]. It will provide a benchmark for relevance assessment for further the relevance
feedback process in XML retrieval, and handle both Content-Only (CO) queries and
Content-And-Structure (CAS) queries.
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Abstract. It is a common understanding that “the Web changes everything”, and
this applies to an increasing number of computer applications. In the last years,
we also understood that “XML is the means” for this change to take effect, as
XML has progressively become the basis on which Web applications are built.
This corollary was the claim of [9], published four years ago, in which XML
was pointed out as a prominent and promising research direction for the database
community.

Indeed, among the many promises that followed the advent of XML, some
have been fulfilled, some are still at the stage of promise. After four years, one of the
authors was asked to “redo” the same exercise, reconsidering the challenges posed
to the database community and making another assessment of the area checking
whether the expectations and challenges of the year 2000 have been met in 2004.
This paper compares the past and present status of several XML-related research
activities, examining the “next steps” that should lead to further integration of
XML with database technology in terms of language and system requirements.

1 Introduction: XML Mission

XML was initially designed as a simplification of SGML to provide a flexible instrument
for publishing data on the Web as alternative to HTML; it has increasingly gained
importance as a standard data representation format for information interchange between
Web applications. In the early times of its specification, the mission of XML was meant
to be manyfold, so as to address several issues at a time:

— Enabling internationalized media-independent electronic publishing and allowing
people to display information the way they want it; this objective has been achieved
in conjunction with XSLT [19] as the standard technology for mapping presentation-
independent data structures to specific media-dependent markup languages and rep-
resentation formats.

— Allowing industries to define platform-independent protocols for data exchange, es-
pecially in electronic commerce; this is probably the most active area at the moment,
especially w.r.t. to the “Web Service revolution”.

— Making it easy for people to process data using inexpensive software. This is
achieved somehow “by construction”, as XML is text-based and a plethora of free
parsers are available, offering common tree-based abstractions and traversal APIs.

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 197-208, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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— Providing rich metadata that will help people find information and help information
producers and consumers find each other. Many XML-based standards are com-
monly used, both as direct metadata specification formats (Mpeg7 for multimedia,
SCORM for education, ...) and as the basis for services specification and classifica-
tion (WSDL, UDDI, ...).

— Delivering information to user agents in a form that allows automatic processing
after receipt. And indeed, XML is an important ingredient for the new languages
and formalisms marking the advent of Semantic Web and ontologies.

The effort to clarify and try reaching these objectives started several years ago with
the first XML proposal; ad-hoc query languages came immediately after, even though
the database community was not really involved in the early XML design process. The
inherent complexity of querying semi-structured data makes the process much harder
than defining XML itself. As an evidence of this problematic process, consider that XML
was first introduced in 1997 and became a recommendation in 1998, while XQuery was
first proposed in February 2001 (as heritage of several already established language
proposals), and is still in the status of working draft.

2 The Past: XML Four Years Ago

Four years ago, we announced that XML was good news to the database community,
and we meant it for at least three reasons.

First of all, XML is (and was) simple and powerful; XML data is easy to read for
the human eye and for a parser at the same time, and maps hierarchies of concepts
directly into hierarchies of data chunks. Indeed, XML is also very effective to represent
data semantics. XML documents are self-describing and must comply with a document
class specification (DTD [17] or XML Schema [23]) that dictates the structure of the
document. XML is very effective in providing data independence as well, as XML
documents are inherently specified independently from presentation.

Second, XML was winning the Data Interchange Standard War. There were several
successful data interchange standards, such as SQL + JDBC (the “intergalactic data
speak”) or technologies like CORBA and DCOM, specifically targeted to represent and
exchange distributed objects and components for distributed applications. However, they
did not solve the interoperability problem, as they describe “computations” much more
then “data” themselves; in other words, they don’t help much in describing the semantics
of the data being exchanged between systems.

Last, classical data abstractions from the theory of data representation and manage-
ment do apply to XML: modeling, constraining, querying, viewing, updating, mining.

For these three reasons, it was easy to envision that XML would be in the “core
business” of the database community; and indeed XML-related topics cover the majority
of scientific sessions at VLDB, SIGMOD, EDBT and ICDE, the leading conferences
of the area. However, not all the above data abstractions have been addressed with the
same effort and success. The next sections address these issues.
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2.1 XML Data Modeling and Constraining

Two standard formats are available for defining and constraining the structure of XML
documents, Document Type Definitions (DTD) and XML Schema Definitions (XSD).

DTDs are simple but quite poor in their expressive power; they do allow to define the
structure of a document as a sequence of elements, PCDATA content, and attributes; how-
ever, simple types are available only for attributes (ID, IDREF, NMTOKEN, CDATA,
enumerations, ...), while PCDATA chunks are indistinguishable. Such a formalism can
be thought of as a generative notation, such as a grammar.

XSDs are more expressive. They are based on the notion of data type, and offer the
chance to define the type of each element using a very rich set of basic predefined types
(44 different types); it is also possible to define ad-hoc data types, either as restrictions of
the basic types, or building complex types as arrays, records, or unordered sequences of
items of predefined data types. Furthermore, XSDs allow to define integrity constraints
such as to state the exact number of subelements of a certain type. This higher expressive
power is balanced by the fact that XSD is very verbose, probably too much.

2.2 XML Query Languages (Querying and Viewing)

The first languages such as Lorel [4], were variants of languages thought for generic semi-
structured data and not specifically for XML. Given the emphasis on object-oriented data
models, a huge emphasis was on references, represented by ID/IDREF couples, a feature
that now is not regarded as crucial anymore.

Native XML query languages, from the very first XQL [14], to XML-QL [11],
up to Quilt [10], which took some characteristics from many pre-existing languages,
eventually resulted in the first XQuery proposal. It is also worth mentioning XSL [22],
which is not exactly a query language, but is still capable of query-like transformations.

The ancestors of XQuery have diverse expressive powers; XSLT and XQuery, in-
stead, are Turing complete (they both support recursion and composition of user-defined
functions). Moreover, XQuery is a fully functional language, in which expressions can
be substituted by their results and computations can be decomposed into partial trans-
formations. Therefore, views are supported “by construction”.

2.3 Updating and Mining

These directions were scarcely investigated in the past - at least not at a level of establish-
ment comparable with that of the other dimensions - and they are still lagging behind.
We will address such data managing abstractions again when dealing with the current
perspectives on XML evolution.

3 The Present of XML

In moving to the assessment of the present of XML we separately consider the current
strengths first, and then its major weaknesses.
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3.1 Present XML Strengths

We observe that in several applications XML is particularly suited for being a sort of
“glue” for distributed computations that need to cooperate or interoperate by exchanging
data encoded in some standard format. Indeed...

...XML scales up...

XML turned from a document markup language into the standard abstraction for data in-
terchange and for defining interfaces between co-operating software components. From
being an instrument for enabling data publication by various cooperating applications,
XML has become a key enabling technology for achieving data interoperability.

... to a programming abstraction ...

XML is also used as the representation format for the internal state of several software
applications; so it is also a key enabling technology for building applications, assisted
by powerful tools and combined with other well-matching technologies.

... to Web Services enabler ...

Web Services are the dominant paradigm for building distributed applications. All major
Web Service standards (e.g. SOAP [24], WSDL [21], UDDI, BPEL) use XML for data
representation and service description and classification.

... and even further!
XML is adopted in many application domains, such as education (SCORM [5] and IMS
[13] are XML based standard for classification of Learning Objects), multimedia (Mpeg-
7 [1] has XML metadata), e-commerce protocols for negotiation and binding, genetics,
mathematics (MathML [20]), chemistry.

3.2 Present XML Weaknesses

One major shortcoming regards the fact that XQuery is far too complex for unskilled
users. Consider the following query, taken from the W3C XQuery Use Cases, that extracts
pairs of books with different titles but the same authors:

<bib> {
for $bookl in doc ("www.bstore.example.com/bib.xml") //book,
Sbook2 in doc ("www.bstore.example.com/bib.xml") //book
let $autl := for $a in S$bookl/author
order by S$a/last, S$a/first
return $a
let $aut2 := for $a in S$book2/author
order by $a/last, S$a/first
return $a
where $bookl << $book2 and not (Sbookl/title = S$book2/title)
and deep-equal (Sautl, S$Saut2)
return <book-pair>
{ $bookl/title }
{ Sbook2/title }
</book-pair>
} </bib>
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Such a statement is readable only for experienced IT professionals, with some back-
ground concerning queries, functions, and variables representing sets of elements; it goes
beyond the classical abilities which are required in order to write the same query in SQL,
and in general XQuery programmers must go beyond the classical abstractions required
to write SQL-embedded applications on top of relational databases. We acknowledge
that XQuery is inherently more complex than SQL, as it must deal with an inherently
more complex data model. Such greater complexity of XQuery, however, should be
dealt with by language designers, who so far have concentrated on the expressive power
of XQuery and given little attention to the methodological and pedagogical aspects of
teaching the language so as to make it accepted.

One useful way to address the problem is to identify progressive programming ab-
stractions within XQuery and to associate to each abstraction a level of language com-
plexity. In such construction, the first level could include XPath, FLWOR expressions,
basic XML constructors and joins, while recursive user-defined functions would proba-
bly belong to the highest level. The advantage of a layered approach to XQuery would
be:

— Ease of staging the learning of the language (by levels).

— Scaled deployment of XQuery implementations and of their respective development
environments (by layers).

— Greater compatibility and comparability of XQuery implementations.

We strongly believe that it would be highly beneficial for XQuery implementors to
be able to indicate that their product supports a given level of XQuery.

Another shortcoming of XML is that if DTDs are too poor, XML Schema is too
verbose and complex. As an example, just consider the following scary specification of
an arbitrarily long list of productName/quantity couples:

<xsd:complexType name="Items">
<xsd:sequence>
<xsd:element name="item" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="productName" type="xsd:string"/>
<xsd:element name="quantity">
<xsd:simpleType>
<xsd:restriction base="xsd:positivelnteger">
<xsd:maxExclusive value="100"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>

As already suggested for XQuery, a possible approach to this issue might be to intro-
duce levels; the first level could include few basic data types, support for the specification
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of key constraints, and referential integrity. A different approach, still driven by a simpli-
fication effort, might be to introduce user friendly interfaces to enable the representation
and design of schemas in a visual environment (e.g. in a way similar to that described
in section 5.1).

Another major shortcoming regards the fact that XML updates are missing. A long
debate took place on the fields of the W3C specification: not only it seems to be question-
able how updates should be specified, how they should be implemented, and which is
the semantics of updates addressing hierarchical structures; even the need for an update
language is not certain yet, and at the time a W3C proposal is still missing.

Indeed, two different schools of thought regard XML differently: either as a data
storage format or as a format for representing data streams. Only those adopting the for-
mer perspective can perceive the need for an update language, while the latter viewpoint
hardly allows to conceive such an extension.

However, the need for updates became strong for all the vendors that have imple-
mented XQuery together with a native XML storage systems (and not only as a query
interpreter for data stored in textual files in a regular file system). According to our
experience, there are three main kinds of requirements for updates:

— Supporting bulk insertions and deletions (as implemented in Xyleme [3]). This is the
simplest approach, as the only required capability is that of uploading and deleting
entire documents.

— Supporting insertions and deletions of some specified fragments in specified posi-
tions, as implemented in XUpdate [2], which exploits the expressive power of XPath
for accessing the involved fragments.

— Supporting a full fledged language, with nested statements and that exploits the
expressive power of XQuery, as proposed in [16]. As far as we know, such a language
hasn’t been implemented yet.

4 The Future: XML Challenges

4.1 XML Query Languages

Despite the lengthy standardization process, XQuery is far from being complete and
satisfactory according to all viewpoints; much work can still be done to formalize,
enrich, enhance, and disseminate XQuery as a standard, so as to substantially contribute
to its success and diffusion among the widest audience; to this end, the language is
supposed to address diverse and even contrasting expectations and needs.

A first set of possible evolutions is somehow language-independent. The formal-
ization of the basic query features in terms of an XML algebra is a good example of
something that is already available but could be improved. A minimal set of orthogonal
algebraic operators was not determined yet; such a result could be exploited to define
nontrivial equivalence properties and therefore to perform high-level nontrivial optimiza-
tions, in a way similar to the exploitation of algebraic transformations for optimizing
access plans within relational database systems.

Recalling that the XML data model is semi-structured, is also possible to envision
several extensions to enhance querying capabilities or integrating functionalities that
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are typical of other domains, such as information retrieval and graph matching. Among
several possibilities, we point to the following as the most interesting ones:

— Proximity search. Quite often in XML documents “physical” proximity implicates
“semantic” proximity, as data are often clustered according to precise criteria and
the document order is often meaningful; imprecise (fuzzy) queries might cover
all cases in which users only have a vague idea about the structure of the target
documents or about what they are looking for. Uncertainty can also be traded with
efficiency whenever a fast estimate is preferable to long computations for exact
results (synopsis, histograms, pre-computation of aggregates, ...).

— Combining queries and keyword-based search. XML data can contain large excerpts
of free text; integrating free text analysis and searching functionalities may substan-
tially improve the impact of XQuery outside the community of database experts.

Of course such extensions require an effective and unambiguous syntax, but in prin-
ciple these are language-independent extensions, as the most crucial point is to devise
suitable metrics and algorithms rather than to invent sweet syntactic sugar.

Another orthogonal language evolution opportunity regards XML data streams,
which might be crucial in all scenarios in which XML is the means for distributed
applications to cooperate. Message flows may be processed on the fly, and the extracted
(condensed) data can be stored in repositories. Applications may range from log analy-
sis to security checks on the fly. We know of an XQuery implementation done by BEA
exclusively for this purpose.

4.2 Native XML Repositories

Some more technical and quite classical challenges are directly posed to “core DB”
researchers:

— Support for XML queries by means of ad-hoc efficient data storage and indexes

— Use of schema knowledge to optimize queries

— Support for parallel and distributed query processing

— Dealing with replicas and order (quite new w.r.t. the relational knowhow)

— Dealing with irregular data and heterogeneous data sources (as contrasted to efficient
storage and indexing)

— Support for views and view materialization

— Support for irregular schema specifications (DTDs and XSDs)

However, many native XML repositories have already been implemented, and sev-
eral new commercial products and open source initiatives are intensively developed.
This poses a pressing need for independent and effective benchmarks to compare the
performances of different repositories. According to [15], the target of a benchmark
should be to test the capability of managing:

— Bulk loading and (dually) full document reconstruction.
— Path traversal (ubiquitous access methods).
— Casting (always switching to and from text).
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Missing elements and structural uncertainty: absences are more frequent than nulls.
— Order (within the data model, unlike RDBs).

— References (as dual to path traversal).

Joins (typical bottleneck + hierarchical data).

Handling large data volumes.

4.3 XML and Semantic Web

The Semantic Web is a recent attempt to win one of the most interesting challenges on the
field of automated reasoning: to add intelligence to data management and computations
in general. More specifically, the Semantic Web is commonly meant as the possibility to
achieve semantic interoperability by means of accurate modeling of conceptual domains.
A recent slogan to indicate the relevance of XML for the Semantic Web is:

XML + ontologies = semantic interoperability

Ontologies are a formal and consensual specifications of conceptualizations that
provide a shared and common understanding of a domain, an understanding that can
be communicated across people and application systems. After all, technologies that
support access to unstructured, heterogeneous and distributed information might become
as essential as programming languages were in the 60’s and 70’s [12]. Typical XML
based ontology formats are RDF [18] and OWL [25]. XML tools enable editing and
manipulating ontologies quite easily.

5 Ongoing Research at Politecnico di Milano

We now turn our focus to some ongoing research at Politecnico di Milano, exploring
the chance of applying to XQuery some of the extensions applied in the past to SQL. In
the following we will refer to a scenario based on the XML document sketched below
(bib.xml), containing a list of bibliographic entries:

<bib refNumber="45">

<book id="A097" year="2000">
<author> J. Acute </author>
<author> J. Obtuse </author>
<title> Applying Triangular Inequalities </title>
<publisher> Addison-Wesley </publisher>
</book>

</bib>
5.1 XQBE

XQBE (XQuery By Example [8]) is a visual dialect of XQuery inspired by the QBE
language (Query By Example, [26]). QBE was initially proposed as alternative to SQL
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Fig. 1. A query in XQBE and the visual support for schema specifications

and then became popular as the user-friendly language supported by MS Access. The
success of QBE demonstrated that a visual query language is effective and intuitive
when the basic graphical constructs of the language are close to a visual abstraction
of the underlying data model. Accordingly, while QBE is a relational query language,
based on a tabular representation of data, XQBE is based on the use of annotated trees,
so as to adhere to the hierarchical nature of the XML data model.

XQBE supports most of the expressive power of XPath, the construction of new XML
elements, and nontrivial restructuring of existing documents. However, its expressive
power is limited w.r.t. XQuery; as an example, XQBE does not support disjunction and
user defined functions (a user confident with functions can directly use XQuery). These
limitations are precise design issues: a complete but too complex visual language would
fail both in replacing the textual one and in addressing most users’ needs.

To exemplify XQBE, Figure 1 shows a query that reads “List books published by
Addison-Wesley after 1991, including their year and title”. The source part (on the left)
describes the source data, matching the book elements with a year attribute greater
than 1991 and a publisher subelement equal to “Addison-Wesley”. In the construct
part (on the right), an example of the query result is visually sketched. The binding edge
between the book nodes states that the query result shall contain as many book elements
as those matched in the source part. The paths that branch out of the node with a binding
edge indicate which of its contents are to be retained (thus “projecting” the bound node
- in our example only the title and publication year are retained).

XQBE is targeted to unskilled users, without knowledge of query languages, so
usability is a critical success factor. The set of visual constructs, i.e. the XQBE syn-
tax, is a trade off between a neat graphical characterization, with different shapes for
different concepts, and the fact that an unreasonably large set of symbols would be
rather confusing. XQBE also supports a visual environment for exploiting available
schema specifications, so as to facilitate the formulation of queries towards documents
whose schema is unknown; Figure 1 also shows that a bib may contain a sequence of
books.
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5.2 Fuzzy XPath

FXPath is a fuzzy extension of XPath 1.0 addressing the following characteristics: fuzzy
predicates, specifying flexible selection conditions, fuzzy subtree matching, providing a
ranked list of retrieved items rather than the usual document-ordered list, fuzzy quantifi-
cation, allowing the specification of linguistic quantifiers as aggregation operators. In
order to allow for vague specification of selection conditions, we extended the XPath
syntax with the specification of fuzzy predicates. An FXPath expression can contain
several fuzzy conditions, and each of them is satisfied to a degree in [0,1]. We shall rank
FXPath query results according to these degrees. To keep the new language features sep-
arate from the standard specification, non-standard expressions are enclosed into curly
braces, so that a simple parsing algorithm can ignore them and translate an expression
into corresponding crisp expressions.
The following query extracts articles published as close to year 2000 as possible:

/bib/book[{@year NEAR 2000}]

The results are ranked according to the distance of the value of year from 2000, and
its crisp equivalent is obtained ignoring the condition; a standard XPath processor then
returns all the books in document order.

The next example shows how fuzzy conditions can be imposed upon the structure
of XML data. The keyword NEAR can also be used as an XPath axis such that the degree
of matching is stronger for those elements that are closer in the containment hierarchy:

/bib{/NEAR}/book

The list of the result nodes will be ranked w.r.t. to the increasing number of steps
to be descended. Note that the keyword NEAR is used in the previous examples with a
different meaning, but in all cases it expresses ‘proximity’; such overloading is meant
to help the user’s intuition.

5.3 Active XQuery

Active XQuery is a trigger specification language for XML repositories, based on a pre-
defined XQuery update model; the syntax and semantics of our language are inspired
by the SQL3 specification. This active extension of XQuery arises nontrivial problems
related to the interleaving of updates and triggers, which led us to define an algorithm
for update reformulation and to devise a compact semantics. More details are in [7].

A simple example of update will give an intuition of our proposal at work: the “bulk”
insertion of new bibliographic references. In this scenario, the attribute refNumber,
which represents the number of books, is automatically maintained by triggers responsi-
ble for its decrement or increment after each deletion or insertion respectively. For sake
of brevity, we only show only the trigger that reacts to insertions.

CREATE TRIGGER IncrementCounter
AFTER INSERT OF //book
LET S$Counter := NEW_NODE/../@refNumber
DO ( FOR $bib IN /bib
UPDATE $bib
{ REPLACE S$Counter WITH $Counter + 1 } )
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54 XMine Rule

Knowledge can be represented in many different ways, such as clusters, decision trees,
association rules, etc.; in particular, association rules have proved to be an effective tool
to discover interesting and unexpected relationships in massive amounts of data [6].

XMine Rule is an XML-specific operator that extends XQuery to the declarative
specification of association rules for XML data; it allows to express complex mining tasks
compactly and intuitively. The operator can indifferently (and simultaneously) target both
the content and the structure of the data, since the distinction in XML is subtle. XML
association rules are implications of the form B = H where the rule body B and head
H are sub-fragments of a set of fragments of interest (the set of transactions). Rules
are also characterized by two measures: the support, which measures the percentage
of transactions that contain both B and H, and the confidence, which measures the
percentage of transactions that contain H within the transactions that also contain B.
As an example, we consider the problem of mining frequent associations among people
who appear as coauthors. The mining task can be formulated as:

XMINE RULE IN doc("bib.xml")
FOR ROOT IN //bib/book/
LET BODY := ROOT/author,
HEAD := ROOT/author
EXTRACTING RULES WITH SUPPORT = 0.1 AND CONFIDENCE = 0.2

In the FOR clause, the special variable ROOT specifies the set of fragments which
represents the set of transactions. Next, two special variables, BODY and HEAD, identify
the fragments which should appear respectively in the rule body and in the rule head.
Note that both BODY and HEAD are defined w.r.t. the context of the ROOT variable, since
confidence and support values have meaning only w.r.t. the context defined by the set
of transactions. The EXTRACTING RULES WITH clause specifies the minimum support
and confidence thresholds for the output association rules to be considered.

6 Conclusions

In the last decade, the Web has become the uniform paradigm for end-user interaction
with computer applications, and XML has been key for supporting such revolution. The
database community has played a prominent role in XML development. The community
has addressed both “fully original” XML-centred research and has also performed a solid
transfer of its background knowledge to XML-based solutions. We expect that this trend
will further grow in the years to come.

References

MPEG-7. http://www.mpeg.org/MPEG/index.html.

XUpdate Use Cases. http://www.xmldatabases.org/projects/XUpdate-UseCases/.

Xyleme. http://www.xyleme.com/.

S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. The Lorel query language
for semistructured data. International Journal on Digital Libraries, 1(1):68-88, 1997.

el .



208

5.
6.

10.

11.

12.

13.
14.

15.

16.

17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

D. Braga, A. Campi, and S. Ceri

ADL. SCORM. http://www.adlnet.org/.

R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets of items
in large databases. In Proc. of the 12th ACM SIGMOD Int’l Conf. on Management of Data,
pages 207-216, Washington, D.C., 1993.

. A. Bonifati, D. Braga, A. Campi, and S. Ceri. Active XQuery. In Proc. of the 18th Int’l Conf.

on Data Engineering, IEEE Computer Society Press, San José, California, Feb. 2002.

. D. Braga and A. Campi. A graphical environment to query XML data with XQuery. In Proc.

of 4th Int’l Conf. on Web Information Systems Engineering (WISE), December 2003.

. S. Ceri, P. Fraternali, and S. Paraboschi. XML: Current develoments and future challenges

for the database community. In Proc. of the 7th EDBT, pages 3—17, 2000.

D. Chamberlin, J. Robie, and D. Florescu. Quilt: an XML Query Language for Heterogeneous
Data Sources. In Proc. of Webdb 2000 The Web and Databases Workshop, May 2000.

A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A Query Language for XML.
In Proceedings of the Query Languages Workshop, Cambridge, (MA), December 1998.

D. Fensel and M. L. Brodie. Ontologies: A Silver Bullet for Knowledge Management and
Electronic Commerce. Springer Verlag, 2003.

IMS Global Consortium. IMS. http://www.imsglobal.org.

J. Robie, J. Lapp, and D. Schach. XML Query Language (XQL). In Proceedings of the Query
Languages Workshop, Cambridge, (MA), December 1998.

A. Schmidt, F. Waas, M. Kersten, D. Florescu, M. J. Carey, 1. Manolescu, and R. Busse. Why
and how to benchmark xml databases. SIGMOD Record, 30(3):27-32, 2001.

I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld. Updating XML. In Proc. of the 20th
ACM SIGMOD Int’l Conf. on Management of Data, 2001.

W3C. Document Type Definition. http://www.w3.org/TR/REC-html40/sgml/dtd.html, 1999.
W3C. Resource Description Framework (RDF). http://www.w3.org/RDF/, 1999.

W3C. Extensible Stylesheet Language (XSL). http://www.w3c.org/TR/xsl/, October 2001.
W3C. MathML. http://www.w3.org/Math, February 2001.

W3C. Web Services Description Language (WSDL). http://www.w3.org/TR/wsd120, 2001.
W3C. XML Query (XQuery). http://www.w3.org/XML/Query, June 2001.

W3C. XML Schema. http://www.w3.org/XML/Schema, May 2001.

W3C. SOAP. http://www.w3.org/TR/soap, June 2003.

W3C. OWL Web Ontology Language. http://www.w3.org/TR/owl-features/, February 2004.
Moshé M. Zloof. Query-by-example: A data base language. IBM Systems Journal, 16(4):324—
343, 1977.



L-Tree: A Dynamic Labeling Structure
for Ordered XML Data

Yi Chen!, George Mihaila?, Rajesh Bordawekar?, and Sriram Padmanabhan?

! University of Pennsylvania
vicn@seas.upenn.edu
2 IBM T.J. Watson Research Center
{mihaila,srp,bordaw}@us.ibm.com

Abstract. With the ever growing use of XML as a data representation format,
we see an increasing need for robust, high performance XML database systems.
While most of the recent work focuses on efficient XML query processing, XML
databases also need to support efficient updates. To speed up query processing,
various labeling schemes have been proposed. However, the vast majority of these
schemes have poor update performance. In this paper, we introduce a dynamic
labeling structure for XML data: L-Tree and its order-preserving labeling scheme
with O(log n) amortized update cost and O(log n) bits per label. L-Tree has good
performance on updates without compromising the performance of query process-
ing. We present the update algorithm for L-Tree and analyze its complexity.

1 Introduction

With the advent of XML as a data representation format, we see an increasing need
for robust, high performance XML database management systems which support ef-
ficient queries and updates processing. There has been great interest in storing XML
data in RDBMS [1,3, 11, 14, 15], in order to leverage the power of RDBMS for data
management. However, since XML data is fundamentally different from relational data
encountered in typical business applications, there are several challenges for storing
XML data into relational database.

First, XML is the successor of earlier document markup languages such as SGML
and HTML, primarily a document format. The implicit order among data elements, the
so called document order, is important. An XML database needs a mechanism to record
the relative position of data elements. Recently [15] presented how to store XML data
in RDBMS preserving the document order. However, how to maintain the order upon
updates is not clear.

Second, an XML database must be able to efficiently retrieve XML fragments by
some XML query language, like XPath or XQuery. The edge table approach [11] treated
an XML document as a tree, and generated a tuple for every XML node with its parent
node identifier in the relation. To process queries with structural navigation, one self-
join is needed to obtain each parent-child relationship. [1, 14] proposed to inline the
information of leaf nodes into the tuple for their parents, such that the joins between a
node and its leaf children are eliminated. However, to answer descendant-axis “//” or
ancestor-axis in XML query, many self-joins are needed.

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 209-218, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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One popular method for maintaining the document order, which assigns ordered
labels to data items, turns out be very helpful to answer ancestor-descendant queries.
Specifically, an XML document, treated as an ordered tree, is traversed in depth-first order
and ordered labels are assigned to element nodes. Each node z receives two numbers,
the first one, B,,, when it is first visited, and the second one F,, when it is exited. For
example, Figure 1 shows an XML tree where every node is labeled by two numbers.
Using this scheme, a navigation query can be converted to an interval containment test
by using the following observation: for any two nodes x and y, x is an ancestor of y if and
only if the interval (B,, E) includes the interval (B,, E,), or equivalently B, < B,
and F, < E.. Now, to answer a query “book//title” over the example, one only needs
to find the nodes with tag “book” and the nodes with tag “title”, then test their labels
to check the ancestor-descendant relationship. When XML data is stored in RDBMS,
the ancestor-descendant queries can be processed by exactly one self-join with label
comparisons as predicates, which is as efficient as child-axis. The effectiveness and
efficiency of XQuery processing with the labeling scheme in comparison with other
XQuery implementations is discussed in [7].

book(0,7)

chapter(1,4) title(5,6)

title(2,3)

Fig. 1. An example of an XML labeling scheme

While very advantageous for queries and preserving the document order, most of
the proposed labeling schemes [2, 12, 13, 17] incur large relabeling costs. Consider the
labeling scheme in Figure 1 which assigns labels from the integer domain, in sequential
order. This leads to relabeling of half the nodes on average, even for a single node
insertion. Alternatively, one can leave gaps in between successive labels to reduce the
number of relabelings upon updates. As proved in [5], an order-preserving labeling
scheme without any relabelings upon updates requires O(n) bits per label, which leads
to large space requirements and costly label comparisons during query processing. It is
not clear how to assign the gaps between labels such that we can find a good trade-off
between the number of bits used to encode the labels and the number of node relabelings
each update will cause. The paper addresses this problem.

The contributions and the structure of this paper are:

1. We introduce a dynamic structure called L-Tree to maintain an order-preserving
labeling scheme for XML data in the presence of updates in Section 2.

2. We analyze the amortized update cost of an L-Tree and the label size. We derive
exact functions for the update complexity and the label size, and discuss how the
optimal results can be achieved by choosing different tree parameters in various
application settings. This is presented in Section 3.
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3. We discuss how an L-Tree can accommodate XML subtree updates to achieve better
performance compared to single node updates as well as a variant of the main labeling
scheme in Section 4.

Related work is discussed in Section 5 and Section 6 concludes the paper.

2 L-Tree and XML Labeling Scheme

When designing an XML labeling scheme, we need to answer the following two ques-
tions: 1) how to assign labels to elements in an XML document D to reflect the document
order? and 2) when a new node is inserted, what label should be assigned to it, and which
existing labels need to change to preserve the order?

For the purpose of the discussion, it is helpful to view the XML document in its
textual representation as a linear ordered list of begin tags, end tags, and text sections,
Lp = (a1,a2,...,ay). Our problem is similar to the maintenance of an ordered list.
A label from an integer interval [0, M) is assigned to each tag to reflect its order in the
list. Intuitively, we would like to distribute these n labels over the whole interval evenly.
However, random updates will cause some areas in the interval to become much more
dense than others. If a new tag is inserted at a position where the difference between the
labels of its neighbors is 1, we have to redistribute some labels to make room for the
newly inserted tag.

The basic idea of our algorithm is that we divide the whole interval [0, M) into many
intervals of equal size, each of which are further divided to smaller intervals, and so on.
Then we set a limit on the number of labels in each interval such that we can control
the density of each interval. In this way relabelings upon an update are localized. The
nested relationship of intervals and subintervals suggests a tree structure. So we build a
tree and associate each interval to an internal node in the tree to maintain the labels for
XML data. This tree is called a L-Tree (short from label tree).

2.1 Labeling Scheme of the L-Tree

An L-Tree is an ordered balanced tree with n leaves. We attach the tags in the XML
document to these n leaves in order, starting from the leftmost leaf. The shape of the
L-Tree is determined by two parameters f and s, which control the number of leaf
descendants of internal nodes. Specifically, the maximal fanout of any internal node in
an L-Tree is f — 1, and the minimal fanout is f/s. We will discuss how to choose the
values of these parameters in Section 3.

For any node « in the L-Tree, we assign a number N (z), recursively in a top-down
fashion as follows:

1. N(root) =0
2. Letxbethe i (0 <i< f—1)childof y, N(z) = N(y) +i- (f — 1)@

Here the height h(z) of any node z is defined as the number of edges on the longest
path from x to any leaf node in the subtree rooted in = (in particular, leaf nodes have
height 0). Let us also denote by h the height of the L-Tree (h = h(root)). The number
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N (x) is the smallest integer in the interval corresponding to x, and the difference between
the numbers of two siblings are the space reserved for future insertions.

Finally, the labels of the XML tags are the labels assigned to their corresponding
leaves in the L-Tree. It is easy to see that the above labeling scheme preserves the order
of the XML tags.

Proposition 1. Let x be a leaf in an L-Tree corresponds to an XML tag a; and y corre-
sponds to a aj, a; appears before a; in the XML document if and only if N (z) < N (y).

The label of an XML element node is composed by a pair: the numbers of two leaves
in the L-Tree which correspond to that XML node’s begin tag and end tag, respectively.
The order-preserving property of this labeling scheme allows us to convert the XML
navigation queries into interval containment tests as illustrated in Section 1.

2.2 Bulk Loading

Initially, we build an L-Tree for some existing XML document in a bulk loading mode.
To maximize the capability to accommodate further insertions, we build a complete f/s-
ary tree initially (the height of this tree is the smallest number h for which ( f/s)" > n).
Figure 2(a) shows an XML tree and its corresponding L-Tree (f = 4, s = 2).

2.3 Incremental Maintenance

Now let us examine how to maintain the balance of an L-Tree in the presence of insertions
and assign labels to the inserted XML tags (see Algorithm 1).

For example, we would like to insert an XML node with tag “D” as the preceding
sibling of the node tagged by “C” in the XML tree in Figure 2(a). We need to insert
two leaves into L-Tree, corresponding to the begin tag and end tag of the XML node,
respectively. Next we illustrate how to insert two leaves into L-Tree one after another.

For every internal node ¢ in the L-Tree, denote by ¢(t) the number of children of ¢
and by [(t) the number of leaves in the subtree rooted at ¢. In order to keep the labels

A(0,13)s

B(19 D(10.12)
D
C(3.4) [}
0 1 3 4 9 10 12 13
0 }13 3 7(: 9 10 12 13 A BD C /C /B D /D /A
A
¢ /B DDA XML tree Label tree (f=4,5=2)
XML tree Label tree (f=4,5s=2) (hefore insert D)
(a) Bulk loading (b) Before insertion

D(10.12)

0 13 45 9 10 12 13 0 13 46 79 10 12 13
A BDMDC/I /B D /D /A A BD /DC /IC/B D /D /A
XML tree Label tree (f=4,5=2) XML tree Label tree (f=4,5=2)
(c) After the insertion of “D” (d) After the insertion of “/D”

Fig.2. An example of L-Tree
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Algorithm 1 Label Tree Incremental Maintenance Algorithm

. function insert — after(z,y)
z = parent(y)
. insert « as the right sibling of y
. while z 2 NULL do

I(z)++

it 1(z) = s - (f/s)"®) then

t=2z2

z = parent(z)

if t = NULL then
let « be the k" child of its parent
call label(parent(x), N (parent(z)), k)

. else
3:  lett be the k*" child of its parent
14:  split ¢ into s complete f / s-ary trees with the same sequence of leaves
15: if t = root then
16:  create a new root with the s top-level nodes as children;
17:  call label(root, 0, 0)
18: else
19:  replace subtree rooted at ¢ with the s subtrees
20:  calllabel(parent(t), N (parent(t), k)
21: return
22: function label (x, num, k)
23: N(z) = num
24: if x is not a leaf then
25: fori = ktoc(z)do

—
SoSoeN aswes

— o p—

26: y = i-th child of
27: call Label(y, num + i - (f — 1)"Wi) 0)
28: return

distributed in a balanced manner, we impose a limit [0, (t) = s - (f/s)"™® on the
maximum number of leaves that each internal node ¢ may have in its subtree.

When we insert a leaf « in the L-Tree, I(z) increases by one for every ancestor z of
x. We look for the highest ancestor ¢ satisfying {(t) = Lyqz(t).

If no such ¢ exists, we relabel = and its right siblings. In our insertion example,
assuming that we maintain the links between an XML node to its corresponding leaves
in the L-Tree, we can get the label of the XML node tagged by “C”: (3,4). First we insert
aleaf to the L-Tree, corresponding to the begin tag “D”, before the leaf with number “3”.
Figure 2(b) shows the intended insertions as dotted lines. The L-Tree after the insertion
is shown in Figure 2(c).

Otherwise, if such a node ¢ does exist, we need to rebalance the L-Tree. We split ¢
into s nodes and replace ¢ with s complete f/s-ary subtrees of the same leaf sequence.
This causes the relabeling of the subtrees of these s nodes as well as their right siblings.

As an example, now we insert another L-Tree leaf, which corresponds to the end tag
“/D”, right after the leaf which corresponds to “D”. The intended insertion is represented
by dotted lines in Figure 2(c). This insertion results in a split of the node numbered “3”
of height 1 as shown in Figure 2(d).

The key idea behind the L-Tree splitting and subsequent relabeling upon an insertion
is the following: if the insertion causes the number of leaves of some subtree to increase
to a large number, this means that the labels of these leaves have become very dense.
To remedy the situation we split the subtree and relabel it to provide more slack for
this portion, in order to better accommodate further insertions in this portion. Since
the number of leaves of any subtree is controlled and the density of the labels is also
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controlled, the number of nodes involved in relabelings amortized over several insertions
will also be controlled.

In this paper we focus on the XML insertions since for deletions we can just mark
as deleted the corresponding leaves in the L-Tree without any relabeling.

2.4 Structure Properties

In this section we examine the properties of an L-Tree and compare it with a BT -tree.

Proposition 2. For any internal node x, we have (1) (f/s)"®) <1(z) < s-(f/s)"®);
(2) f/s < c(x) < f; and (3) All leaves are at the same level of the tree.

Proposition 3. Cascade splitting in an L-Tree is not possible, that is, one node splitting
will not cause another node split.

An L-Tree is similar to a BT -tree in that it guarantees certain occupancy of the tree
such that the tree is balanced dynamically and the height is bounded by O(log n), where
n is the number of nodes in the tree. The differences are:

1. The goals of a BT -tree and an L-Tree are different. The purpose of a BT -tree is
to enable fast lookups given XML labels. Though BT -tree can adjust its structure
dynamically if the labels change their values, it is not able to determine how the
labels should be changed. An L-Tree is built to maintain the labels for XML nodes
in the presence of updates. It helps us to determine what labels to be assigned to
newly-inserted XML nodes and how the labels of existing nodes should be changed.

2. The splitting criterion of an L-Tree is based on the number of leaves of a node, rather
than the number of children, therefore it will not cascade split as a B+ -tree.

3. For each internal node x in L-Tree, f/s < c¢(z) < f. For BT -trees, s = 2.

3 Complexity Analysis

3.1 Query and Maintenance Costs

In this section we compute an upper bound on the amortized cost of queries/updates and
the number of bits used per label as functions of an L-Tree parameters f and s. The query
and maintenance cost of an L-Tree is measured as the number of disk accesses. Since
the XML nodes are recommended to be clustered by their tags rather than labels [17],
and we don’t make any assumptions about nodes being cached, the cost is measured in
terms of the number of nodes accessed for searching or relabeling.

For queries, an L-Tree does not incur any additional cost. In fact, if we store the label
along with the XML node itself, we can retrieve the label of a given node for free.

Now we analyze the amortized cost of maintaining an L-Tree upon an insertion of leaf
x using the accounting method. The cost consists of three parts: First, cost / to update I(2)
for every ancestor z of x. Second, if there are no nodes satisfying the splitting criterion,
we pay at most f to relabel the right siblings of . Otherwise, we split the highest one
t into s nodes and relabel these s subtrees as well as ¢’s right siblings. The number of
nodes relabeled is bounded by the number of descendants of ¢’s parent:2s - (f/s)"().
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We charge the cost of relabeling to the (s — 1) - (f/s)"*) insertions, which make (t)
grow from (f/s)"® to s - (f/s)"™®). So an insertion is charged 2f/(s — 1) for each
relabeling, and charged 2f - h/(s — 1) for all the relabelings.

Let n be the number of tags in the current XML tree, and M be the maximal num-
ber we use to label all the nodes in the corresponding L-Tree. Since each XML tag
corresponds to a leaf in the L-Tree, we have n = [(root) > (f/s)".

The amortized cost for an insertion to an XML tree of size n is

(1+2f/(s = 1))
log(f/s)

Since M < (f — 1)", the maximum number of bits to encode a label is:

—1
bits(f,s,n) =log M = M -logn

log(f/s)

Since f and s are some constant parameters, we can maintain the labels of XML
data with O(log n) bits and O(log n) amortized insertion cost.

cost(f,s,m) < logn+ f

3.2 Tuning the L-Tree

As discussed in [10], O(logn) is the tight worst case lower bound for update cost
to maintain an ordered list, if the query cost is 1. Since the cost is measured as the
number of disk accesses even a reduction by a constant factor is helpful for a system
implementation. Hence, we are interested in minimizing the precise insertion cost. We
approximate the current XML tree size as the initial tree size ng. We would like to set
the values of parameter f and s according to different application needs to optimize the
constant factors of the cost and bits.

Minimize the Update Cost
In some applications, our goal is to set the values of parameters f and s, such that the
amortized cost of insertion is minimal. This is an optimization problem:

Object : min(cost)
We can find the solution by solving the following equations:

Ocost Ocost
a7 0 and 55

For a given ng, we can solve the above equations to get the values of f; and s.

0

Minimize the Update Cost for Given Number of Bits
If we are constrained on the number of bits we are allowed to use to encode a label as B,
the math model we build is the following:

Object : min(cost)  Subject to : bits < B

This is a problem of optimization under inequality constraints. First we minimize
function cost unconstrained. If the minimum point ( fo, so) satisfies the inequality con-
straints, it’s the minimum point in the interior of the region under consideration.
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We also investigate the function on the boundary of the region. That is, we convert
the optimization problem under inequality constraints to the optimization problem under
equality constraints as follows:

Object : min(cost)  Subject to : bits — B =10
We solve this problem by introducing a Lagrange multiplier x and form:
g(f,s,m, 1) = cost + u - bits

The values of f, s and p which give the conditional minima of cost can be found by
solving the following equations:
@:Oand@ =0and bits — B=0
of 0s
We compare the solutions of the above equations with ( fy, o) to determine the values
of f and s which result in minimal cost given label size B.

Minimize the Overall Cost of Query and Updates

When the number of bits to encode a label is less than the machine word size, the label
comparison for query can done by hardware, otherwise it must be done by software. In
this case, the query cost is proportional to the number of bits used. For this situation, we
want to find optimal f and s to get the minimal overall cost for queries and updates. To
achieve it, we need to know the query/update workload and some characteristics of the
document. Due space limitation, we defer the details to [4].

4 Discussion

4.1 Multiple Node Insertions

Usually, insertions to XML documents are subtrees. Although a subtree insertion can be
implemented as a sequence of leaf insertions, the question is whether we can improve
the update cost by inserting multiple leaves to a L-Tree at the same time.

Without loss of generality, let p be the number of leaves to be inserted to the L-Tree.
To see how the subtree insertion affects the amortized update cost, we notice that the
update cost consists of three parts:

1. The cost h for updating [(z) for all the ancestors z of inserted nodes. This cost now
is charged to p inserted nodes.

2. The cost f for relabeling right siblings if no nodes satisfy the splitting criterion.
Now it is charged to p inserted nodes.

3. The amortized cost 2f /(s — 1) for each insertion to relabel the subtrees rooted at
the splitting node as well as its right siblings. Since it is an amortized cost, it makes
no difference that nodes are inserted one after another, or at one time. However, a
node which is inserted by itself may need to pay this cost for up to h ancestors’
splits. Will this be affected if the insertion size is p?

For simplicity, assume p = (s—1)-(f/s)"°, for some hy > 1. Each subtree insertion
causes the split of an ancestor x whose height h(z) = hg. Also, these inserted nodes
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may later on pay for the splits of other ancestors y with h(y) > hg. The total amortized
cost for all the ancestors’ splits is bounded by 2f - (h—ho+1)/(s—1). So the amortized
cost of each inserted node is bounded by:
P
cost(f,s,n,p) < logn S 2 logn — loa(;=y)
p-log(f) » s-1 log(£)
To generalize, if the bulk insertion size p is not exactly (s — 1) - (f/s)"0, we will
have similiar result above. Due space limitation, we defer the details to [4].
As we can see, the larger the size of inserting subtree is, the lower the amortized
cost each inserted node need to pay for. However, the decrease of the cost is roughly
logarithmic in the increase of insertion size.

+1)

4.2 Virtual L-Tree

As an alternative to storing the L-Tree on disk, we can store only the leaf labels (with
the XML nodes) because all the structural information of the L-Tree is implicit in the
labels themselves. Indeed, if we examine closely the way labels are computed, we see
that any leaf label is of the form:
N(z) =io+ir- (f =)'+ Fipy - (f = 1"

where i is z’s relative position in its siblings list, ¢; is x’s parent’s position among its
siblings, and so on. In other words, the base (f — 1) digits of N (z) provide an encoding
of all the ancestors of x. Based on this observation, we can run the L-Tree incremental
maintenance algorithm without the L-Tree. For example, in order to check if an internal
node y satisfies the splitting criterion, it suffices to count how many leaf labels are in the
range [N (y), N(y) + (f — 1)"(y)). If the leaf labels are maintained in a B-tree whose
internal nodes also maintain counts, such range queries can be executed efficiently (in
logarithmic time). Furthermore, once a splitting (virtual) node has been identified, the
leaf labels corresponding to the s complete f/s-ary (virtual) trees can be computed
easily and updated in place, on the labels identified by the range query. There is clearly
a tradeoff between the extra computation required by the range queries and the storage
space necessary for materializing the L-Tree.

5 Related Work

The problem of order-preserving labeling of an ordered list in the presence of random
updates has been studied previously [8,9, 16]. Our work has been inspired by these
works, and extends to parameterize the problem, and propose a solution that can adjust
the parameters according to different application requirements. Furthermore, we support
batch insertions in L-Tree to improve the performance. [6] proposed a multi-level
labeling scheme, which trades query cost to get better update cost.

Recently Cohen et al. [5] addressed the problem of designing persistent labels upon
updates, by studying the minimum number of bits required to encode such a label, without
considering the order of siblings. We approach the problem in a different perspective:
we minimize the number relabelings upon updates given a label size of ©(logn).

Recently, several researchers have investigated various approaches for using label-
ing schemes to facilitate XML query processing [7, 12, 13, 17]. None of these schemes
consider label maintenance in presence of updates.
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6 Conclusions

We have presented a labeling scheme for maintaining the order of data items of an XML
document. An L-Tree is introduced to assign and update labels of data items. An L-
Tree can automatically adapt to uneven insertion rates in different areas of the XML
document: in the areas with heavy insertion activity, the L-Tree adjusts itself by creating
more slack between labels to better accommodate future insertions. We analyzed the
amortized cost of incremental updates and derived a cost formula that enabled us to tune
the tree parameters to achieve optimal performance in various application settings.
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Abstract. XML (Extensible Mark-up Language) has been recently understood
as a new approach to data modelling. An implementation of a system enabling
us to store and query XML documents efficiently requires the development of
new techniques which make it possible to index an XML document in a way that
provides an efficient evaluation of a user query. Most XML query languages are
based on the language XPath and use a form of path expressions for composing
more general queries. XPath defines a family of 13 axes, i.e. relationship types
in which an actual element can be associated to other elements in the XML tree.
Previously published multi-dimensional approaches to indexing XML data use
paged and balanced multi-dimensional data structures like UB-trees and R*-trees.
In this paper we revise the approaches and introduce a novel approach to the
implementation of an XPath subset.

Keywords: indexing XML data, XPath axes, multi-dimensional data structures,
UB-tree, R*-tree, BUB-forest, Signature R*-tree.

1 Introduction

XML [18] has been recently understood as a new approach to data modelling. A collection
of well-formed XML documents is an XML database and the associated DTD or XML
Schema is its database schema. An implementation of a system enabling us to store
and query XML documents efficiently (so called native XML databases) requires the
development of new techniques.

An XML document is usually modelled as a graph the nodes of which correspond
to XML elements and attributes. The graph is mostly a tree (we suppose that none
of the attributes is of IDREF/IDREFS type). To obtain specified data from an XML
database, a number of special query languages have been developed, e.g. XPath [17]
and XQuery [16]. A common feature of these languages is the possibility to formulate
paths in the XML graph. In fact, most XML query languages are based on the XPath
language that uses a form of path expressions for composing more general queries. The

* Work is partially supported by Grant of GACR No. 201/03/0912.

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 219-229, 2004.
(© Springer-Verlag Berlin Heidelberg 2004



220 M. Krétky, J. Pokorny, and V. Snésel

XPath defines a family of 13 axes, i.e. relationship types in which an actual element
(context node) can be associated with other elements in the XML tree. The family of
axes is designed to allow a set of graph traversal operations which are seen to be atomic
in XML document trees.

In the past, there were many considerations about the straightforward use of existing
relational or object-relational DBMSs for storing and querying XML data. Since a tree
is accessed during the evaluation of a query, conventional approaches through the con-
ventional database languages SQL or OQL fail or they are not enough efficient. Recently
there have been several approaches to indexing XML data. Some of them are based on
a traditional relational technology (e.g. XISS [12]), other use special data structures for
the representation of XML data as a trie (e.g. Index Fabric [4] and DataGuide [14]) or
multi-dimensional data structures (e.g. XPath Accelerator [6]). The latter approach uses
R-trees but also B-trees as database indices in the environment of a relational DBMS.
As expected, R-trees outperform B-trees in that proposal. The work [4] presents an in-
dex over the prefix-encoding of the paths in an XML document tree. A more complete
summary of various approaches to indexing XML data is e.g. [3].

Previously published multi-dimensional approaches (e.g. [8,9]) to indexing XML
data use paged and balanced multi-dimensional data structures like UB-trees [1], R-
trees [7], R*-trees [2], and BUB-trees [5]. In this paper we revise these approaches and
combine them in such a way that an implementation of an XPath subset is possible. Our
proposal is more general and enables an efficient accomplishment of querying text con-
tent of an element or attribute value as well as queries based on regular path expressions
and axes of the XPath specification. We compared BUB-trees with R*-trees and their
respective signature variants. The results confirm that our signature extension of multidi-
mensional data structures is significantly better than the R*-tree. As these structures are
paged and balanced, they are appropriate for indexing a huge amount of large XML doc-
uments and can serve as an alternative to the implementation of a native XML database.

In Section 2 we describe and revise a multi-dimensional approach to indexing XML
data. This approach enables an efficient implementation of XPath axes (Subsection 2.3).
We mainly focus on a class of queries employing exact matching for an element content or
an attribute value. Section 3 describes multi-dimensional data structures BUB-forest [10]
and Signature R*-tree [11], which are employed for indexing XML data. Section 4 pro-
vides some information about the complexity of query evaluation with multi-dimensional
indexing. Section 5 reports on experimental results for selected XPath queries. In con-
clusion we summarize the results and outline future research directions.

2 Multi-dimensional Approach to Indexing XML Data

In [8, 9] a multi-dimensional approach to indexing XML data was introduced. We re-
vise this approach in a way, which allows an efficient implementation of XML query
languages based on the XPath.

2.1 Model of XML Documents

As far as an XML document modelled by a tree is concerned, we can view it as a set
of paths from the root node to all leaf nodes. Suppose the unique number idy (u;) of a
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<!DOCTYPE books [ <?xml version="1.0" 2>
<!ELEMENT books (book) > <books><book id="003-04312">
<!ELEMENT book(title,author)> <title>The Two Towers</title>
<!ATTLIST book id CDATA #REQUIRED> <author>J.R.R. Tolkien</author></book>
<!ELEMENT title (#PCDATA)> <book 1d="001-00863">
<!ELEMENT author (#PCDATA) > <title>The Return of the King</title>
1> <author>J.R.R. Tolkien</author></book>

<book id="045-00012">
<title>Catch 22</title>
<author>Joseph Heller</author></book>
</books>

Fig. 1. (a) DTD of documents which contain information about books and authors. (b) Well-formed
XML document valid w.r.t. DTD

node u; (element or attribute) which is obtained by counter increments according to the
document order [6].

Let P be a set of all paths in a XML tree. A path p € P in an XML tree is a sequence
idn (uo),idn(u1), ..., idN(Urp(p)—1), 5, Where Tp(p) is the length of p, s is PCDATA
or CDATA string, idy (u;) € D = {0,1,...,27P —1}, 7p is the chosen length of binary
representation of numbers from the domain D. Node v is always the root node of the
XML tree. Since each attribute is modelled as a super-leaf node with CDATA value,
nodes ug, U1, - . ., Urp(p)—2 always represent elements. A labelled path Ip for a path p is
a sequence s, 51, . - - , Sy, (1p) Of names of elements or attributes, where 7, p(Ip) is the
length of Ip, and s; is the name of the element or attribute belonging to the node u;. Let
us denote the set of all labelled paths by £P. A single labelled path belongs to a path,
one or more paths belong to a single labelled path. If the element or attribute is empty,
then 7p(p) = 7.p(Ip), else 7p(p) = Trp(lp) + 1.

Signatures for coding of all strings, path and path content were used in the ap-
proach [8, 9]. Here, we use path, labelled path and term index.

Definition 1 (Point of n-dimensional Space Representing a Labelled Path).

Let 21,p = D™ be an n-dimensional space of labelled paths, |D| = 2™, and lp € LP
be a labelled path s, 81, . . ., 1, ,(p), Where n = max(tp(Ip),lp € LP) + 1. Point
tip of n-dimensional space (2,p representing labelled path is defined as (idr(so),
idr (1), .- id7(S7, p(1p)) ), Whereidr(s;) is a unique number of term s;, idr (s;) € D.
A unique number idy,p(lp) is assigned to lp. m

Definition 2 (Point of n-dimensional Space Representing a Path).

Let 2p = D™ be an n-dimensional space of paths, |D| = 2™, p € P be a path
idn (uo),idn(u1), ..., idN(Ur, o (ip)), 5 and lp a relevant labelled path with the unique
numberidy, p(Ip), where n = max(tp(p),p € P)+2. Point t,, of n-dimensional space
(2p representing path is defined as (idpp(Ip),idn(uo), . . ., idN (Ur, . (1p)), id7(5)). M

Example 1 (Decomposition of the XML Tree to Paths and Labelled Paths).

In Figure 2 we see an XML tree modelling the XML document in Figure 1(b). This
XML document contains paths:
-0,1,2,'003-04312";0,5,6,'001-00863";and 0,9, 10, '045-00012"
belong to the labelled path books, book, id,
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-0,1,3, "The Two Towers';
0,5,7, 'The Return of

the King’; and 0,9,
11, 'Catch 22’ belong to
the labelled path books,

book, title, 003- TheTwo JRR.  001- TheRetun JRR. 045 Catch22 Joseph

. 04312 Towers  Tolkien 00863 of the King Tolkien 00012 Heller
-0,1,4,’J.R.R. Tolkien’; o ®) @ ® © @ w0 a4y (2
0,5,8, "J.R.R. Tolkien’;
and 0,9,12, 'Joseph Fig. 2. Example of an XML tree with the unique numbers

Heller’ belong to the labelled idn (u;) of elements and attributes u; and the unique
numbers idr(s;) of names of elements and attributes

ath books, book, author. . . .
p and their values s; (values in parenthesis)

We define three indexes:

1. Term Index. This index contains a unique number idy(s;) for each term s; (names
and text values of elements and attributes). Unique numbers can be generated by counter
increments according to the document order. We want to get a unique number for a
term and a term for a unique number as well. This index can be implemented by the
B-tree.

In Figure 2 we see the XML tree with unique numbers of terms in parenthesis.

2. Labelled Path Index. Points representing labelled paths together with labelled paths’
unique numbers (also generated by incrementing a counter) are stored in the labelled
path index.

For three labelled paths in Figure 2 we create three points (0,1,2); (0,1,4);
and (0,1,6) using idp of element’s and attribute’s names. These points are in-
serted into a multi-dimensional data structure with idyp equal to 0, 1, and 2, respec-
tively.

3. Path Index. Points representing paths are stored in the path index.

In Figure 2 we see unique numbers of elements. Let us take the path to the value
The Two Towers. The relevant labelled path book, book, title has gotidrp 1
(see above). We get the point (1,0,1,3,5) after inserting a unique number of the
labelled path idy, p, unique numbers of elements id and the term The Two Towers.
This point is stored in a multi-dimensional data structure.

An XML document is transformed to points of vector spaces and XML queries are
implemented using queries of multi-dimensional data structure. The multi-dimensional
data structures provide a nature processing of point or range queries [1]. The point
query probes if the vector is or is not present in the data structure. The range query
searches all points in a query box 7} : T5 defined by two points 77, T5. Consequently,
we can create the queries in the same way as the XML tree is decomposed to vectors of
multi-dimensional spaces.

2.2 Queries for Values of Elements and Attributes

Now, we describe an implementation of a query for values of elements and attributes
as well as a query defined by a simple path based on an ancestor-descendent relation.
Query processing is performed in three phases which are connected:
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1. Find unique numbers id of the query’s terms in the term index.

2. Find labelled paths’ id; p of the query in the labelled path index. We search the
unique numbers in a multi-dimensional data structure using point or range queries.

3. Find points in the path index. We find points representing paths in this index using
range queries. Now, the result is formatted using unique numbers id (u;) of nodes u;
from these points.

Example 2 (Evaluation Plan of the XPath Query /books /book [author="Joseph
Heller"]).

1. Find id7 of terms books, book, author, and Joseph Heller in the term index.
2. Find a unique number idy, p of the labelled path books, book, author in the la-
belled path index, which was transformed to the point representing the labelled path. We
retrieve ¢dy, p = 2 of labelled path by the point query (0,1, 6).
3. Create two points defining a query box, which searches points relevant to this query.
The query box is defined by the points (2,0, 0,0,12) and (2, maxp, maxp, mazxrp,
12), where mazp is the maximal value of the domain D of space {2p. idyp of the
labelled path retrieved during the last phase is located in the first points’ coordinates. ¢d
of term Joseph Heller is located in the last points’ coordinates. Since, we search
points with arbitrary values of 2"%—4*" coordinates, the first point contains the minimal
values of a multi-dimensional space’s domain and the second point contains the maximal
values of the domain.

We need to distinguish between labelled paths and paths belonging to an element or
attribute. We deal with this using flags added to points. Similarly, we can deal with the
indexing of more XML documents, which can be valid w.r.t. different schemas.

2.3 Implementation of XPath Axes

The basic XPath query expression in non-reduced notation is axis: : tag[filter],
which provides by evaluation on the context node u a set of nodes u’, where the relation
given by the axis contains (u, u’), tag for v’ is tag, the condition assigned by filter
assumes the value TRUE on u/'.

Let us denote the context node by u, the level of a node u; in the XML tree by I(u;).
Obviously, I(ug) = 0. Without loss of the generality we denote [ as [(u). The query
result in the path index contains points representing paths from the root to leafs. These
points contain the unique numbers of all ancestors uy, . .., u;—1 of the current node wu,

ie. idN(uo), . ,idN(ul,l).

Implementation of Axes:

— ancestor — nodes lie on the path from u to the root node. So far as we want to
retrieve the ancestors of a node from the point representing path, we retrieve relevant
idy from this point. Unique numbers idy (ug),. . .,idn(u;—1) are obtained for the
axis ancestor, idy(uop), - . ., idn(u—1), idy(u) for ancestor-or-self (u and
nodes lie on the path from u to the root node), and id (u;—1) for parent (first node
on the path from u to the root node).

— descendant - all nodes, which the node u is the parent for. Now, we use unique
numbers of u node’s ancestors: idy (ug), - . ., idn (u;—1), as well as idy (u) and I(u).
During the range query’s points creation we use the knowledge that all descendants have
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got the same ancestors as the node u and their parent is the node . We search all descen-
dants of the node u by the range query in the path index: (0, idy (ug), ..., idn(ui—1),
idy(u),0,...,0) : (maxp,idy(ug), ..., idn(u—1),idy(uw), maxp,...,maxp).

— child - direct descendants of the node u. A naive approach is to perform axis
descendant and idy of children to obtain in (I(u)+3)"" coordinates of the result’s
points. Let us imagine inefficient searching of the root node’s children for example. A
more efficient implementation is based upon finding one point, which contains id of a
child, redefinition of the range query and processing of this query.

Algorithm:
1. Perform range query (0,idn(ug),...,idn(ui—1),idn(u),0,...,0) : (maxp,
idn(ug), - .. idy(ui—1),idy(u), maxp,...,maxp). Processing of this query will

be finished after the acquisition of one or no relevant point. The identified point contains
idy of a child in (I(u)+3)*" coordinate.
2. Since we do not know which child was retrieved (from document order point of view)
we must define two queries for the acquisition of both preceding and following children.
Denote the acquired child as . (idy(u.) = idx(u;41)), the child with the highest
identified id, but smaller than ¢dy (u.) as wp., the child with the lowest identified idy,
but greater than idy (u.) as us.. Definition of two range queries (idy (up.) = —1 and
idn(uge) = maxp + 1 after finding the first child):

a) (O,idN(UQ), e ,idN(ul_l),idN(u),idN(upc) -+ 1, O, e ,O) . (ma:z:D, idN(uo),

coyidy (ug—q),idy (u),idy (u.) — 1,mazp,...,mazxp)
b) (OJdN(uo), ey Z'dN(’U,lfl), idN(u), idN(uc) +1,0,... ,O) : (maxDJdN(uo),
coidy (u—1), tdy (u),idn (uype) — 1, maxp, ..., maxp)

Processing the simple queries will be finished after the acquisition of one or no
relevant point. In the case that the first/second query retrieves no point, the first/last
child was identified in the former query.

3. We continue with step 2 until these range queries retrieve some points.

- preceding-sibling - siblings of node u preceding in the document order. We
search all points representing paths pertaining to elements with the same ancestors as
node v and (I(u)+2)*" coordinate < id (u). A naive approach to finding the preceding-
siblings of node w is to perform the range query: (0, idy (ug), . . ., idn(u;—1),0,0, ...,
0) : (mazxp,idy(ug),...,idn(ui—1),i9dy(u) — 1,mazp, ..., mazrp). An efficient
implementation is similar to the implementation of the child axis.

— following-sibling — siblings of node u following in the document order. We
search all points representing paths pertaining to elements with the same ancestors as
node u and (I(u)+2)"" coordinate > id (u). A naive approach to finding the following-
siblings of node  is to perform the range query: (0, idn (ug), - - . , idn (uj—1), tdn (u) +
1,0,...,0) : (maxp,idy(ug),...,idy(w_1),mazp,..., maxp). An efficient im-
plementation is similar to the implementation of the child axis.

— preceding — nodes preceding to node u (except ancestors) in the document order.
We search the nodes preceding the node u by the range query: (0,0,...,0) : (mazp,
idn(ug) — 1,... idn(ui—1) — 1,idy (u) — 1,mazp, ..., maxp).
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— following — nodes following to node u (except descendants) in the document
order. We search the nodes following the node w by the range query: (0, idx (uo) +
1,...idy(u—1) + 1,idn(uw) + 1,0,...,0) : (mazp,...,mazp).

In the above described range queries no restrictions were given to the unique numbers
of labelled paths. In practice, the first coordinates of range query’s points contain a
particular idy, p instead of an interval (0; mazp).

3 Index Data Structures

Due to the fact that an XML document is represented as a set of points in the multi-
dimensional approach, we use multi-dimensional data structures like UB-tree, BUB-tree,
R-tree, and R*-tree for their indexing. (B)UB-tree data structure uses Z-addresses (Z-
ordering) [1] for mapping a multi-dimensional space into a single-dimensional one.
Intervals on Z-curve (which is defined by this ordering) are called Z-regions. (B)UB-tree
stores points of each Z-region on one disk page (tree’s leaf) and a hierarchy of Z-regions
forms an index (inner nodes of tree). In the case of indexing point data, an R-tree and
its variants cluster points into minimal bounding boxes (MBBs). Leafs contain indexed
points, super-leaf nodes include definition of MBBs and remaining inner nodes contain
a hierarchy of MBBs. (B)UB-tree and R-tree support point and range queries [1], which
are used in the multi-dimensional approach to indexing XML data. The range query is
processed by iterating through the tree and filtering of irrelevant tree’s parts (i.e., regions)
which do not intersect a query box.

One more important problem of the multi-dimensional approach is the unclear di-
mension of spaces of paths and labelled paths. Documents with the maximal length of
path being 10 exist, but documents with the maximal path length 36 may appear as well
(see [13]). A naive approach is to align the dimension of space to the maximal length of
path. For example, points of dimension 5 will be aligned to dimension 36 using a blank
value (often zero number) in 6/"—36"" coordinates. This technique increases the size of
the index and the overhead of data structure as well. In [10] BUB-forest data structure
was published. This data structure deals with the problem of indexing points of different
dimensions. BUB-forest contains several BUB-trees, each of them indexes a space of
different dimension. We can index points representing paths and labelled paths regard-
less of worsening efficiency by indexing XML documents with very different length of
paths. We can use the same approach for other data structures, e.g. R-trees.

The range query used in the multi-dimensional approach is called the narrow range
query. Points defining a query box have got coordinates for some dimensions the same,
whereas the size of interval defined by the coordinates of the first and second point
for other dimensions nears to the size of space’s domain. Notice, regions intersecting a
query box during processing of a range query are called inter-sect regions and regions
containing at least one point of the query box are called relevant regions. We denote
their number by N; and Ny, respectively. Many irrelevant regions are searched during
processing of the narrow range query in multi-dimensional data structures. Consequently,
a ratio of relevant and intersect regions, so called relevance ratio cr, becomes much
lower than 1 with an increasing dimension of indexed space. In [11] the Signature R-
tree data structure was depicted. This data structure enables the efficient processing
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of the narrow range query. Items of inner nodes contain a definition of (super)region
and n-dimensional signature of tuples included in the (super)region (see Figure 2).
A superposition of tuples’ coordinates by operation OR creates the signature. Operation
AND is used for better filtering of irrelevant regions during processing of the narrow
range query. Other multi-dimensional data structures, e.g. (B)UB-tree, are possible to
extend in the same way.

n-dimensional signature of

super-region - 3
tuples in the super-region

'n-dlmensmnal |B‘:Bh| Sl |B‘:Bh | Sl
region signature of tuples
(MBB) in the region

index — hierarchy
of MBBs and
n-dimensional

; )
sl |B‘:Bh|S| |B:Bh|S| |B‘:Bh|S| signatures

/ 7 '
5 Y Y e

NP

tuples in the region

%
| BB,

Fig. 3. A structure of the Signature R-Tree

4 Cost Analysis

A point query is often used for searching in the term and the labelled path index. The
complexity of the point query is O(log(m)), where m is the number of the indexed
objects. The efficiency of the multi-dimensional approach mainly depends on the effi-
ciency of range query processing in the path index. Complexity of the general range
query algorithm is O(Ny x log,. m), where c is the node’s capacity. It holds cg < 1 (see
previous section) for the narrow range query, particularly for increasing dimension of
indexed space. In the case of the Signature R-tree (and (B)UB-tree as well) is the com-
plexity O(Ngg % log. m), where Np is the number of searched regions (leaf nodes).
Our experiments show Ny > Ngg > Ng. In other words, the space complexity of
the algorithm is enhanced for the reduction of the time complexity. Some XML queries
are implemented by a sequence of g range queries. The complexity of the sequence is
O, Nig x loge(m)).

Conventional approaches, like XISS [12] and XPath Accelerator [6], index partic-
ular elements (and attributes). Simple query for values of elements as well as a query
defined by a simple path based on an ancestor-descendent relation is processed using a
consecutive filtering of elements which are not in relation ancestor-descendent as long
as the result is retrieved. In Section 2.2 we can see that, in our approach, such a query
is processed using one query in a data structure and the filtering of a large number of
irrelevant elements does not approach.
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5 Experimental Results

In our experimentsl, we used Protein Sequence Database XML document [15]. The
document size is 683 MB. It includes 21,305,818 elements and 1,290,647 attributes.
Approximately 17 mil. paths were obtained from this document. With respect to the fre-
quency of the path lengths, the multi-dimensional forests with two trees indexing spaces
of dimensionn = 7 and n = 9 were created for indexing XML data. We used BUB-tree,
R*-tree, and their signature variants with the length of n-dimensional signature n x 64.
The underlying table summarizes the index characteristics, square brackets indicate an
increase of index volume for signature multi-dimensional trees. The average utilisation
62% was reached.

Dimen-| Number Index size Number of
sion of [MB] inner | leaf
n points |BUB-tree[Sig. BUB-tree[R"-tree| Sig. R*-tree [nodes (BUB-tree)

7 18,268,357| 440.9 471 [+7%] | 478.6 | 512.2 [+7%] (10,917 214,842
9 18,739,522 562.1 |635.2 [+13%]| 603.1 |680.7 [+13%]|17,751| 270,065

First, queries for values of elements and attributes as well as a query defined by a
simple path based on an ancestor-descendent relation similar to ProteinDatabase/
ProteinEntry[reference/refinfo/authors/author =’'Smith, E.L. '] were
tested. For each space, queries with smaller (bellow 10) and larger (103-10%) size of
results were selected. In all cases, the ratio of number of searched leaf nodes and number
of all leaf nodes, disk access cost (DAC), and query processing time were measured.
The results of query processing are presented in Table 1. Evidently, the R*-tree proves
to have better properties than BUB-trees during the narrow range processing. Signature
variants of these data structures provide better efficiency than classical data structures.
In the case of Signature R*-tree only 0.14% of all leaf nodes were searched and the
average time of query processing turns out to be 70 ms.

Table 1. Results of queries for values of elements and attributes as well as a query defined by a
simple path based on an ancestor-descendent relation in the path index

Searched leaf nodes [ %] DAC Time [s]
BUB| Sign. |R*| Sign. ||BUB| Sign. |[R"| Sign. ||[BUB| Sign. |R* | Sign.
tree |BUB-tree| tree |R*-tree|| tree |BUB-tree|tree|R*-tree|| tree |BUB-tree| tree |R*-tree

[Avg [[1.15] 022 [0.29] 0.14 [[7.566] 794 [917] 445 [[29] 0.5 [0.12] 0.07 |

Second, the efficiency of XPath axes implementation was tested. In all cases, DAC
and query processing time for the Signature R*-tree were measured. The results of query
processing are presented in Table 2. Ancestors axes are processed by no disk access.

" The experiments were executed on an Intel Pentium®4 2.4Ghz, 512MB DDR333, under Win-
dows XP.
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Table 2. Results of XPath axes queries in the path index

Number of | Searched DAC for |Time
Axis resultant leaf DAC| simple [s]
elements[points nodes [%] range query
descendant 1,121 | 982 0.20 621 - 0.06
child 9 9 0.05 225 25 0.1
descendant-or-self|| 1,245 |1,015 0.23 648 - 0.05
parent 1 - - - - -
following 2,487 (2,017 045 |1,387 - 0.1
preceding 2,312 | 1,803 0.39 |1,124 - 0.09
following-sibling 5 5 0.04 187 27 0.09
preceding-sibling 7 7 0.03 165 24 0.09
Avg. [1,026.6 | 585 [ 0.20 [6224] 253 [0.08]

Since some axes (child, following-sibling, and preceding-sibling) are
implemented by a sequence of range queries, DAC for one range query are presented in
Table 2 as well. The volume of searched leaf nodes is again very low.

6 Conclusion

In this paper the multi-dimensional approach to indexing XML data and an efficient
implementation of XPath axes were described. The BUB-forest was employed for in-
dexing heterogeneous XML data with the root to leaf paths of widely differing lengths.
Our experiments prove that the approach can serve as an alternative to implementing
native XML databases. In our future work, we would like to further improve the abilities
and the efficiency of the multi-dimensional approach. In particular we will develop an
implementation of another complex XML queries which are defined by XML query
languages such as XPath and XQuery.
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Abstract. Structural joins based on range labeling schemes are considered as
one of the most important topics in studies on XML query processing. When
an XML data set is updated, however, the nodes have to be relabeled in order
to keep their order relationship. Costly bulk node relabeling should be avoided
to allow for continuous processing of queries for dynamic XML trees that are
updated often. In this paper, we propose two dynamic node labeling schemes to
avoid “gap shortfalls”. One is simple local relabeling scheme and the other is
more sophisticated in that it uses approximate histograms that keep the statistics
of the update operations. These two techniques allow node labels to be managed
dynamically and locally. Experiments show that they can avoid bulk relabeling
while still permitting update operations.

1 Introduction

Many query languages that can exploit the structure of XML trees have been developed
using database techniques [2,7]. To avoid costly searches, structural joins [1] were
developed around range labeling schemes [5]. Specifically, nodes in an XML tree are
labeled with pairs of numbers which represent the pre- and postorder of the tree. Queries
that includes regular path expressions [10] are transformed into structural joins using
node labels. By building indexes on names, values, and given labels, such queries can
be evaluated without having to do costly searches of the entire XML data set.

The rapidly increasing popularity of XML as a data exchange format has led to
there being a huge amount of frequently updated XML data on the Internet. However,
to date, the update problems of range labeling schemes have not been studied to a
sufficient degree. The naive range labeling scheme, without “gaps”, requires complete
relabeling after the insertion position even if only one node is inserted. We can improve
on naive labeling by counting nodes sparsely [4]. However, if we consider only static
and persistent labels, as the updates continue, the number of available positions would
eventually become smaller than the number of nodes in the subtree to be inserted and
we would end up relabeling of all nodes in the XML data set. Thus, persistent range
labeling schemes are not suitable for data-oriented XML that changes a lot [8].

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 230-239, 2004.
(© Springer-Verlag Berlin Heidelberg 2004



Dynamic Range Labeling for XML Trees 231

Four kinds of labeling schemes, range labeling, prefix labeling [8], computable iden-
tifier [9], and prime labeling [11], have been developed in the context of XML databases.
Each of the schemes has some drawback and advantage. However, it is not realistic to
label XML nodes with all types of the labels to obtain all of the advantages owing to
storage limitations. Its update capability has not still been developed, but range labeling
scheme is the most well-studied, simplest, and the best from the viewpoint of query
performance [11].

To ensure fast query processing using structural joins while updates occur, we need
to avoid costly bulk node relabeling. This study deals with a dynamic form of range
labeling. That is, we label nodes sparsely to reduce the number of relabelings, and if
the number of nodes in the subtree to be inserted is larger than the number of available
positions, or if an update deviation uses up the available positions, we relabel only the
neighbour nodes around the updated position without relabeling all nodes in the database.
The idea of dynamic range labeling is derived from the observation that the structural
conditions of range labeling schemes are based on only the order relations of the label
numbers, not their values. Furthermore, we can introduce an approximate histogram
to hold information on update operations; it can handle growing XML data, unlike
the simple dynamic technique. Experimental results show that our minimal dynamic
relabeling approach keeps the balance among the nodes labels’ numerical distribution
and can avoid extensive bulk relabeling.

The rest of this paper is organized as follows. Section 2 explains range labeling
schemes. Section 3 considers how to deal with update operations and shows that naive
static labeling schemes cannot cope with continuous update operations. Section 4 de-
scribes the relabeling methods that we developed. Section 5 shows experimental results,
and Section 6 concludes this paper.

2 Range Labeling Schemes
We can define the node label in a range labeling scheme as follows.

Definition 1 (Node Label): Given an XML tree T and a node v(€ T), the label of v
whose preorder is ¢ and postorder is j is (a;, b;) on the condition that a; and b; are
strictly increasing sequences of positive integers to ¢ and j, respectively.

We call a; and b; the extended preorder and extended postorder and
(a1,a2,a3,...,an_1,a,) and (by,ba,bs,...,b,_1,by,) the extended preorder series
and extended postorder series, respectively. By using a stack, we can label all nodes in
an XML file in one pass.

Lemma 1 [Structural Condition]: Let the label of node v be (a;, b;) and the label of
node w be (a, b;). v is an ancestor of w if and only if

a; < ag, and bj > b
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Fig. 1. Range Labels: Pre- and Post-order Schemes

3 Considering XML Tree Update

XML Trees Update: We considered only insertion and deletion of XML subtrees like
A and B in Figure 1. Each subtree contains the root node and all its descendants. There-
fore, its preorder and postorder series are consistent (i.e. well-ordered, depth-first) and
independent of one another. We call this kind of subtree which is the object of insertion
or deletion a unit tree of update operation.

Bulk Load: We bulk load a XML tree by labeling the nodes with sparse numbers like
Figure 2 to try to provide enough gaps for insertions'. The bulk load interval is determined

1845 63@
bl bfd B B

‘45‘18‘ ‘81‘54‘ ‘90‘63‘ ‘96‘74‘ ‘99‘76‘ 0‘9‘18‘27‘36‘45‘54‘63‘72‘ ‘81‘90‘100

‘36‘9

Extended preorder, Extended postorder

Fig. 2. Inserting a Unit Tree

by dividing the maximum label value by the number of nodes. In the example shown in
Figure 2, the maximum value is 100 and the interval is 9.

Insertion: The position inserted into is one interval since the both of order of a unit tree
are continuous. Then a unit tree is labeled with the numbers which divide the inserted
position space equally in order to use available space efficiently as shown in Figure 2.

Deletion: Let 7" be the XML tree and d be the root node of a unit tree to be deleted.
Since the postorder of d is the maximum of all the postorders of nodes in the unit

! Sparse labeling of interval scheme is introduced in [4].
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tree, the range of postorders for the descendants of d is known. Thus, we can delete
these labels of descendants in the extended preorder and extended postorder series
of T

However, we believed that static sparse labeling is not good enough for XML
trees that are frequently updated, because the intervals between nodes are of finite
length. Eventually, there will be a unit tree whose size exceeds the interval at the
insertion position, at which time, the XML tree would have to be completely rela-
beled.

Preliminary Experiments: To check whether “gap shortfall” problems occur, we con-
ducted experiments using a series of numbers to represent the extended preorder (or
postorder) series of an XML tree. We created test synthetic operation sequences com-
posed of insertions and deletions.

Test Operation Sequences and Data Sets: Table 1 shows the parameters of each test
data set. We choose three patterns for distributing the update: uniform and two normal.
The distributions of the insertions and deletions were independent of each other. In
the case of the normal distribution, we experimented with 30% or 70% as the average
update position for the whole extended preorder series. The standard deviation of both
normal distributions was 10%. The ratio of insertion and deletion was 1:1 or 2:1; 2:1 was
obtained by analyzing the actual growing XML data, go.xml [6]. 2:1 is close to the ratio
of Gene Ontology vocabulary data. The number of nodes in each unit tree was randomly
generated, with 2, 10, or 30 as the maximum number. The number of operations was
30000, and 32-bit positive integers were used for the label numbers. The number of
nodes was initially 10000.

Table 1. Parameters of The Test Data

Distribution of updated positions||uniform, normal (30%), normal (70%)
Insertion : deletion 1:1,2:1
Max. num. of nodes in unit tree 2,10, 30

Experimental Results: We counted the frequency of bulk loads while continuing the
update operations. The results are shown in Table 2. The number of bulk loads increases
substantially as the number of nodes in the unit tree increases.

If XML data are rather static, that is update operations are rare and not queried so of-
ten, we can relabel all of the nodes in the database while the traffic to the database
is low. However, XML is recently adopting new roles and is being used not only

Table 2. Ave. Num. of Bulk Loads in 30000 Operations

Num. of nodes in unit tree||Bulk loads (average)
2 1.0
10 14.2
30 68.3
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for data exchange but also as the basic structure for expressing data. Accordingly
bulk loading is serious problem since the system must be suspended for some time.
To avoid this and continue to process XML queries efficiently, we propose two dy-
namic range labeling schemes that keep the balance of label numbers and avoid bulk
loading.

4 Dynamic Range Labeling Schemes

The first dynamic range labeling scheme uses a simple approach that is based on the ob-
servation that narrower intervals should be expanded and larger ones should be shrunk.
The second scheme improves on the naive balanced condition of the first one by using
approximate histograms. It keeps the information on the updated positions and can reflect
the deviation of updates in the distribution of label numbers. We have two number series;
the extended preorder series and extended postorder series. Since the order relations of
the series are independent of each other, we can relabel each series independently. Thus
here, we explain only the extended preorder series of 7. We assume that Width is the
maximum integer available for labels and, for the purposes of illustration, assume that
ag = 0 and Ap41 = Width.

Simple Dynamic Labeling: Let X be the unit tree to be inserted,

of nodes in X. We define the BestInterval as follows,

Width J
T+ |X|+1

X | be the number

BestInterval := {

If X partitions x into equal-length intervals and the interval is larger than BestInterval
times min, the neighbor nodes are not relabeled.

Definition 2 (Balanced for insertion): Let min be a constant less than 1. If an interval
x satisfies min - BestInterval - (| X|+ 1) < z, x is balanced.

Definition 2’s condition checks whether x is large enough for X. If not, we expand
the interval of the inserted position a little so that the interval satisfies this condition.

The insertion algorithm is shown in Table 3. First, it checks whether x is balanced
or not (line 2). If not, x is expanded by traversing T both (or either) ways and the number
of nodes the in unit tree is increased by two (lines 3-12). These steps are repeated until
x becomes balanced. Figure 3 shows simple dynamic relabeling of the tree in Figure
2. If min = %, x = 10 is too small for the insertion of three nodes (a). The interval is
expanded by two from the beginning endpoint and the number of nodes in the unit tree
is increased by two (b). In (c), x = 46 becomes enough for the insertion of 7 nodes. x
is divided by 7 + 1, and the 7 inserted nodes are labeled at that intervals. Next, we show
the definition balanced for deletion.

Definition 3 (Balanced for deletion): Let max be a constant larger than 1. If x satisfies
T < max - BestInterval, x is balanced.
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Table 3. Insertion Algorithm

Algorithm Insert
input: extended preorder series: T = (a1, ..., ay), the number of nodes in a unit tree to be
inserted: | X |, the preorder of inserted position: k

output: extended preorder series with n + | X | nodes

1 z:=aks+1 — ak;

2 if (x is not balanced)

3 if(k=1)

4 T :=(as,..-,0n-1,0n);

5 Insert('T, | X |+ 2,1);

6 else if(k = |T))

7 T := (a1,a2,...,0n-3);

8 Insert(T, | X |+ 2,|T|);

9 else

10 T := (a1,a2,. -, Gk—1,Akt2s - - -, 0n);
11 Insert(T,| X |+ 2,k — 1);

12 endif

13 else

14 Az = {\XTHJ;

15 return T := (a1, az,...,ak, ar + Az, ar +2Ax, ... ;ar + | X | Az, a1, ..., an);
16  endif

In the case of deletion, we first delete nodes from 7, then use the insertion algorithm
(Table 3) so that the interval of the inserted position satisfies the condition in Definition
3. When using the insertion algorithm for deletion, we consider the number of nodes in X
tobe 0 (i.e. | X| = 0). The lopsided intervals generated after deletion can be depolarized
by using the same algorithm because we define the permissible zone of balanced as the
labels not less than BestIntervalx min and not larger than BestIntervalx mazx.

Dynamic Labeling Using Approximate Histograms: If insertions frequently occur at
one place, the intervals around that place should be wider than at other places and vice
versa in the case of deletion. By recording the update positions and the times of updates,
we can expand the intervals where insertions occur frequently and narrow the intervals
where deletions occur frequently.

Approximate Histograms: We create two approximate histograms; one counts the
update operations at approximate positions of the extended preorder series and the other
independently counts the operations on the extended postorder series. Each histogram
is an array of size size and has the parameter delta, which is the limit for counting
update operations. If the XML data set is updated more than delta times, we can renew
the update information by erasing all histogram values and count from the beginning.
Let us consider a histogram H = (hy, ha, -+, hgize). Initially, h; = 0(1 < i < size).
In addition, the variables h.,;,, sum and count are maintained to keep the state of
the histogram. h,,;,, is the minimum value in the histogram, sum is the summation of
h;(1 <i < size), and count is the number of update operations.
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Fig. 3. Example of Simple Dynamic Labeling
Updating Histograms: Let (a1, a2, - ,a,) be extended preorder series. If the in-
sertion occurs between ai(1 < k < n) and axq1, 0 < % - size < size. Let

_ ak . . . . . 2
p = [ - size]. hy is incremented because one insertion happened at a. In the

case of deletion from ay to aj,, the positions are determined in the same way as for
insertion, h,, is decremented and sum is updated. count is the counter of update oper-
ations. While sum and count can be updated without accessing the histogram values
when an update operation occurs, h,,;, cannot be updated without accessing the his-
togram values. Thus we scan the histogram to update h,,;,. In our experiments, we set
stze as 1000, 3000, or etc. , and delta as 5000, etc. , due to the limitations of the computer
used to create the histograms. The data structure is small and easy to implement. We can
record approximate information about the update operations in fixed-length histograms
even if the size of the XML database varies.

Improving The Relabeling Algorithm: The idea of using histograms is to reflect the
distribution of update operations in the extended preorder series and extended postorder
series independently. The following two techniques are used to achieve this. One is
translation. Since the values in a histogram can be negative or 0 due to deletion, we
translate all the values in the histogram into positive values virtual histogram using
hmin ((2) and (b) in Figure 4).

(h/17 h2a e 7hsize) - (hl - hmin + 1a h2 - hmin + 1a e 7hsize - hmzn + 1)

sum is also translated into sum — size X (Rpin — 1). Then, we get the percentage of

position p in the virtual histogram, —2-. Clearly, 0 < SZ‘;” < 1and Z;Zf h, = sum.

sum’
The other technique involves approximate correspondence between histograms and the

2 The number of nodes in the unit tree to be inserted or deleted is not retained in our method.
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Fig. 4. Translation and Approximate Correspondence

extended preorder series. The interval from the beginning number to the end number
to be updated in an extended preorder series corresponds to an updated part in a his-

togramThe corresponding histogram position py of node ay, is px = [W : sz’ze—‘.

Next, we define the corresponding interval in the histogram of x = aps — a1 in the
k2

extended preorder series as Hd(xz) = >, ,; hp,. Then, we get the approximate cor-
x Hd(z .
respondence, — (z) . If the corresponding values are close to each other,
Wi sum

the position in the extended preorder series can be considered to reflect the statistical
information in the corresponding values in a histogram. Thus, we can redefine what it
means for x to be balanced as follows,

Definition 4 (Balanced using histogram for insertion): If © = aygo — ag; satisfies

M.mm<

—~£—  where min is a constant less than 1, x is balanced.
sum Waidth?

Definition 5 (Balanced using histogram for deletion): If x = a2 —ax satisfies 7757 <
Zi(nf) - max, where max is a constant larger than 1, = is balanced.

These conditions check whether the percentage of the x in the extended preorder
series reflects the percentage of the corresponding intervals in histogram. We use the
same insertion algorithm in Table 3 in the case of both insertion and deletion by using

the appropriate definition of balanced.

5 Experimental Results

The simple and histogram-based schemes were evaluated using the same data set shown
in Table 1 from the following two aspects; One is the frequency of bulk loading. Our
definition of bulk loading is that at least 80% of nodes must be relabeled. The other is the
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average number of local relabeling operations per update operation. Even if bulk loading
occurs only rarely, it is useless if the cost of each local relabeling is high?. The average
number of bulk loads is shown in Table 4. When the maximum number of nodes in a unit

Table 4. Ave. Num. of Bulk Loads

Num. of nodes in a unit treeHStatic[ Simple |Histogram

2 1.333 0 4.833333

10 8.5 | 1067.5 0

30 30 |2233.167] 0.166667
total 13 {1100.222| 1.665

tree is 2, the simple scheme can avoid bulk loading. With 10 or 30 nodes per unit tree,
bulk loading occurs often. With the histogram-based scheme, when the number of nodes
in the unit tree is 2, bulk loading occurs more than with the static scheme. However,
even if the number of nodes in the unit tree increases, the number of bulk loads does not
increase much.

We analyzed the average and maximum costs by dividing the data set into two types;
stable data and growing data. The insertion:deletion ratio for stable data is 1:1 and for
growing data it is 2:1. Table 5 shows the average and maximum cost for each update
operation in the case of stable data. The simple scheme keeps the number of relabeling
nodes quite small, unlike the histogram-based scheme. We can say that the simple scheme
is better than the histogram-based scheme in the case of stable XML data. Table 6 shows

Table 5. Stable data set (1:1) Table 6. Growing data set (2:1)
l “Simple[Histogram‘ l “ Simple [Histogram‘
Ave. 17 38 Ave. || 35336 327
Max.|| 1035 5110 Max.||103118] 95091

the results for growing data set. While the simple scheme fails to handle the growing
data set efficiently, the histogram-based scheme reduces the cost significantly. When the
data is growing, the histogram-based scheme is better than the simple scheme.

6 Conclusion

This paper proposed dynamic range labeling schemes for data-oriented dynamic XML
trees. Experiments showed that the simple scheme can efficiently manage stable data
sets, and the histogram-based scheme can manage growing data sets. The dynamic range
labeling schemes do notkeep a durable reference [4] of labels. Instead of persistence, they
provide efficient query processing in which XML data sets can be continuously updated.

3 Cost is the number of nodes to be relabeled when an update operation occurs.
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If the persistence of labels is essential and update operations occur frequently, we need
another kind of persistent labels. Our relabeling algorithms can be implemented the most
efficiently if there exist linked lists of preorder and postorder series. These simple data
structures can be maintained more easily than complex tree structures proposed in [3].

References

0 3 N

10.

11.

. Shurug Al-Khalifa et al. Structural Joins: A Primitive for Efficient XML Query Pattern

Matching. In Proc. ICDE, 2002.

. Scott Boag et al. XQuery 1.0: An XML Query Language.
. YiChen et al. L-Tree: a Dynamic Labeling Structure for Ordered XML Data. In Proc. DataX

(in conjunction with EDBT2004), 2004.

. Shu-Yao Chien et al. Storing and Querying Multiversion XML Documents using Durable

Node Numbers. In Proc. WISE, 2001.

. Edith Cohen et al. Labeling Dynamic XML Trees. In Proc. PODS, 2002.

. Gene Ontology Consortium. http://www.geneontology.org/.

. Jonathan Robie. XQL FAQ. http://www.ibiblio.org/xql/.

. Haim Kaplan et al. A comparison of labeling schemes for ancestor queries. In Proc. SODA,

2002.

. Dao Dinh Kha et al. A Structural Numbering Scheme for XML Data. In Proc. XMLDM (in

conjunction with EDBT2002), 2002.

Quanzhong Li et al. Indexing and Querying XML Data for Regular Path Expressions. In The
VLDB Journal, 2001.

Xiaodong Wu et al. A Prime Number Labeling Scheme for Dynamic Ordered XML Trees.
In Proc. ICDE, 2004.



FliX: A Flexible Framework for Indexing Complex
XML Document Collections

Ralf Schenkel

Max-Planck-Institut fiir Informatik, Saarbriicken, Germany
schenkel@mpi-sb.mpg.de

Abstract. While there are many proposals for path indexes on XML documents,
none of them is perfectly suited for indexing large-scale collections of interlinked
XML documents. Existing strategies lack support for links, require large amounts
of time to build or space to store the index, or cannot efficiently answer connec-
tion queries. This paper presents the FliX framework for connection indexing that
supports large, heterogeneous document collections with links, using the exist-
ing path indexes as building blocks. We introduce some example configurations
of the framework that are appropriate for many important application scenarios.
Experiments show the feasibility of our approach.

1 Introduction

1.1 XML on the Web

Some years ago, XML documents have mostly been used for exchanging data between
different applications, hence the complete information was contained in a single docu-
ment. Nowadays, as XML is increasingly used as a replacement for HTML on the Web
or intranets, documents usually have XLinks or XPointers to data in other documents.
In addition to such inter-document links, the XML standard allows intra-document links
between elements of a single document.

While this increases the expressiveness of XML in intranets, in digital libraries,
and on the Web, it is on the other hand one of the big challenges for XML retrieval.
With information spread over several linked documents, an XML search engine should
treat elements that are referenced through links similarily to “normal” child elements
when evaluating path expressions in queries, which is typically done using some path
indexing technique. However, two problems arise when taking links into account: (1)
Links change the structure of XML documents, so they are no longer trees, but form
a directed graph; (2) links generate interconnections of previously unconnected XML
documents, yielding large sets of connected elements with long paths between them.
While the latter problem can lead to path indexes that grow extremely large and take
very long to build, the former even renders some of the established and highly efficient
path indexes unusable. The framework that we are presenting in this paper can cope
efficiently with large, heterogeneous collections of linked documents.

The second major challenge for XML retrieval is raised by the heterogeneity of data
on the Web, but also in heterogeneous collections of data from different sources. As there
is no universal standard for representing data in XML (and it is unlikely that there will

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 240-249, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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ever be such a standard), schemas used to represent data widely vary across different data
sources, and some do not provide a schema at all. Existing query languages for XML
like XPath and XQuery are no longer appropriate for searching in such an environment
as they cannot cope with the diversity of data. As an example, consider the query

/moviel[title="Matrix: Revolutions"]/actor/movie

(i.e., find movies whose actors were also in the cast of “Matrix: Revolutions”) may not
give any result at all: One of the data sources may use the tagname science-fiction
instead of movie, it may reflect the title of the movie as “Matrix 3”, or the path between
the elements may be longer than 1. To find as many relevant elements as possible (i.e.,
to get good recall), the system should automatically relax the query, which may yield
the following extended query:

//~movie[~title~"Matrix: Revolutions"]//~actor//~movie

This extended query has semantic vagueness for content and tag names (using the
similarity operator ~ as in the XML search language XXL [10]) as well as structural
vagueness (by relaxing all child axesto descendants-or-self axes). Here, the
~ operator means that elements whose tag names are semantically similar to the name
in the query qualify for the result, too, but possibly with a lower relevance that is derived
from the degree of semantic similarity. In the XXL search engine [8, 11], similar words
as well as similarity scores for them are extracted from an ontology.

Adding structural vagueness is motivated by the following example: A query like
movie/actor canonly be an approximation of what the user really wants, because the
user cannot know the exact structure of the data. We therefore consider not only children
as matches, but also descendants; the relevance of a result decreases with increasing path
length. It is evident that evaluating queries with such structural vagueness requires the
efficient evaluation of path expressions with the descendants-or-sel f axis, which
is a weakness of most path indexes for linked XML documents. The FliX framework
that we present in this paper is specifically optimized for this setting.

There have been some proposals for indexing con-
nections in collections of XML documents; see Section
2 for an overview. However, the choice of the “best” in-
dexing strategy for a given collection of XML documents
depends on a number of parameters: the size of the XML
collection, the structure of the XML data (e.g., presence
of links, link density, max depth of a document, number
and distribution of the tag names), and the query load
(e.g., children or descendants queries, query patterns, lo-
cality). Therefore, there typically is no single “best” in-
dex for large, heterogeneous document collections. Instead, one index may be better
suited for one part of the collection, while another may be best for another part. The
existing indexes are not flexible enough to adapt to such a setting.

The FliX' framework that we present in this paper overcomes this problem by com-
bining indexes for parts of the collection, using the “best” index for each part. As an

Fig.1. Heterogeneous collec-
tion of 10 XML documents )

! Framework for indexing large collections of interlinked XML documents.
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example, consider the document collection shown in Figure 1. It is easy to see that it
consists of a part consisting of documents one to four that forms a tree, while the rest
is closely interlinked. FliX partitions the document collection into the so-called meta
documents as shown in the figure and chooses, depending on its configuration, for ex-
ample a pre/postorder based index [5] for the tree-like partition, and a HOPI index [9]
for the partition with many links. This optimal choice of the index for a meta document
allows faster evaluation of queries as well as more compact indexes. Using these indexes,
queries are executed by first evaluating the query within a meta document and then fol-
lowing the links between meta documents at run time. This approach highly reduces the
time required to return the most relevant results to the client.

1.2 Contribution and Outline of the Paper

The paper presents a solution to the highly relevant problem of connection indexing in
large, heterogeneous collections of XML documents. Specifically, we make the following
important contributions:

— We present the FliX framework to index large, heterogeneous collections of inter-
linked XML documents and, ultimately, the Web, that reuses existing indexing strate-
gies as building blocks. FliX is extensible and can be tailored to the needs of the ap-
plication and to the structure of the data to be indexed. It efficiently supports XPath’s
descendants-or-self axis, but can handle other query types, too.

— We show instantiations of the framework that strongly improve path index perfor-
mance for practically relevant cases. This includes an extension of the well-known
pre-/postorder index [5] to documents with links.

— We have implemented the framework and carried out preliminary experiments on real
XML data from DBLP. The results indicate that our framework outperforms existing
indexing strategies in terms of query performance as well as index size.

2 Indexing the Structure of XML Documents

2.1 XML Data Model

We consider a graph G4 = (Vy, E4) for each XML document d in the collection, where
1) the vertex set V; consists of all elements of d plus all elements of other documents
that are referenced within d and 2) the edge set E; includes all parent-child relationships
between elements as well as links from elements in d to other elements of d or external
elements. Then, a collection of XML documents X = {dy,...,d,} is represented by
the union Gx = (Vx, Ex) of the graphs G, ..., G,, where Vx is the union of the V;,
and E'x is the union of the Ey,.

2.2 Existing Path Indexes

Pre/Postorder Scheme (PPO). This path index proposed by Grust [5] computes the
pre order and the post order for each element e of a single XML document without
links, by traversing the document in depth-first order. Thus, building the index takes
time O(|Ex|), and space consumption is O(|Vx|). All XPath axes can be evaluated
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using these numbers. This index structure is highly efficient for reachability queries and
can, with slight additions, also provide the distance between two nodes.

HOPI. Thisindex [9] makes use of acompact representation of reachability and distance
information in graphs proposed by Cohen et al. [2]. The index maintains for each element
e two sets of elements L;,(e) and Ly, (e) (so-called labels) such that there is a path
from x to y iff Loyt () N Lin(y) # 0. These labels can also be augmented with distance
information to compute the distance of two elements. HOPI provides a divide-and-
conquer algorithm for index creation that is reasonably fast as long as the document
collection is not too large. Querying the index for reachability of two elements is very
fast for most elements. Experiments [9] indicate that the HOPI index is usually an order
of magnitude more compact than the transitive closure.

Others. There have been a number of other proposals for path indexes, among them
Dataguides [4], APEX [1], Index Fabric [3], and the Index Definition Scheme [6] that can
be used to define special indexes (e.g. 1-Index, A(k)-Index, D(k)-Index [7], F&B-Index)
with & being the maximum length of supported paths. However, none of these approaches
is explicitly optimized for the descendants-or-self axis, and therefore none of
them efficiently supports them.

As discussed in Section 1, the choice of the “right” index for a structurally homo-
geneous document collection (like a meta document in FliX) depends on a number of
parameters. As a first rule of thumb, if there are no links, PPO will typically be the best
choice; if all paths are short or do not contain wildcards, APEX or an instance of the In-
dex Definition Scheme will do fine; if we expect to evaluate long paths and queries with
wildcards which is the case when we add structural vagueness to queries, we may want
to use HOPI. However, HOPI’s size may grow large for large document sets and, more
importantly, the time to build HOPI superlinearly increases with increasing number of
documents.

3 Flexible Indexing of XML Documents with FliX

3.1 FliX Concepts

As we pointed out in Section 2, the existing path index structures cannot efficiently
support descendant queries on large collections of interlinked XML documents. Addi-
tionally, index size and the time to build the index grow enormously for some of the
index structures if the document collection is huge, and it is usually impossible to find
an “optimal” indexing strategy for a heterogeneous collection.

The FliX framework presented in this paper aims to solve these problems. It first
divides the document set into carefully chosen fragments (so-called meta documents)
where each meta document contains some or all of the links between its documents.
Additionally, FliX maintains the set of remaining inter- or intra-document links that
are not contained in any meta document. After that, an index is built for each meta
document, using the “best” available indexing strategy given the characteristics of the
meta document. A descendant query is then evaluated first on the local indexes (which
will probably return the “best” results, i.e., elements that are connected with short paths).
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After that, results spanning multiple meta documents are evaluated by following links
between meta documents at run-time.
FliX returns results approximately or-
dered by ascending distance. As soon as [ 77" T Buid Phase
a new result is found, it is returned to the
client for further processing. This is espe- Bulder
cially important as users are typically not s S
interested in seeing all results of a query
(which often would be way too many with
documents from the Web), but may be sat-
isfied with the top k results, with k usually
less than 100. A search engine using FliX == =
for indexing can therefore return the best [7] |k 1
results early to the user and may even stop
the execution when it can determine that Fig. 2. Architecture of our framework for XML
it has produced the top k results. indexing

lan

Path Express
Evaluator

XML Search Engine

Query Processor of an

3.2 FliX Architecture

FliX consists of the following core components (see Figure 2):

— Several Path Indexing Strategies, among them PPO, APEX and HOPI, that support
the XPath axes and return results in ascending order of distance.

— The Meta Document Builder MDB that automatically builds an “optimal” set of
meta documents M = {M, ..., M,,}, where each meta document consists of a
distinct subset of the set X of interlinked XML documents to be indexed.

— The Indexing Strategy Selector ISS that automatically selects, for each meta docu-
ment, the “optimal” indexing strategy, based on structure, size and other properties
of the meta documents.

— The Index Builder IB that builds index structures for each of the meta documents,
using the selected indexing strategy for each meta document.

— The Path Expression Evaluator PEE that evaluates the descendants-or-self
axis and returns results approximately ordered by ascending path length.

The Meta Document Builder, the Indexing Strategy Selector, and the Index Builder
are used in the Build Phase, while the Path Expression Evaluator is used in the Query
Evaluation Phase.

4 The Build Phase

4.1 Meta Document Builder and Index Strategy Selector

Building the meta documents and selecting the best indexing strategies for them are
closely intertwined. Both heavily depend on 1) the structure of the document collection,
e.g., the number of documents, the distribution of the document sizes, link structure, and
the average number of links per document, and 2) on the query load, e.g., which axes
dominate the load, how long the typical result paths are, how often do result paths cross
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document borders, and so on. Additionally, certain algorithms to build meta documents
may rule out the usage of some index strategies. As an example, if the meta documents
are built to form graphs, not trees, then PPO can no longer be used. To overcome these
problems in FliX, we have predefined several configurations of the framework, i.e., a
strategy to build meta documents together with a set of indexing strategies that can be
applied. Each configuration fits a certain kind of collection structure. The ultimate goal
is that FliX can itself determine the “optimal” configuration for the actual application
or, if the collection is too heterogeneous, automaticaly build homogeneous partitions of
the collection. However, in our current implementation, an administrator must decide
which configuration to use.

When the configuration to use has been fixed, the problem of finding the “best” meta
documents can be stated as follows: Given the set of interlinked XML documents X, an
upper bound for (disk or main) memory available for index structures, and an upper bound
for index creation time, find an “optimal” set of meta documents M = {M, ..., M,,},
where each meta document consists of a distinct subset of X . Here, the optimality of M
means that, when indexing each M; with the best possible indexing strategy, the average
time for evaluating an arbitrary path expression over the complete document collection
X is minimized. Additionally, total space consumption of all indexes and accumulated
time to build the indexes must not exceed the respective upper bound. This optimization
problem is hard to solve exactly, because the set cover problem is NP-hard, therefore
each configuration comes with its own approximation algorithm.

When the selection of the meta documents has been finished, we explicitly construct
the meta documents as input for the Index Builder. To do this, we join the XML data
graphs of all the documents within a meta document into the data graph of the meta
document (i.e., we unify the sets of nodes and the sets of edges). Additionally, we
(conceptually) replace each document-internal link within one of the documents as well
as each inter-document link between two documents with a corresponding new edge in
the XML data graph of the meta document. For nodes of the meta element that have
links to elements of other meta documents, we store this information with the element
together with the target elements of the links.

4.2 Index Builder (IB)

When the choice of the meta documents and of the corresponding indexing strategies
has been made, we build all the index structures. Additionally, we maintain, for each
meta document M;, the set L; of elements with outgoing links that are not reflected in
the index. For a given element a of the meta document, the set L(a) denotes all elements
in the same meta document that are descendants of a and have such an outgoing link.
The index structures are extended to support querying for L(a) of a given element a,
which is (conceptually) computed by intersecting the set of descendants of a and L;.

4.3 Example Configurations of FliX

Naive. The naive, albeit useful configuration of FliX considers each document in the
XML document collection as a separate meta document. Depending on the structure of
each document, either a PPO index is built if the document does not contain any intra-
document links, or a HOPI index is built. This approach can be useful if documents are
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relatively large, the number of inter-document links is small, and queries usually do not
cross document boundaries.

Maximal PPO. The most efficient path index is PPO, but
it cannot be used with linked documents. However, a closer
analysis shows that in some cases, the resulting XML graph
G x forms still a tree even in the presence of links, because
the graph of the documents and the links between them is
a tree and all links point to root elements. In other cases,
removal of a small number of links leads to this situation.
Figure 3 shows an example for this: If we removed the edge
between documents 5 and 4, the resulting graph would form
a tree. This opens up two possible configurations of FliX: Fig.3. Efficient partitioning
(1) remove edges until the remaining graph forms a single ©f a document graph that is
tree and index it with PPO, or (2) using a greedy algorithm, —almosta tree

build partitions of the graph of the documents such that each

partition forms a tree, is as large as possible, and the number of partition-crossing edges
is small; each partition then forms a meta document that is indexed with PPO.

Unconnected HOPI. In the first step of the divide-and-conquer algorithm to build
HOPI [9], partitions of the XML graph are built such that each partition does not exceed
a configurable size and the number of partition-crossing edges is small. The second step
then builds HOPI indexes for the partitions, and the last step then joins the subindexes
to the index for the complete graph. It is straightforward to stop the algorithm after the
second step and use the partitions as meta documents. This approach is useful when
most documents contain links.

5 Query Execution with FliX

Our index framework is optimized for the descendants-or-self axis used in path
expressions of the form a//B 2, i.e., find all successors of element a that are of type
B. This includes wildcard queries of the form a//* to find all successors of element
a. A special case of this is to decide if two given elements a and b are connected, i.e.,
evaluating the reachability query a/ /b, and to determine the length of the shortest path
between these elements. It also supports the immediate evaluation of a path expression
like A/ /B where only the type of the starting element is fixed, but slightly less efficiently.
The algorithms can be adapted easily for other cases, e.g., to support the child axis as in
a/B, or to support the corresponding reverse axes like ancestors-or-self.

5.1 Finding Descendants in Approximate Order

In the Query Execution Phase, the Path Expression Evaluator (PEE) computes the answer
to reachability or distance queries of type a/ /B or a/ / *, for a start element a and some

% This is an XPath syntax where lower case letters represent fixed elements, upper case letters
represent element types, and / / represents XPath’s descendants-or-self axis.
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element type B. To calculate the result of the query, it makes use of the indexes built for
the meta documents. The PEE returns a stream of result elements eq, ea, . . . that satisfy
the query, approximately ordered by their distance to the start node a.

The PEE maintains a list [ E' of intermediate elements, ordered by ascending distance
to the start element a of the query. The priority of an element in the queue denotes the
minimal distance that any descendant of the element may have to the start node a. We
denote the distance of two elements « and v by dist(u, v). I E is initialized with a at
priority 0. In the main loop of its algorithm, the PEE picks the first element e from
IE and determines the meta document M in which e resides. Using the index for M,
the PEE then computes the set R of all elements in M that are reachable from e and
satisfy the search condition, sorted by ascending distance to e; the elements of R are
returned to the client. Additionally, the set L of elements with outgoing links that are
reachable from e is computed using the index for M. This step ignores all links that are
already represented in the index for M. For each element [ € L , the destination(s) of its
outgoing link(s) are then inserted into I E with priority dist(a, e) 4-dist(e, [) + 1, and the
main loop continues until either / £’ runs empty or, if the client has specified a distance
threshold, if the first entry in the queue has a larger distance than this threshold.

This algorithm does not return the result elements in perfectly ascending distance to
a, because it returns the results within a single meta document as one block, regardless
of their distance. However, this algorithm maintains a reasonably good approximation
by processing the intermediate elements in ascending distance to a.

The maximum time to evaluate a query heavily depends on the selection of the meta
documents. In an ideal setting, the MDB will have prepared the meta documents such
that processing time is minimized for most queries and only a few queries require many
hops across meta documents.

5.2 Evaluation of Other Expressions

Connection Test. Testing if two elements a and b are connected is straight-forward: The
priority queue is initialized with a at priority 0, and the algorithm proceeds until finds b.
As this may result in a traversal of the complete document collection at worst, the maxi-
mal depth of the search should be limited by the client. Because the client uses the length
of the path between a and b to compute the relevance of this pair of elements, it can com-
pute a threshold for the path length beyond which the resulting relevance is negligible.

Evaluating A/ /B Expressions. To evaluate queries like 2/ /B where only the type of
the starting element is fixed, only the initial step of the PEE has to be modified: The PEE
determines all elements of type A and inserts them into the priority queue with priority
0, then the evaluation algorithm is run.

6 Preliminary Experiments

In this section, we present the results of some preliminary experiments on a small set
of data with our current implementation of FliX that has not yet been optimized. Even
though these experiments are far from being exhaustive, they strongly indicate the via-
bility of our indexing framework.
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We compared our approach to two other indexing strategies: an extended version
of HOPI that supports distance information and a database-backed implementation of
APEX (without optimizations for frequent queries), both applied to the complete data
collection. We tested four configurations of FliX: The naive configuration where a PPO
index is built for each document (PPO-naive), a simple implementation of Maximal
PPO, and two variants of Unconnected HOPI with partition sizes set to 5,000 (HOPI-
5000) and 20,000 nodes (HOPI-20000). We implemented all strategies as multithreaded,
Java-based applications.

The data collection used for the experiments was extracted from the DBLP col-
lection. We generated one XML document for each second-level element of DBLP
(article,inproceedings,...) and chose the corresponding documents for publi-
cations in EDBT, ICDE, SIGMOD and VLDB and articles in TODS and VLDB-Journal.
The resulting collection consisted of 6,210 documents with 168,991 elements and 25,368
inter-document links with an overall size of 27 megabytes.

The HOPI index is huge (about 266 MB), but it is still more than an order of magnitude
smaller than storing the complete transitive closure. HOPI-20000 requires about 18 MB
space, HOPI-5000 requires only about twice as much space as the APEX index (about
2.2 MB), and naive PPO and Maximal PPO are even smaller (about 1.9MB). So using
FliX can save a lot of space over the HOPI index, and the Maximal PPO configuration
is as space efficient as PPO.

To assess the performance of FliX, we submitted a query to determine the first 100
article descendants of Mohan’s VLDB 99 paper about ARIES. HOPI was clearly
the fastest to return the results, with an almost constant time of 0.6 seconds. However,
the FliX configurations HOPI-5000 and HOPI-20000 outperformed HOPI in the time
needed to return the first results, and they clearly improved on APEX by a factor of at
least 2. Maximal PPO returned the first results even faster than the other indexes because
these results were in the first, large trees MaximalPPO considered, but its performance
for later results was not as good because, unlike the unconnected HOPIs, it had to follow
many links at run-time. The error rate (i.e., fraction of all results that were returned in
wrong order) was 8.2% for HOPI-5000, 10.4% for HOPI-20000, and 13.3% for Maximal
PPO, which is tolerable for most applications. Naive PPO was constantly slower than
the other indexes, because documents were so small that the quick index lookup per
document with PPO could not compensate for the additional overhead of following all
links at runtime. Other experiments with different start elements and different tag names
showed similar results.

These experimental results have shown that FliX can increase performance of an-
swering descendants or connection queries, at the price of a moderate increase in storage
cost and some error in the order of results.

7 Future Work

Our future work will aim to improve FliX in the following regards:

— We plan to investigate more sophisticated algorithms for building meta documents,
including automatic methods that analyze the document collection and identify
homogeneous subcollections.
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— We are looking into further optimizing FliX’s query evaluation algorithm, e.g., re-

turning results exactly sorted instead of approximately and eliminating unnecessary
link traversals when checking connectivity of two nodes.

— We consider adding self-tuning functionality: If it turns out in the query evaluation

engine that most queries have to follow many links, then the choice of meta docu-
ments is no longer optimal for the current query load. In this case, meta documents
should be rebuilt, taking the query load into account.

We will carry out additional experiments to test the scalablity of FliX with larger sets
of documents and to test the adaptivity of FliX with more heterogeneous document
collections.
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Abstract. The increasing number of XML repositories has intensified research
activities in the optimization of XML queries. The success of any optimization
approach hinges on an accurate query size estimation. This paper presents a statis-
tical method for estimating the result size of XML queries. Our estimation system
extracts two summarized information, namely, node ratio and node factor, from
every distinct parent-child path in the XML files. Experiment results indicate that
our approach requires small memory footprint, and yet proves to be sufficient in
estimating the result size of queries under the data-independent assumption.

1 Introduction

As XML emerges as the standard of data representation and exchange on the Internet,
many query languages have been proposed for it. A common feature among XML query
languages such as XPath and XQuery is the specification of query patterns in the form
of path expressions. Consider the query “//Article[Title = ‘X M L’]/Authors” that
returns all the Authors of Article with title *XML’. This query pattern can be viewed
as a tree structure with Authors as the target node. As in conventional query process-
ing, the estimation of selectivity affects query evaluation plans and query processing
costs.

Existing XML query estimators support a limited class of query patterns. Markov
based models [5,7] estimate linear path queries since they capture only information
on path frequencies. [6] utilizes path frequencies to estimate the size of simple twig
queries. In [9], the position histogram is used to describe the element distribution and a
position histogram join is employed to estimate the query size. This approach does not
distinguish between ancestor-descendant and parent-child relationships. [8] propose the
XSketch framework that utilizes summarized graph structures to estimate queries.

In this work, we develop a comprehensive solution to estimate the result size of
general XML query patterns. We extract highly summarized information, namely, node
ratio NV R and node factor N F' from every distinct parent-child basic path. When eval-
uating an XML query, this statistical information is recursively aggregated to estimate
the frequency of the target node. Compared with existing solutions, our method utilizes
statistical data that is compact, and yet proves to be sufficient in estimating the result
size of queries under the data-independent assumption.

The paper is organized as follows. Section 2 gives a taxonomy of paths in XML
queries. Section 3 describes the proposed estimation system. Section 4 gives the exper-
iment results and we conclude in Section 5.

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 250-259, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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2 Taxonomy of Paths

This section provides a taxonomy of XML path queries used in the paper.

Linear Path: Given an XML query P, if all the nodes in P are connected sequentially,
then P is called a linear path. The relationship between any two adjacent nodes can be
an ancestor-descendant or a parent-child relationship.

Basic Path: A linear path with only two nodes is called a basic path.

Twig: If the root node of an XML path P has more than one immediate children
nodes, then P is called a twig.

Simple Twig: Given a twig P, if every branch of P is a linear path, then P is known
as a simple twig.

General Path: A general path is all the possible combinations of linear paths and
twigs.

Figure 1 illustrates the different query paths. The solid line and dotted line denote
the parent-child and ancestor-descendant relationship respectively.

i "
IODE ¢ ol 5&

A simple twig

A twig OF
A linear path A general query

() (b) © (@

Fig. 1. Examples of path queries

3 Estimation System

This section describes the proposed estimation system. We introduce the statistical infor-
mation captured in Section 3.1. Section 3.2 discuss several basic methods of aggregating
statistical information. Finally we present the algorithm in Section 3.3.

3.1 Summary Statistics

Given a path P in an XML data set X, we denote the root node in the path as R and
the target node in P as T'. The target node 7' refers to the node whose size we want to
estimate. We define f(node) as the frequency of node in X and f(node|path) as the
frequency of node with respect to path in the dataset. For example, in Figure 2, we have
F(C) =4and f(CI'A/B/C/D’) =

Two important summary variables are captured, namely Node Ratio (NR) and Node
Factor (NF). The variable N R indicates the ratio of the occurrence of a root node R in
some path P to the total occurrence of R in an XML dataset, while the variable N F'
gives the average number of nodes 7" for a given root node R in a path P.
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Definition 1: Node Ratio (/VR). Let X be an XML dataset and P a path in X. If R is
the root node in P, we define the ratio of the frequency of R in P to the frequency of R
in X as the node ratio N R of R in P, which is given by

NR(R|P) = f(R|P)/f(R)

Definition 2: Node Factor (VF'). Let X be an XML dataset and P a path in X. If R
and T are the root node and target node in P respectively, then we define the ratio of the
frequency of 7" in P to the frequency of R in P as the node factor N F' of T"in P. That s,

NF(T|P) = f(T|P)/f(R|P)
From the above definitions, we obtain
[(RIP) = f(R) « NR(R|P); f(T|P) = f(R) * NR(R|P) « NF(T|P)

We use the equation above to estimate the query result size. Symbol “’ ” is adopted
to distinguish the estimated result from the actual value, then we have

f'(RIP) = f(R) = NR'(R|P); f(T|P) = f(R) * NR'(R|P) « NF/(T|P) (1)

C/ Node Frequency Parent-Child Paths NR NF
OB B c A 1 A/B 1 2
/ \O B 2 A/IC 1 2
c ¢ Op E C 4 B/C 1 1

D 8 C/D 1 2

p OE OE Op p OD D E 4 C/E 0.5 2

Fig. 2. An XML instance and corresponding NR,NF for parent-child paths

We capture the frequency of every distinct name node, the node ratio N R and node
factor N F' for every distinct basic parent-child path as shown in Figure 2. For parent-
child paths, the root node R and the target node 7" are the parent node and the child node
in the path respectively. Note that from the definitions, NR < 1 and NF' > 1.

Our estimation solution contains two main operations, decomposition and aggrega-
tion. The decomposition operation is straightforward, that is, we decompose an given
path into a set of basic paths, each of which contains two adjacent nodes in the original
query pattern. For example, if we decompose the query shown in Figure 1(b), the basic
paths in the result setare ‘A/B’,‘B//D’, ‘B/E’ and ‘A/C". The aggregation operation
is the key of our estimation method, which computes N R’ and N F’ of the given query
path from all NR and N F' of the parent-child basic paths.

3.2 Path Selectivity

Next, we explain how the VR and N F’ information of basic parent-child paths can be
aggregated to estimate the size of the various path queries. The estimation formulae are
based on the following assumption.
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Basic Path Independent Assumption: The distribution of a basic path b in an XML
document is independent of the distribution of its incoming paths and sibling paths.

In Figure 2, the distribution of basic path ‘C'/ D’ is independent of its incoming paths,
‘B/C"(or‘A/B/C")and ‘A/C". Similarly, ‘C'/ D’ is also independent of its sibling path
‘C/E.

Serialized Linear Paths. Suppose we have two linear paths b, b2 and their correspond-
ing NR(R1|b1), NF(T1|b1), NR(R2|b2) and N F(T5|b2), where R; and T; are the first
and last nodes in path b,. If the target node 77 has the same label as that of the node
R, we can connect these two paths b; and b, sequentially and eliminate Rs. The result
is also a linear path, denoted as by -by. For example, if by = ‘A/B’, by = ‘B/C”, then
by-bo =‘A/B/C".

To calculate N R'(R1|b1-b2) and N F'(Tx|b1-b2), we first compute N F’/ (T |b1-ba).
The value of NF'(T1|by-ba) is estimated as N F(T1]b1)* N R(Rz|b2). From the def-
inition of NR and NF, the accurate value of N F'(Ty|by-b2) should be NF(Ty|by) *
(f(T1]b1-b2) / f(T1]b1)). Taking into consideration the Basic Path Independent Assump-
tion, we use (f(T1]b2)/f(11)), which is N R(Rz|bs), to replace
(f(T1|b1-b2)/ f(T1]br)).

We will use two examples in Figure 2 to explain how to obtain N R’(R;|b;-b2) and
NF'(Ty|by-by).

Example 1: Estimate f'(D|‘B/C/D).

We have NF'(C|'B/C/D’) = NF'(C|'B/C") « NR'(C|‘C/D’) = 1.

Here, the purpose of NR/'(C|'C/D’) is to filter out those elements C which are under
B but do not contain D. If the result NF'(C|'B/C/D’) is greater than or equal to 1 (as
shown in this case), then f(C|/B/C/D’) is greater than or equal to f(B|‘B/C/D").
Assuming that C is uniformly distributed under B, we can deduce that f(B|‘/B/C/D’)
should remain unchanged as f(B|‘/B/C"). As a result, we set NR'(B|'B/C/D’) =
NR'(B|'B/C).

Similarly, NF'(D|'B/C/D’) = NF'(C|'B/C/D’) «x NF'(D|‘C/D").

Note that NR'(B|'B/C/D’) =1 and NF'(D|'B/C/D’) = 2.

Finally, we have f'(B|'B/C/D’) = f(B) * NR'(B|'B/C/D’) = 2 and

[/ (D|I'B/C/D’) = f(B)* NR'(B|'B/C/D’) «x NF'(D|'B/C/D’) = 4.

Example 2: Estimate f/(E|'B/C/E").

We have NF'(C|'B/C/E’) = NF'(C|'B/C") * NR'(C|‘C/E’) = 0.5.

In this case, NF'(C|‘B/C/E") is less than 1, which violates the definition of N F' (the
number of target node must be greater than or equal to the number of root node). In this
example, NR'(C|‘C/E’) filters out not only those C under B, but also elements B as
shown in Figure 2. To handle this situation, we set
NR'(B|'B/C/E’)=NR/(B|'B/C")xNF'(C|'B/C/E’)and NF'(C|'B/C/E*)=1.
This is because we assume that the remaining C elements are uniformly distributed under
B. Thus, the number of B should be reserved as many as possible and NF'(C|‘B/C/E”)
must be 1.
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Similarly, NF'(E|'B/C/E’)=NF'(C|'B/C/E’)* NF(E|‘C/E’)=NF(E|'C/E").
Finally we estimate f/'(B|‘B/C/E’) = f(B)«* NR'(B|'B/C/E’) = 1 and
f(E|'B/C/E’) = f(B)x NR'(B|'B/C/E’) « NF'(E|'B/C/E") = 2.

From the two examples above, we summarize the following formula.

Given two paths by and by where T7 = Ro

NF/(T1|b1'b2) = NF(T1|b1) * NR(T1|b2)
if (NF'(Ti|bi-b2) > 1)

NR/(Ry|by - by) = NR'(Ry|by)

NF'(Ty|by - by) = NF'(Ty|by - bo) % NF(Ts|bs) )
else

NR/(R1|I)1 . bg) = NR/(Rl‘bl) * NF/(T1|b1 . bg)

NF'(Talby - by) = NF(T|bs)

Similarly, we can sequentially connect more than two linear paths and compute corre-
sponding N R and N F'. Consider the scenario that P; is composed by b1-b2-bs. . .-b; with
the corresponding f(R;), NR(R;|b;) and N F(T;|b;). We first calculate N R/ (R |P»)
and N F'(T| P»), thenin turn compute the next N R’ and N F” until we reach N R/ (R | P;)
and NF'(T;|P;). In practice, if the linear path b; contains more than two nodes, it would
be decomposed into a set of basic paths which hold only two nodes. The N Rs and
NF's of parent-child paths can be directly retrieved from the estimation system. The
processing of ancestor-descendant paths are discussed later in this section.

Parallelized Linear Paths. Given a set of linear paths /;, (1 < 7 < n) and the corre-
sponding N R(R;|l;), where R; is the first node in path [;, if R; = R; = R(i#j;1 <
i,7 < n), we can combine all the /; into a simple twig where R is the root node and
every [; is a branch. For example, the simple twig in Figure 1 is constructed from linear
paths ‘A/B’,‘A/C" and ‘A/D’.

There are two possible relationships among the branches in the path obtained: in-
tersection and union. In the case of intersection, we need to estimate the size of R that
appear in all the [;. Otherwise, the path condition is satisfied if R is the root node of
any one of the /;. We denote the intersection and union associations in the paths as
l1Nls...Nl, and 11 Uls. . .UL, respectively.

If P is given by l1Ni5. ..NL,, then the node ratio N R'(R|P) is computed from the

intersection of all /;:
n

NR/'(R|P) =[] NR(R|l;) 3)
i=1
On the other hand, suppose P is given by I1Ul5. . .Ul,,. Given the values of the cor-
responding node ratios N R(R|l;) where R is the root node of P, we have the following
formula that is based on set theory.

NR/(R|P) = 3> NR(R|l;) = ¥ NR(R|li,)NR(R|l,) + oot

i=1
(~1)*"V S NR(R|l;, )NR(R|l:,)... NR(R|l:,) @
(1 <iqig...0k < njig # iy where a #b)
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Ancestor-Descendant Basic Paths. Next, we compute the N R’ and N I of an ancestor-
descendant basic path. Suppose we issue the query ‘A//C” over the XML instance in
Figure 2. The result of this query is the union of the results of linear path queries
‘A/B/C"U*A/C". The NR' and NF’ of these linear paths can be determined as de-
scribed before. Note that the path ‘A/B/C” and ‘A/C" are obtained by searching the
table shown in Figure 2. Since we combine all the possible paths, our solution cannot
process recursive XML instance.

Let s and /; denote an ancestor-descendant basic path and linear paths that comprises
s respectively. Let R and 7" be the parent and child nodes in s. Then we can use Formula
4 to estimate NR’(R|s) since it essentially is a union case. f/(7'|s) is a summary of
f/(T|l;) which can be computed by

f'(T]s) = f(R)

n
1=

(NR(R|l:) « NF'(T|L:))

—

NF'(T)s) is equivalent to f'(T'|s)/f'(R|s) and f'(R]s) is equal to f(R) * NR'(R]|s),
then we have

n

> (NR'(R|L)*NF'(T|L;))

NF/(T)s) = = 5)

NR'(R[s)

General Paths. A general path query typically has two structures: a twig, and a linear
path followed by a twig (see Figure 1(b) and (d)).

A set of general paths g;(1<i<n) that have the same root node R can be parallelized
into a larger general path (or a twig) as shown in Figure 1(b). Using the Formula 3 or 4,
we can easily compute N R/(R|G) as parallelizing linear paths.

Suppose we have a linear path L, a general path G and the corresponding N R/ (R, |L),
NF'(T|L) and NR'(R¢|G) where T is the last node in L, T' and R¢ have same label,
we can join L with G at node 7. The resulting path, denoted by L - G, is a general path
with the structure as shown in Figure 1(d). Formula 2 can be employed to estimate the
size of T' in such a general path by computing NR'(R|L - G) and NF'(T|L - G). The
reason is similar to serializing linear paths.

3.3 Estimation Algorithm

Based on the summary statistics and the various methods to aggregate them, we develop
an algorithm to estimate the frequency of a target node in a given general path query.
Our generalized estimation technique (see Algorithm 1) employs a bottom-up approach
to compute the N R’ and N F’ of the nodes, before calculating the node frequency in a
top-down manner. This essentially implies that we first decompose a general query tree
pattern into a set of basic parent-child paths, then recursively aggregating the N R’ and
N F’ information using the methods described in Section 3.2.

Algorithm 1 calls a function PathStat which returns an object containing the values
of NR' and NF’. Suppose P is a general path query with root node Root and target
node T'G. We call the path from Root to T'G the primary path. The variable N F'list,
initially set to empty, stores the N F” values of the sub-paths in the primary path.

Lines 2-5 in PathStat checks whether T'G is contained in the trunk of the current
path p. If it is, we decompose p into a linear path [’ (the path from R to T'G), and a general
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path ¢’ (the subtree rooted at T'G). In order to obtain N R'(R|p) and NF'(T'G|p), we
recursively call PathStat to determine the NR’ and NF’ of I’ and ¢’ respectively. A
special case occurs when p is a linear path and T'G is the last node in p, then ¢’ is a
single node. Note that this part is only executed once.

In Lines 6-24, p may be decomposed or instantiated into a set of sub-paths depending
on its type. To compute the N R’ and N F’ of p, it is necessary to know the N R’ and
NF’ of its sub-paths. Hence, PathStat is invoked recursively to determine the N R’
and N F’ of every sub-path until a parent-child basic path or a single node is reached.
The NR' and NF’ of every sub-path is then aggregated to obtain the final result size.
Note that only the NF’ of nodes that occur in the primary path will be stored (lines
22-23) since the rest of the N F” information does not contribute to the final frequency
estimation.

Algorithm 1 Estimate Query Result Size
Input: path P, target node TG;  Output: frequency count f'(T'G|P)
1: Initialize N F'list = {}, cursor =0
2: sp = PathStat(P),
cursor

3: f/(TG|P) = f(Root) * sp.NR' x [ ei(e; e NF'list)
i=0

Function PathStat(p)
1: Let R be the root node in p, and T be the last node of p if p is a linear Path
2: if isLinearGenearal(p) and T'G in linear part then
Let I’ be the linear path from R to TG, g’ be the general path rooted from TG
4: s, NR' = NR'(R|l' - ¢'),8p.NF' = NF'(TG|l' - ¢')
5:  ep = sp.NF';return s,
6: if isNode(p) then
7.
8

: $p.NR =1,5,.NF' = 1;return s,
. if isParentChild(p) then
9:  s,.NR' = NR(p), sp.NF' = NF(p); return s,
10: if isAncestor Descendant(p) then
11:  Instantiate p into a set of [;(1<i<n)
12 8,.NR = NR'(R|l1 Ul2 U ...lp), $,.NF' = NF'(T|l1 Uls U ...L,); return s,
13: if isLinear(p) then
14:  Decompose P into a set of basic path b; (1<i<n)
15:  s,.NR = NR'(R|b1 - b2 - ..b,), 5p.NF' = NF'(T|by - bz - ...by,); return s,
16: if isTwig(p) then
17:  Decompose P into a set of general path g;(1<¢<n), every branch of P is a g;
18:  s,.NR = NR'(R|g1 N ...gn)(or U), s,. NF' = null; return s,
19: if isLinearTwig(p) then
20:  Let! and t be the linear and twig parts of p. Let C' be the common node.
21:  s,.NR = NR/(R|l-t), $,.NF' = (C|l - t)
22:  if inPrimaryPath(C) then
23: cursor + +, €cursor = Sp.NF’
24:  return s,
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Fig. 3. Estimating the frequency of N in G

Consider the general query G in Figure 3. If IV is the target node, then the path from
A to N is the primary path (indicated by the shaded nodes in (). Since N does not
lie in the linear portion of G, which is ‘A/B’, we recursively decompose G until we
obtain the path Go. We store eg = N F'(N|Gy) in the N F’list. On backtracking, we
will encounter path G; that comprises of a linear path and a twig, which have node E in
common. Since E lies in the primary path, we store node e; = NF’(E|G1). Similarly,
we will put eg = NF'(C|G2) and e3 = NF'(B|G) in the N F'list. Finally, the e; in
the N F'list are used to compute the frequency of node N in G.

4 Experimental Studies

In this section, we examine the accuracy of the proposed estimation approach on both
real-world and synthetic datasets. Our method are implemented in Java and the exper-
iments are carried out on a Pentium IV 1.6 GHz PC with 512 MB RAM running on
Windows XP.

The datasets used are IMDB [1], Shakespeare’s Plays (SSPlays) [2], DBLP [3] and
XMark20 generated by XMark [4]. The synthetic dataset XMark20 is more skewed
compared to the real datasets. Table 1 gives the characteristics of the various datasets.

Table 1. Characteristics of datasets

Dataset |Size (MB)|f#(Distinct Nodes)|fi(Distinct Paths)|Memory Usage for Statistics

IMDB 1 12 11 0.23KB

SSPlays 7.5 21 38 0.63KB

DBLP 22 26 35 0.63KB
XMark20 20 83 114 2.04KB

When implementing our proposed method, we encode every distinct node and distinct
path. Thus, the total memory usage is given by

MemoryUsage = §Distinct Nodes * 8 + fDistinct Paths * 12
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where 8 bytes are used to represent the node ID and frequency, and 12 bytes are used to
represent the path ID, NR, and NF.

4.1 Sensitivity Experiments

This set of experiments investigates the accuracy of positive queries. We generate 12
positive queries on both real and synthetic datasets. These queries comprise of parent-
child linear queries, ancestor-descendant linear queries, parent-child twigs. The query
size (number of nodes) varies from 2 to 5, and the relative error is employed to measure
the estimation accuracy. Table 2 shows the performance of using the proposed compact
statistical information to estimate positive queries.

Table 2. Error rates for positive queries

Queries Dataset |Estimated size|Actual size| Error
//Play/Act/Prologue/Speech SSPlays 12 12 0
//Play/Act[Epilogue/Stagedir]/Title | SSPlays 5 4 25.0%
//Play//Scene SSPlays 750 750 0
//Play/Personae[Pgroup]/Title SSPlays 33 33 0
//Movie/Directed_By/Director IMDB 520 520 0
//Cast/Actor/LastName IMDB 6886 6886 0
//Movie//Genre IMDB 1475 1475 0
//Proceedings//Editor DBLP 1892 1892 0
//Dblp/Inproceedings/Title DBLP 58077 58077 0
/lAustralia/Item/Description/Text XMark20 310 315 1.6%
//Open_auction/Annotation//Listitem |XMark20 2052 2148 4.5%
//Listitem/Text/Emph[Keyword]/Bold|XMark20 15 41 63.4%

Overall, the memory usage for the statistical information is low (see Table 1), and
the error rates for the queries on real-life datasets (SSPplays, IMDB, DBLP) are within
acceptable range since these data are typically uniformly distributed. The error rate for
the synthetic dataset (XMark?20) is considerably higher since the dataset is much more
skewed compared to the real-life datasets.

4.2 Comparative Experiments

We also implement XSketch [8] using f-stabilize method and evaluate its accuracy and
memory usage with our method. 50 positive queries are generated on IMDB, SSPlays
and XMark20 respectively using the template described in [8], i.e., queries with linear
branches, and the target node is the leaf node. Only parent-child relationship is used
here. The length of the query path ranges from 3 to 12 nodes.

Figure 4 shows the memory usage and average relative error of the two techniques for
the various datasets. We observe that both techniques utilize a smaller amount of memory
for real-life datasets compared to that required by the synthetic dataset XMark20. This is
largely because of the relatively regular structures of the real-life datasets. The uniform
data distribution in the real-life datasets also leads to a lower error rate for both methods
compared to the synthetic dataset.
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Fig. 4. Comparative experiments

For the synthetic dataset, our approach requires a smaller memory footprint compared
to XSketch. The latter requires more memory in order to achieve a lower relative error.
This is because XSketch uses a summarized graph to describe the XML data. For skewed
data, it naturally results in higher memory space consumption while yields more accurate
estimated results. Given the trade-off between memory usage and estimation accuracy,
our approach complements existing techniques.

5 Conclusion

In this paper, we have presented a comprehensive solution to estimate the result size of a
general XML query. Our system captures highly concise information, N R and N F', for
every distinct parent-child path in an XML dataset. We have described how the statistical
information can be aggregated to estimate XML query sizes. Experiments on both real
and synthetic data sets indicate that our proposed method is able to achieve reasonably
low error rates with a small amount of memory. In future work, we plan to investigate
the usage of the proposed estimator in XML query optimization systems.
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