

Lecture Notes in Computer Science 3135
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

James F. Peters Andrzej Skowron
Didier Dubois Jerzy W. Grzymała-Busse
Masahiro Inuiguchi Lech Polkowski (Eds.)

Transactions on
Rough Sets II

Rough Sets and Fuzzy Sets

13

Editors-in-Chief

James F. Peters
University of Manitoba, Department of Electrical and Computer Engineering
Winnipeg, Manitoba R3T 5V6, Canada
E-mail: jfpeters@ee.umanitoba.ca

Andrzej Skowron
University of Warsaw, Institute of Mathematics
Banacha 2, 02-097 Warsaw, Poland
E-mail: skowron@mimuw.edu.pl

Volume Editors

Didier Dubois
Université Paul Sabatier, CNRS, IRIT
118, route de Narbonne, 31062 Toulouse Cedex 4, France
E-mail: dubois@irit.fr

Jerzy W. Grzymała-Busse
University of Kansas, Department of Electrical Engineering and Computer Science
3014 Eaton Hall, 1520 W. 15th St., #2001, Lawrence, KS 66045-7621, USA
E-mail: jerzy@ku.edu

Masahiro Inuiguchi
Osaka University, Department of Mathematical Science for Social Systems
Department of Systems Innovation, Graduate School of Engineering Science
Machikaneyama-cho 1-3, Toyonaka, Osaka 560-8531, Japan
E-mail: inuiguti@sys.es.osaka-u.ac.jp

Lech Polkowski
Polish–Japanese Institute of Information Technology
and Department of Mathematics and Computer Science
University of Warmia and Mazury
Koszykowa 86, 02-008 Warsaw, Poland
E-mail: polkow@pjwstk.edu.pl

Library of Congress Control Number: 2004115993

CR Subject Classification (1998): F.4.1, F.1, I.2, H.2.8, I.5.1, I.4

ISSN 0302-9743
ISBN 3-540-23990-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11322016 06/3142 5 4 3 2 1 0

LNCS Transactions on Rough Sets

This journal subline has as its principal aim the fostering of professional ex-
changes between scientists and practitioners who are interested in the founda-
tions and applications of rough sets. Topics include foundations and applications
of rough sets as well as foundations and applications of hybrid methods combin-
ing rough sets with other approaches important for the development of intelligent
systems.

The journal includes high-quality research articles accepted for publication
on the basis of thorough peer reviews. Dissertations and monographs up to 250
pages that include new research results can also be considered as regular papers.
Extended and revised versions of selected papers from conferences can also be
included in regular or special issues of the journal.

Honorary Editor: Zdzis�law Pawlak
Editors-in-Chief: James F. Peters, Andrzej Skowron

Editorial Board

M. Beynon
G. Cattaneo
A. Czyżewski
J.S. Deogun
D. Dubois
I. Duentsch
S. Greco
J.W. Grzyma�la-Busse
M. Inuiguchi
J. Järvinen
D. Kim
J. Komorowski
C.J. Liau
T.Y. Lin
E. Menasalvas
M. Moshkov
T. Murai

M. do C. Nicoletti
H.S. Nguyen
S.K. Pal
L. Polkowski
H. Prade
S. Ramanna
R. S�lowiński
J. Stepaniuk
R. Świniarski
Z. Suraj
M. Szczuka
S. Tsumoto
G. Wang
Y. Yao
N. Zhong
W. Ziarko

Preface

This collection of articles is devoted to fuzzy as well as rough set theories. Both
theories are based on rigorous ideas, methods and techniques in logic, mathemat-
ics, and computer science for treating problems for which approximate solutions
are possible only, due to their inherent ambiguity, vagueness, incompleteness,
etc. Vast areas of decision making, data mining, knowledge discovery in data,
approximate reasoning, etc., are successfully explored using methods worked out
within fuzzy and rough paradigms.

By the very nature of fuzzy and rough paradigms, outlined above, they are
related to distinct logical schemes: it is well-known that rough sets are related
to modal logics S5 and S4 (Or�lowska, E., Modal logics in the theory of informa-
tion systems, Z. Math. Logik Grund. Math. 30, 1984, pp. 213 ff.; Vakarelov, D.,
Modal logics for knowledge representation systems, LNCS 363, 1989, pp. 257 ff.)
and to finitely-valued logics (Pagliani, P., Rough set theory and logic-algebraic
structures. In Incomplete Information: Rough Set Analysis, Or�lowska, E., ed.,
Physica/Springer, 1998, pp. 109 ff.; Polkowski, L. A note on 3-valued rough
logic accepting decision rules, Fundamenta Informaticae 61, to appear).

Fuzzy sets are related to infinitely-valued logics (fuzzy membership to degree
r ∈ [0, 1] expressing truth degree r) (Goguen, J.A., The logic of inexact concepts,
Synthese 18/19, 1968–9, pp. 325 ff.; Pavelka, J., On fuzzy logic I, II, III, Z. Math.
Logik Grund. Math. 25, 1979, pp. 45 ff., pp. 119 ff., pp. 454 ff.; Dubois, D.,
Prade, H., Possibility Theory, Plenum Press, 1988; Hájek, P., Metamathematics
of Fuzzy Logic, Kluwer, 1998).

Algebraic as well as topological features of roughness and fuzziness are dis-
tinct. Topologically, rough sets may be described by means of topologies on
families of sets (Polkowski, L., Rough Sets. Mathematical Foundations, Phys-
ica/Springer, 2002) whereas fuzzy sets by their nature fall into the province
of topologies on function spaces (Ying-Ming Liu, Mao Kang Luo, Fuzzy Topol-
ogy, World Scientific, 1998). Algebraically, rough sets form structures known as
�Lukasiewicz algebras, Heyting algebras, Post algebras, etc. (Pagliani, op. cit.,
Polkowski, op. cit.), whereas fuzzy set algebra involves point-wise operations
on fuzzy membership functions suggested by various logical interpretations of
fuzzy union, intersection, etc. (Novák, V., Perfilieva, I., Močkoř, J., Mathemati-
cal Principles of Fuzzy Logic, Kluwer, 1999).

Despite some differences, there have been attempts to reconcile the two the-
ories and to form a hybrid paradigm, rough-fuzzy, or fuzzy-rough, depending
on whether rough constructs are introduced in the fuzzy set framework, or con-
versely, fuzzy constructs are defined in the rough set framework (Dubois, D.,
Prade, H., Putting rough sets and fuzzy sets together. In Intelligent Decision Sys-
tems. Handbook of Applications and Advances of Rough Sets Theory,
S�lowiński, R., ed., Kluwer, 1992, pp. 203 ff.; Dubois, D., Prade, H., Similarity

VIII Preface

versus preference in fuzzy-set based logics. In Incomplete Information: Rough Set
Analysis, Or�lowska, E., ed., Physica/Springer, 1998, pp. 441 ff.; Nakamura, A.,
Fuzzy rough sets, Notes on Multiple-Valued Logic in Japan, 9, 1988, pp. 1 ff.;
Cattaneo, G., Generalized rough sets. Preclusivity fuzzy-intuitionistic (BZ) lat-
tices, Studia Logica, 58, 1997, pp. 47 ff.; Pedrycz, W., Shadowed sets: bridging
fuzzy and rough sets. In Rough Fuzzy Hybridization, Pal, S.K., Skowron, A., eds.,
Springer, Singapore, 1999, pp. 179 ff.; Inuiguchi, M., Tanino, T., A new class of
necessity measures and fuzzy rough sets based on certainty qualifications, LNAI
2005, 2000, pp. 261 ff.).

The volume presented to the reader contains papers devoted to rough set
theory, to fuzzy set theory, and to both theories. These papers highlight impor-
tant aspects of those theories from theoretical as well as application points of
view.

It is our pleasure that this volume appears in the Lecture Notes in Computer
Science series of Springer-Verlag in the newly initiated sub-series of Transactions
on Rough Sets. We are indebted to the editors of the subseries, Profs. Peters and
Skowron for their invitation to publish the volume in this subseries. Our thanks
go also to Prof. Janusz Kacprzyk who suggested that we prepare a collection
of papers devoted simultaneously to rough and fuzzy theories. We would like to
thank the authors, whose chapters are included in this volume, for making this
possible. Our thanks go to the editors of Springer-Verlag, for their dedicated
work toward giving the volume its final shape as well as to Dr. Piotr Synak who
helped us with LATEX.

May 2004 Didier Dubois
Jerzy Grzyma�la-Busse

Masahiro Inuiguchi
Lech Polkowski

Table of Contents

Feature Selection with Rough Sets for Web Page Classification 1
Aijun An, Yanhui Huang, Xiangji Huang, and Nick Cercone

On Learning Similarity Relations in Fuzzy Case-Based Reasoning 14
Eva Armengol, Francesc Esteva, Llúıs Godo, and Vicenç Torra

Incremental versus Non-incremental Rule Induction
for Multicriteria Classification . 33

Salvatore Greco, Roman S�lowiński, Jerzy Stefanowski,
and Marcin Żurawski

Three Strategies to Rule Induction from Data with Numerical Attributes . 54
Jerzy W. Grzymala-Busse

Fuzzy Transforms . 63
Irina Perfilieva

Possible Equivalence Relations and Their Application
to Hypothesis Generation in Non-deterministic Information Systems 82

Hiroshi Sakai

Applications of Fuzzy Logic Functions to Knowledge Discovery
in Databases . 107

Noboru Takagi, Hiroaki Kikuchi, and Masao Mukaidono

Fuzzy Integral Based Fuzzy Switching Functions . 129
Eiichiro Takahagi

First Steps Towards Computably-Infinite Information Systems 151
Peter Apostoli, Akira Kanda, and Lech Polkowski

Data Structure and Operations for Fuzzy Multisets . 189
Sadaaki Miyamoto

A Non-controversial Definition of Fuzzy Sets . 201
Jaroslav Ramı́k and Milan Vlach

Algebraic Structures for Rough Sets . 208
Gianpiero Cattaneo and Davide Ciucci

Rough Mereology as a Link Between Rough and Fuzzy Set Theories.
A Survey . 253

Lech Polkowski

X Table of Contents

Fuzzy Rough Sets Based on Residuated Lattices . 278
Anna Maria Radzikowska and Etienne E. Kerre

Semantics of Fuzzy Sets in Rough Set Theory . 297
Yiyu Yao

A New Proposal for Fuzzy Rough Approximations
and Gradual Decision Rule Representation . 319

Salvatore Greco, Masahiro Inuiguchi, and Roman S�lowiński

Emergent Rough Set Data Analysis . 343
Yasser Hassan and Eiichiro Tazaki

Author Index . 363

Feature Selection with Rough Sets
for Web Page Classification

Aijun An1, Yanhui Huang2, Xiangji Huang2, and Nick Cercone3

1 York University, Toronto, Ontario, M3J 1P3, Canada
2 University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
3 Dalhousie University, Halifax, Nova Scotia, B3H 1W5, Canada

Abstract. Web page classification is the problem of assigning prede-
fined categories to web pages. A challenge in web page classification is
how to deal with the high dimensionality of the feature space. We present
a feature reduction method based on the rough set theory and investigate
the effectiveness of the rough set feature selection method on web page
classification. Our experiments indicate that rough set feature selection
can improve the predictive performance when the original feature set for
representing web pages is large.

1 Introduction

With the rapid growth of information on the World Wide Web, automatic clas-
sification of web pages has become important for effective indexing and retrieval
of web documents. One approach to automatic web page classification is to ap-
ply machine learning techniques to pre–classified web data to induce profiles of
categories and compare the profiles of categories with the representation of a
given document in order to classify the document. A major characteristic, or
difficulty, of this application is the high dimensionality of the feature space. A
common approach to representing a text document is to use a “bag of words”
that appear in the document. Since a web page can contain thousands of words,
the feature space for representing web pages is potentially huge. Few machine
learning systems can handle such a large number of features. In addition, too
many features may present noise to the learning system. Therefore, it is highly
desirable to reduce the feature space in order to make use of existing learning
systems, to improve classification accuracy, and to speed up the learning process.
It is also desirable to achieve such a goal automatically, i.e., no manual selection
or construction of features is required.

Automatic feature selection methods have been used in text classification.
Lewis and Ringuette [6] used an information gain measure to reduce the docu-
ment vocabulary in naive Bayes classification and decision tree learning. Yang
[15] used the principal component analysis to find orthogonal dimensions in the
vector space of documents. Wiener et al. [14] used mutual information and a χ2

statistic to select features for input to neural networks. Lang [4] used a minimum
description length principle to select terms for news categorization. It has been
asserted that feature selection is the most critical stage of the learning process
in text classification [6].

J.F. Peters et al. (Eds.): Transactions on Rough Sets II, LNCS 3135, pp. 1–13, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

2 Aijun An et al.

We investigate the effectiveness of feature selection by rough sets on web page
classification. Rough set theory is a mathematical tool for modelling incomplete
or imprecise information [9]. It has been used for both feature selection and
knowledge discovery in a number of real world domains, including medicine,
pharmacology, control systems, social sciences, switching circuits, and image
processing [13], [11]. In this paper, we apply rough set theory to feature selection
for web page classification. In our application, web pages in a training data set are
first represented using top frequent words. Then a feature selection method based
on rough sets is applied to remove redundant features from the training data.
A rule induction system, named ELEM2 [1], is then used to learn classification
rules from the reduced training data. Therefore, in our application, the rough sets
based feature selection is used as a pre–processing step for ELEM2. To evaluate
the effectiveness of rough set feature selection on web page classification, we
conduct experiments to compare the predictive performances of ELEM2 on web
page classification with and without rough set feature selection. We describe our
experiments and report the evaluation results.

The chapter is organized as follows. In the next section, we describe the
importance of web page classification and the problems that need to be solved
for web page classification. We also present our data collection and representation
methods. In Sect. 3, we present the basic concepts in rough sets and describe
an algorithm for computing a reduct,i.e., a non–redundant subset of features.
The ELEM2 rule induction method is briefly introduced in Sect. 4. Our method
for classifying a web page is presented in Sect. 5. In Sect. 6, we describe our
evaluation methods and report experimental results. Finally, we conclude the
paper in Sect. 7.

2 The Problem of Web Page Classification

The World Wide Web contains an estimate of 968 million pages as of March 2002
in the Google search engine [8] and an estimate of 7 million or more pages being
added daily [5]. Describing and organizing this vast amount of content is essential
for realizing the web as an effective information resource. Text classification has
become an important process for helping web search engines to organize this vast
amount of data. For instance, most Internet search engines, such as Yahoo and
Looksmart, divide the indexed web documents into a number of categories for the
users to limit the search scope. Moreover, text classification makes the results
easier to browse. When the results returned by the search engine have been
classified into a specified category, the users can choose the interesting category
to continue browsing. Traditionally, text classification is performed manually
by domain experts. However, human classification is unlikely to keep pace with
the rate of growth of the web. Hence, as the web continues to increase, the
importance of automatic web page classification becomes obvious. In addition,
automatic classification is much cheaper and faster than human classification.

To make the text classification process automatic, machine learning tech-
niques can be applied to generate classification models from a set of text docu-

Feature Selection with Rough Sets for Web Page Classification 3

ments with pre-labelled categories. The classification model can then be used to
automatically assign natural language texts to the predefined categories based
on their contents. In order to apply a machine learning technique to web page
classification, the following problems need to be solved. First, to build a web page
classifier, we need to collect a set of web pages as training examples to train the
machine learning system. These training examples should have pre-defined class
labels. Second, the content of a web page in the training set should be analyzed
and the page should be represented using a formalism that the learning sys-
tem requires for representing training examples. This text representation issue
is central to our application. Finally, how to classify new pages with induced
rules is another challenge in our application. We use different sets of features to
represent training pages of different categories. Therefore, the rules for differ-
ent categories are expressed using different sets of features. When classifying a
new page, these different sets of rules should be used together in some way to
determine the category or categories of the new page.

2.1 Data Collection

We use the Yahoo web site to collect training examples for our learning problem.
Yahoo is best known for maintaining a web categorization directory. The web
directory in Yahoo is a multi–level tree–structured hierarchy. The top level of
the tree, which is the first level below the root of the tree, contains 14 categories.
Each of these 14 categories contains sub–categories that are placed in the second
level below the root. The third and fourth levels of the tree contain both further–
refined categories and web pages. We use the top–level categories in Yahoo to
label the web pages in our training set. Only 13 of 14 top–level categories are
used and one category, named “Regional”, is excluded because it has too much
overlap with other categories.

We randomly selected over 7600 pages from the Yahoo category. We originally
planned to gather 500 example pages from each category. Unfortunately, some
web pages that have links in Yahoo were either eliminated or not connected
to the Internet. In addition, some web pages contain very few terms after the
removal of stop–words because these pages consist of a brief greeting sentence,
image, Java script, flash, and other non–textual information. Hence, our number
of training examples for each category is different. The distribution of these
training examples among 13 categories considered is shown in Table 1. Categories
considered may overlap. For example, a document discussing sport action may
be reasonably classified into Entertainment and Recreation & Sports categories.

2.2 Representation of Web Pages

After training pages are selected, we apply Porter’s stemming algorithm [10] to
transfer each word in a web page into its stem. We then remove all the stop
words according to a standard stop word list. For each category, we count the
number of occurrences of each remaining word stem in all the pages that belong
to the category. The word stems in each category are then sorted according to

4 Aijun An et al.

Table 1. Distribution of the training data.

Category Number of web pages

Arts & Humanities 783

Business & Economy 997

Computers & Internet 745

Education 485

Entertainment 957

Government 229

Health 772

News & Media 747

Recreation & Sports 506

Reference 501

Society & Culture 253

Science 230

Social Science 510

Total 7615

the number of occurrences. This process results in two sets of documents. One
is 13 sorted lists of word stems, one for each category. These lists will be used
to select features for the training data. The other set of results is the set of web
pages, each represented by remaining word stems and their counts.

We use word stem counts to represent a web document. A web document
may contain a huge number of words and not all the words in the global space
appear in every document. If we use all the words in the global space to repre-
sent the documents, the dimensionality of the data set is prohibitively high for
the learning system. In addition, even though our learning system can handle
thousands of features, many of the features are irrelevant to the learning task.
The presence of irrelevant features in the training data introduces noise and ex-
tra learning time. Therefore, it is necessary to reduce the dimensionality of the
feature set by removing words with low frequencies. Removing infrequent words
is also suggested in [7] and [16].

Different categories have different top frequent words. We collected top 60
frequent terms for each category. Since the top frequent terms differ among
categories, there is no common set of features that we can use to represent all
documents in all categories. Therefore, even though our learning system can deal
with multi–category learning directly, we transform our learning problem into
multiple two–class learning problems. That is, for each web page category, we
prepare the training data using top n (n = 20, 30, 40, 50 or 60 in our experiments)
frequent words in the category and then learn a set of rules that can be used
to predict whether a new page belongs to this category or not. Therefore, for
a given n, we have 13 training sets , each of them containing 7,615 documents,
and represented by top n frequent terms of the corresponding category. After
applying our learning algorithm, the 13 training sets lead to the generation of 13

Feature Selection with Rough Sets for Web Page Classification 5

classifiers. These 13 classifiers will vote to determine which category or categories
a new page belongs to.

3 Feature Selection with Rough Sets

We use frequent words to represent the web pages in our training data. How-
ever, some frequent words may not be very relevant to our learning task. These
words may have little power in discriminating documents of different categories.
Therefore, further selection of relevant features is important. We apply a rough
set based feature selection method for this purpose. In this section, we first intro-
duce some concepts of rough sets and then describe an algorithm for removing
unnecessary attributes.

3.1 Basic Notations

A data set can be formally described using a decision table. A decision table
(also called an information system [9]) is defined as a quadruple < U,A, V, f >,
where U = x1, x2, ..., xN is a finite set of objects or examples; A is a finite set
of attributes; the attributes in A are further classified into two disjoint subsets,
condition attributes C and decision attributes D such that A = C ∪ D and
C ∩ D = Ø; V =

⋃
a∈A Va is a set of attribute values and Va is the domain of

attribute a (the set of values of attribute a); f : U × A → V is an information
function which assigns particular values from domains of attributes to objects
such that f(xi, a) ∈ Va, for all xi ∈ U and a ∈ A. In our application, D = {d} is
a singleton set, where d is the class attribute that denotes classes of examples.

Given a decision table DT =< U,A, V, f >, let B be a subset of A, and let
xi and xj be members of U ; a relation R(B), called an indiscernibility relation
[9] over B, is defined as follows:

R(B) = {(xi, xj) ∈ U2 : ∀a ∈ B, f(xi, a) = f(xj , a)}. (1)

Let C be the set of condition attributes, and R(C) be the corresponding in-
discernibility relation on U ; an ordered pair AS =< U,R(C) > is called an
approximation space based on C.

Let Y ⊆ U be a subset of objects representing a concept, and R∗(C) =
{X1, X2, ..., Xn} be the collection of equivalence classes induced by the relation
R(C). The lower approximation [1] of a set Y in the approximation space AS
denoted as LOWR(C)(Y), is defined as the union of those equivalence classes in
the collection of R∗(C) which are completely contained in the set Y , i.e.,

LOWR(C)(Y) =
⋃
{X ∈ R∗(C) : X ⊆ Y }. (2)

Let R∗(D) = {Y1, Y2, ..., Ym} be the collection of equivalence classes of the re-
lation R(D). The positive region POSC(D) of D with respect to C is defined
as,

POSC(D) =
⋃

i=1,...,m

{LOWR(C)(Yi) : Yi ∈ R∗(D)}. (3)

6 Aijun An et al.

The positive region POSC(D) includes all examples of the equivalence classes of
R∗(C) in AS which can be certainly classified into classes of R∗(D). POSC(D) =
U means that there is no conflict between sets C and D in the sense that the
classification by C determines the classification by D on objects in U .

3.2 Attribute Reduction

Attribute reduction techniques eliminate superfluous attributes and create a
minimal sufficient subset of attributes for a decision table. Such minimal suf-
ficient subset of attributes, called a reduct, is an essential part of the decision
table which can discern all examples discernible by the original table and cannot
be reduced any more. A subset B of a set of attributes C is a reduct of C with
respect to D if and only if,

(1) POSB(D) = POSC(D),
(2) POSB−{a}(D) �= POSC(D), for any a ∈ B.

A set C of condition attributes may contain more than one reduct. The set of
attributes common to all reducts of C is called the core of C. The core contains
all indispensable attributes of a decision table and can be defined as,

COREC(D) = {c ∈ C : ∀c ∈ C,POSC−{c}(D) �= POSC(D)}. (4)

A good procedure for computing a reduct for a decision table is to com-
pute the core first and then check the other attributes one by one to see if
they are essential to the system. If for any attribute c ∈ C − COREC(D),
POSC−{c}(D) �= POSC(D), then c cannot be removed from C. Since the order
in which the attributes are removed affects the result of reduction, a concept
called relative significance coefficient (RSC) is introduced to rank the condition
attributes. The relative significance coefficient (RSC) of the attribute c ∈ C
based on the set of attributes C with respect to attributes D is defined as,

RSCc(C,D) = card(POSC−{c}(D))

card(POSC(D)) , (5)

where card denotes set cardinality. Our algorithm for computing a reduct is
outlined as follows.

1. Compute COREC(D). For each condition attribute in C, remove it from C
and check whether it changes the positive region. Let COREC(D) be the
set of all condition attributes whose removal does not change the positive
region.

2. Check whether COREC(D) is a reduct of the rule set. If yes, stop and
COREC(D) is a reduct.

3. Let T = C − COREC(D). Rank the attributes in T in descending order of
their RSC value. Let a be the first attribute in T and let C′ be C.

4. Check whether POSC′−{a}(D) = POSC(D). If yes, remove a from C′.
5. Let a be the next attribute in T . If a exists, repeat step 4; otherwise, stop

and C′ is a reduct.

Feature Selection with Rough Sets for Web Page Classification 7

4 ELEM2 Rule Induction

ELEM2 [1] is a rule induction system that learns classification rules from a set of
data. Given a set of training data, ELEM2 sequentially learns a set of rules for
each class in the data set. To induce rules for a class C, ELEM2 conducts general–
to–specific heuristic search over a hypothesis space to generate a disjunctive set
of propositional rules. ELEM2 uses a sequential covering learning strategy; it
reduces the problem of learning a disjunctive set of rules to a sequence of simpler
problems, each requiring that a single conjunctive rule be learned that covers a
subset of positive examples. The learning of a single conjunctive rule begins by
considering the most general rule precondition, i.e., the empty test that matches
every training example, then greedily searching for an attribute-value pair that
is most relevant to the class C according to the following attribute–value pair
evaluation function,

SIGC(av) = P (av)(P (C|av) − P (C)),

where av is an attribute–value pair and P denotes probability. The selected
attribute–value pair is then added to the rule precondition as a conjunct. The
process is repeated by greedily adding a second attribute–value pair, and so on,
until the hypothesis reaches an acceptable level of performance. In ELEM2, the
acceptable level is based on the consistency of the rule: it forms a rule that is as
consistent with the training data as possible. Since this “consistent” rule may be
a small disjunct that overfits the training data, ELEM2 “post-prunes” the rule
after the initial search for this rule is complete. To post-prune a rule, ELEM2
computes a rule quality value for the rule according to one of the rule quality
formulas described in [2]1. ELEM2 then checks each attribute–value pair in the
rule in the order reverse to that in which they were selected, to determine whether
removal of the attribute–value pair will decrease the rule quality value. If not,
the attribute–value pair is removed and the procedure checks all the other pairs
in the same order again using the new rule quality value resulting from removal
of that attribute–value pair to determine whether another attribute–value pair
can be removed. This procedure continues until no pair can be removed.

After rules are induced for all the classes, the rules can be used to classify
new examples. The classification procedure in ELEM2 considers three possible
cases when matching a new example with a set of rules.

1. Single match. The new example satisfies one or more rules of the same class.
In this case, the example is classified to the class indicated by the rule(s).

2. Multiple match. The new example satisfies more than one rule that indicates
different classes. In this case, ELEM2 activates a conflict resolution scheme
for the best decision. The conflict resolution scheme computes a decision
score for each of the matched classes as follows:

DS(C) =
k∑

i=1

Q(ri),

1 We use the C2 rule quality formula in the experiments described in the paper.

8 Aijun An et al.

where ri is a matched rule that indicates C, k is the number of these rules,
and Q(ri) is the rule quality of ri. The new example is then classified into
the class with the highest decision score.

3. No match. The new example is not covered by any rule. Partial matching
is considered where some attribute–value pairs of a rule match the values of
corresponding attributes in the new example. If the partially–matched rules
do not agree on classes, a partial matching score between an example e and
a partially–matched rule ri with n attribute–value pairs, m of which match
the corresponding attributes of e, is computed as PMS(ri) = m

n ×Q(ri). A
decision score for a class C is computed as,

DS(C) =
k∑

i=0

PMS(ri),

where k is the number of partially-matched rules indicating class C. In de-
cision making, the new example is classified into the class with the highest
decision score.

5 Classification Method

ELEM2 can learn rules from data with multiple classes and classify a new exam-
ple into one of the classes. However, since a web page can belong to more than
one category and the top frequent words for different categories are different, we
transform our learning problem into multiple two-class learning problems. For
each of 13 web page categories, we have a separate training data set, represented
by top frequent words of the category. The web pages in the different training
sets are the same among all the categories. For each category, we use ELEM2
to learn a binary classifier. When classifying a new page, 13 binary classifiers
vote to determine which category or categories the new example belongs to. The
voting method is as follows. We apply 13 classifiers to the new example to make
binary decisions. The binary decisions are then combined by summing up the
scores for each category. The category or categories that have the highest score
are chosen to be the predicted category or categories for the new example. Table
2 shows the results from 13 binary classifiers and the voting result for a test page.
In the table, C1, C2, ... and C13 denote categories, and B1, B2, ..., B13 denote
binary classifiers. Since category C2 has most votes, the test page is classified
into C2.

6 Evaluation Methods and Results

6.1 Evaluation Methods

Our objective is to investigate the effectiveness of our rough set feature selection
method on web page classification. Two groups of tests are conducted in our
experiments. In the first group of experiments, ELEM2 is used without using

Feature Selection with Rough Sets for Web Page Classification 9

Table 2. Classification and voting results for a test page.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

B1 0 1 1 1 1 1 1 1 1 1 1 1 1

B2 0 1 0 0 0 0 0 0 0 0 0 0 0

B3 1 1 0 1 1 1 1 1 1 1 1 1 1

B4 1 1 1 0 1 1 1 1 1 1 1 1 1

B5 1 1 1 1 0 1 1 1 1 1 1 1 1

B6 1 1 1 1 1 0 1 1 1 1 1 1 1

B7 1 1 1 1 1 1 0 1 1 1 1 1 1

B8 1 1 1 1 1 1 1 0 1 1 1 1 1

B9 1 1 1 1 1 1 1 1 0 1 1 1 1

B10 1 1 1 1 1 1 1 1 1 0 1 1 1

B11 1 1 1 1 1 1 1 1 1 1 0 1 1

B12 1 1 1 1 1 1 1 1 1 1 1 0 1

B13 1 1 1 1 1 1 1 1 1 1 1 1 0

Votes 11 13 11 11 11 11 11 11 11 11 11 11 11

rough set feature selection. In the second group, a reduct is computed for each
of the training data sets. ELEM2 is then applied to the reduced sets of features
to generate rules. In each group of experiments, to learn a binary classifier for
each of 13 categories, we represent the training data using top n frequent words
for that category. n is set to be 20, 30, 40, 50, and 60 in the experiments.
Therefore, we have 13×5 training sets. Rules learned from each training set are
then applied to examples in a test data set to make binary classifications for each
example in the test set. Finally, the voting method is used to combine the binary
classification results for each example into a final prediction for this example.

6.2 Test Data

The test data set contains a random sample of 370 web pages from each of 13
Yahoo categories (excluding the web pages used in the training phase). The total
number of test pages is thus 4810. Each of these pages was turned into a separate
testing example for each of 13 binary classifiers; the example is represented using
the feature set corresponding to that classifier. Therefore, 13 binary classifica-
tions are made for a test web page. The final combined prediction for the web
page is compared with the true membership of the page.

6.3 Performance Measures

In the machine learning community, it is common to consider the accuracy of a
classifier on a test set as a good indication of classifier’s performance. The testing
accuracy is defined simply as the number of correct classifications divided by
the total number of classifications. However, the text classification problem is

10 Aijun An et al.

different from typical machine learning problems in two aspects: examples may
be given multiple class labels, which means separate binary classifiers must be
trained for each class, and the positive examples of each class are usually in a
very small minority [12]. These two characteristics imply that a plain accuracy
statistic is not adequate to evaluate the performance of a text classifier because
high accuracy can be achieved by always predicting the negative class in a binary
classification. To deal with this unbalanced nature of classes, we use precision
and recall instead of accuracy. In a binary classification system, precision is the
proportion of examples labeled positive by the system that are truly positive,
and recall is the proportion of truly positive examples that are labeled positive
by the system.

In our web page classification, precision is the number of correct categories
assigned divided by the total number of categories assigned, and serves as a
measure of classification accuracy. The higher the precision, the smaller the
amount of false categories. Recall is the number of correct categories assigned
divided by the total number of known correct categories. Higher recall means a
smaller amount of missed categories. To compute precision and recall for a test
data set of web pages, we calculate the precision and recall for each example
in the test set and then take the average values of precision and recall among
all examples in the test set. Suppose the set of real categories of a test example
is RC and the set of predicted categories is PC. Precision on this example is
RC∩PC

PC , and recall on this example is RC∩PC
RC . Table 3 shows values of precision

and recall for five sample test web pages.

Table 3. Precision and recall values for some test pages.

Page Real Predicted Precision Recall

Categories Categories

P1 {2, 13} {2} 1 1/2

P2 {8, 13} {3, 8} 1/2 1/2

P3 {8, 9} {2, 8, 9} 2/3 1

P4 {3} {4, 6} 0 0

P5 {3, 4} {3, 4} 1 1

6.4 Experimental Results

We applied the rough set feature selection method to each of 13×5 training data
sets. Table 4 shows the number of eliminated attributes for each training set. The
average number for each n, where n is the number of top frequent words used to
represent the training data, is shown at the bottom of the table. The following
observations are made. If top 20 words are used to represent the training data,
no attributes are considered redundant by our rough set attribute reduction
algorithm. Therefore, no attribute is removed. However, as more frequent words
are used to represent the training data, more attributes are considered redundant
and thus removed.

Feature Selection with Rough Sets for Web Page Classification 11

Table 4. Number of attributes eliminated by rough set feature selection.

Category Top 20 Top 30 Top 40 Top 50 Top 60

1 0 0 2 2 2

2 0 0 0 0 0

3 0 0 0 1 0

4 0 1 1 2 4

5 0 1 1 4 5

6 0 1 2 1 4

7 0 0 0 0 4

8 0 1 1 1 1

9 0 0 0 1 3

10 0 0 0 0 1

11 0 0 2 1 5

12 0 2 2 2 3

13 0 0 0 1 0

Average 0 0.46 0.85 1.23 2.46

Figures 1 and 2 compare the classification results on the test data set in
terms of precision and recall with and without rough set feature reduction. The
results depend on the number of top frequent words used to represent training
examples. If the number of original features is small (30 or 40), use of feature
selection does not help in terms of precision. It actually decreases precision. On
the other hand, when the number of original features becomes bigger (50 or 60),
rough set feature selection improves the prediction precision. In terms of recall, in
three of four categories of feature sets, an increase in recall is observed. Only for
the top–40 category, we observe a decrease in recall by using the feature selection
method. For the top–50 category, the increase is the most significant. Therefore,
we can conclude that the rough set feature selection method is effective, that is,
it can lead to better precision and recall, when the number of original features
is large. One explanation for these results is that the larger the set of original
features, the more likely it contains redundant or irrelevant features. Using rough
set techniques, one can remove some redundant or irrelevant features and thus
improve the predictive performance.

7 Conclusions

Automated categorization of web pages can lead to better web retrieval tools
with the added convenience of selecting among properly organized directories. A
challenge in automated web page classification or text classification in general is
how to deal with the high dimensionality of the feature space. We have presented
an application of machine learning techniques to web page classification. In par-
ticular, we used a feature selection method based on rough set theory to reduce
the number of features used to represent a web page. We evaluated effectiveness

12 Aijun An et al.

0.42

0.44

0.46

0.48

0.5

top 30 top 40 top 50 top 60

Top words

P
re

ci
si

o
n

without feature reduction with feature reduction

Fig. 1. Comparison in terms of precision.

0.56

0.6

0.64

0.68

0.72

0.76

top 30 top 40 top 50 top 60

Top words

R
ec

al
l

without feature reduction with feature reduction

Fig. 2. Comparison in terms of recall.

of this rough set feature reduction method by comparing predictive performances
of a learning system with and without this feature selection method. We observed
that rough set feature selection method is effective when the set of features used
to represent web pages is large. It can help to increase precision and recall by
eliminating redundant or irrelevant features. When the feature set is small (un-
der 50 top frequent words), the feature selection method may not help and may
reduce the predictive performance. In our experiments, the rough set feature se-
lection method is used as a pre–processing step for the ELEM2 learning system.
However, it can be integrated with other learning methods to remove redundant
and irrelevant features. In the future, we shall compare the rough set feature
selection method with some statistical feature selection methods on web page
classification.

Feature Selection with Rough Sets for Web Page Classification 13

Acknowledgments

This research was supported by grants from the Natural Sciences and Engineer-
ing Research Council (NSERC) of Canada and the Institute for Robotics and
Intelligent Systems (IRIS).

References

1. An, A., Cercone, N. ELEM2: A Learning system for more accurate classifications,
in: Proceedings of the 12th Biennial Conference of the Canadian Society for Com-
putational Studies of Intelligence AI’98. Vancouver, Canada, 1998.

2. An, A., Cercone, N. Rule quality measures for rule induction systems: Description
and evaluation. Computational Intelligence,17:3,2001, pp. 409–424.

3. Huang, Y. Web-based Classification Using Machine Learning Approaches. MSc
Thesis, Department of Computer Science, University of Regina, Regina, Canada,
2002.

4. Lang, K. Newsweeder: Learning to filter netnews, in: Proceedings of the Twelfth
International Conference on Machine Learning.

5. Lawrence, S., Giles, L. Accessibility and distribution of information on the Web.
Nature,400, 1999, pp. 107–109. (http://www.metrics.com)

6. Lewis, D.D., Ringuette, M. Comparison of two learning algorithms for text cate-
gorization, in: Proceedings of the Third Annual Symposium on Document Analysis
and Information Retrieval SDAIR’94, 1994.

7. Mladenic, D. Feature subset selection in text learning, in: Proceedings of the 10th
European Conference on Machine Learning ECML98, 1998.

8. Notess, G.R. Search engine statistics: database total size estimates.
http://www.searchengineshowdown.com/stats/sizeest.shtml.

9. Pawlak, Z. Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer, 1991.
10. Porter, M.F. An algorithm for suffix stripping. Program 14:3, 1980, pp. 130–137.
11. Raghavan, V.V., Sever, H. The state of rough sets for database mining applications,

in: Proceedings of 23rd Computer Science Conference Workshop on Rough Sets and
Database Mining, 1995, pp. 1–11.

12. Scott, S., Matwin, S. Text classification using WordNet Hypernyms, in: Proceed-
ings of the Conference on the Use of WordNet in Natural Language Processing
Systems,...1998,

13. Slowinski, R., ed. Intelligent Decision Support: Handbook of Advances and Appli-
cations of the Rough Sets Theory. Kluwer, 1992.

14. Wiener, E. Pedersen, J.O., and Weigend, A.S. A neural network approach to topic
spotting, in: Proceedings of the Fourth Annual Symposium on Document Analysis
and Information Retrieval SDAIR’95, 1995.

15. Yang, Y. Noise reduction in a statistical approach to text categorization, in: Pro-
ceedings of the 18th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval SIGIR’95, 1995.

16. Yang, Y., Pedersen, J. A comparative study on feature selection in text catego-
rization, in: Proceedings of the 14th International Conference on Machine Learning
ICML’97, 1997, pp. 412–420.

On Learning Similarity Relations
in Fuzzy Case-Based Reasoning

Eva Armengol, Francesc Esteva, Llúıs Godo, and Vicenç Torra

Institut d’Investigació en Intel·ligència Artificial – CSIC
Campus UAB s/n, 08193 Bellaterra, Catalonia, Spain

Abstract. Case–based reasoning (CBR) is a problem solving technique
that puts at work the general principle that similar problems have sim-
ilar solutions. In particular, it has been proved effective for classifica-
tion problems. Fuzzy set–based approaches to CBR rely on the existence
of a fuzzy similarity functions on the problem description and prob-
lem solution domains. In this paper, we study the problem of learn-
ing a global similarity measure in the problem description domain as a
weighted average of the attribute–based similarities and, therefore, the
learning problem consists in finding the weighting vector that minimizes
mis–classification. The approach is validated by comparing results with
an application of case–based reasoning in a medical domain that uses a
different model.

Keywords: case–base reasoning, fuzzy case–base reasoning, similarity
relation, aggregation.

1 Introduction

Case–based reasoning, CBR for short, amounts to inferring that what is true in
some known cases might still be true, possibly up to some suitable adaptation,
in a newly encountered situation that is similar enough to those already known
cases (see e.g. [1, 24]). In this way, case–based reasoning can be considered as
a form of similarity–based or analogical reasoning since the basic principle im-
plicitly assumed to apply in this kind of problem solving methodology is that
similar problems have similar solutions.

Before going into more details, let us specify our working framework for
classification–like case–based reasoning problems. Assume we have a base of cases
CB consisting of an already solved set of cases, where a case is represented by a
(complete) tuple of attribute values describing the situation or problem to solve
together with a solution class or result. To fix ideas, let A = {a1, . . . , an} be the
set of description attributes and let cl denote the class attribute. Moreover, let us
denote by D(ai) and D(cl) the domains of the attributes ai and cl respectively
(so D(cl) is the set of solution classes). Then a case c ∈ CB will be represented
as a pair (d, r), where d = (a1(c), . . . , an(c)) is the set of the problem description
values and r = cl(c) is the solution class for the case c. If we write D = D(a1)×
. . .×D(an), (D for description) and R = D(cl), (R for result), then a case–base
CB is just a subset of D×R.

J.F. Peters et al. (Eds.): Transactions on Rough Sets II, LNCS 3135, pp. 14–32, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

On Learning Similarity Relations in Fuzzy Case-Based Reasoning 15

In this framework, given a case–base CB = {ci = (di, ri)}i∈I , and a new
problem description d0, the CBR task is to find (guess) a solution class r0 for
d0, by applying the above general principle in some form, i.e., by taking into
account the possible similarity of d0 to cases ci ∈ CB already solved.

It is clear then that the notion of similarity plays a key role in CBR problems.
In particular, the notion of graded similarity, which has been used in the frame-
work of fuzzy set theory for a long time [37], seems especially well suited for them.
A fuzzy similarity relation on a domain Ω is a mapping S : Ω ×Ω → [0, 1] that
assigns to every pair (w,w′) of elements of Ω a number S(w,w′) measuring how
much w and w′ resemble each other according to some given criteria, in the sense
that the higher S(w,w′), the more they resemble. In particular, S(w,w′) = 1
means that w and w′ are indistinguishable, while S(w,w′) = 0 means that w and
w′ have nothing in common. One can also understand δ(w,w′) = 1 − S(w,w′)
as a kind of distance between w and w′. Usual and reasonable properties re-
quired of such functions are reflexivity and symmetry, i.e., S(w,w) = 1 and
S(w,w′) = S(w,w′), for any w,w′ ∈ Ω. S is called separating if it verifies that
S(w,w′) = 1 iff w = w′. Sometimes, S is required additionally to fulfill a weak
form of transitivity, viz., S(w,w′)⊗S(w′, w′′) ≤ S(w,w′′), where ⊗ is a t-norm.
For our purposes, and unless stated otherwise, we shall consider similarity rela-
tions as separating, reflexive and symmetric fuzzy binary relations.

In some recent literature a fuzzy set based approach to case–based reasoning
has been developed not only from a practical point of view (see, e.g., [23, 7,
10, 6, 12, 21, 8]), but also from the formal modeling point of view [13, 35, 14, 30,
15, 16, 18, 9]. In all these models it is assumed that fuzzy similarity relations
SD and SR on domains of problem description and solution attributes, D and
R, respectively, are known and given beforehand. In particular, several models
have been proposed corresponding to different interpretations of the above CBR
principle in terms of constraints between the fuzzy similarity relations SD and
SR. In this paper, within the class of the so–called non–deterministic models,
we tackle the problem of learning a particular type of global similarity measure
from the set of precedent cases stored in the base case. Namely, given similarity
measures Sa defined on each attribute domain D(a), we show how to determine
a weighting vector for each case in order to define a global similarity on D as
a weighted average of the Sa’s that minimizes the mis–classifications. We check
their adequacy by comparing results with an application of case–based reasoning
in a medical domain that uses a different model. In that model cases are not
attribute–value tuples but they are represented in a relational way. A relational
representation describes objects on the basis of their components and relations
between these components. In Machine Learning there is a wide research field,
Inductive Logic Programming, focused on relational representation of objects
and methods to handle them (see e.g. [28]).

The paper is organized as follows. In Sect. 2 we describe several fuzzy CBR
models. Then, in Sect. 3 we show how to construct fuzzy similarity relations
to be used in the fuzzy CBR models. Sect. 4 explains an alternative approach
using symbolic similarity for comparing relational cases. The results of both
approaches are compared in Sect. 5. The paper finishes with the conclusions.

16 Eva Armengol et al.

2 Fuzzy CBR Models

A first class of models try to model a strong form of the case–based reasoning
principle which reads:

“the more similar are the description values (in the sense of SD),
the more similar are the class values (in the sense of SR)”.

In [13, 14], this principle is modeled by regarding each case c = (d, r) as a fuzzy
gradual rule of the form

If X is approximately d then Y is approximately r.

Here X is a linguistic variable on the domain D of problem description tu-
ples and Y is a linguistic variable on the domain R of solution classes, and
approximately d and approximately r denote fuzzy sets of attribute value tu-
ples close or similar to d and r, and defined on D and R, respectively, by

μapproximately d(d′) = SD(d, d′), μapproximately r(r′) = SR(r, r′).

The semantics of fuzzy gradual rules (see [17]) capture the above intended mean-
ing in the sense that the conditional possibility distribution they induce on D×R
is,

π(r′ | d′) ≤
[
μapproximately d(d′)⇒⊗ μapproximately r(r′)

]
,

where ⇒⊗ is the residuum of a continuous t-norm ⊗. Such a binary operation
on [0, 1] has as fundamental property (independently of ⊗) that

[
x ⇒⊗ y

]
= 1

iff x ≤ y. This means that, given a current problem d0, the best solutions for d0

which can be inferred from the above rule are those r0 such that,[
μapproximately d(d0) ⇒⊗ μapproximately r(r0)

]
= 1,

or equivalently such that,

SD(d, d0) ≤ SR(r, r0).

That is, the best solutions are those r0 with a similarity to r that is at least as
much as the similarity of d0 to d. So, with this interpretation, neighborhoods
around d are transferred to neighborhoods around r. Now, if we consider the
whole case base CB = {ci = (di, ri)}i∈I , and we perform the same kind of
inference for each case (di, ri), then the global solution set will be the conjunctive
aggregation of the individual sets,⋂

i∈I

{r0 ∈ R | SD(di, d0) ≤ SR(ri, r0)}.

One problem here is that, in principle, nothing prevents that this intersection
can be empty, if the case base CB is not fully consistent with the above principle.
In particular this can happen when the case base CB contains cases with very

On Learning Similarity Relations in Fuzzy Case-Based Reasoning 17

similar description attribute values but with different class values. This is why
such a model was called deterministic in [13, 14].

In [18] alternative interpretations of the same principle were considered,
namely by assuming the inequality,

if SD(d1, d2) ≤ SD(d1, d3) then SR(r1, r2) ≤ SR(r1, r3),

(and two other similar ones) to hold for any triple of cases c1 = (d1, r1), c2 =
(d2, r2), c3 = (d3, r3) ∈ CB. But still, these are deterministic models in the above
sense, i.e SD(d1, d2) = 1 implies SR(r1, r2) = 1.

Deterministic models can be felt too strong in many real-world domains, since
in some sense they assume that the description attributes completely characterize
all possible situations. This is not often the case. In contrast the so-called non-
deterministic models assume a weaker form of general CBR principle, in the
sense that “it is only plausible (not necessary) that similar problems have similar
solutions”.

Expressed in terms of the fuzzy similarity relations SD and SR, this weaker
Case-Based Reasoning principle can be expressed by the following rule [13, 14]:

“The more similar are the problem descriptions in the sense of SD, the more
possible the solution classes are similar in the sense of SR.”

This amounts to state that for any case (d, r) in the case base CB, the closer is
the current problem d0 to d, the more plausible r is a solution class for d0. This
can be formalized again as a fuzzy rule,

If X is approximately d then Y is approximately r,

but with a different semantics, corresponding to the so-called possibility fuzzy
rules (see [17]). The semantics of such a possibility fuzzy rule is “the more
X is approximately d (i.e. the closer is a description to d), the more possible
(plausible) is approximately r a range for Y (i.e. the more plausible are those
solutions close to r)”. In terms of possibility distributions, the above rule induces
the following constraint on the conditional possibility distribution on D×R:

π(y | x) ≥ min(μapproximately d(x), μapproximately r(y)).

In other words, the plausibility degree of y being a solution for the problem x
is bounded from below by the similarity degree between y and r, truncated by
the degree to which x is similar to s. When we consider the whole case–base
CB = {ci = (di, ri)}i∈I , then the joint constraint induced by all fuzzy rules
corresponding to the cases in CB is the disjunctive aggregation of the individual
ones:

π(y | x) ≥ max
(di,ri)∈CB

min(μapproximately di(x), μapproximately ri(y)).

Then, given a current description problem d0, such a joint constraint induces a
plausibility ordering πd0 on possible solutions or classes for d0 by,

πd0(y) = max
(di,ri)∈CB

min(μapproximately di(d0), μapproximately ri(y)) =

18 Eva Armengol et al.

max
(di,ri)∈CB

min(SD(di, d0), SR(ri, y)),

for all y ∈ R, in the sense that the greater πd0(y), the more plausible y as a
solution for d0. Sometimes, plausibility values in themselves are not particularly
important but only the ordering they induce on the set R of solution classes:

y d0 y′ iff πd0(y) ≤ πd0(y
′).

Finally, notice that if new cases are added to the case base CB, πd0(y) can
only increase, and never decrease, according to the idea that new cases may
incorporate new solutions but not discard old ones. Non–deterministic models
have been also considered for instance in [22, 10].

3 Learning Similarity Relations
for a Non-deterministic CBR Model

As already mentioned in Introduction, in this chapter we are concerned with
learning aspects of similarities within a non–deterministic fuzzy set approach
to CBR, with some particular choices. In this section, we first set our working
assumptions for the model, and then we describe how the relevant similarity
relations can be constructed from the case–base.

3.1 Working Assumptions and Relevant Similarity Relations

Background knowledge is assumed for each attribute a ∈ A under the form of
a similarity relation Sa on D(a), the domain of a. This similarity is a function
Sa : D(a) × D(a) → [0, 1]. Additionally, we assume a similarity relation Scl

defined over the set of classes. This similarity was denoted by SR in the previous
section but from now on we use for it the symbol Scl to stress the fact that it
is defined over the set of classes. This corresponds to a function Scl : D(Cl) ×
D(Cl)→ [0, 1].

The goal is to define a similarity relation SD among the cases in the case–base
CB and an arbitrary problem description. Our working assumption is that such
similarity will be defined as a weighted average of the existing similarity functions
Sa for each attribute. Of course, we then need additional information to assess
the relevance of each attribute for retrieving a particular case. In particular,
we shall assume there is a weighting vector for each case that evaluates the
importance of each attribute when computing the similarity between this case
and another arbitrary case description in the case–base CB. This is formalized
in the following definition.

Definition 1. Let CB ⊂ D×R be a case–base, A the set of attributes consid-
ered in D, and, for each a ∈ A, let Sa be the corresponding similarity relation
on D(a). Finally, let wc be the weighting vector1 attached to a particular case
1 w = (w1, · · · , wn) is a weighting vector of dimension n iff wi ≥ 0 for all i = 1, ..., n,

and
∑

i=1,n wi = 1.

On Learning Similarity Relations in Fuzzy Case-Based Reasoning 19

c ∈ CB. Then, the similarity relation value defined for an arbitrary case descrip-
tion d ∈ D and c is,

SD(c, d) =
∑
a∈A

wc(a) · Sa(a(c), a(d)). (1)

As Sa(·, ·) ∈ [0, 1] and as wcb is a weighting vector, it follows that S(·, ·) is a
function into the interval [0, 1] as well.

Note that, formally, SD so defined is a function on CB × D, although for
cases in CB we only make use of their description attribute values. Also, this
definition is not commutative in the sense that it is the case c who determines
the weighting vector (the weighting vectors may be different for two different
cases), so the first argument in SD plays a preeminent role.

Once we have defined the similarity relation SD, we can define how close is
a problem description to a solution class just by comparing it to every case in
CB that shares that solution class.

Definition 2. Let CB, D, A and SD be defined as in Definition 1. Then, the
similarity between a case description d ∈ D and a solution class r ∈ D(cl) is
defined as follows:

SCL(d, r) = max
c∈CB,cl(c)=r

SD(c, d).

In turn, by this definition, we can define similarity between arbitrary pair of
case descriptions as a kind of transitive closure of the SCL function as follows.

Definition 3. Let CB, D, A, SD and SCL be defined as in Definition 2. Let
⊗ be a continuous t-norm. Then, the ⊗-similarity between two arbitrary set of
case descriptions d1, d2 ∈ D is defined as follows:

SCC(d1, d2) =
∑

r∈D(cl)

SCL(d1, r)⊗ SCL(d2, r).

Among others, possible choices for ⊗ are e.g. ⊗ = · or ⊗ = min.

3.2 Construction of the Numerical Similarity Function SD

Definition 1 introduces the similarity value SD(c, d) between an arbitrary prob-
lem description d and a case c in the base case CB. Recall that this similarity
has been defined as the weighted mean of the attribute similarities Sa for a in
A. However, expression (1) makes it explicit that the function is not symmetric
in the sense that the two arguments are not equally important. Instead, the role
of the case c is preeminent because we make the weighting vector wc depending
on c. Next, we describe how to learn the appropriate weights for each c ∈ CB.

In the following we assume that a case cb ∈ CB is known and fixed along
the learning process. In fact, the same process we describe below for cb will be
applied for each case in CB. Naturally, for each case cb, the process would lead
to its corresponding weighting vector wcb.

20 Eva Armengol et al.

To compute the vector, besides of the case cb, we need to fix a subset of the
case–base, i.e., a collection of problem descriptions for which their solution class
is known. This is the learning set, denoted by LS. Of course, we shall also make
use of the similarities Sa for each attribute a ∈ A.

Then, weights determination can be formulated in the following way.

Problem 1 (Weight Determination Problem). Let LS be the learning set and
cb ∈ CB a case in the case–base. Weight Determination Problem is to find the
set of weights wcb in (1) such that, for each c = (d, r) ∈ LS, the similarity value
between cb and d, SD(cb, d), approximates as much as possible the similarity
between the solution classes cl(cb) and cl(c) = r, Scl(cl(cb), r).

Using the square difference to measure the divergence between the two sim-
ilarities (i.e., the similarity between the two cases and the similarity between
their classes), we can re–formulate the problem as follows:

Problem 2. Let LS = {cj}j∈J be the learning set and cb a case in the case–base.
Then Weight Determination Problem relative to cb is to find the set of weights
wcb(a1), ..., wcb(an) that minimizes the expression,∑

cj∈LS

(∑
ai∈A

wcb(ai) · Sai(ai(cj), ai(cb))− Scl(cl(cj), cl(cb))
)2
,

subject to the following constraints over wcb,
(1)
∑

ai∈A wcb(ai) = 1, and
(2) wcb(ai) ≥ 0 for all ai ∈ A.

Now, we introduce simplified terms for similarities so that the problem can
be further simplified. The notation we will use is,

– aj
i = Sai(ai(cj), ai(cb)) is the similarity between the values corresponding to

i-th attribute in A for the case cb and the j-th case in LS;
– bj = Scl(cl(cj), cl(cb)) is the similarity between the solution classes of cb and

the j-th case in LS;
– wi = wcb(ai) corresponds to the weight of the attribute ai.

In this way, the data available to the problem has the form of Table 1 and
Weights Determination Problem corresponds to,

Problem 3.
Minimize

∑|LS|
j=1

(∑|A|
i=1 wia

j
i − bj

)2

Subject to :
−
∑|A|

i=1 wi = 1

− wi ≥ 0, for all i = 1, ..., |A|

The minimization problem formulated above has been studied in [19], [32]
and [33] in the general framework of parameter learning for aggregation oper-
ators. [19] introduced a method based on the gradient descent for learning the

On Learning Similarity Relations in Fuzzy Case-Based Reasoning 21

Table 1. Structure of the available data for finding the weighting vector.

Sa1 Sa2 · · · Sa|A| SCl

a1
1 a1

2 · · · a1
|A| b1

a2
1 a2

2 · · · a2
|A| b2

· · · · · · · · · · · · · · ·
a
|LS|
1 a

|LS|
2 · · · a

|LS|
|A| b|LS|

weights of the OWA operator [36]. The similarities between the OWA and the
Weighted Mean make the method equally suitable for the Weighted Mean. In
[32] an algorithm based on Active Set Methods was studied and applied to some
medium–size data sets (problems up to 34 attributes were considered). Results
reported were positively compared with the ones in [19]. More recently, [33] stud-
ied some issues left open in [32]. In particular, the work studied the situation
with linearly dependent attributes. Then, an algorithm was introduced to deal
with such situation. In this work we apply the algorithms introduced in [32] with
the extension described in [33]. Related results about parameter learning for ag-
gregation operators include [20], [26] and [31]. By the way, these latter results
have been defined for learning parameters of more complex operators (e.g., the
Choquet integral).

Methods based on active sets (see e.g. [29]) rely on the simplicity of computing
the solution of quadratic problems with linear equality constraints. Iterative
algorithms have been developed in which at each step inequality constraints are
partitioned into two groups: those that are to be treated as active (considered as
equality constraints) and those inactive (essentially ignored). Once a partition is
known, the algorithm proceeds, by moving on the surface defined by the working
set of constraints (the set of active constraints), to an improved point. In this
movement, some constraints are added to the working set and some others are
removed. This process is repeated until the minimum is reached. When the
function to be minimized is convex (this is the case for the weighted mean),
the method finds the minimum and, although the method is iterative, the final
minimum is not influenced by the initial weight vector.

However, an important problem arises in practical applications of these meth-
ods: some data can have linearly dependent columns (in our case, this corre-
sponds to non–independent attributes). In this case, the algorithm fails to give
a solution. In fact the problem arises only, as shown in [33], when there is a
column/attribute ai that can be written as a linear combination of the others
of the form ai =

∑
j pjaj in such a way that

∑
j pj = 1. In such case, when

removing one of the linearly dependent columns, we get the same minimum we
would get when considering all the attributes. Therefore, an alternative approach
is to consider as many sub–problems as dependent attributes, where each sub–
problem corresponds to the original one after removing one of the dependent
attributes. The solution with a minimum error would correspond to the solution
of the original problem.

22 Eva Armengol et al.

4 A Symbolic Similarity Approach to Relational CBR

Reasoning and learning from cases is based on the concept of similarity, this is
clear, but there exist several ways of modeling similarity. Numerical (or fuzzy)
similarity–based approaches to case retrieval, like the ones we have considered
in previous sections, are mainly used for cases represented as attribute–value
vectors. Instead, in this section we consider another approach where cases are
represented in a scheme that uses relations among entities. We will call this
setting relational case–based learning. In this approach, the similarity between
two cases is understood as what they “share”. But, in addition, we need to be
able to evaluate whether what they share is “relevant” or “important” (or to
what degree it is relevant or important) for the problem at hand. In this section,
we first introduce concepts of symbolic similarity and feature terms, the basis
of the formalism we will use for representing relational cases. Then, we present
LID (for Lazy Induction of Descriptions), a method for relational case–based
learning. LID, introduced in [5], is based on two main notions: 1) the similarity
is constructed as a symbolic description of what is shared between precedent
cases and a specific problem to be classified, and 2) there is some assessment
function to help the system decide which relations among entities are important
or relevant to be shared with the precedent cases.

4.1 Symbolic Similarity and Feature Terms

In real domains it can be useful to represent knowledge in a structured way.
As a means to do so, in [4] the authors introduced the so–called feature terms
(also called feature structures or ψ-terms) that are a generalization of first order
terms [2, 11]. Formally, we define a feature term as follows.

Definition 4. Given a signature Σ = 〈S, A,≤〉, where S is a set of sort symbols,
A is a set of attribute symbols and ≤ is a decidable partial order on S, and a
set ϑ of variables, we define a feature term as an expression of the form,

ψ ::= X : s[a1
.= Ψ1 . . . an

.= Ψn], (2)

where X is a variable in ϑ called the root of the feature term, s is a sort in S,
a1 . . . an are attributes in A, and each Ψi is a set of feature terms and variables.
When n = 0, we are defining a variable without features. The set of variables
occurring in ψ is noted as ϑψ.

Figure 1 shows the description of a diabetic patient using feature terms.
The patient patient-371 is a feature term of sort patient (sorts are underlined
in the figure). This patient is described by two attributes, diabetes-data and
consultation. The value of diabetes-data is a feature term of sort diab-data that
has, in turn, two attributes, dm-type and dm-year.

Definition 5. A path path(X, ai) is defined as a sequence of attributes going
from the variable X to the feature ai.

On Learning Similarity Relations in Fuzzy Case-Based Reasoning 23

patient-371 =

⎡⎢⎢⎢⎣

patient

diabetes-data
.
=

⎡⎣diab-datadm-type
.
=2

dm-year
.
=1998

⎤⎦

consultation
.
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

consultation

additional-treatment
.
=

⎡⎢⎢⎣
additional-treatment
hypertension

.
=false

dyslipidaemia
.
=true

other-t
.
=false

⎤⎥⎥⎦

eye-exam
.
=

⎡⎢⎢⎢⎢⎢⎢⎣

eye

visibility
.
=

⎡⎣visibilitymaculopathy
.
=false

retinopathy
.
=false

⎤⎦
photocoagulation

.
=false

cataract
.
=false

⎤⎥⎥⎥⎥⎥⎥⎦

measurements
.
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

measurements
macro-compl?

.
=false

q-hba1c
.
= low

blindness
.
=false

q-bp
.
= low

smoker?
.
=false

q-albumin
.
= low

q-cholesterol-total
.
=high

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎦
Fig. 1. Partial description of a diabetic patient. Here only 22 attributes are shown out
of a total of more than 80 paths present in the complete description of the patient.

Some examples of paths in the description of figure 1 are the following:

– path(patient-371, retinopathy)
= patient-371.consultation.eye-exam.visibility.retinopathy;

– path(patient-371, dyslipidaemia)
= patient-371.consultation.additional-treatment.dyslipidaemia;

– path(consultation, visibility) = consultation.eye-exam.visibility.

Sorts have an informational order relation (≤) among them, where s ≤ s′

means that s is more general than s′ (or s′ has more information than s), we
also say then that s′ is a sub–sort of s. When a feature has unknown value it is
represented as having the sort any. All other sorts are more specific than any.

There is an ordering relation, called subsumption, among feature terms de-
fined as follows:

Definition 6. A feature term ψ subsumes another feature term ψ′, written ψ �
ψ′, when the following conditions are satisfied: 1) the sort of ψ′ is either the
same or a sub–sort of the sort of ψ, 2) if Aψ is the set of attributes of ψ and Aψ′

is the set of attributes of ψ′ then Aψ ⊆ Aψ′ and 3) the feature terms of values
of the attributes in Aψ and Aψ′ satisfy in turn the two conditions above.

24 Eva Armengol et al.

Function LID(d, St, ΔS, R)
if stopping-condition(ΔS)

then return Class(ΔS)
else ad := Select-attribute (d, ΔS , R)

S′
t := Add-path(path(d,ad), St)

ΔS′ := Discriminatory-set (S′
t, ΔS)

LID(d, S′
t, ΔS′ , R)

end-if
end-function

Fig. 2. The LID algorithm. St is the similarity term, ΔS is the discriminatory set
associated with St, R is the set of solution classes, class(ΔS) is the class ri ∈ R to
which belong all the elements in ΔS.

Intuitively, a feature term ψ subsumes ψ′ when all information in ψ is also
contained in ψ′.

Definition 7. A feature term St is a similarity term of two cases c1 and c2 if
and only if St � c1 and St � c2, i.e., the similarity term of two cases subsumes
both cases. The set ΔS of cases subsumed by the similarity term St is called the
discriminatory set associated with St.

As we will see in Section 4.2, a similarity term can be seen as a symbolic
similarity among cases. In short, given a problem description d, LID classifies
it as belonging to the solution class r ∈ R when all the cases in the discrimi-
natory set ΔS associated with the similarity term St have r as solution class.
This assumption can be made because LID builds the similarity term taking
into account the attributes that are more relevant for classifying the problem
d. Intuitively, LID considers that if the problem description d shares a set of
relevant attributes (those in the similarity term St) with a (sub)set of cases be-
longing all of them to the same solution class r, then d can also be classified as
belonging to r. In Section 4.2 we explain how to select the relevant attributes of
a case to form the similarity term.

4.2 The LID Method

In this section we describe the method LID, useful for relational case–based
learning. LID combines the notion of symbolic similarity with an heuristics that
measures the importance of an attribute as the distance between the partition
induced by the values of this attribute and the correct one. The criterion used
in LID is based on the discrimination power of the similarity term which is
evaluated using the so-called RLM distance [25].

The main steps of the LID algorithm are shown in Figure 2. Input pa-
rameters of the LID algorithm are a problem description d to be classified, a
similarity term St, the discriminatory set ΔS associated with St and the set of
solution classes R = D(cl) where the problem d can be classified. In the first
call LID(d, St, ΔS ,R), the similarity term St is initialized to the most general

On Learning Similarity Relations in Fuzzy Case-Based Reasoning 25

description (the one having no features) and the set ΔS is initialized to CB, the
whole case base.

The stopping condition of LID is when all the cases in the discriminatory
set ΔS belong to only one solution class r0 ∈ R. In such a situation LID gives
the similarity term St as an explanation of the classification of d in r0 and ΔS

is the support set justifying that result2. The similarity term St can be viewed
as a partial description of the solution class r0 because it contains a subset of
attributes that are discriminating enough to classify a case as belonging to r0.
Notice however that St is not the most general “generalization” of r0, since in
general St does not subsume all the cases belonging to r0 but only a subset of
them (those sharing the attributes of St with the new problem). The similarity
term St depends on the current problem, for this reason there are several partial
descriptions (i.e. similarity terms) for the same solution class.

In the first call of LID, the stopping condition is not satisfied since ΔS

contains all the cases in CB. This means that the similarity term St is satisfied
by cases belonging to several solution classes, therefore St has to be specialized.

The specialization of a similarity term St is achieved by adding attributes
to it. LID considers as candidates to specialize St only those attributes that
are present in the problem description d to be classified. Let Al be the set of
attributes in d with no unknown value.

The next step of LID is the selection of an attribute ad ∈ Al to specialize
the similarity term St. The selection of the most discriminatory feature in the
set Al is done heuristically by using the RLM distance over the features in Al.

The RLM distance assesses how similar are two partitions (in the sense that
the smaller the distance, the more similar they are). Each attribute ai ∈ A
induces a partition on the case–base, where classes spij are formed by cases
having the same value for the attribute ai. The correct partition is the partition
Pc = {r̄1, . . . , r̄m}, where the classes correspond to the solution classes, i.e. the
cases belonging to r̄i are those with the same solution class ri. For each partition
Pi induced by an attribute ai, LID computes its RLM distance to the correct
partition Pc. The proximity of the partition Pi to Pc estimates the relevance of
feature ai.

Definition 8. Given two partitions Pi = {spi1, . . . , spin} and Pc = {r̄1 . . . r̄m}
of the case base CB, the RLM distance between them is computed as,

RLM(Pi,Pc) = 2− I(Pi) + I(Pc)
I(Pi ∩ Pc)

,

with

I(Pi) = −
ni∑

j=1

pj · log2pj ; pj =
|CB ∩ spij |
|CB| ;

2 There is an abnormal stopping condition when there cases in ΔS belonging to dif-
ferent solution classes but the similarity term St cannot be further specialized. In
such a case, the output of LID is not a single class but the set of solution classes of
the cases in ΔS.

26 Eva Armengol et al.

I(Pc) = −
m∑

k=1

pk · log2pk ; pk =
|CB ∩ r̄k|
|CB| ;

I(Pi ∩ Pc) = −
ni∑

j=1

m∑
k=1

pjk · log2pjk ; pjk =
|CB ∩ r̄k ∩ spij |

|CB| ,

where I(Pi) measures the information contained in the partition Pi; ni is the
number of possible values of the attribute inducing Pi; pj (pk resp.) is the prob-
ability of occurrence of the class spij (r̄k resp.), i.e., the proportion of examples
in CB that belong to spij (r̄k resp.); m = |Pc|, i.e., the number of solution
classes; I(Pi ∩ Pc) is the mutual information of the two partitions; and pjk is
the probability of the intersection r̄j ∩ spik, i.e., the proportion of examples in
CB that belong to r̄j and to spik. In this definition, as it is common in the case
of entropy, 0 log 0 is defined as zero.

Definition 9. Let Pi and Pj be partitions induced by attributes ai and aj re-
spectively. We say that ai is more discriminatory than aj iff RLM(Pi,Pc) <
RLM(Pj,Pc), i.e., when the partition induced by ai is closer to the correct par-
tition Pc than the partition induced by aj.

LID uses the more discriminatory than relationship to estimate the attributes
that are more relevant for the purpose of classifying a current problem. Let us
call ad the most discriminatory attribute in A, i.e., ad induces the partition of
the discriminatory set closest to the correct partition.

The specialization step of LID defines a new similarity term S′
t by adding to

the current similarity term St the sequence of attributes specified by path(d, ad).
After this addition S′

t has a new path with all the attributes in the path taking
the same value they take in d. After adding the path path(d, ad) to St, the new
similarity term S′

t = St + path(d, ad) subsumes a subset of cases in ΔS , namely
the discriminatory set ΔS′ .

Next, LID is recursively called with the similarity term S′
t and the discrimi-

natory set ΔS′ . The recursive call of LID has ΔS′ as parameter (instead of ΔS)
because the cases that are not subsumed by S′

t will not be subsumed by any
further specialization. The process of specialization reduces the discriminatory
set ΔSn ⊆ ΔSn−1 ⊆ . . . ⊆ ΔS′ ⊆ ΔS at each step. This specialization of the
discriminatory set will provoke the algorithm to terminate.

5 Application

In this section, we describe the results obtained when applying the non–determin-
istic fuzzy CBR approach, with the fuzzy similarity learning method described
in Section 3, into a medical domain (in a Diabetis related problem). Similarity
relations have been built for a set of cases and results are reported and compared
with those obtained by the LID method. Additionally, we describe the classifica-
tion results obtained when using the leave one out approach. The section starts
with the description of the problem and follows with the description and analysis
of the experiments.

On Learning Similarity Relations in Fuzzy Case-Based Reasoning 27

5.1 The Diabetes Domain

Diabetes Mellitus is one of the most common human chronic diseases. There are
two major types of diabetes: diabetes type I (or insulin–dependent) and diabetes
type II (or non–insulin-dependent). The diabetes type I is usually found in people
under 40 years and is the consequence of a pancreatic malfunction. Instead, dia-
betes type II is more frequent in aged people and it could be explained as a loss of
effectivity of the insulin on the body cells. In fact, both forms of diabetes produce
the same short–term symptoms (i.e., frequent urination, increase of thirst and
high blood glucose values) and long–term complications (i.e., blindness, renal
failure, gangrene, coronary heart disease and stroke). The main concern in the
management of diabetes is to reduce the risk of the patient to develop long–term
complications. In 1989, representatives of Government Health Departments, pa-
tient organizations and diabetes experts celebrated a meeting in Saint Vincent
(Italy) (http://www.show.scot.nhs.uk/crag/topics/diabetes/vincent.htm) to
elaborate some recommendations to be followed in the diabetes management
with the goal of minimizing the diabetic complications of the patients.

Since then, experts have analyzed a lot of data that allowed to define the
main parameters (attributes) that prevent the development of complications. In
particular, they found that keeping the analytical data of the patient as close
as possible to the “normal” ranges, clearly reduces the complication risk. In
other words, the patient has to modify some of his life habits (like diet, physical
exercise, alcohol ingestion or smoking habits) in order to maintain analytical
parameters, such as the cholesterol, the blood pressure or the creatinine, within
the same ranges than those of a healthy person. Furthermore, it is necessary a
strict eye and foot control to prevent the development of a retinopathy and of a
polyneuropathy respectively.

In this work we have considered the assessment of infarct risk of a diabetic
patient. Four solution classes are considered: low, moderate, high and very-high.
The assessment of the risk can be seen as a classification task where the goal
is to identify the solution class to which the new problem belongs. In the next
section we describe the process of building a similarity function to determine
the attributes that are more important in order to assess the infarct risk of a
diabetic patient. An evaluation of the built similarity function is also considered.

5.2 Empirical Description and Analysis

As briefly described above, the procedure explained in Section 3.2 has been
applied to find similarities between cases. We have considered a case base CB
with 30 cases describing patient analytical data and patient’s risk assessment
(real analytical data was supplied by the Mataró Hospital and the risk of each
patient was assessed by a physician). Each case was described in terms of 84
attributes.

Then, the procedure outlined in Section 3.2 for the determination of the
weighting vectors has been applied. In this way, we have learned a weighting
vector for each case cb ∈ CB. To do so, we have used as learning set the whole

28 Eva Armengol et al.

CB after removing the case cb. This is, for each cb ∈ CB, LScb = CB − {cb}.
The learning stage lead to 30 weighting vectors, each one of dimension 84. This
process required first the definition of similarity functions Scl and Sa for all
a ∈ A.

Following the process explained in Section 3.2 we built a matrix similar, in
structure, to the one in Table 1. It has to be mentioned that at that point, and
before applying the learning algorithm, we considered to run the experiment with
both the original data and normalized data. In the second case, each variable
was normalized in [0,1] defining

a′ij =
(ai

j −minka
i
k)

(maxkai
k −minkai

k)
.

The normalization was considered because the similarity range of some variables
never reached 0 or 1 for the cases considered in the learning set.

Linear dependency problems raised in the computation of the weights for 15
of the cases in CB (for both normalized and non-normalized data). In these cases,
we proceeded, as explained in Section 3.2, to remove one dependent attribute
at a time and computing the weights for all these subproblems. For all of these
subproblems, the best weighting vector was selected. Nevertheless, some of the
problems still had linear dependent attributes. For instance, the 6–th and 7–th
cases had more than two dependent columns when normalized data was consid-
ered, and the same occurred for the 7–th case with the non–normalized data.
No additional treatment was applied to these cases and thus the best weighting
vector selected was in fact not relevant.

Results show that most weights are almost zero and that only a few of them
are significantly greater than zero. This is analogous to the procedure adopted
by the physician, who only considers a few number of attributes. Therefore, the
method is appropriate for selecting relevant attributes and for disregarding the
other ones. Table 2 displays the number of relevant weights for all the cases.
Two thresholds have been used in this table for considering an attribute to be
relevant: 0.1 and 0.05. The table shows that the number of relevant attributes
found are similar with normalized and non-normalized data.

A detailed analysis of the relevant attributes shows that, for several cases,
the set of relevant attributes is similar in both CBR approaches, the numerical
fuzzy similarity approach and the LID method. For example, LID considers the
attribute smoke as relevant for 12 cases in the case base. For 8 out of these 12
cases the corresponding weighting vectors assign relevant weights to wcb(smoke).
Table 3 reviews these cases and provides the relative position of the correspond-
ing weights in the weighting vectors obtained for the same cases. Similarly, LID
finds as relevant the attributes Chol− total (10 cases), HbA1c (4 cases), TG (1
case) and Edu−member (1 case). These attributes have also non-zero values in
the corresponding weights (5 cases for the Chol− total, 4 for HbA1c, 1 case for
both the TG and Edu−member).

The study also shows that there are some cases when this correspondence
between attributes in both approaches is not straightforward. Nevertheless, some

On Learning Similarity Relations in Fuzzy Case-Based Reasoning 29

Table 2. Number of relevant weights considering two thresholds (0.05 and 0.1): non
normalized data (top) and normalized data (bottom). Each column corresponds to one
case from CB.

Threshold Number of relevant weights wcb(ai) for all 30 cases in CB

0.05 9 7 7 6 7 8 0 7 8 7 6 7 8 8 8 8 6 8 8 8 4 8 8 7 6 8 6 8 8 8
0.1 2 3 4 4 2 3 0 2 3 5 2 1 1 3 3 2 3 2 3 3 3 2 2 3 3 3 3 1 2 2

0.05 7 7 7 7 7 0 0 7 6 8 6 6 7 8 7 8 5 7 7 5 4 8 7 6 6 7 6 7 8 8
0.1 2 3 4 4 4 0 0 2 3 3 1 2 2 3 3 3 4 2 2 3 3 2 2 3 3 3 3 3 3 2

Table 3. Cases where attribute “smoke” was relevant according to the LID method
and the relative position of the corresponding weight in the weighting vectors obtained
for the same cases. (n.r. stands for “not relevant” weight - i.e., too small weight).

Case where Relative position of the weight Relative position of the weight
smoke was relevant in normalized data in non-normalized data

1 4-th 3-rd
2 4-th 4-th
6 4-th n.r.
7 n.r. n.r.
9 n.r. n.r.
16 4-th 4-th
17 4-th 4-th
18 4-th 4-th
19 n.r. n.r.
26 5-th n.r.

Table 4. Assignments obtained in the classification problem.

Correct class Nearest class Other classes

No normalization 13 16 1
Normalization 13 17 0

of the divergences between both methods are due to the presence of similar
or related attributes in both descriptions. For example, the attribute food −
education is considered related with another attribute that informs whether the
patient goes on some diet or belongs to an educational association.

Additionally, to further evaluate the fuzzy similarity CBR approach, we have
considered the classification problem using the previous “diabetes” case base
CB. The evaluation has been based on the leave one out approach. This is, each
time we have removed one case from the case–base and we have computed the
similarity of this case with all the remaining cases in the case–base. Table 4
displays the number of correct classifications using this approach. As it can be
seen, a little less than half of the cases were correctly classified and for the mis–
classified ones, the method assigned the nearest solution class. Here, the nearest
solution class is understood in terms of the similarity Scl on the set R of possible
classes. Although the totally correct results in the classification process are not

30 Eva Armengol et al.

as good as expected, they are indeed quite acceptable as soon as we take into
account that, as a matter of fact, we introduced a similarity relation on the
solution classes, so not all classes different from the correct one are equally bad.
In terms of the plausibility orderings mentioned in Section 2, Table 4 shows that
the one of two more plausible solutions is (almost) always is the correct one.

From the case base perspective, the difficulty in correctly classifying the cases
can be explained in terms of a lack of redundancy in the case base. It is important
to remember that the case–base consisted of only 30 cases in a 84-dimensional
space (84 attributes). Therefore, the space of possible problem descriptions is
very large, and according to the results, most cases are highly unique in the
case–base. In fact, LID yields similar results when evaluated using also the leave
one out approach. For the same case base, 4 cases were incorrectly classified,
while for the rest of the cases LID always produced two answers, the correct
class and one of its nearest classes.

6 Conclusions and Future Work

In this paper, within a fuzzy CBR model, we have described a method to con-
struct a particular type of global similarity measure in the problem description
domain. Namely, given a case base CB, the similarity between a problem de-
scription d and a case c ∈ CB is defined in terms of a weighted average of the
attribute similarities, where the weights are particular to each c. We have ap-
plied the approach in a medical domain and compared with another case–based
reasoning method, LID, which uses a relational approach with feature terms as
a kind of symbolic similarity between cases. The comparison results shows the
suitability of the approach.

In particular, results show that only a few attributes are relevant for each
case (this is analogous to the procedure adopted by physicians) and that these
attributes correspond, in general, to the ones selected by the alternative case–
based reasoning method. Classification performances of both approaches also
lead to similar results.

Future extensions of this work include the study of additional types of global
similarity measures (e.g., using other aggregation operators instead of the
weighted mean in (1)). The consideration of non–linear models for defining the
similarity relations relate this work with Kernel functions and non–linear Sup-
port Vector Machines [34] that, as it is known, is a classification method that
operates by mapping data into an alternative and higher–dimensional space so
that classes are linearly separable. In our case, the consideration of such trans-
formations would probably improve the performance of the system when still
using weighted average based similarity. This process would be an analogue to
the one described in [27] for using the Fuzzy C-Means clustering method in the
new high–dimensional space.

Acknowledgments

The authors are partially supported by the EU project IBROW (IST-1999-
2005) and the CICYT projects STREAMOBILE (TIC2001-0633-C03-02) and

On Learning Similarity Relations in Fuzzy Case-Based Reasoning 31

e-INSTITUTOR (TIC2000-1414). The authors thank Dr. Albert Palaudàries for
his assistance in developing the diabetes application.

References

1. Aamodt, A., Plaza, E. Case-based reasoning: Foundational issues, methodological
variations, and system approaches. AI Communications 7, 1994, pp. 39–59.

2. Aı̈t-Kaci, H., Podelski, A. Towards a meaning of LIFE. J. Logic Programming 16,
1993, pp. 195–234.

3. Armengol, E., Palaudaries, A., and Plaza, E. Individual prognosis of diabetes long–
term risks: A CBR approach. Methods of Information in Medicine (special issue
on prognosis models in medicine: AI and Statistics) 40, 2001, pp. 46–51.

4. Armengol, E., Plaza, E. Bottom-up induction of feature terms. Machine Learning
41, 2002, pp. 259–294.

5. Armengol, E., Plaza, E. Lazy induction of descriptions for relational case-based
learning,in: Machine Learning ECML-2001, Lecture Notes in Artificial Intelligence
2167, Springer, 2001, pp. 13-24.

6. Bonissone, P., Ayub, S. Representing cases and rules in plausible reasoning systems,
in: Proceedings of the 1994 ARPA/RL Planning Initiative, Tucson, AZ,USA, 1994,
pp. 305–316.

7. Bonissone P., Cheetman W. (1997). Applications of fuzzy case–based reasoning to
residential property valuation, in: Proceedings of the 6th IEEE Int. Conference on
Fuzzy Systems FUZZ-IEEE’97, Barcelona, Spain, 1997, pp. 37–44.

8. Bonissone, P., López de Mántaras. Fuzzy Case–Based Reasoning Systems, in: Hand-
book of Fuzzy Computing (Ruspini, E., Bonissone, P. P., and Pedrycz, W. (eds.)).
IOS Publishing Ltd., Amsterdam, F 4.3: pp. 1–17.

9. Burkhard, H.-D., Richter, M. On the notion of similarity of case–based reasoning
and fuzzy theory, in: Soft Computing in Case Base Reasoning (S. K. Pal, T. S.
Dillon, and D. S. Yeung (eds.)). Springer, Berlin, 2001, pp. 29–46.

10. de Calmès, M., Dubois, D., Hüllermeier, E., Prade, H., and Sèdes, F. Case–based
querying and prediction: A fuzzy set approach, in: Proc of the IEEE International
Conference on Fuzzy Systems, Hawaii, USA, 2002, pp. 735–740.

11. Carpenter, B. The Logic of Typed Feature Structures. Tracts in Theoretical Com-
puter Science. Cambridge Univ. Press, Cambridge, 1992.

12. Cheetham, B., Cuddihy, P., and Goebel, K. Applications of soft CBR at General
Electric,in: Soft Computing in Case Base Reasoning (S. K. Pal, T. S. Dillon, and
D. S. Yeung (eds.)). Springer, Berlin, 2001, pp. 335-365.

13. Dubois, D., Esteva, F., Garcia, P., Godo, L., Lòpez de Màntaras, R., and Prade,
H. Fuzzy modelling of case–based reasoning and decision, in: Proceedings of the
2nd International Conference on Case–Based Reasoning ICCBR-97. Lecture Notes
in Artificial Intelligence 1266, 1997, pp. 599–610.

14. Dubois, D., Esteva, F., Garcia, P., Godo, L., Lòpez de Mantaras, R., and Prade,
H. Fuzzy set modeling in case-based reasoning. International Journal of Intelligent
Systems 13:4, 1998, pp. 345–373.

15. Dubois D., Hüllermeier E., and Prade H. (2000), Formalizing case–based inference
using fuzzy rules, in: Soft Computing in Case–Based Reasoning (S.K. Pal, D.Y. So,
and T. Dillon, (eds.)). Springer, Berlin, 2000, pp. 47–72.

16. Dubois D., Hüllermeier E., and Prade H. (2000), Flexible control of case–based
prediction in the framework of possibility theory, in: Proceedings of EWCBR’2000.
Lecture Notes in Computer Science, 1998, pp. 61–73.

32 Eva Armengol et al.

17. Dubois D., Prade H. What are fuzzy rules and how to use them.Fuzzy Sets and
Systems 84, 1996, pp. 169–185.

18. Esteva, F., Garcia, P., and Godo, L. Fuzzy similarity–based models in case–based
reasoning, in: Proceedings of the 11th IEEE International Conference on Fuzzy
Systems FUZZ-IEEE 2002, Hawaii, USA, 2002, pp. 1348–1353.

19. Filev. D. P., Yager, R. R. On the issue of obtaining OWA operator weights. Fuzzy
Sets and Systems 94, 1998, pp. 157–169.

20. Grabisch, M., Nguyen, H. T., and Walker, E. A. Fundamentals of Uncertainty
Calculi with Applications to Fuzzy Inference. Kluwer, 1995.

21. Hansem, B., Riordan, D. Fuzzy case–based prediction of ceiling and visibility,in:
Proceedings of the 1st Conference on Artificial Intelligence. American Metereolog-
ical Society, 1998, pp. 118–123.

22. Hüllermeier, E., Dubois, D., and Prade, H. Knowledge based extrapolation of
cases: a possibilistic approach, in: Proceedings IPMU’2000, Madrid, Spain, 2000,
pp. 1575–1582.

23. Jaczynski M., Trousse B. Fuzzy logic for the retrieval step of a case–based reasoner,
in: Proceedings of the EWCBR’94, 1994, 313–321.

24. Kolodner J. Case-Based Reasoning. Morgan Kaufmann Publishers, 1993.
25. López de Mántaras, R. A distance-based attribute selection measure for decision

tree induction. Machine Learning 6, 1991, pp. 81–92.
26. Marichal, J.-L., Roubens, M. Determination of weights of interacting criteria from

a reference set. Papiers de Recherche, Faculté d’Economie de Gestion et de Sciences
Sociales, Groupe d’Etude des Mathematiques du Management et de l’Economie,
1999, N. 9909.

27. Miyamoto, S., Suizu, D. Fuzzy c-Means clustering using transformations into high
dimensional spaces, in: Proceedings SCIS&ISIS (CD-ROM), Tsukuba, Japan,
2002.

28. Muggleton, S., De Raedt, L. Inductive logic programming: Theory and methods.
Journal of Logic Programming 19-20, 1994, pp. 629–679.

29. Luenberger, D. G. Introduction to Linear and Nonlinear Programming. Addison–
Wesley, 1973.

30. Plaza, E., Esteva, F., Garcia, P., Godo, L., and López de Màntaras, R. A logi-
cal approach to case–based reasoning using fuzzy similarity relations. Information
Sciences 106, 1998, pp. 105–122.

31. Tanaka, A., Murofushi, T. A learning model using fuzzy measure and the Choquet
integral,in: Proceedings of the 5th Fuzzy System Symposium, Kobe, Japan, 1989,
pp. 213–217 (in Japanese).

32. Torra, V. On the learning of weights in some aggregation operators: the weighted
mean and OWA operators. Mathematics and Soft Computing 6, 2000, pp. 249–265.

33. Torra, V. Learning weights for the quasi–weighted means. IEEE Transactions on
Fuzzy Systems 10:5, 2002, pp. 653–666.

34. Vapnik, V. N. The Nature of the Statistical Learning Theory 2nd ed., Springer,
New York, 2000.

35. Yager R. R. Case–based reasoning, fuzzy systems modelling and solution compo-
sition, in: Proceedings of ICCBR-97, 1997, pp. 633–643.

36. Yager, R. R. On ordered weighted averaging aggregation operators in multi–criteria
decision making. IEEE Transactions on SMC 18, 1998, pp. 183–190.

37. Zadeh L. A. (1971). Similarity relations and fuzzy orderings. Journal of Informa-
tion Sciences, 1971, 177–200.

Incremental versus Non-incremental Rule
Induction for Multicriteria Classification

Salvatore Greco2, Roman S�lowiński1,
Jerzy Stefanowski1,�, and Marcin Żurawski1

1 Institute of Computing Science, Poznań University of Technology,
Piotrowo 3A, 60-965 Poznań, Poland

jerzy.stefanowski@cs.put.poznan.pl, slowinsk@put.poznan.pl,
mzurawski@mikrob.pl

2 Faculty of Economics, University of Catania, 95129 Catania, Italy
salgreco@mbox.unict.it

Abstract. Induction of decision rules within the dominance–based rough
set approach to the multicriteria and multiattribute classification is con-
sidered. Within this framework, we discuss two algorithms: Glance and
an extended version of AllRules. The important characteristics of Glance
is that it induces the set of all dominance–based rules in an incremental
way. On the other hand, AllRules induces in a non–incremental way the
set of all robust rules, i.e. based on objects from the set of learning ex-
amples. The main aim of this study is to compare both these algorithms.
We experimentally evaluate them on several data sets. The results show
that Glance and AllRules are complementary algorithms. The first one
works very efficiently on data sets described by a low number of condi-
tion attributes and a high number of objects. The other one, conversely,
works well on data sets characterized by a high number of attributes and
a low number of objects.

Keywords: rule induction, incremental learning, multiple criteria deci-
sion analysis, classification and sorting

1 Introduction

Learning process is sometimes performed in an incremental way. In particular,
it refers to human learning. People learn concept descriptions from facts and
incrementally refine those descriptions when new facts become available. Newly
gained information is rather used to refine knowledge structures and rarely causes
reformulation of all knowledge a person has about the subject at hand. Michalski
has distinguished in [20] two main reasons why human learn incrementally:

– Sequential flow of information. A human typically receives information in
portions and must learn to deal with a situation long before all information
about it is available. When new information does become available, there is
rarely time to reformulate everything known about all the involved concepts.

� The corresponding author.

J.F. Peters et al. (Eds.): Transactions on Rough Sets II, LNCS 3135, pp. 33–53, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

34 Salvatore Greco et al.

– Limited memory and processing power. People cannot store and have easy
access to all the information they have been exposed to. They seem to store
only the most prominent facts and generalizations, then modify the gener-
alizations when new facts are available.

These considerations are valid not only for analyzing human learning but
also apply to machine learning. An incremental construction of knowledge from
examples may be sometimes desirable but it is also indispensable in other cases,
see, e.g., discussions in [2, 16, 20]. There are two situations, when it becomes
important:

– Temporal–batch learning, when examples are periodically available to the
learning system in some portions (subsets) and it is not acceptable to induce
knowledge again from complete data, e.g., because of computational costs
or inaccessibility of previously processed examples.

– The data source has a dynamic character and provides learning examples in a
sequential way, e.g. as series of observations or measurements; it is desirable
to update the knowledge representation after reading each example.

It should also be noticed that incremental mining is perceived as an impor-
tant aspect of knowledge discovery in large databases. For instance, Han claims
in [13, p. 220] that “Given the huge amount of data in a database, it is highly
preferable to update data mining results incrementally rather than mining from
scratch on each database update. Thus incremental data mining is an attractive
goal for many kinds of mining in large databases or data warehouses”. Moreover,
Michalski [18] and Xindong Wu [34] have considered incremental learning as one
of the most important and challenging research frontiers in inductive learning.
Xindong Wu has also paid attention to the following questions concerning these
kinds of learning algorithms: When a set of learning examples is large, how can
they speed up their learning process? When a new example is input, is it neces-
sary to produce a new rule or revise an existing rule? When some inconsistency
is found in a set of examples or knowledge representation just produced, how
can they remove it?

Although the majority of existing machine learning algorithms works in a
non–incremental way, there is a growing number of solutions employing incre-
mental strategies. The AQ–like family of algorithms for rule induction has its
incremental versions, e.g., AQ11 [19], AQ15 [15], or GEM [20]. This learning
paradigm is also present in extension matrix approaches as AE5 [14]. Cichosz
discusses in [2] how to modify a popular rule induction algorithm CN2 to pro-
cess incrementally a training set. There are several proposals for decision tree
generation, e.g., ID4 [3], ID5R [32], or windowing technique in C4.5 [22] can
be viewed as good examples of research on incremental learning. Furthermore,
let us notice that several algorithms for learning neural networks, e.g., back-
propagation, process the input examples just in an incremental way. For more
extensive overview of these methods the reader is referred to, e.g., [16, 21]. This
kind of learning has already been considered within the framework of rough sets
theory, e.g., Shan and Ziarko [30] introduced a special incremental algorithm for

Incremental versus Non-incremental Rule Induction 35

all reduct based rules, Susmaga discussed and experimentally compared incre-
mental methods for reduct generation [31], and Wojna presented [33] a simple
incremental modification of a procedure for maintaining the set of reduct rules.

In this paper, we are going to consider incremental induction of decision
rules in the context of Multiple–Criteria Decision Analysis (shortly abbreviated
as MCDA) [4, 24]. More precisely, we will consider one of the major MCDA
problems called multiple–criteria classification (or sorting) problem. It concerns
an assignment of objects (representing decision alternatives), evaluated by a
set of criteria, into pre–defined and preference–ordered decision classes. Crite-
ria are not just regular attributes (typically considered in knowledge discovery
or machine learning) but they are attributes with preference ordered domains.
Handling this specific semantic information on preference orders in data requires
new methods. Therefore, Greco, Matarazzo and Slowinski [4] have proposed an
extension of rough set theory [23], which is called Dominance–based Rough Set
Approach (shortly, DRSA). Decision rules, which are induced from learning ex-
amples within DRSA framework, have a special syntax that requires a new type
of algorithms for their induction.

In previous research, we have introduced an algorithm DomLem [7], which
allows inducing a minimal set of dominance–based rules covering all examples
in the input data. On the other hand, sometimes it is also interesting to induce
other sets of rules, for example a set of all rules which can be induced from the
given data or a subset of all rules which satisfy user predefined requirements
concerning, e.g., a minimal number of supporting objects or a maximal length of
the condition part. Two algorithms for inducing such sets of rules, called AllRules
and DomExplore, have already been discussed in [27]. The AllRules algorithm is
strongly tied to multicriteria problems specificity on account of using particular
properties of objects belonging to rough approximations. It induces the set of
all object–based, so called robust, rules. It means that the syntax of such robust
rule is constructed using a reduced description of an object being the basis for
this rule. However, these algorithms work non–incrementally, i.e., all examples
need to be read into operating memory before induction. In particular, it makes
their application in processing of large databases very difficult, as it would be
too expensive to store all data in memory or to scan a database many times.

Therefore, in this paper we discuss an algorithm, called Glance, for inducing
dominance based rules in an incremental way. It has been first introduced in
[35, 29] and handles both regular attributes and criteria describing sorting prob-
lems. Moreover, we will present an extended version of AllRules algorithm, which
should have better scalability and lower computational costs than the previous
one. The main aim of this paper is to compare these both algorithms. We exper-
imentally evaluate Glance and AllRules on several data sets taking into account
time of computation, scalability considering number of objects, attributes and
different degree of inconsistency.

The paper is organized as follows. The following section contains brief re-
minder of basic concepts of dominance–based rough set approach and decision
rules. In the next sections we describe thoroughly both of rule induction algo-

36 Salvatore Greco et al.

rithms Glance and AllRules. In Sect. 5, we describe our experimental design,
data sets used for the evaluation, and we also present obtained results. After
analyzing these results we conclude with final remarks.

2 Multiple Criteria Classification and Decision Rules

2.1 Preliminaries

When a knowledge representation is induced from learning examples representing
multiple criteria decision problems one has to take into consideration semantic
information about preference order in domains of criteria. For example, such
an attribute like “investment cost” has a clear preference scale – the less the
better, so it is a criterion. When several criteria are present in a data table, any
reasonable regularities to be discovered have to take into account a semantic
correlation between criteria [4, 9]. For example, in decision about credit granting,
where two criteria are considered, “month salary” and “evaluation of bank risk
concerning payment of a credit”, these criteria are semantically correlated in
the following sense: an improvement of month salary should not deteriorate the
evaluation of bank risk. This kind of semantic information is often present in
data related to cost or quality, like in financial data, however, it is neglected by
today’s data mining tools.

In multiple criteria classification problems, criteria describing objects are se-
mantically correlated with preference ordered decision classes. So, while solving
such problems, one expects that, e.g., an object x having better, or at least
the same, evaluations on a set of criteria than object y cannot be assigned to
a worse class than object y. Some data sets may contain objects violating this
principle. This constitutes a kind of inconsistency that should be discovered in
order to avoid wrong conclusions, i.e., decision rules, from MCDA point of view.
For this reason, Greco, Matarazzo and Slowinski [4–6] have proposed an exten-
sion of the rough set theory that is able to deal with this kind of inconsistency
typical to exemplary decisions in MCDA problems. This innovation is mainly
based on substitution of the indiscernibility relation by a dominance relation in
the rough approximations of decision classes. In this paper, selected concepts of
Dominance-based Rough Set Approach (DRSA) are presented; for more details
the reader is referred, e.g., to [4–6].

2.2 Dominance Based Rules

Let us assume that learning examples are represented in decision table DT =
(U,A ∪ {d}), where U is a set of examples (objects), A is a set of condition
attributes describing examples, Va is a domain of a. Let f(x, a) denote the value
of attribute a ∈ A taken by object x ∈ U . The domains of attributes may be
preference–ordered or not – in the first case the attributes are called criteria
while in the latter case we call them regular attributes. Preference scale of each
criterion a induces a complete preorder (i.e. a strongly complete and transitive

Incremental versus Non-incremental Rule Induction 37

binary relation) � in the domain of criterion a ∈ A . For objects x, y ∈ U ,
a(x) � a(y) means that object x is “at least as good” as y with respect to
criterion a. The asymmetric part of � is denoted by �. In other words, object
x is preferred to object y on criterion a if a(x) � a(y). The symmetric part of
� is denoted by ∼. Therefore, a(x) ∼ a(y) means that object x is indifferent to
object y with respect to criterion a.

d /∈ A is a decision attribute that partitions a set of examples into k decision
classes Cl = {Clt : t = 1, . . . , k}. These classes are preference ordered, i.e. for
all r, s such that s > r, objects from Cls are preferred to objects from Clr. In
multiple criteria classification problems it is typical to consider upward unions
and downward unions of classes instead of single decision classes. The upward
and downward unions are defined, respectively, as:

Cl≥g =
⋃
h≥g

Clh, Cl≤g =
⋃
f≤g

Clf , g = 1, . . . k

The statement x ∈ Cl≥g means “x belongs to at least class Clg”, while x ∈ Cl≤g
means “x belongs to at most class Clg”.

We denote by A
 the subset of attributes being criteria in A and by A= the
subset of regular attributes, such that A
 ∪A= = A and A
 ∩A= = ∅. For each
regular attribute a ∈ A=, an indiscernibility relation, denoted by =, is defined,
such that for each x, y ∈ U a(x) = a(y) means that x is indiscernible with y
with respect to the regular attribute a. Moreover, for each P ⊆ A we denote by
P
 the subset of criteria contained in P , P
 = P ∩ A
, and by P= the subset
of regular attributes contained in P , i.e. P= = P ∩A=.

We want to approximate upward and downward unions of decision classes
from Cl with respect to P ⊆ A using the binary relation RP , defined as follows:
for each x, y ∈ U xRP y if a(x) � a(y) for each a ∈ P
 and a(x) = a(y) for each
a ∈ P=.

For any subset P ⊆ A and for any x ∈ U two sets of objects R+
P (x) and

R−
P (x) are defined as follows:

R+
P (x) = {y ∈ U : yRPx}, R−

P (x) = {y ∈ U : xRP y}.

In other words, R+
P (x) is the set of all objects y ∈ U which dominate x with

respect to P
 (criteria of P) and are indiscernible with x with respect to P=

(attributes of P). Analogously, R−
P (x) is the set of all objects y ∈ U which are

dominated by x with respect to P
 and are indiscernible with x with respect to
P=.

The sets R+
P (x) and R−

P (x) are used to define lower and upper approximations
of upward unions Cl≥g , denoted by P (Cl≥g) and P (Cl≥g), respectively, as follows:

P (Cl≥g)) = {x ∈ U : R+
P (x) ⊆ Cl≥q },

P (Cl≥g)) = {x ∈ U : R−
P (x) ∩ Cl≥q �= ∅}.

38 Salvatore Greco et al.

Analogously, lower and upper approximations of downward unions Cl≤g , de-
noted by P (Cl≤g) and P (Cl≤g), respectively, are defined as follows:

P (Cl≤g)) = {x ∈ U : R−
P (x) ⊆ Cl≤q },

P (Cl≤g)) = {x ∈ U : R+
P (x) ∩ Cl≤q �= ∅}.

The lower approximation of Cl≥g , g ≤ k contains all objects belonging to Cl≥q
without any ambiguity with respect to their descriptions. The upper approxi-
mation of Cl≥g contains all objects which possibly belong to Cl≥q , i.e., taking
into account possible ambiguity in their description. Rough approximations of
downward unions of classes admit an analogous interpretation.

Learning examples belonging to rough approximations of upward and down-
ward unions of classes are used for induction of “if . . . then . . .” decision rules.
The two kinds of these rules are distinguished:

D
 –decision rules with the following syntax: if (f(x, a1) � ra1)∧. . .∧(f(x, am) �
ram) ∧ f(x, am+1) = ram+1) ∧ . . . ∧ (f(x, ap) = rap) then x ∈ Cl≥g ,

D� –decision rules with the following syntax: if (f(x, a1) ra1)∧. . .∧(f(x, am)
ram) ∧ f(x, am+1) = ram+1) ∧ . . . ∧ (f(x, ap) = rap) then x ∈ Cl≤g ,

where P = {a1, . . . , ap} ⊆ A,P
 = {a1, . . . , am}, P= = {am+1, . . . , ap},
(r1, . . . , rp) ∈ Va1 × Va2 × Vap and g = 1, . . . k.

The D
–rule says: “if an evaluation of object x on criterion ai is at least
as good as a threshold value ri (i = 1, . . . ,m) and on attribute aj object x is
indiscernible with value rj (i = m + 1, . . . , p) then object x belongs to a least
class Clg”. Similarly, the D�–decision rule means that an object is evaluated as
“at most as good as a value” and belongs at most to a given class. If the rules
are induced from examples belonging to lower approximations of unions, they
are called certain rules because they assign objects to unions of classes without
ambiguity. On the other hand, the possible rules are induced from examples
belonging to upper approximations. These rules indicate that an object could
belong to “at least class Clg” or “at most class Clg”, respectively. Distinction
between certain and possible rules is typical for rough set theory [10, 27]. Yet
another option is to induce one type of rules only, using Variable Consistency
Dominance based Rough Sets Approach (VC-DRSA) [8, 27].

Each dominance based decision rule has to be minimal. Since a decision rule
is an implication, by a minimal decision rule we understand such an implication
that there is no other implication with an antecedent of at least the same weak-
ness (in other words, rule using a subset of elementary conditions or/and weaker
elementary conditions) and a consequent of at least the same strength (in other
words, rule assigning objects to the same union or sub-union of classes).

Consider a D
–decision rule if (f(x, a1) � ra1) ∧ . . . ∧ (f(x, am) � ram) ∧
f(x, am+1) = ram+1) ∧ . . . ∧ (f(x, ap) ∼ rap) then x ∈ Cl≥g . If there exists an
object y such that f(y, a1) = ra1∧. . .∧(f(y, am) = ram∧. . .∧f(y, ap) = rap , then
y is called basis of the rule. Each D
–rule having a basis is called robust because
it is “founded” on an object existing in the data table. Analogous definition of
robust decision rules holds for the other types of rules.

Incremental versus Non-incremental Rule Induction 39

We say that an object supports a decision rule if it matches both condition
and decision parts of the rule. On the other hand, an object is covered by a
decision rule if it matches the condition part of the rule. The rule can be charac-
terized by a parameter called strength, which is the number of supporting objects.
Variable consistency rules are also characterized by a confidence parameter that
controls the discrimination ability of rules [8].

2.3 Induction of Various Sets of Rules

The set of induced rules is complete, when it covers all objects from the data
table in such a way that objects belonging to lower approximations of unions are
re–assigned to their original classes while inconsistent objects are assigned to a
cluster of classes referring to their inconsistency [4]. The set of rules is called
minimal if it is a set of minimal rules that is complete and non–redundant, i.e.
exclusion of any rule from it makes it incomplete.

A minimal set of rules can be induced from examples of multicriteria and
multiattribute classification problem by means of the DOMLEM algorithm [7,
27]. Such set of rules is usually sufficient for aims of predicting classification of
new (or testing) objects. However, if the aim of the induction process is descrip-
tive, i.e., discovered rules should help in explaining or better understanding of
circumstances in which decisions were made, other kinds of rule sets are also
useful [27]. One possibility is to create all decision rules, which could be gener-
ated from the given decision table, while another option is to discover the subset
of all rules, which satisfy user’s requirements, e.g., sufficiently high strength and
confidence, or with a limited number of elementary conditions. The algorithms
for inducing such sets of dominance–based rules were already discussed in [27,
35]. Let us notice however, that their computational costs are higher than for
DOMLEM; in particular, it is true in case of looking for all rules, which is a
problem characterized by an exponential complexity with respect to a num-
ber of attributes. Moreover, these algorithms require all examples to be read
into memory before induction. Let us also remind that some learning problems
are characterized by an incremental processing of information. Further, we will
present an incremental learning algorithm.

3 “Glance” Algorithm

The algorithm is incremental and stores in memory only rules and not descrip-
tions of learning examples. In its basic version, it induces the set of all rules from
examples of multiattribute and multicriteria classification problems. These rules
are not necessarily based on some particular objects, i.e., they are non–robust.
The general scheme of the algorithm for the case of inducing certain rules is
presented below.

40 Salvatore Greco et al.

Procedure Glance
(input U -set of examples; P – set of criteria and regular attributes;

Cl≥≤ = {Cl≤1 , . . . , Cl≤t−1, Cl≥2 , . . . , Cl≥t } – family of unions of decision classes;
output R – set of decision rules);
begin

for each union u ∈ Cl≥≤ do
begin

Let r be a rule with empty condition part; {it covers each example}
Ru ← r; {add to the set of rules for union u}

end{for}
for each example x ∈ U do

for each u such that f(x, d) /∈ u do {d is a decision attribute}
for r ∈ Ru do

if (r covers x) then {r does not discriminate properly}
begin

Ru ← Ru \ r;
for each a ∈ P do
begin {specialize rules}

Let s be a condition on attr. a excluding x;
rnew ← r ∪ s;
if (rnew is minimal) then Ru ← Ru ∪ rnew;

end; {for each a ∈ P}
end; {if r covers x}

R ← ⋃
u Ru;

end{procedure}
The main idea of Glance is concordant with inductive learning principle,

according to which an algorithm starts from the most general description and
then updates it (specializes) so that it is consistent with available training data
(also considering approximations). The most general description are rules with
empty condition part, which means that such rules cover all examples. At the
beginning of calculations, a set of rules Ru containing only one rule with an
empty condition part is assigned to every union u. When the new object, e.g.,
x ∈ Clg is available, it is determined for which unions u this object should be
treated as a negative example (these unions include all Cl≤f such that f < g

for downward unions and Cl≥h such that h > g for upward unions). For all such
unions their rule sets Ru are checked. If any rule r ∈ Ru covers x, then it has
to be updated as it does not discriminate all negative examples properly. It is
removed from Ru and specialized by adding on each attribute or criterion an
elementary condition that it is not satisfied by description of x. For criteria,
elementary conditions are in forms (f(x, a) � va) or (f(x, a) ≺ va), depending
on the direction of preference and unions; where va is the value of criterion a for
object x. For regular attributes, conditions are in form (f(x, a) /∈ {v1, . . . , vl})
and va is added to this list. After constructing a new rule its minimality has
to be checked. While inducing rules incrementally, minimality is checked only
between rules concerning the same union of classes. Verification of minimality
between unions is performed only at the very end of calculations, when it is
certain that no more learning examples will become available. Furthermore, at

Incremental versus Non-incremental Rule Induction 41

the end of the induction process, these conditions in all rules are transformed
to representation using operators (,�,=) as in the syntax of dominance based
rules.

The computational complexity of the basic version of Glance is exponential
with respect to a number of attributes. The user can define the maximal accepted
number of elementary conditions in the syntax of the rule.

There is also an extended version of Glance [35], which allows to induce a
satisfactory set of rules with other pre–defined constraint expressing minimum
accepted (relative) strength of the rule. However, it requires to maintain in mem-
ory additional information about the number of processed examples, which are
covered by already generated rules satisfying the constraints – for more details
see [35].

4 “AllRules” Algorithm

4.1 Basic Version of Algorithm

This algorithm induces the set of all robust rules, which are based on some
particular objects. There is no possibility of using user–specified constraints,
except maximal length of the rule. Similarly to previous algorithms, AllRules
can be used for classification problems, using regular attributes and criteria.
It works in a non–incremental way. Moreover, it is strongly tied to rough set
theory (see Sect. 2) as it uses idea of lower approximation as a basis for inducing
rules. The general scheme of AllRules algorithm can be described below for lower
approximation of an upward union of decision classes.

Procedure AllRules
(input U – set of examples; P – set of criteria and regular attributes;

Cl≥t – upward union of decision classes;
output R – set of decision rules);
begin

R ← ∅;
B ← ∅; {temporary set of considered attributes}
repeat

generate next subset B ⊆ P ; subsets are generated starting from
the smallest ones up to the set of all attributes P ;

calculate B(Cl≥t); {calculate lower approximation of Cl≥t }
for each object x ∈ B(Cl≥t) do
begin

if (x does not dominate any other y ∈ B(Cl≥t) and y �= x) then
begin

create a rule r on the basis of description of object x;
if (r is minimal) then R ← R ∪ r

end {if x does not dominate}
end {for each}

until (B = P)
end{ procedure }

42 Salvatore Greco et al.

AllRules uses breadth–first strategy and that is why it is possible to stop
calculations after computing all rules of some desired maximal length. The al-
gorithm works on subsets B of given set of regular attributes and criteria P . It
starts from subsets of cardinality equal to 1, then of cardinality equal to 2, and
so on, up to the subset equal to the whole set P . For each subset B, the lower
approximation of the decision concept is calculated. Next step depends on a di-
rection of union of classes or its approximations that are considered as concept.
For instance, in case of upward unions of classes one tries to identify specific
objects from the approximation that are located just close to boundary region.
In other words, if an object x belonging to lower approximation of the given
concept does not dominate any other object y belonging to that approximation,
then x is the basis for a rule. Otherwise, the rule based on its description is
not minimal. Analogously, for downward unions of classes it is checked for each
object x belonging to lower approximation of the concept with respect to B
whether that object x is not dominated by any other object y belonging to that
approximation; then, x is the basis for a rule. The condition part of the rule r
consists of elementary conditions based on all regular attributes or criteria that
belong to B. For regular attributes these conditions are in a form (f(x, a) = va),
where va occurs in the object description. Elementary conditions for criteria are
in two forms: (f(x, a) � va) or (f(x, a) va). The direction of the relation
depends on direction of preference order on a criterion and on a direction of the
union for which we are inducing rules.

The minimality of rules is tested as follows: the candidate rule r is compared
against previously induced rules based on subsets of attributes present in the
current subset B. Let us consider the following simple example. The candidate
rule r is: if (mark in Math is at least 8) and (mark in Physics is at least 7) and
(mark in Philosophy is at least 7) then (student is at least “medium”). Assume
that among previously induced rules there was the following rule r1: if (mark
in Math is at least 7) and (mark in Physics is at least 7) then (student is at
least “medium”). In this case rule r is not minimal because rule r1 has the same
conclusion but weaker premise. Moreover, concerning minimality of generated
rules, it is convenient to calculate rules for unions of classes Cl≥t started from
class k of the best objects and then systematically decreasing t.

4.2 Extended Version of Algorithm

A computational complexity of the AllRules algorithm is still exponential. How-
ever, as it was noticed in [35] some operations of rule generation process may
be unnecessarily repeated several times. Thus a new extended version of this
algorithm has been proposed in [35]. The main improvement is based on an ob-
servation that every object x that belongs to lower approximation of concept
Cl≥g calculated with respect to the set of attributes B, belongs also to the lower
approximation of this concept calculated with respect to the set of attributes B

′

which is a superset of B. AllRules will generate a rule basing on object x and the
set of attributes B

′
, but this rule will not be minimal, as in the set of previously

generated rules there exists also a rule based on object x and the smaller set

Incremental versus Non-incremental Rule Induction 43

of attributes B ⊆ B
′
. This kind of problem will occur for every superset B

′

of B, causing unnecessary construction of a large number of rules not minimal.
Therefore, it may be profitable to remember for each set of attributes B all the
objects covered by the rules based on B and all its subsets, and not to use these
objects as basis for new rules for all supersets of B. According to this idea, in the
extended version of AllRules, for each subset of attributes Bl of size l the set Ol

of objects covered by the rules induced basing on objects described by Bl and all
its subsets of size l− 1 is remembered. These objects are not further considered
as basis for next rules. This procedure ensures minimality of new rules, so it is
not necessary to check it for each new rule. All objects covered by new rules that
have been induced are added to Ol. This version of the algorithm should need
less amount of computations, however memory requirements for remembering
all extra Ol sets may significantly grow with the number of attributes m.

Procedure AllRules–Extended
(input U – set of examples; P – set of criteria and regular attributes;

Cl≥t – upward union of decision classes; output R – set of decision rules);
begin

R ← ∅;
B ← ∅; {temporary set of considered attributes}
repeat

generate next subset Bl ⊆ P of size l; subsets are generated starting from
the smallest ones of size 1 up to the set of all attributes P ,
each generated set Bl is combined of its subsets Bl−1 of size |Bl−1| = |Bl| − 1;
Ol ←

⋃{Ol−1 : Bl−1 ⊂ Bl}; { union of objects covered by rules
generated basing on all Bl−1 such that Bl−1 ⊂ Bl }

calculate Bl(Cl≥t); {calculate lower approximation of Cl≥t }
Bl(Cl≥t ← Bl(Cl≥t) \ Ol; { do not consider objects belonging to Ol }
for each object x ∈ Bl(Cl≥t do
begin

if (x does not dominate any other y ∈ Bl(Cl≥t and y �= x) then
begin

create a rule r on the basis of description of object x;
R ← R ∪ r;
let Or be a set of objects covered by rule r;
Ol ← Ol ∪ Or {update set Ol}

end{if x does not dominate}
end{for each}

until (Ol = Cl≥t for all Bk)
end{procedure}

5 Experiments

5.1 Design of Experiments

The aim is to compare the performance of the Glance algorithm against other
algorithms, which can induce the set of all rules for the multicriteria and multiat-
tribute classification problems. These are AllRules algorithms in both basic and

44 Salvatore Greco et al.

extended versions. Additionally, in some experiments we will consider the previ-
ously known algorithm DomExplore, which works in a non–incremental way and
induces the satisfactory set of non–robust rules with strength and confidence not
less than predefined thresholds. Let us notice, however, that these non–robust
rules may differ from ones induced by Glance, because they are generated by
combining the most promising single conditions referring to descriptions of ex-
isting objects – positive examples of the given concept whereas in case of Glance
elementary conditions of rule are created by an operation of specialization against
negative examples. All these algorithms have been implemented by Zurawski [35]
in the single software framework, called 4-emka [17].

In the experiments carried out in this work we want to answer the following
questions concerning new and previously known algorithms:

– What is the scalability of these algorithms? How is computational time and
number of rules growing with increasing number of objects, attributes and
unions of classes?

– How is computational time and number of rules changing considering pro-
portion of regular attributes to criteria? Which type of attributes (with or
without preference) is computationally less demanding?

– Is the consistency of data set important for all algorithms? In other words,
how does the quality of approximation (expressing number of objects be-
longing to boundary) affect time of computations?

– How large are differences between considered types of rules (robust – All-
Rules, non-robust in DomExplore style or non–robust in Glance style)?

5.2 Data Sets

Two kinds of data sets were used for experiments: artificial and real. Data sets be-
longing to the first type contain random data generated by a computer program
based on some assumptions on a typical set of values, called profile, associated
with every class represented in data. The data sets were randomly generated ac-
cording to chosen probability distribution of attribute values (for details see [35])
and differ by the number of objects. Moreover, for each of data sets one could:
change the number of attributes while controlling the proportion of criteria to
regular attributes; change the number of decision classes; control the required
level of inconsistency (except for one experiment, see Table 8, we continued with
generating consistent data sets). The artificial data were used mainly for ex-
periments concerning efficiency of algorithms that is time of computations and
number of rules produced.

The real–life data sets were obtained either from the repository of Machine
Learning databases at UCI [1] or some rough set applications [27], see their
characteristics in Table 1. These data were adapted for multicriteria and mul-
tiattribute classification problems by specifying the preference order on some
previously regular attributes, on the basis of their correlation with the decision
attribute (strong negative correlation leads to modeling decreasing preference,
while strong positive correlation leads to increasing preference).

Incremental versus Non-incremental Rule Induction 45

Table 1. Characteristics of real data sets used for experiments.

Data Number of Quality of

set Objects Attributes Classes Approximation

Buses 76 8 3 1.00

Iris 150 4 3 0.97

Pima 768 8 2 0.73

Air bricks 216 10 2 0.84

Wine 178 14 3 0.76

Table 2. The computation time (in seconds) for compared algorithms while changing
the number of objects.

No. of Number of objects
Algorithm Attrib. 500 1000 1500 2000 3000 4000 5000 6000

DomExplore 3 0.10 0.33 0.72 1.15 2.69 4.9 8.3 14.99
6 3.68 21.4 73.7 178.4 704.9 – – –

AllRules 3 0.12 0.16 1.41 3.13 7.69 18.4 34.3 53.01
Basic 6 1.43 5.5 13.1 27.2 108.1 281.9 502.9 712.7
AllRules 3 0.10 0.11 0.41 0.99 2.09 5.49 9.55 16.09
Extended 6 0.16 0.55 1.21 2.26 7.14 17.31 28.9 43.22
Glance 3 0.05 0.05 0.05 0.06 0.06 0.06 0.1 0.12

6 1.26 3.13 5.5 7.86 15.38 21.2 26.31 38.7

If the artificial or real data sets contained inconsistent examples, we generated
certain rules only. Let us notice that considered data sets were either consistent
or their quality of approximation of the classification was quite high.

5.3 Results

Firstly, all algorithms were compared on the same artificial data sets. In two
series of data, with 3 attributes (2 criteria and 1 regular attribute) and 6 (4
criteria and 2 regular attribute), we systematically changed the number of ob-
jects from 500 till 6000. The number of decision classes was equal to 3. Results
of computation times are presented in Table 2 and numbers of rules in Tables
3, 4 (we do not distinguish between the versions of AllRules as they produce
the same number of rules). The symbol “–” means that the algorithm exceeded
the accepted resources. It should be reminded, that the number of rules induced
by algorithms may be different as the Allrules algorithm generates robust rules
while others induce non-robust ones. All computation times refer to calculations
on the same computer system.

Then, in Table 5, we present results of analyzing the influence of chang-
ing the number of regular attributes and criteria on the computational time of
algorithms, for a fixed number of objects. It is also quite interesting to study
variation of the proportion of regular attributes to criteria in the considered data

46 Salvatore Greco et al.

Table 3. The number of rules induced by different algorithms while changing the
number of objects in the data set with 3 condition attributes.

Algorithm Number of objects
1000 2000 3000 4000 5000 6000

DomExplore 27 27 30 35 33 31
AllRules 27 29 32 30 31 29
Glance 35 29 34 39 34 32

Table 4. The number of rules induced by different algorithms while changing the
number of objects in the data set with 6 condition attributes.

Algorithm Number of objects
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 6000

DomExplore 331 469 566 599 690 730 – – – – –
AllRules 211 289 364 416 473 511 572 590 615 645 743
Glance 807 1197 1459 1561 1621 1792 1903 1971 2005 2115 2205

Table 5. The computational time (in seconds) of algorithms while changing the number
of regular attributes and criteria in data containing 100 objects.

No. of criteria and regular attributes
Algorithm 3 6 9 12 15 18

DomExplore 0 0.11 0.77 9 41.14 284.79
AllRules Basic 0 0.06 0.82 7.58 68.66 624.83
AllRules Extended 0 0.05 0.06 0.38 3.52 29.93
Glance 0 0.22 44.9 439.41 – –

set. Here, for the data set consisting of 2000 objects described by 6 condition
attributes, we prepared 7 versions of different proportions. In case of considering
at least two criteria, one of them was defined on real or integer number scale,
while the second on an ordered qualitative scale consisting of 6 different terms.
In all data sets the number of decision classes was equal to 3. The results are
presented in Table 7.

Furthermore, we examined the influence of changing the number of classes. In
this case, for a data set with a fixed size we randomly created several versions of
the column referring to a decision attribute. The results are summarized in Table
6. In the similar way, we examined the time of computations while changing the
quality of approximation (in the sense of the rough set theory) for the compared
algorithms – see results in Table 8. The results for DomExplore are not reported
as for the majority of these data sets with some inconsistency, it exceeded the
available memory resources.

Next, we examined the performance of these algorithms on real life data
sets. Their results considering the number of rules and also the average rule
strength (i.e., average number of learning examples supporting a rule in the

Incremental versus Non-incremental Rule Induction 47

Table 6. The computational time (in seconds) of algorithms while changing the number
of classes in data containing 2000 objects described by 6 condition attributes.

Number of classes
Algorithm 2 4 6 8 10

DomExplore 213.11 174.6 131.17 128.04 104.68
AllRules Basic 14 38.51 49.54 78.05 77.28
AllRules Extended 1.16 2.82 3.51 5.19 6.83
Glance 1.86 6.43 7.14 8.73 9.78

Table 7. The computation time (in seconds) of algorithms while changing the propor-
tion of regular attributes to criteria in the data sets containing 2000 objects described
by 6 condition attributes.

No. of criteria / reg. attributes
Algorithm 0 / 6 1 / 5 2 / 4 3 / 3 4 / 2 5 / 1 6 / 0

DomExplore 0.38 4.8 9.1 135.3 334.6 – –
AllRules Basic 33.8 60.5 54.8 59.0 65.2 59.4 15.3
AllRules Ext. 8.0 8.2 6.4 5.4 4.9 4.9 4.2
Glance 4.1 4.5 4.8 5.7 14.7 103.5 349.6

Table 8. The computational time (in seconds) of algorithms while changing the level
of inconsistency (quality of approximation) in the data set containing 500 objects
described by 6 condition attributes.

Quality of approximation
Algorithm 1.0 0.93 0.83 0.76 0.64 0.56

AllRules Basic 1.54 1.48 1.37 1.26 1.04 0.89
AllRules Extended 0.11 0.22 0.22 0.33 0.33 0.33
Glance 2.74 6.32 7.9 15.1 13.7 13.45

induced rule set) and average rule length (calculated as the number of elementary
conditions in the rule) are presented in Table 9. The differences of computation
times between algorithms are proportionally similar as for respective artificial
data sets, so we skip presenting them.

6 Discussion of Results and Final Remarks

Discovering knowledge from data containing semantic information about pref-
erence orders in domains of criteria requires new tools. In this paper, we have
considered the dominance–based rough set approach. Within this framework,
we discussed two algorithms: Glance and an extended version of AllRules. Both
algorithms induce the set of all rules from provided learning examples of the
multicriteria and multiattribute classification problems. However, these sets of
all rules obtained by each algorithm are different. Rules produced by the All-

48 Salvatore Greco et al.

Table 9. Characteristic of sets of rules induced from real data sets; Meaning of symbols:
(R) – number of rules, (L) – average length of the rule calculated in a number of
conditions, (S) – average strength of the rules calculated in a number of supporting
learning examples.

Algorithm DomExplore AllRules Glance

Data set R L S R L S R L S

Buses 332 2.57 25.98 154 1.91 22.88 612 2.96 25.04

Iris 38 1.84 32.1 23 1.48 46.1 66 2.11 34.0

Pima – – – 1660 3.51 20.5 15913 5.14 29.74

Air bricks – – – 227 2.17 41.76 1139 3.77 16.12

Wine – – – 665 2.6 9.92 2767 2.87 7.67

Rules algorithm are robust (i.e. they are based on objects – positive examples
of a concept – existing in the decision table), while rules induced by Glance
are non-robust (i.e., they are induced by means of the specialization operation,
which builds elementary conditions to exclude negative examples from the given
decision concept). The way of processing input examples constitutes the other
difference. Unlike the AllRules and other previously known algorithms for the
dominance–based rough set approach, the Glance works in an incremental way.
It means that every time new examples are available it updates so far obtained
rules without having to generate new rules from scratch. It tries to use lim-
ited operational memory resources as it stores in memory only rules and not
processed examples. The extended version of the AllRules algorithm is strongly
tied to the concept of dominance-based rough approximations and uses their
specific properties to reduce the search through the space of object descriptions
pretending to be a basis for minimal robust rules.

These algorithms, as well as the previously known simpler version of AllRules
algorithm and the DomExplore algorithm, have been evaluated and compared
in many experiments on real and artificial data sets. Below we discuss the main
results.

1. Experiments clearly showed that an extended version of the AllRules algo-
rithm is always faster than its previous simpler version, see, e.g., respective
results in Tables 2, 6, 7. The difference in favor of the extended version tends
to be greater while the number of objects is increasing – see, e.g, Table 2,
where is it over 16 times faster.

2. Considering changes of the number of objects in the data sets with the fixed
number of attributes equal to 3 or 6 (see Table 2) one can notice that Glance
is the fastest algorithm, AllRules is usually the second, and DomExplore is
the worst (however, for data sets including 4000 objects or more it is even
better than AllRules). For these data sets, the computation time of Glance
grows up “linearly” with the number of objects. AllRules is the most sensitive
to changing the number of objects.

Incremental versus Non-incremental Rule Induction 49

3. The number of attributes is a crucial issue for all compared algorithms – see,
e.g., Table 5. It is somehow obvious considering that problem of generating
all rules is exponential with respect to the number of attributes. However,
we noticed that computation times strongly differ among the compared algo-
rithms. Glance is the most sensitive to increasing the number of attributes.
This may be explained by analyzing the way it constructs non–robust rules.
Notice in other tables that the number of Glance rules grows much quicker
with the number of attributes than for other algorithms. While learning in-
crementally, Glance has to check all generated rules and specialize some of
them when a new example becomes available. On the other hand, AllRules
algorithm identifies positive examples being basis for robust rules and, due
to this constraint, it produces much smaller number of rules. The reader
can also notice that AllRules – Extended is the fastest when the number of
criteria and regular attributes is greater than nine.

4. The difference in numbers of rules induced by the compared algorithms can
be analyzed using Tables 3, 4, and 9. The AllRules algorithm always gen-
erates the smallest number of rules, DomExplore is the second, and Glance
gives the highest number. This result could be expected knowing the differ-
ence between the rules generated by each algorithm. The smallest number
of rules for Allrules is due to its extra constraint that each rule has to be
robust, i.e., it has to be based on some particular object. This significantly
reduces the number of possible combinations of elementary conditions and,
therefore, reduces the list of candidates to be checked for being a rule. On
the other hand, Glance produces the greatest number of non–robust rules
probably because of its specialization technique, which requires the use of
many elementary conditions, even if they are not based on any particular
object from the concept (it could happen as a result of exclusion of negative
examples). DomExplore generates a smaller number of non–robust rules as
it combines only “the promising” single conditions, which are created us-
ing descriptions of objects existing in the data table. Furthermore, robust
rules are shorter than non–robust, see Table 9. The highest average strength
of rules varies among algorithms depending on the data set. However, the
number of rules induced by any of these algorithms seems to be terribly high
with respect to the input data set – with exception of data with very small
number of attributes presented in Table 3.

5. The results presented in Table 7 indicate that not only the number of at-
tributes but also their type is important for all algorithms. It is clear that
for AllRules it is better to process rather criteria than regular attributes,
while DomExplore is more efficient on regular attributes only. This is not
surprising knowing ideas behind each algorithm. In particular, let us remind
that DomExplore is a modified version of the Explore algorithm, which was
originally designed for handling qualitative regular attributes [27, 28]. Glance
seems to be located in the middle between both algorithms.

6. Increasing number of decision classes also increases the time of computations.
The exception is DomExplore for which the time decreases, see Table 6.
Nevertheless, it is still the slowest algorithm.

50 Salvatore Greco et al.

7. The influence of inconsistency in data on the time of computation seems to
be different depending on the algorithm. For DomExplore and Glance, the
more data is inconsistent, the harder and more expensive calculations are. In
fact, in our experiment DomExplore was unable to complete computations
for sets with quality of approximation lower than 1 because it exceeded
memory resources. Notice in Table 8 that in case of low values of quality, the
time of computations by Glance may slightly decrease due to low number of
rules that can be produced for data with such high inconsistencies. AllRules
seems to be insensitive to the changes of data consistency.

To sum up, Glance and AllRules seem to be complementary algorithms.
The first one works very efficiently on data sets described by a low number of
condition attributes and a high number of objects. The other one inversely –
works well on data sets characterized by a high number of attributes and a low
number of objects.

The important feature of Glance is its ability to learn incrementally. In fact, in
our experiments its better performance for data sets characterized by a smaller
number of attributes should be even much greater if the examples would be
processed really incrementally. Let us assume that examples are available in
portions of 500 instances. In such a case, AllRules has to repeat all calculations
again for all objects available at the moment, while Glance only updates the
former set of rules according to new examples.

The disadvantage of using Glance for a larger number of attributes is mainly
due to the enormous number of rules, which leads to high computation times and
using too much operating memory for storing already generated rules. The user
can overcome this problem partly by using the parameter of maximal length of
rules. In an extended version of Glance the user can also tune another parameter
of minimum relative strength of a rule. Another possibility could be to develop a
new version of Glance, which will not generate the set of all rules. For instance,
the operation of updating rules, which do not discriminate properly negative
examples, could include only a limited number of the best specializations. This
is somehow similar to the idea of using constraints on a maximal size of the STAR
in AQ–like algorithms [18, 19]. As a result, the algorithm should provide much
smaller set of “satisfactory” rules. Yet another option could be developing new
Glance version that would produce incrementally a kind of minimal set of rules.
This seems to reduce the use of operating memory and, therefore, be useful for
exploring very large databases, as discussed in the introduction. Let us remind
here, that the extended version of AllRules, although it has been relatively fast
in some experiments, is not designed to handle larger number of objects and
manage efficiently the size of operating memory. Thus, an incremental induction
of robust rules is also a quite challenging task.

Other open research problems could include:

– Evaluating the ability of obtained rule sets to predict classification for new
objects. In case of the dominance-based approach this is a different problem
than in case of regular attributes, because rules indicate unions of ordered
classes instead of single classes. Moreover, using larger set of rules, which is

Incremental versus Non-incremental Rule Induction 51

a case in this paper, leads to more frequent conflict situations of matching
object descriptions to many rules than while using minimal sets of rules. For
more details on such conflicts see, e.g., [11, 12, 27]. The preliminary experi-
ments performed in [35] showed that the accuracy of classification obtained
by using sets of all rules induced by considered algorithms is rather low
compared to the use of minimal sets induced by DomLem [7]. Therefore,
it is necessary to develop new classification strategies for determining final
decision based on dominance–based rules.

– Comparing more deeply the usefulness of sets of all rules against the minimal
set of rules. We can conclude from our current experimental results, that the
number of rules induced by any of discussed algorithms is in many cases too
high, what is inconvenient for practical problems.

– Adapting some of these algorithms, in particular incremental ones, to handle
huge number of learning examples.

– Include the best versions of the algorithms in new 4-emka or user software
systems for public use.

Acknowledgments

The research of the first author has been supported by the Italian Ministry
of Education, University and Scientific Research (MIUR). The other authors
wish to acknowledge financial support from the State Committee for Scientific
Research and by the Foundation for Polish Science.

References

1. Blake, C., Koegh, E., and Mertz, C.J.Repository of Machine Learning.University
of California at Irvine, 1999.
[URL: http://www.ics.uci.edu/˜mlearn/MLRepositoru.html]

2. Cichosz, P.Learning systems.WNT, Warszawa, 2000 (in Polish).
3. Fisher, D., Schlimmer, J. C.A case study of incremental concept induction, in: Pro-

ceedings of the Fifth National Conference on Artificial Intelligence, Philadelphia,
USA. Morgan Kauffman, 1986, pp. 302–507.

4. Greco, S., Matarazzo, B., and Slowinski, R. The use of rough sets and fuzzy sets
in MCDM, in: Advances in Multiple Criteria Decision Making (Gal, T., Stewart,
T., and Hanne, T. (eds)).Kluwer, 1999, pp. 14.1–14.59.

5. Greco, S., Matarazzo, B., and Slowinski, R. Rough sets theory for multicriteria
decision analysis. European Journal of Operational Research 129: 1, 2001, pp.
1–47.

6. Greco, S., Matarazzo, B., and Slowinski, R.Multicriteria classification, in: Handbook
of Data Mining and Knowledge Disocvery.Oxford Univ. Press, 2002, pp. 318–328.

7. Greco, S., Matarazzo, B., Slowinski, R., and Stefanowski, J. An algorithm for
induction decision rules consistent with the dominance principle, in: Rough Sets
and Current Trends in Computing. Proceedings of the 2nd Int. Conference RSCTC
2000, Banff, October, 2000. Lecture Notes in Artificial Intelligence 2005, Springer,
2001, pp. 304–313.

52 Salvatore Greco et al.

8. Greco, S., Matarazzo, B., Slowinski, R., and Stefanowski, J. Variable consistency
model of dominance-based rough set approach, in: Rough Sets and Current Trends
in Computing. Proceedings of the 2nd Int. Conference RSCTC 2000 Banff, October,
2000. Lecture Notes in Artificial Intelligence 2005, Springer, 2001 , pp. 170–181.

9. Greco, S., Slowinski, R., and Stefanowski, J.Mining association rules in preference–
ordered data, in: Foundations of Intelligent Systems. Proceedings of the 13th Int.
Symposium ISMIS 2002, Lyon France, June 2002. Lecture Notes in Artificial in-
telligence 2366, Springer, 2002, pp. 442–451.

10. Grzymala–Busse, J.W.LERS – a system for learning from examples based on rough
sets, in: Intelligent Decision Support: Handbook of Advances and Applications of
Rough Sets Theory(Slowinski R. (ed.)). Kluwer, 1992, pp. 3–18.

11. Grzymala–Busse, J.W. Managing uncertainty in the machine learning from ex-
amples, in: Proceedings of the 3rd Workshop on Intelligent Information Systems,
Wigry, Poland, IPI PAN Press, 1994, pp. 70–84.

12. Grzymala–Busse, J.W., Zou, X. Classification strategies using certain and possi-
ble rules, in: Rough Sets and Current Trends in Computing. Proceedings of the
RSCTC’1998 Conference, Warszawa, 1998. Lecture Notes in Artificial Intelligence
1424, Springer, 1998, pp. 37–44.

13. Han, J., Kamber, M.Data Mining: Concepts and Techniques. Morgan Kaufmann,
2000.

14. Hong, J. Learning from examples and a multi–purpose learning system AE5.Chi-
nese Journal of Computers 12, 1989, pp. 98–105.

15. Hong, J. R., Mozetic, I., and Michalski, R. S. AQ15: Incremental Learning of
Attribute–based Descriptions from Examples – the Method and User’s Guide. Re-
port ISG 85-5, UIUCDCS-F-86-949, Dept. of Computer Science, Univ. of Illinois,
Urbana, 1986.

16. Langley, P.Elements of Machine Learning. Morgan Kaufmann, 1996.

17. Lukasik, M., Luszczynski, M., Szumski, M., and Zurawski, M..Multicriteria Deci-
sion Aid Software Using Dominance Based Rough Sets and Decision Rules. Eng.
B.Sc. Thesis, Poznan University of Technology, 1999 (in Polish).

18. Michalski, R.S.A theory and methodology of inductive learning, in: Machine Learn-
ing: An Artificial Intelligence Approach vol. 1 (R.S. Michalski, J.G. Carbonell, and
T.M. Mitchell (eds.)).Morgan Kaufman, 1983, pp. 83–134.

19. Michalski, R. S., Larson, J. Selection of Most Representative Training Examples
and Incremental Generation of VL1 Hypothesis: the Underlying Methodology and
Description of Programs ESEL and AQ11.Tech. Report UIUCDCS R 78 867, Dept.
of Computer Science, Univ. of Illinois at Champaign-Urbana, Urbana, 1978.

20. Michalski, R. S., Reinke, R. E. Incremental learning of concept descriptions: A
method and experimental results, in: Machine Intelligence XI. Clarendon Press,
1988, pp. 263–288.

21. Mitchell, T.Machine Learning.Mac-Graw Hill, 1997.

22. Quinlan, J. R.C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

23. Pawlak, Z. Rough Sets: Theoretical Aspects of Reasoning about Data.Kluwer, 1991.

24. Roy, B.Multicriteria Methodology for Decision Aiding.Kluwer, 1995.

25. Slowinski, R., Stefanowski, J., Greco, S., and Matarazzo, B.Rough sets processing
of inconsistent information.Control and Cybernetics 29: 1, 2000, pp. 379–404.

26. Stefanowski, J. On rough set based approaches to induction of decision rules, in:
Rough Sets in Data Mining and Knowledge Discovery vol. 1. Physica, 1998, pp.
500–529.

Incremental versus Non-incremental Rule Induction 53

27. Stefanowski, J. (2001) Algorithims of Rule Induction for Knowledge Discovery.
Habilitation Thesis published as Series Rozprawy no. 361, Poznan Univeristy of
Technology Press, 2001, Poznan (in Polish).

28. Stefanowski, J., Vanderpooten, D. Induction of decision rules in classification and
discovery–oriented perspectives. Int. Journal of Intelligent Systems 16: 1, 2001,
pp. 11–28.

29. Stefanowski, J., Zurawski, M.Incremental learning of decision rules for classification
problems.Submitted to IIS-2003, New Trends in Intelligent Information Processing
and Webmining Conference, 2002.

30. Shan, N., Ziarko, W.Data–based acquisition and incremental modification of clas-
sification rules.Computational Intelligence 11: 2, 1995, pp. 357–370.

31. Susmaga, R. Experiments in incremental computation of reducts, in: Rough Sets in
Data Mining and Knowledge Discovery vol. 1 (Polkowski L., Skowron, A. (eds.)).
Physica, 1998, pp. 530–553.

32. Utgoff, P. E.Incremental induction of decision trees.Machine Learning 4, 1989, pp.
161–186.

33. Wojna, A. Constraint based incremental learning of classification rules, in: Rough
Sets and Current Trends in Computing. Proceedings of the 2nd Int. Conference
RSCTC 2000 Banff, October, 2000. Lecture Notes in Artificial Intelligence 2005,
2001, pp. 428–435.

34. Wu Xiandong. Inductive learning: Algorithms and frontiers. Artificial Intelligence
Review 7, 1993, pp. 93–108,

35. Zurawski, M. Algorithms of Induction of Decision Rules for Multicriteria Decision
Problems. M.Sc. Thesis, Poznań University of Technology, 110 pp., 2001.

Three Strategies to Rule Induction from Data
with Numerical Attributes

Jerzy W. Grzymala-Busse

University of Kansas, Lawrence, KS 66045, USA

Abstract. Rule induction from data with numerical attributes must be
accompanied by discretization. Our main objective was to compare two
discretization techniques, both based on cluster analysis, with a new rule
induction algorithm called MLEM2, in which discretization is performed
simultaneously with rule induction. The MLEM2 algorithm is an exten-
sion of the existing LEM2 rule induction algorithm, working correctly
only for symbolic attributes and being a part of the LERS data min-
ing system. For the two strategies, based on cluster analysis, rules were
induced by the LEM2 algorithm. Our results show that MLEM2 outper-
formed both strategies based on cluster analysis and LEM2, in terms of
complexity (size of rule sets and the total number of conditions) and,
more importantly, in terms of error rates.

1 Introduction

Many real-life data contain numerical attributes, with values being integers or
real numbers. Such numerical values cannot be used in rules induced by data
mining systems since there is a very small chance that these values may match
values of unseen, testing cases. There are two possible approaches to processing
data with numerical attributes: either to convert numerical attributes into inter-
vals through the process called discretization before rule induction or conduct
both discretization and rule induction at the same time.

The former approach is more frequently used in practice of data mining.
An entire spectrum of discretization algorithms was invented [7]. Using this
approach discretization is performed as a preprocessing for the main process of
rule induction.

The latter approach was used in a few systems, e.g., in C4.5 that induces
decision trees at the same time discretizing numerical attributes [17], in the
MODLEM algorithm [9, 10, 18], a modification of LEM2, and in the MLEM2
algorithm. The MLEM2 algorithm [8] is another extension of the existing LEM2
rule induction algorithm. Performance of MLEM2 was compared with MODLEM
performance in [8]. The LEM2 algorithm is a part of data mining system LERS
(Learning from Examples based on Rough Sets) [5, 6]. LERS uses rough set
theory [14, 15] to deal with inconsistency in input data.

As follows from our previous results on melanoma diagnosis [1], discretization
based on cluster analysis is a sound approach. For example, discretization algo-
rithms based on divisive and agglomerative methods were ranked as the second

J.F. Peters et al. (Eds.): Transactions on Rough Sets II, LNCS 3135, pp. 54–62, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Three Strategies to Rule Induction 55

and third (out of six) with respect to error rate (with minimal entropy being
first), however, an expert in the domain ranked rule sets induced by LEM2 from
the data discretized by minimal entropy on the fourth position, while the dis-
cretization algorithms based on divisive method of cluster analysis was again sec-
ond [1]. In our previous research we used only one data set describing melanoma.

Our current objective was to compare two discretization techniques, based
on cluster analysis, with a new rule induction algorithm called MLEM2, in which
discretization is performed simultaneously with rule induction. As follows from
our results, MLEM2 outperformed two other strategies, in which discretization
techniques based on cluster analysis were used first and then rule induction was
conducted by LEM2 algorithm. Note that MLEM2 produces the same rule sets
from symbolic attributes as LEM2.

2 Discretization Algorithms Based on Cluster Analysis

The data mining system LERS uses for discretization a number of discretization
algorithms, including two methods of cluster analysis: agglomerative (bottom-
up) [3] and divisive (top-down) [16]. In agglomerative techniques, initially each
case is a single cluster, then they are fused together, forming larger and larger
clusters. In divisive techniques, initially all cases are grouped in one cluster, then
this cluster is gradually divided into smaller and smaller clusters. In both meth-
ods, during the first step of discretization, cluster formation, cases that exhibit
the most similarity are fused into clusters. Once this process is completed, clus-
ters are projected on all attributes to determine initial intervals on the domains
of the numerical attributes. During the second step (merging) adjacent intervals
are merged together. In the sequel, the former method will be called the agglom-
erative discretization method, the latter will be called the divisive discretization
method. In our experiments, both methods used were polythetic (all numerical
attributes were used).

Initially all attributes were categorized into numerical and symbolic. During
clustering, symbolic attributes were used only for clustering stopping condition.
First, all numerical attributes were normalized (attribute values were divided by
the attribute standard deviation, following [4]).

In agglomerative discretization method initial clusters were single cases. Then
the distance matrix of all Euclidean distances between pairs of cases was com-
puted. The closest two cases, a and b, compose a new cluster {a, b}. The distance
from {a, b} to any remaining case c was computed using the Median Cluster
Analysis formula [4],

1
2
dca +

1
2
dcb

1
4
dab,

where dxy id the Euclidean distance between x and y. The closest two cases
compose a new cluster, etc.

At any step of clustering process, the clusters form a partition π on the set
of all cases. All symbolic attributes define another partition τ on the set of all

56 Jerzy W. Grzymala-Busse

cases. The set of all concepts define yet another partition λ on the set of all
cases. The process of forming new clusters was terminated when π · τ > λ.

In divisive discretization method, initially all cases were placed in one cluster
C1. Next, for every case the average distance from all other cases was computed.
The case with the largest average distance was identified, removed from C1,
and placed in a new cluster C2. For all remaining cases from C1 a case c with
the largest average distance d1 from all other cases in C1 was selected and the
average distance d2 from c to all cases in C2 was computed. If d1−d2 > 0, c was
removed from C1 and put to C2. Then the next case c with the largest average
distance in C1 was chosen and the same procedure was repeated. The process
was terminated when d1 − d2 ≤ 0. The partition defined by C1 and C2 was
checked whether all cases from C1 were labeled by the same decision value and,
similarly, if all cases from C2 were labeled by the same decision value (though
the label for C1 might be different than the label for C2). The stopping condition
was the same as for the agglomerative discretization method.

Final clusters were projected into all numerical attributes, defining this way
a set of intervals. The next step of discretization was merging these intervals
to reduce the number of intervals and, at the same time, preserve consistency.
Merging of intervals begins from safe merging, where, for each attribute, neigh-
boring intervals labeled by the same decision value are replaced by their union
provided that the union was a labeled again by the same decision value. The next
step of merging intervals was based on checking every pair of neighboring inter-
vals whether their merging will result in preserving consistency. If so, intervals
are merged permanently. If not, they are marked as un-mergeable. Obviously,
the order in which pairs of intervals are selected affects the final outcome. In our
experiments we started from an attribute with the most intervals first.

3 MLEM2

In general, LERS uses two different approaches to rule induction: one is used
in machine learning, the other in knowledge acquisition. In machine learning, or
more specifically, in learning from examples (cases), the usual task is to learn
discriminant description [13], i.e., to learn the smallest set of minimal rules,
describing the concept. To accomplish this goal, i.e., to learn discriminant de-
scription, LERS uses two algorithms: LEM1 and LEM2 (LEM1 and LEM2 stand
for Learning from Examples Module, version 1 and 2, respectively) [5].

Let B be a nonempty lower or upper approximation of a concept represented
by a decision-value pair (d, w). Set B depends on a set T of attribute-value pairs
(a, v) if and only if

∅ �= [T] =
⋂
t∈T

[t] ⊆ B,

where [(x, v)] denotes the set of all examples such that for attribute a its values
are v.

Set T is a minimal complex of B if and only if B depends on T and no proper
subset T ′ of T exists such that B depends on T ′. Let T be a nonempty collection

Three Strategies to Rule Induction 57

of nonempty sets of attribute-value pairs. Then T is a local covering of B if and
only if the following conditions are satisfied:

– each member T of T is a minimal complex of B;
–
⋂

t∈T [T] = B;
– T is minimal, i.e., T has the smallest possible number of members.

The user may select an option of LEM2 with or without taking into account
attribute priorities. The procedure LEM2 with attribute priorities is presented
below. The option without taking into account priorities differs from the one
presented below in the selection of a pair t ∈ T (G) in the inner loop WHILE.
When LEM2 is not to take attribute priorities into account, the first criterion is
ignored. In our experiments all attribute priorities were equal to each other.

Procedure LEM2
(input: a set B,
output: a single local covering T of set B);
begin

G := B;
T := ∅;
while G �= ∅

begin
T := ∅;
T (G) := {t|[t] ∩G �= ∅} ;
while T = ∅ or [T] �⊆ B

begin
select a pair t ∈ T (G) with the highest
attribute priority, if a tie occurs, select a pair
t ∈ T (G) such that |[t] ∩G| is maximum;
if another tie occurs, select a pair t ∈ T (G)
with the smallest cardinality of [t];
if a further tie occurs, select first pair;
T := T ∪ {t} ;
G := [t] ∩G ;
T (G) := {t|[t] ∩G �= ∅};
T (G) := T (G)− T ;
end {while}

for each t ∈ T do
if [T − {t}] ⊆ B then T := T − {t};

T := T ∪ {T };
G := B −

⋃
T∈T [T];

end {while};
for each T ∈ T do

if
⋃

S∈T −{T}[S] = B then T := T − {T };
end {procedure}.

For a set X , |X | denotes the cardinality of X .

58 Jerzy W. Grzymala-Busse

Rules induced from raw, training data are used for classification of unseen,
testing data. The classification system of LERS is a modification of the bucket
brigade algorithm [2, 12]. The decision to which concept a case belongs is made
on the basis of three factors: strength, specificity, and support. They are defined
as follows: Strength is the total number of cases correctly classified by the rule
during training. Specificity is the total number of attribute-value pairs on the
left-hand side of the rule. The matching rules with a larger number of attribute-
value pairs are considered more specific. The third factor, support, is defined as
the sum of scores of all matching rules from the concept. The concept C for
which the support (i.e., the sum of all products of strength and specificity, for
all rules matching the case, is the largest is a winner and the case is classified as
being a member of C).

MLEM2, a modified version of LEM2, categorizes all attributes into two cat-
egories: numerical attributes and symbolic attributes. For numerical attributes
MLEM2 computes blocks in a different way than for symbolic attributes. First, it
sorts all values of a numerical attribute. Then it computes cutpoints as averages
for any two consecutive values of the sorted list. For each cutpoint x MLEM2
creates two blocks, the first block contains all cases for which values of the nu-
merical attribute are smaller than x, the second block contains remaining cases,
i.e., all cases for which values of the numerical attribute are larger than x. The
search space of MLEM2 is the set of all blocks computed this way, together with
blocks defined by symbolic attributes. Starting from that point, rule induction
in MLEM2 is conducted the same way as in LEM2.

4 Experiments

In our experiments we used eight well-known data sets with numerical attributes
(Table 1). All of our data sets, except Bank, were obtained from the Univer-
sity of California at Irvine Machine Learning Depository. The Australian Credit
Approval data set was donated by J. R. Quinlan. The data set Bank describing
bankruptcy was created by E. Altman and M. Heine at the New York University
School of Business in 1968. The data set Bupa, describing liver disorders, contain
data gathered by BUPA Medical Research Ltd., England. German data set, with

Table 1. Data sets.

Number of
cases attributes concepts

Australian 690 14 2
Bank 66 5 2
Bupa 345 6 2
German 1000 24 2
Glass 214 9 6
Iris 150 4 3
Pima 768 8 2
Segmentation 210 19 7

Three Strategies to Rule Induction 59

only numerical attributes, was donated by H. Hoffman from the University of
Hamburg (Germany). The data set Glass, representing glass types, was created
by B. German, Central Research Establishment, Home Office Forensic Science
Service, Canada. The Iris data set was created by R. A. Fisher and donated by
M. Marshall in 1988. The Pima data set describes Pima Indian diabetes and
was donated by V. Sigillito in 1990. The data set Segmentation created in 1990
by the Vision Group, University of Massachusetts, represents image features:
brickface, sky, foliage, cement, window, path, and grass.

Table 2 presents means of numbers of errors for all eight data sets. The
means of errors were computed using 30 experiments of variable ten-fold cross
validation, with the exception of three data sets: Bupa, German and Pima and
MLEM2. Only 20 experiments of running of MLEM2 against Bupa and Pima and
only 21 experiments of running MLEM2 against German were performed since
these experiments were very time-consuming (e.g., running of MLEM2 against
Pima lasted for about 2 hours 37 minutes on Alpha 21264 computer). Table 3
presents sample standard deviations of numbers of errors associated with our
experiments.

Table 4 presents the cardinalities of rule sets induced by respective methods.
Also, Table 5 presents the total numbers of conditions in the corresponding rule
sets.

Table 2. Means of numbers of errors.

Agglomerative Divisive MLEM2
Discretization Discretization

Method Method

Australian 205.5 212.6 135.3
Bank 5.63 4.9 3.73
Bupa 143.8 142.9 109.9
German 288.6 294.0 285.3
Glass 74.1 69.9 71.83
Iris 13.33 9.3 8.97
Pima 253.1 249.7 223.1
Segmentation 50.4 44.9 36.77

Table 3. Standard deviations of numbers of errors.

Agglomerative Divisive MLEM2
Discretization Discretization

Method Method

Australian 6.23 11.24 7.93
Bank 1.35 1.63 1.11
Bupa 8.87 8.33 6.87
German 7.04 5.97 7.60
Glass 4.25 5.42 4.81
Iris 2.19 1.68 1.27
Pima 8.70 8.74 12.34
Segmentation 5.28 4.53 3.47

60 Jerzy W. Grzymala-Busse

Table 4. Sizes of rule sets.

Agglomerative Divisive MLEM2
Discretization Discretization

Method Method

Australian 115 109 90
Bank 4 6 3
Bupa 164 162 71
German 205 232 159
Glass 82 76 30
Iris 13 11 8
Pima 287 264 116
Segmentation 38 35 14

Table 5. Total numbers of conditions in rule sets.

Agglomerative Divisive MLEM2
Discretization Discretization

Method Method

Australian 559 542 348
Bank 7 13 6
Bupa 487 500 241
German 1309 1359 814
Glass 262 255 87
Iris 30 21 17
Pima 1025 963 428
Segmentation 144 134 37

5 Conclusions

Our main objective was to compare three different strategies for rule induc-
tion from data with numerical attributes. In the first two strategies, data with
numerical attributes were discretized first, using two different discretization al-
gorithms, based on agglomerative and divisive algorithms of cluster analysis,
respectively, and then rule sets were induced using the LEM2 algorithm. The
LEM2 algorithm is the most frequently used rule induction option of the LERS
data mining system. In the third strategy we used our new algorithm, called
MLEM2, an extension of the LEM2 algorithm. Results of our experiments are
presented in Tables 2 and 3. In order to rank these three strategies, first, for
any data set and for every pair of means from Table 2 and associated with the
three methods, the well known test [11] about the difference between two means,
involving error standard deviation and sample sizes was taken with the signif-
icance level equal to 0.05. Then, for the three sequences of results of this test,
each associated with the eight data sets, the sign test [11]was used to compare
the entire methods, again, with the same significance level equal to 0.05. Results
are: MLEM2 produces less errors than the remaining two methods and the re-
maining two methods are incomparable (the null hypothesis that they produce

Three Strategies to Rule Induction 61

the same number of errors cannot be rejected with the level of significance equal
to 0.05).

Less important observation, about the complexity of rule sets, follows from
Tables 4 and 5: rule sets induced by MLEM2 are simpler than rule sets induced
by the remaining two strategies (the total number of rules and the total number
of conditions, for any data sets used in our experiments, were always smaller for
MLEM2).

Our final observation is that MLEM2 induces rules from raw data with nu-
merical attributes, without any prior discretization, and that MLEM2 provides
the same results as LEM2 for symbolic attributes. Note that MLEM2 can handle
also missing attribute values. A comparison of MLEM2 and other approaches to
missing attribute values will be reported in the future.

References

1. Bajcar, S., J. W. Grzymala–Busse, and Z. S. Hippe. A comparison of six discretiza-
tion algorithms used for prediction of melanoma,in: Proceedings of the Eleventh
International Symposium on Intelligent Information Systems, IIS’2002, Sopot,
Poland, June 3–6, 2002, Physica, 2003, pp. 3–12.

2. Booker, L. B., D. E. Goldberg, and J. F. Holland. Classifier systems and genetic
algorithms, in: Machine Learning. Paradigms and Methods (Carbonell, J. G. (ed.)).
MIT Press, 1990, pp. 235–282.

3. Chmielewski, M. R., J. W. Grzymala-Busse. Global discretization of continuous
attributes as preprocessing for machine learning. Int. Journal of Approximate Rea-
soning 15, 1990, pp. 319–331.

4. Everitt, B. Cluster Analysis 2nd ed.. Heinmann Educational Books, London, 1980.
5. Grzymala-Busse, J. W. (1992) LERS—A system for learning from examples based

on rough sets. In Intelligent Decision Support. Handbook of Applications and Ad-
vances of the Rough Sets Theory, Slowinski, R. (ed.), Kluwer Academic Publishers,
Dordrecht, Boston, London, 3–18.

6. Grzymala-Busse, J. W. A new version of the rule induction system LERS. Funda-
menta Informaticae 31 , 1997, pp. 27–39.

7. Grzymala–Busse, J. W. Discretization of numerical attributes, in: Handbook of
Data Mining and Knowledge Discovery (Klösgen, W., J. Zytkow (eds)). Oxford
Univ. Press, 2002, pp. 218–225.

8. Grzymala–Busse, J. W. MLEM2: A new algorithm for rule induction from im-
perfect data,in: Proceedings of the 9th International Conference on Information
Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU
2002, Annecy, France, July 1–5, 2002, pp. 243–250.

9. Grzymala–Busse, J. W., J. Stefanowski. Discretization of numerical attributes by
direct use of the rule induction algorithm LEM2 with interval extension,in: Proceed-
ings of the Sixth Symposium on Intelligent Information Systems, IIS’97, Zakopane,
Poland, June 9–13, 1997, pp. 149–158.

10. Grzymala–Busse, J. W., J. Stefanowski. Three discretization methods for rule in-
duction. International Journal of Intelligent Systems 16,2001, pp. 29–38.

11. Hamburg, M. Statistical Analysis for Decision Making. Harcourt Brace Jovanovich,
1983, pp. 546–550; 721.

12. Holland, J. H., K. J. Holyoak, R. E. Nisbett. Induction. Processes of Inference,
Learning, and Discovery. MIT Press, 1983.

62 Jerzy W. Grzymala-Busse

13. Michalski, R. S. A Theory and Methodology of Inductive Learning, in: Machine
Learning. An Artificial Intelligence Approach (Michalski, R. S., J. G. Carbonell,
and T. M. Mitchell (eds.)). Morgan Kauffman, 1983, pp. 83–134.

14. Pawlak, Z. Rough Sets. International Journal of Computer and Information Sci-
ences 11, 1982, pp. 341–356.

15. Pawlak, Z. Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer, 1991.
16. Peterson, N. Discretization using divisive cluster analysis and selected post–

processing techniques. Internal Report, Department of Computer Science, Uni-
versity of Kansas, 1993.

17. Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers, 1993.

18. Stefanowski, J. On rough set based approaches to induction of decision rules, in:
Rough Sets in Data Mining and Knowledge Discovery (Polkowski, L., A. Skowron
(eds.)). Physica, 1998, pp. 500–529.

Fuzzy Transforms

Irina Perfilieva

University of Ostrava
Institute for Research and Applications of Fuzzy Modeling

30. dubna 22,
701 03 Ostrava 1, Czech Republic

Abstract. The technique of direct and inverse F–transforms is intro-
duced and approximating properties of the inverse F–transform are de-
scribed. Numerical methods based on fuzzy approximation models are
developed. Among them are numeric integration and approximate solu-
tion of ordinary differential equations (the Cauchy problem). Advantages
of the new technique based on F–transforms over some classical numeric
methods are demonstrated on examples.

Keywords: universal approximation, fuzzy transform, basic function

1 Introduction

Fuzzy logic has been demonstrated to provide a basis for the approximate de-
scription of different dependencies. Fuzzy logic’s ability to produce smooth de-
scriptions has especially attracted researchers from various areas. A lot of results
are unified by the common name – the universal approximation, which has proved
the approximation property of so called fuzzy models. Generally speaking, each
model differs from the other ones by the choice of logical operations.

Unfortunately, the technique of producing fuzzy approximation models has
not been followed by other methods. We know from the theory of numerical
methods that approximation models can replace original complex functions in
some computations, e.g. in solving of differential equations, etc. This chapter is a
new contribution to this area. We call this type of technique numerical methods
based on fuzzy approximation models.

In this chapter, we show how it is possible to obtain an approximate value of
a definite integral as well as an approximate solution to an ordinary differential
equation on the basis of the certain class of fuzzy approximation models. The
way how the parameters of the models are computed is analogous to those used
in the theory of generalized functions and Fourier and Laplace transforms. On
the basis of this analogy we introduce our technique as a kind of transformation
of the given function and call it fuzzy transforms or shortly F–transforms.

2 Preliminaries: Approximation Models Instead of Data

We confine ourselves to approximation models which can be represented by func-
tions of one variable. The generalization to the case of two and more variables
is straightforward.

J.F. Peters et al. (Eds.): Transactions on Rough Sets II, LNCS 3135, pp. 63–81, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

64 Irina Perfilieva

Suppose that we are given data and are concerned with construction of a
representative model. By this we mean the construction of a formula which
represents (precisely or approximately) the given data. For example, if our data
comprise a collection of pairs (xi, yi), i = 1, . . . , n, then the model can be given
by a formula F (x) such that the function y = F (x) interpolates or approximates
the data. In the first case we have,

yi = F (xi), i = 1, . . . , n,

while in the second case, the equality may not hold, but the function y = F (x)
“nicely” approximates (in the sense of some criterion) the data. We choose in-
terpolation when our data are precise, otherwise we look for an approximation.
Let us stress that in both cases the model may not be unique. It depends on the
primary choice of a class of formulas (F (x) in our notation) which is chosen for
the representation of the data, as well as on the approximation criterion. With
this in mind, we come to the following formulation of the problem investigated
in this chapter.

We are given data which are not precise (e.g., the data contain errors of
measurement, or comprise numeric or linguistic expert estimations, etc.). Our
goal is to construct an approximating model of the given data represented by a
formula from a certain class and such that a certain criterion is satisfied.

Though we have supposed above that the given data are discrete and com-
prise a collection of pairs (xi, yi), i = 1, . . . , n, we will deal in fact, with a
continuous function that is to be approximated. This is a usual trick in the the-
ory of approximation which makes possible theoretical estimation of a quality of
approximation. On the respective place of this chapter, we will point out, how
our construction may be reduced to the discrete case.

Moreover, having an approximating model at our disposal, we would like to
apply it in further investigations which may be connected with the original data.
In this chapter we will demonstrate how this technique works in solving differ-
ential equations where some parameters are replaced by their approximating
models.

The structure of the chapter is the following. In Sect. 3, concepts of fuzzy
partition and uniform fuzzy partition of the universe are introduced. In Sects. 4
and 5, techniques of direct and inverse Fuzzy–transforms (F–transforms here-
after) are introduced and approximating properties of the inverse F–transform
are established. Sect. 6 presents the technique of approximate solvability of ordi-
nary differential equations. Two generalized methods of the Runge-Kutta class
are presented. In the last subsection of Sect. 6 we showed that a numerical so-
lution to the Cauchy problem based on F–transforms has an advantage over the
classical numerical solution in a special case of noisy right-hand side.

3 Fuzzy Partition of the Universe

We take an interval [a, b] as a universe. That is, all (real-valued) functions con-
sidered in this chapter have this interval as a common domain. Let us introduce

Fuzzy Transforms 65

fuzzy sets (given by their membership functions) which are subsets of the uni-
verse [a, b] and which form a fuzzy partition of the universe.

Definition 1. Let x1 < . . . < xn be fixed nodes within [a, b], such that x1 = a,
xn = b and n ≥ 2. We say that fuzzy sets A1, . . . , An identified with their
membership functions A1(x), . . . , An(x) defined on [a, b], form a fuzzy partition
of [a, b] if they fulfill the following conditions for k = 1, . . . , n.

1. Ak : [a, b]→ [0, 1], Ak(xk) = 1.
2. Ak(x) = 0 if x �∈ (xk−1, xk+1) where x−1 = a, xn+1 = b.
3. Ak(x) is continuous.
4. Ak(x) monotonically increases on [xk−1, xk] and monotonically decreases on

[xk, xk+1].
5.
∑n

k=1 Ak(x) = 1, for all x.

The membership functions A1(x), . . . , An(x) are called basic functions.

Fig. 1. An example of a fuzzy partition of [1, 4] by triangular membership functions

In Fig. 1, a fuzzy partition of an interval by fuzzy sets with triangular shaped
membership functions is shown. The following formulas give the formal repre-
sentation of such triangular membership functions,

A1(x) =

{
1− (x−x1)

h1
, x ∈ [x1, x2],

0, otherwise,

Ak(x) =

⎧⎪⎨⎪⎩
(x−xk−1)

hk−1
, x ∈ [xk−1, xk],

1− (x−xk)
hk

, x ∈ [xk, xk+1],
0, otherwise,

An(x) =

{
(x−xn−1)

hn−1
, x ∈ [xn−1, xn],

0, otherwise,

where k = 2, . . . n− 1, and hk = xk+1 − xk.
Moreover, we say that a fuzzy partition is uniform if the nodes x1, . . . , xn

are equidistant, i.e. xk = a + h(k − 1) where h = (b − a)/(n − 1), n ≥ 2 and
k = 1, . . . , n, and two additional properties are met,

66 Irina Perfilieva

6. Ak(xk − x) = Ak(xk + x), for all x, k = 2, . . . , n− 1, n > 2.
7. Ak+1(x) = Ak(x− h), for all x, k = 2, . . . , n− 2, n > 2.

In the case of a uniform partition, h is a length of the support of A1 or An

while 2h is the length of support of other basic functions Ak, k = 2, . . . , n − 1.
Fig. 2 shows a uniform partition by sinusoidally shaped basic functions. Their
formal expressions are given below.

A1(x) =

{
0.5(cos π

h (x− x1) + 1), x ∈ [x1, x2],
0, otherwise,

Ak(x) =

{
0.5(cos π

h (x− xk) + 1), x ∈ [xk−1, xk+1],
0, otherwise,

where k = 2, . . . n− 1, and

An(x) =

{
0.5(cos π

h (x− xn) + 1), x ∈ [xn−1, xn],
0, otherwise.

Fig. 2. An example of a uniform fuzzy partition of [1, 4] by sinusoidal membership
functions

For the sake of simplicity, here we consider only uniform partitions, though
some results remain true in the general case. We will point out when this occurs.

The following lemma shows that, in the case of a uniform partition, the
definite integral of a basic function does not depend on its concrete shape. This
property will be further used to simplify a direct F–transform.

Lemma 1. Let the uniform partition of [a, b] be given by basic functions
A1(x), . . . , An(x). Then∫ x2

x1

A1(x)dx =
∫ xn

xn−1

An(x)dx =
h

2
, (1)

and for k = 2, . . . , n− 1 ∫ xk+1

xk−1

Ak(x)dx = h (2)

where h is the length of the support of A1.

Fuzzy Transforms 67

Proof. Obviously, ∫ x3

x1

A2(x)dx = · · · =
∫ xn

xn−2

An−1(x)dx.

Therefore, to prove (2) it is sufficient to estimate∫ h

−h

A(x)dx,

where A(x) = A2(x + a + h) and x ∈ [−h, h]. Based on properties 5 and 7 of
basic functions we can deduce that

1−A(x) = A(x + h), x ∈ [−h, 0].

Then ∫ h

0

A(x)dx =
∫ 0

−h

A(x + h)dx = h−
∫ 0

−h

A(x)dx

which implies (2). Equation (1) follows immediately from the symmetry of basic
functions (property 6).

4 F–Transform

In this section we introduce the technique of two F–transforms: direct and in-
verse. The direct F–transform takes the original function (which should be at
least integrable) and converts it into an n–dimensional vector. The inverse F–
transform converts the n–dimensional vector into specially represented function
which approximates the original one. The advantage of the direct F–transform
is that it produces a simple and unique representation of an original function
which enables us to use the former instead of the latter in complex computations.
After finishing the computations, the result can be brought back to the space of
ordinary functions by the inverse F–transform. To be sure that this can be done
we need to prove a number of theorems.

The following definition (see also [6]) introduces the direct F–transform (or
fuzzy transform) of a given function.

Definition 2. Let f(x) be any continuous (real-valued) function on [a, b] and
A1(x), . . . , An(x) be basic functions which form a fuzzy partition of [a, b]. We
say that the n–tuple of real numbers [F1, . . . , Fn] is the F–transform of f w.r.t.
A1, . . . , An if

Fk =

∫ b

a f(x)Ak(x)dx∫ b

a
Ak(x)dx

. (3)

Suppose that basic functions A1, . . . , An are fixed. Denote the F–transform
of f w.r.t. A1, . . . , An by Fn[f]. Then according to Definition 2, we can write,

Fn[f] = [F1, . . . , Fn]. (4)

The elements F1, . . . , Fn are called components of the F-transform.

68 Irina Perfilieva

If the partition of [a, b] by A1, . . . , An is uniform then the expression (2) for
components of the F–transform may be simplified on the basis of Lemma 1,

F1 =
2
h

∫ x2

x1

f(x)A1(x)dx,

Fn =
2
h

∫ xn

xn−1

f(x)An(x)dx,

Fk =
1
h

∫ xk+1

xk−1

f(x)Ak(x)dx, k = 2, . . . , n− 1.

In the discrete case, when f(x) is known only at some nodes x1, . . . , xl ∈ [a, b],
the direct F–transform of f may be introduced as follows.

Definition 3. Let f(x) be given at nodes x1, . . . , xl ∈ [a, b] and
A1(x), . . . , An(x), n� l, be basic functions which form a fuzzy partition of [a, b].
We say that the n-tuple of real numbers [F1, . . . , Fn] is the (direct) F–transform
of f w.r.t. A1, . . . , An if

Fk =

∑l
j=1 f(xj)Ak(xj)∑l

j=1 Ak(xj)
.

It is easy to see that if a fuzzy partition (and therefore, basic functions) is
fixed then the F–transform being a mapping from C[a, b] (the set of all continuous
functions on [a, b]) to Rn is linear, so that

Fn[αf + βg] = αFn[f] + βFn[g]

for α, β ∈ R and functions f, g ∈ C[a, b].
One may say that we loose information using an F–transform instead of the

original function. Let us investigate this problem having on mind the following
question: how fully is the original function f represented by its F–transform?
First of all, we will try to estimate each component Fk, k = 1, . . . , n using
different assumptions about the smoothness of f .

Lemma 2. Let f(x) be any continuous function on [a, b] and A1(x), . . . , An(x)
be basic functions which form a uniform fuzzy partition of [a, b]. Then for each
k = 2, . . . , n − 1 there exist two constants ck1 ∈ [xk−1, xk] and ck2 ∈ [xk, xk+1]
such that

Fk =
1
h

∫ ck2

ck1

f(x)dx,

and for k = 1 (k = n) there exists c ∈ [x1, x2] (c ∈ [xn−1, xn]) such that

F1 =
2
h

∫ c

x1

f(x)dx (Fn =
2
h

∫ xn

c

f(x)dx).

Proof. The proof can be easily obtained from the second mean–value theorem.

Fuzzy Transforms 69

Therefore, by Lemma 2, we can say that Fk is a mean value of f within the
interval [ck1, ck2] and thus it accumulates the information about the function f
within this interval. We can evaluate Fk more precisely if the function f is twice
continuously differentiable.

Lemma 3. Let the conditions of Lemma 2 be fulfilled, but function f be twice
continuously differentiable in (a, b). Then for each k = 1, . . . , n

Fk = f(xk) + O(h2). (5)

Proof. The proof will be given for one fixed value of k which lies between 2 and
n − 1. The other two cases k = 1 and k = n are considered analogously. We
will apply the trapezoid formula with nodes xk−1, xk, xk+1 to the computation
of the integral

1
h

∫ xk+1

xk−1

f(x)Ak(x)dx,

and we obtain

Fk =
1
h

∫ xk+1

xk−1

f(x)Ak(x)dx =

1
h
· h
2

(f(xk−1)Ak(xk−1) + 2f(xk)Ak(xk) + f(xk+1)Ak(xk+1)) + O(h2) =

f(xk) + O(h2).

Using (5) and applying again the trapezoid formula with nodes x1, . . . , xn to
the computation of the integral ∫ xk

x1

f(x)dx,

we easily come to the following corollary.

Corollary 1 (Computation of Definite Integral). Let the conditions of
Lemma 3 be fulfilled and the F–transform of f be given by (4). Then for each
k = 2, . . . , n− 1,∫ xk

x1

f(x)dx = h(
1
2
F1 + F2 + · · ·+ Fk−1 +

1
2
Fk) + O(h2). (6)

Moreover, for any continuous function f(x), the integral
∫ b

a
f(x)dx can be com-

puted precisely, ∫ b

a

f(x)dx = h(
1
2
F1 + F2 + · · ·+ Fn−1 +

1
2
Fn). (7)

Returning to the problem of losing information by dealing with an F–transform
instead of its original, we can state that an F–transform preserves mean values
of the function f over 2h long sub–intervals with the accuracy up to h2.

70 Irina Perfilieva

5 Inverse F–Transform

A reasonable question is the following: can we reconstruct the function by its
F–transform? The answer is clear: in general not precisely, because we are losing
information when changing to the direct F–transform. However, the function
which can be reconstructed (by the inverse F–transform) approximates the orig-
inal one in such a way that a universal convergence can be established. More-
over, the inverse F–transform fulfills the best approximation criterion that can
be called the piece–wise integral least square criterion.

Definition 4. Let Fn[f] = [F1, . . . , Fn] be the F–transform of a function f(x)
w.r.t. A1, . . . , An. The function,

fF,n(x) =
n∑

k=1

FkAk(x), (8)

will be called the inversion formula or the inverse F-transform.

The lemma below shows that the sequence of functions fF,n uniformly con-
verges to f .

Lemma 4. Let f(x) be any continuous function on [a, b] and let
{(A(n)

1 , . . . , A
(n)
n)n} be a sequence of uniform fuzzy partitions of [a, b], one

for each n. Let {fF,n(x)} be the sequence of inverse F–transforms, each with
respect to the given n-tuple A

(n)
1 , . . . , A

(n)
n . Then for any ε > 0 there exists nε

such that for each n > nε and for all x ∈ [a, b],

|f(x)− fF,n(x)| < ε. (9)

Proof. Note that the function f is uniformly continuous on [a, b], i.e. for each
ε > 0 there exists δ = δ(ε) > 0 such that for all x1, x2 ∈ [a, b] |x1 − x2| < δ
implies |f(x1) − f(x2)| < ε. To prove our lemma we choose some ε > 0 and
find the respective δ. Let nε ≥ 2 be such that h = b−a

nε−1 ≤
δ
2 . We will show

that with n ≥ nε (9) holds true. Let F1n, . . . , Fnn be the components of the
single F–transform of f w.r.t. basic functions A

(n)
1 , . . . , A

(n)
n , n ≥ nε. Then for

all t ∈ [xk, xk+1], k = 1, . . . , n− 1, we can evaluate,

|f(t)− Fkn| =
∣∣∣∣∣f(t)− 1

h

∫ xk+1

xk−1

f(x)A(n)
k (x)dx

∣∣∣∣∣ ≤
1
h

∫ xk+1

xk−1

|f(t)− f(x)|A(n)
k (x)dx < ε,

and analogously,
|f(t)− Fk+1,n| < ε.

Therefore,∣∣∣∣∣f(t)−
n∑

k=1

FknA
(n)
k (t)

∣∣∣∣∣ ≤
n∑

k=1

A
(n)
k (t)|f(t)− Fkn| < ε(A(n)

k (t) + A
(n)
k+1(t)) = ε.

Fuzzy Transforms 71

Because argument t has been chosen arbitrary, this proves the required inequal-
ity.

The following corollary reformulates Lemma 4.

Corollary 2. Let the assumptions of the lemma given above be fulfilled. Then
the sequence of inverse F–transforms {fF,n} uniformly converges to f .

To illustrate this fact, we choose two functions with different behaviour
sin(1/x) and sinx (see Figs. 3, 4) and consider different values of n. As we see
below, the greater the value of n, the closer the approximating curve approaches
the original function.

Fig. 3. sin(1/x) and its inverse transformations based on triangular shaped basic func-
tions

Since approximation by the inverse F–transform converges uniformly to the
original function, we are interested in the criterion which distinguishes it among
other functions from the certain class. As discussed at the beginning, this cri-
terion guarantees us that the inverse F–transform is the best approximation in
the sense we explain below.

Let A1(x), . . . , An(x) be basic functions which form a fuzzy partition of [a, b],
and let f(x) be an integrable function on [a, b]. By FT we denote the class of
approximating functions represented by the formula,

n∑
i=1

ciAi(x), (10)

72 Irina Perfilieva

Fig. 4. sin(x) and its inverse transformation based on sinusoidally shaped basic func-
tions (n = 20)

where c1, . . . , cn are arbitrary real coefficients. Note that our inverse F–transform
belongs to FT .

Let the following piece–wise integral least square criterion

Φ(c1, . . . , cn) =
∫ b

a

(
n∑

i=1

(f(x)− ci)2Ai(x)

)
dx, (11)

characterizes the closeness between f(x) and a function from FT . Then com-
ponents F1, . . . , Fn of the F–transform minimize (11) and therefore, determine
the best approximation of f(x) in FT . We leave this fact unproved because the
proof is a technical exercise.

It is worth noticing that so far, we have not specified any concrete shape for
basic functions. Thus, a natural question arises concerning the influence of shapes
of basic functions on the quality of the approximation. We can say the following.
Our criterion of the best approximation assumes that the basic functions are
fixed. Therefore, properties of an approximating function are determined by the
respective properties of basic functions. For example, if basic functions are of
triangular shape then the approximating function will be piece–wise linear. If
we choose sinusoidally shaped basic functions then the approximating function
will be, of course, smoother. In any case, whatever we want to obtain from
the approximating function is required from the basic functions as well. The
following lemma shows how the difference between any two approximations of a
given function by inverse F–transformations can be estimated. As can be seen,
it depends on the character of smoothness of the original function expressed by
its modulus of continuity (see below).

Lemma 5. Let f ′
F,n(x) and f ′′

F,n(x) be two inverse F–transformations of the
same function f(x) w.r.t. n-tuples of different basic functions, n ≥ 2. Then
|f ′

F,n(x)− f ′′
F,n(x)| ≤ 2ω(f, 2h) where ω is the modulus of continuity of f(x),

ω(f, 2h) = max
|δ|≤2h

max
x∈[a,b]

|f(x + δ)− f(x)|.

We illustrate Lemma 5 by considering two different inverse F–transforms of
functions sin(1/x) and sinx. One is based on triangular-shaped basic functions

Fuzzy Transforms 73

and the other one is based on sinusoidal-shaped basic functions, see Figs. 5, 6.
Because sin(1/x) has the modulus of continuity greater than sinx, the approxi-
mation of the latter with the same value of n looks nicer (both approximations
of sinx practically coincide with the original function).

Fig. 5. sin(1/x) and two its inverse transforms based on triangular and sinusoidally
shaped basic functions

Fig. 6. sin x and two its inverse transforms based on triangular and sinusoidally shaped
basic functions. Note that both approximations practically coincide with the original
function

6 Approximate Solution to the Cauchy Problem

In this section we show how the approximation models based on the F–transform
can be used in applications. In general, we mean by this that if the original func-
tion is replaced by an approximation model as described above, then a certain
simplification of complex computations can be achieved. For demonstration, we
will consider the Cauchy problem,{

y′(x) = f(x, y)
y(x1) = y1,

(12)

and show how it can be approximately solved in the interval [x1, xn] if the F–
transform is applied to both sides of the differential equation. Let us stress that
in this section we need a uniform fuzzy partition of [x1, xn].

74 Irina Perfilieva

6.1 The Generalized Euler Method

Suppose that we are given the Cauchy problem (12) where the ordinary func-
tions y(x) and f(x, y(x)) on [x1, xn] are sufficiently smooth. Let us choose some
uniform fuzzy partition of interval [x1, xn] with parameter h = (xn−x1)/(n−1),
n ≥ 2, and apply the direct F–transform to both parts of the differential equa-
tion. In this way we transfer the original Cauchy problem to the space of fuzzy
units, solve it in the new space, and then transfer it back by the inverse F–
transform. We describe the sequence of steps which leads to the solution. The
justification is proved in Theorem 1.

Before we apply the direct F–transform to both parts of the differential equa-
tion, we replace y′(x) by its approximation y(x+h)−y(x)

h so that

y(x + h) = y(x) + hy′(x) + O(h2). (13)

Denote y1(x) = y(x+ h) as a new function and apply the direct F–transform to
both parts of (13). By the linearity of F–transforms and Lemma 3, we obtain
from (13) the expression for F–transform components of the respective functions,

Fn[y′] =
1
h

(Fn[y1]− Fn[y]) + O(h2). (14)

Here Fn[y′] = [Y ′
1 , . . . , Y

′
n−1], Fn[y] = [Y1, . . . , Yn−1] and Fn[y1] =

[Y 11, . . . , Y 1n−1]. Note that these vectors are one component shorter than in
Definition 2 because the function y1(x) may not be defined on [xn−1, xn]. It is
not difficult to prove that

Y 11 = Y2 + O(h2),

Y 1n−1 = Yn + O(h2),
Y 1k = Yk+1, k = 2, . . . , n− 2.

Indeed, for values k = 2, . . . , n− 2,

Y 1k =
1
h

∫ xk+1

xk−1

y(x + h)Ak(x)dx =
1
h

∫ xk+2

xk

y(t)Ak+1(t)dt = Yk+1.

For the values k = 1, n−1, the proof is analogous. Therefore, equation (14) gives
us the way to compute components of the F–transform of y′ via components of
the F–transform of y,

Y ′
k =

1
h

(Yk+1 − Yk) + O(h2), k = 1, . . . , n− 1. (15)

Let us introduce (n− 1)× n matrix

D =
1
h

⎛⎜⎜⎜⎝
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...
0 0 0 · · · −1 1

⎞⎟⎟⎟⎠ (16)

Fuzzy Transforms 75

so that equality (15) can be rewritten (up to O(h2)) as a matrix equality,

Fn[y′] = DFn[y], (17)

where Fn[y′] = [Y ′
1 , . . . , Y

′
n−1]

T , and Fn[y] = [Y1, . . . , Yn]T .
Coming back to the Cauchy problem (12) and applying the F–transform to

both sides of differential equation, we will obtain the following system of linear
equations with respect to the unknown Fn[y],

DFn[y] = Fn[f], (18)

where Fn[f] = [F1, . . . , Fn−1]T is the F–transform of f(x, y) as the function of
x w.r.t. the chosen basic functions A1, . . . , An. The last component Fn is not
present in Fn[f] due to the preservation of dimensionality.

Note that the system (18) does not include the initial condition of (12). For
this, let us complete matrix D by adding the first row,

Dc =
1
h

⎛⎜⎜⎜⎝
1 0 0 · · · 0 0
−1 1 0 · · · 0 0
...
0 0 0 · · · −1 1

⎞⎟⎟⎟⎠
so that Dc is a n × n non–singular matrix. Analogously, let us complete the
vector Fn[f] by the first component y1

h so that

F c
n[f] =

[y1

h
, F1, . . . , Fn−1

]T
.

Then the transformed Cauchy problem can be fully represented by the following
linear system of equations with respect to the unknown Fn[y],

DcFn[y] = F c
n[f]. (19)

The solution of (19) can be given by the formula,

Fn[y] = (Dc)−1F c
n[f], (20)

which in fact, is the generalized Euler method. To make sure, we compute the
inverse matrix,

(Dc)−1 = h

⎛⎜⎜⎜⎝
1 0 0 · · · 0 0
1 1 0 · · · 0 0
...
1 1 1 · · · 1 1

⎞⎟⎟⎟⎠
and rewrite (20) component–wise,

Y1 = y1,

Y2 = y1 + hF1,

Y3 = y1 + hF1 + hF2,

...
Yn = y1 + hF1 + · · ·+ hFn−1,

76 Irina Perfilieva

or, in a more concise way,

Y1 = y1,

Yk+1 = Yk + hFk, k = 1, . . . , n− 1. (21)

Formulas (21) can be applied to the computation of Y2, . . . , Yn provided that the
way of computing of F1, . . . , Fn−1 is known. However, it cannot be done directly
using formulas (3) because the expression for the function f(x, y) includes also
the unknown function y. Therefore, we have to go around this difficulty. The
following approximation,

F̂k =

∫ b

a f(x, Yk)Ak(x)dx∫ b

a
Ak(x)dx

, (22)

for Fk, k = 1, . . . , n − 1, is suggested. The theorem given below provides the
justification.

Theorem 1. Let the Cauchy problem (12) with twice differentiable parameters
be transformed by applying the F–transform w.r.t. basic functions A1, . . . , An

to both sides of differential equation. Then components of the F–transform of y
w.r.t. the same basic functions can be approximately found from the following
system of equations,

Y1 = y1, (23)

Yk+1 = Yk + hF̂k, k = 1, . . . , n− 1, (24)

where F̂k is given by (22). The local approximation error is of order h2.

Proof. It has been shown that the system of linear equations (19) represents the
F–transform of the Cauchy problem (12) up to O(h2). Therefore, to prove the
theorem it is sufficient to show that for each k = 1, . . . , n − 1, the order of the
difference Fk − F̂k is h2. Let us denote y(xk) = yk. First, we estimate (using the
trapezoid formula) the intermediate difference,

f(xk, yk)− F̂k =
1
h

∫ xk+1

xk−1

(f(xk, yk)− f(x, Yk))Ak(x)dx =

1
h
· h
2
· 2(f(xk, yk)− f(xk, Yk)) + O(h2) =

∂f

∂y
(xk, ȳ)(yk − Yk) + O(h2),

where ȳ ∈ [yk, Yk]. By Lemma 3,

yk − Yk = O(h2),

which, when substituted into the expression above, leads to the estimation

f(xk, yk)− F̂k = O(h2).

Fuzzy Transforms 77

Again by Lemma 3,
f(xk, yk)− Fk = O(h2),

which, together with the previous estimation, proves that

Fk − F̂k = O(h2).

This completes the proof.

Corollary 3. The generalized Euler method for (12) is given by the recursive
scheme (23)-(24) with local error O(h2). The approximate solution to (12) can
be found by taking the inverse F–transform,

yY,n(x) =
n∑

k=1

YkAk(x),

where A1, . . . , An are fixed basic functions.

Let us illustrate the generalized Euler method for the Cauchy problem (12)
given by {

y′(x) = x2 − y

y(x1) = 1.

Fig. 7 shows the precise solution (gray line) and the approximate one obtained by
the generalized Euler method. The global error of the approximate solution with
n = 10 nodes has of order 10−1 which corresponds to the theoretical estimation.

Fig. 7. Precise solution (gray line) and approximate solution (black line) of the Cauchy
problem obtained by the generalized Euler method (n = 10)

6.2 The Generalized Euler–Cauchy Method

The generalized Euler method for the Cauchy problem has the same disadvantage
as its classical prototype, namely, it is not sufficiently precise. Therefore, we will
construct the generalization of more advanced method known as the Euler–
Cauchy method. Recall that its classical prototype belongs to the family of the
Runge–Kutta methods.

78 Irina Perfilieva

The following scheme provides us formulas for the computation of compo-
nents of the F–transform of the unknown function y(x) w.r.t. some basic func-
tions A1, . . . , An,

Y1 = y1, (25)

Y ∗
k+1 = Yk + hF̂k, (26)

Yk+1 = Yk +
h

2
(F̂k + F̂ ∗

k+1), k = 1, . . . , n− 1, (27)

where

F̂k =

∫ b

a
f(x, Ŷk)Ak(x)dx∫ b

a Ak(x)dx
,

F̂ ∗
k+1 =

∫ b

a
f(x, Ŷ ∗

k+1)Ak+1(x)dx∫ b

a Ak+1(x)dx
.

This method computes the approximate coordinates [Y1, . . . , Yn] of the direct
F–transform of the function y(x). The inverse F–transform,

yY,n(x) =
n∑

k=1

YkAk(x),

approximates the solution y(x) of the Cauchy problem.
It can be proved that the generalized Euler–Cauchy method (25)– (27) has

the local error of order h3.
Let us illustrate the generalized Euler–Cauchy method for the Cauchy prob-

lem considered above with the same number of nodes n = 10. Fig. 8 shows the
precise solution and the approximate one obtained by the generalized Euler–
Cauchy method

Fig. 8. Precise solution (gray line) and the approximate one (thick black line) obtained
by the generalized Euler–Cauchy method. Both lines practically coincide

Remark 1. The demonstrated generalized Runge–Kutta methods can be applied
to the Cauchy problem where y(x) and f(x, y) are vector functions, i.e., to the
system of ordinary differential equations with initial values.

Fuzzy Transforms 79

Remark 2. The demonstrated generalized Runge–Kutta methods can be applied
to the Cauchy problem even if the function f(x, y) is only partially given (at fi-
nite number of nodes) or by the description using the fuzzy “IF–THEN” rules.
Formalization and presentation in the form of inverse F–transform of a descrip-
tion of this kind, has been discussed in [2, 3, 5].

6.3 Numerical Solution to Cauchy Problem with Noise

In this subsection, we demonstrate that a numerical solution to the Cauchy
problem based on F–transforms has a significant advantages over the classical
numerical solution. It concerns the case when the Cauchy problem has a noisy
right-hand side, {

y′(x) = f(x, y) + sin(ωx + ϕ),
y(x1) = y1.

(28)

In this situation, classical numeric methods (we have chosen the Euler method)
are unstable. Indeed, compare Fig. 9 with Fig. 10. The number of nodes increased
in the second figure but the stability is still not reached. Hence, an increase in
the number of nodes does not affect the stability of solution.

Fig. 9. Precise solution (gray line) to (28) and two numeric ones (thin black lines),
both using the Euler method with the number of nodes n = 7 and n = 10 respectively.
There is a visible difference between two numeric solutions

On the other hand, numeric methods based on F–transforms are stable. For
illustration, we have chosen the generalized Euler method to the problem (28)
given above. Fig. 11 shows the precise solution and the approximate one.

Comparison of classical numeric and F–transform methods with the same
number of nodes is demonstrated below in Fig. 12. It shows the precise solution
and the two approximate ones based on Euler and the generalized Euler methods
with the number of nodes n = 7.

It is clearly seen from this example, that the approximate solution based on
F–transforms gives not only a good approximation, but also eliminates a noise
of the given data.

80 Irina Perfilieva

Fig. 10. Precise solution (gray line) to (28) and two numeric ones (thin black lines),
both using Euler method with the number of nodes n = 10 and n = 13 respectively.
There is no stability with an increase in the number of nodes

Fig. 11. Precise solution (gray line) to (28) and the approximate one obtained by the
generalized Euler method (thick black line) with the number of nodes n = 7

Fig. 12. Precise solution (gray line) to (28) and the two approximate ones obtained
by the Euler method (thin black line) and the generalized Euler method (thick black
line), both with the number of nodes n = 7

7 Conclusion

We have introduced a new technique of direct and inverse fuzzy transforms (F–
transforms for short) which enables us to construct various approximating mod-
els depending on the choice of basic functions. The best approximation property
of the inverse F–transform is established within the respective approximating
space. We have demonstrated, how approximation models based on F–transforms
can replace original complex functions in some computations, e.g. in integration,
and in solving of differential equations. Numerical methods based on fuzzy ap-
proximation models are developed. Among them are numeric integration and

Fuzzy Transforms 81

approximate solution of ordinary differential equations (the Cauchy problem).
Two generalized methods of the Runge–Kutta class are introduced. The advan-
tage of the new technique based on F–transforms over some classical numeric
methods is demonstrated on examples.

References

1. Novák, V., Perfilieva, I. and J. Močkoř. Mathematical Principles of Fuzzy Logic.
Kluwer, 1999.

2. I. Perfilieva. Logical approximation: General approach to the construction of approx-
imating formulas, in: Proceedings EUSFLAT’2001, Leicester, Great Britain, 2001,
pp. 9–11.

3. I. Perfilieva. Neural nets and normal forms from fuzzy logic point of view. Neural
Network World 11, 2001, pp. 627–638.

4. I. Perfilieva Normal forms for fuzzy logic functions and their approximation ability.
Fuzzy Sets and Systems 124, 2001, pp. 371–384.

5. I. Perfilieva. Logical approximation. Soft Computing 7, 2003 (to appear).
6. Perfilieva I., E. Chaldeeva. Fuzzy transformation, in: Proceedings IFSA’2001 World

Congress, Vancouver, Canada, 2001.

Possible Equivalence Relations
and Their Application to Hypothesis Generation

in Non-deterministic Information Systems

Hiroshi Sakai

Department of Computer Engineering
Kyushu Institute of Technology
Tobata, Kitakyushu 804, Japan
sakai@comp.kyutech.ac.jp

Abstract. Non–deterministic Information Systems (NISs) are ad-
vanced extensions of Deterministic Information Systems (DISs), and
NISs are known well as systems handling information incompleteness
in tables. This paper examines manipulations on equivalence relations in
DISs and manipulations on possible equivalence relations in NISs. This
paper also follows rough sets based rule generation in DISs, and pro-
poses rough sets based hypothesis generation in NISs. A hypothesis in
NISs is defined by a formula satisfying some kinds of constraint, and ef-
fective algorithms for generating hypotheses in NISs are presented. Pos-
sible equivalence relations play important roles in generating hypotheses.
Some illustrative examples and real executions of algorithms are shown,
too.

1 Introduction

Manipulations of equivalence relations in DISs and manipulations of possible
equivalence relations in NISs are examined. Such manipulations are applied to
generating hypotheses in NISs, and a framework of hypothesis generation in
NISs is proposed.

Rough sets theory is seen as a mathematical foundation of soft computing.
The theory covers important areas of research in AI such as knowledge, impreci-
sion, vagueness, learning and induction [1,2,3,4]. This theory usually handles ta-
bles with deterministic information, which we call Deterministic Information
Systems. Many applications of this theory to rule generation, machine learning
and knowledge discovery have been presented [3,5,6,7,8,9, 10], and several tools
have been developed [3,11].

For handling incomplete information like null values [12], unknown values,
missing values [13] and etc. in DISs, tables with non–deterministic informa-
tion have been proposed [14,15,16,17], too. They are called Non-deterministic
Information Systems or Incomplete Information Systems, and rough sets
theory handling DISs has been extended to rough sets theory handling NISs
[14,15,16,17,18]. In this extension, the concept of modality is introduced into
NISs, and an axiomatization of logic in NISs has been studied.

J.F. Peters et al. (Eds.): Transactions on Rough Sets II, LNCS 3135, pp. 82–106, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Possible Equivalence Relations 83

However, most of work related to NISs is theoretical research, especially
research in logic. In NISs, very few work deals with algorithms toward real
application. For example in [16,17], Lipski showed a question–answering sys-
tem besides an axiomatization of logic. In [13], Grzymala–Busse surveyed the
unknown attribute values, and studied learning from examples with unknown at-
tribute values. In [19,20], Kryszkiewicz discussed rules in incomplete information
systems. These are the most important works discussing algorithms in NISs.

For rough sets based data processing in NISs, new methods and algorithms
are necessary, and especially effective manipulations of equivalence relations are
needed. Rough sets based data processing in NISs could also be a mathematical
foundation of knowledge discovery and data mining from incomplete information.
In such a situation, we are now investigating algorithms for NISs including
hypothesis generation [21,22,23,24,25,26].

In this paper, at first manipulations of equivalence relations in DISs and
some basic concepts including rule generation are studied. Then, manipulations
of possible equivalence relations in NISs and a framework for generating hy-
potheses in NISs are presented. Because every NIS has information incom-
pleteness in itself and it is impossible to know the true information, we use a
term ‘hypothesis generation’ instead of ‘rule generation’. Rough sets based useful
algorithms are also examined.

2 Manipulations of Equivalence Relations
in Deterministic Information Systems

Definitions concerning DISs, a data structure of equivalence relations and useful
algorithms are shown.

2.1 Definitions Concerning DISs

A Deterministic Information System (DIS) is a quadruple (OB,AT, {V ALa|
a ∈ AT }, f), where OB is a finite set whose elements are called objects, AT
is a finite set whose elements are called attributes, V ALa is a finite set whose
elements are called attribute values and f is such a mapping that f : OB×AT →
∪a∈ATV ALa which is called a classification function. If f(x, a)=f(y, a) for
any a ∈ ATR ⊂ AT , we see there is a relation between x and y for ATR. This
relation is an equivalence relation over OB. Let eq(ATR) denote this equivalence
relation, and let [x]ATR denote an equivalence class {y ∈ OB : f(y, a)=f(x, a)
for any a ∈ ATR}. In this case either [x]ATR=[y]ATR or [x]ATR∩[y]ATR=∅ holds
for any x, y ∈ OB. Furthermore, ∪x∈OB[x]ATR=OB also holds. If a set X ⊂ OB
is the union of some equivalence classes, we say X is definable (relative to ATR)
in DIS. Otherwise we say X is rough (relative to ATR).

Example 1. Let us consider DIS1 in Table 1. In DIS1, eq({color})={{x1, x3},
{x2}, {x4}} and eq({size, weight})={{x1}, {x2}, {x3, x4}} hold. A set {x1, x2,
x3} is definable for {color}, because {x1, x2, x3}={x1, x3}∪{x2} holds. However,
this set is rough for {size, weight}.

84 Hiroshi Sakai

Table 1. A deterministic information system DIS1.

OB Color Size Weight

x1 red big heavy

x2 blue small heavy

x3 red small light

x4 green small light

2.2 A Data Structure of Equivalence Relations

For dealing with equivalence relations, we introduce a data structure. In this
structure, we identify the number i with an object xi from now on.

Two arrays head[i] and succ[i] (1 ≤ i ≤ |OB|), which are correctly head
[xi] and succ[xi], are employed. By the order of row, it is possible to intro-
duce the total order into OB. head[j] for j ∈ [i]ATR is the first element of the
equivalence class [i]ATR, and succ[j] is the successor to j ∈ [i]ATR. For the last
element j ∈ [i]ATR, succ[j]=0. Every equivalence class [i]ATR can easily be
obtained. For every i, [i]ATR={head[i], succ[head[i]], · · · , succ[· · · succ[head[i]]
· · ·]} holds. In Example 1, eq({color})={{1, 3}, {2}, {4}} holds. In this case,
head[1]=1, succ[1]=3, head[2]=2, succ[2]=0, head[3]=1, succ[3]=0, head[4]=4
and succ[4] =0. As for object 3, head[3]=1, succ[1]=3 and succ[3]=0. The value
0 is the terminal symbol, and it is known that [3]{color} = {1, 3}.

Algorithm 1.
Input: A DIS with a classification function f and a set ATR ⊂ AT .
Output: Two arrays head[i] and succ[i] (1 ≤ i ≤ |OB|).
begin

for i:=1 to |OB| do begin head[i]:=i; succ[i]:=0 end;

for i:=1 to (|OB|-1) do

if head[i]=i then

begin pre:=i;

for j:=i+1 to |OB| do

if (f(xj , a)=f(xi, a) for ∀a ∈ ATR) then

begin head[j]:=i; succ[pre]:=j; pre:=j end

end

end.

To obtain an equivalence relation for any ATR in a DIS is to pick up two arrays
head[i] and succ[i] (1 ≤ i ≤ |OB|). By comparing with any distinct two objects,
two arrays can be obtained. Algorithm 1 produces two arrays head[i] and succ[i].

For each pair of distinct objects xi, xj ∈ OB, suppose f(xj , a) �= f(xi, a) for
some a ∈ ATR. This is the most time–consuming case, and it is necessary to
compare two objects ((|OB| − 1)+(|OB| − 2)+· · ·+1) times. Therefore in the
worst case, the computational complexity of Algorithm 1 is o(|OB|2). On the
other hand, suppose f(xj , a)=f(xi, a) for any a ∈ATR and any distinct objects

Possible Equivalence Relations 85

xi, xj ∈OB. In this case, it is enough to compare two objects (|OB| − 1) times.
This is the best case, and the complexity of Algorithm 1 is o(|OB|).

2.3 An Algorithm for Merging Two Equivalence Relations

This section clarifies an algorithm to obtain eq(A ∪ B) from two equivalence
relations eq(A) and eq(B).

Proposition 1 [1]. Let A,B ⊂ AT hold in a DIS. The equivalence relation
eq(A ∪ B) is {M ⊂ OB : M = [i]A ∩ [i]B for [i]A ∈ eq(A) and [i]B ∈ eq(B)
(1 ≤ i ≤ |OB|)}.
Proposition 1 shows us a way to merge two equivalence relations.

Algorithm 2.
Input: Two arrays for attribute sets A and B respectively, i.e.,

headA[i], succA[i], headB[i] and succB[i] (1 ≤ i ≤ |OB|).
Output: Two arrays for A ∪B, headA∪B[i] and succA∪B[i] (1 ≤ i ≤ |OB|).
begin

for i:=1 to |OB| do

begin headA∪B[i]:=i; succA∪B[i]:=0 end;

for i:=1 to |OB| do

if headA∪B[i]=i then

begin pre:=i; point:=succA[i];

while point�= 0 do

begin

if headB[point]=headB[i] then

begin succA∪B[pre]:=point;

headA∪B[point]:=i; pre:=point

end;

point:=succA[point]

end

end

end.

If eq(A) ⊂ eq(B) holds, headB[point]=headB[i] always holds in the while loop of
Algorithm 2. In this case, every object in OB is checked only once. Thus, compu-
tational complexity in the best case is o(|OB|). On the contrary, if eq(A)={{1, 2,
· · · , |OB|}} and eq(B)={{1}, {2}, · · · , {|OB|}} hold, then it is necessary to check
headB[point]=headB[i] for every point and i. Thus, computational complexity
in the worst case is o(|OB|2).

Algorithm 2 is more effective for merging several kinds of attributes. Suppose
there exist sets of attributes A1, A2, · · · , Am, and it is necessary to obtain eq(A1∪
· · · ∪Am). In this case, Algorithm 2 is sequentially applied to eq(A1 ∪ · · · ∪Ak)
and Ak+1 (1 ≤ k ≤ m− 1). Even though the order may be o(|OB|2) in the first
application of Algorithm 2, the order becomes o(|OB|) in the last application of
Algorithm 2, because every equivalence class [i]A1∪···∪Ak

converges to a set {i}
by adding attributes.

86 Hiroshi Sakai

2.4 Two Ways to Obtain Equivalence Relations

For any DIS, there are two ways to obtain an equivalence relation for any
attributes. The first way is to apply Algorithm 1 directly. The second way is
to apply both Algorithm 1 and 2. Namely, Algorithm 1 is applied to produc-
ing eq({ai}) for every ai ∈ AT , then Algorithm 2 is sequentially applied to
eq(∪1≤i≤k{ai}) and eq({ak+1}) for producing eq(∪1≤i≤k+1{ai}).

Through several experiments, the second way seems better than the first
way. Especially in case of handling many kinds of ATR, the second way is more
effective. For example, in case of |OB|=10000, |AT |=10, |V ALa|=10 for any
a ∈ AT , the first way took 0.450(sec) for producing eq({a1, a2}). The second way
took 0.440(sec) for producing every eq({ai}) and 0.080(sec) for merging. If we
handle n kinds of ATR (|ATR|=2), the first way will take about n× 0.450(sec).
The second way will take about 0.440 + n × 0.080(sec). Therefore if n ≥ 2, the
second way is more effective than the first way. This tendency has been observed
in most of DISs.

3 Data Dependencies
in Deterministic Information Systems

Data dependencies in DISs are surveyed, and the role of equivalence relations
is clarified.

3.1 Definitions Concerning Data Dependencies

Let us consider two sets, CON ⊂ AT which we call condition attributes, and
DEC ⊂ AT which we call decision attributes. Two distinct objects x, y ∈ OB
are consistent (between CON and DEC), if f(x, a)=f(y, a) for every a ∈ CON
implies f(x, a)=f(y, a) for every a ∈ DEC. A DIS is consistent (between CON
and DEC), if every pair of distinct objects is consistent in DIS. In this case,
we may say DEC depends totally on CON.

Now, let us show an important proposition connecting dependencies with
equivalence relations. Let eq1 and eq2 be two equivalence relations over OB. A
formula eq1 ⊂ eq2 means that for every equivalence class L ∈ eq1 there exists
such an equivalence class M ∈ eq2 that L ⊂M .

Proposition 2 [1]. For any DIS, (1) and (2) in the following are equivalent.

(1) DEC depends totally on CON .
(2) eq(CON) ⊂ eq(DEC).

If DEC does not depend on CON , POSCON (DEC) = ∪{L ∈ eq(CON) :
there exists such M ∈ eq(DEC) that L ⊂ M} is applied to characterize the
dependency. The degree is measured by a ratio |POSCON (DEC)|/|OB|, and
this ratio is called the degree of dependency from CON to DEC. The degree of
dependency is 1 if and only if DEC depends totally on CON .

Possible Equivalence Relations 87

In Table 1, POS{color}({weight})={2, 4} �= OB and POS{size}({weight})
={1} �=OB hold, so {weight} does not depend on {color} nor {size}. The degree
of dependency from {color} to {weight} is 0.5(=2/4). On the other hand, since
eq({color, size})={{1}, {2}, {3}, {4}} and POS{color,size}({weight})= OB hold,
so {weight} depends totally on {color, size}.

3.2 An Algorithm for the Degree of Dependencies

Let headCON [i] and succCON [i] (1 ≤ i ≤ |OB|) be two arrays for CON ,
and let headDEC [i] and succDEC [i] (1 ≤ i ≤ |OB|) be two arrays for DEC.
By using these arrays, it is easy to check [i]CON ⊂ [i]DEC or not. Namely,
if headDEC [j]=headDEC [i] holds, two objects j and i must be in the same
equivalence class for DEC. Therefore, if headDEC [j]=headDEC [i] holds for any
j ∈ [i]CON , [i]CON ⊂ [i]DEC can be concluded.

Example 2. Let [3]CON={1, 3, 5} and [3]DEC={1, 2, 3, 4, 5} hold. Here, 1(=
headCON [3]) ∈ [3]CON and headDEC [1]=headDEC[3] hold, so 1 ∈ [3]DEC . For
object 3 ∈ [3]CON , 3 ∈ [3]DEC is trivial. For object 5(=succCON [3]) ∈ [3]CON ,
headDEC [5]=headDEC[3] holds, and 5 ∈ [3]DEC can also be concluded. Because
succCON [5]=0, it is known that [3]CON ⊂ [3]DEC .

Algorithm 3.
Input: Any object xi and two arrays for CON and DEC, respectively.
Output: [i]CON ⊂ [i]DEC or not.
begin

mark:=0; point:=headCON [i];

while point�=0 do

if headDEC[point]=headDEC[i] then

point:=succCON [point] else begin mark:=1; point:=0 end;

if mark=0 then [i]CON ⊂[i]DEC else [i]CON �⊂[i]DEC

end.

Algorithm 4.
Input: Two arrays for CON and DEC, respectively.
Output: The degree of dependency from CON to DEC.
begin

count:=0;

for i:=1 to |OB| do

if headCON[i]=i then

if [i]CON ⊂[i]DEC then count:=count+|[i]CON |;

degree:=count/|OB|

end.

In Algorithm 3, every element point ∈ [i]CON is sequentially picked up, and
headDEC [point]=headDEC[i] is checked. Thus, computational complexity in the
worst case is o(|[i]CON |). In Algorithm 4, the condition headCON [i]=i implies
object i is the first element in the class [i]CON . For such an object i, the con-
dition headDEC [point]=headDEC[i] is checked |[i]CON | times. Namely in the

88 Hiroshi Sakai

worst case, this condition is checked
∑

i:headCON [i]=i |[i]CON |=|OB| times. Thus,
complexity in the worst case of Algorithm 4 is o(|OB|).

4 Rule Generation in Deterministic Information Systems

Rule generation in DISs is briefly surveyed.

4.1 Previous Work

Let us survey works on generating rules in DISs. For any DIS, let CON be
condition attributes, and let DEC be decision attributes. For any object xi ∈OB,
imp(xi, CON,DEC) denotes a formula called implication:
∧a∈CON [a, f(xi, a)]⇒ ∧a∈DEC [a, f(xi, a)],

where [a, f(xi, a)] implies that f(xi, a) is the value of the attribute a. This is
called a descriptor in [16]. In most of works, a rule in a DIS is defined by an
implication satisfying some kinds of constraint.

The most familiar constraint is the dependency from CON to DEC. If the
degree of dependency is more than a threshold value, each implication in a DIS
is seen as a rule [1,2]. VPRS by Ziarko [8] and LERS by Grzymala–Busse [7]
enhanced the constraint of the dependency from CON to DEC. Some criteria
are also applied to each implication as other constraint. In [9], three criteria in
the following are applied to any ψ=imp(xi, CON,DEC):

support(ψ)=|{xj ∈ OB|imp(xj ,CON,DEC)=ψ}|/|OB|,
accuracy(ψ)=|[i]CON ∩ [i]DEC |/|[i]CON |,
coverage(ψ)=|[i]CON ∩ [i]DEC |/|[i]DEC |.

If each criterion value of an implication is more than each threshold value, this
implication is seen as a rule.

In Table 1, eq({color, size})={{1}, {2}, {3}, {4}} and eq({weight})={{1, 2},
{3, 4}} hold. Since eq({color, size}) ⊂ eq({weight}) holds, {weight} depends
totally on {color, size}, and rules like

[color, red] ∧ [size, big]⇒ [weight, heavy]
are generated. Then for CON={color} and DEC={weight}, POS{color}
({weight})={2, 4} �= OB, and {weight} does not depend on {color}. How-
ever, an implication imp(x4, {color}, {weight}) is seen as a rule under such a
constraint that support ≥0.25, accuracy=1.0 and coverage ≥ 0.5. These three
values are usually given by users, and we do not discuss how to decide these
values.

4.2 An Algorithm for Criterion Values of Implications

Algorithm 5 shows a way to calculate three criteria values, support, accuracy and
coverage. Two arrays head[i] and succ[i] take important roles in Algorithm 5.

Possible Equivalence Relations 89

Algorithm 5.
Input: Object xi and two arrays for CON and DEC, respectively.
Output: support, accuracy and coverage values of imp(xi, CON,DEC).
begin

numer:=0; denom:=0; point:=headCON [i];

while point�=0

begin denom:=denom+1;

if headDEC[point]=headDEC[i] numer:=numer+1;

point:=succCON [point]

end;

support:=numer/|OB|; accuracy:=numer/denom;

numer:=0; denom:=0; point:=headDEC[i];

while point�=0

begin denom:=denom+1;

if headCON[point]=headCON [i] numer:=numer+1;

point:=succDEC[point]

end;

coverage:=numer/denom

end.

For support and accuracy, headDEC [point]=headDEC[i] is checked |[i]CON |
times, and headCON [point]=headCON [i] is checked |[i]DEC | times in coverage.
Thus, the order of Algorithm 5 is o(|[i]CON |+ |[i]DEC |). If we do not use equiv-
alence relations for this calculation, two distinct objects must be compared. For
every value, f(xi, a)=f(xj , a) (a ∈ CON ∪DEC, i �= j) is checked. The compu-
tational order is o(2× |OB|) for any xi ∈ OB. If it is possible to use equivalence
relations, Algorithm 5 is much better than the way without using equivalence
relations.

5 Manipulations of Possible Equivalence Relations
in Non-deterministic Information Systems

Definitions on NISs, possible equivalence relations and useful algorithms are
shown. A procedure to obtain all possible equivalence relations for any attributes
in any NISs is also presented.

5.1 Definitions Concerning NISs and Possible Equivalence Relations

A Non-deterministic Information System (NIS) is also a quadruple (OB,
AT, {V ALa|a ∈ AT }, g), where g is such a mapping that g : OB × AT →
P (∪a∈ATV ALa) (a power set of ∪a∈ATV ALa). Every set g(x, a) is interpreted
as that there is an actual value in this set but it is not known. This is the
unknown interpretation for the incomplete information. Especially if the actual
value is not known at all, g(x, a) is equal to V ALa. This is the same as null value
interpretation.

90 Hiroshi Sakai

Definition 1. Suppose there exist a NIS=(OB,AT, {V ALa|a ∈ AT }, g), a set
ATR ⊂ AT and such a mapping h : OB×ATR→ ∪a∈ATRV ALa that h(x, a) ∈
g(x, a). We call such a DIS=(OB,ATR, {V ALa|a ∈ ATR}, h) a derived DIS
(for ATR) from NIS. We also call every equivalence relation in a derived DIS
a possible equivalence relation (pe-relation), and we call every element in a pe-
relation a possible equivalence class (pe-class).

Example 3. Let us consider NIS1 in Table 2. In NIS1, there are 36(=22× 32)
derived DISs for ATR={A,B,C}. Table 3 shows a derived DIS from NIS1. In
this DIS, tuples are pairwise different and {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}}
is the equivalence relation. Namely, {{ 1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}} is a
pe-relation in NIS1. The sets {1}, · · · , {8} are pe-classes in NIS1. There are 36
derived DISs for NIS1, so there may exist 36 different pe-relations. However,
in NIS1, the above pe-relation is unique. Table 4 shows a derived DIS for
ATR={A,B}. In this DIS, the equivalence is {{1}, {2, 7}, {3, 4, 6}, {5}, {8}}.
There are 18(=2× 32) derived DISs, and there are four kinds of pe-relations.

Table 2. A non-deterministic informa-
tion system NIS1.

OB A B C

x1 3 1 1

x2 5 {2, 4} 2

x3 {1, 4, 5} 5 4

x4 4 5 2

x5 3 5 2

x6 4 5 {1, 3}
x7 5 4 1

x8 1 {1, 3, 4} 1

Table 3. A derived deterministic informa-
tion system from NIS1.

OB A B C

x1 3 1 1

x2 5 4 2

x3 1 5 4

x4 4 5 2

x5 3 5 2

x6 4 5 1

x7 5 4 1

x8 1 1 1

Table 4. A derived deterministic information system for {A, B} from NIS1.

OB A B

x1 3 1

x2 5 4

x3 4 5

x4 4 5

x5 3 5

x6 4 5

x7 5 4

x8 1 1

Possible Equivalence Relations 91

5.2 Definability of a Set in NISs
and Possible Equivalence Relations

The definability of a set in DISs is extended to the definability of a set in NISs.

Definition 2. For any NIS and any set X ⊂ OB, X is definable in NIS if X
is definable in some derived DISs from NIS.

To check this, a simple way is to examine the definability of a set for all derived
DISs. However, this way will not be suitable for NISs with large number of
derived DISs. We propose another method according to the next proposition.

Proposition 3 [26]. Suppose there exist a NIS and a set X ⊂ OB. X is defin-
able in NIS, if and only if there exist subsets CL1, · · · , CLm of OB, satisfying
(1) and (2) below:

(1) ∪iCLi=X ,
(2) {CL1, · · · , CLm} is a subset of a pe-relation.

Algorithm 6 solves the definability of a set according to Proposition 3.

Algorithm 6.
Input: A NIS and a set X ⊂ OB.
Output: X is definable in this NIS or not.
(1) X∗=X and eq=∅.
(2) For any element x ∈ X∗, find a set CL satisfying two conditions below:

(CL-1) x ∈ CL and CL ⊂ X∗,
(CL-2) eq ∪ {CL} is a subset of a pe-relation.

(2-1) If there is a set CL, then [x]=CL, eq=eq ∪ {[x]} and X∗=X∗ − CL.
If X∗ �= ∅ then go to (2). If X∗=∅ then X is definable.

(2-2) If there is no CL, then backtrack. If there is no branch for backtracking,
then X is not definable in this NIS.

This algorithm is similar to LEM1 and LEM2 algorithms [27]. The set CL is
unique in every DIS, but in NIS this set CL need not be unique. Therefore, a
search with backtracking is applied. At this point, Algorithm 6 is different from
LEM1 and LEM2.

Algorithm 6 has the following merit. After solving the definability of a set,
a subset of a pe-relation is stored in the variable eq as a side effect. If X=OB,
it is possible to obtain a pe-relation by this variable eq. By applying this algo-
rithm repeatedly until there is no branch for backtracking, all pe-relations can
be obtained.

5.3 Some Properties of Possible Equivalence Classes

This section clarifies some properties of pe-classes according to [26]. Algorithm
6 has been realized by using these properties.

92 Hiroshi Sakai

Definition 3. Let us consider a NIS=(OB,AT, {V ALa : a ∈ AT }, g) and
a set ATR={a1, · · · , an} ⊂ AT . For any x ∈ OB, PT (x,ATR) denotes the
Cartesian product g(x, a1) × · · · × g(x, an). We call every element a possible
tuple (for ATR) of x.

Every possible tuple ζ=(ηa1 , · · · , ηan) ∈ PT (x,ATR) is identified with a formula∧
1≤i≤n[ai, ηai].

Definition 4. Let us consider a NIS=(OB,AT, {V ALa : a ∈ AT }, g) and a
set ATR ⊂ AT . For every x ∈ OB and every possible tuple ζ of x, two sets inf
and sup are defined as follows:

(1) inf(x, ζ, ATR)={x} ∪ {y ∈ OB : PT (y,ATR)={ζ}}.
(2) sup(x, ζ, ATR)={y ∈ OB : ζ ∈ PT (y,ATR)}.

A set sup is equal to the set defined by the similarity relation SIM in [15,20].
In our framework, both sup and inf are necessary for characterizing pe-classes.

Theorem 1. Let us consider a NIS=(OB,AT, {V ALa : a ∈ AT }, g) and a set
ATR ⊂ AT . For any object x ∈ OB, conditions (1) and (2) in the following are
equivalent.

(1) A set X such that x ∈ X is a pe-class for ATR.
(2) inf(x, ζ, ATR) ⊂ X ⊂ sup(x, ζ, ATR) for some ζ ∈ PT (x,ATR).

Theorem 1 shows us a way to pick up the set CL in Algorithm 6. In Algorithm
6, pe-classes CL1, · · · , CLm are sequentially fixed, and every CLi must satisfy
condition (2) in Theorem 1.

Furthermore, it is necessary to remark that the set CLm depends upon pre-
vious sets CL1, · · · , CLm−1. Now, we deal with this problem.

Definition 5. Suppose condition (2) in Theorem 1 holds. In this case, we say
every object in X is positively applied to ζ ∈ PT (x,ATR) and every object in
sup(x, ζ, ATR)−X is negatively applied to ζ ∈ PT (x,ATR).

Definition 6. Two lists PLIST and NLIST are recursively defined as follows:
Initial step: PLIST=NLIST=∅.
Recursive step: Condition (2) in Theorem 1 is applied to finding a pe-class CL
in Algorithm 6.
In this application, two lists are revised as follows:

PLIST=PLIST ∪ {[x, ζ]|x is positively applied to ζ},
NLIST=NLIST ∪ {[x, ζ]|x is negatively applied to ζ}.

Either positive or negative application of every object is stored in PLIST and
NLIST , and these two lists control the search with backtracking in Algorithm 6.

Definition 7. Let us consider a NIS, a set ATR ⊂ AT and a sequence of pe-
classes. If PLIST and NLIST by this sequence satisfy the next three conditions,
we say this sequence is proper.

Possible Equivalence Relations 93

(1) PLIST ∩NLIST=∅.
(2) For any x ∈ OB, {[x, ζ] : ζ ∈ PT (x,ATR)} ∩ PLIST is either an empty

set or a singleton set.
(3) For any x ∈ OB, {[x, ζ] : ζ ∈ PT (x,ATR)} −NLIST �= ∅.
Theorem 2. Let us consider a NIS, ATR ⊂ AT and a sequence of pe-classes
CL1, · · · , CLm. The (1) and (2) in the following are equivalent.
(1) This sequence is proper.
(2) There is such a pe-relation eq that {CL1, · · · , CLm} ⊂ eq.

In order to realize (CL-2) in Algorithm 6, Theorem 2 is applied. Namely, for a
candidate CL in (CL-1) and a proper sequence CL1, · · · , CLm, the sequence
CL1, · · · , CLm, CL is checked, proper or not. If so, a new proper sequence
CL1, · · · , CLm, CLm+1(=CL) is obtained. Otherwise, this candidate CL is re-
jected.

5.4 A Simulation of Algorithm 6

This subsection clarifies roles of Theorem 1 and Theorem 2.

Table 5. A non-deterministic information system NIS2.

OB A

x1 1

x2 2

x3 {1, 2}

In Table 5, there are clearly two pe-relations {{1, 3}, {2}} and {{1}, {2, 3}}, and,
inf(1, (1), {A})={1}, sup(1, (1), {A})={1, 3}, inf(2, (2), {A})={2}, sup(2, (2),
{A})={2, 3}, inf(3, (1), {A})=sup(3, (1), {A})={1, 3}, inf(3, (2), {A})=sup(3,
(2), {A})={2, 3}. For element 1 ∈ X={1, 2, 3}, there are two pe-classes {1} and
{1, 3} by Theorem 1. Two pe-relations are obtained as follows.
(CASE 1) For a selection of {1}, X={2, 3}, PLIST={[1, (1)]}, NLIST={[3,
(1)]} and eq={{1}} are derived. For the first element 2 ∈ X={2, 3}, there are
two pe-classes {2} and {2, 3} by Theorem 1. However, the pe-class {2} can not be
applicable, because in this case NLIST={[3, (1)], [3, (2)]} contradicts condition
(3) in Definition 7. The pe-class {2, 3} is only applicable to X={2, 3}, and X=∅,
PLIST={[1, (1)], [2, (2)], [3, (2)]}, NLIST={[3, (1)]} and eq={{1}, {2, 3}} are
derived.
(CASE 2) For a selection of {1, 3}, X={2}, PLIST={[1, (1)], [3, (1)]}, eq=
{{1, 3}} and NLIST=∅ are derived. For the first element 2 ∈ X={2}, there
are two pe-classes {2} and {2, 3} by Theorem 1. However, pe-class {2, 3} can
not be applicable, because in this case PLIST={[1, (1)], [2, (2)], [3, (1)], [3, (2)]}
contradicts condition (2) in Definition 7. The pe-class {2} is only applicable
to X={2}, and X=∅, PLIST={[1, (1)], [2, (2)], [3, (1)]}, NLIST= {[3, (2)]} and
eq={{1, 3}, {2}} are derived.

94 Hiroshi Sakai

5.5 A Real Execution to Obtain All Possible Equivalence Relations
for Any Attributes

A real execution by realized programs is shown. Every step is implemented on
a workstation with 450MHz UltraSparc CPU in prolog and C. Because a search
with backtracking is necessary in Algorithm 6, prolog is employed. The total
procedure consists of four steps.

Procedure 1. (A procedure to obtain all pe-relations for any attributes)
(Step 1) Prepare a data file.
(Step 2) Translate data to an internal expression, like inf and sup, for each
attribute.
(Step 3) Obtain all pe-relations for each attribute by using Algorithm 6.
(Step 4) Fix a set of attributes ATR, and produce all pe-relations by using
Algorithm 2.
The following is the real execution for ATR={A,B} in Table 2. It is enough to
do Step 2 and 3 only once, and it is enough to do Step 4 for each ATR. The
contents of the data file for NIS1 in Table 2 are as follows:

object(8,3), data(1,[3,1,1]), data(2,[5,[2,4],2]),

data(3,[[1,4,5],5,4]), data(4,[4,5,2]), data(5,[3,5,2]),

data(6,[4,5,[1,3]]), data(7,[5,4,1]), data(8,[1,[1,3,4],1]).

Realized programs can deal with any data file in this syntax.
?-translate.

File Name:’data.pl’.

EXEC TIME = 0.045(sec)

yes

Program translate in Step 2 outputs three files, A.rs, B.rs and C.rs. Every file
stores the internal expression for each attribute.

?-pe.

File Name:’data.pl’.

EXEC TIME = 0.055 (sec)

yes

Program pe in Step 3 outputs three files, A.pe, B.pe and C.pe. Every file stores
all pe-relations. To execute program merge in Step 4, it is necessary to prepare
a file merge.dat whose contents are the name of output file, the number of
attributes and the names of files to merge. The following is the real execution of
merging A.pe and B.pe.

% merge

Merging A.pe ...

Merging B.pe ...

EXEC TIME = 0.000(sec)

%

After executing merge, the following four pe-relations for attributes {A,B} are
obtained.

Possible Equivalence Relations 95

[1] [[1],[2],[3,4,6],[5],[7],[8]] 3

[2] [[1],[2],[3],[4,6],[5],[7],[8]] 6

[3] [[1],[2,7],[3,4,6],[5],[8]] 3

[4] [[1],[2,7],[3],[4,6],[5],[8]] 6

It is also known that the first pe-relation {{1}, {2}, {3, 4, 6}, {5}, {7}, {8}} occurs
in three derived DISs of 18 derived DISs. In this way, it is possible to obtain
all pe-relations for any ATR in any NIS.

6 Hypothesis Generation
in Non-deterministic Information Systems

This section advances the concept of rules from DISs to NISs.

6.1 A Definition of Hypotheses in NISs
Definition 8. For any NIS, let CON be condition attributes and let DEC be
decision attributes. For any x ∈ OB, PI(x,CON,DEC) denotes a set {ζ ⇒
η : ζ ∈ PT (x,CON), η ∈ PT (x,DEC)}. We call an element ζ ⇒ η a possible
implication from x.

Let us consider a case that CON={A,B} and DEC={C} in Table 2. PT (x2,
{A,B})={(5, 2), (5, 4)}, PT (x2, {C})={(2)} and PI(x2, {A,B}, {C}) consists of
two possible implications [A, 5] ∧ [B, 2]⇒ [C, 2] and [A, 5] ∧ [B, 4]⇒ [C, 2].

Definition 9. For any NIS, let CON be condition attributes and let DEC be
decision attributes. A hypothesis from an object x is a possible implication
ψ such that ψ ∈ PI(x,CON,DEC) and ψ satisfies some kinds of constraint.
Especially, if ψ is a hypothesis and PI(x,CON,DEC)={ψ}, we call this ψ a
rule from object x.

Constraints for possible implications characterize hypotheses in NISs. In the
subsequent sections, constraints in DISs are extended to constraints in NISs,
and they are applied to possible implications.

6.2 Constraint 1: Data Dependencies in NISs

Dependencies in DISs are extended to dependencies in NISs. This dependency
is applied to CON and DEC as a constraint.

Definition 10. Let us consider a NIS, condition attributes CON , decision at-
tributes DEC and all derived DISs for CON∪DEC. Let NUM be the number
of all derived DISs. For two threshold values val1 and val2(0 ≤ val1 ≤ 1,
0 ≤ val2 ≤ 1), if conditions (Dep 1) and (Dep 2) hold then DEC depends on
CON in NIS.
(Dep 1) mink{degree of dependency in DISk(1 ≤ k ≤ NUM)} ≥ val1.
(Dep 2) |{DISk|DISk(1 ≤ k ≤ NUM) is consistent}|/NUM ≥ val2.

In Definition 10, condition (Dep 1) specifies the minimum value of the degree
of dependency, and condition (Dep 2) specifies the ratio of consistent DISs to
NUM . For such a value that val2 ≥ 0.9, more than 90% of derived DISs must
be consistent. We see these are conditions of dependency from CON to DEC.

96 Hiroshi Sakai

6.3 Constraint 2: Six Groups of Possible Implications in NISs

Six groups of possible implications are introduced in NISs. These groups are
also useful for characterizing each possible implication.

Definition 11. Let us consider a NIS, condition attributes CON and deci-
sion attributes DEC. For any ψ ∈ PI(x,CON,DEC) (x ∈ OB), DD(ψ, x,
CON,DEC) denotes a set {φ : φ is such a derived DIS for CON ∪DEC that
an implication imp(x,CON,DEC) in φ is equal to ψ}.

Definition 12. Let us consider a NIS, condition attributes CON and decision
attributes DEC. If PI(x,CON,DEC) (x ∈ OB) is a singleton set {ψ}, we say
ψ is definite. Otherwise we say each ψ ∈ PI(x,CON,DEC) is indefinite.
If a set {φ ∈DD(ψ, x, CON,DEC)| x is consistent with other objects in φ}
is equal to DD(ψ, x, CON,DEC), we say ψ is globally consistent. If a set
{φ ∈DD(ψ, x, CON,DEC)| x is consistent with other objects in φ} is equal to
∅, we say ψ is globally inconsistent. Otherwise we say ψ is marginal. Finally,
six groups in Table 6 are defined.

Table 6. Six groups of possible implications in NISs.

Globally consistent Marginal Globally inconsistent

Definite DGC DM DGI

Indefinite IGC IM IGI

Example 4. In Table 2, there exist 18(= 2 × 32) derived DISs for attributes
{A,B}, and PI(x3, {A}, {B}) consists of three possible implications. For the
first possible implication ψ1 : [A, 1] ⇒ [B, 5], DD(ψ1, x3, {A}, {B}) consists of
6(=18/3) derived DISs. Because x3 is inconsistent with x8 in all 6 derivedDISs,
ψ1 belongs to IGI group. For the second possible implication ψ2 : [A, 4]⇒ [B, 5],
DD(ψ2, x3, {A}, {B}) also consists of 6(=18/3) derived DISs. Because x3 is
consistent with other objects in all 6 derived DISs, ψ2 belongs to IGC group.

There exists no information incompleteness for each possible implication in defi-
nite groups. Possible implications in DGC or IGC groups, which correspond to
the certain rules in [20], are preferable. Possible implications in DGI nor IGI
groups are inappropriate. These six groups are applied as another constraint to
NISs.

6.4 Constraint 3: Three Criteria in NISs

Criteria support, accuracy and coverage for implications in DISs are extended
to criteria for possible implications in NISs. These criteria are also applied to
possible implications as a constraint.

Possible Equivalence Relations 97

Definition 13. Let us consider a NIS, condition attributes CON and decision
attributes DEC. For any ψ ∈ PI(x,CON,DEC) (x ∈ OB),

min sup(ψ)=minφ∈DD(ψ,x,CON,DEC){support(ψ) in φ},
max sup(ψ)=maxφ∈DD(ψ,x,CON,DEC){support(ψ) in φ}.
mean sup(ψ)= 1

|DD(ψ,x,CON,DEC)|
∑

φ∈DD(ψ,x,CON,DEC) support(ψ).

Similarly min acc(ψ), max acc(ψ) and mean acc(ψ) denote minimum, maxi-
mum and mean values of accuracy(ψ), and min cov(ψ), max cov(ψ) and mean
cov(ψ) denote minimum, maximum and mean values of coverage(ψ).

We see that values max, min and mean characterize each possible implication.

Example 5. In Table 2, there exist 36(= 22 × 32) derived DISs for attributes
{A,B,C}, and PI(x2, {A,B}, {C}) consists of two possible implications. For the
second possible implication ψ2 : [A, 5]∧ [B, 4]⇒ [C, 2], DD(ψ2, x2, {A,B}, {C})
consists of 18(=36/2) derived DISs. Table 3 is an element of DD(ψ2, x2, {A,B},
{C}), and in this table support(ψ2)=1/8, accuracy(ψ2)=1/2 and coverage(ψ2)=
1/3 hold. Based on support, accuracy and coverage values in every 18 derived
DIS, three values max, min and mean of ψ2 are calculated.

6.5 A Definition of Hypothesis Generation in NISs

Three concepts, i.e., the dependency, six groups of possible implications and
three criteria, are applied to defining hypothesis generation in NISs.

Problem 1. (Hypothesis Generation in NISs)
For any NIS, any decision attributes DEC, find all x ∈ OB and all ψ ∈
PI(x,CON,DEC) such that
(Hypo 1) There exists a dependency from CON to DEC.
(Hypo 2) ψ belongs to DGC or IGC.
(Hypo 3) ψ satisfies conditions of criteria support, accuracy and coverage.
Even though there may be other definitions of hypotheses, from now on we deal
with hypotheses specified in Problem 1.

7 Algorithms for Hypothesis Generation
in Non-deterministic Information Systems

This section examines rough sets based algorithms for realizing a hypothesis
generator in NISs. Namely, algorithms for conditions (Hypo 1), (Hypo 2) and
(Hypo 3) in Problem 1 are discussed.

7.1 An Algorithm for Data Dependencies in NISs

In order to check the dependency from CON to DEC, conditions (Dep 1) and
(Dep 2) in Definition 10 are examined. It is possible to check these conditions by
calculating each degree of dependency in every derived DIS. However, this way
is not suitable for NISs with several derived DISs. We propose an algorithm
by using pe-relations, Proposition 2 and Algorithm 4.

98 Hiroshi Sakai

Definition 14. Let pe(CON, t) (1 ≤ t ≤ n) be all kinds of pe-relations for
CON , and let penum(CON, t) denote the number of elements in a set {φ : φ is
a derived DIS whose equivalence relation is equal to pe(CON, t)}. pe(DEC, s)
and penum(DEC, s) (1 ≤ s ≤ m) are similarly defined.

According to Procedure 1 in Section 5.5, it is possible to obtain these pe-relations.
By using these pe-relations, conditions (Dep 1) and (Dep 2) in Definition 10 can
easily be calculated.

Algorithm 7. Suppose conditions in Definition 10 hold.
Input: pe(CON, t), penum(CON, t) (1 ≤ t ≤ n) and pe(DEC, s),

penum(DEC, s) (1 ≤ s ≤ m)
Output: min=mink{degree of dependency in DISk} and

ratio=|{DISk|DISk is consistent}|/NUM .
begin

min:=1.0; ratio:=0.0;

for t:=1 to n do

for s:=1 to m do

begin

calculate a degree by pe(CON, t), pe(DEC, s) and Algorithm 4;

if degree=1.0 then ratio:=ratio+penum(CON, t) × penum(DEC, s);

if degree < min then min:=degree

end;

ratio:=ratio/NUM

end.

Algorithm 7 repeats the same part n ×m times. These numbers n and m are
kinds of pe-relations for CON and DEC respectively, and the number of all
kinds of pe-relations for CON and DEC is usually smaller than the number
of all derived DISs. Algorithm 7 makes use of this property. Some preliminary
programs for the dependency and the execution time for some NISs have already
been presented in [24,25,26].

7.2 Possible Equivalence Relations Related to Possible Tuples

Suppose conditions in Algorithm 7 hold. In this case, it is easy to realize a
program ratio, whose execution is as follows:

% ratio

File Name for Condition: AB.pe

File Name for Decision: C.pe

Consistent ratio of object 1: 1.000(=36 / 36)

Consistent ratio of object 2: 0.500(=18 / 36)

: : :

Consistent ratio of object 7: 0.500(=18 / 36)

Consistent ratio of object 8: 1.000(=36 / 36)

EXEC TIME = 0.000(sec)

Possible Equivalence Relations 99

In this execution, the dependency from {A,B} to {C} in Table 2 is specified,
and the consistent ratio of each object is responded. There are 36(=22 × 32)
derived DISs for attributes {A,B,C}, and it is known that objects x1 and x8

are always consistent. Objects x2 and x7 are consistent in 18 derived DISs. It
is possible to calculate such a ratio by using pe(CON, t), penum(CON, t) and
pe(DEC, s), penum(DEC, s) (1 ≤ t ≤ n, 1 ≤ s ≤ m).

However in this execution, the relation between possible implications and
the consistent ratio is not clear. For example, PI(x1, {A,B}, {C}) is a singleton
set, and this possible implication belongs to DGC group. On the other hand,
PI(x8, {A,B}, {C}) consists of three elements. Each possible implication belongs
to IGC group. Furthermore for any possible implication ψ, it is impossible to
calculate three criteria like support(ψ) by using such pe-relations. In order to
deal with six groups of possible implications and three criteria, link information
between possible implications and pe-relations is needed.

Definition 15. Let us consider a NIS and a set ATR ⊂ AT . For any ζ ∈
PT (x,ATR), a pe-relation related to ζ is an equivalence relation eq(ATR) in a
derived DIS whose tuple of x is equal to ζ. Let RELpe(ζ, x,ATR) denote a set
of all pe-relation related to ζ.

Example 6. Let us consider the second possible implication ψ2 : [A, 5]∧[B, 4]⇒
[C, 2] ∈ PI(x2, {A,B}, {C}) in Table 2. As we have already shown in Section 5.5,
there exist four kinds of pe-relations pe({A,B}, t) (1 ≤ t ≤ 4) for CON={A,B}.
The pe-relations related to ζ : [A, 5] ∧ [B, 4] ∈ PT (x2, {A,B}) are the following
two of four pe-relations:

pe({A, B}, 3): [[1],[2,7],[3,4,6],[5],[8]] 3

pe({A, B}, 4): [[1],[2,7],[3],[4,6],[5],[8]] 6

Similarly, the pe-relations related to η : [C, 2] ∈ PT (x2, {C}) are the following
two of two pe-relations:

pe({C}, 1): [[1,6,7,8],[2,4,5],[3]] 1

pe({C}, 2): [[1,7,8],[2,4,5],[3],[6]] 1

Now we briefly refer how to obtain RELpe(ζ, x,ATR) for any ATR ⊂ AT ,
any x ∈ OB and any ζ ∈ PT (x,ATR). This procedure relies on Algorithm
6. Two lists PLIST and NLIST are employed for realizing Algorithm 6. By
checking the definability of a set OB, a pe–relation is stored in the variable eq.
At the same time, information for a derived DIS is stored in PLIST , and every
[x, ζ] ∈ PLIST specifies a possible tuple of x ∈ OB. Such information is stored in
a file, and RELpe(ζ, x, CON) for each ζ ∈ PT (x,CON) and RELpe(η, x,DEC)
for each η ∈ PT (x,DEC) are produced. We have realized this program by
revising Algorithm 6.

7.3 Algorithms for Six Groups and Three Criteria

For any ψ(= ζ ⇒ η) ∈ PI(x,CON,DEC), two sets RELpe(ζ, x, CON) and
RELpe(η, x,DEC) are fixed. By applying adjusted Algorithm 7 to each pair
of pe(CON, t) ∈ RELpe(ζ, x, CON) and pe(DEC, s) ∈ RELpe(η, x,DEC) re-
peatedly, it is possible to decide one of six groups where ψ belongs to.

100 Hiroshi Sakai

Similarly, by applying Algorithm 5 to each pair of pe(CON, t) ∈ RELpe(ζ,
x,CON) and pe(DEC, s) ∈ RELpe(η, x,DEC) repeatedly, it is possible to cal-
culate three criterion values.

Example 7. Let us continue the contents in Example 6, and consider ψ2 :
[A, 5] ∧ [B, 4]⇒ [C, 2] ∈ PI(x2, {A,B}, {C}) in Table 2.

Adjusted Algorithm 7 is applied to each pair of pe({A,B}, t) (3 ≤ t ≤
4) and pe({C}, s) (1 ≤ s ≤ 2). For a pair of pe({A,B}, 3) and pe({C}, 1),
[2]{A,B}={2, 7} ∈ pe({A,B}, 3) and [2]{C}={2, 4, 5} ∈ pe({C}, 1) hold. In this
case [2]{A,B} �⊂ [2]{C} holds, and it is known that objects x2 and x7 are incon-
sistent. Similarly, x2 and x7 are inconsistent in every pair of pe({A,B}, t) and
pe({C}, s). Namely, ψ2 appears in 18(=36/2) derived DISs and x2 is inconsis-
tent in 18 derived DISs. Therefore, it is possible to conclude that ψ2 belongs to
IGI group.

Similarly for a pair of pe({A,B}, 3) and pe({C}, 1), |[2]{A,B} ∩ [2]{C}|=
|{2}|=1 holds. In this way,

support(ψ2)=|[2]{A,B} ∩ [2]{C}|/|OB|=1/|OB|=1/8,
accuracy(ψ2)=|[2]{A,B} ∩ [2]{C}|/|[2]{A,B}|=1/2,
coverage(ψ2)=|[2]{A,B} ∩ [2]{C}|/|[2]{C}|=1/3

are easily obtained. Since there are four pairs of pe({A,B}, t) and pe({C}, s),
this procedure is repeated 4 times, and min, max and mean values are obtained.

8 A Real Execution

Let us consider NIS3 in Table 7, which was produced by using a random num-
ber program. This section shows a hypothesis generation for specified decision
attributes {E} in Table 7.

The real execution generally consists of two phases below:
Phase 1. For fixed DEC(={E}), find CON such that DEC depends on CON .
Phase 2. For fixed CON and DEC, produce link information RELpe(ζ, x,
CON) and RELpe(η, x,DEC) for each ζ, η and x ∈ OB. Then, fix criterion
values of min sup, max sup, · · · , mean cov. Finally pick up possible implica-
tions, which satisfy the conditions of criterion values and belong to DGC or
IGC groups.

8.1 Phase 1

In Fig. 1, program translate creates new files A.rs, · · · , E.rs. Every file stores
internal expressions for each attribute. Program pe display creates new files
A.pe, · · · , E.pe. Every file stores all kinds of pe-relations for each attribute.

For checking the dependency from CON to DEC, all kinds of pe-relations
for CON and DEC are produced at first. Then, program depend is executed.
In Fig. 2 and Fig.3, program merge is executed for CON={A,B,C,D} and
CON={B,C}, respectively. Every condition for executing program merge is
stored in a file named merge.dat.

Possible Equivalence Relations 101

Table 7. A non-deterministic information system NIS3.

OB A B C D E

x1 1 1 4 2 {1, 2, 5}
x2 {2, 4, 5} 5 3 2 4

x3 5 2 2 {1, 5} 2

x4 {1, 2} 3 4 {2, 5} {1, 2, 3}
x5 {2, 3, 4} {1, 2} {1, 3, 5} {1, 4} 5

x6 2 1 5 {1, 4} {1, 4, 5}
x7 1 {1, 3, 4} 1 {2, 3, 4} 2

x8 {2, 4, 5} 4 4 {2, 3, 4} {3, 5}

8.2 Phase 2

Suppose a dependency from {B,C} to {E} be observed, and CON be fixed
to {B,C} for DEC={E}. In Fig. 4, pe-relations related to possible implica-
tion are obtained. Then, criterion values are fixed as follows: min sup ≥0.1,
mean sup ≥0.1, min acc ≥0.5, mean acc ≥0.6, min cov ≥0.5, mean cov ≥ 0.7.
Fig. 5 shows an execution of program hypotheses. There exist three possible im-
plications satisfying constraints. For attributes {B,C,E}, there exist 972 derived
DISs. The first hypothesis from object x2 appears 972 derived DISs, and it is
consistent in all 972 derived DISs. Namely it is not only a hypothesis but also
a rule. As for object x4, |PI(x4, {B,C}, {E})|=3 holds, and only one possible
implication satisfies constraints.

9 Remarks on a Tool and Execution Time

For obtaining more reliable hypotheses, the degrees of dependency and threshold
values like min sp, min ac and min co are fixed at high level. For obtaining lots
of hypotheses, the degrees of dependency and threshold values are fixed at low
level. By tuning such values, it is possible to generate hypotheses in any NIS.

In Phase 1, all kinds of pe-relations are extracted by pe display command.
This is a time–consuming program, but it is enough to execute this program only
once. Because, each pe-relation for any CON is produced by merge command.
Both the orders of merge and depend are almost o(|OB|), therefore it takes less
execution time in Phase 1.

Now, we show the experimental result in Phase 2. Four data files, NIS4,
NIS5, NIS6 and NIS7, are produced by using a random numbers program. In
every NISi(4 ≤ i ≤ 7), |AT |=5 and |V ALa|=10 for any a ∈ AT , and the sizes of
OB are 30, 50, 70 and 100 respectively. About 20% of attribute values in NIS4,
10% of attribute values in NIS5 and 5% of attribute values in NIS6 and NIS7

are non–deterministic.
Table 8 shows execution time for generating hypotheses according to CON=

{A,B} and DEC={E}. In NIS4 there exist 4 kinds of pe–relations for 1944

102 Hiroshi Sakai

?-translate.

File Name:’data2.pl’.

EXEC TIME=0.137(sec)

yes

?-pe display.

File Name:’data2.pl’.

Attribute A

[1] [[1,4,7],[2,3,8],[5,6]] 1

[2] [[1,4,7],[2,3,8],[5],[6]] 2

: : :

Attribute B

: : :

Attribute E

[1] [[1,3,4,7],[2,6],[5],[8]] 1

: : :

[50] [[1,6],[2],[3,7],[4],[5,8]] 1

POSSIBLE CASES 54

EXEC TIME=0.890(sec)

yes

Fig. 1. An execution for obtaining all pe-relations in each attribute.

% merge

Merging A.pe ...

Merging B.pe ...

Merging C.pe ...

Merging D.pe ...

EXEC TIME=0.010(sec)

% depend

File for Condition:ABCD.pe

File for Decision:E.pe

CRITERION 1

Minimum Degree of Dependency:0.750

Maximum Degree of Dependency:1.000

CRITERION 2

Derived DISs:7558272

Derived Consistent DISs:7418304

Degree of Consistent DISs:0.981

EXEC TIME=0.000(sec)

%

Fig. 2. An execution for the dependency {A, B, C, D} ⇒ {E}.

derived DISs and 36 kinds of pe–relations for 36 derived DISs. There are totally
69984(=1944× 36) derived DISs for {A,B,E}, and there exist 144(=4 × 36)
pairs of pe({A,B}, t) (1 ≤ t ≤ 4) and pe({E}, s) (1 ≤ s ≤ 36). Similarly, there
exist 31104(=576 × 54), 26244(=1458× 18) and 279936(=1296× 216) derived

Possible Equivalence Relations 103

% merge

Merging B.pe ...

Merging C.pe ...

EXEC TIME=0.000(sec)

% depend

File for Condition:BC.pe

File for Decision:E.pe

CRITERION 1

Minimum Degree of Dependency:0.750

Maximum Degree of Dependency:1.000

CRITERION 2

Derived DISs:972

Derived Consistent DISs:810

Degree of Consistent DISs:0.833

EXEC TIME=0.000(sec)

%

Fig. 3. An execution for the dependency {B,C} ⇒ {E}.

?-translate attrib.

File Name:’data2.pl’.

Attribute File:’attrib.pl’.

EXEC TIME=0.040(sec)

yes

?-link(con).

EXEC TIME=0.033(sec)

yes

?-link(dec).

EXEC TIME=0.570(sec)

yes

Fig. 4. An execution for linking possible tuples to pe-relations.

DISs in NIS5, NIS6 and NIS7, respectively. According to Table 8, program
link occupies most execution time. After making links between possible tuples
and pe–relations, program hypotheses is executed. Since each three criterion
value is fixed to 0, most of possible tuples are displayed in every execution. In
NIS7, it took much execution time for displaying hypotheses.

Table 9 shows execution time of Phase 2 and a simple method. The column of
simple method shows (execution time to obtain criterion values in a DIS)×(the
number of derived DISs). However, this value is meaningless, because it does
not include the time of handling every derived DIS. The execution time of this
method will be much worse. Table 9 shows the effect of using possible equivalence
relations.

104 Hiroshi Sakai

% hypotheses

Hypothesis:[B,C]⇒[E]

Hypothesis from object 2

[5,3]⇒[4] 1.000(=972/972,972:DGC)

MINSUP: 0.125, MAXSUP: 0.125, MEANSUP: 0.125

MINACC: 1.000, MAXACC: 1.000, MEANACC: 1.000

MINCOV: 0.500, MAXCOV: 1.000, MEANCOV: 0.833

Hypothesis from object 4
[3,4]⇒[3] 1.000(=324/324,972:IGC)

MINSUP: 0.125, MAXSUP: 0.125, MEANSUP: 0.125

MINACC: 1.000, MAXACC: 1.000, MEANACC: 1.000

MINCOV: 0.500, MAXCOV: 1.000, MEANCOV: 0.750

Hypothesis from object 8
[4,4]⇒[3] 1.000(=486/486,972:IGC)

MINSUP: 0.125, MAXSUP: 0.125, MEANSUP: 0.125

MINACC: 1.000, MAXACC: 1.000, MEANACC: 1.000

MINCOV: 0.500, MAXCOV: 1.000, MEANCOV: 0.833

EXEC TIME=0.010(sec)
%

Fig. 5. An execution for generating hypotheses.

Table 8. Execution time(sec) for CON={A,B} and DEC={E}.

NIS Translate attrib Link(con) Link(dec) Hypotheses

NIS4 0.15 9.79 0.22 0.31

(4/1944) (36/36) (144/69984)

NIS5 0.22 5.12 0.56 0.77

(60/576) (54/54) (3240/31104)

NIS6 0.32 17.85 0.34 6.40

(486/1458) (18/18) (8748/26244)

NIS7 0.55 21.97 4.40 18.82

(216/1296) (216/216) (46656/279936)

10 Concluding Remarks

Equivalence relations in DISs are extended to pe-relations in NISs, and ma-
nipulations on both equivalence relations and possible equivalence relations are
presented. Then, a framework of hypothesis generation in NISs is proposed,
and realized. In this realization, possible equivalence relations take important
roles.

In NISs, the computation of (Hypo 1), (Hypo 2) and (Hypo 3) is generally
proportional to the number of all derived DISs, and our tool is suitable for

Possible Equivalence Relations 105

Table 9. Execution time(sec) by two methods.

NIS Phase 2 Simple method

NIS4 10.47 69.98(= 0.001 × 69984)

NIS5 6.67 93.31(= 0.003 × 31104)

NIS6 24.92 104.97(= 0.004 × 26244)

NIS7 45.75 2519.42(= 0.009 × 279936)

NISs with large number of derived DISs. This comes from the fact that the
number of all kinds of pe-relations is usually much smaller than the number of
all derived DISs.

Up to now, there are only few works that deal with real data processing in
NISs. For handling not only certain information but also incomplete informa-
tion, the research of rough sets based data processing in NISs will be important.
Furthermore, rough sets based data processing in NISs could also be a math-
ematical foundation of knowledge discovery and data mining from incomplete
information. We are now planning to analyze students’ life style information
by questionnaires. This data consists of about 2500 objects and about 100 at-
tributes. Most of V ALa (a ∈ AT) are {worst, bad, normal, good, best}, and this
data contains lots of void information for some disagreeable questions.

References

1. Pawlak, Z. Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer, 1991.

2. Pawlak, Z. New look on Bayes’ Theorem - the rough set outlook. Bulletin of Int.
Rough Set Society 5, 2001, pp. 1–8.

3. Komorowski, J., Pawlak, Z., Polkowski, L., and Skowron, A. Rough Sets: A tutorial,
in: Rough Fuzzy Hybridization (S. K. Pal, A. Skowron (eds.)). Springer Singapore,
1999, pp. 3–98

4. Nakamura, A., Tsumoto, S., Tanaka, H., and Kobayashi, S. Rough set theory and
its applications. Journal of Japanese Society for AI 11, 1996, pp. 209–215

5. Polkowski, L., Skowron, A.(eds.). Rough Sets in Knowledge Discovery 1. Studies
in Fuzziness and Soft Computing 18, Physica, 1998.

6. Polkowski, L., Skowron, A.(eds.). Rough Sets in Knowledge Discovery 2. Studies
in Fuzziness and Soft Computing 19, Physica, 1998.

7. Grzymala–Busse, J. A new version of the rule induction system LERS. Fundamenta
Informaticae 31, 1997, pp. 27–39.

8. Ziarko, W. Variable precision rough set model. Journal of Computer and System
Sciences 46, 1993, pp. 39–59.

9. Tsumoto, S. Knowledge discovery in clinical databases and evaluation of discovered
knowledge in outpatient clinic. Information Sciences 124, 2000, pp. 125–137.

10. Zhong, N., Dong, J., Fujitsu, S., and Ohsuga, S. Soft techniques to rule discovery
in data. Transactions of Information Processing Society of Japan 39, 1998, pp.
2581–2592.

11. Rough Set Software. Bulletin of Int. Rough Set Society 2, 1998, pp. 15–46.

106 Hiroshi Sakai

12. Codd, E. A relational model of data for large shared data banks. Communications
of the ACM 13, 1970, pp. 377–387.

13. Grzymala–Busse, J. On the unknown attribute values in learning from examples,
in: Proceedings ISMIS’91. Lecture Notes in Artificial Intelligence 542. Springer,
1991, pp. 368–377.

14. Orlowska, E., Pawlak, Z. Representation of nondeterministic information. Theoret-
ical Computer Science 29, 1984, pp. 27–39.

15. Orlowska, E. What you always wanted to know about rough sets, in: Incomplete
Information: Rough Set Analysis(Orlowska, E. (ed.)). Studies in Fuzziness and Soft
Computing 13. Physica, 1998, pp. 1–20.

16. Lipski, W. On semantic issues connected with incomplete information Databases.
ACM Transactions on Database Systems 4, 1979, pp. 262–296.

17. Lipski, W. On databases with incomplete information. Journal of the ACM 28,
1981, pp. 41–70.

18. Nakamura, A. A rough logic based on incomplete information and its application.
Int. Journal of Approximate Reasoning 15, 1996, pp. 367–378.

19. Kryszkiewicz, M. Rough set approach to incomplete information systems. Infor-
mation Sciences 112, 1998, pp. 39–49.

20. Kryszkiewicz, M. Rules in incomplete information systems. Information Sciences
113, 1999, pp. 271–292.

21. Sakai, H. Another fuzzy prolog, in: Proceedings of the 4th Int. Workshop on Rough
Set, Fuzzy Set and Machine Discovery, Tokyo, 1996, pp. 261–268.

22. Sakai H. Some issues on nondeterministic knowledge bases with incomplete and
selective information, in: Proceedings RSCTC’98. Lecture Notes in Artificial Intel-
ligence 1424, Springer, 1998, pp. 424–431.

23. Sakai, H., Okuma, A. An algorithm for finding equivalence relations from tables
with non–deterministic information, in: Proceedings RSFDGrC’99. Lecture Notes
in Artificial Intelligence 1711, Springer, 1999, pp. 64–72.

24. Sakai, H., Okuma, A. An algorithm for checking dependencies of attributes in a
table with non–deterministic information: A rough sets based approach, in: Pro-
ceedings PRICAI’00. Lecture Notes in Artificial Intelligence 1886, Springer, 2000,
pp. 219–229.

25. Sakai, H. Two procedures for dependencies among attributes in a table with non-
deterministic information: a summary, in: Proceedings JSAI’01. Lecture Notes in
Artificial Intelligence 2253, Springer, 2001, pp. 301–305.

26. Sakai, H. Effective procedures for handling possible equivalence relations in non–
deterministic information systems. Fundamenta Informaticae 48, 2001, pp. 343–
362.

27. Grzymala–Busse, J., Werbrouck, P. On the best search method in the LEM1 and
LEM2 algorithms, in: Incomplete Information: Rough Set Analysis (Orlowska, E.
(ed.). Studies in Fuzziness and Soft Computing 13, Physica, 2001, pp. 75–91.

Applications of Fuzzy Logic Functions
to Knowledge Discovery in Databases

Noboru Takagi1, Hiroaki Kikuchi2, and Masao Mukaidono3

1 Department of Electronics and Informatics, Toyama Prefectural University,
Kosugi-machi, Imizu-gun, Toyama 939-0398, Japan

2 Department of Information Media Technology, Tokai University,
Hiratsuka-shi, Kanagawa 259-1292, Japan

3 Department of Computer Science, Meiji University,
Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan

Abstract. This chapter is a summary of knowledge discovery algo-
rithms that take an input of training examples of target knowledge,
and output a fuzzy logic formula that best fits the training examples.
The execution is done in three steps; first, the given mapping is divided
into some Q-equivalent classes; second, the distances between the map-
ping and each local fuzzy logic function are calculated by a simplified
logic formula; and last, the shortest distance is obtained by a modified
graph-theoretic algorithm. After a fundamental algorithm for fitting is
provided, fuzzy logic functions are applied to a more practical example
of classification problem, in which expressiveness of fuzzy logic functions
is examined for a well-known machine learning database.

1 Introduction

Functions on the unit interval [0, 1] which can consist of logical operations min,
max, and x �→ 1−x are called fuzzy logic functions (or used to be referred as fuzzy
switching functions). Research on fuzzy logic functions have been extensively
done by many researchers [2–7, 10, 11] since L. A. Zadeh proposed fuzzy set
theory. Theoretical aspects of fuzzy logic functions were discussed especially in
the 1970s and 1980s. The motivation for fuzzy logic functions in those days was
centered on the possibility of their applications to switching circuits. Thus, the
canonical sum-of-products forms, the minimal sum-of-product forms, and the
prime-implicant expressions, etc., have been central issues of research on fuzzy
logic functions as well as logic designs based on Boolean functions. This paper
will, however, summarize a new application of fuzzy logic functions to knowledge
discovery in databases (KDD).

A new generation of intelligent tools for automated data mining and knowl-
edge discovery has been needed since the 1990s, because of the rapid progress
of computer systems and our capabilities for collecting and storing data of all
kinds. By this background, many KDD techniques have been investigated to
handle collections of data samples. Some of them are based on soft computing

J.F. Peters et al. (Eds.): Transactions on Rough Sets II, LNCS 3135, pp. 107–128, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

108 Noboru Takagi, Hiroaki Kikuchi, and Masao Mukaidono

methodologies such as neural networks, fuzzy set theory, rough set theory, and
decision trees, etc., etc..

For example, by applying the back–propagation procedure, multi–layered
neural networks can find a non–linear function which has little error between
the function and a data set. Theoretically, if we have an appropriate number of
hidden units, we can find a representation that can perform any mapping from
input to output through these hidden units.

KDD is concerned with identifying interesting patterns and describing them
in a concise and meaningful manner [19]. However, multi–layered neural networks
are not adequate for describing interesting patterns in a concise and meaningful
way, because the result of the error back–propagating procedure is given as
a non–linear function based on sigmoidal functions. Fuzzy logic functions are
attractive in achieving this high comprehensibility requirement for knowledge
representations, because they are expressed by logic formulas, which can be
considered as knowledge representations similar to our natural language.

The paper will discuss algorithms which can determine a fuzzy logic function
which is approximately equal to a numerical data set. Here, any numerical data
set dealt with in this paper will be assumed to be an incompletely specified
function f : A → [0, 1], where A is a finite subset of [0, 1]n. Because fuzzy
logic functions consist of only three kinds of logical operations (i.e., min, max,
and x �→ 1 − x), they are not powerful enough to express any functions on
[0, 1]. Thus, our aim is to find a fuzzy logic function which is approximately
equal to an incompletely specified function. Our first approach is to clarify an
algorithm that enables us to find an optimal fuzzy logic function. This algorithm
is built by the divide–and – conquer method, since the number of fuzzy logic
functions asymptotically increases in O(23n

) with n variables. Second, fuzzy logic
functions are applied to a more practical problem, that is, classification problem.
To complete the problem, a genetic algorithm (GA) will be applied to find a near
optimal fuzzy logic function.

The chapter is constructed as follows. In Sect. 2, definitions and mathematical
foundations of fuzzy logic functions will be given. Then, Sect. 3 will discuss
an algorithm for finding an optimal fuzzy logic function. In Sect. 3, some of
the mathematical properties will be also discussed, because they are needed to
build the algorithm. In Sect. 4, an algorithm based on GA will be shown. This
algorithm will discover classification rules of a data set. The performance of the
algorithm proposed will be examined by using a well–known machine learning
database, and also will be compared with other existing classification methods.

2 Definitions and Basic Properties
of Fuzzy Logic Functions

This section describes definitions and some mathematical properties of fuzzy
logic functions.

Let V , V2 and V3 be the unit interval [0, 1], the binary set {0, 1} and the
ternary set {0, 0.5, 1}, respectively. We then define logical operations ∧, ∨ and
¬ below,

Applications of Fuzzy Logic Functions to Knowledge Discovery in Databases 109

⎧⎨⎩
x ∧ y = min(x, y),
x ∨ y = max(x, y),
¬x = 1− x,

(1)

where x, y ∈ V .

Definition 1 Logic formulas can be defined inductively as follows.

(1) The constants 0 and 1, and any variable xi (i = 1, 2, . . . , n) are logic formulas.
(2) If g and h are logic formulas, then (g∧h), (g∨h) and (¬g) are logic formulas.
(3) It is a logic formula if and only if we get it from (1) and (2) in a finite number

of steps.

Definition 2 A mapping f from V n into V is a fuzzy logic function if and only
if there exists at least one logic formula which expresses the mapping f .

Next, we define a binary relation � over the set V .

Definition 3 Let a and b be elements of V . Then, the relation a � b holds if
and only if either 0.5 ≥ a ≥ b or b ≥ a ≥ 0.5 holds. The relation � can be
extended to V n by letting a = (a1, . . . , an) and b = (b1, . . . , bn) be elements of
V n, a � b if and only if ai � bi for each i (i = 1, . . . , n). Any two elements a in
[0, 0.5) and b in (0.5, 1] are not comparable with respect to �. We denote this
by a �� b. We write a � b to mean that a � b but a �= b.

It is evident that the relation � is a partial order relation on V n.

Definition 4 Let x and λ be elements of V . A quantization xλ of x by λ is an
element of V3 defined by

xλ =

⎧⎨⎩
0 if 0 ≤ x ≤ min(λ, 1− λ) and x �= 0.5,
1 if 1 ≥ x ≥ max(λ, 1 − λ) and x �= 0.5,

0.5 otherwise.

Let x = (x1, . . . , xn) be an element of V n. A quantization xλ of x by λ is defined
by xλ = (x1

λ, . . . , xn
λ) ∈ V n

3 .

Definition 5 Any variable xi and its negation ¬xi are called literals. A product
(i.e., ∧-ing) of some literals will be called a simple product term (or simple term
for short), if there exists at most one literal for each i. A complementary product
term (or complementary term for short) is a product of some literals that contains
both positive and negative literals for some xi. A sum (∨-ing) of some products
is called sum-of-products form, if no product term appears more than twice in it.

It is proved that any fuzzy logic function can be expressed by a sum-of-
products form [4]. Further, in writing product terms, the operation ∧ is often
omitted.

110 Noboru Takagi, Hiroaki Kikuchi, and Masao Mukaidono

Definition 6 Let a = (a1, . . . , an) and b = (b1, . . . , bn) be elements of V n
3 and

V n
3 −V n

2 , respectively. A simple term αa corresponding to a and a complementary
term βb corresponding to b are defined by αa = xa1

1 ∧ · · · ∧ xan
n and βb =

xb1
1 ∧ · · · ∧ xbn

n , where

xai

i =

⎧⎨⎩
xi if ai = 1
¬xi if ai = 0
1 if ai = 0.5,

xbi

i =

⎧⎨⎩
xi if bi = 1
¬xi if bi = 0
xi ¬xi if bi = 0.5,

for every i (i = 1, . . . , n).

Theorem 1 (Normality) [11] Let f be a fuzzy logic function. Then, a ∈ V n
2

implies f(a) ∈ V2.

Theorem 2 (Monotonicity) [11] Let a and b be elements of V n. Then, a � b
implies f(a) � f(b).

Theorem 3 (Quantization) [11] Let f be a fuzzy logic function, and a be an

element of V n. Then, f(a)
λ

= f(aλ) holds for all λ in V .

Theorem 4 [11] Let f and g be fuzzy logic functions. Then, f(a) = g(a) for
every element a of V n

3 , if and only if f(a) = g(a) for every element a of V n.

Theorem 5 (Representation) Any fuzzy logic function f is expressed by

f(x) =
∨

a∈V n
3

⎛⎝∧
a
b

f(b)αa(x) ∨ f(a)βa(x)

⎞⎠ ,

where αa is a simple term corresponding to a, and βa is a complementary term
corresponding to a.

Proposition 1 Let αa be a simple term corresponding to a ∈ V n
3 .

(1) a � b if and only if αa(b) = 1.

(2) If b � a, then αa(b) = 0.5.

Proposition 2 For any a in V n and any λ, τ in V , λ � τ implies aτ � aλ.

3 Knowledge Discovery Based on Fuzzy Logic Functions

3.1 Problem Description

The problem of knowledge discovery is to acquire a general concept from specific
training examples. The general concept to be retrieved can be formulated as a
Boolean–valued function defined over some attributes, for which training exam-
ples are evaluated with true or false. Consider an example of knowledge “days

Applications of Fuzzy Logic Functions to Knowledge Discovery in Databases 111

good for diving,” which depends on several possible attributes; sunny, rainy,
warm, windy, and so on. Given a sample of days on which either good or bad
is evaluated, we can make guess the notion of good–days–for–diving, e.g., sunny
and warm or not windy.

In the real world, there actually is a day on which we can not determine
whether it is a good for diving or not. Attributes might not be assigned to either
true or false. The problem of knowledge discovery, therefore, should be able to
deal with such fuzziness, and accordingly, generalizing Boolean–valued function,
we have a fuzzy knowledge discovery based on fuzzy logic functions.

A fuzzy logic function is a mapping specified by a logic formula consisting of n
variables and logical operations. Fundamental properties of fuzzy logic function
have been studied and can be used to develop an effective algorithm to identify
an optimal solution.

The training examples, however, might be inconsistent; there is a chance
that training examples contain errors or noises, which will imply no solution.
The knowledge discovery algorithm, therefore, should be able to detect the in-
consistency in training examples, and preferably, find the optimal solution which
minimizes errors even if an ill–defined training example is given. Thus, our ob-
jective in this section can be set as follows.

Knowledge Discovery: given a set of training examples of target
knowledge, finding the logic formulas that best fit the training exam-
ples.

To illustrate what we should attempt to solve, consider a set of training
examples defined by a two–variable mapping h;

h(0.8, 0.7) = 0.9,
h(0.3, 0.1) = 0.6,
h(0.4, 0.8) = 0.3,
h(0.7, 0.6) = 0.8,
h(0.6, 0.9) = 0.6.

The value of h indicates a membership value to a target knowledge, for each
attribute, x, y, being specific values. Given a training example, now we can test
any logic formula, say f = ¬x ∧ y, whose evaluation for (0.8, 0.7) is given as

f(0.8, 0.7) = ¬0.8 ∧ 0.7 = min(1− 0.8, 0.7) = 0.2 �= 0.9,

and the logic formula f turns out to be not any appropriate candidate for the
target knowledge.

More formally, we give a definition of preferability of knowledge with a
distance between two functions. Let F and G be mappings F : A → V and
G : B → V . The distance E(F,G) between F and G is defined as

E(F,G) =
∑

a∈A∩B

(F (a)−G(a))2.

112 Noboru Takagi, Hiroaki Kikuchi, and Masao Mukaidono

The optimal solution to our problem is a fuzzy logic function, f∗, that minimizes
the distance to the training examples, h.

The brute–force approach, in which testing all possible logic formula one
by one, is infeasible because the number of fuzzy logic function asymptotically
increases in O(23n

) with n being number of variables.
Our proposed algorithm is partitioned into several steps; (1) dividing the

problem into some meaningful independent sub–problems, what we call Q–
equivalent classes, and (2) we solve each sub–problems computing distance to
the given h, and (3) then, combine local solutions to give the optimal fuzzy logic
function which minimizes the total error against the training examples. Option-
ally, (4) we use a graph–theoretic algorithm to find f∗, which is a variation of
Dijkstra’s shortest path algorithm.

The proposed algorithm takes three steps; dividing, evaluating, and combin-
ing, described in this order.

3.2 Dividing into Q-Equivalent Classes

In this section, we introduce an equivalence relation, by which a number of
training examples are classified into several small subsets.

Definition of Q-Equivalent Classes

Definition 7 Let a = (a1, . . . , an) in V n. A quantized set C(a) of a is a subset
of V n

3 defined by C(a) = {aλ ∈ V n
3 | λ ∈ V }.

Example 1 For the element (0.4, 0.8), its quantized set is obtained below.

C((0.4, 0.8)) = {(0.4, 0.8)
0.4

, (0.4, 0.8)
0.8

, (0.4, 0.8)
1.0}

= {(0, 1), (0.5, 1), (0.5, 0.5)}.
Definition 8 Elements a and b of V n are Q-equivalent if and only if the quan-
tized sets satisfy C(a) = C(b). We write a ≈ b in this case.

Example 2 (0.8, 0.7) ≈ (0.7, 0.6), and (0.3, 0.8) ≈ (0.2, 0.9) ≈ (0.4, 0.9).

Definition 9 Let A be a subset of V n and a ∈ A. A Q-equivalent class con-
taining a is a subset of A defined by [a] = {b ∈ A | a ≈ b}. The set of all
Q-equivalent classes of A is denoted by [A], i.e., [A] = {[a] ⊆ A| a ∈ A}.

Since ≈ is an equivalence relation, [A] = {A1, . . . , Am} is a partition of A,
i.e., Ai ∩Aj = ∅ for every i �= j, and A = A1 ∪ · · · ∪Am.

Example 3 Recalling the training examples h whose domain is D, we have the
partition

D = {(0.4, 0.8), (0.6, 0.9), (0.7, 0.6), (0.8, 0.7), (0.3, 0.1)}
= {(0.4, 0.8)} ∪ {(0.6, 0.9)} ∪ {(0.7, 0.6), (0.8, 0.7)} ∪ {(0.3, 0.1)}
= D1 ∪D2 ∪D3 ∪D4.

Figure 1 illustrates how we divide D into the Q–equivalent classes D1, D2, D3

and D4.

Applications of Fuzzy Logic Functions to Knowledge Discovery in Databases 113

0 0.5 1
0

0.5

1

x

y
1D D2

D3

D4

Fig. 1. Partition [D]: the set of training examples defined over [0.1]2, indicated by dots,
is partitioned into four Q–equivalent classes D1, D2, D3, and D4.

Some Properties of Q-Equivalent Classes. We clarify some properties of
Q–equivalent classes that will be used to reduce complexity of searching.

Proposition 3 Let C(a) = {a1,a2, . . . ,am} be a Q–equivalent class. Then,
ai � aj or aj � ai for every i, j ∈ {1, . . . ,m}. Note that this proposition
means that there are indices i1 < i2 < · · · < im of {1, 2, . . . ,m} such that
ai1 � ai2 � · · · � aim .

Proposition 4 Let a = (a1, . . . , an) and b = (b1, . . . , bn) be elements of V n.
Then, a ≈ b if and only if ai

aj = bi
bj for every i, j ∈ {1, . . . , n}.

Theorem 6 Let f and g be fuzzy logic functions, and d ∈ V n. Then, f(a) =
g(a) for all a ∈ C(d) if and only if f(b) = g(b) for all b ∈ V n such that b ≈ d.

Proof. Suppose f(b) �= g(b) for some b ∈ V n when f(a) = g(a) for all a ∈
C(d). By Theorem 3, f(b)

λ
= f(b

λ
) �= g(b)

λ
= g(b

λ
) for some λ ∈ V . This is

contradictory to the hypothesis.
Conversely, suppose f(a) �= g(a) for some a ≈ d ∈ C(d) when f(b) = g(b)

for every b ≈ d. Then, there is a b ∈ V n such as b
λ

= a, and for b, f(a) =

f(b
λ
) = f(b)

λ �= g(a) = g(b
λ
) = g(b)

λ
. Since b ≈ d, this contradicts the

hypothesis. (End of Proof)

Example 4 For the element (0.3, 0.8) ∈ V 2, its quantized set is given as C((0.3,
0.8)) = {(0, 1), (0.5, 1), (0.5, 0.5)}. Then, Theorem 6 implies that for any fuzzy
logic function f , the value f(0.3, 0.8) can be evaluated uniquely if we have the
values f(0, 1), f(0.5, 1) and f(0.5, 0.5).

3.3 Evaluation of Q-Equivalent Classes

Restrictions of Fuzzy Logic Functions. According to Theorem 5, any fuzzy
logic function f can be determined by 3n parameters f(a) for a ∈ V n

3 . However,
3n is too many to identify a fuzzy logic function. In this section, we will reduce
the number of parameters.

114 Noboru Takagi, Hiroaki Kikuchi, and Masao Mukaidono

Definition 10 Let a ∈ V n
3 and b ∈ {0, 1}, and let f be a fuzzy logic function.

Then, f is said to be restricted to the truth status f(a) = b, if and only if f(a) = b
and f(c) = 0.5 for any c ∈ V n

3 such that c � a.

Note that, in general, there are some fuzzy logic functions f that are restricted
to the same truth status f(a) = b. For example, consider f1(x) = ¬x and f2(x) =
x∨¬x, both of which satisfy f1(0) = f2(0) = 1 and f1(0.5) = f2(0.5) = 0.5. Thus,
f1 and f2 are restricted to f1(0) = f2(0) = 1. In the following discussion, we will
use the symbol f |f(a)=b to mean any fuzzy logic function f that is restricted to
f(a) = b, and f |f(a)=b will be sometimes called a restriction.

Lemma 1 Let f be a fuzzy logic function and d ∈ V n. If f(d) �∈ V3, then

(1) f(a) = 0.5 for all a ∈ C(d) such that a � a∗,
(2) f(a∗) ∈ {0, 1},

where a∗ = d
f(d)

.

Proof. Since f(d) �∈ V3, obviously, f(d)
f(d)

= f(d
f(d)

) = f(a∗) ∈ {0, 1}. For

any b ∈ V n
3 such that b � a∗, there is a λ ∈ V such that b = d

λ � d
f(d)

and

f(d) � λ. Thus f(d)
λ

= 0.5, and thus, f(d
λ
) = f(b) = 0.5. (End of Proof)

Theorem 7 Let d ∈ V n and f be a fuzzy logic function, and let a∗ = d
f(d)

.
Then, there exists a restriction g|g(a∗)=f(a∗) such that f(c) = g|g(a∗)=f(a∗)(c)
holds for every c ∈ V n such that c ≈ d.

Proof. For any c = a∗, obviously g|g(a∗)=f(a∗)(c) = f(c). For any c � a∗,
g|g(a∗)=f(a∗)(c) = 0.5 = f(c) [Lemma 1]. For any a∗ � c, g|g(a∗)=f(a∗)(c) =
f(a∗) = f(c) [Theorem 2]. Thus, g|g(a∗)=f(a∗)(c) = f(a∗) = f(c) for all elements
of C(d), and by Theorem 6, g|g(a∗)=f(a∗)(c) = f(a∗) = f(c) for all elements
of [d]. (End of Proof)

This theorem implies that a fuzzy logic function can be determined uniquely
within the given Q–equivalence class, and that for any fuzzy logic function f ,
there must be f |f(a)=b in a given Q–equivalence class. Hence, all combinations of
(a, b) are sufficient to exhaustively enumerate all possible fuzzy logic functions.

Corollary 1 Let D = {d1, . . . ,dm} be a subset of V n, D1, . . . , Ds be Q–
equivalent classes of D, and F be any function F : D → V . For any fuzzy
logic function f , there are a1, . . . ,as ∈ V n

3 and b1, . . . , bs ∈ {0, 1} that satisfy

E(f, F) =
m∑

i=1

(f(di)− F (di))2 =
s∑

i=1

E(f |f(ai)=bi
, F |Di),

where F |Di is a mapping whose domain is restricted to Di, i.e., F |Di : Di → V
and F (a) = F |Di(a) for any a ∈ Di.

Example 5 Let Di be as in Example 3. For f(x, y) = ¬y ∨ (¬x ∧ y),

E(f, h) = E(f |f(0,1)=1, h|D1) + E(f |f(1,0)=0, h|D2)
+E(f |f(1,0)=0, h|D3) + E(f |f(0.5,0)=1, h|D4).

Applications of Fuzzy Logic Functions to Knowledge Discovery in Databases 115

Representation of Restrictions. It has been guaranteed that any fuzzy logic
function can be represented by combination of restrictions f |f(a)=b. Then, we
shift to a problem of representing each f |f(a)=b by a logic formula.

Theorem 8 Let d ∈ V n, c ∈ C(d), b ∈ V2, and f be a fuzzy logic function. For
a ∈ V n such that a ≈ d,

f |f(c)=b(a) =
{
αc(a) if b = 1
¬αc(a) if b = 0.

Proof. For c � a, f |f(c)=1(a) = 1 = αc(a) = 1,
and,
f |f(c)=0(a) = 0 = ¬αc(a) = 0 [Proposition 1].
For a � c, f |f(c)=b(a) = 0.5
= αc(a) = ¬αc(a) = 0.5 [Proposition 1].
Thus, the theorem holds for all elements of C(d).
Therefore, by Theorem 6,
f |f(c)=1(a) = αc(a),
and,
f |f(c)=0(a) = ¬αc(a) for every a ≈ d. (End of Proof)

Example 6 Let d = (0.3, 0.8), and c = (0, 1) ∈ C(d). For any a ∈ V n such
that a ≈ (0.3, 0.8),

f |f(0,1)=1(a) = α(0,1)(a) = (¬x ∧ y)(a),

f |f(0,1)=0(a) = ¬α(0,1)(a) = (¬(¬x ∧ y))(a) = (x ∨ ¬y)(a).

For any (x, y) ∈ V 2 such that (x, y) ≈ (0.3, 0.8),
yx = 0.80.3 = 1 by Proposition 4. Thus, we have 1 ≥ y ≥ max(x, 1− x), and

this implies the inequality 1 ≥ y ≥ ¬x ≥ 0.5 ≥ x ≥ ¬y ≥ 0. Therefore, we have
f |f(0,1)=1(x) = ¬x and f |f(0,1)=0(x) = x.

Corollary 2 Let [d] be a Q-equivalent class of d ∈ V n, a ∈ C(d) and b ∈ V2.

E(f |f(a)=b, h|[d]) =

⎧⎪⎪⎨⎪⎪⎩
∑

d′∈[d]

(h(d′)− αa(d′))2 if b = 1∑
d′∈[d]

(h(d′)− ¬αa(d′))2 if b = 0

where h|[d] is a mapping whose domain is restricted to [d], i.e., h|[d] : [d] → V
and h|[d](a) = h(a) for any a ∈ [d].

Example 7 Recall h and D. We calculate every distance to h for each Q–
equivalent class in [D]. For d = (0.8, 0.7) in D, we have the quantized set C(d)
and the Q-equivalent class [d]:

C(d) = {(1, 1), (1, 0.5), (0.5, 0.5)},
[d] = {(0.8, 0.7), (0.7, 0.6)}.

116 Noboru Takagi, Hiroaki Kikuchi, and Masao Mukaidono

Corollary 1 gives the distances for every fuzzy logic function by examining each
a in C(d), which involves |C(d)| · |V2| = 3 · 2 = 6 restrictions in [d]. Theorem 8
is useful to simplify the calculation of distances. For example,

E(f |f(1,1)=1, h|[d])

=
∑
a∈[d]

(h(a)− α(1,1)(a))2

= (h(0.8, 0.7)− (xy)(0.8, 0.7))2 + (h(0.7, 0.6)− (xy)(0.7, 0.6))2

= (0.9− 0.7)2 + (0.8− 0.6)2 = 0.08

E(f |f(1,1)=0, h|[d]) = (0.9− 0.3)2 + (0.8− 0.4)2 = 0.52

Table 1 lists the distances to h for each Q–equivalent class, D1, . . . , D4.

Table 1. Distances E(f, h).

E(f |f(a)=b, h|D1)

a\b 1 0

(0,1) 0.09 0.01
(0.5,1) 0.25 0.01

(0.5,0.5) 0.49 0.09

E(f |f(a)=b, h|D2)

a\b 1 0

(1,1) 0 0.04
(0.5,1) 0.09 0.04

(0.5,0.5) 0.16 0.36

E(f |f(a)=b, h|D3)

a\b 1 0

(1,1) 0.08 0.52
(1,0.5) 0.02 0.74

(0.5,0.5) 0.05 1.45

E(f |f(a)=b, h|D4)

a\b 1 0

(0,0) 0.01 0.09
(0.5,0) 0.09 0.25

(0.5,0.5) 0.14 0.36

3.4 Combining Local Solutions
In this subsection, we describe how we combine local solutions and find the
global solution f∗ with the shortest distance. In combining, there is an issue
that not all combinations of restrictions can be fuzzy logic functions. In order to
automatically determine conflicting classes, we show a necessary and sufficient
condition for two distinct partially specified fuzzy logic functions to be combined
consistently. Finally, we use a graph–theoretic algorithm that is a variation of
Dijkstra’s shortest path algorithm[12].

Condition for Two Functions to Be Consistent

Definition 11 Let A be a finite subset of V n, and let F be a mapping F : A→
V . Then, subsets Ci(F) and C∗

i (F) of V n
3 defined below will be called quantized

sets and expansions of F , respectively.

Ci(F) =
⋃
a∈A

{aλ | ∃λ ∈ V, F (a)
λ

= i} (i = 0, 0.5, 1)

C∗
i (F) = Ci(F) ∪

⋃
b∈Ci(F)

{a ∈ V n
3 | b � a} (i = 0, 1)

C∗
0.5(F) = C0.5(F) ∪

⋃
b∈C∗

1 (F)

{a ∈ V n
3 | a � b} ∪

⋃
b∈C∗

0 (F)

{a ∈ V n
3 | a � b}

Applications of Fuzzy Logic Functions to Knowledge Discovery in Databases 117

Example 8 Consider the function F such that F (0.7, 0.5) = 0.3
and F (0.0, 1.0) = 0.8.
We then have the quantized sets of F below:

C0(F) = {(0.7, 0.5)
0.3} = {(1, 0.5)},

C1(F) = {(0, 1)}, and

C0.5(F) = {(0.7, 0.5)
0.2} ∪ {(0, 1)} = {(0, 1), (0.5, 0.5)}.

Further, the expansions of F are given as

C∗
0 (F) = {(1, 0.5), (1, 0), (1, 1)}

C∗
1 (F) = {(0, 1)}, and

C∗
0.5(F) = {(0, 1), (0.5, 0.5), (0.5, 1), (0, 0, 5)}.

Theorem 9 (Consistency) [14] Let A be a finite subset of V n, and F be a
mapping f : A → V . There is a fuzzy logic function f such that f(a) = F (a)
for all a in A, if and only if F satisfies both of the following conditions:

(R) C∗
i (F) ∩ C∗

j (F) = ∅ for every i �= j (i, j = 0, 0.5, 1), and
(N) C0.5(F) ∩ V n

2 = ∅.

Corollary 3 Let f and g be fuzzy logic functions, and let A and B be arbitrary
finite subsets of V n. Then, there is a fuzzy logic function f ′ that satisfies f ′(a) =
f |A(a) for all a in A and f ′(b) = g|B(b) for all b in B, if and only if for every
i �= j (i, j = 0, 0.5, 1),

(R) (C∗
i (f |A) ∪C∗

i (g|B)) ∩ (C∗
j (f |A) ∪ C∗

j (g|B)) = ∅,
where f |A and g|B are mappings such that f |A : A→ V and f(a) = f |A(a) for
all a ∈ A, and g|B : B → V and g(a) = g|B(a) for all a ∈ B, respectively.

Example 9 For the following restrictions of fuzzy logic functions f1 and f2,
f1(0, 1) = 1, f1(0.5, 1) = 1, f1(0.5, 0.5) = 0.5, and f2(1, 1) = 0, f2(1, 0.5) = 0,
f2(0.5, 0.5) = 0.5, there is no fuzzy logic function that satisfies both f1 and f2.
This is because the element (1, 1) ∈ C∗

1 (f1) ∩ C∗
0 (f2) violates the condition (R)

in Corollary 3.

Replacement with Undirected Graph G

Definition 12 Let D be a finite subset of V n. An (undirected) graph G char-
acterized by D consists of two non–empty sets, the set V (G) of vertices of G,
and the set Ed(G) of edges of G,

V (G) = {f |[d] | f ∈ Fn,d ∈ D} = V e1 ∪ V e2 ∪ · · · ∪ V es,

where F is a set of all n-variable fuzzy logic functions and V ei (i = 1, . . . , s) is
defined by

V ei = {f |[di] | f ∈ Fn} = {vi1, vi2, . . . , vi(2(n+1))}.

118 Noboru Takagi, Hiroaki Kikuchi, and Masao Mukaidono

Any edge {u, v} in Ed(G) satisfies the following condition:

(R) (C∗
i (u) ∪C∗

i (v)) ∩ (C∗
j (u) ∪ C∗

j (v)) = ∅ for every i �= j, and
(A) there is no vertex w in V (G) with edges {u,w} and {w, v}.

A weight W (v) of a vertex v in V (G) is defined by

W (v) = E(v, h) =
∑

d∈C(v)

(h(d)− v(d))2,

where E(v, h) is the distance between v and h, and C(v) is the quantized set
of v.

Example 10 Figure 2 illustrates the undirected graph G given by D in Exam-
ple 3, where restrictions vij are indicated on the truth tables for V 2

3 .

11

11
.5

1

0
.5

00
.5

00

1 1

1

1

.5

.5

1

.5
1

1

.5.5

.5

11

.5
11

.5
1

.5

.5

11

11
.5

.5

.5

.5

1

.5

0

.5

00 0 00

.5

.5

1
.5

1

0

0

0

.5

1

1

.5.5.5

0

1

0 0

0

0

0

0 0
0

0 0

.50

.5

1 1

.5

0

0

1

0

0

.5

0.49 0.49

0.25

0.09

0.01

0.01

0.09

0.16

0.09

0.0

0.04

0.25

0.36

0.05

0.08

0.52

0.74

1.45

0.14

0.09

0.01

0.09

0.25

0.36 0.09

0.01

0.01

0.09

0.250.02

Ve Ve Ve1 132 4 VeVe

Fig. 2. Graph G: A set of restrictions in Q–equivalent classes are listed in a column,
specified with boxes in which truth values are partially assigned. Distances for the
training examples are indicated at the bottom of boxes. Consistent restrictions that
satisfy condition to be combined are linked to each other. At the end of SPA algorithm,
the shortest path from the third box from the bottom in the leftmost column to the
rightmost column is given, as indicated with the bold links.

Shortest Path Algorithm(SPA). To find f∗ with the shortest distance E(f∗,

h) is to find sequence v∗1 , . . . , v∗s in V (G) such that
s∑

i=1

E(v∗i , h) is the lowest value

for all others. We prefer a quicker way without checking all possible combinations.

Applications of Fuzzy Logic Functions to Knowledge Discovery in Databases 119

Assume V ei, V ei+1 ∈ V (G) are in order so that edge {vi, vi+1} ∈ Ed(G) for
some vi ∈ V ei and vi+1 ∈ V ei+1. Figure 3 shows an algorithm for shortest path
algorithm that works with min–weight Wi.

For each v in V e1

Set W 1(v) = E(v, h)
Set P 1(v) = {v}

End for
For i = 2 to s

For each v in V ei

For each u in V ei−1 with {u, v} in Ed(G)
If W i(v) > W i−1(u) + E(v, h)

Set W i(v) = W i−1(u) + E(v, h)
Set u∗ = u

End for
Set P i(v) = P i−1(u∗) ∪ {v}

End for
End for

Fig. 3. Shortest Path Algorithm(SPA).

Example 11 We apply the shortest path algorithm to the graph G in Example
10 (in Table 2).

Table 2. Matrices W (G).

j\i 1

1 .49
2 .25
3 .09
4 .01
5 .01
6 .09

W 1(vij)

j\i 1 2

1 .49 .65
2 .25 .34
3 .09 .01
4 .01 .05
5 .01 .26
6 .09 .45
W 2(vij)

j\i 1 2 3

1 .49 .65 .21
2 .25 .34 .02
3 .09 .01 .09
4 .01 .05 1.02
5 .01 .26 1.24
6 .09 .45 1.9

W 3(vij)

j\i 1 2 3 4

1 .49 .65 .21 .35
2 .25 .34 .02 .11
3 .09 .01 .09 .03
4 .01 .05 1.02 .11
5 .01 .26 1.24 .34
6 .09 .45 1.9 2.26

W 4(vij)

Clearly the shortest path algorithm always stops, and the minimum weight
in final W s,

W ∗ = min
v∈V es

W s(v) = E(f∗, h)

is the intended distance to f∗ and P ∗ = P s(v∗) = {v∗1 , v2∗, . . . , v∗s} gives f∗,
that is, for any d ∈ D,

f∗(d) = v∗(d) for some v∗ ∈ P ∗.

120 Noboru Takagi, Hiroaki Kikuchi, and Masao Mukaidono

Example 12 Given W i and P i in Example 11, we have

W ∗ = min
v∈V e4

W 4(v) = W 4(v43) = 0.03,

P ∗ = {v14, v23, v32, v43}.

According to Theorem 5, we can reconstruct the logic formula representing f∗

as

f∗(x, y) = xy ∨ x ∨ x¬y ∨ ¬x¬yx¬xy ∨ x¬x¬y ∨ ¬xy¬y
= x ∨ ¬x¬y.

This is the answer f∗ and we have solved the data–mining problem. Note that
x ∨ ¬x¬y �= x ∨ ¬y in fuzzy logic.

3.5 Estimation of SPA

If we simply examine fuzzy logic functions one by one, using a brute–force al-
gorithm (BFA), it takes as much time as the number of n–variable fuzzy logic
functions |Fn| that is greater than the number of n–variable Boolean logic func-
tions |Bn| = 22n

. The time to execute BFA is thus O(22n

).
For simplifying the estimation, we assume D ∈ (V − V3)n. At the dividing

steps in Proposition 4, the permutation of n variables with two literals xi and
¬xi is involved and leads to the number of Q–equivalent classes |[D]|(= s) at
most 2nn!, which can be substituted by m, the number of training examples
because there are possibly some examples belonging to the common equivalent
class.

For each Q–equivalent class [d], there are 2(n+ 1) restrictions of fuzzy logic
functions. The number of vertices |V (G)| is thus less than or equal to 2(n+1)m.

The running time of the shortest path algorithm (SPA) is thus O(nm).
The comparison/replacement step inside the u–loop takes at most some fixed

amount of time. The step is done at most |V ei−1| = 2(n + 1) times in the
u–loop, which is done |V ei| = 2(n + 1) times for the v–loop, which is done
2(n+1)m−1 times for the outside i-loop. The total time to execute the algorithm
is (2(n + 1))2 · 2(n + 1)m = O(n2 + nm).

4 Classification Method Based on Fuzzy Logic Functions

This section will describe an application of fuzzy logic functions to classification
problems, i.e., a method for selecting a fuzzy logic function with a small number
of product terms that enables us to classify as many as possible data in a numer-
ical data set. This is one of the combinatorial problems with two objectives: to
maximize the number of correctly classified objects and to minimize the number
of product terms. Genetic algorithms will be applied to solve the problem.

Applications of Fuzzy Logic Functions to Knowledge Discovery in Databases 121

4.1 Preliminaries

A typical example of a data set this section is focusing on is the Iris data set of
Fisher. Table 3 shows some of examples of the Iris data set. In the data set, there
are four attributes (sepal length, sepal width, petal length and petal width) and
three classes (setosa, versicolor and virginica).

Table 3. Examples of Iris Plant Data Set.

x1 x2 x3 x4 Class

5.1 3.5 1.4 0.2 Setosa
4.9 3.0 1.4 0.2 Setosa
4.7 3.2 1.3 0.2 Setosa
7.0 3.2 4.7 1.4 Versicolor
6.4 3.2 4.5 1.5 Versicolor
6.9 3.1 4.9 1.5 Versicolor
6.3 3.3 6.0 2.5 Virginica
5.8 2.7 5.1 1.9 Virginica
7.1 3.0 5.9 2.1 Virginica

x1: sepal length in cm x3: petal length in cm
x2: sepal width in cm x4: petal width in cm

Some assumptions on (numerical) data sets will be described below. A data
set is assumed to have n attributes, x1, x2, . . . , xn say; and m objects (patterns or
training examples), x1 = (x1

1, . . . , x
1
n), . . . ,xm = (xm

1 , . . . , xm
n). For every object

xi = (xi
1, . . . , x

i
n), all elements xi

j (j = 1, . . . , n) are assumed to be elements of
the closed interval [0, 1], i.e., xi is an element of [0, 1]n. So, the pattern space
is defined by [0, 1]n. Furthermore, each object xi is assumed to belong to one
of p classes: Class 1, Class 2, . . . , Class p. That is, the classification of each
object is known as one of the p classes. Let Ω be a set of all objects (i.e., Ω is a
finite subset of [0, 1]n), then every data set can be expressed by an incompletely
specified function F from Ω into the set of classes {1, 2, . . . , p}. This enables us
to express a data set by the following p distinct incompletely specified functions
Fi (i = 1, 2, . . . , p):

Fi(x1, . . . , xn) =
{

1 if (x1, . . . , xn) is Class i
0 otherwise,

where (x1, . . . , xn) is an element of Ω.
Next, a classification method based on fuzzy logic functions will be briefly

described. Let us assume that each axis of the pattern space [0, 1]n is partitioned
into k fuzzy subsets {A1, A2, . . . , Ak}, where Aj is the j–th fuzzy subset. Any
type of membership function (e.g., triangular, trapezoid, or exponential) can be
employed to characterize the fuzzy subsets Aj ’s. For the sake of simplicity, this
section will employ the following symmetric triangular membership functions:

122 Noboru Takagi, Hiroaki Kikuchi, and Masao Mukaidono

For all x ∈ [0, 1],

μj(x) = max
(

1− (k − 1) ·
∣∣∣∣x− j − 1

k − 1

∣∣∣∣, 0
)

(j = 1, 2, . . . , k). (2)

Now, let us introduce fuzzy logic functions based on the fuzzy partition. Let A0

be a special type of fuzzy subset whose membership function μ0 is characterized
by the constant function 1, i.e., μ0(x) = 1 for all x ∈ [0, 1]. Then, a fuzzy logic
function f based on the fuzzy partition {A1, A2, . . . , Ak} (or simply, a fuzzy logic
function f) is defined by the following sum–of–product form:

f = α1 ∨ α2 ∨ · · · ∨ αm,

αt = x
A1

t
1 x

A2
t

2 · · ·xAn
t

n ,
(3)

where αt (t = 1, 2, . . . ,m) is a product term; Ai
t (i = 1, . . . , n) is one of the

fuzzy subsets A0, A1, . . . , Ak; and x
Ai

t
i stands for its membership function (i.e.,

x
Ai

t

i = μj(xi) when Ai
t is equal to Aj). The logical operations ∨ and ∧ follow Eq.

(1) in Section 2.
Note that if a product term α contains a literal 1 xA0

i , then the attribute xi

has no effect on the product term α, i.e., the attribute xi is independent from
the product term α.

The aim of this section is to select a fuzzy logic function that is able to
classify as many as possible objects in a data set. In this section we will try
to solve the problem by finding p fuzzy logic functions of the form of Eq. (3)
that are approximately expressing the p incompletely specified functions Fi (i =
1, 2, . . . , p), respectively. A classification system based on fuzzy logic functions is
a collection of such p fuzzy logic functions. It is worth to notice that the number
of product terms of a selected fuzzy logic function should be as small as possible
because a fuzzy logic function with a small number of product terms gives us a
compact classification system. So, the problem of this section can be formalized
as the following combinatorial optimization problem with two objectives:

Problem A: For each i = 1, 2, . . . , p, minimize

error(fi) =
∑

(x1,...,xn)∈Ω

(Fi(x1, . . . , xn)− fi(x1, . . . , xn))2

and minimize NP(fi), subject to fi ∈ Fall

In Problem A, NP(fi) denotes the number of product terms existing in a fuzzy
logic function fi; and Fall is a set of all fuzzy logic functions in the form of
Eq. (3).

1 Ordinarily, any positive variable xi and its negation ¬xi are called literals. However,

in this section, literals stand for the membership functions x
Aj

i

(i = 1, . . . , n and j = 0, 1, . . . , k).

Applications of Fuzzy Logic Functions to Knowledge Discovery in Databases 123

4.2 An Application of Genetic Algorithm

A genetic algorithm will be applied to solve Problem A. First, this section will
present a fitness function of the genetic algorithm and a way for encoding fuzzy
logic functions into binary sequences. Then, its operations such as crossover,
etc., will be shown.

Fitness Function and Coding. Because Problem A has two objectives, it is
difficult to apply a genetic algorithm to the problem. So, Problem A is modified
into the following problem with one objective by introducing a positive weight
w.

Problem B: For each i = 1, 2, . . . , p, minimize

fitness(fi) = error(fi) + w ·NP(fi), (4)

subject to fi ∈ Fall.

Since the high classification rate of a classification system is more required than
its size, the weight w in Problem B should be set in order to satisfy the inequality
e(fi) � w · NP(fi). We employ Eq. (4) as a fitness function of the genetic
algorithm described below.

In the genetic algorithm, every fuzzy logic function in the form of Eq. (3) will
be an individual from a population, and no individual beside that form exists.
So, any sum–of–product form Eq. (3) will be directly represented by a binary
sequence (a sequence, for short).

First, a way for representing a literal xA by a sequence will be demonstrated.
Given a set of fuzzy subsets {A0, A1, . . . , Ak}, a literal xAi is encoded into the
binary number corresponding to the subscript i of its fuzzy subset Ai. Table 4
shows the sequences of the literals xAi when i = 0, 1, . . . , 5. Note that, in this
case, the two sequences “110” and “111” are not permitted as codes of literals.

Table 4. Binary Codes for Literals xA0 , . . . , xA5 .

Fuzzy Subset A Literal xA

A0 000
A1 001
A2 010
A3 011
A4 100
A5 101
– 110
– 111

Since a product term α has n distinct literals, its sequence can be defined
by a collection of the sequences of the n literals. Furthermore, since a sum–of–
product form Eq. (3) is a ∨–ing of some product terms, its sequence can also be
defined by a collection of the sequences corresponding to the product terms.

124 Noboru Takagi, Hiroaki Kikuchi, and Masao Mukaidono

Example 13 Consider the following fuzzy logic function in the form of Eq. (3).

f = xA1
1 xA3

2 xA0
3 ∨ xA2

1 xA0
2 xA5

3 ,

where it is assumed that n = 3 and k = 5. Then, f can be encoded as follows.

001 011 000 - 010 000 101

The 9–bit sequence of the left half represents the first product term
xA1

1 xA3
2 xA0

3 ,
and the right half is corresponding to the second one.

Operations of Genetic Algorithm. The following genetic operations are
employed to generate and handle a set of sequences (i.e., a population) in our
genetic algorithm.

(1) Initialization: Generate an initial population with an appropriate number of
sequences (i.e., fuzzy logic functions in the form of Eq. (3)). Let Np be the
number of sequences in the initial population. Np may be an even.

(2) Selection: Select Np/2 pairs of sequences from the current population. A
roulette selection strategy is employed, i.e., a sequence si (i = 1, 2, . . . , Np)
is selected by the following selection probability Ps:

Ps(si) = fitness(si)/
Np∑
j=1

fitness(sj).

(3) Crossover: Perform a one–point crossover operation on each of the selected
Np/2 pairs of sequences with a crossover probability Pc. Note that every
crossover point has to appear between two of neighbor literals in order to
avoid producing a sequence that is not permitted as a code of a literal.

(4) Mutation: Perform the following two types of mutations.
(A) For each literal, replace it with a literal randomly produced with a mu-

tation probability Pm.
(B) For each sequence, remove one of its product terms randomly selected

with a mutation probability Pd. If no product term is removed, add a
new product term randomly generated with a mutation probability Pa.

(5) Elite Strategy: Add the best sequence with the minimum fitness in the pre-
vious population to the current one. Then, remove the worst sequence from
the current population.

(6) Termination: If a terminal condition is not satisfied, go to Step (2), stop the
algorithm otherwise. If the algorithm meet the total number of generations
Ng, then stop the algorithm.

4.3 Experiment

This section will describe the performance evaluation of classification systems
based on fuzzy logic functions. The UCI (University of California at Irvine)–
Machine–Learning Database will be applied in this evaluation, and we will show
a comparison with some of other methods for classifying numerical data sets.

Applications of Fuzzy Logic Functions to Knowledge Discovery in Databases 125

Data Sets, Evaluation Methods and Other Classification Systems. Five
data sets of UCI–Machine–Learning Database are employed to evaluate the per-
formance of classification systems based on fuzzy logic functions. Table 5 shows
the number of objects, attributes and classes of the five data sets.

Table 5. Five Data Sets of UCI-Machine-Learning Database.

Data Set Iris Wine Glass Survival Bupa

Objects 150 178 214 306 345
Attributes 4 13 9 3 6

Classes 3 3 6 2 2

For estimating classification rate, this section considers the following three
methods[16]:

(1) Hold–Out (HO): Leaning and testing on the whole data set.
(2) Leave–One–Out (L1O): Learning on the whole data set except the last, and

testing the last. This procedure repeats until the number of permutations of
objects.

(3) Two–Fold–Cross–Validation (2F): Dividing the data set at randomly into
two parts, then learning on each part and testing on the other part.

Many classification methods were studied to classify numerical data sets. For
comparing the performance of the method based on fuzzy logic functions with
other methods, the following 8 methods are selected:

(1) Bayes Independent (Bayse)[15]
(2) Back Propagation Neural Network (BP)[13]
(3) Crisp k–Nearest Neighbor (CkNN)[1]
(4) Fuzzy k–Nearest Neighbor (FkNN)[9]
(5) Fuzzy Rules (FRule)[18]
(6) Fuzzy ID3 (FID3)[17]
(7) Fuzzy c–Means (FcM)[8]
(8) Hierarchical Fuzzy c–Means (HFcM)[16]

Note that in the rest of this section, the classification method based on fuzzy
logic functions will be often referred as “FLogic”.

Experimental Results. The genetic algorithm described in Section 4.2 was
performed on the five data sets in Table 5. Its parameters were set to the following
values, respectively, and the fuzzy subsets when k = 5 were applied.

of Sequences: Np = 20
Crossover Probability: Pc = 0.8
Mutation Probabilities: Pm = 0.05

Pd = 0.05
Pa = 0.05

Total # of Generations: Ng = 50000

126 Noboru Takagi, Hiroaki Kikuchi, and Masao Mukaidono

The classification rates for FLogic are shown in Table 6 together with the other
methods from Bayes to HFcM. Since HFcM can correctly classify all of the
objects from a learning data set, its HO evaluation is ignored. FRule is space
consuming because it has to produce all of fuzzy if–then rules, whose number is
increasing exponentially with the number of attributes. So, some of its results
could not be shown.

The following collection of three formulas is one of the results of FLogic when
the Iris data set was applied to the genetic algorithm:

fsetosa = xA1
3 ∨ xA1

4 ∨ xA2
1 xA4

2 ,

fversicolor = xA3
3 ∨ xA3

4 ,

fvirginica = xA4
4 ∨ xA5

4 ,

where all of the literals with the fuzzy subset A0 are omitted because they are
the constant function 1. Here, this result can be replaced with the following fuzzy
if–then rules.

If x3 is A1 then Class is Setosa
If x4 is A1 then Class is Setosa
If x1 is A2 and x2 is A4 then Class is Setosa
If x3 is A3 then Class is Versicolor
If x4 is A3 then Class is Versicolor
If x4 is A4 then Class is Virginica
If x4 is A5 then Class is Virginica

There are three methods that can produce fuzzy if–then rules; FRule, FID3
and FLogic. In Table 6, every number in parentheses indicates the number of
fuzzy if–then rules. It is worth to notice that since FLogic, FRule and FID3 can
be represented by a collection of fuzzy if–then rules, these methods are quite
successful in extracting underlying structural information from a given data,
which is useful in comprehending why and how phenomena occur.

By the results of Table 6, we can conclude that

(1) the classification rates of FLogic are not extremely high in comparing with
the other classification methods. But, they are on the average or above it.
Furthermore, FLogic is independent from evaluation methods such as HO,
L1O and 2F, which means that FLogic can classify unknown objects as well
as known objects.

(2) Bayes, FcM and HFcM do not correctly classify unknown objects because
their classification rates are very low for L1O or 2F.

(3) for BP, CkNN and FkNN, many of their classification rates are more or less
better than the rates of the other methods.

(4) for FID3, the number of fuzzy if–then rules depends on a terminal parameter.
In this experiment, FID3 has made a large number of fuzzy if–then rules.
FLogic and FRule, however, can produce a compact classification system
(i.e., a system with a small number of fuzzy if–then rules).

(5) since FRule is space consuming, it did not work on three out of the five data
sets.

Applications of Fuzzy Logic Functions to Knowledge Discovery in Databases 127

Table 6. Classification Rates: This table shows the classification rates of test examples
that can be correctly classified. FLogic stands for the method based on fuzzy logic
functions discussed.

Methods Evaluation Iris Wine Glass Survival Bupa

HO 0.95 0.99 0.68 0.77 0.66
Bayes L1O 0.91 0.92 0.55 0.74 0.60

2F 0.87 0.74 0.43 0.68 0.57

HO 0.99 1.00 0.83 0.72 0.74
BP L1O 0.94 0.98 0.64 0.50 0.63

2F 0.95 0.98 0.57 0.64 0.64

HO 0.96 0.98 0.82 0.78 0.79
CkNN L1O 0.95 0.96 0.61 0.71 0.61

2F 0.93 0.99 0.61 0.71 0.60

HO 0.95 0.96 0.71 0.69 0.63
FkNN L1O 0.92 0.95 0.70 0.57 0.61

2F 0.92 0.99 0.61 0.69 0.60

HO 0.97(5) over space over space 0.81(18) over space
FRule L1O 0.93(8) over space over space 0.75(18) over space

2F 0.89(10) over space over space 0.71(16) over space

HO 0.95(19) 0.94(223) 0.83(628) 0.79(21) 0.73(321)
ID3 L1O 0.95(18) 0.91(219) 0.65(430) 0.73(21) 0.61(318)

2F 0.96(16) 0.92(107) 0.59(269) 0.74(21) 0.62(254)

HO 0.91 0.69 0.49 0.51 0.49
FcM L1O 0.92 0.64 0.37 0.42 0.49

2F 0.89 0.67 0.46 0.49 0.48

HO – – – – –
HFcM L1O 1.00 0.78 0.68 0.63 0.61

2F 0.96 0.74 0.68 0.65 0.58

HO 0.95(7) 0.90(9) 0.74(24) 0.76(21) 0.70(16)
FLogic L1O 0.94(7) 0.91(9) 0.67(23) 0.72(19) 0.62(16)

2F 0.94(6) 0.89(7) 0.74(21) 0.73(18) 0.61(16)

5 Conclusion

We have proposed a new method toward knowledge discovery with logic formulas
and we have applied fuzzy logic functions to the classification problem.

We have proved that the division of the uncertain knowledge into some Q–
equivalent classes is sufficient to calculate all possible local distances in Theorem
6, and we have shown some useful properties with respect to restrictions of fuzzy
logic functions. The proposed algorithm finds the fuzzy logic function with the
shortest distance to a given training examples in O(n2 + nm) time.

The experimental result shows that fuzzy logic functions gives results as accu-
rate as some existing classification methods including Bayes, back–propagation,
fuzzy k–nearest neighbor, fuzzy ID3, and fuzzy c–Means and its variation.

The acquired knowledge in our proposed method is a logic formula which
gives human–readable representation of target knowledge.

128 Noboru Takagi, Hiroaki Kikuchi, and Masao Mukaidono

References

1. T. M. Cover, P. E. Hart. Nearest neighbor pattern classification. IEEE Trans.
Information Theory IT–13, 1967, pp. 21–27.

2. R. C. T. Lee, C. L. Kang.Some properties of fuzzy logic.Information and Control,
19, 1971, pp. 417–431.

3. A. Kandel.On minimization of fuzzy functions.IEEE Trans. Computers 22, 1973,
pp. 826–832.

4. M. Mukaidono.On some properties of fuzzy logic. IECE Trans.58, 1975, pp. 150–
157 (in Japanese).

5. M. Mukaidono.An algebraic structure of fuzzy logic functions and its minimal and
irredundant form.IECE Trans. 58, 1975, pp. 748–755 (in Japanese).

6. M. Mukaidono. A necessary and sufficient condition for fuzzy logic functions, in:
Proceedings IEEE 9th International Symposium on Multiple–valued Logic, 1979,
pp. 159–166.

7. A. Kandel, J. M. Francioni. On the properties and applications of fuzzy–valued
switching functions.IEEE Trans. Computers 29: 11, 1980, pp. 986–994.

8. J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum Press, 1981.

9. J. M. Keller, M. R. Gray, and J. A. Givens Jr.A fuzzy k–nearest neighbor algorithm.
IEEE Trans. Systems, Man, and Cybernetics SMC–15: 4, 1985, pp. 580–585.

10. Liu Cu Hua.Minimization of fuzzy logic formula, in: Proceedings IEEE 15th Inter-
national Symposium on Multiple–Valued Logic, 1985, pp. 182–189.

11. M. Mukaidono.The representation and minimization of fuzzy switching functions.
The Analysis of Fuzzy Information.CRC Press, 1987, pp. 213–229.

12. K. A. Ross, C. R. B. Wright.Discrete Mathematics.Prentice-Hall, 1988.
13. D. E. Rumelhart et al. (eds.).Parallel Distributed Processing.The MIT Press, 1989.
14. H. Kikuchi.Necessary and sufficient conditions for restrictions to be fuzzy switch-

ing functions, in: Proceedings of the International Fuzzy Engineering Symposium1,
1991, pp. 91–102.

15. S. M. Weiss, C. A. Kulikowski.Computer Systems That Learn.Morgan Kaufmann
Publishers,1991, pp. 51–79.

16. M. Grabisch, F. Dispot. A comparison of some methods of fuzzy classification on
real data, in: Proceedings of the 2nd International Conference on Fuzzy Logic and
Neural Networks, 1992, pp. 659–662.

17. M. Umano, H. Okamoto, I. Hatono, and H. Tamura. Fuzzy decision trees by fuzzy
ID3 Algorithm and its application to diagnosis systems, in: Proceedings of the 3rd
IEEE International Conference on Fuzzy Systems, 1994, pp. 2113–2118.

18. H. Ishibuchi, K. Nozaki, and H. Tanaka. Selecting fuzzy if–then rules for classifi-
cation problems using genetic algorithms. IEEE Trans. Fuzzy systems 3: 3, 1995,
pp. 260–270.

19. U. M. Fayyad et al. (eds.). Advances in Knowledge Discovery and Data Mining.
AAAI Press/The MIT Press, 1996.

Fuzzy Integral Based Fuzzy Switching Functions

Eiichiro Takahagi

Senshu University, Kawasaki Kanagawa 214-8580, Japan

Abstract. This paper shows many relations among fuzzy switching
functions and fuzzy integrals. First, we show that monotone fuzzy switch-
ing functions with constants are extended Sugeno integrals and fuzzy
switching functions are Sugeno integrals whose inputs are double in-
puts, that is, true and false inputs. Next, we propose a Choquet integral
based fuzzy binary switching function, which is calculated by a Cho-
quet integral of double inputs and which uses adjusted fuzzy measure of
complementary sets. The functions satisfy the complementary law and
monotonicity under the monotonicity on binary inputs. Finally, we pro-
pose a logical Choquet integral and we discuss its properties.

1 Introduction

Fuzzy switching functions are used in many “fuzzy” fields, such as fuzzy in-
ference, fuzzy control and so on. The fuzzy switching functions are not always
monotone with respect to inputs in [0, 1] even if it is monotone with respect to
binary inputs. To decrease the effect, many researchers divide the input fields
and make many fuzzy rules such as “If input 1 is negative small and input 2 is
positive big then output is small”.

In this paper, we propose a Choquet integral based fuzzy binary switching
functions which satisfy the complementary law and are monotone under mono-
tonicity on binary inputs.

Fuzzy switching functions and fuzzy integrals have many close relations.
Marichal[1] pointed out that the Sugeno integral is a weighted max-min func-
tion and established mathematical properties of Sugeno integrals. Takahagi and
Araki[2] discussed the relation among fuzzy switching functions with constants
and Sugeno integrals and pointed out that they are transferable each other. In
[3], Takahagi tried to use the Choquet integral instead of the Sugeno integral and
proposed a primitive Choquet integral based fuzzy binary switching functions
in [4].

2 Notations

2.1 Fuzzy Switching Function with Constants

Fuzzy switching functions with constraints (fuzzy/C, for short) are fuzzy switch-
ing functions that have constants, like,

f(x1, x2) = (0.6 ∧ x1 ∧ ¬x2) ∨ (0.8 ∧ x2) ∨ 0.1. (1)

J.F. Peters et al. (Eds.): Transactions on Rough Sets II, LNCS 3135, pp. 129–150, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

130 Eiichiro Takahagi

In equation (1), 0.7 , 0.5 and 0.1 are constants. In conventional fuzzy theories,
that is max-min calculations, min operator is assigned to ∧, max to ∨ and 1−xi

to ¬xi. When we use those max-min calculations, we put superscript M . For
example, when we calculate the value of equation (1) by max-min calculation:

fM (x1, x2) = max[min(0.6, x1, 1− x2),min(0.8, x2), 0.1]. (2)

Monotonicity of fuzzy/C is defined as,

x1
1 ≥ x2

1, . . . , x
1
n ≥ x2

n → fM (x1
1, . . . , x

1
n) ≥ fM (x2

1, . . . , x
2
n). (3)

2.2 Fuzzy Measures and Fuzzy Integrals

Let n be the number of inputs to a fuzzy integral, X = {1, . . . , n} be the set of
inputs and 2X be the set of all subsets of the X . Normally, a fuzzy measure μ is
defined as,

μ : 2X → [0, 1], (4)

μ(∅) = 0, (5)

μ(X) = 1, (6)

A ⊆ B ⊆ X → μ(A) ≤ μ(B). (7)

Equation (5) is called “zero constraint of fuzzy measure”, equation (6) is
called “normality of fuzzy measure” and equation (7) is called “monotonicity of
fuzzy measure”. However, in this paper, we do not assume normality of fuzzy
measure and in following sections, we relax the other conditions.

Let h(i), i = 1, . . . , n be inputs to fuzzy integrals. The Sugeno integral is
defined as,

(S)
∫

hdμ ≡ max
r∈[0,1]

min[r, μ({x | h(x) > r})], (8)

and the Choquet integral is defined as,

(C)
∫

hdμ ≡
∫ ∞

0

μ({x | h(x) > r})dr. (9)

In this paper, xi, xT
i and xF

i are used to represent inputs of fuzzy/Cs while
h(i), h(iT) and h(iF) are used to represent inputs of fuzzy integrals.

3 Sugeno Integral Representations of Fuzzy/Cs

Fig. 1 is the outline of §3.1 and §3.2. Monotone fuzzy/Cs and Sugeno Integrals
are transferable each others.

Fuzzy Integral Based Fuzzy Switching Functions 131

Sugeno Integral

Inputs:

Output

Fuzzy Measure

ex)

Binary Inputs
Max-Min Calculations

Monotone Fuzzy/C

ex)

x1

x2

h(1)

h(2)

x1, x2 ∈ [0, 1]

= fM (x1, x2)
μ

μ : 2{1,2} → [0, 1]

μ({2}) = fM (0, 1) = 0.3
μ({1, 2}) = fM (1, 1) = 0.8

xi = 1 or xi = 0, ∀i

f(x1, x2) = (0.8 ∧ x1) ∨ (0.3 ∧ x2) ∨ 0.2

Fig. 1. Monotone Fuzzy/C to Sugeno Integral (2 Inputs Case).

3.1 Monotone and Zero Output Fuzzy/C

Weighted max-min function is defined as:

fW (x1, . . . , xn) =
∨

T⊆X

[aT ∧ (
∧
i∈T

xi)]. (10)

Marichal[1] pointed out that a Sugeno integrals is a weighted max-min function,
where xi = h(i), i = 1, . . . , n and aT = μ(T).

A monotone fuzzy/C is defined as a fuzzy/C satisfying the monotonicity, i.e.,
equation (3). A zero output fuzzy/C is defined as a fuzzy/C satisfying,

fM (0, . . . , 0) = 0. (11)

As a monotone and zero output Fuzzy/C is represented as a weighted max-min
function, it is represented as a Sugeno integral.

Takahagi and Araki[2] point out that any monotone and zero output fuzzy/C
and the Sugeno integral are transferable each other. Fuzzy measure μ is assigned
from binary inputs of the fuzzy/C,

μ(A) = fM (x1, . . . , xn) , ∀A ∈ (2X \ ∅) (12)
xi = 1 if i ∈ A

xi = 0 if i /∈ A

μ(∅) = 0 .

By monotonicity of fM , the fuzzy measure μ defined by (12) is also monotone.
Using this fuzzy measure μ, the monotone and zero output fuzzy/C is represented
as a Sugeno integral,

fM (x1, . . . , xn) = (S)
∫

hdμ where h(1) = x1, . . . , h(n) = xn (13)

xi ∈ [0, 1], i = 1, . . . , n.

132 Eiichiro Takahagi

3.2 Monotone Fuzzy/C

A monotone fuzzy/C fM is also represented as,

fM (x1, . . . , xn) = (S)
∫

hdμ ∨ C where h(1) = x1, . . . , h(n) = xn, (14)

where xi ∈ [0, 1], i = 1, . . . , n and C = f(0, . . . , 0). In this representation, the
constant C is outside of the Sugeno integral. To take the C inside of the Sugeno
integral, we relax the definition of fuzzy measure by replacing zero constraint
requirement (equation (5)) with,

μ(∅) ∈ [0, 1]. (15)

The assignment of fuzzy measure values from a fuzzy/C is as follows,

μ(A) = fM (x1, . . . , xn) , ∀A ∈ 2X (16)
xi = 1 if i ∈ A

xi = 0 if i /∈ A

In the definition of Sugeno integral(equation (8)), the constraint μ(∅) = 0 is not
necessary. Hence, we apply the equation (15) and the function is called extended
Sugeno integral,

(ES)
∫

hdμ ≡ max
r∈[0,1]

min[r, μ({x | h(x) > r})]. (17)

A monotone fuzzy/C is represented as an extended Sugeno integral,

fM (x1, . . . , xn) = (ES)
∫

hdμ where h(1) = x1, . . . , h(n) = xn (18)

xi ∈ [0, 1], i = 1, . . . , n.

3.3 Numerical Example of Monotone Fuzzy/Cs

We transfer a monotone fuzzy/C (19) to an extended Sugeno integral represen-
tation.

f(x1, x2) = (0.8 ∧ x1) ∨ (0.3 ∧ x2) ∨ 0.2 (19)

From equation (16),

μ(∅) = f(0, 0) = 0.2, μ({1}) = f(1, 0) = 0.8,
μ({2}) = f(0, 1) = 0.3, μ({1, 2}) = f(1, 1) = 0.8.

Hence, ∀x1, x2 ∈ [0, 1],

fM (x1, x2) = (ES)
∫

hdμ, where h(1) = x1, h(2) = x2. (20)

Fuzzy Integral Based Fuzzy Switching Functions 133

3.4 Fuzzy/C

As Sugeno integrals are monotone functions and fuzzy/Cs include non-monotone
functions, non-monotone fuzzy/Cs can not be represented as Sugeno integrals in
the above way. Therefore, we propose the double input model which divide one
input to true and false inputs, such as “two wire system”. Fig. 2 outlines this
process.

Sugeno Integral

Inputs:

Output

Fuzzy Measure

ex)

Binary Inputs

Max-Min Calculations

Double Input Fuzzy/C
ex)

ex)

Fuzzy/C

x1

x1

x2

x2

h∗(1T)

h∗(1F)

h∗(2T)

h∗(2F)

μ∗
1− x1

1− x2

= fM (x1, x2)

x1, x2 ∈ [0, 1]

μ∗ : 2{1
T ,2T ,1F ,2F } → [0, 1]

μ∗({1T , 2T , 1F})
= f∗M

(1, 1, 1, 0) = 0.8

xT
i = 1 or xT

i = 0, ∀i
xF

i = 1 or xF
i = 0, ∀i

f∗(xT
1 , x

T
2 , x

F
1 , x

F
2) = (0.6 ∧ xT

1 ∧ xF
2) ∨ (0.8 ∧ xT

2) ∨ 0.1

xi → xT
i

¬xi → xF
i

f(x1, x2) = (0.6 ∧ x1 ∧ ¬x2) ∨ (0.8 ∧ x2) ∨ 0.1

Fig. 2. Outline of Fuzzy/Cs to Sugeno Integral (2 Inputs Case).

In this model, we distinguish positive variables (xi) and negative variables
(¬xi) and replace xi by xT

i and ¬xi by xF
i . Let f∗ be the replaced formula and

is called a double input fuzzy/C.
For example, f∗ of equation (1) is:

f∗(xT
1 , x

T
2 , x

F
1 , x

F
2) = (0.6 ∧ xT

1 ∧ xF
2) ∨ (0.8 ∧ xT

2) ∨ 0.1. (21)

In this representation, we deal with xT
i and xF

i as different variables:

f∗ : [0, 1]2n → [0, 1]. (22)

As f∗ is a monotone function and from §3.2, f∗ is represented as an extended
Sugeno integral in,

X∗ = {1T , . . . , nT , 1F , . . . , nF }, (23)

134 Eiichiro Takahagi

h∗ : X∗ → [0, 1], (24)
h(iT) = xT

i = xi, (25)
h(iF) = xF

i = 1− xi. (26)

Fuzzy measure μ∗ is assigned from f∗:

μ∗(A) = f∗M (xT
1 , . . . , x

T
n , x

F
1 , . . . , x

F
n), ∀A ∈ 2X∗

(27)
xT

i = 1 if iT ∈ A

xT
i = 0 if iT /∈ A

xF
i = 1 if iF ∈ A

xF
i = 0 if iF /∈ A.

Then, any fuzzy/C is represented as an extended Sugeno integral,

fM (x1, . . . , xn) = (ES)
∫

h∗dμ∗ where h∗(iT) = xi, h
∗(iF) = 1− xi, (28)

xi ∈ [0, 1], i = 1, . . . , n.

3.5 Numerical Example of Fuzzy/Cs

Equation (1) is a non-monotone fuzzy/C and f∗ of equation (1) is equation
(21). n = 2 and X∗ = {1T , 2T , 1F , 2F}. From equation (27), we get μ∗ shown in
Table 1.

Table 1. μ∗ of equation (21).

μ∗(∅) = f∗M (0, 0, 0, 0) = 0.1, μ∗({1T }) = f∗M (1, 0, 0, 0) = 0.1,

μ∗({2T }) = f∗M (0, 1, 0, 0) = 0.8, μ∗({1F }) = f∗M (0, 0, 1, 0) = 0.1,

μ∗({2F }) = f∗M (0, 0, 1, 0) = 0.1, μ∗({1F , 2F }) = f∗M (0, 0, 1, 1) = 0.1,

μ∗({1T , 2T }) = f∗M (1, 1, 0, 0) = 0.8, μ∗({1T , 1F }) = f∗M (1, 0, 1, 0) = 0.1,

μ∗({1T , 2F }) = f∗M (1, 0, 0, 1) = 0.6, μ∗({1T , 2T , 1F }) = f∗M (1, 1, 1, 0) = 0.8,

μ∗({2T , 2F }) = f∗M (0, 1, 0, 1) = 0.8, μ∗({1T , 1F , 2F }) = f∗M (1, 1, 1, 0) = 0.6,

μ∗({2T , 1F }) = f∗M (0, 1, 1, 0) = 0.8, μ∗({1T , 2T , 2F }) = f∗M (1, 1, 1, 0) = 0.8,

μ∗(X∗) = f∗M (1, 1, 1, 1) = 0.8, μ∗({2T , 1F , 2F }) = f∗M (1, 1, 1, 0) = 0.8,

For example, fM (0.8, 0.4) = max[min(0.6, 0.8, 0.6),min(0.8, 0.4), 0.1] = 0.6.
As h∗(1T) = 0.8, h∗(2T) = 0.4, h∗(1F) = 0.2, h∗(2F) = 0.6, the extended Sugeno
integrated value is:

(ES)
∫

h∗dμ∗

=max[min(1.0, μ(∅)),min(0.8, μ({1T})),min(0.6, μ({1T , 2F }),
min(0.4, μ({1T , 2T , 2F }),min(0.2, μ(X∗)]

=max[min(1, 0.1),min(0.8, 0.1),min(0.6, 0.6),min(0.4, 0.8),min(0.2, 0.8)]
=0.6.

Fuzzy Integral Based Fuzzy Switching Functions 135

Table 2 is the conclusion of this section.

Table 2. Fuzzy/Cs and Sugeno integrals.

Fuzzy/Cs Fuzzy measures

Monotone Fuzzy/C, fM (0, . . . , 0)=0 ⇐⇒ μ : 2X → [0, 1], μ(∅) = 0

Monotone Fuzzy/C ⇐⇒ μ : 2X → [0, 1], μ(∅) ∈ [0, 1]

Fuzzy/C ⇒ μ∗ : 2X∗ → [0, 1], μ∗(∅) ∈ [0, 1]

4 Choquet Integral Based Fuzzy Binary
Switching Functions

Fuzzy/Cs do not satisfy the monotonicity even if they are monotone with respect
to binary inputs. For example,

f(x1) = (1.0 ∧ x1) ∨ (0.6 ∧ ¬x1) (29)

satisfies the monotonicity with respect to binary inputs, that is fM (1) ≥ fM (0).
However, fM (x1), x1 ∈ [0, 1] is not a monotone fuzzy/C. Fig. 3 shows that
fM (x1) decrease at 0.4 < x1 < 0.5.

0 1

0.6

0.8

1

Not Increasing

Expected Output

x1

f M(x1)

Fig. 3. Output of fM (x1) = 1.0 ∧ x1 ∨ 0.6 ∧ ¬x1.

We think, equation (29) means that “output is 0.6 at x1 = 0 , output is 1.0
at x1 = 1 and outputs at other x1 ∈ (0, 1) are interpolated”. If we stand on this
statement, then outputs of f(x1) are the dotted line of Fig. 3. Choquet integral
based Fuzzy Binary switching functions (CFB functions for short) output the
dotted line which is monotone with respect to x1. Generally, CFB functions
satisfy the monotonicity if they are monotone with respect to binary inputs.

In this section, we propose the calculation methods of CFB functions and
show the properties of the functions. Fig. 4 outlines the calculation process of a
CFB function.

136 Eiichiro Takahagi

Choquet Integral

Inputs:

Output

Fuzzy Measure

Complementary sets
which include basic sets

ex)

Basic Sets

ex)

Sum of 2 basic setsGeneralized Averaging
 Arithmetic mean
 TF type

the others

Binary Inputs

Fuzzy/C

ex)

x1

x1

x2

x2

h∗(1T)

h∗(1F)

h∗(2T)

h∗(2F)

1− x1

1− x2

x1, x2 ∈ [0, 1]

g

g : 2{1
T ,2T ,1F ,2F } → [0, 2]

D

g({1T , 1F , 2F})
= g({1T , 2F }) + g({1F , 2F }) = 0.7

B

g({1T , 2F}) = fM (1, 0) = 0.6

g({1F , 2F}) = fM (0, 0) = 0.1

g(A) = 0

xi = 1 or xi = 0, ∀i

f(x1, x2) = (0.6 ∧ x1 ∧ ¬x2) ∨ (0.8 ∧ x2) ∨ 0.1

Fig. 4. Outline Process of CFB Functions (2 Inputs Case).

4.1 Definitions of CFB Functions

CFB functions are calculated by Choquet integrals having double inputs,

X∗ = {1T , . . . , nT , 1F , . . . , nF }, (30)

h∗ : X∗ → [0, 1]. (31)

Each input has true input iT and false input iF ; iT is called iF ’s complementary
element, and, dually, iF is called iT ’s complementary element. The pair (iT , iF)
is called complementary pair. When a set A includes a complementary pair, A
is called complementary set. C is defined as the set of all complementary sets,

C ≡ {A | ∃j, jT ∈ A, jF ∈ A,A ⊆ X∗}. (32)

N is defined as the set of all non-complementary sets,

N ≡ 2X∗ \ C. (33)

Basic set B is defined as the set which includes all number’s elements and only
one element for each number. An example of basic set is {1T , 2F , 3F , 4F , 5T , 6T},
n = 6. B is the set of all basic sets of X∗,

B ≡ {B | B ∈ N, | B |= n,B ⊆ X∗}. (34)

D is defined as the set of complementary sets which include basic sets,

D ≡ {D | D ∈ C, ∃B ∈ B, D ⊃ B,D ⊆ X∗}. (35)

Fuzzy Integral Based Fuzzy Switching Functions 137

4.2 Fuzzy Measure Assignment

Fuzzy measure’s range of CFB functions is the interval [0, 2],

g : 2X∗ → [0, 2]. (36)

Fuzzy measure values of non-complementary and non-basic sets are 0,

g(A) = 0, ∀A ∈ (N \B). (37)

Fuzzy measure values of complementary sets which do not include basic sets are
also 0,

g(A) = 0, ∀A ∈ (C \D). (38)

Fuzzy measure values of basic sets are assigned from fuzzy/C’s output values
with respect to binary inputs:

g(B) = fM (x1, . . . , xn) (39)
xi = 1 if iT ∈ B

xi = 0 if iF ∈ B,

∀B ∈ B.

Fuzzy measure values of D ∈ D is defined as the sum of two fuzzy measure
values of basic sets which cover the D, that is, D = B1 ∪ B2, B1, B2 ∈ B,
g(D) = g(B1) + g(B2). The pair (B1, B2) is called a partition pattern. If D
includes at least two complementary element pairs, then the partition patterns
to the basic sets are at least two. In this case, g(D) is the averaging value of all
partition patterns,

g(D) = GAV
{(B1,B2)|B1∪B2=D,B1,B2∈B}

[g(B1) + g(B2)], ∀D ∈ D (40)

where GAV is the generalized averaging function which satisfies the following
two properties,

1. min(a1, . . . , ak) ≤ GAV(a1, . . . , ak) ≤ max(a1, . . . , ak),
2. GAV(a1, . . . , ak) = GAV(a1, . . . , ak, a1, . . . , ak).

An example of GAV is the arithmetic mean:

gAM (D) =

∑
{(B1,B2)|B1∪B2=D,B1,B2∈B}[g

AM (B1) + gAM (B2)]

| {(B1, B2) | B1 ∪B2 = D,B1, B2 ∈ B} | , ∀D ∈ D,

(41)
where

gAM (A) = g(A), ∀A ∈ (2X \D). (42)

To reduce computational effort, we also use T-F type mean. T-F type mean
is the sum of two particular basic sets BT and BF . BT is the basic set which
includes true elements of complementary elements of D and non-complementary

138 Eiichiro Takahagi

elements of D. BF is the basic set that includes false elements of complementary
elements of D and non-complementary elements of D. That is,

CD = {i | iT ∈ D, iF ∈ D}, (43)
ND = D \ {iT , iF | i ∈ CD}, (44)
BT = {iT | i ∈ CD} ∪ND, (45)
BF = {iF | i ∈ CD} ∪ND. (46)

gTF (D) = gTF (BT) + gTF (BF), ∀D ∈ D, (47)

where gTF (A) = g(A), ∀A ∈ (2X \D).
For example, n = 4, gTF ({1T , 1F , 2T , 3T , 3F , 4F }) = gTF ({1T , 2T , 3T , 4F}) +
gTF ({1F , 2T , 3F , 4F}).

4.3 Definition of CFB Functions

CFB functions are defined as Choquet integral using the g:

fCFB(AM)(x1, . . . , xn) ≡ (C)
∫

h∗dgAM , (48)

where h∗(iT) = xi, h
∗(iF) = 1− xi, ∀i

and

fCFB(TF)(x1, . . . , xn) ≡ (C)
∫

h∗dgTF , (49)

where h∗(iT) = xi, h
∗(iF) = 1− xi, ∀i.

When we show the properties which hold for any GAV, we display fCFB.

4.4 Numerical Examples of CFB Functions

A numerical example of a CFB function is equation (1); its input values are
x1 = 0.8, x2 = 0.4.

X∗ ={1T , 2T , 1F , 2F },
C ={{1T , 1F}, {2T , 2F }, {1T , 1F , 2T }, {1T , 1F , 2F }, {1T , 2T , 2F },

{1F , 2T , 2F}, {1T , 2T , 1F , 2F }},
N ={∅, {1T}, {2T}, {1F}, {2F}, {1T , 2T}, {1T , 2F }, {1F , 2T }, {1F , 2F}},
B ={{1T , 2T}, {1T , 2F }, {1F , 2T }, {1F , 2F}},
D ={{1T , 1F , 2T }, {1T , 1F , 2F }, {1T , 2T , 2F }, {1F , 2T , 2F },

{1T , 2T , 1F , 2F }}

From equation (37),

g(∅) = g({1T}) = g({2T}) = g({1F}) = g({2F}) = 0. (50)

Fuzzy Integral Based Fuzzy Switching Functions 139

From equation (38),

g({1T , 1F}) = g({2T , 2F }) = 0. (51)

From equation (39), fuzzy measure values of basic sets are assigned from binary
inputs of the fuzzy/C,

g({1T , 2T }) = fM (1, 1) = 0.8, (52)
g({1T , 2F }) = fM (1, 0) = 0.6, (53)
g({1F , 2T }) = fM (0, 1) = 0.8, (54)
g({1F , 2F }) = fM (0, 0) = 0.1. (55)

As above fuzzy measure values do not depend on GAV function, gAM (A) =
gTF (A) = g(A), ∀A ∈ (2X∗ \D).

Fuzzy measure values of D is assigned from equation (40). As {1T , 1F , 2T},
{1T , 1F , 2F }, {1T , 2T , 2F } and {1F , 2T , 2F } have only one partition pattern,
fuzzy measure value calculation methods do not depend on GAV function,

gAM ({1T , 1F , 2T }) = gTF ({1T , 1F , 2T }) = g({1T , 2T }) + g({1F , 2T }) = 1.6,
gAM ({1T , 1F , 2F }) = gTF ({1T , 1F , 2F}) = g({1T , 2F }) + g({1F , 2F }) = 0.7,
gAM ({1T , 2T , 2F }) = gTF ({1T , 2T , 2F}) = g({1T , 2T }) + g({1T , 2F }) = 1.4,
gAM ({1F , 2T , 2F }) = gTF ({1F , 2T , 2F}) = g({1F , 2T }) + g({1F , 2F }) = 0.9.

As {1T , 2T , 1F , 2F } have two partition patterns, that are ({1T , 2T }, {1F , 2F})
and ({1T , 2F }, {1F , 2T }), fuzzy measure value calculation methods depend on
GAV function chosen,

Arithmetic mean:

gAM ({1T , 2T , 1F , 2F })

=
[g({1T , 2T }) + g({1F , 2F })] + [g({1T , 2F }) + g({1F , 2T })]

2
= 1.15,

TF type:

gTF ({1T , 2T , 1F , 2F }) = g({1T , 2T}) + g({1F , 2F}) = 0.9.

The outputs to the CFB function are Choquet integrated values. As x1 = 0.8
and x2 = 0.4, h∗(1T) = 0.8, h∗(1F) = 0.2, h∗(2T) = 0.4 and h∗(2F) = 0.6.
Therefore,

fCFB(AM)(0.8, 0.4) = (C)
∫

h∗dgAM

=[h∗(1T)− h∗(2F)]gAM ({1T }) + [h∗(2F)− h∗(2T)]gAM ({1T , 2F })+
[h∗(2T)− h∗(1F)]gAM ({1T , 2T , 2F }) + h∗(1F)gAM ({1T , 1F , 2T , 2F})

=0.2× 0 + 0.2× 0.6 + 0.2× 1.4 + 0.2× 1.15 = 0.63

140 Eiichiro Takahagi

and

fCFB(TF)(0.8, 0.4) = (C)
∫

h∗dgTF

=[h∗(1T)− h∗(2F)]gTF ({1T }) + [h∗(2F)− h∗(2T)]gTF ({1T , 2F})+
[h∗(2T)− h∗(1F)]gTF ({1T , 2T , 2F }) + h∗(1F)gTF ({1T , 1F , 2T , 2F })

=0.2× 0 + 0.2× 0.6 + 0.2× 1.4 + 0.2× 0.9 = 0.58.

4.5 Extensions of Binary Switching Functions

CFB functions are extensions of binary switching functions, that is, outputs of
CFB functions on binary inputs have same outputs as binary switching functions.
Let fB be a (binary) switching function, therefore,

fCFB(x1, . . . , xn) = fB(x1, . . . , xn), ∀xi ∈ {0, 1}, i = 1, . . . , n. (56)

The property which holds for fuzzy/Cs on binary inputs also holds for CFB
functions on binary inputs:

fCFB(x1, . . . , xn) = fM (x1, . . . , xn), ∀xi ∈ {0, 1}, i = 1, . . . , n. (57)

4.6 Complementary Law

If two fuzzy/Cs have same output values on all binary input values, then the
two CFB functions of the fuzzy/C are same functions. That is, if

fM
1 (x1, . . . , xn) = fM

2 (x1, . . . , xn), ∀xi ∈ {0, 1} (58)

then
fCFB
1 (x1, . . . , xn) = fCFB

2 (x1, . . . , xn), ∀xi ∈ [0, 1]. (59)

This property is derived from assignment process of g. By equation (39), fuzzy
measure values of basic sets are assigned from binary inputs of a fuzzy/C. There-
fore, by equation (58),

g1(B) = g2(B), ∀B ∈ B. (60)

From equation (40),
g1(D) = g2(D), ∀D ∈ D. (61)

Hence,
g1(A) = g2(A), ∀A ∈ 2X∗

(62)

and (C)
∫
h∗dg1 = (C)

∫
h∗dg2, ∀h∗(i) ∈ [0, 1].

On binary inputs, fuzzy/Cs satisfy the complementary law, i.e., xi ∧¬xi = 0
and xi ∨ ¬xi = 1. Therefore, CFB functions satisfy the complementary law.

For example,

f1(x1, x2) =(0.2 ∧ x1) ∨ (0.3 ∧ x2) ∨ (x1 ∧ x2) ∨ (x2 ∧ ¬x2)
f2(x1, x2) =(0.2 ∧ x1) ∨ (0.3 ∧ x2) ∨ (x1 ∧ x2).

Fuzzy Integral Based Fuzzy Switching Functions 141

The two functions output the same value on binary inputs,

f1(1, 1) = f2(1, 1) = 1.0, . . . , f1(0, 0) = f2(0, 0) = 0. (63)

By equation (58), fCFB
1 (x1, x2) = fCFB

2 (x1, x2), ∀x1, x2 ∈ [0, 1]. As is well-
known, fM does not satisfy the property. For example x1 = 0.2, x2 = 0.5, then
fM
1 (0.2, 0.5) = 0.5 and fM

2 (0.2, 0.5) = 0.3.

4.7 Monotonicity of CFB Functions

CFB functions are monotone: ∀xi ∈ {0, 1}, i = 1, . . . , k − 1, k + 1, . . . , n,

fM (x1, . . . , xk−1, 1, xk+1, . . . , xn) ≥ fM (x1, . . . , xk−1, 0, xk+1, . . . , xn), (64)

implies, for any fixed x̄i(∈ [0, 1], i = 1, . . . , k− 1, k + 1, . . . , n) and for any xk, yk

where 1 ≥ yk ≥ xk ≥ 0,

fCFB(x̄1, . . . , x̄k−1, yk, x̄k+1, . . . , x̄n) ≥ fCFB(x̄1, . . . , x̄k−1, xk, x̄k+1, . . . , x̄n).
(65)

If the sign of inequality of equation (64) is reverse, the reverse sign of equation
(64) is stood on.

For example, in equation (1), as (fM (1, 1) = 0.8) ≥ (fM (0, 1) = 0.8) and
(fM (1, 0) = 0.6) ≥ (fM (0, 0) = 0.1), fCFB(x1, x2) is a monotone function of
x1 for any fixed x2. Moreover, as (fM (1, 1) = 0.8) ≥ (fM (1, 0) = 0.6) and
(fM (0, 1) = 0.8) ≥ (fM (0, 0) = 0.1), fCFB(x1, x2) is a monotone function of x2

for any fixed x1.
Fig. 5 is the graph of each calculation method. fM (0.7, x2) , max-min calcu-

lations, decreases near 0.5, but fCFB(0.7, x2) increases in all x2 ∈ [0, 1].

0 1

0.5

0.6

0.7

0.8

x2

f M(0.7,x2)

f FCB(AM)(0.7,x2)

f FCB(TF)(0.7,x2)

Fig. 5. Outputs of equation (1).

Another example is equation (29). In this example, X∗ = {1T , 1F },g({1T}) =
1.0, g({1F}) = 0.6,h∗(1T) = x1 and h∗(1F) = 1 − x1. As partition pattern of

142 Eiichiro Takahagi

{1T , 1F } is unique, gAM ({1T , 1F }) = gTF ({1T , 1F }) = g({1T})+g({1F}) = 1.6.
Therefore, when x1 ≥ 0.5,

fCFB(AM)(x1, x2) = fCFB(TF)(x1, x2) = (C)
∫

h∗dg

=[h∗(1T)− h∗(1F)]g({1T}) + [h∗(1F)g({1T , 1F})]
=[x1 − (1− x1)]× 1.0 + (1− x1)× 1.6
=0.4× x1 + 0.6,

and when x1 < 0.5,

fCFB(AM)(x1, x2) = fCFB(TF)(x1, x2) = (C)
∫

h∗dg

=[h∗(1F)− h∗(1T)]g({1F}) + [h∗(1T)g({1T , 1F})]
=[(1− x1)− x1]× 0.6 + x1 × 1.6
=0.4× x1 + 0.6.

Hence, fCFB(AM)(x1, x2) = fCFB(TF)(x1, x2) = 0.4 × x1 + 0.6, which is the
expected output of the Fig. 3.

4.8 Representations of Linear Functions

CFB functions can represent any linear functions fL : [0, 1]n → [0, 1].
Fuzzy measure values of basic sets are assigned by the method described in

§4.2,

g(B) = fL(x1, . . . , xn) (66)
xi = 1 if iT ∈ B

xi = 0 if iF ∈ B,

∀B ∈ B.

Other fuzzy measure values are assigned from equation (37),(38) and (40). In
equation (40), by the additivity of fL, g(D) does not depend on GAV function,
that is gAM (A) = gTF (A) = g(A), ∀A ∈ 2X∗

. Using g,

(C)h∗dgAM = (C)h∗dgTF = fL(x1, . . . , xn), (67)

where h∗(1T) = xi, h
∗(1F) = 1− xi, ∀i.

Using g, it is possible to make fuzzy/C representation of any fL,

f(x1, . . . , xn) =
∨

B∈B

[g(B) ∧ (
∧

i∈{i|iT ∈B}

xi) ∧ (
∧

i∈{i|iF ∈B}

¬xi)]. (68)

and
fCFB(x1, . . . , xn) = fL(x1, . . . , xn), ∀xi ∈ [0, 1]. (69)

Fuzzy Integral Based Fuzzy Switching Functions 143

For example,
fL(x1, x2) = 0.3× x1 − 0.4× x2 + 0.5 (70)

is a linear function of fL : [0, 1]2 → [0, 1]. Fuzzy measure values on basic sets
given by equation (70) are,

g({1T , 2T }) = 0.4, g({1T , 2F }) = 0.8,
g({1F , 2T }) = 0.1, g({1F , 2F }) = 0.5.

From equation (40),

g({1T , 1F , 2T }) = 0.5, g({1T , 1F , 2F }) = 1.3,
g({1T , 2T , 2F }) = 1.2, g({1F , 2T , 2F}) = 0.6,

and {1T , 1F , 2T , 2F } have two partition patterns, but the fuzzy measure values
do not depend here on partition pattern, i.e.,

g({1T , 1F , 2T , 2F })
=g({1T , 2T}) + g({1F , 2F}) = g({1T , 2F }) + g({1F , 2T }) = 0.9.

For example, fL(0.8, 0.4) = (C)h∗dg = 0.58 where h∗(1T) = 0.8, h∗(1F) = 0.2,
h∗(2T) = 0.4 and h∗(2F) = 0.6.

The fuzzy/C representation of equation (70) is,

f(x1, x2) = (0.4∧x1∧x2)∨ (0.8∧x1∧¬x2)∨ (0.1∧¬x1∧x2)∨ (0.5∧¬x1∧¬x2).

Then,
fCFB(x1, x2) = fL(x1, x2), ∀x1, x2 ∈ [0, 1]. (71)

CFB functions are the bridge between switching functions and linear func-
tions, i.e., any linear function can be represented as a fuzzy/C formula and some
fuzzy/C can be represented as a linear function.

4.9 Global Evaluation

Max-min calculation type fuzzy/Cs (fM) satisfy the connectivity condition. For
example, when

f1(x1, x2) = x1 ∧ x2, (72)
f2(x1, x2) = x1 ∧ ¬x2, (73)
f3(x1, x2) = (x1 ∧ x2) ∨ (x1 ∧ ¬x2), (74)
f4(x3, x4) = x3 ∨ x4, (75)
f5(x1, x2) = x1, (76)

and

xM
3 = fM

1 (x1, x2), (77)
xM

4 = fM
2 (x1, x2), (78)

144 Eiichiro Takahagi

then,

fM
3 (x1, x2) = fM

4 (xM
3 , xM

4). (79)

However, CFB functions do not satisfy the connectivity condition.

xCFB
3 = fCFB

1 (x1, x2), (80)
xCFB

4 = fCFB
2 (x1, x2), (81)

do not imply

fCFB
3 (x1, x2) = fCFB

4 (xCFB
3 , xCFB

4). (82)

As CFB functions are based on global evaluations of the formulas, CFB
functions are not based on each term calculation. Therefore, CFB functions can
not heap up the formulas. CFB functions consider the global relations among
logical variables. For example, fCFB

3 does not evaluate terms, (x1 ∧ x2) and
(x1 ∧ ¬x2), but it uses global evaluation on binary inputs, fM

3 (1, 1), fM
3 (1, 0),

fM
3 (0, 1) and fM

3 (0, 0). As fuzzy measure values on basic sets are assigned from
binary inputs, CFB functions can satisfy the law of excluded middle (xi∨¬xi =
1). However, only by means of f4, CFB functions can not understand the relation
of x2 ∨¬x2. To understand the law of the excluded middle, we have to evaluate
the formula globally. Therefore, in a CFB function, we give up the connectivity
and get the complementary law.

4.10 Constants

In fuzzy/C, max-min calculations, constants and variables are not distinguished
For example, when

f1(x1, x2) = x2 ∨ x1, f2(x1) = 0.3 ∨ x1, (83)

we have fM
1 (x1, 0.3) = fM

2 (x1), ∀x1 ∈ [0, 1]. However, CFB functions do not sat-
isfy this property: for instance, when f

CFB(TF)
1 (0.6, 0.3) = 0.3, fCFB(AM)

1 (0.6,
0.3) = 0.4 and f

CFB(TF)
2 (0.6) = f

CFB(AM)
2 (0.6) = 0.44, then, fCFB

1 (x1, 0.3) =
fCFB
2 (x1), ∀x1 ∈ [0, 1] is not valid. Therefore, in CFB functions, constants are

not fixed values of variables. We propose that constants imply weights of rules.
This statement is discussed in §4.11.

In CFB functions, complementary law holds for variables, but not for con-
stants. if f1(x1) = x1 ∧ ¬x1 and f2(x1) = 0 then fCFB

1 (x1) = fCFB
2 (x1), ∀x1 ∈

[0, 1]. However, f3 = 0.8 ∧ 0.2 and f4 = 0 do not mean fCFB
3 = fCFB

4 , that is,
fCFB
3 = 0.2.

4.11 Interpretation of CFB Functions

In §4.6, CFB functions satisfy the complementary laws. Using this property, we
can easily find the disjunctive normal form fDN , i.e.,

fDN(x1, . . . , xn) =
∨

B∈B

[g(B) ∧ (
∧

i∈{i|iT ∈B}

xi) ∧ (
∧

i∈{i|iF ∈B}

¬xi)]. (84)

Fuzzy Integral Based Fuzzy Switching Functions 145

This transformation is valid in CFB functions,

fCFB
DN (x1, . . . , xn) = fCFB(x1, . . . , xn), ∀xi ∈ [0, 1], i = 1, . . . , n, (85)

but it is not valid in the case of max-min calculation fM .
For example, the disjunctive normal form of equation (1) is,

fDN(x1, x2) =(0.8 ∧ x1 ∧ x2) ∨ (0.6 ∧ x1 ∧ ¬x2)
∨ (0.8 ∧ ¬x1 ∧ x2) ∨ (0.1 ∧ ¬x1 ∧ ¬x2). (86)

This disjunctive normal form is very useful in understanding the fuzzy/C. In
the disjunctive normal form, we can regard each term as a rule and its constant
as a weight of the rule. The integration method of the rules is the Choquet
integral.

For example, from equation (86), we can make rules shown in Table 3.

Table 3. Rule Table of Equation (1).

x1 x2 Ture Value

T T 0.8
T F 0.6
F T 0.8
F F 0.1

4.12 Independency of Input Sign

One of advantage of AM type CFB function is “independency of input sign”.
Let f1(x1, . . . , xn) be a fuzzy/C and f2(x1, . . . , x2) be the function that has xk

replaced with ¬xk. “Independency of input sign” is defined as,

fCFB
1 (x1, . . . , xn) = fCFB

2 (x1, . . . , xk−1, 1− xk, xk+1, . . . , xn), (87)

∀xi ∈ [0, 1]. CFB(AM) satisfies this property, i.e.,

f
CFB(AM)
1 (x1, . . . , xn) = f

CFB(AM)
2 (x1, . . . , xk−1, 1− xk, xk+1, . . . , xn), (88)

∀xi ∈ [0, 1]. For example,

f1(x1, x2) = (0.6 ∧ x1 ∧ ¬x2) ∨ (0.8 ∧ x2) ∨ 0.1, (89)
f2(x1, x2) = (0.6 ∧ x1 ∧ x2) ∨ (0.8 ∧ ¬x2) ∨ 0.1, (90)

where equation (90) is the fuzzy/C in which x2 is replaced with ¬x2. Therefore,

f
CFB(AM)
1 (x1, x2) = f

CFB(AM)
2 (x1, 1− x2), ∀x1, x2 ∈ [0, 1]. (91)

However, TF type does not satisfy this property, for example,

fTF
1 (0.7, 0.4) = 0.53, fTF

2 (0.7, 0.6) = 0.68. (92)

146 Eiichiro Takahagi

5 Logical Choquet Integral

5.1 Definition

A CFB function is characterized by the a fuzzy measure g; g have 22×n parame-
ters, but g is characterized by fuzzy measure values basic sets only. The number
of basic sets is 2n, which is the same as the number of parameters of μ. Basic sets
include either iT or iF for each i ∈ X . Therefore, a basic set corresponds to a
subset of X . For example, {1T , 2F , 3T } (n = 3) corresponds to {1, 3}. Therefore,
we regard B as a domain of a fuzzy measure and define fuzzy measure μ+,

μ+ : 2X → [0, 1] (93)

μ+(A) = g(B), B = {iT | i ∈ A} ∪ {iF | i /∈ A}, (94)

∀A ∈ 2X . μ+ does not satisfy the monotonicity of fuzzy measure and the zero
constraint of fuzzy measure.

CFB functions are the functions which map [0, 1]n to [0, 1] and are character-
ized by μ+, so we define the new fuzzy integral and we call it the logical Choquet
integral (LC integral, for short),

(LC)
∫

hdμ+ ≡ (C)
∫

h∗dg (95)

where

g(B) = μ+(A), A = {i | iT ∈ B}, ∀B ∈ B,

g(D) = GAV
{(B1,B2)|B1∪B2=D,B1,B2∈B}

[g(B1) + g(B2)], ∀D ∈ D,

g(A) = 0, ∀A ∈ [2X∗ \ (B ∪D)],

h∗(iT) = h(i), i = 1, . . . , n,
h∗(iF) = 1− h(i), i = 1, . . . , n.

An LC integral satisfies all properties of CFB functions. Whenever we specify the
GAV function, we add superscript of GAV function, that is, (LCAM)

∫
hdμ+ ≡

(LC)
∫
h∗dgAM and (LCTF)

∫
hdμ+ ≡ (C)

∫
h∗dgTF .

μ+ is also assigned from fuzzy/C’s binary inputs, i.e.,

μ+(A) = fM (x1, . . . , xn) , ∀A ∈ 2X (96)
xi = 1 if i ∈ A

xi = 0 if i /∈ A.

Fuzzy Integral Based Fuzzy Switching Functions 147

In equation (1), n = 2 and X = {1, 2}. From equation (52) ∼ (55),

μ+(∅) = fM (0, 0) = 0.1, (97)
μ+({1}) = fM (1, 0) = 0.6, (98)
μ+({2}) = fM (0, 1) = 0.8, (99)

μ+({1, 2}) = fM (1, 1) = 0.8. (100)

Obviously, μ+ is the same as μ defined in equation (16).

5.2 The Extended Choquet Integral

In §3.2, we define the extend Sugeno integral which avoids the condition that
μ(∅) = 0. Therefore, we define the extended Choquet integral which avoids
μ(∅) = 0, i.e., the Choquet integral of μ+,

(EC)
∫

hdμ+ ≡
∫ 1

0

μ+({x | h(x) > r})dr. (101)

In case n = 2, equation (97)∼(100) and h(1) = 0.6, h(2) = 0.3,

(EC)
∫

hdμ+

=(1− 0.6)μ+(∅) + (0.6− 0.3)μ+({1}) + 0.3μ+({1, 2})
=0.46.

5.3 LCTF Integrals and Extended Choquet Integrals

LCTF integrals are extended Choquet integrals,

(LCTF)
∫

hdμ+ = (EC)
∫

hdμ+, ∀h and μ+. (102)

Therefore, TF type CFB functions are calculated by the extended Choquet in-
tegral, that is, by a very easy calculation method:

fCFB(TF)(x1, . . . , xn) = (EC)
∫

hμ+. (103)

Of course, if fM (x1, . . . , xn) = 0, then

fCFB(TF)(x1, . . . , xn) = (C)
∫

hμ+. (104)

148 Eiichiro Takahagi

6 Comparison with Probability Based Logic

Multi-valued switching functions which are based on probability also satisfy the
complementary law. For example, Tsukimoto[5] define “T-Logic” as,

f ∧ g → f × g, (105)
f ∨ g → f + g − f × g, (106)
¬f → 1− f. (107)

We add superscript P to the “T-Logic” calculations.
This formulation conflicts with our intuition. For example,

f1(x1, x2) = x1 ∧ x2 (108)

means that “if both x1 and x2 are true, then output is true” and also means
“if both x1 and x2 are half true, then output is half true”. As fP

1 (x1, x2) =
x1 × x2, fP

1 (0.5, 0.5) = 0.25, that is not half trueness, because T-logic base on
the probability. However, fM

1 (0.5, 0.5) = fCBF
1 (0.5, 0.5) = 0.5.

Equation (108) means non-compensated outputs, that is, if x1 > x2, increase
in x1 does not cause increase in f1. fM and fCFB satisfy non-compensated
outputs but fP does not, i.e., it satisfies compensated outputs. If compensated
outputs are necessary, we should consider a compensated formula such as,

f2(x1, x2) = (x1 ∧ x2) ∧ (0.2 ∧ x1) ∨ (0.1 ∧ x2), (109)

which means that “an important rule is x1∧x2, but x1 or x2 alone also stand on
with small weights”. fCFB

2 is a compensated function and a strictly increasing
function for x1 and x2.

0 1

0

0.2

0.4

0.6

f1
P(x1,0.6)

 f1
M(x1,0.6)

=f1
CFB(x1,0.6)

f2
CFB(TF)(x1,0.6)

f2
M(x1,0.6)

x1

Fig. 6. Comparison with Probability Based Logic.

Fig. 6 is the graph of x2 = 0.6. fM
1 and fCFB

1 are non-compensated with
x1 ≥ 0.6 = x2, that is fM

1 (x1, 0.6) = fCFB
1 (x1, 0.6) = 0.6, ∀x1 ∈ [0.6, 1]. fP

Fuzzy Integral Based Fuzzy Switching Functions 149

Weighted Max-Min Functions
= Monotone Fuzzy/C Sugeno Integrals

-

Monotone Fuzzy/C Extended Sugeno Integrals

+

Double Inputs

Sugeno Integrals

- Monotonicity
of Fuzzy/C

Fuzzy/C

CFB Functions

Monotonicity
(when it is monotone
with respect to binary
inputs)

+ Complementary Laws

- Connectivity

Linear Functions

Representable

+ AVG:=
Arithmetic Mean

+ Independency
of Inputs' sign

+ AVG:=
TF-type

Sugeno Integral
 Choquet Integral

Choquet Integral

Double Inputs

Function Function

Extended
Choquet IntegralIntegralIntegral

fM (x1, . . . , xn) = 0

fM (x1, . . . , xn) = 0

=

=

=

=

μ(∅) = 0

μ(∅) = 0

→ μ(∅) ∈ [0, 1]

→ μ(∅) ∈ [0, 1]

fL : [0, 1]n → [0, 1]

CFBAM
CFBTF

g(D) = g(B1) + g(B2)

(LCAM) (LCTF)

≡≡

Fig. 7. The Relations of Fuzzy/Cs and Fuzzy Integrals.

increases in all x1’s domain without regard to x1 > x2. fCFB
2 increases across

the whole domain of x1. When x1 ≤ x2 , the important rule is valid and the
increase rate is high; when x1 > x2, only small weight rule is observed and the
increase rate is low.

From above reasons, CFB functions have superior properties.

7 Conclusion

In this paper, we define many fuzzy/C’s calculation methods using fuzzy in-
tegrals. Max-min calculation methods do not satisfy the complementarity law.
Also max-min calculations fM do not satisfy monotonicity under monotonicity
on binary inputs.

150 Eiichiro Takahagi

CFB functions calculate using fuzzy/C’s binary inputs’ values and inter-
polate those values. Therefore, CFB functions satisfy the many properties of
(2-valued) switching functions. Hence, in various analysis which uses the fuzzy
theory, whenever fuzziness is an extension of 2-values, we should use CFB func-
tions.

Fig. 7 is the conclusion of this paper. As fuzzy/Cs are represented by Sugeno
integrals, we can consider properties of fuzzy/C via tools of fuzzy measures and
Sugeno integrals.

CFB(AM) functions have many good properties, but the computational effort
of g(D), D ∈ D is large. Because, if n is large, partition patterns are numerous, so
arithmetic means can not be calculated easily. However, CFB(TF) functions are
calculated by extended Choquet integrals, resulting in a small computational
effort. Therefore, we should use CFB(AM) in case of strict analysis and use
CFB(TF) in case of large model.

References

1. J.L. Marichal, On Sugeno integral as an aggregation function. Fuzzy Sets and Sys-
tems, 114, 2000, pp.347–365.

2. E. Takahagi and T. Araki. On fuzzy Integral representation in fuzzy switching func-
tions with constants. in: Proceedings of Vietnam-Japan Bilateral Symposium on
Fuzzy Systems and Applications (VJFUZZY’98), Hanoi, 1998, pp.240–245.

3. E. Takahagi. On fuzzy integral representation in fuzzy switching functions, fuzzy
rules and fuzzy control rules. in: Proceedings of the Eighth International Fuzzy Sys-
tems Association World Congress(IFSA’99), 1, Taipei, 1999, pp.289–293.

4. E.Takahagi. Choquet integral type fuzzy switching functions: Adjustment of fuzzy
measures and complementary law. in: Proceedings of Joint 9th IFSA World Congress
and 20th NAFIPS International Conference, CD-ROM, IEEE, Vancouver, 2001.

5. H. Tsukimoto. On continuously valued logical functions satisfying all axioms of
classical logic. The Transactions of the Institute of Electronics, Information and
Communication Engineers D-I, J77-D-I: 3, 1994, pp.247–252 (in Japanese).

6. T. Araki and M. Mukaidono. On the fuzzy switching functions with constants,
The Transactions of the Institute of Electronics, Information and Communication
Engineers D-I, J81-D-I: 9, 1998, pp.1037-1047 (in Japanese).

First Steps Towards Computably-Infinite
Information Systems

Peter Apostoli1, Akira Kanda2, and Lech Polkowski3,4

1 The University of Pretoria, Pretoria, South Africa
2 The University of Toronto, Ontario, M5S 1A2, Canada

3 Polish Japanese Institute of Information Technology, Warsaw, Poland
4 The University of Warmia and Mazury, Olsztyn, Poland

Abstract. In order to characterize the metric of exact subsets of infi-
nite information systems, [51] studied the asymptotic behaviour of ω–
chains of graded indiscernibility relations. The SFP object underlying
the universe of exact sets presented in [2] provides a concrete example
of an infinite graded information system. By controlling the asymptotic
behaviour of ω–Sequences of Finite Projections, the theory of graded
chains of indiscernibility relations articulates the fine structure of SFP
objects, providing a metric over exact sets.

Keywords: domain theory, effective domain theory, exact sets, Frege
sets, graded indiscernibility, infinite information systems, Myhill-
Sheperdson Theorem, modal logic, non–standard analysis, numeration
theory, rough sets, SFP objects.

1 Infinite Information Systems

Though distinct fields of computer science, Rough Set Theory (RST) [44] and
Domain Theory (DT) [58] both study the approximation of concepts in infi-
nite information systems. The former studies the topological approximation of
subsets by upper and lower bounding subsets, while the latter studies the order–
theoretic approximation of functions under an information ordering. However
their techniques diverge, these fields are intricately related when attention is
focused on infinite information systems arising in connection with the inverse
limits of Sequences of Finite Projections (SFP) [47].

Given a set of points U, RST studies the field of subsets of U under upper and
lower approximation operations, typically those of the quasi–discrete topology
induced by an equivalence relation E on U [44]. In the finite case, the field of
exact subsets forms a compact metric Boolean algebra. In order to extend this
characterization to the exact subsets of infinite information systems [51] studied
the asymptotic behaviour of approximations by descending chains of equivalence
relations {Ei} over U such that Ei+1 ⊆ Ei, called “graded chains of indiscerni-
bility relations”. The limit E∞ of this chain is an equivalence relation called the
indiscernibility relation graded by {Ei}. The collection of all Ei-granules forms
a base for a “graded” topology in [51]. We shall show that this graded topology
is identical to the Pawlak topology induced by E∞.

J.F. Peters et al. (Eds.): Transactions on Rough Sets II, LNCS 3135, pp. 151–188, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

152 Peter Apostoli, Akira Kanda, and Lech Polkowski

By integrating the “distance” between two elements of U as the stage at
which they are discerned in the chain {Ei}, [51] obtains a metric distance −
which we call a graded metric − between subsets of U which are closed in the
graded topology. As Pawlak’s topology is quasi–discrete, we conclude that the
“closed” subsets are precisely the exact subsets of U whence the graded metric
obtains over the exact subsets of U. As an example of an infinite information
system based upon graded indiscernibility, we use the theory of SFP objects to
construct a universe of exact sets by placing an approximation space (U,E) in
a type–lowering retraction with 2U . Accordingly, this universe of exact sets is
accompanied by a graded metric.

By dualizing Polkowski’s construction, the concept of an inversely graded
indiscernibility relation and metric is obtained. A. Robinson’s [54] ultra product
construction of non–standard real numbers provides a viable example of this.
This conclusion is consistent with the analogy developed in [4] that the universe
of exact sets is to standard set theory as Robinson’s non–standard analysis is to
standard analysis. We hope that this development suggests a foundational role
for the study of infinite information systems in rough set theory and analysis.

2 Rough Set Theory

Let U �= ∅ and E ⊆ U × U be an equivalence relation. In rough set theory [44],
E is typically interpreted as a relation of indiscernibility with respect to some
prior family of concepts (subsets of U). The pair (U,E) is called an approximation
space. For each point u ∈ U, let [u]E denote the equivalence class of u under E.
E-classes [u]E are called (E-) granules or elementary subsets. Let A ⊆ U ;

Int(A) =df {x ∈ U | (∀y ∈ U)[xE y → y ∈ A]} = ∪{[u]E | [u]E ⊆ X},
Cl(A) =df {x ∈ U | (∃y ∈ U)[xE y ∧ y ∈ A]} = ∪{[u]E | [u]E ∩X �= ∅},

are called the lower and upper approximations of A, respectively. Cl(A) is a
relational closure under E of the subset A. E-closed subsets of U are called (E-)
complete (or exact). It is natural to regard the exact subsets of U as the “parts”
of U and elementary subsets as the “atomic parts” of U 1. C(E) denotes the
family of E–exact subsets of U and, for A ⊆ U, C(A) the family of E–exact
subsets of A. The family,

BE = {[x]E : x ∈ U},

is the partition of U induced by the equivalence relation E and it forms a base
for a quasi–discrete topology ΠE over U. It is clear that the open sets in this
topology are precisely the exact sets.
1 RST marks the re–emergence in the Warsaw School of Mathematics of mereolog-

ical concepts such as “part” and “whole” that were originally introduced into set
theory by Leśniewski [36]; see e.g., rough mereology [48–50]. For an example of the
mereological conception of set in the recent philosophical literature − motivated
independently of RST − see [37].

First Steps Towards Computably-Infinite Information Systems 153

Given an approximation space (U,E) and A,B ⊆ U, [44] defines A and B
to be roughly equal, symbolically, A ∼E B, iff Int(A) = Int(B) and Cl(A) =
Cl(B). Hence, A ∼E B iff A and B are equivalent with respect to the partition
topology (U, C(E)) induced by (U,E). Rough equality classes [A]∼E are called
topological rough sets [63]. In the context of (U,E), [A]∼E may be identified
with the interval of subsets lying between Int(A) and Cl(A), in which A is
approximated from “below” by its interior and from “above” by its closure.

3 Proximal Frege Structures

The comprehension principle of naive set theory is based upon Frege’s [21, 22]
ill–fated [23–25] idea that for every concept X there is an object, X̂, called the
extension of X , which comprises precisely the objects falling under X . X̂ is,
intuitively, the set of objects u such that u falls under X, i.e., {u : X(u)}. Frege
thus posited the existence of a “type–lowering correspondence”, terminology es-
tablished in [5] for functions f : 2U → U, holding between the concept universe
2U and the universe of objects U . Frege attempted to govern his introduction
of extensions by adopting the principle that X̂ and Ŷ are strictly identical just
in case precisely the same objects fall under the concepts X and Y. That this
“Basic Law” contradicts Cantor’s Theorem2 in requiring f to be injective and
leads to Russell’s paradox regarding “the class of all classes which do not be-
long to themselves” [23, 55, 25], is now well appreciated. [15] initiated the proof
theoretic study of Frege’s extension function in consistent theories extending
second order logic. Models of these theories are obtained by placing a domain
of discourse U in a type–lowering correspondence with its power set 2U and are
called “Frege structures” after terminology established in [1]. The rediscovery
of Frege’s Theorem3 [43, 64, 9] in type–lowering extensions of second order logic
re–focused interest on Frege structures. [3, 2, 6] presented Frege structures as re-
traction pairs of type–lowering and raising maps, i.e., pairs (f, g) of functions
f : 2U → U, g : U → 2U such that f(g(u)) = u. f retracts 2U onto U (de-
termining sethood) and g is the adjoining section (determining elementhood).
The Frege structure (U, f, g) is a model of abstract set theory in which Cantor’s
“consistent multiplicities” [13, p. 443.] can be identified with precisely those sub-
sets of U which are elements of the section g[U] of the retraction, whence the
fundamental question [6] arises: which subsets are these?

2 According to Cantor’s Theorem [12], the power set 2U is of strictly larger cardinality
than U .

3 In the Grundlagen der Arithmetik [21], Frege sketched a derivation of Peano’s pos-
tulates for the arithmetic of natural numbers from Cantor’s Principle of equality
for the cardinal numbers [11], that sets have the same cardinal number just in case
they are equipollent. Called “Hume’s Principle” (HP) by Boolos [9], this principle is
presented in Grundlagen §63 as the statement that, for any concepts F and G: the
number of F s = the number of Gs iff F is equipollent with G. The derivation of the
infinity of the natural number series in second order logic + HP − a theory Boolos
calls “Frege’s Arithmetic” − is now called “Frege’s Theorem” [9].

154 Peter Apostoli, Akira Kanda, and Lech Polkowski

One concrete answer is provided along the lines of Rough Set Theory. Accord-
ingly, one may augment the retraction pair (f, g) with an equivalence relation E
on U and characterize the section as comprised of precisely the E–closed sub-
sets of U [2]. Comprehension is governed by the method of upper and lower
approximations in the resulting universe (U,E, f, g) of abstract sets, called [2] a
“proximal” Frege structure. The leading idea is that logical space has an atomic
structure and this granularity is the form of set theoretic comprehension.

Let (U,E) be an approximation space and �·� : 2U → U , �·� : U → 2U be
functions. Assume further,

1. �·� is a retraction, i.e., ��u�� = u (i.e., �·� ◦ �·� = 1U), thus �·� is the
adjoining section.

2. The operator �·� ◦ �·� is a closure (under E). This is that for every X ⊆ U,
��X�� is E–closed and

X ⊆ ��X��.
So,

��X�� = Cl(X).

3. The E–closed subsets of U are precisely the X ⊆ U for which ��X�� = X .
They are fixed–points of the operator �·� ◦ �·�.

Then (U,E, �·�, �·�) is called a proximal Frege structure (PFS). Elements of U
are called Frege sets. The indiscernibility relation E of a PFS is usually denoted
≡. The fundamental idea behind this rather curious mathematical structure is
to use the approximation space [44] to tame the reflexive universe U of sets,

U � 2U ,

where “U � 2U” indicates that �·� retracts the power set of U onto U.
It follows that for every u ∈ U,

�u� = ���u���,

and hence, �u� is ≡–exact. Suppose X is ≡–closed, then ��X�� = X . Thus,

X ∈ �U� = Image(�·�).

So, the set of ≡–closed subsets of U is precisely the image of �·�. In algebraic
terms it is the kernel of the retraction mapping.

Further, we have the isomorphism C(≡) ≈ U given by,

i : C(≡)→ U : X �→ �X�, j : U → C(≡) : u �→ �u�.

All of this may be summarized by the equation,

C(≡) ≈ U � 2U ,

where C(≡) is the family of ≡-closed subsets of U.

First Steps Towards Computably-Infinite Information Systems 155

Let F = (U,≡, �·�, �·�) be a proximal Frege structure. Writing “u1 ∈F u2”
for “u1 ∈ �u2�”, U interpreted as a universe of abstract (or type–free)sets; �·�
supports the relation of set membership holding between type–free sets (elements
of U). Note that as �u2� is ≡–closed, whenever u1 ≡ v,

u1 ∈ �u2� ↔ v ∈ �u2�.

F thus validates the Principle of Naive Comprehension (PNC),

u ∈F �X�⇔ X(u),

for exact (≡–closed) subsets X of U . When X fails to be elementary, the equiv-
alence also fails and is replaced by a pair of approximating conditionals,

(1) u ∈F �Int(X)�⇒ X(u);
(2) X(u)⇒ u ∈F �Cl(X)�.

Note here we now use applicative grammar “X(u)” (“u falls under X) to indicate
that u is an element of X ⊆ U . Let “{x : X(x)}” denote �X�. While “{u ∈ U |
X(u)}” denotes a subset of U, the expression “{x : X(x)} denotes an element of
U. We distinguish the indiscernibility class [u]≡ of a Frege set u from Frege set
�[u]≡� that represents [u]≡; the latter is denoted {u}, and is called the proximal
singleton of u. Let x, y ∈ U. Then, both

(a) (∀u)(u ∈F x↔ u ∈F y)↔ x = y;
(b) (∀u)(x ∈F u↔ y ∈F u)↔ x ≡ y.

Theorem 1. (Cocchiarella 1972) There are x, y ∈ U such that x ≡ y but
x �= y.

Proof. As assuming the failure of the theorem (i.e., assuming the identity of
indiscernibles), [15, 16] derives Russell’s contradiction directly, the theorem fol-
lows.

Cocchiarella’s theorem ensures that whenever we have a PFS F = (U,≡, �·�, �·�),
the indiscernibility relation ≡ is coarser than the strict identity.

Since elements of U represent elementary subsets of U , the complete Boolean
algebra,

(C(≡),∪,∩,−, ∅, U),

is isomorphic to (U,∪U ,∩U ,−U , �∅�, �U�) under the restriction �·� � C(≡) of the
type–lowering retraction to elementary subsets of U. Here, ∪U ,∩U ,−U denote
the definitions of union, intersection and complementation natural to type–free
sets, e.g.,

u1 ∪U u2 =df ��u1� ∪ �u1��
etc., (in most contexts the subscripted “U” is suppressed). We define “u1 ⊆ u2”
to be “�u1� ⊆ �u2�”, i.e., inclusion of Frege sets is the partial ordering naturally
associated with the Boolean algebra of Frege sets.

156 Peter Apostoli, Akira Kanda, and Lech Polkowski

3.1 Counterparts and Inner and Outer Penumbra

Since unions of F -sets are exact,

{x ∈ U | (∃ g ∈ U)[f ≡ g ∧ x ∈F g]},

is an exact subset of U. Let a ∈ U ; define the outer penumbra of a, symbolically,
♦a, to be the F -set ∪[a]≡; dually, define the inner penumbra, �a, to be the F -set
∩[a]≡. These operations, called the penumbral modalities, are interpreted using
David Lewis’ counterpart semantics for modal logic [37]. Your “counterpart”
(in a given world) is a person more qualitatively similar to you than any other
object (in that world). You are necessarily (possibly) P iff all (some) of your
counterparts are P . Similarly, if a and b are indiscernible F -sets, a is more
similar to b than any other (i.e., discernible!) F -set. Thus we call a F -set b a
counterpart of a F -set a whenever a ≡ b. Then �a (♦a) represents the set of
F–sets that belong to all (some) of a’s counterparts. In this sense, we can say
that a F -set x necessarily (possibly) belongs to a just in case x belongs to �a
(♦a).

Define a〈x〉 =df x ∈F ♦a; thus,

a〈x〉 ⇔ x ∈F ♦a⇔ x ∈ �♦a�.

This is the outer membership relation, also written x ∈♦ a. Thus, for all a, x ∈ U,

x ∈F a→ x ∈♦ a.

It is equally clear that the converse of this does not hold. Dually, define a[x] =df

x ∈F �a; thus,
a[x] ⇔ x ∈F �a⇔ x ∈ ��a�.

This is the inner membership relation, also written x ∈� a.
The principle that disjoint sets are discernible is a triviality of classical set

theory. However, it is independent of the axioms for PFS given thus far. The
Discernibility of the Disjoint (DoD) [2, 3] is the principle that disjoint F -sets be
discernible.

We say that a PFS F is a plenum iff it satisfies the following condition of
plenitude: For all a, b ∈ U, �a ≡ a ≡ ♦a, whence �a ≡ ♦a. Further, suppose
a ⊆ b and a ≡ b. Then, for all c ∈ U , a ⊆ c ⊆ b⇒ c ≡ b. Plenitude is a consistent
extension of the notion of a PFS which tells us that F inclusion is well–behaved
with respect to indiscernibility. It is a nontrivial generalization, via “blurring”,
of a truism of classical set theory that if a is a subset of b and a is indiscernible
from b, then any c which is in between a and b as a subset is indiscernible from
b. If F is a plenum, then,

Lemma 1. For all a ∈ U and X ⊆ U such that x ≡ a (x ∈ X), we have ∪X,
∩X ≡ a.

Proof. �a ⊆ ∪X,∩X ⊆ ♦a, so the desired result follows from Plenitude by the
fact that �a ≡ ♦a.

First Steps Towards Computably-Infinite Information Systems 157

Corollary 1. ([a]≡,∩U ,∪U ,�a,♦a) is a complete lattice with least (greatest)
element �a (♦a).

The canonical PFS Mmax to whose domain theoretic construction we now
turn is a concrete example of a plenum which satisfies DoD.

4 The Canonical PFS Mmax

4.1 Basic Domain Theory

Cpo’s and Continuous Functions. We assume the standard terminology and
notation for partially ordered sets (posets). When a poset X has the smallest
element, we denote it by ⊥X . We may drop the subscript X and write just ⊥,
as long as doing so does not cause confusion.

A poset X with smallest element such that every directed subset S of it has
a least upper bound

∨
S (called a directed limit of S) in X is called a complete

partial order (cpo). A singleton clearly is a cpo and we call it a trivial cpo. Let
A and B be posets. A function f : A → B is monotonic (or monotone) if it is
order preserving. Moreover, it is continuous if for each directed subset S of A,

f(
∨

S) =
∨

f(S) =
∨
{f(x) | x ∈ S}.

It is clear that all continuous functions are monotonic. So, continuous functions
are precisely those which preserve directed limits.

The collection of cpo’s and that of monotonic functions form a category which
we denote by MCPO, abbreviated by M. The collection of cpo’s and that of
continuous functions form a category which is denoted by CCPO, abbreviated
C. CCPO is a full subcategory of MCPO.

Retraction and Embedding. For cpo’s A and B, we call a pair (s : A →
B, r : B → A) of monotonic (continuous) functions an m(c)-retraction pair
(from B to A) iff

r · s = 1A;

s is called the m(c)-section and r is called the m(c)-retraction. If there is an
m–retraction pair from A to B, we say A is an m–retract of B, in symbols,

A �M B.

The concept of c–retract,
A �C B,

can be defined similarly. If the retraction pair is a pair of morphisms in a sub-
category S of MCPO, we may write

A �S B.

158 Peter Apostoli, Akira Kanda, and Lech Polkowski

For cpo’s A and B, let a pair (f : A → B, g : B → A) of monotonic
(continuous) functions be called an m(c)–embedding pair (from A to B) if

f · g ≤ 1B, g · f = 1A.

f is called the m(c)–embedding and g is called the m(c)–projection. Sometimes,
embedding pairs are called m(c)–projection pairs. It can easily be verified that
an m(c)–embedding uniquely determines the corresponding projection and vice
versa. So, we may write fR for g when (f, g) is an m(c)–embedding pair. If there
is an m(c)–embedding f : A→ B, we write

A � B.

If the embedding pair is a pair of morphisms in a subcategory S of MCPO, we
may write

A �S B.

If it does not cause confusion, we will drop the subscriptm(c) in the foregoing.
It is clear that if (f : A→ B, g : B → A) is an m–embedding pair then (g, f)

is a retraction pair. If (f : A→ B, g : B → A) is an m–embedding pair then

f(⊥A) =⊥B and g(⊥B) =⊥A .

It also is easy to verify that if (f : A → B, g : B → A) is a monotonic isomor-
phism pair, then both f and g are continuous.

The collection of cpo’s and that of m(c)–projection pairs form a category
that is denoted by M(C)-PCPO. M(C)-PCPO is a non–full subcategory of
M(C)CPO.

Function Spaces of Cpo’s. Suppose A and B are cpo’s. For every monotonic
functions f, g : A→ B, we define a relation f ≤ g by

f ≤ g iff f(a) ≤ g(a).

This relation clearly is a partial order over the set [A → B]M of all monotone
functions from A to B. The restriction of this relation to the continuous functions
is a partial order over the set [A→ B]C of all continuous functions from A to B.
For a poset A and a cpo B, [A→ B]M and [A→ B]C are cpo’s.

Assume (fi : Ai → Bi, f
R
i : Bi → Ai), i = 1, 2 are m(c)–projection pairs.

They induce an m(c)–projection pair,

([f1 → f2] : [A1 → A2]→ [B1 → B2], [fR
1 → fR

2] : [B1 → B2]→ [A1 → A2]),

given by,

[f1 → f2](w) = f2 · w · fR
1

[fR
1 → fR

2](w) = fR
2 · w · f1.

Suppose A and B are finite cpo’s; then all monotonic functions from A to B
are continuous and

[A→ B]M = [A→ B]C .

First Steps Towards Computably-Infinite Information Systems 159

The Inverse Limit Construction. By a sequence of c–embeddings of cpo’s,
we mean the following diagram:

A0
f0−→ A1

f1−→ · · · fn−1−→ An
fn−→ An+1

fn+1−→ · · · (Diagram D)

where fn, n ∈ ω are c–embeddings from An to An+1. The inverse limit of this
sequence is a cpo,

{x ∈ Πi∈ωAi | xi = fR
i (xi+1)},

with the point–wise ordering. We denote this cpo by A∞. For each n ∈ ω, we
clearly have ⊥An= fR

n (⊥An+1) and ⊥A∞ is given as

⊥A∞= 〈⊥A0 ,⊥A1 ,〉.

For each n ∈ ω, there is a c–embedding pair (fn∞, fR
n∞) from An to A∞ such

that

fn∞(x)(i) =

⎧⎨⎩
fR

i · fR
i+1 · . . . · fR

n (x) if i < n
x if i = n
fn · . . . · fi(x) if i > n,

fR
n∞(x) = xn.

For each directed subset X of A∞, the least upper bound of X is∨
X =

∨
n∈ω

fn∞(
∨

fR
n∞(X)).

The following naturally expected lemma states that fR
n∞(x) is the n–th approx-

imation of x ∈ A∞.

Proposition 1. {fn∞ · fR
n∞(x) | n ∈ ω} is a chain in A∞. Moreover,

x =
∨
{fn∞ · fR

n∞(x) | n ∈ ω}.

We may write x̃n to denote fn∞ · fR
n∞(x) = fn∞(xn). Hence,

x =
∨
{x̃n | n ∈ ω} =

∨
n∈ω

x̃n.

Each element b of ∪{fn∞(An) | n ∈ ω} is “compact” since for every directed
subset S of A∞, if b ≤

∨
S then b ≤ s for some s ∈ S. Moreover, for every

element s of A∞, there is a directed set Ss of compact elements of A∞ such that
s =

∨
Ss. Hence A∞ is an “algebraic cpo”.

Maximal Elements of Cpo’s Every chain is a directed set, whence it follows
from (an equivalent to) the Axiom of Choice that every cpo has at least one
maximal element. Indeed:

160 Peter Apostoli, Akira Kanda, and Lech Polkowski

Lemma 2. Let D be a cpo. Any element of D extends into a maximal element
of D.

Proof. Let d ∈ D and let Ud = {x ∈ D | d ≤ x}. Every chain in Ud is clearly a
chain in D. Hence it has a least upper bound l in D. Clearly l ∈ Ud. Suppose
there is an upper bound u of this chain in Ud such that

u ≤ l.

Then, since u ∈ D, we have u = d. Hence, l is a least upper bound of this chain
in Ud. By (an equivalent to) The Axiom of Choice, Ud has a maximal element
m with respect to the induced partial ordering. Assume there is an element x of
D such that

x ≥ m.

Then,
x ≥ m ≥ d

and x ∈ Ud. Hence, x = m. Therefore this m is maximal with respect to the
partial ordering on D.

Lemma 3. Let A and B be cpo’s such that A �M B. Then, for each maximal
element a of A, there is a maximal element b of B such that

a = r(b),

where r is the m–retraction map from B to A.

Proof. Since r : B → A is surjective, there is x ∈ B such that a = r(x). Let
m ∈ B be a maximal extension of x. Then, due to the maximality of a and
monotonicity of r, we have

r(m) = r(x) = a.

Lemma 4. (The Isolation Lemma) Suppose A and B are nontrivial cpo’s and
consider the cpo [A → B]M. For every maximal element f of [A → B]M and
for all maximal elements a of A, f(a) is maximal in B. In particular,

f(a) �=⊥ .

Proof. Suppose for some a ∈ Amax, f(a) is not maximal in B. Define f ′ : A→ B
by

f ′(x) =
{
b if x = a
f(x) else, (x ∈ A),

where b is an element of B with b � f(a). Since a is maximal, f ′ is monotone
and hence f ′ ∈ [A→ B]M. Clearly f ′ � f and this is a contradiction.

This result states that maximal elements of cpo’s are isolated with respect
to monotonic functional application.

First Steps Towards Computably-Infinite Information Systems 161

4.2 The Theory of SFP Objects

SFP objects were first studied by Plotkin [47] and Smyth [59] in order to build
mathematical models of nondeterministic computation. Notwithstanding the
original motivation, one finds that these objects are very important from the
foundational point of view. The construction of SFP objects suggests that they
are the smallest transfinite structures which bridge the finite world with the infi-
nite world. The intellect’s leap from finite to infinite goes through this transfinite
transition between finitude and full scale actual infinity.

Consider a sequence of c–embeddings of cpo’s,

A0
f0−→ A1

f1−→ · · · fn−1−→ An
fn−→ An+1

fn+1−→ · · · (Diagram D)

where fn, n ∈ ω are c–embeddings from An to An+1. Let A∞ be the inverse limit
of this sequence, i.e.,

A∞ = {x ∈ Πi∈ωAi | xi = fR
i (xi+1)}

with the point–wise ordering. In case, in the diagram D, all Ai, i ∈ ω are finite
cpo’s, we call the inverse limit A∞ an SFP object. For any SFP object A∞,
∪{fn∞(An) | n ∈ ω} is a countable set. Hence, A∞ is an “ω-algebraic cpo”. We
denote the category of SFP objects and monotonic (continuous) functions by
M(C)SFP .

We consider the following sequences of c–embeddings of finite cpo’s,

A0
f0−→ A1

f1−→ · · · fn−1−→ An
fn,−→ An+1

fn+1−→ · · ·

B0
g0−→ B1

g1−→ · · · gn−1−→ Bn
gn,−→ Bn+1

gn+1−→ · · ·
Now consider the following sequence of c–embeddings of finite cpo’s,

C0
h0−→ C1

h1−→ · · · hn−1−→ Cn
hn,−→ Cn+1

hn+1−→ · · ·

where Cn = [An → Bn]M and

hn(w) = [fn → gn](w) = gn · w · fR
n

hR
n (w) = [fR

n → gR
n](w) = gR

n · w · fn.

It is clear that Cn, n ∈ ω are finite cpo’s (in fact, they are sets of monotone
functions from An to Bn), and hence C∞ also is an SFP object.

Proposition 2. Let A∞, B∞, and C∞ be as above. We have

C∞ ≈CCPO [A∞ → B∞]C .

Since treating this isomorphism explicitly is notationally cumbersome, we
identify [A∞ → B∞]C and C∞. To within this isomorphism, each continuous

162 Peter Apostoli, Akira Kanda, and Lech Polkowski

function u ∈ [A∞ → B∞]C can be considered as the limit of the chain {ũn}n∈ω,
where

ũn = hn∞ · hR
n∞(u).

More formally,
u =

∨
i∈ω

ũi.

Furthermore, for each n 	 1, we have un = hR
n∞(u) = gR

n∞ · u · fn∞ and ũn =
hn∞(un).

Now suppose u is a non–continuous monotonic function from A∞ to B∞.
Then, gR

n∞ · u · fn∞ is a monotonic function from An to Bn; hence it still is an
element of Cn. Note that u /∈ [A∞ → B∞]C whence un is not defined. However,
for each n ∈ ω

(h(n+1)∞(gR
(n+1)∞ · u · f(n+1)∞))(x)

= g(n+1)∞ · gR
(n+1)∞ · u · f(n+1)∞ · fR

(n+1)∞(x)
≥ g(n+1)∞ · gR

(n+1)∞ · u · fn∞ · fR
n∞(x)

≥ gn∞ · gR
n∞ · u · fn∞ · fR

n∞(x)
= (hn∞(gR

n∞ · u · fn∞))(x)

where x ∈ A∞. Hence,

{hn∞(gR
n∞ · u · fn∞) | n ∈ ω}

still is a chain in C∞.

Theorem 2. (Maximum Continuous Approximation Theorem) Let A∞ and B∞
be SFP objects. Suppose u is a monotonic function from A∞ to B∞. Then,∨

{hn∞(gR
n∞ · u · fn∞) | n ∈ ω} ≤ u.

Furthermore, u is continuous iff equality holds. Moreover, u has a largest con-
tinuous function, ∨

{hn∞(gR
n∞ · u · fn∞) | n ∈ ω},

that approximates u.

This theorem indicates that, over SFP objects, monotonic functions and continu-
ous functions are very closely related. This theme is developed in the forthcoming
section on hyper continuous functions of SFP objects.

Maximal Elements of SFP Objects.

Theorem 3. Consider an SFP object A∞ that is the inverse limit of the fol-
lowing sequence of c–embeddings of finite cpo’s,

A0
f0−→ A1

f1−→ · · · fn−1−→ An
fn,−→ An+1

fn+1−→ · · · .

Then, every compact element of A∞ extends into a maximal element.

First Steps Towards Computably-Infinite Information Systems 163

Proof. Let e be a compact element of A∞. Then, for some k ∈ ω and ek ∈ Ak,

e = fk∞(ek).

Let mk be a maximal extension of ek in Ak. For each j 	 k, let mj+1 be a
maximal element of Aj+1 such that

mj = fj(mj+1).

Now, consider the following infinite tuple m,

m = < fR
0 · ... · fR

k−1(mk), ..., fR
k−1(mk),mk,mk+1,mk+2, ... > .

It is clear that m ∈ A∞. Furthermore, e ≤ m. Now assume x ≥ m in A∞. Then,
for all j 	 k,

fR
j∞(x) ≥ fR

j∞(m) = mj .

By the maximality of mj , we have,

fR
j∞(x) = mj .

Also for all j < k, we have,

fR
j∞(x) ≥ fR

j∞(m) = fR
j · ... · fR

k−1(mk),

and by the maximality of fR
0 · ... · fR

k−1(mk), we have,

fR
j∞(x) = fR

j · ... · fR
k−1(mk).

Therefore x = m. Hence, m is maximal in A∞.

Remark 1. Note that this extension result does not use the Axiom of Choice.
This indicates the intrinsic difference between the concept of actual infinity, e.g.,
infinite cpo’s, and the transcendental infinity of SFP objects. The former requires
Choice to reach maximal elements while the latter does not. This seems to be
a counterexample to Cantor’s fundamental postulate that the nature of infinite
objects is a uniform generalization of that of finite ones.

SFP Solutions to Recursive Domain Equations. As a standard result,
there is a non–trivial SFP object D∞ such that

D∞ ≈CSFP [D∞ → E]C ,

where E is an SFP object. We present an outline of the construction of such
D∞. Define finite cpo’s recursively as follows,

D0 =©,

where © is a trivial cpo with sole element ⊥©, and,

Dn+1 = [Dn → E]M.

164 Peter Apostoli, Akira Kanda, and Lech Polkowski

Define u0 : D0 → D1 and uR
0 : D1 → D0 as

u0(⊥©) =⊥D1 and uR
0 (x) =⊥© .

Define un+1 : Dn → Dn+1 and uR
n+1 : Dn+1 → Dn as

un+1(w) = [un → 1E](w) = 1E · w · uR
n = w · uR

n

uR
n+1(w) = [uR

n → 1R
E](w) = 1R

E · w · un = w · un.

It is clear that (u0, u
R
0) is a c-projection pair. Also (1E , 1R

E) = (1E , 1E) is a c-
projection pair. Therefore, (un, u

R
n) is a c-projection pair for all n ∈ ω. Since Dn

are all finite cpo’s, D∞ is an SFP object.
Clearly, for each x, y ∈ D∞ and for each n ∈ ω, we have

xn+1(yn) ∈ En = E.

Also, it can readily be seen that xn+1(yn), n ∈ ω forms a chain in E. Let

Γ : D∞ → [D∞ → E]C

be such that
Γ (x)(y) =

∨
n∈ω

xn+1(yn).

Then, Γ is a continuous function. Now, define

Ω : [D∞ → E]C → D∞

by
Ω(v) =

∨
n∈ω

fn∞(v(n)).

Then, Ω is a continuous function. Moreover,

Γ ·Ω = 1[D∞→E]C and Ω · Γ = 1D∞ .

4.3 Hyper-continuous Functions

The theory of maximal continuous approximations gives rise to a curious subclass
of monotonic functions. Suppose A and B are SFP objects. A subspace �A →
B� ⊆ [A → B]M is said to be normal iff for all m ∈ [A → B]M, cm ∈ �A→
B� where cm is the maximal continuous approximation of m.

Trivially, [A→ B]M is normal. Suppose m is an element of [A→ B]C . Then
cm = m ∈ [A → B]C . Thus [A → B]C also is normal. Clearly, [A → B]C is the
smallest normal space and [A→ B]M is the largest normal space. Moreover, any
subspace F such that

[A→ B]C ⊆ F ⊆ [A→ B]M

First Steps Towards Computably-Infinite Information Systems 165

is a normal space. In conclusion, the normal spaces are precisely subspaces in
between [A→ B]C and [A→ B]M, inclusive.

Suppose �A → B� is normal and X is a cpo. A monotonic function f :
�A → B� → X is said to be hyper continuous if for every m ∈ �A →
B�, f(m) = f(cm). In words, hyper continuous functions are those monotone
functions which can not distinguish m from cm. We denote the set of all hyper
continuous functions from �A→ B� to X by ≺ �A→ B� → X � .

In the following, we study some technical but elementary properties of hyper
continuous functions.

Lemma 5. Let �A → B� be normal and X be a cpo, then ≺ �A → B� →
X � is a cpo.

Proof. Let � : �A→ B� → X be such that �(f) =⊥ for all f ∈ �A→ B � .
Suppose �(m) = x. Clearly x =⊥, and hence �(cm) = x. Hence � is the smallest
hyper continuous function from �A→ B� to X. Suppose D is a directed subset
of ≺ �A→ B� → X � . Clearly it is a directed subset of [�A→ B� → X]M.
Let δ be the least upper bound of D in [�A→ B� → X]M. It suffice to show
that δ is hyper continuous. Suppose m ∈ �A→ B � . For each d ∈ D, we have
d(m) = d(cm). Hence,

δ(m) =
∨

d∈D

d(m) =
∨

d∈D

d(cm) = δ(cm).

We have established that δ is hyper continuous.

Lemma 6. Suppose f : �A → B� → X is hyper continuous. Moreover,
assume f is 1-1. Then �A→ B� = [A→ B]C .

Proof. Let m ∈ �A → B � . We have f(m) = f(cm). Since f is 1-1, m = cm.
Hence �A→ B� = [A→ B]C .

Corollary 2. Let �A → B� �= [A → B]C . Moreover, assume f : �A →
B� → X is hyper continuous. Then, f is not injective.

This Corollary establishes the following important result:

Theorem 4. There are continuous functions which are not hyper continuous.

Proof. Suppose �A → B� is normal and �A → B� �= [A → B]C . Moreover
�A→ B� is a cpo. Consider the identity function id�A→B� over �A→ B � .
It is injective and clearly continuous. Also �A → B� is a cpo. Hence f is not
hyper continuous.

Despite this general result, under a special circumstance, continuous func-
tions become hyper continuous. Indeed,

Lemma 7. We have

≺ [A→ B]C → X � = [[A→ B]C → X]M.

166 Peter Apostoli, Akira Kanda, and Lech Polkowski

Proof. For all m ∈ [A → B]C , we have m = cm. Hence all monotonic functions
from [A→ B]C to X are hyper continuous.

This also implies that whenever the normal space �A → B� is an SFP object
then all continuous functions from �A→ B� to a cpo X are hyper continuous.
Furthermore, this lemma implies the following important result,

Corollary 3. There are hyper continuous functions which are not continuous.

Proof. Let f : [A→ B]C → X be a monotone function which is not continuous.
This is hyper continuous but not continuous.

Corollary 4. Suppose A,B and X are SFP objects; Then,

≺ [A→ B]C → X � �M [[A→ B]C → X]C .

Proof. By the maximal continuous approximation theorem, we have

[[A→ B]C → X]C �M [[A→ B]C → X]M.

In what follows, we present a general method of forcing monotone functions
into hyper continuous functions and their relations.

Theorem 5. Assume �A → B� is normal, X is a cpo and f is a monotone
function from �A → B� to X. Then, there is a hyper continuous function
f̄ : �A→ B� → X such that f̄ ≤ f. If f is hyper continuous then f = f̄ .

Proof. Define f̄ : �A→ B� → X by

f̄(x) =
{
f(x) if x is continuous
f(cx) if x is monotone.

This is to say f̄(x) = f(cx). Suppose x, y ∈ �A → B� and x ≤ y. Let
x̃i = hi∞(gR

i∞ · x · fi∞) and ỹi = hi∞(gR
i∞ · y · fi∞). Then,

cx =
∨
i∈ω

x̃i, cy =
∨
i∈ω

ỹi

and, x̃i ≤ ỹi for all i ∈ ω. Hence, cx ≤ cy and so

f̄(x) = f(cx) ≤ f(cy) = f̄(y).

We have shown that f̄ is monotone. Moreover,

f̄(x) = f(cx) = f(ccx) = f̄(cx).

Hence f̄ is hyper continuous. Clearly f̄ ≤ f. If f is hyper continuous, then

f̄(x) = f(cx) = f(x).

First Steps Towards Computably-Infinite Information Systems 167

Corollary 5. Assume �A→ B� is normal and X is a cpo. We have

[�A→ B� → X]M �MCPO ≺ �A→ B� → X � .

Proof. Define

i : [�A→ B� → X]M → ≺ �A→ B� → X �

by
i(f) = f̄ .

Let j : ≺ �A→ B� → X � → [�A→ B� → X]M be inclusion. Clearly both
of them are monotone. We have j · i(f) = f̄ ≤ f. and i · j(f) = i(f) = f.

On the other hand, from the maximal continuous approximation theorem it
follows that when X is an SFP object and �A → B� = [A → B]C , for every
hyper continuous function f : �A→ B� → X, there is a continuous function
cf : f̄ : �A → B� → X such that cf ≤ f, and such forcing constitutes the
following embedding,

[�A→ B� → X]C �MCPO ≺ �A→ B� → X �
= [�A→ B� → X]M.

For normal spaces �Ai → Bi�, i = 1, 2, ...n, and a cpo X ; we can define the
concept of hyper continuous n–ary functions,

f : �A1 → B1 � × · · · × �An → Bn� → T

as monotone functions such that

f(x1, ..., xn) = f(cx1 , ..., cxn).

Similar embedding results as for binary and multi–ary cases in general hold.
Suppose �A→ B� and ≺ �A→ B� → X � are normal. Define a function

Ap : ≺ �A→ B� → X � ×� A→ B� → X as

Ap(f, d) = cf (cd).

Lemma 8. Ap is hyper continuous.

Proof. We have

Ap(f, d) = cf (cd) = ccf
(ccd

) = Ap(cf , cd).

Hence Ap is hyper continuous. This can be proved alternatively as follows: The
function ap given by

ap(f, d) = f(d)

is continuous. Hence Ap = ap is hyper continuous.

168 Peter Apostoli, Akira Kanda, and Lech Polkowski

4.4 Balancing a Hyper-continuous Function Space with Its Domain

We have seen that by restricting the members of a function space to continuous
functions, we can balance the size of the space of functions with the size of
its domain in the category CSFP of continuous functions over SFP objects. In
what follows, we show that this balancing of size can be achieved in the category
MCPO of monotone functions over cpo’s.

Suppose D∞ is a solution to

D ≈CSFP [D → E]C

in CSFP . Hence we can identify D∞ with [D∞ → E]C . Precisely speaking, we
ought to be explicit about the isomorphism pair for D∞ ≈CSFP [D∞ → E]C .
However, to avoid notational complexity, we identify d ∈ D∞ with the isomorphic
image of d, unless doing so causes confusion. Let M = ≺ D∞ → E �; then
M = [D∞ → E]M. Hence,

D∞ ≈CCPO [D∞ → E]C �M [D∞ → E]M = M,

and we have
[D∞ → E]C �M M.

Furthermore,
D∞ �M M.

To within the identification of D∞ with [D∞ → E]C , this embedding is the
inclusion map ic and the adjoint projection is the monotone map

c : m �→ cm.

Notice that, in general, M is a cpo but is not an SFP object.

Theorem 6. M ≈MCPO≺M → E � .

Proof. Let
(β : [D∞ → E]C →M,α : M → [D∞ → E]C)

be the embedding pair for

[D∞ → E]C �M M.

So, α(m) = cm and β is the inclusion ic : u �→ u. Define

Φ : M → ≺M → E � and Ψ : ≺M → E � →M

by
Φ(a) = a · α Ψ(b) = b � [D∞ → E]C .

If for m ∈M and compact x ∈ E, (Φ(a))(m) ≥ x, then

(Φ(a))(cm) = a(ccm) = a(cm) = (Φ(a))(m) ≥ x.

First Steps Towards Computably-Infinite Information Systems 169

Hence Φ(a) is hyper continuous and is indeed in ≺ M → E �. Moreover, for
a ≥ a′, and m ∈M , we have,

Φ(a)(m) = a(cm) ≥ a′(cm) = Φ(a′)(m).

Hence Φ is monotone. For all d ∈ D∞, we have,

(Ψ(b))(d) = b(d),

and, since b ∈ ≺ M → E � is monotone, Ψ(b) is monotone. So, Ψ(b) indeed is
in M. Moreover, if b ≥ b′ and then

(Ψ(b))(d) = b(d) ≥ b′(d) = (Ψ(b′))(d).

Hence Ψ is monotone. We have seen that Φ and Ψ are both well–defined. Now
we verify that they constitute an isomorphism pair. For each b ∈ ≺ M → E �
and m ∈M, we have,

(Φ · Ψ(b))(m) = (Ψ(b) · α)(m) = b(cm) = b(m).

So, Φ · Ψ = 1≺M→E�. Moreover, for each a ∈M and d ∈ D∞, we have.

(Ψ · Φ(a))(d) = Ψ(a · α)(d) = a · α(d) = a(cd) = a(d).

Therefore, Ψ · Φ = 1M .

The following immediate consequence of this isomorphism holds.

Lemma 9. For all m ∈M, we have,

∀x ∈ D∞.[m(x) ≤ m′(x)] iff ∀u ∈M.[Φ(m)(u) ≤ Φ(m′)(u)].

We may write m ≺ u � for Φ(m)(u). To be specific, we will denote the partial
ordering on M by ≤ and that on ≺ M → E � by . Therefore this lemma
states

m ≤ m′ iff Φ(m) Φ(m′).

Moreover, we have,

Theorem 7. For all d ∈ D∞ and m ∈M, m ≺ d � = m(cd). For each m ∈M,
let applym : M → E be

applym(x) = m ≺ x � .

It is clear that applym is hyper continuous. However, apply : M×M → E defined
as

apply((m,x)) = m ≺ x �

is monotone but not hyper continuous.

170 Peter Apostoli, Akira Kanda, and Lech Polkowski

4.5 The Construction of Mmax

The construction of the canonical PFS Mmax may now be given in three stages.
First, using the theory of SFP objects, we construct a continuum reflexive struc-
ture D∞ satisfying D∞ ≈CSFP [D∞ → T]C, where T is the domain of three–
valued truth,

true false
↖ ↗
⊥

under the information ordering ≤k and [D∞ → T]C is the space of all continuous
functions from D∞ to T under the information ordering associated with nested
partial characteristic functions. Here, the bottom value ⊥ represents a truth–
value gap. The truth value domain (T,≤k) is clearly an SFP object. In truth
theory, this structure (T,≤k) is used to construct term models of partial logic;
the third truth value ⊥ is successfully used as the semantic value of logically
paradoxical sentences [28, 35, 20].

The reason for adopting (T,≤k) as our domain of truth values is two– fold.
First, it is an SFP structure and hence we can use it as a fixed parameter in
recursive structural equations. Second, we can use ⊥ to capture the behavior
of logical paradoxes in set theory. There is another partial ordering associated
with the underlying set T . This partial ordering, called the truth ordering and
denoted by ≤t, is described by the following diagram,

true
↑
⊥
↑

false.

Following Kleene [33], the strong three–valued Boolean operators ∧,∨, and ¬
are defined on T by,

∧ : the greatest lower bound operation with respect to ≤t

∨ : the least upper bound operation with respect to ≤t

¬ : (true) = false
¬ : (false) = true
¬ : (⊥) =⊥ .

[7] introduces a complete set of truth functions for Kleene’s strong 3–valued
logic; here it suffices to observe that strong material conditional → and bicondi-
tional ↔ are monotone operations over (T,≤k) under their classical definitions
in terms of strong negation and disjunction (or conjunction). The quantifiers
∀, ∃ are introduced in terms of arbitrary meet

∧
and join

∨
on (T,≤t). These

connectives are monotone functions over (T,≤k) but fail to be continuous due to
their infinitary nature: D∞ is not closed under

∧
and

∨
. This hampers D∞ as

First Steps Towards Computably-Infinite Information Systems 171

a first order model for naive set theory4, as does the connected failure of strict
identity to be even monotone as a binary function D∞ ×D∞ → T.

However, we have seen that each monotone function f : D∞ → T is maxi-
mally approximated by a unique continuous function cf in [D∞ → T]C , whence
cf in D∞ under representation. This gives rise to the concept of hyper continuity.

Next, we have seen that the space M of monotone functions from D∞ to T
is a solution for the reflexive equation M ≈M ≺M → T �, where ≺M → T �
is the space of all hyper continuous functions from M to T . Throughout the rest
of this section, we consider a solution M = [D∞ → T]M for W ≈M≺W → T �
as discussed in the previous section. Note that a monotone function f : M → T
is hyper continuous just in case

cx = cy ⇒ f(x) = f(y) (x, y ∈M),

i.e., over M, the equivalence relation of sharing a common maximal continuous
approximation is a congruence for all hyper continuous functions. The isomor-
phism pair,

(Φ : M → ≺M → T �, Ψ : ≺M → T � →M),

yields application · ≺ · �: M ×M → T defined by

b(a) = Φ(b)(a) (a, b ∈M).

Any hyper continuous map f : M → T is represented by a unique object Ψ(f)
in M such that

Ψ(f)(a) = f(a).

Writing “x∈̄y” for “y ≺ x � ”, we pass to a universe (M, ∈̄) of partial (non–
bivalent) sets–in–extension similar to the set theories of Gilmore [28] and Scott
[57]. Let x ≡M y =df (∀m ∈M)(m∈̄x↔ m∈̄y). (M,≡M) is thus an equivalence
relation and a congruence for all hyper continuous functions from M to T. Al-
though x ≡M y is hyper continuous in both x and y, the hyper continuity of
indiscernibility will be established only in the context of the identity theory of
maximal elements of M , to which we now pass.

Maximal Elements of M . Since (M,≤) is a complete partial order, M is
closed under least upper bounds of ≤–chains. Hence, there are ≤–maximal ele-
ments of M by (an equivalent to) the Axiom of Choice. Let Mmax be the set of
maximal elements of M.

Theorem 8. Let a, b ∈Mmax. Then a ≺ b ��=⊥ .

4 Historically, this failure of quantificational continuity surfaced in the functional set-
ting of Church’s quantified λ-calculus in the form of Rossers’s Paradox [34], a func-
tional version of Russell’s Paradox.

172 Peter Apostoli, Akira Kanda, and Lech Polkowski

Proof. Suppose a ≺ b �= a(cb) =⊥ . Let X = {x ∈ D∞ | cb ≤ x}. To show that
X is a directed subset of D∞, suppose that d1, d2 ∈ X lack an upper bound in
(D∞,≤). Then there is d3 ∈ Dmax such that d1(d3) = true and d2(d3) = false.
Then, since cb ≤ d1, d2, we have cb(d3) =⊥ . Since b is maximal in M and d3 is
maximal in D∞, b(d3) �=⊥ by The Isolation Lemma. So we assume, without loss
of generality, that b(d3) = true; the case b(d3) = false is treated in a manner
similar to the following: Since d1(d3) = true by the continuity of d1 there is
a compact approximation e to d3 in D∞, i.e., e ≤ d3, such that d1(e) = true.
Define f : D∞ → T by

f(d) =
{
true if e ≤ d
cb(d) else, (d ∈ D∞).

To show that f is a function (i.e, it is single–valued), suppose there is a d ∈ D∞
such that e ≤ d and f(d) = cb(d) = false. Since cb ≤ d1, by monotonicity
d1(d) = false. But as d1(e) = true and e ≤ d1, by monotonicity d1(d) = true,
a contradiction. Thus, f is a function extending cb, i.e., cb < f. Indeed f is
monotone by construction. Further, we claim f is continuous: let {yα} be a
directed subset of D∞ and y = lim{yα}; we need to show there is an ordinal α
with f(y) = f(yα). If e ≤ y, then by the compactness of e, there is an ordinal
β ≤ α and yβ ∈ {yα} such that e ≤ yβ. Then,

f(yβ) = f(e) = f(y) = true

with the first and second identity by the montonicity of f, and the last by the
definition of f , whence yβ is the desired yα. Otherwise, f(y) = cb(y) and the
desired yα is given by the continuity of cb. This contradicts the maximality of cb

among continuous approximation to b. Thus, X is a directed subset of D∞.
(Note that, as D∞ is a cpo, X has a least upper bound d∗ ∈ D∞, whence

d∗ ∈ Dmax since X is upward closed under ≤. By the Isolation Lemma, a ≺
d∗ ��=⊥, since a is maximal in M and d∗ is maximal in Dmax.)

Define g : D∞ → T by

g(d) =
{
true if cb ≤ d
a(d) else, (d ∈ D∞).

Then g is a function as X is directed. f is monotone by construction. Further,
a < g, contrary to a’s maximality in (M,≤). Thus a ≺ b ��=⊥, as required.

We say a ∈ M is max–defined iff for all maximal elements m of M, a ≺
m ��=⊥ . By the previous Lemma, all elements of Mmax are max–defined.

Lemma 10. If f : M → T is hyper continuous, then Ψ(f) ∈M is max–defined
iff for all x ∈Mmax, f(x) �=⊥ .

Proof. Suppose Ψ(f) ∈M is max–defined. Then, for all x ∈Mmax,

f(x) = Φ · Ψ(f)(x) = Ψ(f) ≺ x � �=⊥ .

First Steps Towards Computably-Infinite Information Systems 173

Conversely, assume for all x ∈Mmax, f(x) �=⊥ . We then have

Ψ(f) ≺ x � = Φ · Ψ(f)(x) = f(x) �=⊥ .

Hence Ψ(f) is max–defined.

Theorem 9. (The Semi–lattice Lemma) Suppose a ∈ M is max–defined. Then
the collection,

{b ∈M | a ≤ b},

is an upper semi–lattice.

Corollary 6. Every element of M which is max–defined has a unique maximal
extension ma ∈M .

Proof. Since M is a cpo, any a ∈ M which is max–defined has a maximal
extension. Let a′ and a′′ be maximal extensions of a. Then, by The Semi–Lattice
Lemma, a′ ∨ a′′ exists in M ; whence a′ = a′′.

If a is max–defined, then the unique maximal extension ma of a agrees with a
on maximal elements. So, intuitively, we can consider ma the completion of a
with respect to non–maximal arguments.

There is a trivial but important consequence to this Corollary.

Theorem 10. Suppose m ∈ M is max–defined and m is the unique maximal
extension of m. Then, for all x ∈Mmax

m ≺ x � = m ≺ x � = Φ(m)(x).

Theorem 11. Suppose a′, a′′ ∈M are max–defined and they agree on maximal
elements of M. Then, they have the same maximal extension.

Corollary 7. Suppose a, a′ ∈ M are maximal and they agree on maximal ele-
ments of M. Then, a = a′.

Max–indiscernibility If a, a′ ∈M are such that for all m ∈Mmax,

m ≺ a � = m ≺ a′ �,

then we say a and a′ are max–indiscernible, in symbols a ≡max b. Obviously
if a = b then a and b are max–indiscernible. Moreover, a, a′ ∈ M are max–
indiscernible iff for all maximal elements f of ≺ M → T �, f(a) = f(b). It is
easy to verify that ≡max is an equivalence relation on M.

Theorem 12. Suppose a, a′ ∈ Mmax agree on maximal elements of M. Then,
they are max–indiscernible.

Proof. Immediate from Corollary 7.

174 Peter Apostoli, Akira Kanda, and Lech Polkowski

The max–indiscernibility relation restricted to maximal elements of M can
be represented by the following hyper continuous relation ≡̄max : M ×M → T ,

a ≡̄maxb = ∀m ∈Mmax.[m ≺ a � ↔ m ≺ b �].

In fact, we have,

Lemma 11. Let a, b ∈ Mmax. Then, a and b are max–indiscernible iff a ≡̄max

b = true. Moreover, a, b are not max–indiscernible iff a ≡̄max b = false.

Moreover,

Lemma 12. For all a ∈M, a ≡̄max ca = true.

Proof. For all m ∈Mmax, due to the hyper continuity of Φ(m), we have

m ≺ a � = Φ(m)(a) = m(ca) = Φ(m)(ca) = m ≺ ca � .

Due to the nature of ∀ and ↔, we have a ≡̄max b �=⊥ iff for all m ∈ Mmax,
m ≺ a � �=⊥ and m ≺ b � �=⊥ . The following lemma immediately follows,

Lemma 13. Let a, b ∈M. If a ≡̄max b =⊥ then, one of a or b is not maximal.

Proof. Suppose a≡̄maxb =⊥ . By the observation above, for some m ∈Mmax,

m ≺ a � �=⊥ or m ≺ b � �=⊥ .

Hence, either a or b is not maximal.

Remark 2. The converse of this result does not hold. Indeed, by Lemma 12, for
all a ∈Mmax −D∞, a≡̄maxca �=⊥, but ca is not maximal.

Theorem 13. Suppose m ∈ M is max–defined and m is the unique maximal
extension of m. Then m ≡max m.

Max–Coextensiveness If a ∈M and b ∈M agree on all elements m of Mmax, in
the sense that

a ≺ m � = b ≺ m �,
then we say a and b are max–coextensive, in symbols a ∼max b. This is equivalent
to saying that, for all maximal elements x of D∞,

a(x) = b(x).

It can readily be verified that ∼max is an equivalence relation on M. This relation
restricted to max–defined elements of M has the following monotone (but not
hyper continuous) representation,

a ∼max b = ∀m ∈Mmax.[a ≺ m � ↔ b ≺ m �].

Indeed, we have,

First Steps Towards Computably-Infinite Information Systems 175

Lemma 14. Suppose a and b are max–defined. Then, a and b are max–coex-
tensive iff a ∼max b = true. Moreover, a and b fail to be max–coextensive iff
a ∼max b = false.

Due to the nature of ∀ and ↔, we have a ∼max b �=⊥ iff for all m ∈Mmax, a ≺
m � �=⊥ and b ≺ m � �=⊥ . This establishes the following lemma,

Lemma 15. Suppose a, b ∈M. Either a or b is not max–defined iff

a ∼max b =⊥ .

We call ≡max and ∼max restricted to Mmax the indiscernibility and the co–
extensiveness relations over Mmax, respectively.

Theorem 14. Let a, b ∈Mmax. Then a ∼max b iff a = b.

Theorem 15. Let a, b ∈Mmax. Then a ≡max b iff ca = cb.

The indiscernibility relation≡max is thus coarser than co–extensiveness ∼max,
which is strict identity = over Mmax and the restriction of a monotone function
from M ×M to T to maximal elements of M .

(Mmax, ≡max). (Mmax,≡max) is a “reduct” of (M,≡M) in the sense that it
preserves the discriminative capacities of M : if a and b ∈ Mmax fail to be
discerned by elements of Mmax, then they fail to be discerned by elements of M ,

a ≡max b⇔ a ≡M b (a, b ∈M),

a corollary of the theorem that, under ≤, every element a of M which is max–
defined has a unique ≤ maximal extension ma in Mmax which agrees with a on
all elements of Mmax i.e., a ∼max ma.

A subset X of Mmax is exact iff X is closed under ≡max. Throughout this
section “X” ranges over exact subsets. We now establish that:

C(≡max) ≈ Mmax � 2Mmax .

Let {Mmax → 2} be the family of all characteristic functions fX of exact
subsets X of Mmax. For each exact X ⊆Mmax, let g(X) : M → T be the hyper
continuous function extending fX by assigning the function value ⊥ to all non
maximal arguments in M,

g(X)(m) =
{
f(m) if m ∈Mmax

⊥ else, (m ∈M).

Then fX ≤ g(X). Since f is max–defined, Ψ(g(X)) has a unique maximal ex-
tension Ψ(g(X)) ∈M .

Define l : {Mmax → 2} →Mmax by

l(fX) = Ψ(g(X)).

176 Peter Apostoli, Akira Kanda, and Lech Polkowski

Adjoint–wise, define r : Mmax → {Mmax → 2} by

r(m) = Φ(m) � Mmax (m ∈Mmax).

Then l(r(m)) = m (m ∈ Mmax), whence (l, r) is an isomorphism pair of Mmax

and {Mmax → 2}. Let G =df (Mmax,≡max, �·�, �·�), where

�·� : 2Mmax →Mmax, �·� : Mmax → 2Mmax

are defined by �Y � = l(Cl(Y)) (Y ∈ 2Mmax), and �m� = the subset X of Mmax

whose characteristic function is r(m) (i.e., such that fX = r(m)) (m ∈Mmax).
Then G is a PFS. The cardinality of Mmax is that of 2R (hypercontinuum)

but merely that of 2ω (continuum) up to ≡max .
See [2] for a proof that G is a plenum satisfying DoD.

4.6 Graded Indiscernibility in Mmax

The Maximum Ccontinuous Approximation Theorem asserts that every Dn+1 =
[Dn → T]M induces the following indiscernibility En+1 on Mmax. Let x, y ∈
Mmax and let cx, cy be maximum continuous approximations of x, y respectively.
Let dx, dy the projection of cx, cy to Dn+1. Then En+1 ⊆ Mmax ×Mmax is the
equivalence relation defined by

xEn+1y ⇔ dx = dy (x, y ∈Mmax).

Then En+1 ⊆ En; {En} is a descending chain of equivalence relations on Mmax

approximating ≡max . This is an interesting example of an “infinitary informa-
tion system” in the sense of [51], to which we now turn.

5 Graded Indiscernibility and Metric

Polkowski [51] induced a graded indiscernibility relation over a universe U from
an infinite sequence of attributes ai via the conversion of an attribute ai to an
equivalence relation INDa such that

INDai(x, y)⇔ ai(x) = ai(y).

Such sequences of attributes are called “infinite information systems”.
[51] considers a descending chain of equivalence relations {Ei} over U such

that Ei+1 ⊆ Ei. We call the equivalence relation E∞ =
⋂

i∈ω Ei an indiscerni-
bility relation graded by {Ei}. By [x]i we mean the equivalence class {y : xEiy}.
It is clear that

[x]n+1 ⊆ [x]n.

A subset T ⊆ U is n–complete (or n–exact) if

T =
⋃
{[x]n : x ∈ T }.

First Steps Towards Computably-Infinite Information Systems 177

Otherwise, T is said to be n–rough. For each n, the family,

Bn = {[x]n : x ∈ U},

is the partition of U induced by the equivalence relation En and it forms a base
for a Polkowski-Pawlak topology Πn over U. It is clear that open sets in this
topology are precisely n–exact sets. Given a subset T ⊆ U, it is easy to verify
that T is n–exact iff

Cln(T) = Intn(T),

where CLn(T) and INTn(T) are closure and the interior in Πn of T , respectively.
We have

[x]n =
[⋃

{[z]n+1 : z ∈ [x]n − [x]n+1}
]
∪ [x]n+1.

So, all (basic) open sets in Πn are open in Πn+1. That is Πn+1 is finer than Πn.
Similarly, all (basic) open sets in Πn are open in Π∞ and Π∞ is finer than Πn.

Having established that Π∞ is an upper bound of the chain Πn ⊆ Πn+1, it
is natural to “expect” that

Π∞ =
⋃
n∈ω

Πn,

which we will examine in what follows.
Let

BA =
⋃
n

Bn = {[x]n : n ∈ ω, x ∈ U}.

It can readily be shown that BA forms a base for a topology ΠA over U. It is
clear that all (basic) open sets of Πn are open in ΠA. So, ΠA is finer than Πn.

It is clear that
ΠA ⊇

⋃
n∈ω

Πn

in lieu of the definition of B. Conversely assume X is open in ΠA. Then, for
some u ⊆ ω and w ⊆ U,

X = ∪X ,

where X = {[x]n : n ∈ u, x ∈ ω}. For each n, let

Xn = {[x]n : x ∈ w}.

Then ⋃
Xn ∈ Πn,

and
X =

⋃
n∈ω

⋃
Xn ∈

⋃
n∈ω

Πn.

We have shown that
ΠA =

⋃
n∈ω

Πn.

178 Peter Apostoli, Akira Kanda, and Lech Polkowski

So, ΠA is the least upper bound of the chain Πn ⊆ Πn+1, n ∈ ω. It now follows
that

ΠA ⊆ Π∞.

This can be verified by the following direct argument too: As we have

[x]n =
[⋃

{[z]∞ : z ∈ [x]n − [x]∞}
]
∪ [x]∞,

[x]n is open in Π∞. Conversely,

[x]∞ =
⋂
n∈ω

[x]n.

We know that (Πn,⊆) is a complete lattice, as (Πn,∪,∩,¬,∅, U) is a complete
Boolean algebra, and hence, (⋃

n

Πn,⊆
)

is a complete lattice with the top element U and the bottom element ∅. There-
fore,

⋂
n∈ω[x]n ∈

⋃
n Πn. We have shown that

ΠA ⊇ Π∞.

In summary,

Proposition 3. ΠA =
⋃

n∈ω Πn = Π∞.

This allows us to introduce the following definition: T ⊆ U is ΠA–exact iff
it is Π∞-exact, i.e.,

T = ∪{[x]∞ : x ∈ T }.
It immediately follows that T is ΠA-exact iff

T = ClΠA(T) = IntΠA(T),

where ClΠA(T) and IntΠA(T) are the closure and the interior of T with respect
to the topology ΠA. A subset of U which is not ΠA-exact is called ΠA–rough.

For each n ∈ ω, we define a function dn : U × U → R+, where R+ is the
collection of nonnegative real numbers, as follows,

dn(x, y) =
{

1 if [x]n �= [y]n
0 otherwise.

Then,
dn(x, x) = 0, dn(x, y) = dn(y, x).

We now define a function d : U × U → R+ as

d(x, y) =
∑

n

10−n · dn(x, y),

where the convergence of the right side of the equation can readily be verified.
It immediately follows that d is a pseudo–metric on U. [So is dn.] This pseudo–
metric d contains the information on when x and y became indiscernible in the
chain Ei. In particular,

First Steps Towards Computably-Infinite Information Systems 179

Lemma 16. d(x, y) = 0 whenever xE∞y.

Remember that as (ΠA, U,∅,∪,∩,¬) is a complete Boolean algebra, all open
sets in ΠA are closed and vice versa. Now, according to Hausdorff’s account, the
following defines a metric on ΠA :

dH(K,L) = max{max
x∈K

dist(x, L),max
x∈L

dist(x,K)},

where
dist(x, L) = min{d(x, z) : z ∈ L}.

It is well–known that every ΠA-rough set X can be characterized by a pair
of ΠA-exact sets (Q, T) where

Q = ClΠA(X), T = U − IntΠA(X).

Given two ΠA-rough sets X1, X2, we can define the distance metric D by

D(X1, X2) = max{dH(Q1, Q2), dH(T1, T2)}.
If X is ΠA-exact, then,

Q = ClΠA(X) = X, T = U − IntΠA(X) = U −X.

It can readily be verified that

dH(Q1, Q2) = dH(X1, X2) = dH(T1, T2).

Therefore, D(X1, X2) = dH(X1, X2).
Let dH × dH : ΠA ×ΠA → R+ be such that

dH × dH((K,K ′), (L,L′)) = dH(K,L) + dH(K ′, L′).

Then,

dH × dH((K,K ′), (M,M ′)) = dH(K,M) + dH(K ′,M ′)
≤ dH(K,L) + dH(L,M) + dH(K ′, L′) + dH(L′,M ′)
= dH × dH((K,K ′), (L,L′))

+dH × dH((L,L′), (M,M ′)).

We have shown that dH × dH is a metric on ΠA ×ΠA.

Proposition 4. ∪,∩ : ΠA × ΠA → ΠA are continuous maps with respect to
dH × dH and dH.

Proposition 5. ¬ : ΠA → ΠA is continuous with respect to dH and dH.

Let D ×D : 2U × 2U → R+ be such that

D ×D(X,Y) = D(X) + D(Y).

Then, it is a metric on 2U × 2U . Furthermore,

Proposition 6. ∪,∩ : 2U×2U → 2U are continuous maps with respect to D×D
and D.

Proposition 7. ¬ : 2U → 2U is continuous with respect to D and D.

180 Peter Apostoli, Akira Kanda, and Lech Polkowski

6 Metric and Measure on PFS

In the sequel, the technique of inducing metrics over the subsets of infinitary
information systems is applied to induce a metric on the universe of a graded
PFS. There is an natural way of inducing a graded indiscernibility relation in the
context of a PFS. The above construction of the canonical PFS Mmax induces
a graded indiscernibility relation over the universe of Frege sets. This and the
metric it induces on the universe of Mmax can be captured by the following
elaboration of the definition of a PFS.

Let F = (U,E, �·�, �·�) be a PFS and assume that E is the graded indis-
cernibility relation over U induced by a descending chain En, n ∈ ω. One now
has a metric dH over ΠA. The retraction mapping �·� maps ΠA–exact sets onto
U and hence induces a metric dh over U such that

dh(�Q�, �P�) = dH(Q,P).

Naturally, 2U is equipped with the metric D. As observed earlier, dH is the
restriction of D to ΠA–exact sets. Then F is graded by En, n ∈ ω and called a
graded PFS.

Note that:

1. �·� is continuous with respect to D and dh,
2. �·� is continuous with respect to dh and D.

Assume F is graded by En, n ∈ ω. It follows that

Proposition 8. If X ≡ Y , then dH(�X�, �Y �) = 0.

Given an element X of 2U , we say it is an infinitesimal if

dH(X,∅) = 0.

It immediately follows that for any X,Y ∈ 2U ,

dH(X − Y,∅) = 0⇔ dH(X,Y) = 0.

We define a norm on every element X of 2U as follows,

‖X‖ = dH(X,∅).

It can readily be shown that ‖X‖ defines a measure on 2U .

7 Inversely Graded Indiscernibility and Metric

Given a set U, consider an ascending chain of equivalence relations {Ei} over U
such that Ei ⊆ Ei+1. We call the equivalence relation E∞ =

⋃
i∈ω Ei an indis-

cernibility relation inversely graded by {Ei}. By [x]i we mean the equivalence
class {y : xEiy}. It is clear that

[x]n ⊆ [x]n+1.

First Steps Towards Computably-Infinite Information Systems 181

We have
[x]n+1 =

[⋃
{[z]n : z ∈ [x]n+1 − [x]n}

]
∪ [x]n.

So, all (basic) open sets in Πn+1 are open in Πn. This is to say

Πn+1 ⊆ Πn.

Similarly, all (basic) open sets in Π∞ are open in Πn, i.e.,

Π∞ ⊆ Πn

for all n ∈ ω.
Note that as the Pawlak topology is quasi–discrete, the collection of the

cogranules, i.e.,
Cn = {U − [x]n : x ∈ U},

is a cobase base for a topology on U. Let

CR =
⋂
n∈ω

Cn.

It can readily be shown that CR forms a cobase for a topology ΠR over U.
As the Pawlak topology is quasi–discrete and is a complete Boolean algebra,

in lieu of duality, we have

Proposition 9. ΠR =
⋂

n∈ω Πn = Π∞.

This allows us to introduce the following definition: T ⊆ U is ΠR–exact iff
it is Π∞–exact, i.e.,

T = ∪{[x]∞ : x ∈ T }.
It immediately follows that T is ΠR–exact iff

T = ClΠR(T) = IntΠR(T),

where ClΠR(T) and IntΠR(T) are the closure and the interior of T with respect
to the topology ΠR. A subset of U which is not ΠR-exact is called ΠR–rough.

For each n ∈ ω, we define a function dn : U × U → R+, where R+ is the
collection of nonnegative real numbers, as follows:

dn(x.y) =
{

0 if [x]n = [y]n
1 otherwise.

Then
dn(x, x) = 0, dn(x, y) = dn(y, x).

Now define a function d : U × U → R+ as

d(x, y) =
∑

n

10−n · dn(x, y),

where the convergence of the right side of the equation can readily be verified.
It immediately follows that d is a pseudo-metric on U. (So is dn.) This pseudo-
metric d contains the information determining when x and y became discernible
in the chain Ei. In particular,

182 Peter Apostoli, Akira Kanda, and Lech Polkowski

Lemma 17. d(x, y) = 0.1 = 1
9 whenever ¬(xE∞y).

Recall that, since (ΠR, U,∅,∪,∩,¬) is a complete Boolean algebra, all open
sets in ΠR are closed and vice versa. According to Hausdorff’s account, the
following defines a metric on ΠR,

dH(K,L) = max{max
x∈K

dist(x, L),max
x∈L

dist(x,K)}

where
dist(x, L) = min{d(x, z) : z ∈ L}.

It is well–known that every ΠR–rough set X can be characterized by a pair
of ΠR–exact sets (Q, T) where

Q = ClΠR(X), T = U − IntΠR(X).

Given two ΠR-rough sets X1, X2, define the distance metric D by

D(X1, X2) = max{dH(Q1, Q2), dH(T1, T2)}.
If X is ΠR–exact then,

Q = ClΠR(X) = X, T = U − IntΠR(X) = U −X.

It can readily be verified that

dH(Q1, Q2) = dH(X1, X2) = dH(T1, T2).

Therefore, D(X1, X2) = dH(X1, X2).
Let dH × dH : ΠR ×ΠR → R+ be such that

dH × dH((K,K ′), (L,L′)) = dH(K,L) + dH(K ′, L′).

Then,

dH × dH((K,K ′), (M,M ′)) = dH(K,M) + dH(K ′,M ′)
≤ dH(K,L) + dH(L,M) + dH(K ′, L′) + dH(L′,M ′)
= dH × dH((K,K ′), (L,L′))

+dH × dH((L,L′), (M,M ′)).

We have shown that dH × dH is a metric on ΠR ×ΠR.

Proposition 10. ∪,∩ : ΠR ×ΠR → ΠR are continuous maps with respect to
dH × dH and dH .

Proposition 11. ¬ : ΠR → ΠR is continuous with respect to dH and dH .

Let D ×D : 2U × 2U → R+ be such that

D ×D(X,Y) = D(X) + D(Y).

Then, D ×D is a metric on 2U × 2U . Furthermore,

Proposition 12. ∪,∩ : 2U × 2U → 2U are continuous maps with respect to
D ×D and D.

Proposition 13. ¬ : 2U → 2U is continuous with respect to D and D.

First Steps Towards Computably-Infinite Information Systems 183

8 An Example of Inversely Graded Indiscernibility

Let LR be the first order language of real numbers. LetR be the standard model
of LR and let R be the universe of R. X ⊆ R is said to be definable iff there is
a formula A(x) of LR such that

X = {x ∈ R | R
 A(x)}.

Let X ⊆M and D(X) be the family of all definable subsets of X. F ⊆ D(X) is
a d-filter on X iff

X ∈ F
A,B ∈ F ⇒ (A ∩B) ∈ F
A ∈ F , A ⊆ B ∈ D(X)⇒ B ∈ F
∅ /∈ F .

It is clear that if F is a d-filter on X then,

A ∈ F ⇒ (X − A) /∈ F .

Let F be a d-filter on X . If

A ∈ 2X ⇒ A ∈ F ∨ (X −A) ∈ F

then F is said to be an ultra d–filter on D(X).
Let F ⊆ D(X); F is d–consistent iff the closure of F under finite intersections

does not contain ∅ as an element. Let

UC(F) =df {Y ∈ D(X) | (∃F ∈ F)(F ⊆ Y)}.

Lemma 18. Let F be a d–filter on X. Let Y ⊆ X. Suppose {Y } ∪ F is not
d–consistent. Then {X − Y } ∪ F is d–consistent.

Since D(X) is countably infinite, it may be enumerated as D(X)i : i < ω.

Lemma 19. (Lindenbaum) Every d–filter F has an ultra d–filter extension.

Proof. Define an infinite sequence,

Γ0 ⊆ Γ1 ⊆ . . . ⊆ Γk ⊆ . . . ⊆ Γω,

of families of definable subsets of X by

Γ0 = F ,
Γk+1 = UC(Γk ∪ {D(X)k+1}) if this Γk ∪ {D(X)k+1} is d-consistent

Γk otherwise,

and
Γ∞ = ∪{Γk | k < ω}.

184 Peter Apostoli, Akira Kanda, and Lech Polkowski

Then, it follows that Γω is a maximal d–filter which contains the d–filter F .
Furthermore, Γk, k < ω are all filters. Let {Si | i ∈ D(X)} be a D(X)-family of
sets. On the product,

Πi∈ISi = {g : D(X)→ ∪i∈ISi | for all i ∈ ω, g(i) ∈ Si},

we define the following equivalence relation,

g1 ≡Γk
g2 ⇔ {i ∈ D(X) | g1(i) = g2(i)} ∈ Γk, k ∈ ω.

It is clear that ≡Γk
, k ∈ ω is a descending ω–sequence of equivalence relations

and,
g1 ≡Γ∞ g2 ⇔ {i ∈ D(X) | g1(i) = g2(i)} ∈ Γ∞,

is the limit of it.
Then each cofinite set is definable (even in first order Peano arithmetic).

Therefore the collection of cofinite sets F is a d–filter. In lieu of Lindenbaum’s
Lemma, there is an ω–chain,

F = Γ0 ⊆ Γ1 ⊆ . . . ⊆ Γk ⊆ . . . ⊆ Γ∞,

of filters approximating an ultra–filter Γ∞. Define an ultra–power R∗ of R by

R∗ = Rω/F .

Γ∞ yields an indiscernibility relation≡Γ∞onR∗ inversely graded by ≡Γk
, k ∈ ω.

This in turn induces a metric on R∗ as discussed in the previous section.

9 Metrically Open Subsets of a Graded Plenum

We conclude our study of exact subsets of infinite information systems with an
open problem in the theory of the graded plenum Mmax.

Let (U,E, �·�, �·�) be a plenum graded by En, n ∈ ω. The metric d(x, y) :
U × U → R induced by the graded indiscernibility relation on U gives rise to
the metric space (U, d). The collection of all d–open balls forms a basis for a
topology (U, τd) called the metric topology of (U, d).

By effectivizing the SFP construction of D∞ as in effective domain theory
[30], we can single out the computable elements of D∞ and thence define “com-
putable” elements of Mmax as those whose maximal continuous approximation
are computable. As effective DT indicates, these computable elements are now
represented by Gődel numbers (programs) and we can define “computable exact
subset of Mmax” (equivalently, “computable element of Mmax”) by effectively
enumerating these programs. The recursion theorist A.I. Mal’cev [40] proposed
two different versions of the notion of a “computable program set” in the context
of numeration theory, the general theory of Gődel numberings [17, 18]. The one
of interest to RST deals with “index sets” − sets of natural numbers which are
closed under the relation of program equivalence − and “extensional” program

First Steps Towards Computably-Infinite Information Systems 185

transformations − effective number theoretic functions which preserve program
equivalence. Accordingly, this extensional recursion theory identifies the com-
putable program sets with the r.e. index sets, i.e., r.e. exact sets.

Given an acceptable indexing of r.e. subsets of natural numbers, Myhill–
Sheperdson’s [41] result in recursion theory states that every extensional program
transformation is an effective enumeration operator. (As a corollary, we have
the result by Rice–Shapiro [53] that every r.e. index set is upward closed under
subset inclusion). This and Thomas Streicher [61], and Yu Ershov’s [19] result
in effective DT established that extentional computability entails continuity.

It thus appears natural to conjecture that all computable elements of Mmax

are metric open.
As RST passes from finite (definitely computable) to infinite information

systems it may be desirable to consider the first steps, towards computably
infinite information systems.

References

1. Aczel P. [1980]: “Frege Structure and the Notions of Proposition, Truth and Set”. In
Eds. J. Barwise, H. Keisler and K. Kunen, The Kleene Symposium, North-Holland.
pp. 31-59.

2. Apostoli P. and A. Kanda [2000]: “Approximation Spaces of Type-Free Sets,” Proc.
of RSCTC’00, Eds. W. Ziarko, Y. Y. Yao. Lecture Notes in Artificial Intelligence
(LNAI) 2005. Eds. J. G. Carbonell, J. Siekmann, Springer-Verlag. pp. 98-105.

3. Apostoli P., Kanda, A. Parts of the Continuum: towards a modern ontology of
science, forthcoming in Poznan Studies in the Philosophy of Science and the Hu-
manities, Ed. Leszek Nowak.

4. Apostoli P., Kanda, A. “Rough Sets and the Continuum.” Submitted to Advances
in Rough Sets J., Eds-in-Chief J. Peters and A. Skowron. Springer LNAI subseries.

5. Bell J. L. [1995]: “Type Reducing Correspondences and Well-Orderings: Frege’s
and Zermelo’s Constructions Re-examined,” J. of Symbolic Logic, 60.

6. Bell J. L. [2000]: “Set and Classes as Many,” J. of Philosophical Logic, 29 (6), pp.
595-681.

7. Blamey S. [1986]: “Partial Logic,” Handbook of Philosophical Logic, Eds. Gabbay
D. and Guenthner F., D. Reidel Publishing Company, III, pp. 1-70.

8. Boolos G. [1987b]: “On the Consistency of Frege’s Foundations of Arithmetic,” In
Ed. J. L. Thomson, On Being and Saying: Essays for Richard Cartwright, pp. 3-20.
Cambridge, Mass., The MIT Press. Reprinted in [10, Boolos 1998].

9. Boolos G. [1990b]: “The Standard of Equality of Numbers,” in Ed. Boolos G.,
Meaning and Method: Essays in Honor of Hilary Putnam, Cambridge: Cambridge
University Press. Reprinted in [10, Boolos 1998].

10. Boolos G. [1998]: Logic, Logic, and Logic, Ed. R. C. Jeffrey. Cambridge, Mass.:
Harvard University Press.

11. Cantor G. [1883]: “Uber unendliche, lineare Punktmannigfaltigkeiten, 5”, Mathe-
matische Annalen 21, pp. 545-86. In [13, pp. 165-209]. A seperate edition of this,
with a preface, was printed under the title Grundlagen einer allegmeinen Mannig-
faltigkeitslehre. Ein mathematisch-philosophischer Versuch in der Lehre des Un-
dendliche. Tuebner, Leipzig.

186 Peter Apostoli, Akira Kanda, and Lech Polkowski

12. Cantor G. [1895]: “Beitrag̈e zur Beründung der transfiniten Mengenehre, I, II”
Mathematische Annalen 46, pp. 481-512; 49, pp. 207-46. In [13, pp. 282-56].

13. Cantor G. [1962]: Gesammelte Abhandlungen Mathenatischen und Philosopischen
Inhalts. Ed. by E. Zermelo. Berlin: Springer; reprinted, Hildesheim: Olms.

14. Cattaneo G. [1998]: “Abstract Approximation Spaces for Rough Theories”, Rough
Sets in Knowledge Discovery: Methodology and Applications, Eds. L. Polkowski, A.
Skowron. Studies in Fuzziness and Soft Computing. Ed. J. Kacprzyk. 18 Springer.

15. Cocchiarella N. [1972a]: “Whither Russell’s Paradox of Predication?”, Logic and
Ontology, 2 of Studies in Contemporary Philosophy, Ed. K. Muntz, New York
University Press.

16. Cocchiarella N. [1972b]: “Properties as Individuals in Formal Ontology”, NOÛS,
VI, No. 2, May, pp. 165-188.

17. Ershov J. L. [1973]: “Theorie der Numerierungen I”, Zeitschrift f. Math. und
Grundlagen d. Mathematik, 19 pp. 289-388.

18. Ershov J. L. [1975]: “Theorie der Numerierungen II”, Zeitschrift f. Math. und
Grundlagen d. Mathematik, 21 pp. 473-584.

19. Ershov J. L. [1977]: “Model C of Partial Continuous Functionals”, Proc. Logic
Colloquium, (1976). North Holland, Amsterdam, pp. 455-467.

20. Feferman S. [1984]: “Towards Useful Type-free Theories I”. Journal of symbolic
Logic, 49, pp. 75-111.

21. Frege G. [1884]: Die Grundlagen der Arithmetik. Eine logisch mathematische Un-
tersachung uber den Begridd der Zahl. Breslau: William Koebner. English trans-
lation by J. L. Austin, The Foundations of Arihmetic. Oxford, Basil Blackwell
(1950).

22. Frege G. [1893, 1903]: Grundgesetze der Arithmetik, 1, 2, Jena: Verlag Hermann
Pohle. Reprinted at Hildesheim. Volume 1 is partially translated in [26]. Vol. 2 is
translated in part in [27].

23. Frege G. [1902]: “Letter to Russell”, in [62, pp. 126-128].
24. Frege G. [1903a]: “The Russell Paradox”, in Frege, Gottlob, [27], pp. 127-143.

Abridged and reprinted in Irvine, A.D., Bertrand Russell: Critical Assessments,
vol. 2, London: Routledge, (1999), 1-3.

25. Frege G. [1903b]: “Concerning Zermelo’s Independent Discovery of Russell’s Para-
dox”, in Frege Against the Formalists.

26. Frege G. [1960]: Translations from the Philosophical Writings of Gottlob Frege.
Edited and translated by Peter Geach and Max Black. Oxford: Basil Blackwell.

27. Furth M. [1964]: The Basic Laws of Arithmetic: Expositition of the system, Berke-
ley: University of California Press.

28. Gilmore P.C. [1986]: “Natural Deduction Based Set Theories: A New Resolution
of the Old Paradoxes”, J. of Symbolic Logic, 51, pp. 394-411.

29. Kanda A. [1979]: “When are Two Effectively given Domains Equal?”, Proc. of
the 4th GI Theoretical Computer Science Symposium, Lecture Notes in Computer
Science (LNCS) textbf67 (with D. Park).

30. Kanda A. [1979]: “Fully Effective Solutions of Recursive Domain Equations”, Proc.
of the 8th International Symposium on Mathematical Foundations of Computer
Science, LNCS 74.

31. Kanda A. [1981]: “Constructive Category Theory”, Proc. of the 10th International
Symposium on Mathematical Foundations of Computer Science, LNCS 118.

32. Kanda A. [1988]: “Recursion Theorems and Effective Domains”, Annals of Pure
and Applied Logic, 38, pp. 289-300.

33. Kleene S. C. [1952]: Introduction to Metamathematics, North-Holland Publishing
Co., Amsterdam.

First Steps Towards Computably-Infinite Information Systems 187

34. Kleene S. C. and Rosser J. S. [1935]: “ The Inconsistency of Certain Formal Logics”,
Annals of Mathematics, 36, pp. 630-636.

35. Kripke S. [1963]: “Semantical Analysis of Modal Logic I. Normal Modal Proposi-
tional Calculi”. Zeitschrift f. Math. Logik und Grundlagen d. Math., 9.

36. Leśniewski S. [1992]: “Foundations of the General Theory of Sets”, in Eds. Surma
Srzednicki and Barnett Rickey, Stanislaw Leśniewsky Collected Works. Kluwer Aca-
demic Publishers Dordrecht, pp. 128-173.

37. Lewis D. [1979]: “Counterpart Theory and Quantified Modal Logic”, J. of Philos-
ophy 65 (1968), pp. 113-26. Reprinted in Michael J. Loux, Ed., The Possible and
the Actual (Cornell U.P.).

38. Lewis D. K. [1986]: On the Plurality of Worlds. Oxford: Basil Blackwell.
39. Lewis D. K. [1991]: Parts of Classes. Oxford: Basil Blackwell.
40. Mal’cev A. I. [1971]: The Mathematics of Algebraic Systems, North-Holland, Am-

sterdam.
41. Myhill J., Shepardson J.C. [1955]: “Efective operations on partial recursive func-

tions”, Zeitschrift f. Math. Logik und Grundlagen d. Mathematik textbf1 pp. 310-
317.

42. Orlowska E. [1985]: “Semantics of Vague Concepts”, in Foundations of Logic and
Linguistics, Problems and Their Solutions, Eds. G. Dorn and P. Weingartner,
Plenum Press, NewYork.

43. Parsons C. [1983]: “Frege’s Theory of Number”, in Parsons C., Mathematics in
Philosophy: Selected Essays. Ithaca: Cornell University Press.

44. Pawlak Z. [1982]: “Rough Sets, Algebraic and Topological Approaches”, Interna-
tional Journal of Computer and Information Sciences, 11, pp. 341-366.

45. Pawlak Z. [1991]: Rough Sets: Theoretical aspects of reasoning about data. Kluwer,
Dordrecht.

46. Pawlak Z. [1998]: “Rough Set Elements”, Rough Sets in Knowledge Discovery:
Methodology and Applications, Eds. L. Polkowski, A. Skowron. Studies in Fuzziness
and Soft Computing. Ed.: J. Kacprzyk. 18, Springer.

47. Plotkin G. [1976]: “A Power Domain Construction”, SIAM Journal on Computing,
5, pp. 452-487.

48. L. Polkowski, A. Skowron [1996]: “Rough mereology: A new paradigm for approx-
imate reasoning”, Journal of Approximate Reasoning 15(4), pp. 333-365.

49. L. Polkowski, A. Skowron [1999]: “Towards adaptive calculus of granules”, In L.A.
Zadeh and J. Kacprzyk Eds., Computing with Words in Information/Intelligent
Systems 1: Foundations, Springer- Verlag Group (Physica-Verlag), Studies in Fuzzi-
ness and Soft Computing 30, pp. 201-228.

50. L. Polkowski, A. Skowron [2000]: “Rough-neuro computing”, Proc. of RSCTC’00,
Eds. W. Ziarko, Y. Y. Yao. LNAI 2005.

51. Polkowski L. [2002]: “On Asymptotic Properties of Rough-Set-Theoretic Approxi-
mations. Fractal Dimension, Exact Sets, and Rough Inclusion in Potentially Infinite
Information Systems”, RSCTC 2002. LNAI 2475.

52. Polkowski L. [2002]: “On Fractal Dimension in Information Systems: Towards exact
sets in infinite information systems”, Fundamenta Informaticae 50, pp. 3-4.

53. Rice, H. G. [1956]: “On Completely recursively enumerable classes and their key
arrays”, J. of Symbolic Logic 21, pp. 304-308.

54. Robinson A. [1970]: Non-Standard Analysis, North-Holland, Amsterdam.
55. Russell B.A.W. [1902]: “Letter to Frege”, in [62, pp. 124-125].
56. Scott D. [1971]: “Continuous lattices”, Lecture Notes in Math., 274, Springer,

Berlin (1972). pp. 97-136.

188 Peter Apostoli, Akira Kanda, and Lech Polkowski

57. Scott D. [1975]: “Combinators and Classes”, LNCS, 37, pp. 1-26.
58. Scott D. [1976]: “Data Types as Lattices,” SIAM Journal on Computing, 5, pp.

522-587.
59. Smyth M. [1978]: “Power Domains”, Journal of Computer and Systems Science,

16, pp. 23-36.
60. Smyth M. and G. Plotkin [1977]: “The Categorical Solutions of Recursive Domain

Equations”, Proc. of the 18th FOCS Conference.
61. Streicher, T. [1982]: Scott Domains, Computability and the Definability Problem,

Diplomarbeit, Johanenes Kepler Universitat, Lintz. CAMP Report 82-7.
62. van Heijenoort J. [1967]: From Frege to Godel: A Source Book in Mathematical

Logic, 1879 - 1931. Cambridge Mass.: Harvard University Press.
63. Wiweger A. [1989]: “On Topological Rough Sets”, Bulletin of the Polish Academy

of Sciences, Mathematics, 37, No. 16.
64. Wright C. [1983]: Frege’s Conception of Numbers as Objects. Scots Philosophical

Monographs, textbf2, Aberdeen, Aberdeen University Press.
65. Yao Y. Y. [1998a]: “Constructive and Algebraic Methods of the Theory of Rough

Sets”, Journal of Information Sciences 109, pp. 21-47.
66. Yao Y. Y. [1998b]: “On Generalizing Pawlak Approximation Operators”, Eds. L.

Polkowski and A. Skowron, RSCTC’98, LNAI 1414, Eds. J. G. Carbonell, J. Siek-
mann, Springer-Verlag, pp. 289-307.

Data Structure and Operations
for Fuzzy Multisets

Sadaaki Miyamoto

Institute of Engineering Mechanics and Systems, University of Tsukuba,
Ibaraki 305-8573, Japan

Abstract. An overview of data structures and operations for fuzzy mul-
tisets is given. A simple linear list identified with an infinite dimensional
vector is taken as an elementary data structure for fuzzy multisets. Fuzzy
multiset operations are defined by corresponding vector operations. Two
level sets of α-cut and ν-cut are defined and commutativity between
them are described. Spaces of fuzzy multisets are also discussed.

1 Introduction

Multisets which have been considered by several authors (e.g., [6, 9, 1]) with
application to database queries (e.g., [3]) are attracting more attention of re-
searchers in relation to new computation paradigms [2].

Fuzzy multisets have also been studied [23, 5, 10, 19, 18, 11, 7]. This paper is
not intended to provide a comprehensive overview, but focuses several features of
fuzzy multisets with discussion of data structure for representing fuzzy multisets.
A linear list or a simple vector is taken as the elementary data structure. This
structure is not only for convenience but reveals fundamental characteristic of
multisets as results of linear data processing. Thus a novel type of image of a
function is discussed.

A characteristic in fuzzy multisets is their inherent infiniteness. We hence
discuss infinite–dimensional spaces of fuzzy multisets.

We omit most of proofs of propositions, as they are not difficult and readers
can try to prove by themselves. Moreover applications are not discussed here,
they are studied in other papers [12, 13, 16].

2 Preliminaries

Assume throughout this paper that the universal set X is finite. We thus write
X = {x1, x2, . . . , xn} or X = {x, y, . . . , z}. Scalars are denoted by a, b, . . .

Fuzzy Sets

To show operations for fuzzy multisets as extensions of those for fuzzy sets, we
first provide notations for fuzzy sets. Infix notations for max and min are denoted
by ∨ and ∧, respectively as in most literature [25].

J.F. Peters et al. (Eds.): Transactions on Rough Sets II, LNCS 3135, pp. 189–200, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

190 Sadaaki Miyamoto

As is well–known, for fuzzy sets A and B of X :

1.
A ⊆ B ⇐⇒ μA(x) ≤ μB(x), ∀x ∈ X.

2.
μA∪B(x) = μA(x) ∨ μB(x).

3.
μA∩B(x) = μA(x) ∧ μB(x).

4. A weak α-cut is denoted by [A]α here:

x ∈ [A]α ⇐⇒ μA(x) ≥ α.

Moreover, a strong α-cut is denoted by]A[α:

x ∈]A[α ⇐⇒ μA(x) > α.

5. The t-norms and conorms are used as generalizations of fuzzy set union and
intersection. We omit details of t-norms [20, 4], and note only that they are
respectively denoted by t(a, b) and s(a, b). When used as set operations, the
operations are denoted by

μATB(x) = t(μA(x), μB(x)), μASB(x) = s(μA(x), μB(x)).

A particular t-norm of algebraic product is denoted by a · b whereby

μA·B(x) = μA(x) · μB(x),

Important properties of commutativity between an operation and an α-cut hold:

[A ∪B]α = [A]α ∪ [B]α,
[A ∩B]α = [A]α ∩ [B]α,
]A ∪B[α =]A[α ∪]B[α,
]A ∩B[α =]A[α ∩]B[α.

We also have

A ⊆ B ⇐⇒ [A]α ⊆ [B]α, ∀α ∈ (0, 1],
A ⊆ B ⇐⇒]A[α ⊆]B[α, ∀α ∈ [0, 1).

For a given function f : X → Y , we moreover have

]f(A)[α = f(]A[α).

Data Structure and Operations for Fuzzy Multisets 191

Multisets

A multiset M of X is characterized by the count function CM : X → N , where
N = {0, 1, 2, . . .}. Thus, CM (x) is the number of occurrences of the element
x ∈ X .

The following is basic relations and operations for crisp multisets;

I. (inclusion):
M ⊆ N ⇔ CM (x) ≤ CN (x), ∀x ∈ X.

II. (equality):
M = N ⇔ CM (x) = CN (x), ∀x ∈ X.

III. (union):
CM∪N (x) = CM (x) ∨ CN (x).

IV. (intersection):
CM∩N (x) = CM (x) ∧ CN (x).

V. (sum):
CM+N (x) = CM (x) + CN (x).

VI. (Cartesian product): For x ∈ X and y ∈ Y ,

CM×N (x, y) = CM (x) · CN (y).

VII. (ν-cut):
A ν-cut M �→ [M]ν transforms a multiset into an ordinary set:

CM (x) ≥ ν ⇔ x ∈ [M]ν

CM (x) < ν ⇔ x /∈ [M]ν

It is reasonable to assume that the number CM (·) should be finite.

Example 1. Let us consider a simple example of X = {a, b, c, d}, CM (a) = 2,
CM (b) = 3, CM (c) = 1, and CM (d) = 0. We write M = {2/a, 3/b, 1/c} by
ignoring zero occurrence 0/d. Alternatively, we can write M = {a, a, b, b, b, c}.
notice also that we can exchange the order of elements in {· · · } as in ordinary
sets

{a, a, b, b, b, c} = {c, a, b, b, a, b}. (1)

A Sorting Operation. A sorting operation is essential in processing multisets.
Let us take the last example in which {c, a, b, b, a, b} should be arranged into the
sorted form of {a, a, b, b, b, c} in order to check (1). This means that we actually
handle sequences (c, a, b, b, a, b) and (a, a, a, b, b, c) as an abstract data structure
instead of {a, a, b, b, b, c} and {c, a, b, b, a, b}.

192 Sadaaki Miyamoto

3 Fuzzy Multisets

Fuzzy multiset A of X (often called fuzzy bag) is characterized by the func-
tion CA(·) of the same symbol, but the value CA(x) is a finite multiset in
I = [0, 1] [23]. In other words, given x ∈ X ,

CA(x) = {μ, μ′, . . . , μ′′}, μ, μ′, . . . , μ′′ ∈ I.

Assume μ, μ′, . . . , μ′′ are nonzero for simplicity. We write

A = {{μ, μ′, . . . , μ′′}/x, . . . }

or
A = {(x, μ), (x, μ′), . . . , (x, μ′′), . . . }.

As a data structure, we introduce an infinite–dimensional vector:

CA(x) = (μ, μ′, . . . , μ′′, 0, 0, . . .).

Collection of such vectors is denoted by V :

V = { (μ, μ′, . . . , μ′′, 0, 0, . . .) : μ, μ′, . . . , μ′′ ∈ I }

A sorting operation to multisets in I is important in defining operations
for fuzzy multisets. This operation denoted by S (S : V → V) rearranges the
sequence in V into the decreasing order:

S((μ, μ′, . . . , μ′′, 0, 0, . . .)) = (ν1, ν2, . . . , νp, 0, 0, 0)

where
ν1 ≥ ν2 ≥ · · · ≥ νp > 0

and
{μ, μ′, . . . , μ′′} = {ν1, ν2, . . . , νp}.

Thus we can assume

CA(x) = (ν1, ν2, . . . , νp, 0, 0, 0) (2)

Moreover we define the length of CA(x) by

L(CA(x)) = p

The above sorted sequence for CA(x) is called the standard form for a fuzzy
multiset, as many operations are defined in terms of the standard form.

Additional operations on V are necessary in order to define fuzzy multiset
operations. Assume

k = (k1, k2, . . . , kq, . . . , kr, 0, 0, . . .), l = (l1, l2, . . . , lq, . . . , ls, 0, 0, . . .) ∈ V

where ki (i = 1, . . . , r) and lj (j = 1, . . . , s) are nonzero.

Data Structure and Operations for Fuzzy Multisets 193

Then we define

k ∨ l = (max{k1, l1}, . . . ,max{kq, lq}, . . .), (3)
k ∧ l = (min{k1, l1}, . . . ,min{kq, lq}, . . .), (4)
k · l = (k1 · l1, . . . , kq · lq, . . .), (5)
k | l = (k1, k2, . . . , kr, l1, l2, . . . , ls, 0, 0, . . .) (6)

Assume k1 ≥ k2 ≥ · · · ≥ kr; let α ∈ (0, 1] and ν ∈ N . Then we define

|k| =
r∑

i=1

ki, (7)

[[k]]α = j (kj ≥ α, kj+1 < α), (8)
]]k[[α = j′ (kj′ > α, kj′+1 ≤ α), (9)
[[k]]ν = kν (10)

Note that in the last equation (10), kν = 0 if and only if ν > r.
Moreover we define inequality of the two vectors:

k ≤ l ⇐⇒ ki ≤ li, i = 1, 2, . . . (11)

We now define fuzzy multiset operations.

1. inclusion:

A ⊆ B ⇐⇒ S(CA(x)) ≤ S(CB(x)), ∀x ∈ X.

2. equality:

A = B ⇐⇒ S(CA(x)) = S(CB(x)), ∀x ∈ X.

3. union:
CA∪B(x) = S(CA(x)) ∨ S(CB(x)).

4. intersection:
CA∩B(x) = S(CA(x)) ∧ S(CB(x)).

5. sum:
CA+B(x) = S(S(CA(x)) |S(CB(x))).

6. product:
CA·B(x) = S(CA(x)) · S(CB(x)).

7. α-cuts:

C[A]α
(x) = [[S(CA(x))]]α,

C]A[α
(x) =]]S(CA(x))[[α.

194 Sadaaki Miyamoto

8. ν-cut:

C[A]ν (x) = [[S(CA(x))]]ν .

9. Cardinality:

|A| =
∑
x∈X

|CA(x)|.

We obviously have

L(CA∪B(x)) = max{L(CA(x)), L(CB(x))},
L(CA∩B(x)) = min{L(CA(x)), L(CB(x))},
L(CA+B(x)) = L(CA(x)) + L(CB(x)),
L(CA·B(x)) = min{L(CA(x)), L(CB(x))}.

The reason why we define fuzzy multiset operations using the sorting oper-
ation S is shown in next propositions.

Proposition 1. An ordinary fuzzy set F and a crisp multiset M can be em-
bedded into the collection of all fuzzy multisets. Let the embedding map be I.
Namely,

CI(F)(x) = (μF (x), 0, 0, . . .),

and

CI(M)(x) = (1, 1, . . . , 1, 0, 0, . . .),

where the number of 1’s in the right hand side is equal to CM (x). Assume F1

and F2 are ordinary fuzzy sets, and M1 and M2 are crisp multisets. We then
have

I(F1 ∪ F2) = I(F1) ∪ I(F2),
I(F1 ∩ F2) = I(F1) ∩ I(F2),
I(M1 ∪M2) = I(M1) ∪ I(M2),
I(M1 ∩M2) = I(M1) ∩ I(M2),
I(M1 + M2) = I(M1) + I(M2),

[I(F)]α = I([F]α),
]I(F)[α = I(]F [α),
[I(M)]ν = I([M]ν).

Data Structure and Operations for Fuzzy Multisets 195

Proposition 2. For two fuzzy multisets A and B of X , the following relations
hold.

A ⊆ B ⇐⇒ [A]α ⊆ [B]α, ∀α ∈ (0, 1],
A ⊆ B ⇐⇒]A[α ⊆]B[α, ∀α ∈ [0, 1).
[A ∪B]α = [A]α ∪ [B]α,
[A ∩B]α = [A]α ∩ [B]α,
[A + B]α = [A]α + [B]α,
]A ∪B[α =]A[α ∪]B[α,
]A ∩B[α =]A[α ∩]B[α,
]A + B[α =]A[α +]B[α,
[A ∪B]ν = [A]ν ∪ [B]ν ,
[A ∩B]ν = [A]ν ∩ [B]ν .

The proof is easy and omitted. Notice also that

[A + B]ν �= [A]ν + [B]ν

in general.

Proposition 3. For fuzzy multisets A, B, and C of X , the commutative,
associative, and distributive laws holds for operations ∪ and ∩. Namely, the
collection of all fuzzy multisets of X forms a distributive lattice.

A ∪B = B ∪A,

A ∩B = B ∩A,

A ∪ (B ∪ C) = (A ∪B) ∪C,

A ∩ (B ∩ C) = (A ∩B) ∩C,

(A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C),
(A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C).

The proof is omitted here (see Chapter 2 of [7]). Readers should note the prop-
erties in Proposition 2 is used in the proof.

Proposition 4. Let A be an arbitrary fuzzy multiset of X . Then,

[[A]α]ν = [[A]ν]α,
[]A[α]ν =][A]ν [α.

holds. Namely, an α-cut and a ν-cut are commutative.

Example 2. Suppose X = {a, b, c, d} and

A = {{0.3, 0.5}/a, {0.7}/b, {0.9}/c},
B = {{0.4, 0.4}/a, {0.2, 0.5}/b}.

196 Sadaaki Miyamoto

We can represent A as

A = {(a, 0.3), (a, 0.5), (b, 0.7), (c, 0.9)}.

In the standard form,

A = {(0.5, 0.3)/a, (0.7)/b, (0.9)/c},
B = {(0.4, 0.4)/a, (0.5, 0.2)/b}.

where zero elements are ignored. We have

A ∪B = {(0.5, 0.4)/a, (0.7, 0.2)/b, (0.9)/c},
A ∩B = {(0.4, 0.3)/a, (0.5)/b},
A + B = {(0.5, 0.4, 0.4, 0.3)/a, (0.7, 0.5, 0.2)/b, (0.9)/c},
[A]0.3 = {2/a, 1/b, 1/c},
]A[0.3 = {1/a, 1/b, 1/c},
[A]2 = {0.3/a}.

4 Images and α-Cuts

Let f be a mapping of X into Y . Let us consider two images:

f(A) =
⋃

x∈A

{f(x)} (12)

and
f〈A〉 =

∑
x∈A

{f(x)} (13)

where A is a fuzzy multiset of X .

Example 3. Suppose

A = {(a, 0.3), (a, 0.5), (b, 0.7), (c, 0.9)}

and f(a) = v, f(b) = f(c) = w. Then,

f(A) = {(v, 0.5), (w, 0.9)},
f〈A〉 = {(v, 0.3), (v, 0.5), (w, 0.7), (w, 0.9)}.

When A is an ordinary fuzzy set, the former coincides with the ordinary
extension principle. Moreover for an arbitrary fuzzy multiset A, f(A) is an ordi-
nary fuzzy set: there is no pair (x, ν), (x′, ν′) ∈ f(A) such that x = x′. Therefore
f(A) is inappropriate as a mapping of fuzzy multisets.

For example, let Id be an identity mapping of X onto X : Id(x) = x. Suppose
A is a fuzzy multiset. Then

Id(A) �= A

Data Structure and Operations for Fuzzy Multisets 197

in general. Instead, we have
Id(A) = [A]1

using ν-cut with ν = 1.
On the other hand, the latter can generate a fuzzy multiset from an ordinary

fuzzy set. Notice in particular that the latter image uses a simple rewriting of
symbols. We thus consider f〈A〉 alone hereafter. Remark also that

Id〈A〉 = A.

We have the following.

Proposition 5. For every fuzzy multiset A and B of X ,

f〈[A]α〉 = [f〈A〉]α,
f〈]A[α〉 =]f〈A〉[α,

f〈A + B〉 = f〈A〉+ f〈B〉.
The proof is omitted.

5 Other Operations

We glimpse other operations for fuzzy multisets of which detailed discussion is
omitted.

t-Norms

Let

CA(x) = (ν1
A, . . . , ν

p
A, . . .),

CB(x) = (ν1
B, . . . , ν

p
B, . . .).

Then,

CATB(x) = (t(ν1
A, ν

1
B), . . . , t(νp

A, ν
p
B), . . .),

CASB(x) = (s(ν1
A, ν

1
B), . . . , s(νp

A, ν
p
B), . . .).

In particular,
CA·B(x) = (ν1

A · ν1
B, . . . , ν

p
A · ν

p
B , . . .).

Cartesian Product

Let A and B respectively be fuzzy multiset of X and Y :

CA(x) = (ν1
A, ν

2
A, . . .), CB(y) = (ν1

B, ν
2
B, . . .),

for x ∈ X and y ∈ Y . Then,

CA×B(x, y) = {min{ν1
A, ν

1
B},min{ν1

A, ν
2
B}, . . . ,min{νi

A, ν
j
B}, . . . }.

Thus the multiset for CA×B(x, y) has every combination of nonzero elements of
CA(x) and CB(y). For crisp multisets M of X and N of Y , we have

I(M ×N) = I(M)× I(N).

198 Sadaaki Miyamoto

Complement of Multiset

We have seen the collection of all fuzzy multisets forms a distributive lattice,
the discussion of a complement of a crisp or fuzzy multiset has problems. A
way to define a complement is to introduce a value of infinity +∞ and assume
CM (x) : X →N ∪ {+∞}. It then is not difficult to see that a complement MC

can be defined:

CMC (x) =

{
0 (CM (x) > 0),
+∞ (CM (x) = 0)

For a fuzzy multiset A, this suggests

CAC (x) = ∅ (CA(x) �= ∅),
CAC (x) = (+∞,+∞, . . .) (CA(x) = ∅).

The last definition includes an artificial sequence of +∞ as all elements. Never-
theless, introduction of the infinite element is necessary from the viewpoint of
intuitionistic logic, where a complement should be defined to satisfy the axiom
of Heyting algebra [21].

For every fuzzy multiset A, the following is valid.

AC ∩A = ∅,
A ⊆ (AC)C .

6 Spaces of Fuzzy Multisets

We have assumed CA(x) is finite at the beginning. However, extension to infinite
fuzzy multisets is straightforward:

CA(x) = (ν1, . . . , νp, . . .)

in which we admit infinite nonzero elements. A reasonable assumption to this
sequence is

νj → 0 (j → +∞).

Since this assumption ensures α-cuts [A]α and]A[α are finite for all α ∈ (0, 1].
Metric spaces can be defined on the collections of fuzzy multisets of X . For

example, let

CA(x) = (ν1
A, . . . , ν

p
A, . . .), CB(x) = (ν1

B , . . . , ν
p
B, . . .),

Then we can define

d1(A,B) =
∑
x∈X

∞∑
j=1

|νj
A − νj

B|,

which is an �1 type metric. Moreover we can also define

d2(A,B) =

√√√√∑
x∈X

∞∑
j=1

|νj
A − νj

B |2,

Data Structure and Operations for Fuzzy Multisets 199

as the �2 type metric. Moreover a scalar product < A,B > is introduced in the
latter space:

< A,B > = |A · B| =
∑
x∈X

|CA·B(x)|

using the algebraic product. We have

d2(A,B) = < A,A > + < B,B > −2 < A,B > .

It is not difficult to see the metric space with d1 is a Banach space and that
with < A,B > is a Hilbert space [8]. Such metrics are useful in discussing fuzzy
multiset model for data clustering [16].

7 Conclusion

Multisets and fuzzy multisets are based on the idea of simple sequential pro-
cessing of linear lists, as seen in the discussion of f〈·〉 which is the sequential
rewriting of symbols. Moreover the sorting operation is most important in fuzzy
multiset operations.

Spaces in fuzzy multisets are used for clustering and information retrieval [16].
Recent methods in pattern recognition such as the support vector machines [22]
can be used in fuzzy multiset space and application to document clustering,
which will be shown by us in near future.

Although we have omitted relations between multisets and rough sets [17,
24]. Readers can see, e.g., [15] for the related discussion.

Since a fuzzy multiset represents multiple occurrence of an object with pos-
sibly different memberships, it is adequate for information retrieval model espe-
cially on the web. There are much room for further studies both in theory and
applications.

Acknowledgment

This research has partially been supported by the Grant-in-Aid for Scientific
Research (C), Japan Society for the Promotion of Science, No.13680475.

References

1. W. Blizard. Real-valued multisets and fuzzy sets. Fuzzy Sets and Systems 33, 1989,
pp. 77–97.

2. C. S. Calude, G. Păun, G. Rozenberg, and A. Salomaa (eds.). Multiset Processing.
Lecture Notes in Computer Science 2235, Springer, 2001.

3. J. Celko. Joe Celko’s SQL for Smarties: Advanced SQL Programming. Morgan
Kaufmann, 1995.

4. A. di Nola, S. Sessa, W. Pedrycz, and E. Sanchez. Fuzzy Relation Equations and
Their Applications to Knowledge Engineering. Kluwer, 1989.

200 Sadaaki Miyamoto

5. B. Li, W. Peizhang, and L. Xihui. Fuzzy bags with set-valued statistics. Computer
Math. Applications15, 1988, pp. 811–818.

6. D. E. Knuth. The Art of Computer Programming vol. 2. Addison-Wesley, 1969.
7. Z. -Q. Liu, S. Miyamoto (eds.). Soft Computing and Human-Centered Machines.

Springer, Tokyo, 2000.
8. L. A. Lusternik, V. J. Sobolev. Elements of Functional Analysis. Hindustan Pub-

lishing, Delhi, 1974.
9. Z. Manna, R. Waldinger. The Logical Basis for Computer Programming 1: Deduc-

tive Reasoning. Addison-Wesley, 1985.
10. S. Miyamoto. Basic operations of fuzzy multisets. J. of Japan Society for Fuzzy

Theory and Systems 8: 4, 1996, pp. 639–645 (in Japanese).
11. S. Miyamoto, K. S. Kim. Multiset-valued images of fuzzy sets, in: Proceedings

of the Third Asian Fuzzy Systems Symposium, June 18-21, 1998, Masan, Korea,
pp.543-548.

12. S. Miyamoto. Application of rough sets to information retrieval. Journal of the
American Society for Information Science 47: 3, 1998, pp. 195–205.

13. S. Miyamoto. Rough sets and multisets in a model of information retrieval, in: Soft
Computing in Information Retrieval: Techniques and Applications (F.Crestani et
al. (eds.)). Springer, 2000, pp. 373–393.

14. S. Miyamoto. Fuzzy multisets and their generalizations, in:Multiset Processing (
C.S.Calude et al. (eds.)). Lecture Notes in Computer Science 2235. Springer, 2001,
pp. 225–235.

15. S. Miyamoto. Generalized multisets and rough approximations,in: Proceedings of
FUZZ-IEEE 2002, Honolulu, Hawaii, May 12-18, 2002, pp. 751–755.

16. S. Miyamoto. Information clustering based on fuzzy multisets. Information Pro-
cessing and Management 39: 2, 2003, pp. 195–213.

17. Z. Pawlak. Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer, 1991.
18. A. Ramer, C.-C. Wang. Fuzzy multisets, in: Proceedings of 1996 Asian Fuzzy Sys-

tems Symposium, Dec. 11-14, 1996, Kenting, Taiwan, pp. 429–434.
19. A. Rebai, J.-M. Martel. A fuzzy bag approach to choosing the “best” multiat-

tributed potential actions in a multiple judgement and non cardinal data context.
Fuzzy Sets and Systems 87, 1997, pp. 159–166.

20. B. Schweizer, A. Sklar. Probabilistic Metric Spaces, North-Holland, 1983.
21. G. Takeuti, S. Titani. Intuitionistic fuzzy logic and intuitionistic fuzzy sets theory.

J. of Symbolic Logic 3: 3, 1984, pp. 851–866.
22. V. N. Vapnik. The Nature of the Statistical Learning Theory 2nd ed., Springer,

2000.
23. R. R. Yager. On the theory of bags. Int. J. General Systems 13, 1986, pp. 23–37.
24. Y. Y. Yao, S. K. M. Wong, and T. Y. Lin. A review of rough set models, in: Rough

Sets and Data Mining: Analysis of Imprecise Data (T.Y.Lin, N.Cercone (eds.)),
Kluwer, 1997, pp. 47–75.

25. H.-J. Zimmermann. Fuzzy Set Theory and its Applications 3rd ed., Kluwer, 1996.

A Non-controversial Definition of Fuzzy Sets

Jaroslav Ramı́k1 and Milan Vlach2

1 Institute for Research and Applications of Fuzzy Modelling
University of Ostrava, Czech Republic

2 Institute of Information Theory and Automation, Praha, Czech Republic

Abstract. Already in the early stages of the development of fuzzy set
theory, it has been recognized that fuzzy sets can be defined and repre-
sented in several different ways. In this paper we first define fuzzy sets
within the classical set theory by suitable nested families of sets, and
then we discuss how this definition is related to the usual definition by
membership functions.

1 Introduction

A well known fact in the theory of sets is that properties of subsets of a given
set X and their mutual relations can be studied by means of their characteristic
functions, see, e.g., [2]–[5], [7], and [9]. While this may be advantageous in some
contexts, we should notice that the notion of the characteristic function of a
subset is more complex than the notion of a subset. Indeed, the characteristic
function χA of a subset A of X is defined by,

χA (x) =
{

1 if x ∈ A,
0 if x /∈ A.

Since χA is a function, we need not only the underlying set X and its subset
A, but also one additional set, in this case the set {0, 1} or any other two–
element set. Moreover, we also need the notion of the Cartesian product because
functions are specially structured binary relations, in this case special subsets of
X × {0, 1}.

If we define fuzzy sets by means of their membership functions, that is, by
replacing the range {0, 1} of characteristic functions with a lattice, for example,
the unit interval [0, 1] of real numbers with the standard ordering, then we
should be aware of the following fact. Such functions may be related to certain
objects (build from subsets of the underlying set) in a way analogous to that in
which characteristic functions are related to subsets. This may explain why the
fuzzy community (rightly?) hesitates to accept the view that a fuzzy subset of a
given set is nothing else than its membership function. Then, a natural question
arises. Namely, what are those objects? Obviously, it can be expected that they
are more complex than just subsets, because the class of functions mapping X
into a lattice can be much richer than the class of characteristic functions. In the
next section, we show that it is advantageous to define these objects as nested
families of subsets satisfying certain mild conditions.

J.F. Peters et al. (Eds.): Transactions on Rough Sets II, LNCS 3135, pp. 201–207, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

202 Jaroslav Ramı́k and Milan Vlach

It should be noted that fuzzy sets and membership functions are closely re-
lated to the inherent imprecision of linguistic expressions in natural languages.
Applying classical set theory it requires an artificially derived threshold to de-
termine, whether, e.g., a given person belongs to the set of “tall persons” or not.
Probability theory does not provide a way out, as it usually deals with crisp
events and the uncertainty is about whether this event will occur or not. How-
ever, in fuzzy logic, this is the question of degree of truth rather than a simple
“yes or no” decision.

2 Definition and Basic Properties

In order to define the concept of a fuzzy subset of a given set X within the
framework of standard set theory we implicitly employ the concept of upper
level set of a function. Throughout this paper, X is a nonempty set.

Definition 1. Let X be a set, a fuzzy subset A of X is the family of subsets
Aα ⊂ X, where α ∈ [0, 1], satisfying the following properties:

(i) A0 = X,
(ii) Aβ ⊂ Aα whenever 0 ≤ α ≤ β ≤ 1,
(iii) Aβ =

⋂
0≤α<β

Aα.
(1)

A fuzzy subset A of X will be also called a fuzzy set.
The membership function μA : X → [0, 1] of a fuzzy set A is defined as

follows,
μA(x) = sup{α | α ∈ [0, 1], x ∈ Aα}, (2)

for each x ∈ X.
The core of A, Core(A), is given by,

Core(A) = {x ∈ X | μA(x) = 1}. (3)

A fuzzy subset A of X is called normalized when its core is nonempty.
The support of A, Supp(A), is given by,

Supp(A) = Cl({x ∈ X | μA(x) > 0}). (4)

The height of A, Hgt(A), is given by,

Hgt(A) = sup{μA(x) | x ∈ X}. (5)

For each α ∈ [0, 1], the α-cut of A, [A]α, is given by

[A]α = {x ∈ X | μA(x) ≥ α}. (6)

For x ∈ X, the function value μA(x) is called the membership degree of x in
the fuzzy set A. The class of all fuzzy subsets of X is denoted by F(X).

A Non-controversial Definition of Fuzzy Sets 203

Let μ : X → [0, 1] be an arbitrary function, α ∈ [0, 1]. The upper level set
U(μ, α) of μ at α is defined as follows

U(μ, α) = {x ∈ X | μ(x) ≥ α}. (7)

In the following two propositions, we show that the family generated by the
upper level sets of μ satisfies conditions (1), thus, it generates a fuzzy subset of
X and the membership function μA defined by (2) coincides with μ. Moreover,
for a given fuzzy set A = {Aα}α∈[0,1], every α–cut [A]α, given by (6) coincides
with the corresponding Aα.

Proposition 1. Let μ : X → [0, 1] be a function and let A = {Aα}α∈[0,1] be a
family of its upper–level sets, i.e., Aα = U(μ, α) for all α ∈ [0, 1]. Then A is a
fuzzy subset of X and μ is a membership function of A.

Proof. First, we prove that A = {Aα}α∈[0,1] satisfies conditions (1), where Aα =
U(μ, α) for all α ∈ [0, 1]. Indeed, conditions (i) and (ii) hold easily. For condition
(iii), we observe that by (ii) it follows that Aβ ⊂

⋂
0≤α<β

Aα. To prove the opposite

inclusion, let
x ∈

⋂
0≤α<β

Aα. (8)

Assume the contrary, let x /∈ Aβ . Then μ(x) < β and there exists α′, such that
μ(x) < α′ < β. Then x ∈ Aα′ . This contradicts (8). Hence x ∈ Aβ .

It remains to prove that μ = μA, where μA is the membership function of A.
For this purpose let x ∈ X and let us show that μ(x) = μA(x).

By definition (2) we have

μA(x) = sup{α | α ∈ [0, 1], x ∈ Aα} = sup{α | α ∈ [0, 1], x ∈ U(μ, α)}
= sup{α | α ∈ [0, 1], μ(x) ≥ α}, (9)

therefore, μ(x) = μA(x).

Proposition 2. Let A = {Aα}α∈[0,1] be a fuzzy subset of X and let μA : X →
[0, 1] be the membership function of A. Then for all α ∈ [0, 1], the α–cuts [A]α
coincide with Aα, i.e. [A]α = Aα.

Proof. Let β ∈ [0, 1]. By (2), observe that Aβ ⊂ [A]β . It suffices to prove the
opposite inclusion.

Let x ∈ [A]β . Then μA(x) ≥ β, or, equivalently, sup{α | α ∈ [0, 1], x ∈ Aα} ≥
β. By monotonicity condition (ii) in (1) it follows that we have x ∈ Aα for all
0 ≤ α ≤ β. Hence, x ∈

⋂
0≤α<β

Aα, however, applying (iii) in (1) we get x ∈ Aβ .

Consequently, [A]β ⊂ Aβ .

The above stated results allow for introducing a natural one–to–one corre-
spondence between fuzzy subsets of X and real functions mapping X to [0, 1].
Each fuzzy subset A of X is given by its membership function μA and vice–versa,

204 Jaroslav Ramı́k and Milan Vlach

each function μ : X → [0, 1] uniquely determines a fuzzy subset A of X , with
the property that the membership function μA of A is μ.

The notions of inclusion and equality can be extended to fuzzy subsets as
follows. Let A and B be fuzzy subsets of X , A = {Aα}α∈[0,1], B = {Bα}α∈[0,1].

A ⊂ B if Aα ⊂ Bα for each α ∈ [0, 1], (10)
A = B if Aα = Bα for each α ∈ [0, 1]. (11)

The following property is obvious.

Proposition 3. Let A and B be fuzzy subsets of X, A = {Aα}α∈[0,1], B =
{Bα}α∈[0,1]. Then the following holds,

A ⊂ B if and only if μA(x) ≤ μB(x) for all x ∈ X, (12)
A = B if and only if μA(x) = μB(x) for all x ∈ X, (13)
A = B if and only if A ⊂ B and B ⊂ A.

Proof. We prove only (12), the proof of statement (13) is analogous. Let x ∈ X ,
A ⊂ B. Then by definition (10), Aα ⊂ Bα for each α ∈ [0, 1]. Using (2), we
obtain,

μA(x) = sup{α | α ∈ [0, 1], x ∈ Aα}
≤ sup{α | α ∈ [0, 1], x ∈ Bα} = μB(x).

Suppose that μA(x) ≤ μB(x) holds for all x ∈ X and let α ∈ [0, 1]. We have
to show that Aα ⊂ Bα. Indeed, for an arbitrary u ∈ Aα,

sup{β | β ∈ [0, 1], u ∈ Aβ} ≤ sup{β | β ∈ [0, 1], u ∈ Bβ}.

From this, sup{β | β ∈ [0, 1], u ∈ Bβ} ≥ α, therefore, from the monotonicity (ii)
of (1) for each β < α it follows that u ∈ Bβ . Hence, by (iii) in Definition 1, we
obtain u ∈ Bα.

The last part of the proof is obvious.

The classical subsets of a given set can be considered as special fuzzy subsets
whose defining families consists of the same elements. We obtain the following
definition.

Definition 2. A fuzzy subset {Aα}α∈[0,1] of X is said to be a crisp subset of
X, if there exists A ⊂ X such that Aα = A for every α ∈ (0, 1].

Obviously, such fuzzy set is uniquely determined by A, in this case we write
A = {A}α∈[0,1]. From this definition and the definition of the equality of fuzzy
subsets, it is obvious that there is a natural one–to–one correspondence between
crisp subsets of X and (classical) subsets of X . This makes it possible to embed
the set P(X) of all subsets of X into the set F(X) of all fuzzy subsets of X . The
following proposition clarifies how the membership functions of crisp subsets of
X are related to the characteristic functions of subsets of X .

A Non-controversial Definition of Fuzzy Sets 205

Proposition 4. Let A be a nonempty subset of X and let A be the crisp subset
of X corresponding to A in the natural embedding of P(X) into F(X). Then the
membership function of A is equal to to the characteristic function of A.

Proof. Let x ∈ X,x /∈ A. Then by definition (2) and Def. 2, μA(x) = sup{α | α ∈
[0, 1], x ∈ Aα} = 0 = χA(x).

Let x ∈ X,x ∈ A. Then again by definition (2) and Def. 2, μA(x) =
sup{α | α ∈ [0, 1], x ∈ Aα} = sup{α | α ∈ [0, 1], x ∈ A} = 1 = χA(x).

Example 1. Let μ : R → [0, 1] be defined by μ(x) = e−x2
for x ∈ R. Let

A′ = {A′
α}α∈[0,1], A′′ = {A′′

α}α∈[0,1] be two families of subsets in R defined as
follows,

A′
α =

{
R if α = 0,
{x | x ∈ R,μ(x) > α} if 0 < α ≤ 1,

A′′
α =

{
R if α = 0,
{x | x ∈ R,μ(x) ≥ α} if 0 < α ≤ 1.

Clearly A′ �= A′′. Observe that (i) and (ii) are satisfied for A′ and A′′, however
A′

1 = ∅,
⋂

0≤α<1

A′
α = {0}, thus (iii) in (1) is not satisfied. Hence A′ is not a fuzzy

subset of R. On the other hand, (iii) in (1) is satisfied with A′′. Hence A′′ is a
fuzzy set.

3 Operations with Fuzzy Sets

In order to generalize the Boolean set–theoretical operations for fuzzy sets: inter-
section, union and complement, it is natural to use triangular norms, triangular
co–norms and fuzzy negations, see [7].

Let T be a t–norm, S be a t–conorm, and N be a fuzzy negation. Further-
more, let μA and μB be the membership functions of fuzzy subsets A and B of
X , respectively. We introduce the operations of intersection ∩T , union ∪S and
complement CN , on F(X), by defining the membership functions of the fuzzy
subsets A ∩T B, A ∪S B and CNA of X as follows (see [9]),

μA∩T B(x) = T (μA(x), μB(x)),
μA∪SB(x) = S(μA(x), μB(x)),
μCN A(x) = N(μA(x)).

(14)

The operations introduced by L. Zadeh in [1] have been originally based on
T = TM = min, S = SM = max, and standard negation N defined for each
α ∈ [0, 1] by N(α) = 1 − α. The properties of the operations intersection ∩T ,
union ∪S and complement CN can be derived directly from the corresponding
properties of t–norm T , t–conorm S and fuzzy negation N .

Notice that for all A ∈ F(X), we do not necessarily obtain properties which
hold for crisp sets, namely,

A ∩T CNA = ∅, (15)
A ∪S CNA = X . (16)

206 Jaroslav Ramı́k and Milan Vlach

If t–norm T in the De Morgan triple (T, S,N) does not have zero divisors, e.g.,
T = min, then these properties never hold unless A is a crisp set. On the other
hand, for the De Morgan triple (TL, SL, N) based on �Lukasiewicz t–norm T = TL,
properties (15) are satisfied, see [7].

Given a t–norm T and fuzzy subsets A and B of X and Y , respectively,
the Cartesian product A ×T B is the fuzzy subset of X × Y with the following
membership function,

μA×T B(x, y) = T (μA(x), μB(y)) (17)
for (x, y) ∈ X × Y .

An interesting and natural question arises, whether the α–cuts of the in-
tersection A ∩T B, the union A ∪S B and the Cartesian product A ×T B of
A,B ∈ F(X), coincide with the intersection, union and the Cartesian product,
respectively, of the corresponding α-cuts [A]α and [B]α. We have the following
result, see [7].

Proposition 5. Let T be a t–norm, S be a t–conorm, α ∈ [0, 1]. Then, the
equalities,

[A ∩T B]α = [A]α ∩ [B]α,
[A ∪S B]α = [A]α ∪ [B]α,
[A×T B]α = [A]α × [B]α,

(18)

hold for all fuzzy sets A,B ∈ F(X) if and only if α is an idempotent element of
both T and S.

In particular, this result means that identities (18) hold for all α ∈ [0, 1] and
for all fuzzy sets A,B ∈ F(X) if and only if T = TM and S = SM . For the proof
of Proposition 5 and more details we refere to [7].

4 Conclusion

In this paper the definition of fuzzy sets by a family of level sets has been
presented. Its equivalence and advantages in comparison with the standard def-
inition by the membership function have been discussed. We have shown that
by the definition of fuzzy sets based on the family of sets, a consistent theory
of fuzzy sets equivalent to the standard one can be built up. Moreover, crisp
sets can be naturally embedded into the fuzzy sets and no “artificial” identifica-
tion of a fuzzy set with its membership function is necessary. We hope that this
approach may help to overcome a misunderstanding between the fuzzy commu-
nity that is reluctant to accept the view that a fuzzy subset of a given set is
nothing else than its membership function on one side and the community of
mathematicians - functional analysts on the other side.

A Non-controversial Definition of Fuzzy Sets 207

References

1. L.A. Zadeh. Fuzzy sets. Information and Control 8, 1965, pp. 338–353.
2. R. Bellmann, L.A. Zadeh. Decision making in fuzzy environment. Management

Science 17: 4, 1970, pp. 141–164.
3. D. Dubois, H. Prade. Possibility theory. Plenum Press, 1988.
4. D. Dubois et al. Fuzzy interval analysis, in: Fundamentals of Fuzzy Sets. Kluwer

Series on Fuzzy Sets, vol. 1, Kluwer, 2000.
5. J.C. Fodor, M. Roubens. Fuzzy Preference Modelling and Multi–Criteria Decision

Support. Kluwer, 1994.
6. P. Hájek. Metamathematics of Fuzzy Logic. Kluwer Series Trends in Logic, Kluwer,

1998.
7. E.P. Klement, R. Mesiar, and E. Pap. Triangular Norms. Kluwer, 2000.
8. D. Ralescu. A survey of the representation of fuzzy concepts and its applications,

in: Advances in Fuzzy Sets Theory and Applications (M.M. Gupta, R.K. Regade,
and R. Yager (eds.)). North Holland, 1979, pp. 77–91.

9. J. Ramik, M. Vlach. Generalized Concavity in Fuzzy Optimization and Decision
Analysis. Kluwer, 2001.

Algebraic Structures for Rough Sets

Gianpiero Cattaneo and Davide Ciucci

Dipartimento Di Informatica, Sistemistica e Comunicazione
Università di Milano, Bicocca

Via Bicocca degli Arcimboldi 8, I-20126 Milano, Italy
{cattang,ciucci}@disco.unimib.it

Abstract. Using as example an incomplete information system with
support a set of objects X, we discuss a possible algebraization of the
concrete algebra of the power set of X through quasi BZ lattices. This
structure enables us to define two rough approximations based on a sim-
ilarity and on a preclusive relation, with the second one always better
that the former. Then, we turn our attention to Pawlak rough sets and
consider some of their possible algebraic structures. Finally, we will see
that also Fuzzy Sets are a model of the same algebras. Particular atten-
tion is given to HW algebra which is a strong and rich structure able to
characterize both rough sets and fuzzy sets.

1 Introduction

Rough structures describe the behavior of concepts , properties , data, abstract
objects in general, that may present some intrinsic vague, ambiguous, non–sharp
features. For the sake of simplicity we will simply speak of vague objects . To these
objects it is usually associated some data which characterize them and which
can be used to classify them. Data that are often organized as a table associating
to each object some attribute values. As observed by Pawlak [Paw98]:

Data are often presented as a table, columns of which are labeled by
attributes , rows by objects of interest and entries of the table are attribute
values.
For example, in a table containing information about patients suffer-
ing from a certain disease objects are patients (strictly speaking their
ID’s), attributes can be for example blood pressure, body temperature
etc., whereas the entry corresponding to object Smiths and the attribute
blood pressure can be normal .
Such tables are known as information systems, attribute-value tables or
information tables.

A natural abstract definition, that reflects this behavior, is the following one.

Definition 1. An Information System is a structure

K(X) = 〈X, Att(X), val(X), F 〉

J.F. Peters et al. (Eds.): Transactions on Rough Sets II, LNCS 3135, pp. 208–252, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Algebraic Structures for Rough Sets 209

where:

– X (called the universe) is a non empty set of objects (situations, entities,
states);

– Att(X) is a non empty set of attributes, which assume values for the objects
belonging to the set X;

– val(X) is the set of all possible values that can be observed for an attribute
a from Att(X) in the case of an object x from X;

– F (called the information map) is a mapping F : X × Att(X) → val(X)
which associates to any pair, consisting of an object x ∈ X and of an attribute
a ∈ Att(X), the value F (x, a) ∈ val(X) assumed by a for the object x.

In general we assume that an information system satisfies the following two
conditions of coherence:

1. F must be surjective; this means that if there exists a value v ∈ val(X)
which is not the result of the application of the information map F to any
pair (x, a) ∈ X ×Att(X), then this value has no interest with respect to the
knowledge stored in the information system.

2. For any attribute a ∈ Att(X) there exist at least two objects x1 and x2

such that F (x1, a) �= F (x2, a), otherwise this attribute does not supply any
knowledge and can be suppressed.

Example 1. Imagine you want to rent a flat, and you start to collect information
about some apartments. The features you are interested in are: the price of the
flat; its location, i.e., if it is down–town or not; the number of rooms and if it
has furniture or not. But you are not interested in, for example, at which floor
it is located. So, when organizing the data in your possession, you will consider
just the first four attributes and omit the floor number attribute. The result is
a situation similar to the one presented in Table 1, where the set of objects is
X = {f1, f2, f3, f4, f5, f6}, the family of attributes is Att(X)={Price, Rooms,
Down-Town, Furniture} and the set of all possible values is val(X)={high, low,
medium, 1, 2, yes, no}.

Table 1. Flats information system.

Flat Price Rooms Down–Town Furniture

f1 high 2 yes no
f2 high 1 yes no
f3 high 2 yes no
f4 low 1 no no
f5 low 1 no no
f6 medium 1 yes yes

A generalization of such a concept are incomplete information systems, i.e.,
information systems in which not all values are available for all objects. Such a
generalization is justified by empirical observations. Quoting [ST99]:

210 Gianpiero Cattaneo and Davide Ciucci

An explicit hypothesis done in the classic rough set theory is that all
available objects are completely described by the set of available at-
tributes. [...]
Such a hypothesis, although sound, contrasts with several empirical sit-
uations where the information concerning the set A is only partial either
because it has not been possible to obtain the attribute values or be-
cause it is definitely impossible to get a value for some object on a given
attribute.

So, let K(X) = 〈X,Att(X), V al(X), F 〉 be an incomplete information system. In
order to denote the fact that the value possessed by an object xi with respect to
the attribute aj is unknown, we introduce a null value and write F (xi, aj) = ∗.
Example 2. As a concrete example, let us consider the information system de-
scribed in Table 1. It can happen that given a flat we do not know all its features,
for instance because some information was missing on the advertisement. The
result is some missing values in the information system, as shown in Table 2.

Table 2. Flats incomplete information system.

Flat Price Rooms Down–Town Furniture

f1 high 2 yes *
f2 high * yes no
f3 * 2 yes no
f4 low * no no
f5 low 1 * no
f6 * 1 yes *

Given an information system, complete or not, if we consider pairs of ob-
jects belonging to the universe X , we can describe their relationship through
a binary relation R. A classification and logical–algebraic characterization of
such binary relations can be found in literature (for an overview see [Orl98b]).
Generally, these relations are divided into two groups: indistinguishability and
distinguishability relations. In our analysis, we are dealing with a tolerance (or
similarity) relation, i.e., a reflexive and symmetric relation, and its opposite, a
preclusivity relation, i.e., an irreflexive and symmetric relation. From the intuitive
point of view, two individuals are similar when they have an “indistinguishable
role” with respect to the intended application, even if they are not equivalent.
On the other side, they are preclusive if they have a “distinguishable role”, even
if they are not totally different.

These considerations lead to the definition of similarity space.

Definition 2. A similarity space is a structure S = 〈X,R〉, where X (called the
universe of the space) is a non–empty set of objects and R (called the similarity
relation of the space) is a reflexive and symmetric binary relation defined on X.
In other words:

Algebraic Structures for Rough Sets 211

(i) ∀x ∈ X : xRx (reflexivity);
(ii) ∀x, y ∈ X : xRy implies yRx (symmetry).

Let us stress that, in general, a similarity relation is not required to be
transitive. This feature strongly differentiates its behavior with respect to the
equivalence relation, which is at the basis of classical rough sets theory.

In the context of an incomplete information system K(X), for a fixed set
of attributes D ⊆ Att(X) a natural similarity relation is that two objects are
similar if they possess the same values with respect to all known attributes inside
D. In a more formal way:

∀x, y ∈ X : xRDy iff ∀ai ∈ D ⊆ Att(X),
either F (x, ai) = F (y, ai) or F (x, ai) = ∗ or F (y, ai) = ∗ (1)

This is the approach introduced by Kryszkiewicz in [Kry98] which has the ad-
vantage that the possibility of null values “corresponds to the idea that such
values are just missing, but they do exist. In other words, it is our imperfect
knowledge that obliges us to work with a partial information table”[ST99].

Example 3. Considering the information system in Table 2, we have, for example,
that f4 is similar to f5 whatever be the chosen subset D of attributes. The same
applies to f5 and f6. On the other hand, the pair of objects f4 and f6 are not
similar relatively to any subset of attributes which contains the attribute Down–
Town; indeed F (Down − −Town, f4) = no whereas F (Down − −Town, f6) =
yes. In this way, it is also verified that the similarity relation induced from any
set of attributes D that contains Down–Town is not transitive since f4 is similar
to f5 and f5 is similar to f6, but f4 is not similar to f6 relatively to D.

Given a similarity space 〈X,R〉, the similarity class generated by the element
x ∈ X is the collection of all objects similar to x, i.e.,

S(x) := {y ∈ X : xRy}

Thus, the similarity class generated by x consists of all the elements which are
indistinguishable from x with respect to the similarity relation R. In this way
this class constitute a granule of similarity knowledge about x and is also called
the granule generated by x.

Trivially, R being a reflexive relation, it holds that x ∈ S(x) and so no
similarity class is empty. Further, as a consequence of the non–transitivity of the
relation, the similarity classes are not necessarily disjoint, i.e., there may exist
x, y such that S(x) �= S(y) and S(x) ∩ S(y) �= ∅.
Example 4. Making reference to example 2, if one considers the set of all at-
tributes (i.e., D = Att(X)) and the induced similarity relation according to (1)
we have that S(f4) = {f4, f5} and S(f6) = {f2, f5, f6}. Thus, S(f4) �= S(f6) and
S(f4) ∩ S(f6) = {f5}.

Using this notion of similarity class, it is possible to define in a natural
way a rough approximation by similarity of any set of objects ([Vak91,SS96],
[Ste98,ST01]).

212 Gianpiero Cattaneo and Davide Ciucci

Definition 3. Given a similarity space 〈X,R〉, and a set of objects A ⊆ X, the
rough approximation of A by similarity is defined as the pair 〈LR(A),
UR(A)〉, where

LR(A) := {x ∈ X : S(x) ⊆ A} = {x ∈ X : ∀z (xRz ⇒ z ∈ A)} (2a)
UR(A) := {x ∈ X : S(x) ∩A �= ∅} = {x ∈ X : ∃z (xRz and z ∈ A)} (2b)

It is easy to verify that the following chain of inclusions holds:

LR(A) ⊆ A ⊆ UR(A). (3)

LR(A) is called the similarity lower approximation of A (since it is constituted
by all objects whose granule is contained in A) and UR(A) the similarity upper
approximation of A (since it is constituted by all objects whose granule has at
least a point in common with A).

Example 5. Consider again the information system in Table 2 with similarity re-
lation (1) relative to D = Att(X). Choosing the set of objects A = {f4, f5, f6},
we have LR(A) = {f4, f5} and UR(A) = {f2, f4, f5, f6} with the obvious satis-
faction of the chain (3).

As said before, the opposite of a similarity relation is a preclusive relation: two
objects are in a preclusive relation iff it is possible to distinguish one from the
other. Using such a relation it is possible to define a notion dual to the one of
similarity space.

Definition 4. A preclusivity space is a structure S = 〈X,#〉, where X (called
the universe of the space) is a non empty set and # (called the preclusivity
relation of the space) is an irreflexive and symmetric relation defined on X. In
other words:

(i) ∀x ∈ X : not x#x (irreflexivity);
(ii) ∀x, y ∈ X : x#y implies y#x (symmetry).

Needless to stress, any similarity space 〈X,R〉 determines a corresponding
preclusivity space 〈X,#R〉 with x#Ry iff ¬(xRy), and vice versa any preclusiv-
ity space 〈X,#〉 determines a similarity space 〈X,R#〉 with xR#y iff ¬(x#y).
In this case we will say that we have a pair of correlated similarity–preclusive
relations.

Suppose, now, a preclusivity space 〈X,#〉. The preclusive relation # permits
us to introduce for all H ∈ P(X) (where we denote by P(X) the power set of
X) its preclusive complement defined as

H# := {x ∈ X : ∀y ∈ H (x#y)}.

In other words, H# contains all and only the elements of X that are distinguish-
able from all the elements of H . Whenever x ∈ H# we will also write: x#H and

Algebraic Structures for Rough Sets 213

we will say that x is preclusive to the set H . Further, we will say that two sub-
sets H and K of X are mutually preclusive (H#K) iff all the elements of H are
preclusive to K, and all the elements of K are preclusive to H . We remark that,
in the context of modal analysis of rough approximation spaces, the operation
is a sufficiency operator [DO01].

The following result has been proved in [Cat97].

Proposition 1. Let S = 〈X,#〉 be a preclusivity space and let us consider the
structure

〈
P(X), ∩, ∪, c, #, ∅, X

〉
. Then, the following hold:

1. The substructure 〈P(X), ∩, ∪, ∅, X〉 is a distributive (complete) lattice, with
respect to standard set theoretic intersection ∩ and union ∪, bounded by the
least element ∅ and the greatest element X. The partial order relation induced
from this lattice structure is the standard set theoretic inclusion ⊆.

2. The operation c : P(X) → P(X) associating to any subset H of X its set
theoretic complement Hc = X \ H is a standard complementation, i.e., it
satisfies:

(C-1) H = (Hc)c (involution)
(C-2a) H ⊆ K iff Kc ⊆ Hc (contraposition)
(C-2b) Hc ∩Kc = (H ∪K)c (∩ de Morgan)
(C-2c) Hc ∪Kc = (H ∩K)c (∪ de Morgan)
(C-3a) H ∩Hc = ∅ (non contradiction)
(C-3b) H ∪Hc = X (excluded middle)

3. The operator # : P(X)→ P(X) associating to any subset H of X its preclu-
sive complement H# is a unusual complementation and it satisfies:

(B1) H ⊆ (H#)# (weak double negation)
(B2a) If H ⊆ K then K# ⊆ H# (contraposition)
(B2b) H# ∩K# = (H ∪K)# (∩ de Morgan for #)
(B3) H ∩H# = ∅ (non contradiction)

4. The following interconnection rule holds:
(in) H# ⊆ Hc.

In the particular case of the similarity relation (1), the corresponding preclu-
sive relation is just its logical negation:

∀x, y ∈ X x#Dy iff not xRDy iff
∃ai ∈ D ⊆ Att(X) : F (x, ai) �= F (y, ai) and

F (x, ai) �= ∗ and F (y, ai) �= ∗ (4)

Example 6. Consider, now, the set of flats H = {f2, f6} relatively to Table 2,
then the preclusive complement of H with respect to D = Att(X) is H# = {f4},
which is different from Hc = {f1, f3, f4, f5}. Further, the complementation #

does not satisfy some standard properties. First of all the strong double negation
law, H = H##, and the excluded middle law H ∪H# = X . In fact, we have

H = {f2, f6} � {f1, f2, f3, f6} = H##

214 Gianpiero Cattaneo and Davide Ciucci

and
H ∪H# = {f2, f4, f6} �= X

Moreover, also the ∪ de Morgan law, H# ∪ K# = (H ∩ K)#, and the strong
contraposition law, H# ⊆ K# implies K ⊆ H , are not generally verified. Let us
consider, for instance, K = {f1, f3}. Then, we obtain

(H ∩K)# = ∅# = X �= {f4, f5, f6} = H# ∪K#

and

H# = {f4} ⊆ {f4, f5, f6} = K# but K = {f1, f3} �⊆ {f2, f6} = H

Finally, in general, it does not hold the strong interconnection rule H#c = H##.
For instance, H## = {f1, f2, f3, f6} �= {f1, f2, f3, f5, f6} = H#c.

On the Boolean lattice based on the power set P(X), we now have two,
generally different, complementations: the usual set theoretic complementation
c and the preclusive complementation #. By their interaction, it is possible to
define a closure and an interior operator on P(X).

Proposition 2. Let
〈
P(X), ∩, ∪, c, #, ∅, X

〉
be the algebraic structure based

on the power set of X and generated by the preclusivity space 〈X,#〉. Then the
mapping

L# : P(X)→ P(X), H → L#(H) := Hc##c

is an interior operator, i.e.,

(I0) X = L#(X) (normalized)
(I1) L#(H) ⊆ H (decreasing)
(I2) L#(H) = L#(L#(H)) (idempotent)
(I3) L#(H ∩K) ⊆ L#(H) ∩ L#(K) (sub−multiplicative)

Under condition (I0) − (I1), the condition (I3) is equivalent to the mono-
tonicity condition: H ⊆ K implies L#(H) ⊆ L#(K). In general, the Kuratowsky
property of topological interior, L#(H ∩K) = L#(H) ∩ L#(K), is not verified.

Example 7. Let us consider the two sets of flats H = {f1, f2, f4, f5} and K =
{f1, f2, f5, f6}, relative to Table 2. Then, the interior of H,K and their inter-
section, relative to D = Att(X), are respectively L#(H) = {f4, f5}, L#(K) =
{f2, f5, f6} and L#({f1, f2, f5}) = ∅. So, L#(H ∩ K) = ∅ �= {f5} = L#(H) ∩
L#(K).

From the fact that according to (I1) one has that L#(H) ⊆ H , it is possible
to single out the collection of all #–open sets defined as follows:

O(X,#) := {A ⊆ X : A = L#(A) = Ac##c}.

This set is not empty since both the empty set ∅ and the whole universe X are
#–open sets.

Algebraic Structures for Rough Sets 215

Proposition 3. Let 〈P(X), ∩, ∪, c, ∅, X〉 be the algebraic structure generated
by the preclusivity space 〈X,#〉 and # the preclusive complement on P(X). Then,
the mapping

U# : P(X)→ P(X), H → U#(H) := H##

is a closure operator, i.e.,

(C0) ∅ = U#(∅) (normalized)
(C1) H ⊆ U#(H) (increasing)
(C2) U#(H) = U#(U#(H)) (idempotent)
(C3) U#(H) ∪U#(K) ⊆ U#(H ∪K) (sub− additive)

Let us note that condition (C3), under (C0) − (C1), is equivalent to the
monotonicity condition: H ⊆ K implies U#(H) ⊆ U#(K). In general, the
Kuratowski property of topological closure, U#(H) ∪ U#(K) = U#(H ∪ K),
does not hold.

Example 8. Let us consider the two sets of flats H = {f2} and K = {f5}, relative
to Table 2. Then, the closure ofH,K and their union, relative to D = Att(X), are
respectively U#(H) = {f1, f2, f3}, U#(K) = {f4, f5} and U#({f2, f5}) = X .
So, U#(H ∪K) = X �= {f1, f2, f3, f4, f5} = U#(H) ∪U#(K).

Since according to (C1) one has that H ⊆ U#(H), it is possible to introduce
the collection of all #–closed sets defined as follows:

C(X,#) := {B ⊆ X : B = U#(B) = B##}.

Also this set is not empty since the empty set ∅ and the whole universe X are
both #–closed. It is easy to see that A is #–open iff Ac is #–closed, and similarly
B is #–closed iff Bc is #–open. Hence,

O(X,#) = {A ⊆ X : Ac ∈ C(X,#)}
C(X,#) = {B ⊆ X : Bc ∈ O(X,#)}.

If a set is both #–open and #–closed, it is said to be #–clopen. So, the
collection of all #–clopen sets is defined as:

CO(X,#) = C(X,#) ∩O(X,#).

Both the empty set ∅ and the whole universe X are #–clopen. In the sequel, if
there is no confusion, we simply speak of open, closed, and clopen sets instead
of #–open, #–closed, and #–clopen sets.

By the increasing (resp., decreasing) property (C1) (resp., (I1)) of the closure
(resp., interior) operator, the following holds:

L#(H) ⊆ H ⊆ U#(H). (5)

Therefore, the pair 〈L#(H),U#(H)〉 can be thought of as a preclusive rough
approximation of the set H by a preclusive open–closed pair. In fact,

216 Gianpiero Cattaneo and Davide Ciucci

1. by (C2) we have that U#(H) is a closed set, and inclusion H ⊆ U#(H) says
that U#(H) is one of the possible upper closed approximations of H ;

2. for every closed set B which is an upper approximation of H , H ⊆ B, we
have by monotonicity that U#(H) ⊆ U#(B) = B,

3. thus, U#(H) is the best approximation of H from the top by closed elements
(the upper closed approximation of H).

By the above properties (1)–(3), it follows that the preclusive upper approxima-
tion of a set H can also be expressed as:

U#(H) = ∩{B ∈ C(X,#) : H ⊆ B}. (6)

In the case of a closed set H one has that H = U#(H), i.e., the upper closed
approximation of any closed set is the set itself. In this sense we can say that
closed sets are upper exact sets.

Analogously, for the lower preclusive approximation:

1. by (I2) we have that L#(H) is an open set, and inclusion L#(H) ⊆ H says
that L#(H) is one of the possible lower open approximations of H ;

2. for every open set B which is a lower approximation of H , B ⊆ H , we have
by monotonicity that B = L#(B) ⊆ L#(H),

3. thus, L#(H) is the best approximation of H from the bottom by open ele-
ments (the lower open approximation of H).

By the above properties (1)–(3), it follows that the preclusive lower approxima-
tion of a set H can be expressed as:

L#(H) = ∪{B ∈ C(X,#) : B ⊆ H}. (7)

In the case of an open set H obviously H = L#(H), obtaining that open sets
can be considered as lower exact sets.

Finally, we have that clopen sets are both lower and upper exact sets, so, we
simply call them exact sets.

Example 9. Making reference to the information system described by Table 2,
let us consider the set H = {f4, f5, f6} and compute its preclusive rough ap-
proximation with respect to the preclusive relation (4) induced by the set D =
Att(X) of all involved attributes. We have that H# = {f1, f3} and U#(H) =
H## = {f4, f5, f6} = H . Computing the preclusive lower approximation, one
obtains that Hc = {f1, f2, f3}, Hc# = {f4, f5}, Hc## = {f1, f2, f3} and fi-
nally, Hc##c = L#(H) = {f4, f5, f6} = H . Thus, the rough approximation of
H = {f4, f5, f6} is the pair 〈{f4, f5, f6}, {f4, f5, f6}〉, and H is a clopen set.

In Figures 1–3, the closed, open, and clopen sets relative to the preclusive
relation induced from Table 2 by the set D = Att(X) are represented through
Hasse diagrams.

In Table 3 examples of similar and preclusive approximations with respect
to some particular subsets of the involved universe are reported.

Algebraic Structures for Rough Sets 217

{1, 2, 3, 4, 5, 6}

�����������

�����������

{4, 5, 6}

��
��

��
��

��
��

��
��

��
{1, 2, 3, 6}

��
��

��
��

��
��

��
��

��
�

{4, 5} {1, 3, 4}

������������

������������ {1, 2, 3}

{4}

�������������� {6} {1, 3}

��������������

∅
Fig. 1. Closed sets relative to Table 2 for D = Att(x).

{1, 2, 3, 4, 5, 6}

�����������

������������

{2, 4, 5, 6}

		
		

		
		

		
		

		
		

		
	

{1, 2, 3, 5, 6}

{4, 5, 6} {1, 2, 3, 4, 5}

������������

������������
{1, 2, 3, 6}

{4, 5}

�������������� {2, 5, 6} {1, 2, 3}

��������������

∅
Fig. 2. Open sets relative to Table 2 for D = Att(x).

{1, 2, 3, 4, 5, 6}

�����������

�����������

{1, 2, 3, 6} {4, 5, 6}

{1, 2, 3}

������������� {4, 5}

�������������

∅
Fig. 3. Clopen sets relative to Table 2 for D = Att(x).

218 Gianpiero Cattaneo and Davide Ciucci

Table 3. Examples of Approximations.

LR(H) L#(H) H U#(H) UR(H)

∅ ∅ {f2} {f1, f2, f3} {f1, f2, f3, f6}
{f4} {f4, f5} {f4, f5} {f4, f5} {f4, f5, f6}
{f4} {f4, f5} {f1, f2, f4, f5} {f1, f2, f3, f4, f5, f6} {f1, f2, f3, f4, f5, f6}
{f6} {f2, f5, f6} {f1, f2, f5, f6} {f1, f2, f3, f4, f5, f6} {f1, f2, f3, f4, f5, f6}

As can be seen, in all these particular cases the following chain of inclusions
holds:

LR(H) ⊆ L#(H) ⊆ H ⊆ U#(H) ⊆ UR(H) (8)

Thus, it seems possible to conjecture that the preclusive approximation gives
a better, i.e., closer, approximation of a given set H than the corresponding
similarity one. We will show in Section 3 that this is a general property, which
holds for all subsets of the universe of a preclusivity space.

2 About the Monotone Increase of Knowledge in Time

Starting from an incomplete information system one can wonder what happens
when we have more knowledge about it, i.e., when the number of unknown values
decreases. One could expect that for a fixed set of attributes to more knowledge
there corresponds more open and closed sets producing in this way a preclusive
rough approximation which is better than the previous one (if the information
increases, then the approximation should be better and better). However, this
is not always the case as the following examples will show.

Example 10. We now consider two examples showing two different cases making
reference to the information system of Table 2 which is supposed relative to a
given time, say t1. Let us consider a first situation, which can be attributed to a
knowledge situation of some observer O1 at a time, say t0, former than the time
t1 (i.e., t0 < t1) in which the knowledge of Table 2 has been achieved. This first
case corresponds to a worst knowledge about flat f3 according to the situation
described in Table 4.

Table 4. Case 1: only the information regarding flat f3 is different from the one of
Table 2 with a global increase in time of the knowledge.

Flat Price Rooms Down-Town Furniture

f1 high 2 yes *
f2 high * yes no
f3 * 2 * no
f4 low * no no
f5 low 1 * no
f6 * 1 yes *

Algebraic Structures for Rough Sets 219

In the second case, another observer O2 is involved whose former knowledge,
relative to time t0, with respect to the information system of Table 2 consists of
a worst knowledge about flat f6 according to the situation described in Table 5.

Table 5. Case 2: only the information regarding flat f6 is different from the one of
Table 2 with a global increase in time of the knowledge.

Flat Price Rooms Down-Town Furniture

f1 high 2 yes *
f2 high * yes no
f3 * 2 yes no
f4 low * no no
f5 low 1 * no
f6 * 1 * *

Thus, there are two observers that initially (time t0) have a different knowl-
edge about the same collection of flats (described by Tables 4 and 5). During
the time, both the observers increase their knowledge reaching the same result
exposed in Table 2 at a subsequent time t1. The final result is that relatively to
the same set of all attributes D = Att(X) there is a decrease in the number of
closed (and so also of open) sets passing from case 1 (time t0) to the situation
of Table 2 (time t1) and an increase going from case 2 (time t0) to Table 2 (time
t1), as can be seen looking at Figures 4 and 5.

When considering the clopen sets we observe that their number increases in
the original situation depicted in figure 3 with respect to both case 1 and case
2, as can be seen in Figure 6.

{1, 2, 3, 4, 5, 6}

�����������

�����������

�������������������

{1, 3, 4}

��
��

��
��

��
��

��
��

��
{1, 2, 3}

�����������
{1, 2, 6}

�����������

 {4, 5, 6}

���������

{1, 3} {1, 2}

������������
{4, 5}

������������
{5, 6}

����������

{1}

�������������� {4} {5}

�������������� {6}

��������������������������

∅

Fig. 4. Closed sets in case 1 at time t0: during the time evolution from t0 to t1 (cor-
responding to Figure 1) there is a decrease of the total number of closed sets with the
appearance of the set {1, 2, 3, 6}.

220 Gianpiero Cattaneo and Davide Ciucci

{1, 2, 3, 4, 5, 6}

�����������

�����������

{4, 5, 6} {1, 2, 3}

{4, 5}

������������� {1, 3}

�������������

∅
Fig. 5. Closed sets in case 2 at time t0: during the time evolution from t0 to t1 (corre-
sponding to Figure 1) there is an increase of the total number of closed sets.

{1, 2, 3, 4, 5, 6}

�����������

�����������

{1, 2, 3}

������������� {4, 5, 6}

�������������

∅
Fig. 6. Clopen Sets: case 1 and case 2 at time t0.

Again we ask whether this is a general property: to a greater knowledge
corresponds a higher number of clopen sets. Also in this case, the answer is
negative. Let us suppose that, with respect to the original situation of Table 2
at time t1, both the observers in a later time, say t2, increase their knowledge
about flat 5 according to Table 6.

Table 6. Case 3 at time t2 > t1.

Flat Price Rooms Down-Town Furniture

f1 high 2 yes *
f2 high * yes no
f3 * 2 yes no
f4 low * no no
f5 low 1 no no
f6 * 1 yes *

In this case, however, the number of clopen sets decreases with respect to
the knowledge at time t1, as can be seen in Figure 7.

Algebraic Structures for Rough Sets 221

{1, 2, 3, 4, 5, 6}

����������

�����������

{4, 5}

������������
{1, 2, 3, 6}

�������������

∅
Fig. 7. Clopen Sets: Case 3 at time t2 > t1.

When considering the closed sets, it happens that they are numerically less
at time t2 with respect to the ones at time t1, but the set {1, 3, 4, 5} is closed at
time t2 and not at time t1.

In Figure 8 it is reported the Hasse diagram of closed sets at time t2.

{1, 2, 3, 4, 5, 6}

�����������

�����������

{4, 5, 6}

����������� {1, 2, 3, 6}

������������

������������ {1, 3, 4, 5}

������������

{6}

�������������� {4, 5} {1, 3}

��������������

∅
Fig. 8. Closed sets: Case 3 at time t2 > t1.

Finally, as a limit final case we consider the complete information system of
Table 1, corresponding to an increase of the knowledge represented by Table 6
(occurred at a time t3 > t2). In this case the set of closed and clopen sets are
the same as the ones of case 3 (see Figures 8 and 7 respectively).

We can conclude that there is no correspondence between unknown values
and exact (either open or closed or clopen sets) of the preclusive environment.
The same uncertainty holds with respect to the quality of an approximation.
Let us consider an incomplete information system based on the universe X with
associated a pair (R,#) of correlated similarity–preclusive relations. For a given
set of objects H from X we can compute its preclusive rough approximation.
Now, if we add (resp., remove) some information to (resp., from) the system, and
recompute the preclusive approximation, we have no idea if the result is better
or worst than the previous one.

222 Gianpiero Cattaneo and Davide Ciucci

Example 11. Let us consider the information system at time t0 of Table 4. If
we compute the approximations of the same sets used in Table 3, we obtain the
following results.

Table 7. Examples of Approximations, case 1 at time t0.

LR(H) L#(H) H U#(H) UR(H)

∅ ∅ {f2} {f1, f2} {f1, f2, f3, f6}
∅ ∅ {f4, f5} {f4, f5} {f3, f4, f5, f6}
∅ ∅ {f1, f2, f4, f5} {f1, f2, f3, f4, f5, f6} {f1, f2, f3, f4, f5, f6}

{f6} {f2, f5, f6} {f1, f2, f5, f6} {f1, f2, f3, f4, f5, f6} {f1, f2, f3, f4, f5, f6}

That is, going from a situation at time t0 to a situation at time t1, i.e., adding
knowledge to the information system in a monotonic way, we have that

1. the time evolution of the preclusive rough approximation of a set is unpre-
dictable, i.e., the approximation becomes either worst (case {f2}), or better
(cases {f4, f5}, {f1, f2, f4, f5}), or remains the same (case {f1, f2, f5, f6});

2. on the contrary, in this example the similarity rough approximation at time
t1 of a set is always better than the corresponding similarity rough approx-
imation of the same set at the previous time t0, i.e., there is a monotone
behavior of the similarity approximation with respect to the knowledge in-
crease;

3. however, at any fixed time the preclusive approximation of a set is always
better then the correlated similarity approximation, i.e., the chain (8) holds
for any set.

As regards to the preclusive approximations, we can select those situations in
which to an increase of knowledge in time corresponds an increase in the quality
of the approximations.

First of all, let us introduce the following definitions.

Definition 5. Let K(t0)(X) and K(t1)(X), with t0, t1 ∈ R, be two incomplete
information systems based on the same triple 〈X,Att(X), val(X)〉 and charac-
terized by two different information maps

F (t0) : X ×Att(X) �→ val(X) and F (t1) : X ×Att(X) �→ val(X).

We will say that there is a monotonic increase of information iff

t0 ≤ t1 and ∀(x, a) (F (t0)(x, a) �= ∗ ⇒ F (t1)(x, a) = F (t0)(x, a)).

In such a case, we will write K(t0)(X) K(t1)(X).

Definition 6. Let K(t0)(X) and K(t1)(X) be two incomplete information sys-
tems such that K(t0)(X) K(t1)(X). We will say that there is a monotonic
increase of knowledge iff C(t0)(X) ⊆ C(t1)(X).

Algebraic Structures for Rough Sets 223

In the previous examples we have seen that to a monotonic increase of in-
formation does not correspond a monotonic increase in the quality of the ap-
proximations. This desirable behavior holds, instead, in the case of monotonic
increase of knowledge.

Proposition 4. Let K(t0)(X) and K(t1)(X) be two incomplete information sys-
tems characterized by a monotonic increase of knowledge. Then

∀H ⊆ X L(t0)
(H) ⊆ L(t1)

(H) ⊆ H ⊆ U(t1)
(H) ⊆ U(t0)

(H). (9)

Proof. By hypothesis, C(t0)(X) ⊆ C(t1)(X) and consequently O(t0)(X) ⊆
O(t1)(X). Now, let us consider the rough lower approximation of a set H , as
defined in equation (7). Suppose that there exists a set A ∈ O(t0)(X) such that
A ⊆ H , then, by hypothesis, A ∈ O(t1)(X). So L(t0)

(H) = ∪{A ∈ O(t0)(X) : A ⊆
H} ⊆ ∪{A ∈ O(t1)(X) : A ⊆ H} = L(t1)

(H). On the other hand, suppose that
there exists B ∈ C(t0)(X) such that H ⊆ B, then it also holds B ∈ C(t1)(X). So,
U(t1)

(H) = ∩{B ∈ C(t1)(X) : H ⊆ B} ⊆ ∩{B ∈ C(t0)(X) : H ⊆ B} = U(t0)
(H)

Example 12. Let us consider the case 2, at time t0, and compute the approxi-
mations of the same sets of Table 3. The results are shown in Table 8.

Table 8. Examples of Approximations, case 2.

LR(H) L#(H) H U#(H) UR(H)

∅ ∅ {f2} {f1, f2, f3} {f1, f2, f3, f6}
∅ ∅ {f4, f5} {f4, f5} {f4, f5, f6}
∅ ∅ {f1, f2, f4, f5} {f1, f2, f3, f4, f5, f6} {f1, f2, f3, f4, f5, f6}
∅ ∅ {f1, f2, f5, f6} {f1, f2, f3, f4, f5, f6} {f1, f2, f3, f4, f5, f6}

Going from Table 5 (case 2), at time t0, to Table 2, at time t1, we have a
monotonic increase of knowledge. So, as expected, it results that the approxi-
mations computed in Table 3 are always better or equal to the ones of Table 8.

Differently from the preclusive rough approximation, if we consider the simi-
larity rough approximation, we can see, comparing Tables 7 and 8 with Table 3,
that the quality of the approximation is monotonic with respect to the quantity
of information. This is a general result, as shown in the following proposition.

Proposition 5. Let K(t0)(X) and K(t1)(X) be two incomplete information sys-
tems such that K(t0)(X) K(t1)(X) (there is a monotonic increase of informa-
tion). Then,

∀H ⊆ X L(t0)
R (H) ⊆ L(t1)

R (H) ⊆ H ⊆ U(t1)
R (H) ⊆ U(t0)

R (H). (10)

Proof. Considering the similarity relation defined in equation (1), we have that
if two objects are similar at time t1 then they are also similar at time t0: xR(t1)y

224 Gianpiero Cattaneo and Davide Ciucci

implies xR(t0)y. So the granule (similarity class) of an object x at time t0 is
bigger than the the granule (similarity class) of x at time t1: S(t1)(x) ⊆ S(t0)(x).
Now, let H be a set of objects and compute its similarity rough approximation
as defined in Equations (2a) and (2b). As regards to the lower approximation,
we have that if x ∈ L

(t0)
R (H), then S(t0)(x) ⊆ H . So, S(t1)(x) ⊆ S(t0)(x) ⊆ H ,

that is x ∈ L
(t1)
R (H), and finally, L(t0)

R (H) ⊆ L
(t1)
R (H). Similarly, for the upper

approximation, if x ∈ U
(t1)
R (H), one obtains by definition that S(t1)(x)∩H �= ∅.

Then S(t0)(x) ∩H �= ∅, i.e., x ∈ U
(t0)
R (H) and U

(t1)
R (H) ⊆ U

(t0)
R (H).

Concluding, if we suppose an increase of the information in time we have a mono-
tone behaviour of the similarity approximation and an unpredictable behaviour
of the preclusive approximation, with the last one which is always better than
the first one. From an intuitive point of view we can imagine a situation similar
to the one drawn in Figure 9.

tH

U_#(H)

U_R(H)

L_#(H)

L_R(H)

H

Fig. 9. An imaginary representation of the time evolution of the similarity and preclu-
sive rough approximations.

All the examples considered until now are about incomplete information sys-
tems and the similarity relation given by Equation (1). However, the patholog-
ical behavior remarked about the monotonic increase of information holds also
in other contexts.

Another typical case of a reflexive and symmetric binary relation which in
general is not transitive is the one induced by any distance. Precisely, if it can be
introduced a metric assigning a distance between pairs of objects of the universe
of an information system, we could say that two objects are similar if their
distance is less than a fixed value ε. In this situation the similarity relation is
sometimes called ε-indiscernibility and “the basic idea is that small differences
on some attribute values may be judged insignificant” [SV95].

Algebraic Structures for Rough Sets 225

2.1 ε-Indiscernibility in Presence of a Metric

LetK be an information system with numeric valued attributes, i.e., Att(X) ⊆ R.
Then, given an attribute a ∈ Att(X) a way to define a pseudo–metric for a is

da(x, y) :=
|F (x, a) − F (y, a)|

max{F (z, a) : z ∈ X} −min{F (w, a) : w ∈ X} . (11)

Clearly, this is a pseudo–metric and not a metric since it is not true that
da(x, y) = 0 implies x = y [Kel55]. Further, we remark that it is well defined
since max{F (z, a) : z ∈ X} − min{F (w, a) : w ∈ X} is never equal to 0 due
to the assumption that for all attributes a there exist at least to objects x1, x2

such that F (x1, a) �= F (x2, a) (see Section 1).
In presence of two or more attributes collected in a set D ⊆ Att(X), we can

introduce an overall distance:

dD(x, y) :=
∑
a∈D

ωada(x, y),

where ωa are weights such that
∑

ωa = 1 (a standard choice is ωa = 1
|D|). So, for

a fixed value ε ∈ [0, 1] we can consider the similarity relation defined as follows:

xRε
Dy iff dD(x, y) ≤ ε. (12)

The correlated preclusive relation is the following:

x#ε
Dy iff dD(x, y) > ε.

Let us stress that this is not the unique possibility to define a metric, for a more
complete discussion see [NSS98].

Example 13. We apply now the similarity relation (12) on the same example
used in [SV95] and [GMS98]. Let us consider the situation of 12 firms described
in Table 9.

These firms are analyzed with respect to the following attributes:

– a1= value of fixed capital,
– a2= value of sales in the year preceding the application,
– a3= kind of activity, classified according to the typology 0, 1 and 2,

Further, these firms are divided in two classes: paid back their credit (d=1) or
not (d=2).

In order to have a similarity relation, we define a distance between two ob-
jects by considering only the first two attributes, i.e., D = {a1, a2}. So, by
equation (12), the family of similarity relations, depending on ε, is:

xRε
Dy iff

1
2

(|F (x, a1)− F (y, a1)|
91

+
|F (x, a2)− F (y, a2)|

53

)
≤ ε.

226 Gianpiero Cattaneo and Davide Ciucci

Table 9. Firms information table.

Firm a1 a2 a3 d

1 43 78 0 1
2 54 75 0 2
3 124 50 1 1
4 102 65 1 2
5 98 80 2 2
6 88 102 2 2
7 130 57 0 1
8 128 92 1 2
9 82 59 1 1
10 134 103 2 2
11 58 55 0 1
12 126 71 1 2

Let us set ε = 0.4. We have, for example, that firm 1 is similar to firm 5:

dD(1, 5) =
1
2

(|43− 98|
91

+
|78− 80|

53

)
. 0.32 < 0.4 = ε

On the other hand, firm 1 is preclusive to firm 12:

dD(1, 12) =
1
2

(|43− 126|
91

+
|78− 71|

53

)
. 0.52 > 0.4 = ε

Further, firm 5 is similar to firm 12:

dD(5, 12) =
1
2

(|98− 126|
91

+
|71− 80|

53

)
. 0.24 < 0.4 = ε

Thus, it is easily verified that R0.4
D is not a transitive relation, since firm 1

is similar to firm 5 which is similar to firm 12, but firm 1 and firm 12 are not
similar.

Now, let us consider the subsets of firms which paid back and did not pay
back their credit: P = {1, 3, 7, 9, 11} and N = {2, 4, 5, 6, 8, 10, 12}. In Table 10
we report their similarity and preclusive rough approximations, with respect to
the relation R0.2.

Table 10. Example of rough approximations of the sets P and N .

LR(H) L#(H) H U#(H) UR(H)

{3,11} {3,7,9,11} P {1,2,3,7,9,11,12} {1,2,3,4,7,9,11,12}
{5,6,8,10} {4,5,6,8,10} N {1,2,4,5,6,8,10,12} {1,2,4,5,6,7,8,9,10,12}

As expected, preclusive approximations are better than the corresponding
similarity ones. This is particularly evident when considering the boundary re-
gion, i.e., U(H)/L(H), which represents the elements whose classification is
uncertain. In fact, considering the set P we have that its preclusive boundary
region U#(P)/L#(P) is the set {1, 2, 12}, whereas its similarity boundary region

Algebraic Structures for Rough Sets 227

UR(P)/LR(P) is the set {1, 2, 4, 7, 9, 12}. Hence, the number of elements whose
belonging to P is uncertain is half in the case of preclusive with respect to the
corresponding similarity approximation.

Now, we turn our attention to open and closed sets. As can be seen in Ta-
ble 11, the number of exact sets, both closed (and so also open) and clopen,
decreases as the value of ε increases.

Table 11. Number of exact sets, depending on ε.

ε Closed Clopen

0.1 1024 1024
0.2 192 80
0.3 74 20
0.4 34 4
0.5 26 2
0.6 16 2
0.7 8 2
0.8 4 2
0.9 2 2

Thus, one could think that given ε1 ≤ ε2, if H is closed with respect to #ε2 ,
i.e., H = Uε2

(H), then H is closed also with respect to #ε1 , i.e., H = Uε1
#(H). In

other words, one expects that ε1 ≤ ε2 implies Cε2(X) ⊆ Cε1(X). However, this
is not true. For example, we have that {8, 10} ∈ C0.7(X) but {8, 10} �∈ C0.6(X).
The same can be said about clopen sets, in fact, we have that {5, 7, 8, 10} ∈
CO0.3(X) but {5, 7, 8, 10} �∈ CO0.2(X).

When considering the rough approximation of a set H with respect to differ-
ent relations relative to ε1 ≤ ε2, we have the same non–predictability encountered
in the case of incomplete information systems at different time steps t1 ≤ t2.
Indeed, we can have that the approximation relative to ε2 is better, worst or
equal to the approximation relative to ε1 ≤ ε2.

Let us refer to the information system of Table 9. We set D = {a1, a2} and
compute the approximation of some sets using the relation (12) with respect to
two different values ε1 = 0.6 and ε2 = 0.7. The results are reported in Tables 12
and 13, respectively.

Table 12. Example of approximation for ε1 = 0.6.

Lε1
R (H) Lε1

(H) H Uε1
(H) Uε1

R (H)

∅ ∅ {8,10} {6,8,10} {1,2,3,4,5,6,7,8,9,10,12}
∅ ∅ {2} {1,2} {1,2,4,5,6,7,8,9,11,12}
∅ ∅ {2,4,5} X X

Table 13. Example of approximation for ε2 = 0.7.

Lε2
R (H) Lε2

(H) H Uε2
(H) Uε2

R (H)

∅ ∅ {8,10} {8,10} {1,2,3,4,5,6,7,8,9,10,12}
∅ ∅ {2} {1,2,9,11} {1,2,3,4,5,6,7,8,9,11,12}
∅ ∅ {2,4,5} X X

228 Gianpiero Cattaneo and Davide Ciucci

Thus, in the considered three cases we have all the possible situations: the
preclusive approximation relative to ε1 is better (case {2}), worse (case {8, 10})
or equal (case {2, 4, 5}) to the approximation relative to ε2.

A particular situation that guarantees us to have a better approximation
going from ε1 to ε2 is given by a monotonic (with respect to ε) increase of
knowledge.

Proposition 6. Let K(X) be a real valued information system (i.e.,
val(X) ⊆ R) and let ε1, ε2 ∈ [0, 1]. If, with respect to the similarity relation

(12), it happens that
Cε2(X) ⊆ Cε1(X) then

∀H ⊆ X Lε2
#(H) ⊆ Lε1

(H) ⊆ H ⊆ Uε1
(H) ⊆ Uε2

(H).

Proof. Same as Proposition 4.

Example 14. Let us refer to the Example 13. If we choose ε1 = 0.7 and ε2 = 0.8
we have that Cε2(X) ⊆ Cε1(X), as can be seen by Hasse diagrams of figure 10
and 11.

X

�����������

����������

{1, 2, 9, 11}

����������
{3, 10}

���������
{8, 10}

{1}

������������ {11} {10}

����������

∅
Fig. 10. Closed sets: case ε1 = 0.7.

X

��
��

��
��

��
��

��
��

{10}

��
��

��
��

{11}

��
��

��
��

∅
Fig. 11. Closed sets: case ε2 = 0.8.

So we expect that the approximations relative to ε1 = 0.7 are better than
the ones relative to ε2 = 0.8. As an example we compute the approximations of
the same sets of Example 13 in the case of ε2 = 0.8.

Algebraic Structures for Rough Sets 229

Table 14. Example of approximation, ε = 0.8.

Lε
R(H) Lε

#(H) H Uε
#(H) Uε

R(H)

∅ ∅ {8,10} X X
∅ ∅ {2} X X
∅ ∅ {2,4,5} X X

By comparing Table 13 with Table 14, it is easily seen that Proposition 6 is
verified.

On the other hand, in the case of the similarity rough approximation, we always
have a monotonic behavior.

Proposition 7. Let K(X) be a real valued information system (i.e., val(X) ⊆
R) and let ε1, ε2 ∈ [0, 1] with ε1 ≤ ε2. Then, once a set of attributes D ⊆ Att(X)
is chosen and the similarity relation Rε

D is defined as in equation (12), the
following holds

Lε2
R(H) ⊆ Lε1

R(H) ⊆ H ⊆ Uε1
R(H) ⊆ Uε2

R(H).

Proof. The proof is similar to the one of proposition 5, considering that if ε1 ≤ ε2
than xRε1y implies xRε2y.

3 Quasi-BZ Distributive Lattices

In the previous sections, through concrete cases based on the power set of a
universe, we introduced preclusivity spaces and the rough approximations gen-
erated by them. Moreover, it emerged that in all the considered examples the
preclusive approximation was always better than the corresponding similarity
approximation. The aim of this section is to give an algebraic characterization to
preclusivity spaces in terms of quasi–Brouwer–Zadeh distributive lattice struc-
tures ([Cat97,Cat98]). This will also lead to a theoretical proof of the better
behavior of the preclusive rough approximation with respect to the similarity
one.

In particular, we considered the concrete algebra 〈P(X), ∪, ∩, c, #〉 based
on the power set P(X) of a universe X endowed with the set theoretic union,
intersection, complement operations, and an unusual complementation #.

Now, through an abstraction, we are going to introduce an abstract system
consisting of a set Σ, corresponding to the power set P(X) of the concrete
example, upon which the following operations are defined:

– two binary operations, ∨ and ∧, corresponding respectively to the set theo-
retic union and intersection of the concrete example;

– two unary operations, ′ and ∼, corresponding to the standard and preclusive
complementations of the concrete example.

Definition 7. A system 〈Σ,∧,∨, ′, ∼, 0, 1〉 is a quasi–Brouwer–Zadeh (BZ) dis-
tributive lattice if the following properties hold:

230 Gianpiero Cattaneo and Davide Ciucci

(1) Σ is a distributive lattice with respect to the join and the meet operations
∨,∧ whose induced partial order relation is

a ≤ b iff a = a ∧ b (equivalently b = a ∨ b)

Moreover, it is required that Σ is bounded by the least element 0 and the
greatest element 1:

∀a ∈ Σ, 0 ≤ a ≤ 1

(2) The unary operation ′ : Σ �→ Σ is a Kleene (also Zadeh or fuzzy) comple-
mentation. In other words for arbitrary a, b ∈ Σ:

(K1) a′′ = a
(K2) (a ∨ b)′ = a′ ∧ b′

(K3) a ∧ a′ ≤ b ∨ b′.
(3) The unary operation ∼ : Σ �→ Σ is a Brouwer (or intuitionistic) comple-

mentation. In other words for arbitrary a, b ∈ Σ:
(B1) a ∧ a∼∼ = a
(B2) (a ∨ b)∼ = a∼ ∧ b∼

(B3) a ∧ a∼ = 0
(4) The two complementations are linked by the interconnection rule which must

hold for arbitrary a ∈ Σ:
(in) a∼ ≤ a′

We remark that under condition (K1), property (K2) is equivalent to the follow-
ing

(K2a) (a ∧ b)′ = a′ ∨ b′;
(K2b) a ≤ b implies b′ ≤ a′;
(K2c) b′ ≤ a′ implies a ≤ b.

In general neither the non contradiction law a ∧ a′ = 0 nor the excluded middle
law a ∨ a′ = 1 for the Kleene negation are required to hold.

As to the intuitionistic negation, we have that under condition (B1), condi-
tion (B2) is equivalent only to the weak form of non contraposition law

(B2a) a ≤ b implies b∼ ≤ a∼.

In general the strong contraposition law, b∼ ≤ a∼ implies a ≤ b, and the dual
de Morgan law, (a ∧ b)∼ = a∼ ∨ b∼ do not hold for the Brouwer negation. As
expressed by property (B3), the non contradiction law is satisfied by all elements,
whereas, in general, the excluded middle law is not required to hold.

In the framework of quasi BZ lattices, one can naturally introduce the anti-
Brouwer complement � : Σ �→ Σ defined for every a ∈ Σ as: a� := a′∼′. It can
be easily shown that the operation � satisfies the following properties:

(AB1) a ≤ b implies b� ≤ a� [Contraposition law]
(AB2) a ∨ a� = 1 [Excluded middle law]
(AB3) a�� ≤ a. [Weak double negation law]

Algebraic Structures for Rough Sets 231

Our three complements turn out to be connected by the following chain:

∀a ∈ Σ , a∼ ≤ a′ ≤ a�.

Proposition 8. Let 〈Σ,∧,∨, ′, ∼, 0, 1〉 be a quasi BZ distributive lattice. Then,
the map i : Σ → Σ such that i(a) := a�� = a′∼∼′ is an interior operator. That
is, the following are satisfied:

(I0) 1 = i(1) (normalized)
(I1) i(a) ≤ a (decreasing)
(I2) i(a) = i(i(a)) (idempotent)
(I3) i(a ∧ b) ≤ i(a) ∧ i(b) (submultiplicative)

Dually, the map c : Σ → Σ such that c(a) := a∼∼ is a closure operator, i.e.:

(C0) 0 = c(0) (normalized)
(C1) a ≤ c(a) (increasing)
(C2) c(a) = c(c(a)) (idempotent)
(C3) c(a) ∨ c(b) ≤ c(a ∨ b) (subadditive)

Under condition (I0)–(I2) the submultiplicative property (I3) is equivalent to the
monotonicity condition a ≤ b implies i(a) ≤ i(b). Dually, under condition (C0)–
(C2) the subadditive property (C3) is equivalent to the monotonicity condition
a ≤ b implies c(a) ≤ c(b).

Since in general i(a) ≤ a, an element e ∈ Σ is said to be innerdefinable (open)
iff i(e) = e. Analogously, since in general a ≤ c(a), an element f ∈ Σ is said to
be outerdefinable (closed) iff f = c(f). We will indicate by O(Σ) the set of all
innerdefinable (open) elements of the space, while C(Σ) will represent the set of
all outerdefinable (closed) elements. In other words:

O(Σ) = {e ∈ Σ : e = i(e)}
C(Σ) = {f ∈ Σ : f = c(f)}

It is trivial to prove that an element a is closed iff a′ is open, and vice versa an
element a is open iff a′ is closed. In this way there is a duality between open and
closed elements determined by the Kleene negation:

O(Σ) = {e ∈ Σ : e′ ∈ C(Σ)}
C(Σ) = {f ∈ Σ : f ′ ∈ O(Σ)}

In general, these two subsets of Σ do not coincide, neither one is a subset
of the other. Thus, it is worthwhile to consider also the set of all innouter (or
clopen) elements:

CO(Σ) := O(Σ) ∩ C(Σ).

Moreover, CO(Σ) is not empty because it contains the least element 0 and the
greatest element 1 of the lattice Σ. In the sequel we are also interested to the
so–called exterior of an element a ∈ Σ defined as the open element e(a) := c(a)′.

232 Gianpiero Cattaneo and Davide Ciucci

The above considerations lead to the definition of an abstract approximation
space generated by a quasi BZ lattice.

Definition 8. Let 〈Σ,≤, ′, ∼, 0, 1〉 be a quasi BZ distributive lattice. The in-
duced rough approximation space is the structure

〈Σ,O(Σ),C(Σ), i, c〉,

where

– Σ is the set of approximable elements;
– O(Σ) ⊆ Σ is the set of innerdefinable elements, such that 0 and 1 ∈ O(Σ);
– C(Σ) ⊆ Σ is the set of outerdefinable elements, such that 0 and 1 ∈ C(Σ);
– i : Σ → O(Σ) is the inner approximation map;
– c : Σ → C(Σ) is the outer approximation map;

For any element a ∈ Σ, its rough approximation is defined as the pair:

r(a) := 〈i(a), c(a)〉 [with i(a) ≤ a ≤ c(a)]

drawn in the following diagram:

a ∈ Σ

i

��������������
c

��������������

r

��

i(a) ∈ O(Σ)

�������������
c(a) ∈ C(Σ)

�������������

〈i(a), c(a)〉

This approximation is the best approximation by open and closed elements
that it is possible to define on a quasi BZ structure. To be precise, for any
element a ∈ X the following holds:

(L1) i(a) is an open element (i(a) ∈ O(X));
(L2) i(a) is an open lower approximation of a (i(a) ≤ a);
(L3) i(a) is the best lower approximation of a by open elements (let e ∈

O(X) be such that e ≤ a, then e ≤ i(a)).

By properties (L1)–(L3), it follows that the interior of an element a can be
expressed as

i(a) = max{x ∈ O(X) : x ≤ a}
Analogously, for the closure operator,

(U1) c(a) is a closed element (c(a) ∈ C(X)).
(U2) c(a) is a closed upper approximation of a (a ≤ c(a)).
(U3) c(a) is the best outer approximation of a by closed elements (let f ∈

C(X) be such that a ≤ f , then c(a) ≤ f).

Algebraic Structures for Rough Sets 233

By properties (U1)–(U3), it follows that the closure of an element a can be
expressed as

c(a) = min{y ∈ C(X) : a ≤ y}
An equivalent way to define a rough approximation is to consider instead of

the interior–closure pair the interior–exterior pair:

re(a) := 〈i(a), e(a)〉 := 〈i(a), c(a)′〉

drawn in the following diagram

a ∈ Σ

i

��������������
e

��������������

re

��

i(a) ∈ O(Σ)

�������������
e(a) ∈ O(Σ)

�������������

〈i(a), e(a)〉

We remark that both i(a) and e(a) are open elements and that given the interior
– exterior approximation re(a), the interior – closure approximation r(a) can be
obtained in an obvious way, and vice versa.

Further, the interior and closure operators satisfy some typical modal prop-
erties, once interpreted the interior as a necessity operator and the closure as a
possibility operator ([Che88]).

Proposition 9. In any quasi BZ distributive lattice the following conditions
hold:

(mod–1p)
i(1) = 1.

That is: if a sentence is true, then also its necessity its true (necessitation
rule).

(mod–2p)
i(a) ≤ a ≤ c(a).

In other words: necessity implies actuality and actuality implies possibility
(a characteristic principle of the modal system T).

(mod–3p)
i(a) = i(i(a)); c(a) = c(c(a)).

necessity and possibility are idempotent operators (a characteristic S4–prin-
ciple).

As a consequence of these properties we can say that the interior and closure
operators induced by a quasi BZ distributive lattice, present a typical behaviour
of a T system, based on a Kleene lattice, instead of on a Boolean algebra,
satisfying also the S4–principle.

Generally, the following properties of modalities are not satisfied, as showed
in Example 15.

234 Gianpiero Cattaneo and Davide Ciucci

(B) a ≤ i(c(a) (a characteristic B-principle);
(S5) i(a) = c(i(a)), c(a) = i(c(a)) (a characteristic S5-principle).

Example 15. Let us consider the quasi BZ distributive lattice given in the Hasse
diagram of Figure 12.

•
1 = 0′ = 0∼

•b′ = c
��

��
��

��

•d′ = b∼ = a

•
0 = 1′ = 1∼ = c∼ = d∼

		
		

		
		

• b = a∼ = c′��������

• d = a′

• 								

Fig. 12.

Then, we have that b is a closed element, i.e., b = c(b) and i(c(b)) = i(b) = 0.
So, c(b) �= i(c(b)) and i(c(b)) < b. Further, c is an open element, i.e., i(c) = c
and c(i(c)) = 1. So i(c) �= c(i(c)).

Even if the interior and closure operators give the best approximation by closed
and open elements, they are not the only possible ones. Another interesting
possibility is given by the following two operators:

ν : Σ → C(Σ) ν(a) := a′∼ (13a)
μ : Σ → O(Σ) μ(a) := a∼′ (13b)

These mappings can be considered approximation operators because the follow-
ing order chain ν(a) ≤ a ≤ μ(a) holds. Moreover, they behave as modal operators
([Che88]), as shown in the following proposition.

Proposition 10. In any quasi BZ distributive lattice the following conditions
hold:

(mod–1s)
ν(1) = 1.

That is: if a sentence is true, then also its necessity its true (necessitation
rule).

(mod–2s)
ν(a) ≤ a ≤ μ(a).

In other words: necessity implies actuality and actuality implies possibility
(a characteristic principle of the modal system T).

Algebraic Structures for Rough Sets 235

(mod–3s)
a ≤ ν(μ(a)).

Actuality implies necessity of possibility (a characteristic B-principle).

As a consequence of these properties we can say that the modal operators
induced by a quasi–BZ distributive lattice, present a typical behavior of a B
system, based on a Kleene lattice, instead of on a Boolean algebra.

Generally, ν and μ do not satisfy the S4 and S5 principles:

(S4) ν(a) = ν(ν(a)); μ(a) = μ(μ(a)) (a characteristic S4-principle).
(S5) ν(a) = μ(ν(a)), μ(a) = ν(μ(a)) (a characteristic S5-principle).

Example 16. Let us consider the same quasi–BZ lattice of Example 15. Then,
ν(c) = a, so ν(c) �= ν(ν(c)) = 0 and ν(c) �= μ(ν(c)) = c. Further, μ(a) = c, so
μ(a) �= μ(μ(a)) = 1 and μ(a) �= ν(μ(a)) = a.

However, necessity and possibility are not outer and inner operators. In fact, in
general, they do not satisfy the idempotent properties, but only the following
weaker form:

ν(ν(a)) ≤ ν(a)
μ(a) ≤ μ(μ(a))

Example 17. Let us consider the same quasi–BZ lattice of Example 15. Then,
μ(a) = c < 1 = μ(μ(a)) and ν(ν(d)) = 0 < b = ν(d).

The major drawback of this approximation is that the rough approximation
based on modal operators is worse than the corresponding one based on the
interior - closure operators, in the sense that it captures less information about
the approximable elements. In fact, for any element a ∈ X , the following order
chain holds:

ν(a) ≤ i(a) ≤ a ≤ c(a) ≤ μ(a). (14)

3.1 Rough Approximation Spaces as Quasi-BZ Lattices

We have seen that given an element a of a quasi–BZ distributive lattice, a possible
rough approximation of a is given by re(a) = 〈i(a), e(a)〉. Now, we show that
it is possible to give to the collection of all rough approximations, re(a), the
structure of a quasi– BZ distributive lattice.

Let 〈Σ,∧,∨,′ ,∼ , 0, 1〉 be a quasi–BZ lattice. For the sake of simplicity, we
define

∀a ∈ Σ ai := i(a) ae := e(a) = c(a)′

We recall that both ai and ae are open elements: ai, ae ∈ O(Σ). Further, we
define the collection of all rough approximations as the set A := {〈ai, ae〉 : a ∈
Σ}. Then, the following proposition holds.

236 Gianpiero Cattaneo and Davide Ciucci

Proposition 11. The structure 〈A,/,0,− ,≈ , 〈0, 1〉, 〈1, 0〉 〉 where:

〈ai, ae〉 / 〈bi, be〉 := 〈i(ai ∧ bi), ae ∨ be〉
〈ai, ae〉 0 〈bi, be〉 := 〈ai ∨ bi, i(ae ∧ be)〉

〈ai, ae〉− := 〈ae, ai〉
〈ai, ae〉≈ := 〈e((ae)�), (ae)�〉

is a quasi BZ distributive lattice.

The partial order induced by the lattice operators, / and 0, is

〈ai, ae〉 � 〈bi, be〉 iff ai ≤ bi and be ≤ ae

In this environment the interior, closure and exterior operators are respectively
defined as:

I(〈ai, ae〉) := 〈i(ai), e(i(ai))〉 = 〈ai, e(ai)〉
C(〈ai, ae〉) := 〈e(i(ae)), i(ae)〉 = 〈e(ae), ae〉
E(〈ai, ae〉) := 〈ae, e(ae)〉

The collection of open and closed sets are respectively

O(A) = {〈ai, e(ai)〉 : a ∈ Σ}
C(A) = {〈e(be), be〉 : b ∈ Σ}

3.2 Preclusivity Spaces as Quasi-BZ Distributive Lattices

Now, we come back to preclusivity spaces, and analyze them in a quasi–BZ
lattice perspective.

Let S = 〈X,#〉 be a preclusivity space as defined in Definition 4. As recalled
in Proposition 1, the structure 〈P(X),∩,∪, c,# , ∅, X〉, is a quasi–BZ distribu-
tive lattice. Thus, the interior L#(H) = Hc##c and closure U#(H) = H##

operators as defined in Proposition 8 are just the preclusive lower and upper
approximation as defined in Propositions 2 and 3. More interestingly, when con-
sidering the modal operators ν and μ of equations (13) it happens that they
correspond to the similarity approximations given in Definition 3 by equation
(2): ν(H) = Hc# = LR(H) and μ(H) = H#c = UR(H).

As an application of the order chain (14) to the present case we have that
∀H ⊆ X :

LR(H) ⊆ L#(H) ⊆ H ⊆ U#(H) ⊆ UR(H)

This means that the preclusive rough approximation of a set H is always closer
to H than the one given by similarity. Thus, what was just a conjecture in
Example 9 has now been proved.

Algebraic Structures for Rough Sets 237

Now, we can apply Proposition 11 and give the structure of quasi–BZ lattices
to the collection of all preclusive rough approximations. Given a set of objects H
the pair interior–exterior 〈i(H), e(H)〉 is identified with the two sets: 〈Hi, He〉 :=
〈L#(H), (U#(H))c〉 = 〈Hc##c, H##c〉. So, we have that the collection of all
such pairs {〈Hi, He〉 : H ⊆ P(X)} is a quasi BZ distributive lattice, once defined
the operators:

〈Hi, He〉 / 〈Ki,Ke〉 := 〈L#(Hi ∩Ki), He ∪Ke〉
〈Hi, He〉 0 〈Ki,Ke〉 := 〈Hi ∪Ki,L#(He ∩Ke)〉

〈Hi, He〉− := 〈He, Hi〉
〈Hi, He〉≈ := 〈(U#((He)�))c, (He)�〉

4 BZ Lattices and Pawlak Rough Sets

So far we have considered concrete quasi–BZ lattices and concrete rough ap-
proximation spaces induced by a preclusivity space 〈X,#〉, where the preclusive
relation # is irreflexive and symmetric (or, equivalently, by a similarity space
〈X,R〉, where the similarity relation is reflexive and symmetric). Now, in order
to obtain Pawlak’s rough approximation spaces ([Paw81],[Paw82], [Paw92]), it
will be sufficient to assume the stronger assumption according to which in any
similarity space 〈X,R〉 the relation R is an equivalence relation (reflexive, sym-
metric and transitive). As a consequence, R will determine a partition of the
universe X into a set of equivalence classes Ei: two elements x and y will be
non–distinguishable (xRy) iff they belong to one and the same equivalence class
Ei. Given an element x ∈ X we can define the equivalence class generated by x
as the set

E(x) = {y ∈ X : xRy}.

Obviously, E(x) is not empty because x belongs to it and, analogously to the
similarity case, it constitutes a granule of knowledge about x. Let us stress that
two granule are either disjoint or equal between them.

In particular, in the classical Pawlak approach to rough sets the equivalence
relation is based on the equality of attribute values of a complete information
system K(X). Precisely, given a subset of attributes D ⊆ Att(X), the equivalence
relation of any two objects is defined as:

x ≡ y iff ∀a ∈ D F (x, a) = F (y, a). (15)

Obviously, the corresponding preclusive relation is defined as:

x �≡ y iff ∃a ∈ D F (x, a) �= F (y, a). (16)

Following the general theory of Sect. 3, we have that the structure P = 〈P(X),
∩,∪,c ,�≡ , ∅, X〉 is a quasi– BZ distributive lattice. However, the transitive prop-
erty of the similarity relation introduces some strong “classical” feature.

238 Gianpiero Cattaneo and Davide Ciucci

Table 15. Flats information system.

Flat Price Rooms Down–Town Furniture

f1 high 2 yes no
f2 high 1 yes no
f3 high 2 yes no
f4 low 1 no no
f5 low 1 no no
f6 medium 1 yes yes

Example 18. Let us consider the flat information system defined in Example 1
and reported below.

We set D = Att(X) and H = {f3, f4}. Computing the similarity rough
approximation
〈ν(H), μ(H)〉 and the preclusivity rough approximation
〈i(H), c(H)〉, we have that

〈ν(H), μ(H)〉 = 〈∅, {f1, f3, f4, f5}〉 = 〈i(H), c(H)〉

that is, the two approximations coincide. So, in particular, we have that

ν(H) = i(H)

that is, the necessity of H is equivalent to the interior of H , and

μ(H) = c(H)

that is, the possibility of H is equivalent to the closure of H . Further, the follow-
ing properties hold: ν(ν(H)) = ∅ = ν(H) and μ(μ(H)) = {f1, f3, f4, f5} = μ(H),
that is, the modal operators ν and μ are idempotent.

The properties analyzed in the previous example, i.e, idempotency of ne-
cessity and possibility, equivalence of necessity (resp., possibility) and interior
(resp., closure) operators, are true for any element H ∈ P(X). This is due to the
fact that the system P satisfies the axioms of a stronger structure than quasi–BZ
lattices: BZ lattices.

Definition 9. A structure 〈Σ,∧,∨,′ ,∼ , 0, 1〉 is a BZ distributive lattice if it is
a quasi–BZ distributive lattice satisfying the stronger interconnection rule:

(s–in) a∼∼ = a∼′.

Definition 10. A BZ distributive lattice satisfying also the ∨ de Morgan prop-
erty

(B2a) (a ∧ b)∼ = a∼ ∨ b∼,

is called a de Morgan BZ (BZdM) distributive lattice.

Algebraic Structures for Rough Sets 239

A consequence of the new axiom (s–in) is that the necessity mapping coincides
with the interior operator and the possibility mapping coincides with the closure
operator.

Proposition 12. Let 〈Σ,∧,∨,′ ,∼ , 0, 1〉 be a BZ distributive lattice. Then, the
following are true:

∀a ∈ Σ ν(a) = a′∼ = a′∼∼′ = i(a)
∀a ∈ Σ μ(a) = a∼′ = a∼∼ = c(a)

Further, we have that the modal operators, ν and μ, have the stronger behaviour
of an S5–modal like system, always based on a Kleene algebra instead of on a
Boolean one. That is, beside properties (mod–1)–(mod–3), the following are
satisfied:

(mod–4)
ν(ν(a)) = ν(a)

μ(μ(a)) = μ(a)

Necessity of necessity is equal to necessity; similarly for possibility (a char-
acteristic S4-principle).

(mod–5)
μ(a) = ν(μ(a))

ν(a) = μ(ν(a))

Possibility is equal to the necessity of possibility; whereas necessity is equal
to the possibility of necessity (a characteristic S5-principle).

Finally, another consequence of axiom (s–in) is the equivalence between the
collection of open and closed sets:

O(Σ) = {a ∈ Σ : a = i(a)} = {a ∈ Σ : a = c(a)} = C(Σ).

So, we need not to distinguish between upper exact and lower exact sets, we
only have exact sets, i.e., sets which are clopen. Let us indicate the collection of
exact sets as Σe.

We remark that this is not the only way to define exact elements. We have
seen that in general the order chain ν(a) ≤ a ≤ μ(a) does not hold. Clearly,
this is a fuzzy situation, since in a classical environment we would have no
difference among necessity, actuality and possibility, i.e., we are interested in
those elements for which e = μ(e) (equivalently, e = ν(e)). This leads us to
define the substructure of all Modal sharp (M-sharp) (exact, crisp) elements,
denoted by Σe,M , as follows:

Σe,M := {e ∈ Σ : μ(e) = e} = {e ∈ Σ : ν(e) = e}.

However, due to the strong interconnection holding between the two orthocom-
plementations in a BZ structure, the collection of M–sharp elements coincides

240 Gianpiero Cattaneo and Davide Ciucci

with Σe. Further, since in general a ∧ a′ �= 0 (equivalently, a ∨ a′ �= 1) it is
possible to consider as Kleene sharp (K-sharp) the elements which satisfy the
non contradiction (or equivalently the excluded middle) law with respect to the
Kleene negation:

Σe,′ := {e ∈ Σ : e ∧ e′ = 0} = {e ∈ Σ : e ∨ e′ = 1}.

In a BZdM distributive lattice also this set coincides with Σe, more generally, in
a BZ distributive lattice the relation Σe ⊆ Σe,′ holds.

Summarizing, we have that in a BZ distributive lattice, we can give only one
rough approximation through exact sets. The approximation operators turn out
to be respectively an interior and a closure operator with the further property
that they have a typical S5 modal behaviour.

Definition 11. Let 〈Σ,≤, ′, ∼, 0, 1〉 be a BZ distributive lattice. The induced
rough approximation space is the structure

〈Σ,Σe, ν, μ〉,

where

– Σ is the set of approximable elements;
– Σe ⊆ Σ is the set of exact elements;
– ν : Σ → Σe is the inner approximation map;
– μ : Σ → Σe is the outer approximation map;

For any element a ∈ Σ, its rough approximation is defined as the pair:

r(a) := 〈ν(a), μ(a)〉 [with ν(a) ≤ a ≤ μ(a)]

drawn in the following diagram:

a ∈ Σ

ν

�������������
μ

�������������

r

��

ν(a) ∈ Σe

�������������
μ(a) ∈ Σe

�������������

〈ν(a), μ(a)〉

Also in the case of BZ distributive lattice, r(a) is the best approximation by
exact elements of the element a. That is, for any element a ∈ Σ, properties
(L1)–(L3) and (U1)–(U3) hold.

Moreover, in this context, the approximation re is given by the necessity–
impossibility pair:

re(a) = 〈ν(a), μ′(a)〉 = 〈ν(a), a∼〉,
drawn in the following diagram:

Algebraic Structures for Rough Sets 241

a ∈ Σ

ν

�������������
∼

�������������

r

��

ν(a) ∈ Σe

�������������
a∼ ∈ Σe

������������

〈ν(a), a∼〉

4.1 Rough Approximation Spaces as BZ Lattices

In Sect. 3.1, we showed that it is possible to give to the collection of rough
approximations induced by a quasi BZ distributive lattice the structure of a
quasi–BZ distributive lattice. A dual result holds also in the case of BZ distribu-
tive lattices.

Let us consider the collection of all necessity–impossibility rough approxima-
tions. Analogously to the quasi–BZ lattice case, we define

∀a ∈ Σ ai := ν(a) ae := a∼,

so that the collection of rough approximations is A = {〈ν(a),∼ a〉 : a ∈ Σ} =
{〈ai, ae〉 : a ∈ Σ} with ai and ae being exact sets: ai, ae ∈ Σe. Now, the following
proposition holds for any BZ lattice.

Proposition 13. The structure (A,/,0,− ,≈ , 〈0, 1〉, 〈1, 0〉) where:

〈ai, ae〉 / 〈bi, be〉 := 〈ai ∧ bi, ae ∨ be〉
〈ai, ae〉 0 〈bi, be〉 := 〈ai ∨ bi, ae ∧ be〉

〈ai, ae〉− := 〈ae, ai〉
〈ai, ae〉≈ := 〈ae, (ae)′〉,

is a BZdM distributive lattice.

Also in this case the partial order induced by the lattice operators, / and 0,
is

〈ai, ae〉 � 〈bi, be〉 iff ai ≤ bi and be ≤ ae.

In this environment the interior, closure and exterior operators are respectively
defined as:

I〈ai, ae〉 := 〈ai, (ai)′〉
C〈ai, ae〉 := 〈(ae)′, ae〉
E〈ai, ae〉 := 〈ae, (ae)′〉

Obviously, the interior is equal to the necessity: I〈ai, ae〉 = �〈ai, ae〉, and the
closure is equal to the possibility: C〈ai, ae〉 = ♦〈ai, ae〉.

242 Gianpiero Cattaneo and Davide Ciucci

As can be seen, in terms of the original BZ lattice the modal operators of ne-
cessity � and possibility ♦ single out an exact element. That is, the necessity
of a rough approximation 〈ai, ae〉 is equal to the rough approximation of the
necessity of a:

�(re(a)) = � 〈ai, ae〉 = 〈ai, (ai)′〉 = re(ν(a)) (17)

Dually, the possibility of a rough approximation 〈ai, ae〉 is equal to the rough
approximation of the possibility of a:

♦(re(a)) = ♦ 〈ai, ae〉 = 〈(ae)′, ae〉 = re(μ(a)) (18)

The rough approximation of an element 〈ai, ae〉 is

Re 〈ai, ae〉 = 〈I〈ai, ae〉,E〈ai, ae〉〉 = 〈〈ai, (ai)′〉, 〈ae, (ae)′〉〉

and according to Equations (17) and (18)

Re 〈ai, ae〉 = 〈re(ν(a)), re(μ(a))〉

4.2 BZ Lattices Induced from Information Systems

Now, we return to Pawlak rough sets.

Proposition 14. Let 〈X,Att(X), val(X), F 〉 be a complete information system.
Then, the structure P = 〈P(X),∩,∪,c ,�≡ , ∅, X〉 where, a set of attributes D ⊆
Att(X) fixed, the preclusive relation �≡,

H �≡ = {x ∈ X : ∀y ∈ H ∃a ∈ D F (x, a) �= F (y, a)},

is a BZ distributive lattice.

In general the structure P is not a de Morgan BZ lattice.

Example 19. Let us consider the flat information system of Table 1. We set
H = {f1, f2, f6}, K = {f3, f4, f6}, D = Att(X) and use the preclusive relation
given by Equation (16). Then,

(H ∩K)# = {f6}# = {f1, f2, f3, f4, f5} �= {f2, f4, f5}

=
{f4, f5} ∪ {f2} = H# ∪K#.

In this case, we have that the necessity (resp., possibility) operator corresponds
to the “classical” rough sets lower (resp., upper) approximation:

ν(H) = L(H) = {x ∈ X : H ⊆ E(x)}

μ(H) = U(H) = {x ∈ X : H ∩ E(x) �= ∅},
where E(x) is the granule generated by the element x.

Algebraic Structures for Rough Sets 243

So, given a set of objects H ⊆ X , its rough sets approximation is given
by the pair 〈L(H),U(H)〉. Equivalently, any rough set can be expressed as the
lower–exterior pair 〈L(H),E(H)〉 = 〈L(H),U(H)c〉. By the previous subsection,
we have that the collection of all pairs 〈L(H),E(H)〉 on an information system
K(X) = 〈X, Att(X), val(X), F 〉, let us call it RS(X), gives rise to a BZdM

distributive lattice (RS(X),/,0, −, ≈, 〈∅, X〉, 〈X, ∅〉) where the operators are
defined according to Proposition 13.

5 HW Algebras

In the previous section, we have seen that it is possible to give to Pawlak rough
sets an algebraic representation through BZdM distributive lattices. However,
this is not the only possibility. In literature, at least two other algebras are well
known as a possible algebraization of rough sets. They are Heyting algebras and
Wajsberg algebras ([Pag96], [Pag98], [Pol02]). In the following we will introduce
Heyting Wajsberg algebras as a structure which admits as a model the collection
of rough sets and as substructures all the above mentioned algebras ([CC02c]).

Definition 12. A system A = (A,→L,→G, 0) is a Heyting Wajsberg (HW)
algebra if A is a non empty set, 0 ∈ A, →L,→G are binary operators, such that,
once defined

1. a ∨ b := (a→L b)→L b
2. a ∧ b := ((a′ →L b′) →L b′)′
3. a′ := a→L 0
4. a∼ := a→G 0
5. 1 := 0′

the following are satisfied:

(HW1) a→G a = 1
(HW2) (a→G b) ∧ b = b
(HW3) a→G (b ∧ c) = (a→G b) ∧ (a→G c)
(HW4) a ∧ (a→G b) = a ∧ b
(HW5) (a ∨ b)→G c = (a→G c) ∧ (b→G c)
(HW6) 1 →L a = a
(HW7) a→L (b→L c) = (a→L c)′ →L b′

(HW8) a∼′ →L a∼∼ = 1
(HW9) (a→G b)→L (a→L b) = 1

It turns out that the operations ∧ and ∨ are just the meet and join operators
of a distributive lattice structure whose partial order is as usual defined as:

a ≤ b iff a ∧ b = a (19)

It is easy to prove that

a ≤ b iff a→L b = 1 (20a)
iff a→G b = 1 (20b)

244 Gianpiero Cattaneo and Davide Ciucci

The primitive operator→L behaves as a �Lukasiewicz implication, as can be seen
by the following proposition.

Proposition 15. Let A be a HW algebra. Then the structure (A,→L, 1) is a
Wajsberg algebra according to [Waj31,Waj35], i.e., it satisfies:

(W1) 1 →L a = a
(W2) (a→L b)→L ((b→L c) →L (a→L c)) = 1
(W3) (a→L b)→L b = (b→L a)→L a
(W4) (a′ →L b′)→L (b→L a) = 1

Let us note that the structure of Wajsberg algebra induces a distributive
lattice with respect to the partial order formally defined as in Equation (20a).
In this lattice one can define the unary operator a′ := a →L 0 which turns
out to be a Kleene (or Zadeh) orthocomplementation. In other words properties
(K1)–(K3) of Section 3 hold.

We remark that Wajsberg algebras are equivalent to Chang MV algebras
([Cha58]). Given a Wajsberg algerba, the MV disjunction ⊕ and conjunction 2
operators are defined as:

a⊕ b := ¬a→L b (21a)
a2 b := ¬(a→L ¬b) (21b)

Viceversa, given a MV algebra, the �Lukasiewicz implication is defined as:

a→ b := ¬a⊕ b (22)

On the other hand, the primitive operator →G behaves as a Gödel implica-
tion.

Proposition 16. Let A be a HW algebra. Then by defining the lattice operators
∧ and ∨ as in Definition (12), the partial order relation ≤ as in Equation (20b),
we have that (A,→G,∧,∨,′) is a linear symmetric Heyting algebra according to
[Mon80], i.e., A satisfies the following properties (adopting the original Monteiro
enumeration):

(A1) a→G a = b→G b
(A2) (a→G b) ∧ b = b
(A3) a→G (b ∧ c) = (a→G b) ∧ (a→G c)
(A4) a ∧ (a→G b) = a ∧ b
(A5) (a ∨ b)→G c = (a→G c) ∧ (b→G c)
(A6) (a′)′ = a
(A7) (a ∧ b)′ = a′ ∨ b′

(K) a ∧ a′ ≤ b ∨ b′

(L) (a→G b) ∨ (b→G a) = 1

In particular, the unary operation a∼ = a→G 0 is a Brouwer orthocomplemen-
tation. In other words properties (B1)–(B3) of Section 3 hold .

Finally, from the above propositions we have that any HW algebra induces a
lattice structure endowed with a Kleene and a Brouwer negation, then it can be
easily proved that HW algebras have as substructures distributive BZdM lattices.

Algebraic Structures for Rough Sets 245

Proposition 17. Let A be a HW algebra. Then, by defining ∧ and ∨ as in
(12), we have that (A,∧,∨,′ ,∼ , 0, 1) is a distributive BZdM lattice.

As a consequence of the latter proposition, we can define in any HW algebra
a possibility (resp., necessity) operator and, as in BZ lattices, it behaves as a
closure (resp., interior) operator. Further, these operators have an S5 modal
behaviour. So, in any HW algebra we can define a rough approximation space as
in Definition 11. We recall that, given an element a ∈ A its rough approximation
is given by the necessity–possibility pair:

r(a) := 〈ν(a), μ(a)〉 = 〈a′∼, a∼′〉 [with ν(a) ≤ a ≤ μ(a)],

or equivalently, by the necessity–impossibility pair:

re(a) := 〈ν(a), μ′(a)〉 = 〈a′∼, a∼〉.

In the following we will see that it is possible to give the structure of a HW
algebra to the collection of all rough approximations that can be obtained on a
given BZ lattice, and consequently on a given HW algebra.

5.1 Rough Approximation Spaces as HW Algebras

In Section 4.1, we have proved that it is possible to give to the collection of all
rough approximations A := {〈ν(a), a∼〉 : a ∈ Σ} on a BZ lattice 〈Σ,∧,∨,′ ,∼ ,
0, 1〉 the structure of a BZdM lattice. We now prove that a stronger result holds
that A has the structure of an HW algebra.

Let us set, for the sake of simplicity ai = ν(a) and ae = μ(a)′ = a∼, and
consider the collection of all necessity–impossibility pairs on a BZ distributive
lattice A := {〈ai, ae : a ∈ Σ}. Then the following result holds:

Proposition 18. The structure (A,⇒L,⇒G,0), where ⇒L,⇒G and 0 are de-
fined as

〈ai, ae〉 ⇒L 〈bi, be〉 := 〈((ai)′ ∧ (be)′) ∨ ae ∨ bi, ai ∧ be〉 (23a)
〈ai, ae〉 ⇒G 〈bi, be〉 := 〈((ai)′ ∧ (be)′) ∨ ae ∨ bi, (ae)′ ∧ be〉 (23b)

0 := 〈0, 1〉 (23c)

is a HW algebra.

According to Definition 12, it is possible to define the lattice operators on A
as:

〈ai, ae〉 0 〈bi, be〉 := (〈ai, ae〉 ⇒L 〈bi, be〉) ⇒L 〈bi, be〉 = 〈ai ∨ bi, ae ∧ be〉
〈ai, ae〉 / 〈bi, be〉 := ((〈ai, ae〉− ⇒L 〈bi, be〉−)⇒L 〈bi, be〉−)− = 〈ai ∧ bi, ae ∨ be〉,

whose induced partial order is, as usual:

〈ai, ae〉 � 〈bi, be〉 iff ai ≤ bi and be ≤ ae.

246 Gianpiero Cattaneo and Davide Ciucci

According to Equations (21), the MV disjunction and conjunction operators are
defined as:

〈ai, ae〉 ⊕ 〈bi, be〉 := 〈(ac
e ∧ bc

e) ∨ (ai ∨ bi), ae ∧ be〉
〈ai, ae〉 2 〈bi, be〉 := 〈ai ∧ bi, (ac

i ∧ bc
i) ∨ (ae ∨ be)〉

The Kleene and Brouwer negations, the modal operators and the rough approx-
imation are defined as in Subsection 4.1.

Of course, Theorem 18 holds for any BZ lattice. So, in particular, we can
consider the structure P = 〈P(X),∩,∪,c ,�≡ , ∅, X〉 which is a BZ lattice thanks
to Proposition 14. As a consequence, we have that the collection of Pawlak rough
sets RS(X) on an information system K(X) = 〈X, Att(X), val(X), F 〉 has an
HW algebraic structure 〈RS(X),⇒L,⇒G,0〉 once operators ⇒L and ⇒G, and
the constant 0 are properly defined according to Proposition 18.

Example 20. Let us consider the flats information system introduced in Table 1.
Once defined the sets H = {f1, f4, f5}, K = {f2, f4, f6} and considering all the
attributes to define the equivalence relation RD, i.e. D = Att(X), we have that
the rough sets induced by H and K are respectively: re(H) = 〈{f4, f5}, {f2, f6}〉
and re(K) = 〈{f2, f6}, {f1, f3}〉. So the HW implications applied to re(H) and
re(K) become:

〈Hi, He〉 →L 〈Ki,Ke〉 = 〈{f2, f6}, ∅〉
〈Hi, He〉 →G 〈Ki,Ke〉 = 〈{f2, f6}, {f1, f3}〉

Needless to stress ∅ ⊆ {f1, f3} so it is verified that

(〈Hi, He〉 →G 〈Ki,Ke〉) � (〈Hi, He〉 →L 〈Ki,Ke〉)

The meet and join lattice operators are:

〈Hi, He〉 0 〈Ki,Ke〉 = 〈{f2, f4, f5, f6}, ∅〉
〈Hi, He〉 / 〈Ki,Ke〉 = 〈∅, {f1, f2, f3, f6}〉

As can be seen, re(H) and re(K) are incomparable, i.e. neither re(H) � re(K)
nor re(K) � re(H).
The MV disjunction and conjunction are respectively:

〈Hi, He〉 ⊕ 〈Ki,Ke〉 = 〈{f1, f3, f4, f5}, ∅〉
〈Hi, He〉 2 〈Ki,Ke〉 = 〈∅, {f1, f2, f3, f6}〉

Finally, the necessity and possibility of re(H) are respectively:

�〈Hi, He〉 = 〈{f4, f5}, {f1, f2, f3, f6}〉
♦〈Hi, He〉 = 〈{f1, f3, f4, f5}, {f2, f6}〉

Algebraic Structures for Rough Sets 247

6 Fuzzy Sets

In the previous sections we introduced some different algebraic approaches to
the theory of rough sets. In particular, we have seen that it is possible to give a
rich algebraic structure to the collection of rough sets on an information system.
Now, we see how the same approach applies also to fuzzy sets by showing that
the collection of fuzzy sets, once suitable operators are defined, has the structure
of an HW algebra. This result leads us to the possibility of having a complete
algebra which is able to fully characterize both rough and fuzzy sets.

Let us consider a set of objects X , called the Universe. A fuzzy set or general-
ized characteristic functional on X is defined as usual as a [0, 1]–valued function
on X :

f : X �→ [0, 1]

We will indicate the collection of all fuzzy sets on X as F(X) = [0, 1]X . This
set contains two special elements: the identically 0 fuzzy set (also characteristic
function of the empty set: 0 = χ∅)

∀x ∈ X 0(x) := 0

and the identically one fuzzy set (also characteristic function of the universe :
1 = χX)

∀x ∈ X 1(x) := 1

Obviously, this two elements will play the role of minimum and maximum ele-
ment of the lattice structure we are going to define.

Proposition 19. The structure
〈
[0, 1]X ,→L,→G, 0

〉
is a HW algebra once de-

fined the implication operators as follows

(f1 →L f2)(x) : = min{1, 1− f1(x) + f2(x)}

(f1 →G f2)(x) : =

{
1 f1(x) ≤ f2(x)
f2(x) otherwise

Example 21. Let us define the fuzzy set of tall and very tall people. So, we have
that x is a real positive number, representing the height in centimeters. The tall
fuzzy set is defined as:

t(x) :=

⎧⎪⎨⎪⎩
1 x ≥ 1.80
x−1.50

0.30 1.50 < x < 1.80
0 x ≤ 1.50

and the very tall people fuzzy set is:

vt(x) :=

⎧⎪⎨⎪⎩
1 x ≥ 1.90
x−1.60
0.30 1.60 < x < 1.90

0 x ≤ 1.60

248 Gianpiero Cattaneo and Davide Ciucci

If we compute the degree in which the fuzzy set very tall implies the fuzzy set
tall, we correctly obtain with both implications the value 1:

vt→L t = 1
vt→G t = 1

that is, if one is very tall is surely tall. Of course, the viceversa is not true, and
computing the implication of tall to very tall, we obtain:

(t→L vt)(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 x ≤ 1.50 or x ≥ 1.90
1.80−x
0.30 1.50 < x ≤ 1.60

2
3 1.60 ≤ x < 1.80
x−1.60
0.30 1.80 ≤ x < 1.90

in the case of →L implication and

(t→G vt)(x) :=

⎧⎪⎨⎪⎩
1 x ≤ 1.50 or x ≥ 1.90
0 1.50 < x ≤ 1.60
x−1.60
0.30 1.60 ≤ x < 1.90

in the case of →G operator. We remark that it holds an order relation among
the two fuzzy sets (t →G vt) and (t →L vt): the first one is always less than or
equal to the second one, as can be easily seen in Figure 13.

1

1.91.81.61.5

2/3

1

2/3

1.91.81.61.5

Fig. 13. On the top it is drawn the set (t →G vt) and on the bottom the set (t →L vt).

Algebraic Structures for Rough Sets 249

The lattice operators on F are defined as:

(f1 ∨ f2)(x) : = max{f1(x), f2(x)}
(f1 ∧ f2)(x) : = min{f1(x), f2(x)}

The partial order relation induced on F by the above lattice operators is the
usual pointwise ordering on fuzzy sets:

∀f1, f2 ∈ [0, 1]X , f1 ≤ f2 iff ∀x ∈ X, f1(x) ≤ f2(x)

The MV operators of conjunction and disjunction are respectively defined as:

(f1 ⊕ f2)(x) : = min{1, f1(x) + f2(x)}
(f1 2 f2)(x) : = max{0, f1(x) + f2(x)− 1}

The Zadeh, Brouwer and anti–Brouwer negations are respectively defined as:

f ′(x) : = 1− f(x)

f∼(x) : =

{
1, if f(x) = 0
0, otherwise

(�f)(x) : =

{
1 f(x) �= 1
0 otherwise

For any fuzzy set f ∈ [0, 1]X one can single out some peculiar subsets of the
universe X :

– The certainly–yes domain of f :

Δ1(f) := {x ∈ X : f(x) = 1}

– The certainly–no domain of f :

Δ0(f) := {x ∈ X : f(x) = 0}

The necessity of a fuzzy set f is the characteristic functional of the certainly–yes
domain of f :

ν(f) = χΔ1(f) =

{
1 if f(x) = 1
0 otherwise

We can assume that two fuzzy sets define the same property iff they have the
same certainly–yes domain. In this way, any property of fuzzy sets is associated
with the certainly–yes domain Δ1(f) of any of its elements. Such a property
is interpreted as follows: “belonging with certainty to the subset Δ1(f) of X”.
Consequently any property is exactly represented by the characteristic functional
χΔ1(f).

250 Gianpiero Cattaneo and Davide Ciucci

The possibility of a fuzzy set f is

μ(f) =

{
1 if f(x) �= 0
0 otherwise

Hence the impossibility operator is given by the characteristic functional of the
certainly–no domain of f :

μ′(f) = χΔ0(f).

We can assume that two fuzzy sets define the same noperty iff they have the
same certainly–no domain. Any noperty can be associated with the unique subset
Δ0(f) of X that represents the noperty in question: “not belonging with certainty
to the subset Δ0(f) of X”. As a consequence, our noperty is exactly represented
by the characteristic functional χΔ0(f)

References

[Cat97] G. Cattaneo. Generalized rough sets (preclusivity fuzzy-intuitionistic BZ
lattices).Studia Logica 58, 1997, pp. 47–77.

[Cat98] . Abstract approximation spaces for rough theories, in: Rough Sets
in Knowledge Discovery 1: Methodology and Applications (L. Polkowski,
A.Skowron (eds.)). Studies in Fuzziness and Soft Computing, Physica, Hei-
delberg, 1998, pp. 59–98.

[CC02a] G. Cattaneo, D. Ciucci. A quantative analysis of preclusivity vs. similarity
based rough approximations. Lecture Notes in Artificial Intelligence 2475,
Springer, 2002, pp. 69–76.

[CC02b] .BZW algebras for an abstract approach to roughness and fuzziness,
in: Proceedings IPMU 2002, Annecy, France, 2002, pp. 1103–1110.

[CC02c] .Heyting Wajsberg algebras as an abstract environment linking fuzzy
and rough sets.Lecture Notes in Artificial Intelligence 2475, Springer, 2002,
pp. 77–84.

[CCG98] G. Cattaneo, M. L. Dalla Chiara, and R. Giuntini. Some algebraic struc-
tures for many–valued logics. Tatra Mountains Mathematical Publications
15, 1998, pp. 173–196 (Special Issue: Quantum Structures II, Dedicated to
Gudrun Kalmbach).

[CGP99] G. Cattaneo, R. Giuntini, and R. Pilla. BZMVdM and Stonian MV alge-
bras (applications to fuzzy sets and rough approximations).Fuzzy Sets and
Systems 108, 1999, pp. 201–222.

[Cha58] C. C. Chang.Algebraic analysis of many valued logics. Trans. Amer. Math.
Soc. 88, 1958, pp. 467–490.

[Che88] B. F. Chellas. Modal Logic, An Introduction. Cambridge Univ. Press, Cam-
bridge, 1988.

[DO01] I. Düntsch, E. Orlowska.Beyond modalities: Sufficiency and mixed algebras,
in: Relational Methods for Computer Science Applications (E. Orlowska,
A. Szalas (eds.)).Physica, Heidelberg, 2001, pp. 277–299.

[GMS98] S. Greco, B. Matarazzo, and R. Slowinski. Fuzzy similarity relation as a
basis for rough approximations, in: Rough Sets and Current Trends in Com-
puting, First International Conference, RSCTC’98, Warsaw,(L. Polkowski,
A. Skowron (eds.)). Lecture Notes in Artificial Intelligence 1424, Springer,
1998, pp. 283–289.

Algebraic Structures for Rough Sets 251

[Kel55] J.L. Kelley.General Topology.Springer, New York, 1955.
[Kry98] M. Kryszkiewicz. Rough set approach to incomplete information systems.

Information Sciences 112, 1998, pp. 39–49.
[Mon80] A. A. Monteiro.Sur les algèbres de Heyting symétriques.Portugaliae Math-

ematica 39, 1980, pp. 1–237.
[NSS98] S. Hoa Nguyen, A. Skowron, and P. Synak.Discovery of data pattern with

applications to decomposition and classification problems, in: Rough Sets in
Knowledge Discovery 2 (L. Polkowski, A. Skowron (eds.)). Physica, Heidel-
berg, 1998, pp. 55–97.

[Orl98a] E. Orlowska (ed.). Incomplete information: Rough Set Analysis. Physica,
Heidelberg, 1998.

[Orl98b] E. Or�lowska. Introduction: What you always wanted to know about rough
sets, in: Incomplete Information: Rough Set Analysis [Orl98a], pp. 1–20.

[Pag96] P. Pagliani. Rough sets and Nelson algebras. Fundamenta Informaticae 27,
1996, pp. 205–219.

[Pag98] . Rough set theory and logic–algebraic structures, in: [Orl98a],
pp. 109–190.

[Paw81] Z. Pawlak. Information systems - theoretical foundations. Information Sys-
tems 6, 1981, pp. 205–218.

[Paw82] . Rough sets. International Journal of Information and Computer
Sciences 11, 1982, pp. 341–356.

[Paw85] . Rough sets and fuzzy sets. Fuzzy Sets and Systems 17, 1985, pp.
99–102.

[Paw92] . Rough sets: A new approach to vagueness, in: Fuzzy Logic for the
Management of Uncertainty (L. A. Zadeh, J. Kacprzyk (eds.)).Wiley, New
York, 1992, pp. 105–118.

[Paw98] . Rough set elements, in: Rough Sets in Knowledge Discovery
(L. Polkowski, A. Skowron (eds.)).Studies in Fuzziness and Soft Computing
Series, Physica, Heidelberg, 1998, pp. 10–30.

[Pol02] L. Polkowski. Rough Sets. Mathematical Foundations. Physica, Heidelberg,
2002.

[SS96] A. Skowron, J. Stepaniuk.Tolerance approximation spaces.Fundamenta In-
formaticae 27, 1996, pp. 245–253.

[ST99] J. Stefanowski, A. Tsoukiàs.On the extension of rough sets under incomplete
information.New Directions in Rough Sets, Data Mining, and Granular-Soft
Computing, Proceedings of the 7th International Workshop, RSFDGrC ’99,
Yamaguchi, Japan (S. Ohsuga, Ning Zhong, and A. Skowron (eds.)).Lecture
Notes in Artificial Intelligence 1711, Springer, 1999, pp. 73–81.

[ST01] J. Stefanowski, A. Tsoukiàs. Valued tolerance and decision rules,’. Lecture
Notes in Artificial Intelligence 2005, Springer, 2001, pp. 212–219.

[Ste98] J. Stepaniuk. Approximation spaces in extensions of rough sets theory, in:
Proceedings of Rough Sets and Current Trends in Computing, First Interna-
tional Conference, RSCTC’98 (Warsaw, Poland) (L. Polkowski, A. Skowron
(eds.)).Lecture Notes in Artificial Intelligence 1424, Springer, 1998, pp. 290–
297.

[Sur77] S. Surma (ed.). Logical Works of Jan �Lukasiewicz. Polish Academy of Sci-
ences, Wroclaw, 1977.

[SV95] R. S�lowinski, D. Vanderpooten. Similarity relation as a basis for rough ap-
proximations.Tech. Report 53, Institute of Computer Science, University of
Technology, Warsaw, 1995.

252 Gianpiero Cattaneo and Davide Ciucci

[Vak91] D. Vakarelov. A modal logic for similarity relations in Pawlak knowledge
representation systems.Fundamenta Informaticae 15, 1991, pp. 61–79.

[Waj31] M. Wajsberg. Aksjomatyzacja trówartościowego rachunku zdań [Axiomati-
zation of three–valued propositional calculus].Comptes Rendus des Séances
de la Societé des Sciences et des Lettres de Varsovie 24, 1931, pp. 126–148
(eng. transl. [Sur77]).

[Waj35] M. Wajsberg. Beiträge zum Metaaussagenkalkül I. Monatshefte fur Mathe-
matik un Physik 42, 1935, pp. 221–242 (eng. transl. [Sur77]).

Rough Mereology as a Link Between Rough
and Fuzzy Set Theories. A Survey

Lech Polkowski1,2

1 Polish–Japanese Institute of Information Technology
Koszykowa 86, 02 008 Warsaw, Poland

2 Dept. Math.Computer Science, Univ. Warmia and Mazury
Zolnierska 14 A, 10 561 Olsztyn, Poland

Lech.Polkowski@pjwstk.edu.pl

Abstract. In this paper, we discuss rough inclusions defined in Rough
Mereology – a paradigm for approximate reasoning introduced by Polkow-
ski and Skowron – as a basis for common models for rough as well as
fuzzy set theories. We justify the point of view that tolerance (or, similar-
ity) is the motif common to both theories. To this end, we demonstrate
in Sect. 6 that rough inclusions (which represent a hierarchy of tolerance
relations) induce rough set theoretic approximations as well as partitions
and equivalence relations in the sense of fuzzy set theory. Before that,
we include an account of mereological theory in Sect. 3. We also discuss
granulation mechanisms based on rough inclusions with an outline of
applications to rough–fuzzy–neurocomputing and computing with words
in Sects. 4 and 5.

Keywords: rough set theory, fuzzy set theory, rough mereology, rough
inclusions, granular calculus, rough-fuzzy-neurocomputing, computing
with words

1 Introduction

We begin with a concise review of both theories.

1.1 Rough Sets: Basic Ideas

Rough Set Theory begins with the idea, [16], [17], of an approximation space,
understood as a universe U together with a family R of equivalence relations on
U (knowledge base). Given a sub–family S ⊆ R, the equivalence relation S =⋂
S induces a partition PS of U into equivalence classes [x]S of the relation S.
In terms of PS , concept approximation is possible; a concept relative to U (or,

shortly, a U–concept) is a subset X ⊆ U . There are two cases.
A U–concept X is S–exact in case,

X =
⋃
{[x]S : [x]S ⊆ X}, (1)

holds. We will speak in this case also of an S–exact set.
Otherwise, X is said to be an S–rough U -concept (or, set).

J.F. Peters et al. (Eds.): Transactions on Rough Sets II, LNCS 3135, pp. 253–277, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

254 Lech Polkowski

In the second case, the idea of an approximation comes useful [16]. Two
S–exact sets, approximating X from below and from above, are the lower S–
approximation,

SX =
⋃
{[x]S : [x]S ⊆ X}, (2)

and the upper S–approximation,

SX =
⋃
{[x]S : [x]S ∩X �= ∅}. (3)

Then, clearly,

1. SX ⊆ X ⊆ SX .
2. SX (respectively, SX) is the largest (respectively, the smallest) S–exact set

contained in (respectively, containing) X .

Sets (U–concepts) with identical approximations may be identified; consider
an equivalence relation ≈S defined as follows [18]:

X ≈S Y ⇔ SX = SY ∧ SX = SY. (4)

This is clearly an equivalence relation; let ConceptsS denote the set of these
classes. Then for x, y ∈ ConceptsS , we have

x = y ⇔ ∀u ∈ U.φu(x) = φu(y) ∧ ψu(x) = ψu(y), (5)

where for x = [X]≈S , φu(x) = 1 in case [u]S ⊆ X , otherwise φu(x) = 0; similarly,
ψu(x) = 1 when [u]S ∩X �= ∅, otherwise ψu(x) = 0.

The formula (5) witnesses Leibnizian indiscernibility in ConceptS : entities are
distinct if and only if they are discerned by at least one of available functionals (in
our case, φu, ψu). The idea of indiscernibility is one of the most fundamental
in Rough Set Theory [16].

Other fundamental notions are derived from the observation on complexity
of the generation of S: one may ask whether there is some T ⊂ S such that

S =
⋂
T . (6)

In case the answer is positive, one may search for a minimal with respect to
inclusion subset T ⊆ S satisfying (6). Such a subset is said to be an S–reduct.
Let us observe that T ⊆ S is an S–reduct if and only if for each R ∈ T we have,⋂

(T \ {R}) �=
⋂
T . (7)

In this case we say that U is independent; this notion falls under a general
independence scheme [14].

These ideas come fore most visibly in case of knowledge representation in the
form of information systems [16]. An information system is a universe U along
with a set A of attributes each element a of which is a mapping a : U → Va from

Rough Mereology as a Link Between Rough and Fuzzy Set Theories 255

U into an a–value set Va. Clearly, each attribute a ∈ A does induce a relation of
a–indiscernibility IND(a) defined as follows,

xIND(a)y ⇔ a(x) = a(y). (8)

The family {Ind(a) : a ∈ A} is a knowledge base and for each B ⊆ A, the
relation IND(B) =

⋂
{IND(a) : a ∈ B} is defined, inducing the lower and the

upper approximations BX,BX . Notions of a B–reduct, and B–independence
are defined as in general case [16].

From now on, we will work with the reduced universe U/IND(A) without
mentioning this fact explicitly; thus, the identity =U on objects – classes repre-
sentatives – will denote the equality of indiscernibility classes.

1.2 Fuzzy Sets: Basic Notions

A starting point for Fuzzy Set Theory is that of a fuzzy set [26]. Fuzzy sets come
as a generalization of the usual mathematical idea of a set: given a universe
U , a set X in U may be expressed by means of its characteristic function χX :
χX(u) = 1 in case u ∈ X , χX(u) = 0, otherwise.

A fuzzy set X is defined by allowing χX to take values in the interval [0, 1].
Thus, χX(u) ∈ [0, 1] is a measure of degree to which u is in X . Once fuzzy sets are
defined, one may define a fuzzy algebra of sets by defining operators responsible
for the union, the intersection, and the complement in the realm of fuzzy sets.
Usually, those are defined by selecting a t–norm, a t–co–norm, and a negation
functions where a t–norm T (x, y) is a function allowing the representation (see
[13], cf. [21] Ch. 14),

T (x, y) = g(f(x) + f(y)), (9)

where the function f : [0, 1] → [0,+∞) in (9) is continuous decreasing on [0, 1]
and g is the pseudo–inverse to f (i.e. g(u) = 0 in case u ∈ [0, f(1)], g(u) = f−1(u)
in case u ∈ [f(1), f(0)], and g(u) = 1 in case u ∈ [f(0),+∞)).

A t–conorm C is induced by a t–norm T via the formula C(x, y) = 1−T (1−
x, 1 − y). A negation n : [0, 1] → [0, 1] is a continuous decreasing function such
that n(n(x)) = x. An important example of a t–norm is the �Lukasiewicz product,

⊗(x, y) = max{0, x+ y − 1}; (10)

we recall also the Menger product,

Prod(x, y) = x · y. (11)

1.3 Rough Membership Functions

In a rough universe represented by an information system (U,A), it is possible
to introduce, as shown by Pawlak and Skowron [19], a parameterized family of
functions measuring for a given object u ∈ U and a set X ⊆ U degree to which

256 Lech Polkowski

u belongs in X , a parameter being a subset B ⊆ A of attributes. In this case,
the rough membership function mB,X on U is defined as,

mB,X(u) =
|X ∩ [u]B|
|[u]B|

. (12)

It may be noticed that [19],

1. In case X is a B–exact set, mB,X is the characteristic function of X , i.e., X
is perceived as a crisp set;

2. mB,X is a piece–wise constant function, constant on classes of IND(B).

From mB,X , rough set approximations are reconstructed as follows,

BX = {u ∈ U : mB,X(u) = 1}, (13)

BX = {u ∈ U : mB,X(u) > 0. (14)

Rough membership functions are prototypes of rough inclusions defined in
the sequel which measure degrees to which one object (concept) is contained in
another, and containment is expressed in terms of relations of being a part.

Let us observe a contextual character of rough membership functions: they
are defined relative to sets of attributes, hence, they represent information con-
tent of those sets. A similar character will be featured in rough inclusions defined
in the framework of information systems.

2 Rough Mereology

We introduce a reasoning mechanism based on Rough Mereology [22], whose
distinct facets correspond to rough respectively fuzzy approaches to reasoning
allowing on one hand the introduction of rough set–theoretic approximations
and on the other hand inducing fuzzy set–theoretic notions of a partition as well
as of an equivalence relation. We will present the main ideas of this approach.

2.1 Mereology

Mereological theories, contrary to naive or formalized set theories that are based
on the notion of being an element of a set, are based on the idea that relations
among object should be based on their containment properties (e.g., we cannot
say “the circle is an element of the closed disk it is boundary of” but we can
say “the circle is the part of the closed disk”). Mereology theory proposed by
Stanis�law Leśniewski proposes the notion of a part as the primitive one, whereas
the mereological theory outlined by Alfred North Whitehead [24] and developed
by Leonard, Goodman, and Clarke, see [4], among others, begins with the notion
of connection.

We work here in the formalism proposed by Leśniewski, and thus the basic
notion is that of a part relation on a universe U with identity =, [11]; in symbols:

Rough Mereology as a Link Between Rough and Fuzzy Set Theories 257

xπy, that reads x is a part of y. A part relation π satisfies by definition the
following conditions,

xπy ∧ yπz ⇒ xπz, (15)

¬(xπx). (16)

Thus, the part relation is transitive and non–reflexive (i.e., it is a pre–order
on U), so it can be interpreted as expressing the idea of a proper part.

The idea of an improper part, i.e., possibly of the whole object, is expressed
by the notion of an element, that may not be confused with the notion of an
element in naive set theory (sometimes, the term “ingredient” is used in place
of that of “element”, such was original usage of Leśniewski).

The notion of an element relation, elπ, induced by the relation π is the
following,

x elπ y ⇔ xπy ∨ x = y. (17)

Thus, x elπ y ∧ y elπ x is equivalent to x = y. By (15), (16), the relation elπ is
an ordering on the universe U . Moreover,

xelπx (18)

for each x in U , a striking difference with the usage of the notion of an element
in naive set theory.

The fundamental feature of mereology of Leśniewski is that it is concerned
with collective classes, i.e., distributive classes (names, concepts) are made into
objects (collective classes).

In order to make a non–empty concept M ⊆ U into a collective object, the
class operator Cls is used [11].

The definition of the class of M , in symbols Cls(M), is as follows,

x ∈M ⇒ x elπ Cls(M), (19)

x elπ Cls(M)⇒ ∃y, z.y elπ x ∧ y elπ z ∧ z ∈M. (20)

Condition (19) includes all members of M into Cls(M) as elements; (20)
requires each element of Cls(M) to have an element in common with a member
of M (compare this with the definition of the union of a family of sets to see the
analogy that becomes clear, when the relation of being a (mereological) element
is interpreted as that of being a subset of a set, and M is a family of subsets in
a given universe).

One requires also Cls(M) to be unique, [11]. From this demand it follows
that, [11],

[∀y.(y elπ x⇒ ∃w.w elπ y ∧ w elπ z)]⇒ x elπ z. (21)

The rule (21) is useful for recognizing that x elπ z, and it will be used in our
arguments.

258 Lech Polkowski

2.2 Rough Mereology

Given a mereological universe (U, π), with the induced relation elπ of being an
element, we introduce, cf. [22], on U × U × [0, 1] a relation μ(x, y, r), read x is
a part of y to degree at least r. We will write rather more suggestively xμry,
calling μ a rough inclusion (it is the generic name introduced in [22]).

We introduce at this moment an element of ontology (we do not enter here
any discussion on what is ontology; here, by ontology we mean simply a system
of names we use for naming various types of objects): we will regard U as a name
for atomic objects, and the formula xεU (read: x is U) will mean that an object
x is an atomic object.

In case of an information system (U,A), atomic objects will be objects x ∈ U .
The symbol GU will name individual objects constructed as classes of atomic
objects, which will be denoted with the formula gεGU , i.e., gεGU if and only
if there exists a non–empty property Φ with g = Cls(Φ|U), Φ|U meaning Φ
restricted to atomic objects, Φ|U a non–empty property of atomic objects.

We require μ to satisfy the following conditions, see [22],

xμ1x, (22)

xμ1y ⇔ x elπ y, (23)

xμ1y ⇒ ∀z, r.(zμrx⇒ zμry), (24)

xμry ∧ s < r⇒ xμsy. (25)

Informally, (23) ties the rough inclusion to the mereological underlying uni-
verse , (24) does express monotonicity (a bigger entity cuts a bigger part of
everything), (25) says that a part to degree r is a part to any lesser degree.

We may observe that (22) is a consequence to (23) due to (18).

2.3 More Ontology for Information Systems

We would like to set here some scheme for relating ontology of an information
system outlined above to ontology of the associated mereological universe (again,
we use term “ontology” here as a name for a system of notions only).

Given an information system (U,A), we introduce the material identity =U

on U (understood as the identity of objects, e.g., identity of patients, signals,
etc., witnessed by their names, times of receiving, etc.), and we let for x, yεU ,

xμ1y ⇔ x =U y. (26)

Thus the notion of an element, corresponding to the rough inclusion μ by means
of (23) coincides with =U on atomic objects; we will denote with the symbol elU
this notion of an element. We extend elU to pairs x ∈ g, where xεU, gεGU . The
corresponding notion of a class, ClsU coincides with the notion of a set. The
mereological notion of a subset,

xsubUy ⇔ ∀z.(zelUx⇒ zelUy), (27)

Rough Mereology as a Link Between Rough and Fuzzy Set Theories 259

coincides with set inclusion ⊆. Thus the mereological complement xc (defined as
the class of all objects that do not have any object as a common part with x)
coincides with the set complement U \ x.

For each xεU , the set,

Inf(x) = {(a, a(x)) : a ∈ A}, (28)

will be defined, called the information set of x; the universe,

INF (U) = {Inf(x) : xεU}, (29)

will be called the information universe of the information system (U,A). We let

INF : U → INF (U), INF (x) = Inf(x) for xεU. (30)

Given a mereological structure on INF (U), we denote with elINF , ClsINF ,
=INF , respectively, the relation of being an element, a class, and the identity on
INF (U).

For gεGU , we let,

INF (g) =INF ClsINF (Inf(y) : yεU, yelUg). (31)

We introduce names INF (U), GINF with xεINF (U) meaning x to be an
atomic object of the form Inf(a) with aεU , and xεGINF meaning x to be a
class of atomic objects, i.e., x = ClsINF (Φ|INF (U)) for some non–vacuous
property Φ with Φ|INF (U) being its restriction to INF–atomic objects, and
non–vacuous on those objects.

Rough inclusions we define below, are defined on the universe INF (U). As
a result of operations in this universe, some constructs are obtained that we
interpret in the universe U .

To this end, we define the semantic operator [.], which to any object g over the
universe INF (U) (be it an atom or a class) assigns the class [g] = ClsU (xεU :
Inf(x)elINF g).

It is obvious that xelU [INF (x)]; we state a property satisfied by [.], viz.,

gelINFh⇒ [g]elU [h], (32)

that follows directly from definitions and the transitivity of elINF .

3 Examples

We consider an information system (U,A) and we define two basic examples of
rough inclusions on INF (U), that would be convenient in the sequel.

We define rough inclusions incrementally, invoking ontology introduced above.
Both inclusions defined below satisfy the assumption that elINF coincides with
=INF on atomic objects. Thus in both cases, mereological classes coincide with
sets; this may simplify the analysis for the reader. However, our analysis in
general does not require this assumption.

260 Lech Polkowski

3.1 The Menger Rough Inclusion

Given (U,A), hence, the information universe INF (U), for x, y with xεINF (U),
yεINF (U), where x =INF Inf(u), y =INF Inf(v) with u, vεU , we define,

DISA(x, y) = {a ∈ A : a(u) �= a(v)}, (33)

and then we let yμM
r x if and only if

e(−Σa∈DISA(x,y)wa) ≥ r, (34)

where wa ∈ (0,∞) is a weight associated with the attribute a. Then μM does
satisfy (18)–(25) with x, y, zεINF (U). For x, y, zεINF (U), the rule,

yμrx, xμsz

yμr·sz
, (35)

holds.
To justify our claim (35), we may observe that DIS(y, z) ⊆ DIS(y, x) ∪

DIS(x, z), which implies by (34) that yμM
r x, xμM

s z imply yμM
r·sz, i.e., (35) holds.

It is a matter of straightforward checking that μM satisfies (18)–(25).

We now extend μM over pairs of the form x, g, where xεINF (U), gεGINF .
We define μM in this case as follows:

xμM
r g ⇔ ∃y.yεU ∧ INF (y)elINF g ∧ xμM

r INF (y). (36)

Then, the rough inclusion μM on pairs x, y or x, g, where x, yεINF (U),
gεGINF , does satisfy (18)–(25).

Indeed, (18) and (25) are obviously true. For (23), xμM
1 g implies that there

exists yεINF (U), yelINFg with xμM
1 y hence xelINF y hence x =INF y so that

xelINF g. (24) follows on similar lines.

Finally, we define μM on pairs of the form g, h, with gεGINF , hεGINF , by
means of the formula,

gμM
r h⇔ ∀xεINF (U).[xelINF g ⇒ ∃yεINF (U).(yelINFh ∧ xμM

r y)]. (37)

It is true that the extended by (37) most general form of μM does satisfy
(18)–(25).

Indeed, (18) and (25) hold obviously; proof of (23) is as follows:
for g, hεGINF ,

gμM
1 h, (38)

if and only if

∀xεINF (U).[xelINF g ⇒ ∃yεINF (U).yelINFh ∧ xμM
1 y], (39)

if and only if

∀xεINF (U).[xelINF g ⇒ ∃yεINF (U).yelINFh ∧ x =INF y], (40)

Rough Mereology as a Link Between Rough and Fuzzy Set Theories 261

if and only if
∀xεINF (U).(xelINF g ⇒ xelINFh). (41)

Now, from (41), the conclusion gelINFh follows by (21).

Proof for (24) goes on parallel lines: given gμM
1 h and kμM

r g, for any xεINF (U),
where xelINFk, there exist yεINF (U), yelINFg with xμM

r y; similarly, we find
zεINF (U), zelINFh with yμM

1 z. It follows by (35) that xμM
r·1z hence xμM

r z and
thus, x being arbitrary, kμM

r h.

A similar argument will show that the extended by (37) rough inclusion μM

does satisfy the transitivity rule,

kμM
r h, hμM

s g

kμM
r·sg

. (42)

To prove (42), consider k, h, gεGINF ; given xεINF (U), xelINFk, we find y,
zεINF (U), yelINFh, zelINF g with xμM

r y, yμM
s z, hence, by (35) we have xμM

r·sz
implying by arbitrariness of x that kμM

r·sg.

3.2 The �Lukasiewicz Rough Inclusion

In notation of (33), we define a rough inclusion μL. Following the pattern of the
discussion in (34), (35), the rough inclusion μL will be defined as follows.

For x, yεINF (U),

yμL
r x⇔ 1− |DISA(x, y)|

|A| ≥ r. (43)

For g, hε{INF (U), GINF}:

(gμL
r h)⇔ {[∀xεINF (U).(xelINF g ⇒ ∃yεINF (U).(yelINFh ∧ xμL

r y)]}. (44)

Following the lines of proofs of (18)–(25) in case of the Menger rough inclu-
sion, and of (42) in which the rough inclusion μM is replaced with the rough
inclusion μL, we obtain that the �Lukasiewicz rough inclusion μL does satisfy
(18)–(25) with x, y, zε{INF (U), GINF}, and the following rule,

kμL
r g, gμ

L
s h

kμL
⊗(r,s)h

, (45)

holds, where ⊗(r, s) is the �Lukasiewicz functor (10).

As with the Menger rough inclusion, it is sufficient to verify (18)–(25) with
x, y, zεINF (U) which is straightforward and then to follow general lines outlined
above.

The transitivity rule (45) deserves a proof. It is sufficient to assume xμL
r y,

yμL
s z, xμ

L
t z with x, y, zεINF (U).

262 Lech Polkowski

As DIS(x, z) ⊆ DIS(x, y) ∪DIS(y, z), substituting into (43),

1− t =
|DIS(x, z)|

|A| ≤ |DIS(x, y)|
|A| +

|DIS(y, z)|
|A| = (1− r) + (1 − s), (46)

hence t ≥ r+s−1 and as t is non–negative we have finally t ≥ max{0, r+s−1} =
⊗(r, s).

The proof in the general case goes on lines of the proof in case of Menger’s
rough inclusion.

We add a new rule about rough inclusions, which is satisfied by Menger as
well as �Lukasiewicz rough inclusions with f = Prod, ⊗ respectively.

The f-Transitivity Property

xμry, yμsz

xμf(r,s)z
(47)

holds with a t–norm f .
We say that μ is an f–rough inclusion.
Note, that it follows from general properties of t–norms, that for each t–norm,

T , there exists a rough inclusion μT that satisfies the T –transitivity rule, i.e.,

kμT
r g, gμ

T
s h

kμT
T (r,s)h

, (48)

see [22], Prop. 13.
Finally, we state for the record the obvious property of Menger as well as

�Lukasiewicz rough inclusions, viz. symmetry, of which no explicit use was made
as of yet.

The Symmetry Property

xμry ⇔ yμrx, (49)

holds for μ ∈ {μM , μL}.

3.3 Remarks on the Notion of an Element Induced
by a Rough Inclusion

In cases of Menger as well as �Lukasiewicz rough inclusions, formulas defining μ
are employing cardinalities of sets DISA(x, y); in consequence, the notion of an
element elINF induced by either of μM , μL coincides with the notion of being
indiscernible: xelINF y if and only if INDA(u(x), u(y)) if and only if u(x) =U

u(y), where x = INF (u(x)), y = INF (u(y)).
At the cost of introducing an additional structure into value sets Va, where

a ∈ A, we may generate a richer elINF relation. For instance, we may assume
preference relations <a in sets Va, i.e., orderings on value sets Va, studied by
some authors, e.g., Greco et al., see [6]. Then, we may let,

DIS<
A (x, y) = {a ∈ A : a(x) < a(y)}, (50)

Rough Mereology as a Link Between Rough and Fuzzy Set Theories 263

and,

xμL,<
r y ⇔ 1− |DIS<

A (x, y)|
|A| ≥ r. (51)

Alternatively, we may introduce the set

DIS≥
A (x, y) = {a ∈ A : a(x) ≥ a(y)}, (52)

hence,
DIS≥

A (x, y) = A \DIS<
A (x, y), (53)

and, in consequence,

xμL,<
r y ⇔ |DIS≥

A (x, y)| ≥ r · |A|. (54)

Thus, the notion an element el<INF is as follows: xel<INF y if and only if a(x) ≥
a(y) for each a in A.

It is straightforward to verify that μL,< is a rough inclusion; only (23) may
require a comment. In this case, we consider x, y, z with xμL,<

1 y and zμL,<
r x.

We have: DIS≥
A (x, y) = A, i.e., a(x) ≥ a(y) for every a in A, and

|DIS≥
A (z, x)| ≥ r · |A|.

As a(z) ≥ a(x) implies a(z) ≥ a(y), it follows that DIS≥
A (z, x) ⊆DIS≥

A (z, y),
hence, |DIS≥

A (z, y)| ≥ |DIS≥
A (z, x)| ≥ r · |A|, i.e., zμL,<

r y.
In an analogous way, we may define the corresponding Menger rough inclusion

μM,<
r , i.e.,

xμM,<
r y ⇔ e

−Σ
a∈DIS

≥
A

(x,y)
wa ≥ r. (55)

Let us observe that

e−Σa∈DISA(x,y)wa) = 1−
Σa∈DISA(x,y)wa

1!
+

(Σa∈DISA(x,y)wa)2

2!
− ..., (56)

and, assuming that the average value of |DISA(x, y)| is |A|
2 , letting in (56) wa =

1
|A| , for each a ∈ A, we obtain that

e−Σa∈DISA(x,y)wa) = 1− |DISA(x, y)|
|A| , (57)

with an error of order 0.06. We may, therefore, base examples that follow on
the �Lukasiewicz rough inclusion as a fairly close estimate to the Menger rough
inclusion.

We consider the information system A in Table 1.
For the information system A, we may calculate values of the �Lukasiewicz

rough inclusion in Table 2; as μL is symmetric, we show only the upper triangle
of values.

As already observed, the relation of element is equal to the identity =U .

264 Lech Polkowski

Table 1. The information system A.

U a1 a2 a3 a4

x1 1 1 1 2
x2 1 0 1 0
x3 2 0 1 1
x4 3 2 1 0
x5 3 1 1 0
x6 3 2 1 2
x7 1 2 0 1
x8 2 0 0 2

Table 2. μL for Table 2.

U x1 x2 x3 x4 x5 x6 x7 x8

x1 1 0.5 0.25 0.25 0.5 0.5 0.25 0.25
x2 * 1 0.5 0.5 0.5 0.25 0.25 0.25
x3 * * 1 0.25 0.25 0.25 0.25 0.5
x4 * * * 1 0.75 0.75 0.25 0.0
x5 * * * * 1 0.5 0 0
x6 * * * * * 1 0.25 0.25
x7 * * * * * * 1 0.25
x8 * * * * * * * 1

Table 3. μ<,L for Table 2.

U x1 x2 x3 x4 x5 x6 x7 x8

x1 1 1 0.75 0.5 0.75 0.5 0.75 0.75
x2 0.5 1 0.5 0.5 0.5 0.25 0.5 0.5
x3 0.5 1 1 0.5 0.5 0.25 0.75 0.75
x4 0.75 1 0.75 1 1 0.75 0.75 0.75
x5 0.75 1 0.75 0.75 1 0.5 0.5 0.75
x6 1 1 1 1 1 1 1 1
x7 0.5 0.75 0.5 0.5 0.5 0.25 1 0.5
x8 0.5 0.75 0.75 0.25 0.25 0.25 0.75 1

Taking the natural ordering of integers as the preference ordering in all sets
Va for a = a1, a2, a3, a4, we induce the rough inclusion μL,< in the universe of
the system A, whose values are shown in Table 3.

As we see, the rough inclusion μL,< is not symmetric, and we may expect a
different structure of granules, as we pass to the subject of knowledge granula-
tion.

3.4 Granulation of Knowledge

The class operator Cls may be recalled now. We make use of it in defining
a notion of a granule in the rough mereological universe. Granular computing
(GC) as a paradigm has been proposed by Lotfi Zadeh [28] and it has been
studied intensively by rough and fuzzy set theorists, see [15], [12]. According to an
informal, intuitive, definition, due to Zadeh, a granule is a collection (abstracting
from the precise meaning of the term) of objects bound together by similarity,
closeness, or some other constraints alike. Here, we construct granules on the
basis of rough mereological similarity of objects. Due to regularity of assumptions
about rough inclusions, we are able to obtain also some regular properties of
granules.

4 Rough Mereological Granulation

We assume a rough inclusion μ on a mereological universe (U, el). For given r < 1
and xεU , we let,

gr(x) = Cls(Ψr), (58)

Rough Mereology as a Link Between Rough and Fuzzy Set Theories 265

where,
Ψr(y)⇔ yμrx. (59)

The class gr(x) collects all atomic objects satisfying the class definition with
the concept Ψr.

We will call the class gr(x) the r–granule about x; it may be interpreted
as a neighborhood of x of radius r. We may also regard the formula yμrx as
stating similarity of y to x (to degree r). We do not discuss here the problem
of representation of granules; in general one may apply sets as the underlying
representation structure. It will turn out, that in case of Menger as well as
�Lukasiewicz rough inclusions, granules may be represented as sets of objects
satisfying Ψr.

From (18)–(25), the following general properties of granulation operators gr

may be deduced.

yμrx⇒ yelgr(x), (60)

xμry ∧ yelz ⇒ xelgr(z), (61)

∀z.[zely⇒ ∃w, q.(welz ∧ welq ∧ qμr(x))] ⇒ yelgr(x), (62)

yelgr(x) ∧ zely⇒ zelgr(x), (63)

s ≤ r⇒ gr(x)elgs(x). (64)

Property (60) follows by definition of gr and class definition (19, 20). Property
(61) is implied by (23) and (60). Property (62) follows by (21). Property (63)
follows by transitivity of el. Property (64) is a consequence of (25).

Let us observe that in case of DISA – induced rough inclusions, g1(x) = x
is the class of elements of x hence x itself. By (60–64), the system {gr(x) : x ∈
U, r ∈ [0, 1]} is a neighborhood system for a weak topology on the universe U .

In the matter of example, we consider the information system of Table 1
along with values of rough inclusions μL, μL,< given, respectively, in Tables 2, 3.
Admitting r = 0.5, we list below granules of radii 0.5 about objects x1 − x8 in
both cases. We denote with the symbol gi, g

<
i , respectively, the granule g0.5(xi)

defined by μL, μL,<, respectively.

We have,

1. g1 = {x1, x2, x5, x6},
2. g2 = {x1, x2, x3, x4, x5},
3. g3 = {x2, x3, x8},
4. g4 = {x2, x4, x5, x6},
5. g5 = {x1, x2, x4, x5, x6},
6. g6 = {x1, x4, x5, x6},
7. g7 = {x7},
8. g8 = {x3, x8},

what provides an intricate relationship among granules: 1, g4, g6 ⊆ g5, g8 ⊆ g2,
g2, g5 incomparable by inclusion, g7 isolated. We may contrast this picture with
that for μL,<.

266 Lech Polkowski

1. g<
1 = g<

4 = g<
5 = g<

6 = U ,
2. g<

2 = g<
3 = g<

7 = U \ {x6},
3. g<

8 = {x1, x2, x3, x7, x8},

providing a nested sequence of three distinct granules.

4.1 Granulation via the Menger Rough Inclusion

We now consider the Menger rough inclusion μM in which case the following ad-
ditional properties of granules may be observed. The r-granule about x induced
by μM will be denoted with the symbol gM

r .
The following are additional properties of Menger granules,

xεINF (U) ∧ xelINF g
M
r (y)⇔ xμM

r y, (65)

xεINF (U) ∧ xelINF g
M
r (y)⇒ ∀t ∈ [0, 1].gM

t (x)elINF g
M
t·r(y). (66)

For (65), assume that xelINF g
M
r (y) for xεINF (U); then, by class definition

(19, 20), we find w, q such that welINFx,welINF q, qμ
M
r y. Thus wμM

1·ry, hence
wμM

r y, and again, by xμM
1 w, it follows that xμM

r y. Proof of (66) follows on the
same lines.

4.2 Granulation via the �Lukasiewicz Rough Inclusion

With the �Lukasiewicz rough inclusion, analogous observations follow whose
proofs are carried on the same lines. The following are additional properties
of �Lukasiewicz granules,

xεINF (U) ∧ xelINF g
L
r (y)⇔ xμL

r y, (67)

xεINF (U) ∧ xelINF g
L
r (y)⇒ ∀t ∈ [0, 1].gL

t (x)elINF g
L
⊗(t,r)(y). (68)

We may sum up more suggestively (66, 68), viz., for μ ∈ {μM , μL} and
xεINF (U), and sufficiently small positive ε,

xelINF gr(y)⇒ g1−ε(x)elINF gr−ε(y). (69)

In the sequel, we discuss schemes for computing with granules of knowl-
edge/computing with words leading to networks of units organized similarly to
neural networks but performing their computations in different manner. Hybrid
rough-neural computing schemes are recently given much attention, see [15].
Here, we propose a look at the schemes based purely on agents equipped with
rough inclusions. Differentiability of the Menger type rough inclusions make
them susceptible to learning by back-propagation, a subject we discuss in the
final part of the following section.

Rough Mereology as a Link Between Rough and Fuzzy Set Theories 267

5 Rough Mereological Granular Computing

We define an intelligent unit modelled on a classical perceptron [1] and then we
develop the notion of a network of intelligent units of this type. The scheme pre-
sented here is a modification of the scheme proposed by Polkowski and Skowron
in [22].

5.1 Rough Mereological Perceptron

We exhibit the structure of a rough mereological perceptron (RMP). It consists
of an intelligent unit denoted ia. The input to ia is a finite set of connections
Linkia,in = {link1, ..., linkm}; each linkj has as the source the information uni-
verse INF (Uj), of an information system Aj = (Uj , Aj), endowed with a rough
inclusion μj

r. The output to ia is a connection Linkia,out to the information uni-
verse INF (Uia), of an information system Aia = (Uia, Aia), equipped with the
rough inclusion μia.

The operation (function) realized in RMP is denoted with Oia; thus, for
every tuple < x1, ..., xm >, where xi ∈ INF (Ui), the object x = Oia(x1, ..., xm)
∈ INF (Uia).

In each INF (Uj) as well as in INF (Uia), finite sets Tj , Tia are selected, with
the properties that,

t ∈ tia ⇒ ∃t1 ∈ T1, ..., tm ∈ Tm.t = Oia(t1, .., tm), (70)

and,
∀i, ti ∈ Ti.∃t ∈ Tia.t = Oia(t1, ..., tm). (71)

When t = Oia(t1, ..., tm), we say that σ =< t1, ..., tm, t > is an admissible set
of references. The set of all admissible reference sets is denoted by Σ.

The operation of an RMP may be expressed in terms of the mapping ωia

defined as follows.
For σ =< t1, ..., tm, t >, r1, ..., rm ∈ [0, 1], x = Oia(x1, ..., xm), and

xiεINF (Ui) for i = 1, 2, ...,m, the mapping,

ωia : Σ × [0, 1]m → [0, 1], (72)

is given by
ωia(σ, r1, .., rm) = r = min{s : xμia

s t}, (73)

whenever xiμ
i
ri
ti for i = 1, 2, ...,m.

5.2 Granular Computations

The mapping ωia may be factored through granule operator, i.e., (73) may be
expressed as follows:

ωg
ia(σ, gr1(t1), ..., grm(tm)) = gωia(σ,r1,...,rm)(t), (74)

defining the factored mapping ωg on granules.

268 Lech Polkowski

Let us observe that the acting of RMP may as well be described as that
of a granular controller, viz., the functor ωg may be described via a decision
algorithm consisting of rules of the form,

if gr1(t1) and gr2(t2) and . . . and grm(tm) then gr(t), (75)

with r = ωia(σ, r1, ..., rm), where σ =< t1, ..., tm, t >.
It is worth noticing that the mapping ωia is defined from given information

systems Aj ,Aia and it is not subject to any arbitrary choice.
Composition of RMP’s involves a composition of the corresponding mappi-

ngs ω, viz., given RMP1, . . . , RMPk, RMP with links to RMP being outputs
from RMP1, . . . , RMPk, each RMPj having inputs Linkj = {linkj

1, . .., link
j
kj
},

m = Σk
j=1kj , the composition,

IA = RMP ◦ (RMP1, RMP2, ..., RMPk), (76)

of m inputs, does satisfy the formula

ωIA = ωRMP ◦ (ωRMP1 , ..., ωRMPk
), (77)

under the tacit condition that admissible sets of references are composed as well.
Thus RMP’s may be connected in networks subject to standard procedures, e.g.,
learning by back-propagation.

When learning by back-propagation (see [1], [20] for a detailed analysis), the
Menger rough inclusion, or its modifications, e.g., the gaussian rough inclusion,

xμG
r y ⇔ e−(Σa∈DISA(x,y)wa)2 ≥ r, (78)

are useful as they are defined by means of a differentiable function f , whose
gradient is of the form,

∂f

∂w
= f · (−2 ·

∑
wa), (79)

in case of μG.

5.3 Elementary Teams of Rough Mereological Perceptrons
with the Menger Rough Inclusion

We consider a rough mereological perceptron (RMP), as defined in Sect. 5.1. It
consists of an intelligent unit denoted ia whose input is a finite tuple x =<
x1, x2, . . . , xk > of objects, see Sect. 5.1. We endow ia with the Menger rough
inclusion μM,ia at ia.

The unit ia is also equipped with a set of target objects Tia ⊂ INF (Uia).
Each object in Tia represents a class of indiscernibility INDAia via the map
INF .

The output of RMP is the granule of knowledge resia(x) = grres(x) with the
property that

rres = max{r : ∃y ∈ Tia.Oia(x)μM,ia
r y}, (80)

Rough Mereology as a Link Between Rough and Fuzzy Set Theories 269

i.e., we essentially classify x as the exact concept being the class of indiscernibility
classes as close to the indiscernibility class of x as the closest target class, i.e.,
in degree rres. Let us observe that this classification depends on the weight
system {wa : a ∈ Aia} chosen. We may also observe that we could also present
the result of computation resia(x) as the tuple < gri(ti) : ti ∈ Tia > where
ri = sup{r : Oia(x)μM,ia

r ti} for each i ≤ |Tia|.

5.4 Rough Mereological Network

Now, we may consider a network of intelligent agents (NIA) organized in the
manner of a feed-forward neural network, viz., we single out the following com-
ponents in NIA.

1. The set INPUT of intelligent agents (ia’s) constituting the input layer of
NIA. Each intelligent unit ia in INPUT acts as an RMP: it receives a tuple
xia of objects from the stock of primitive objects (signals, etc.); it assembles
xia into the object Oia(xia) in Uia; it classifies Oia(xia) with respect to its
target concepts in Tia and outputs the result resia(xia).

2. Sets LEV1, . . . , LEVk constituting consecutive inner layers of NIA with each
ia in

⋃
i LEVi acting as above.

3. The output to RMP denoted iaout acting as each ia except that its compu-
tation result is the collective computation result of the whole network.

Although, in general, the structure of neural networks is modelled on directed
acyclic graphs, we assume for simplicity, that NIA is ordered by a relation ρ into
a tree. Thus iaout is the root of the tree, INPUT is the leaf set of the tree, and
each LEVi constitutes the corresponding level of pairwise non–communicating
units in the tree.

Elementary Computations. To analyze computation mechanisms in NIA,
we begin with elementary computations performed by each subtree of the form
nia = {ia, ia0, . . . , iam} with iajρia for each j ≤ m, i.e., ia is the root unit in
nia, and ia0, . . . , iam are its daughter units.

We make one essential assumption about NIA, viz., we presume that after
preliminary training, the target sets Tia, Tiaj have been coordinated, i.e.,

1. for each t ∈ Tia, there exist t1 ∈ Tia1 , . . . , tm ∈ Tiam such that t = Oia(t1, . . . ,
tm);

2. each tj ∈ Tiaj can be completed by t1 ∈ Tia1 , . . . , tj−1 ∈ Tiaj−1 , tj+1 ∈
Tiaj+1 , . . ., tm ∈ Tiam such that t = Oia(t1, . . . , tm) ∈ Tia.

On the basis of these assumptions, we can describe elementary computations in
terms of target sets. To this end, we introduce notions of propagating functors
relative to sets of target concepts. The notion of a propagating functor was
introduced in [22], and here we adopt it in a slightly changed form.

We will say that a set σ = {t, t1, . . . , tm} of target concepts, where t ∈
Tia, t1 ∈ Tia1 , . . . , tm ∈ Tiam is admissible when t = Oia(t1, . . . , tm). For an

270 Lech Polkowski

admissible σ = {t, t1, . . . , tm} of target concepts, where t ∈ Tia, t1 ∈ Tia1 , . . . , tm
∈ Tiam , the propagating functor Φnia,σ is defined as follows.

For x =< x1 ∈ INF (Uia1), . . . , xm ∈ INF (Uiam) >, we denote by r the
tuple < r1, . . . , rm >∈ Rm defined by

∀i.ri = sup{r : xiμ
M,iai
r ti}, (81)

and we let
Φnia,σ(r) = sup{s : Oia(x1, . . . , xm)μM,ia

s t}. (82)

In terms of functors Φnia,σ , reasoning and computations are carried out in
NIA (see [22], [20] for details). As induced by the function f , Φnia,σ is piece–wise
differentiable, allowing for back–propagation based learning in NIA (see [20]).

Computing with Words. The paradigm of computing with words [29] as-
sumes that syntax of the computing mechanism is given as that of a subset of
natural language, whereas the semantics is given in a formal computing mecha-
nism involving numbers.

Let us comment briefly on how this idea may be implemented, exemplarily, in
an RMP . Assume, there is given a set N of noun phrases {n1, n2, ..., nm, n} cor-
responding to information system universes U1, ..., Um. A set ADJ of adjective
phrases is also given, and to each σ ∈ Σ, a set adj1, .., adjm, adj is assigned.

Then the decision rule (75) may be expressed in the form,

if n1 is adj1 and . . .and nm is adjm then n is adj. (83)

The semantics of (83) is expressed in the form of (75). The reader will observe
that (83) is similar in form to decision rules of a fuzzy controller, while the
semantics is distinct.

Composition of RMP’s as above is reflected in compositions of rules of the
form (83) with semantics expressed by composed mappings ω.

In the light of analysis that begins in the next section, we may call the
computation model presented above, a rough–fuzzy–neurocomputing model, see
[15] for discussions of this topic.

6 Rough Set Approximations and Fuzzy Partitions
and Equivalences Induced by Rough Inclusions

We assume that a mereological universe U is given with a rough inclusion μ
of which we assume symmetry (49) and an f–transitivity property (47) with a
t–norm f . We will construct in this setting rough respectively fuzzy universes
derived from the rough inclusion in question, and represented by rough set ap-
proximations and by partitions and equivalence relations in the sense of fuzzy
set theory.

In rough as well as fuzzy set–theoretic literature, many authors have devoted
their attention to the problem of mutual relationships between the two theories

Rough Mereology as a Link Between Rough and Fuzzy Set Theories 271

and, in consequence, some notions of a rough –fuzzy set as well as a fuzzy–rough
set have emerged. The reader will consult [2], [3], [5], [8], [9], [10], [25], as well
as many chapters in this volume.

6.1 Rough Environment from Rough Inclusions

We first give an abstract description of our ideas in the rough case and then we
explicate them in case of information systems and Menger/�Lukasiewicz rough
inclusions. We will here discern between universes U, INF (U), which will bear
on notation.

Assume a rough inclusion μ on a mereological universe (INF (U), elINF)
and a non–vacuous property M on classes over INF (U); given a class x over
INF (U), we define its lower M,μ–approximation xμ

M as follows,

xμ
M = Cls(gεM : gμ1x). (84)

Then we have as a direct consequence of (21),

xμ
M el x. (85)

Indeed, for y elINFx
μ

M there exist w, q with

welINF y, welINF q, qεM, qμ1x, (86)

hence, qelINFx by (18), and by the inference rule (21) it follows that,
xμ

M elINFx.

Again, applying the inference rule (21), we obtain,

xμ
M =INF xμ

M
μ

M
. (87)

It is sufficient to verify that xμ
M elINFx

μ
M

μ

M
, the converse being satisfied in

virtue of (85). Given yelINFx
μ
M , we have w, q with

welINF y, welINF q, qεM, qμ1x, (88)

hence, qelINFx
μ
M , i.e., qμ1x

μ
M i.e. qelINFx

μ
M

μ

M
.

It follows by (21) that xμ
M elINFx

μ
M

μ

M
.

We will say that x is M–exact in case there exists a non–empty M0 ⊆ M
such that x =INF Cls(M0).

Then, if
x = xμ

M , (89)

then x is M–exact.
Indeed, if x = xμ

M then x = Cls(gεM : gμ1x) so it suffices to let M0(g) ⇔
gεM ∧ yμ1x.

The converse also holds, i.e., if x is M–exact, x = Cls(M0) with some M0 ⊆
M then,

x =INF xμ
M . (90)

272 Lech Polkowski

Indeed, given yelINFx, we have w, q with

welINF y, welINF q, qεM0, qelINFx, (91)

hence, qelINFx
μ
M , and (21) implies that xelINFx

μ
M , so (90) follows by (85).

Now, we define the upper M,μ–approximation xμ
M by letting

xμ
M = Cls(gεM : ∃yelINFx.yμ1g). (92)

This case requires some assumptions about M . We will say that M is a
covering in case the condition holds,

∀xεINF (U). ∃gεM. xμ1g. (93)

We say that M is a partition in case the following condition holds,

∀h, gεM.(h �=INF g ⇒ ext(h, g)), (94)

where
ext(h, g)⇔ ¬[∃zεINF (U). (zelINFh ∧ zelINF g)]. (95)

It is true that if M is a covering, then

xelINFx
μ
M . (96)

For yelINFx, there exists gεM with yμ1g and then yelINF g, gelINFx
μ
M ; by

(21), xelINFx
μ
M .

If M is a covering, then

xμ
M =INF xμ

M

μ

M . (97)

It suffices by (96) to verify the element inclusion of the right–hand side into
the left–hand side. So, let yelINFx

μ
M

μ

M . Thus there exist w, q with

welINF y, welINF q, qelINFx
μ
M , (98)

hence, there exist t, r, z with

telINFw, telINF r, rεMzelINFx, zelINFr, (99)

and thus relINFx
μ
M , and as telINFy by (98), (99), and transitivity of elINF , the

entities y, t, r do witness by (21) that xμ
M

μ

MelINFx
μ
M .

The question whether x =INF xμ
M has a positive answer, too.

If M is a covering and a partition, and x =INF Cls(M0) with some ∅ �=
M0 ⊆M , then,

x =INF xμ
M . (100)

Rough Mereology as a Link Between Rough and Fuzzy Set Theories 273

It suffices to verify that xμ
MelINFx. To this end, we apply (21), and given

yelINFx
μ
M , we find w, q, z such that

welINF y, welINF q, qelINFx
μ
M , qεM, zelINFx, zelINF q. (101)

As x =INF Cls(M0), there exist u, r with

uelINF z, uelINFr, rεM0. (102)

It follows that uelINF q, uelINF r so ¬ext(q, r) holds and thus by (95),
q =INF r. As x =INF Cls(M0), relINFx and from,

welINF r, welINF y, relINFx, (103)

we infer by (21)) that xμ
MelINFx, concluding the proof.

In consequence of (89, 90, 100), when M is a covering and a partition, xμ
M =

x = xμ
M if and only if x is M–exact.

The above properties witness that rough mereological approximations share
well–known [16] properties of rough set approximations.

We now should restore from rough mereological approximations xμ
M , xμ

M ,
rough set approximations Ax,Ax over the universe U .

We first define the upper approximation. To this end, we make use of the
semantic operator [.] subject to (32), and we let

xM,μ = [INF (x)
μ

M]. (104)

The following properties are true.
If M is a covering, then

xelUx
M,μ. (105)

If M is a covering, then

xM,μ =U xM,μ
M,μ

. (106)

If M is a covering and a partition, then

x =U xM,μ, (107)

whenever x =U [INF (x)] and [INF (x)] is M–exact.

Property (105) follows from (32) and (96). Similarly, (106) follows from (32)
and (97). For (107), if INF (x) is M–exact, then

INF (x) =INF INF (x)
μ

M by (U3),

hence, xM,μ =U [INF (x)
μ

M] =U [INF (x)] =U x by (32).

To define the lower approximation xM,μ to x, we make use of the upper
approximation,

xM,μ =U (xcM,μ)c. (108)

274 Lech Polkowski

The following properties hold.

If M is a covering, then
xM,μelUx. (109)

If M is a covering, then
xM,μ =U xM,μ

M,μ
. (110)

If x =U [INF (x)], INF (x)] is M–exact, and M is a covering and a partition,
then

x =U xM,μ. (111)

Equation (109) holds as xcelUxcM,μ by (105), hence

xM,μ =U (xcM,μ)celUx
cc =U x.

Equation (110) results from (106), as

xM,μ
M,μ

=U ((xM,μ)c
M,μ

)c =U ((xcM,μ)cc
M,μ

)c =U

((xcM,μ)
M,μ

)c =U (xcM,μ)c =U xM,μ.

Equation (111) follows from (107), as xc =U [INF (xc)] and INF (xc) is
M–exact hence xc =U xcM,μ and thus x =U xcc =U (xcM,μ)c = xM,μ.

6.2 The Case of Menger, �Lukasiewicz Rough Inclusions

We insert here a short interlude on the approximation theme using the Menger
or the �Lukasiewicz rough inclusions to define granules denoted in this case with
the symbol gr(x). As the collection,

M = {g1−ε(x) : xεU}, (112)

with ε sufficiently small is a covering and a partition in INF (U), and

g1−ε(x) =INF Inf(x), (113)

it follows that xμ
M = x = xμ

M . Applying the operator [.], we reach the conclusion
that

xM,μ = Ax. (114)

Similarly, for the upper approximation,

xM,μ = Ax. (115)

For the argument, it suffices to notice that [Inf(x)] = [x]IND(A).

Rough Mereology as a Link Between Rough and Fuzzy Set Theories 275

6.3 Fuzzy Partitions and Equivalences from Rough Inclusions

Because yμ1x is equivalent to y el x, we may interpret yμrx as a statement of
fuzzy membership; we will write μx(y) = r to stress this interpretation.

Clearly, by its definition, a rough inclusion is a relation, or, it may be regarded
as a generalized fuzzy membership function, that takes intervals of the form [0, w]
as its values, leading to a higher–level fuzzy set. That follows from (25). Hence,
inequalities like a ≥ τ(x, y) are interpreted as follows: the value of a belongs
in the interval - the value of τ(x, y). We should also bear in mind that rough
inclusions reflect information content of the underlying information system.

Thus, we may say, that rough inclusions induce globally a family of fuzzy sets
{x : xelINF INF (U)} with fuzzy membership functions {μx : xelINF INF (U)},
in the above sense.

We assume additionally for the considered rough inclusion μ the f -transiti-
vity property (47) with a t–norm f . Let us consider a relation τ on U defined
as follows,

xτry ⇔ xμry ∧ yμrx, (116)

hence, τr is for each r a tolerance relation. The following properties hold,

xτ1x, (117)

xτry ⇔ yτrx, (118)

xτry ∧ yτsz ⇒ xτf(r,s)z. (119)

We will write τ(x, y) instead of χx,τ (y) in cases when we treat τ as a fuzzy
set, except for cases when the latter notation is necessary.

We may paraphrase (117)–(119) in terms of the new notation,

τ(x, x) = 1, (120)

τ(x, y) = τ(y, x), (121)

τ(x, z) ≥ f(τ(x, y), τ(y, z)). (122)

Thus, τ is by (120), (121), and (122), an f -fuzzy similarity, see [27].
Following [27], we may define similarity classes [x]τ as fuzzy sets satisfying,

χ[x]τ (y) = τ(x, y). (123)

The following are true,
χ[x]τ (x) = 1, (124)

f(χ[x]τ (y), τ(y, z)) ≤ χ[x]τ (z), (125)

f(χ[x]τ (y), χ[x]τ (z)) ≤ τ(y, z). (126)

Equations (124, 125, 126) follow by corresponding properties of τ given by
(117), (118), and (119).

276 Lech Polkowski

Finally, the family {[x]τ : x ⊆ U} does satisfy the requirements to be a fuzzy
partition [5], [7], [23], [27], viz.,

∀x∃y.χ[x]τ (y) = 1, (127)

[x]τ �= [z]τ ⇒ maxy{min{χ[x]τ (y), χ[z]τ (y)}} < 1, (128)⋃
x

[x]τ ×f [x]τ = τ, (129)

where A×f B denotes the fuzzy set defined via

χA×f B(u, v) = f(χA(u), χB(v)) (130)

and
⋃

x denotes the supremum over all values of x.
Indeed, (127), (128), (129) follow directly from properties of τ . For instance,

(128) is justified as follows: if there was y with τ(x, y) = 1 = τ(z, y), we would
have τ(x, z), τ(z, x) ≥ f(1, 1) = 1 hence x =U z.

For (129), on one hand, given x, y, z, we have,

f(τ(x, y), τ(x, z)) = f(τ(y, x), τ(x, z)) ≤ τ(y, z)

by (122), hence,
⋃

x[x]τ ×f [x]τ (y, z) ≤ τ(y, z).
On the other hand, letting x = y, we have,

[x]τ ×f [x]τ (y, z) = [y]τ ×f [y]τ (y, z) = f(τ(y, y), τ(y, z)) = f(1, τ(y, z) = τ(y, z)

by (120) and the property of every t–norm T that T (1, u) = u. Hence,
⋃

x[x]τ ×f

[x]τ (y, z) ≤ τ(y, z), which gives (129).

7 Conclusion

We may conclude our discussion; we have shown that rough mereological inclu-
sions in the universe of an information system induce rough set approximations
as well as fuzzy equivalence relations and partitions thus creating both rough as
well as fuzzy framework. This concerns in particular the Menger as well as the
�Lukasiewicz rough inclusions, our exemplary rough inclusions.

References

1. C. Bishop.Neural Networks for Pattern Recognition.Clarendon, Oxford, repr. 1997.
2. G. Cattaneo.Generalized rough sets.Preclusivity fuzzy–intuitionistic (BZ) lattices.

Studia Logica, 58, 1997, pp. 47–77.
3. D. Ciucci. Algebraic Structures for Rough Sets and Many–Valued Logics.

Manuscript. Univ. di Milano-Bicocca, 2003.
4. B. L. Clarke. A calculus of individuals based on “Connection”. Notre Dame J.

Formal Logic, 22, 1981, pp. 204–218.

Rough Mereology as a Link Between Rough and Fuzzy Set Theories 277

5. D. Dubois and H. Prade.Putting rough sets and fuzzy sets together, in: R. S�lowiński
Ed. Intelligent Decision Support. Handbook of Applications and Advances of the
Rough Sets Theory.Kluwer, 1992, pp. 203–232.

6. S. Greco, B. Matarazzo, R. S�lowiński, and J. Stefanowski. An algorithm for in-
duction of decision rules consistent with the dominance principle.Lecture Notes in
Artificial Intelligence 2005, Springer Verlag, Berlin, 2001, pp. 304–313.

7. U. Hoehle. Quotients with respect to similarity relations. Fuzzy Sets and Systems
27, 1988, pp. 31–44.

8. R. Intan, Y. Y. Yao and M. Mukaidono. Generalization of rough sets using weak
fuzzy similarity relations.In:[9], pp. 37–46.

9. M. Inuiguchi, S. Hirano and S. Tsumoto Eds. Rough Set Theory and Granular
Computing, Physica, Heidelberg, 2003.

10. M. Inuiguchi and T. Tanino. Two directions toward generalization of rough sets.
In: [9], pp. 47–58.

11. S. Leśniewski. On the foundations of mathematics. Topoi 2, 1982, pp. 7–52.
12. T.Y. Lin.Granular computing: Fuzzy logic and rough sets.In: [29], pp. 183–200.
13. C.-H. Ling.Representation of associative functions.Publ. Math. Debrecen 12, 1965,

pp. 189–212.
14. E. Marczewski. A general scheme of independence in mathematics. Bull. Polish

Acad. Math. Sci. 6, 1958, pp. 731–736.
15. S. K. Pal, L. Polkowski, and A. Skowron Eds.Rough–Neurocomputing. Techniques

for Computing with Words.Springer Verlag, in print.
16. Z. Pawlak. Rough Sets: Theoretical Aspects of Reasoning about Data.Kluwer, 1992.
17. Z. Pawlak.Rough sets.Intern. J. Comp. Inf. Sci. 11, 1982, pp. 341–356.
18. M, Novotný and Z. Pawlak.On rough equalities.Bull. Polish Acad. Sci. Math. 33,

1985, pp. 99–104.
19. Z. Pawlak and A. Skowron. Rough membership functions, in: R. R. Yager, M.

Fedrizzi, and J. Kacprzyk Eds. Advances in the Dempster-Schafer Theory of Evi-
dence.Wiley, 1994, pp. 251–271.

20. L. Polkowski. A rough–neural computation model based on rough mereology. In:
[15], pp. 85–108.

21. L. Polkowski. Rough Sets. Mathematical Foundations. Physica, Heidelberg, 2002.
22. L. Polkowski, A. Skowron. Rough mereology: a new paradigm for approximate

reasoning. International Journal of Approximate Reasoning 15: 4, 1997, pp. 333–
365.

23. L. Valverde. On the structure of F–indistinguishability operators. Fuzzy Sets and
Systems 17, 1985, pp. 313–328.

24. A. N. Whitehead. An Enquiry Concerning the Principles of Natural Knowledge.
Cambridge, 1919.

25. Y. Y. Yao. Generalized rough set models. In: L. Polkowski and A. Skowron Eds.
Rough Sets in Knowledge Discovery 1, Physica, Heidelberg, 1998, pp. 286–320.

26. L. A. Zadeh.Fuzzy sets.Information and Control bf 8, 1965, pp. 338–353.
27. L. A. Zadeh.Similarity relations and fuzzy orderings.Information Sciences 3, 1971,

pp. 177–200.
28. L. A. Zadeh.Fuzy sets and information granularity.In: M. Gupta, R. Ragade, and

R. Yager Eds. Advances in Fuzzy Set Theory and Applications, North Holland,
Amsterdam, 1979, pp. 3–18.

29. L. A. Zadeh and J. Kacprzyk Eds. Computing with Words in Informa-
tion/Intelligent Systems 1,Physica, Heidelberg, 1999.

Fuzzy Rough Sets Based on Residuated Lattices

Anna Maria Radzikowska1 and Etienne E. Kerre2

1 Faculty of Mathematics and Information Science
Warsaw university of Technology

Plac Politechniki 1, 00-661 Warsaw, Poland
annrad@mini.pw.edu.pl

2 Dept. of Mathematics and Computer Science
Ghent University, Krijgslaan 281 (S9), B-9000 Gent, Belgium

Etienne.Kerre@rug.ac.be

Abstract. Rough sets were developed by Pawlak as a formal tool for
representing and processing information in data tables. Fuzzy generaliza-
tions of rough sets were introduced by Dubois and Prade. In this paper,
we consider L–fuzzy rough sets as a further generalization of the notion
of rough sets. Specifically, we take a residuated lattice L as a basic struc-
ture. L–fuzzy rough sets are defined using the product operator and its
residuum provided by the residuated lattice L. Depending on classes of
binary fuzzy relations, we define several classes of L–fuzzy rough sets
and investigate properties of these classes.

Keywords: L–fuzzy sets, rough sets, fuzzy relations, fuzzy logical oper-
ators, residuated lattices, modal operators, information operators.

1 Introduction

In real–life problems we are usually faced with situation where the available
information is incomplete. Generally speaking, there are two inherent aspects of
incompleteness of data: partiality and imprecision. On one side, not all relevant
information is known, on the other one, user’s data may be imprecise (e.g.,
expressed by means of linguistic terms, like “quite good”, “rather small”).

Rough sets theory was developed by Pawlak [11, 12] as a formal tool for repre-
senting and processing information in data tables – consequently, this formalism
acts on partial information. The fuzzy set theory [23], on the other hand, offers
a wide variety of techniques for analyzing imprecise data. It seems therefore nat-
ural to combine methods developed within both theories in order to construct
hybrid structures capable to deal with both aspects of incompleteness. Such
structures, called fuzzy rough sets and rough fuzzy sets, have been proposed in
the literature [2, 3, 7, 19, 20].

In [14, 15] and [16] we have extensively investigated fuzzy rough sets taking
the interval [0,1] as a basic structure. However, as Goguen [5] pointed out, in
some situations it may be impossible to use the linearly ordered set [0,1] to
represent degrees of membership. From this reason, the concept of an L–fuzzy
set was then introduced.

J.F. Peters et al. (Eds.): Transactions on Rough Sets II, LNCS 3135, pp. 278–296, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Fuzzy Rough Sets Based on Residuated Lattices 279

In this paper, we consider fuzzy rough sets defined on the basis of residuated
lattices. The importance of these algebras results from the role they play in fuzzy
logics [6, 22]. Due to tight relations between rough set theory and semantics for
modal logics, this approach allows for constructing and investigating various
systems of fuzzy modal logics.

The paper is organized as follows. In Sect. 2 we recall basic properties of
residuated lattices and triangular norms. In Sect. 3 we briefly recall foundations
of L–fuzzy sets and L–fuzzy relations. Fuzzy rough sets are defined in Sect. 4, and
their basic properties are given in Sect. 5. In the next section we discuss several
classes of fuzzy rough sets. The chapter is completed by concluding remarks.

2 Residuated Lattices

Let (L, �) be a poset and let ⊗ be a binary operation in L. The following
two binary operations → and ⇒ in L, called the left and right residuum of ⊗,
respectively, are such that for all x, y ∈ L,

(Rc.1) x⊗ y� z iff x� y → z
(Rc.2) x⊗ y� z iff y�x⇒ z.

The conditions (Rc.1) and (Rc.2) are called the residuation conditions.
It is easy to show (see [22]) that if the respective residua of ⊗ exist then

x→ y = sup{z ∈L : x⊗ z� y}
x⇒ y = sup{z ∈L : z ⊗ z� y}.

Clearly, if ⊗ is commutative then →=⇒.

Definition 1. A monoid is a structure (M,⊗, μ), where M is a non–empty
universe, ⊗ : M×M→M is an associative operation and μ is a neutral element
of ⊗, i.e. for every x∈M , μ⊗ x=x⊗ μ= x. /0

A monoid (M,⊗, μ) is called commutative iff ⊗ is commutative.

Definition 2. A residuated lattice is a structure (L,∧,∨,⊗,→,⇒, 0, 1,3) such
that

– (L,⊗,3) is a monoid
– (L,∧,∨, 0, 1) is a bounded lattice with the greatest element 1 and the smallest

element 0
– → and ⇒ are the left and the right residuum of ⊗, respectively. /0

A residuated lattice (L,∧,∨,⊗,→,⇒, 0, 1,3) is called

– commutative iff ⊗ is commutative
– integral iff 3=1
– complete iff the underlying lattice (L,∧,∨, 1, 0) is complete.

280 Anna Maria Radzikowska and Etienne E. Kerre

Given a lattice (L,∧,∨, 0, 1) and its ordering � , for any x, y∈L we will
write x<y (resp. x>y) iff x �= y and x� y (resp. y� x). If L is commutative
then it will be just written (L,∧,∨,⊗,→, 0, 1,3), if it is also integral, we will
write (L,∧,∨,⊗,→, 0, 1).
The following proposition provides basic properties of residuated lattices [6, 22].

Lemma 1. In every residuated lattice (L,∧,∨,⊗,→,⇒, 0, 1,3) the following
conditions hold for every x, y, z ∈X:

(i) ⊗ is isotone in both arguments
(ii) → is antitone in the 1st argument and isotone in the 2nd argument
(iii) 0⊗ x=0
(iv) (x⊗ y) � (x ∧ y)
(v) (x→ (x⊗ y))	 y
(vi) (x⊗ (x→ y))� y.

Lemma 2. In every integral residuated lattice (L,∧,∨,⊗,→,⇒, 0, 1) the follow-
ing conditions hold for every x, y, z ∈X:

(i) (1→x)= x, (x→x)= 1, (0→ 1)=1, (0→ 0)= 1
(ii) (x→ y)= 1 iff x� y
(iii) if L is commutative then (x→ (y→ z))= ((x ⊗ y)→ z).

Given a residuated lattice (L,∧,∨,⊗,→,⇒, 0, 1,3), let us define two unary op-
erators ¬l and ¬r, referred to as the precomplement operators, by: for every
x∈L,

¬lx= x→ 0
¬r = x⇒ 0

Clearly, if L is commutative then ¬l =¬r.
Precomplement operations are generalizations of the pseudo–complement in a

lattice (see [17]). If ∧=⊗ then→ is the relative pseudo–complement, ¬=¬l =¬r

is the pseudo–complement and (W,∧,∨,→,¬, 0, 1) is a Heyting algebra.
The following lemma provides basic properties of the precomplement operator.

Lemma 3. In every commutative and integral residuated lattice (L,∧,∨,⊗,→,
0, 1) the following conditions hold for all x, y, z ∈L:

(i) ¬¬x	 x
(ii) (x→ y)� (¬y→¬x)
(iii) ((x→ y)⊗ (y→ z))� (x→ z)
(iv) (x→¬y) = ¬(x⊗ y).

Lemma 4. In every complete, commutative and integral residuated lattice (L,∧,
∨,⊗,→, 0, 1) the following conditions hold for every z ∈L and for every indexed
family (xi)i∈I of elements of L:

(i) (supi∈I xi→ z) = infi∈I(xi→ z)
(ii) z→ (infi∈I xi) = infi∈I(z→xi)

Fuzzy Rough Sets Based on Residuated Lattices 281

(iii) ¬ supi∈I xi = infi∈I ¬xi

(iv) ¬ infi∈I xi 	 supi∈I ¬xi

(v) z ⊗ (supi∈I xi) = supi∈I(z ⊗ xi)
(vi) z ⊗ (infi∈I xi) � infi∈I(z ⊗ xi)
(vii) (infi∈I xi)→ (supi∈I yi)	 supi∈I(xi→ yi).

Residuated lattices are the weak structures that provide an algebraic frame-
work for degrees of membership to fuzzy sets and, in a more general setting,
degrees of certainty of assertions in fuzzy theories. The other classes of algebras,
analogous to the algebras studied in [4] and [6], are obtained from residuated
lattices by postulating some additional axioms.

Definition 3. Let (L,∧,∨,⊗,→,⇒, 0, 1,3) be a residuated lattice. We say that
L is an MTL–algebra iff the following condition holds:

(x→ y) ∨ (y→x) = 1 for all x, y ∈L. /0 (1)

Condition (1) is called a prelinearity condition [22].
The acronym MTL means Monoidal t–norm Logic. Monoidal t–norm logic

MTL has been introduced in [4].
The following lemma provides some properties of MTL–algebras.

Lemma 5. In any MTL–algebra (L,∧,∨,⊗,→,⇒, 0, 1,3) the following condi-
tions hold for all x, y, z ∈L

(i) x⊗ y� (x ⊗ x) ∨ (y ⊗ y)
(ii) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
(iii) x→ (y ∨ z) = (x→ y) ∨ (x→ z)
(iv) (x ∧ y)→ z = (x→ z) ∨ (y→ z)
(v) if L is complete then for any indexed family (zi)i∈I of elements of L,
supi∈I(zi ⊗ zi) = (supi∈I zi)⊗ (supi∈I zi).

2.1 Triangular Norms

A typical example of monoid operators that play an important role in fuzzy sets
theory are triangular norms.

Definition 4. A triangular norm (t–norm, for short) is a mapping � : [0, 1]2 →
[0, 1] satisfying the following conditions:

(T.1) � is commutative and associative
(T.2) � is isotone in both arguments, that is for x� y it holds x � z� y � z,

where � is the natural ordering on reals
(T.3) 1 � x=x for every x∈ [0, 1]. /0

Well–known t–norms are:

(i) the standard min operation x �Z y= min{x, y},
(ii) the algebraic product x �P y= x · y

282 Anna Maria Radzikowska and Etienne E. Kerre

(iii) the �Lukasiewicz t–norm x �L y= max{0, x+y−1}
(iv) the drastic t–norm

x �D y=

⎧⎨⎩
x if y=1
y if x= 1
0 otherwise.

It can be shown that �Z is the largest t–norm, whereas the �D is the smallest
t–norm.

A t–norm is called left–continuous iff it has left–continuous partial mappings.

Proposition 1. [4] Let L=([0, 1],max,min, �, → , 0, 1) be a structure such that
� is a t–norm and → is its residuum. Then

1. If � is left–continuous then L is a residuated lattice.
2. In L the following identities hold:

max{x→ y , y→x}=1
max{x, y} = min{((x→ y)→ y) , ((y→x)→x).

3. If � is continuous then x � (x→ y) = min{x, y} holds in L.

For a left–continuous t–norm �, its residuum is referred to as residual impli-
cation. Three well–known residual implication, being the residua of �Z , �P and
�L, respectively, are:

(i) the Gödel implication x→
Z
y =

{
1 if x� y
y otherwise

(ii) the Gaines implication x→
P
y =

{
1 if x� y
y
x otherwise

(iii) the �Lukasiewicz implication x→
L
y = min{1, 1−x+y}.

3 Fuzzy Sets and Fuzzy Relations

Let L be a lattice. L–fuzzy sets was introduced by Goguen [5] as a generaliaation
of the notion of Zadeh’s fuzzy sets [23]. Below we provide more specific defini-
tion of this notion, restricting ourselves to residuated lattices taken as a basic
structure.

Definition 5. Let (L,∧,∨,⊗,→,⇒, 0, 1,3) be a residuated lattice and let X be
a nonempty universe. A mapping A : X→L is called an L–fuzzy set in X. /0

The family of all L–fuzzy sets in X will be denoted by FL(X).
The following are the most popular operations on L–fuzzy sets: for all A,B

∈FL(X) and for every x∈X,

(A /L B)(x)=A(x)⊗B(x)
(A ∩L B)(x)=A(x) ∧B(x)
(A ∪L B)(x)=A(x) ∨B(x)
(coLA)(x)=¬A(x).

Fuzzy Rough Sets Based on Residuated Lattices 283

For any A,B ∈FL(X), we will write A ⊆L B to denote A(x)�B(x) for every
x∈X.

Let (L,∧,∨,⊗,→,⇒, 0, 1,3) be a complete residuated lattice. For any family
(Ai)i∈I of L–fuzzy sets, we will write

⋃
i∈I Ai and

⋂
i∈I Ai to denote the L–fuzzy

sets in X given by

(
⋃

i∈IAi)(x) = supi∈IA(x)
(
⋂

i∈IAi)(x) = infi∈IA(x).

3.1 Fuzzy Relations

Definition 6. Let (L,∧,∨,⊗,→,⇒, 0, 1,3) be a residuated lattice and let X be
a non–empty universe. Any mapping R : Xn → L for n	 2, is called an f L–
fuzzy relation. For n=2 R is called a binary L–fuzzy relation. /0

The family of all binary L–fuzzy relations on Xwill be denoted by RL(X).
Let R∈RL(X). We say that R is

– serial iff supy∈X R(x, y)= 1 for every x∈X 1

– reflexive iff R(x, x)= 1 for every x∈X
– symmetric iff R(x, y)=R(y, x) for all x, y ∈X
– Euclidean iff R(z, x)⊗R(z, y)�R(x, y) for all x, y, z ∈X
– transitive iff R(x, z)⊗R(z, y)�R(x, y) for all x, y, z ∈X.

A binary L–fuzzy relation R is called an L–tolerance relation iff R is reflexive
and symmetric; if an L–tolerance relation is also transitive then it is called an
L–equivalence relation.

Given R∈RL(X) and x∈X, we will write xR to denote the L–fuzzy set in
X such that (xR)(y)=R(x, y) for every y ∈X.

4 Fuzzy Rough Sets

Definition 7. Let (L,∧,∨,⊗,→,⇒, 0, 1,3) be a complete residuated lattice, X
be a nonempty universe and let R∈RL(X). A pair Fas= (X, R) is called an L–
fuzzy approximation space. /0

By a fuzzy approximation space we mean an L–fuzzy approximation space for
some residuated lattice L.

Depending on a class of fuzzy relations, we have the corresponding classes
of L–fuzzy approximation spaces. Namely, we will consider the following fuzzy
approximation spaces

– Lfas: with serial L–fuzzy relations
– Rfas: with L–fuzzy reflexive relations
– Sfas: with symmetric L–fuzzy relations

1 In this case the lattice L is assumed to be complete.

284 Anna Maria Radzikowska and Etienne E. Kerre

– Efas: with Euclidean L–fuzzy relations
– Tfas: with transitive L–fuzzy relations
– Qfas: with equivalence L–fuzzy relations.

Definition 8. Let (L,∧,∨,⊗,→,⇒, 0, 1,3) be a complete residuated lattice
and let Fas= (X, R) be an L–fuzzy approximation space. Define the following
two mappings Fas

L
,Fas

L
: FL(X) → FL(X), called a lower and upper L–fuzzy

rough approximators, respectively, as follows: for every A∈FL(X) and every
x∈X,

Fas
L
(A)(x) = infy∈X(R(x, y)→A(y))

Fas
L
(A)(x) = supy∈X(R(x, y)⊗A(y)).

Fas
L
(A) (resp.Fas

L
(A)) is called an lower (resp.upper) L–fuzzy rough approx-

imation of A. /0

Notice that the lower and the upper L–fuzzy rough approximator coincide with
fuzzy box and fuzzy diamond modal operators, respectively. Consequently, these
operations correspond to the notions of necessity and possibility, respectively.
Then, for any A∈FL(X) and for any x∈X, Fas

L
(A)(x) (resp. Fas

L
(A)(x))

reflects the degree to which x certainly (resp. possibly) belongs to A,

Definition 9. Let L be a complete residuated lattice and Fas=(X, R) an L–
fuzzy approximation space. A pair (L,U)∈FL(X)×FL(X) such that L=Fas

L
(A)

and U =Fas
L
(A) for some A∈FL(X), is called an L–fuzzy rough set in Fas.

/0

We say that a pair (L,U) is a fuzzy rough set iff it is an L–fuzzy rough set for
some complete residuated lattice L.
Let K be a class of L–fuzzy relations. We will write FRS(K) to denote the class
of all L–fuzzy rough sets in K–fuzzy approximation spaces.

5 Basic Properties of Fuzzy Rough Sets

Proposition 2. Let (L,∧,∨,⊗,→,⇒, 0, 1,3) be a complete residuated lattice.
For every L–fuzzy approximation space Fas=(X, R), every A∈FL(X) and for
every indexed family (Ai)i∈I the following conditions hold:

(i) Fas
L
(∅)= ∅, Fas

L
(X)=X

(ii) if A ⊆L B then Fas
L
(A) ⊆L Fas

L
(B) and Fas

L
(A) ⊆L Fas

L
(B)

(iii) Fas
L
(A) ⊆L coLFas

L
(coLA)

Fas
L
(A) ⊆L coLFas

L
(coLA)

coLFas
L
(A) = Fas

L
(coLA)

(iv) Fas
L
(
⋃

i∈IAi) =
⋃

i∈IFas
L
(Ai)

Fas
L
(
⋂

i∈IAi) =
⋂

i∈IFas
L
(A)i).

Fuzzy Rough Sets Based on Residuated Lattices 285

Proof.
(i) Results from Lemma 1(iii) and 2(i).

(ii) Follows from Lemma 1(i) and 1(ii).

(iii) For every x∈X we have

(coLFas
L
(coLA))(x) = ¬(infy∈X(R(x, y)→¬A(y)))

= ¬ infy∈X ¬(R(x, y)⊗A(y)) Lemma 3(iv)

	 supy∈X ¬¬(R(x, y) ⊗A(y)) Lemma 4(iv)

	 supy∈X(R(x, y)⊗A(y)) Lemma 3(i)

so Fas
L
(A) ⊆L coLFas

L
(coLA).

The second inclusion can be proved in the similar way.

Also, for every x∈X,

(coLFas
L
(A))(x) = ¬ supy∈X(R(x, y)⊗A(y))

= infy∈X ¬(R(x, y)⊗A(y)) Lemma 4(iii)
= infy∈X(R(x, y)→¬A(y)) Lemma 3(iv)

= Fas
L
(coLA)(x).

Hence coLFas
L
(A)=Fas

L
(coLA).

(iv) For every family (Ai)i∈I of L–fuzzy sets in X and every x∈X we have:

(Fas
L
(
⋂

i∈IAi))(x) = infy∈X(R(x, y)→ infi∈IAi(y))
= infi∈I infy∈X(R(x, y)→Ai(y))
= infi∈IFas

L
(Ai)(x)

= (
⋂

i∈IFas
L
(Ai))(x)

by Lemma 4(ii). Also, for every (Ai)i∈I ,

Fas
L
(
⋃

i∈IAi)(x) = supy∈X(R(x, y)⊗ supi∈IAi(y))
= supi∈I supy∈X(R(x, y)⊗Ai(y))

= supi∈IFas
L
(Ai)(x)

= (
⋃

i∈IFas
L
(Ai))(x)

by Lemma 4(v).

6 Selected Classes of Fuzzy Rough Sets

In this section we consider several classes of L–fuzzy rough sets. More specifically,
we focus on particular classes of fuzzy approximation spaces and investigate L–
fuzzy rough sets in these spaces.

286 Anna Maria Radzikowska and Etienne E. Kerre

6.1 Fuzzy Rough Sets in Lfas Spaces

Let us start with fuzzy approximation spaces which underlying relations are
serial. For these spaces the following property holds.

Proposition 3. For every complete, commutative and integral MTL–algebra
(L,∧,∨,⊗,→, 0, 1) and for every L–fuzzy approximation space Fas=(X, R) the
following conditions are equivalent:

(i) Fas∈Lfas

(ii) Fas
L
(A) ⊆L Fas

L
(A) for every A∈FL(X).

Proof.
(i)⇒(ii) For every A∈FL(X) and every x∈X we have:

(Fas
L
(A)(x)→Fas

L
(A)(x))

= (infy∈X(R(x, y)→A(y))) → (supy∈X(R(x, y)⊗A(y)))
	 supy∈X[(R(x, y)→A(y))→ (R(x, y)⊗A(y)]

by Lemma 4(vii). Next, by Lemma 2(iii), A(y)	R(x, y)⊗ (R(x, y)→A(y)), so
R(x, y)⊗A(y)	R(x, y)⊗R(x, y)⊗ (R(x, y)→A(y)). Then we get

(Fas
L
(A)(x)→Fas

L
(A)(x))

	 supy∈X[(R(x, y)→A(y))→ [(R(x, y)⊗R(x, y))⊗ (R(x, y)→A(y))]]
	 supy∈X(R(x, y)⊗R(x, y))

by Lemma 1(v). Since L is an MTL algebra, by Lemma 5(v) we have

supy∈X(R(x, y)⊗R(x, y))= supy∈XR(x, y)⊗ supy∈XR(x, y)= 1,

since R is serial. So we get Fas
L
(A)(x)→Fas

L
(A)(x)= 1 for every x∈X. By

Lemma 2(ii) this means that for every x∈X, Fas
L
(A)(x)� Fas

L
(A)(x), so

Fas
L
(A) ⊆L Fas

L
(A).

(ii)⇒ (i) Assume that Fas =(X, R) is such that Fas �∈Lfas, that is R is not
serial. This means that for some x0 ∈X, supy∈X R(x0, y) �=1. Take A=x0R. We

will show that Fas
L
(A) �⊆L Fas

L
(A).

Note that

Fas
L
(A)(x0)→Fas

L
(A)(x0)

= (infy∈X(R(x0, y)→R(x0, y)))→ (supy∈X(R(x0, y)⊗R(x0, y))).

By Lemma 2(ii), R(x0, y)→R(x0, y)= 1, so Fas
L
(A)(x0)= 1. Hence we have:

Fas
L
(A)(x0)→Fas

L
(A)(x0) = 1→ supy∈X(R(x0, y)⊗R(x0, y))

= supy∈X(R(x0, y)⊗R(x0, y))

Fuzzy Rough Sets Based on Residuated Lattices 287

by Lemma 2(i). Applying again Lemma 5(v) we get

supy∈X(R(x0, y)⊗R(x0, y)) = (supy∈XR(x0, y))⊗ (supy∈XR(x0, y))
� supy∈XR(x0, y)< 1.

Then Fas
L
(A)(x0)→Fas

L
(A)(x0)< 1, which by Lemma 2(ii) means that

Fas
L
(A)(x0) � Fas

L
(A)(x0), which implies the result.

Proposition 3 implies the following

Corollary 1. Let (L,∧,∨,⊗,→, 0, 1) be a complete, commutative and integral
MTL–algebra and let (A,B) be an L–fuzzy rough set in Fas∈Lfas. Then
A ⊆L B.

6.2 Fuzzy Rough Approximations in Rfas Spaces

Now let us consider L–fuzzy rough sets in approximation spaces, where the
underlying fuzzy relation is reflexive.

Proposition 4. For any complete and integral residuated lattice (L,∧,∨,⊗,
→,⇒, 0, 1) and for any L–fuzzy approximation space Fas=(X, R) such that
Fas∈Rfas:

(i) Fas
L
(∅)= ∅

(ii) Fas
L
(X)=X.

Proof.
(i) For every x∈X,

Fas
L
(∅)(x) = infy∈X(R(x, y)→ 0)�R(x, x)→ 0 = 1→ 0 = 0

by Lemma 2(i).
(ii) For every x∈X,

Fas
L
(X)(x) = supy∈X(R(x, y)⊗ 1) 	 R(x, x)⊗ 1 =R(x, x)= 1,

since, by assumption, R is reflexive.

Proposition 5. For any complete and integral residuated lattice (L,∧,∨,⊗,
→,⇒, 0, 1) and for any L–fuzzy approximation space Fas=(X, R) the following
conditions are equivalent:

(i) Fas∈Rfas
(ii) Fas

L
(A) ⊆L A for every A∈FL(X)

(iii) A ⊆L Fas
L
(A) for every A∈FL(X).

Proof.
(i)⇒(ii) For every A∈FL(X) and for every x∈X,

Fas
L
(A)(x) = infy∈X(R(x, y)→A(y))�R(x, x)→A(x)= 1→A(x)=A(x)

by assumption and Lemma 2(i). Hence Fas
L
(A) ⊆L A.

288 Anna Maria Radzikowska and Etienne E. Kerre

(ii) ⇒ (i) Assume that Fas �∈Rfas, that is R is not reflexive. It means that
R(x0, x0)< 1 for some x0 ∈X. Consider A=x0R. Then we have

Fas
L
(A)(x0)= infy∈X(R(x0, y)→A(y))= inf

y∈X
(R(x0, y)→R(x0, y))=1

by Lemma 2(ii). However, A(x0)=R(x0, x0)< 1, so Fas
L
(A)(x0)>A(x0), which

gives Fas
L
(A) �⊆L A.

(i)⇒(iii) For every A∈FL(X) and for every x∈X we have

Fas
L
(A)(x)= supy∈X(R(x, y)⊗A(y))	R(x, x)⊗A(x)= 1⊗A(x)=A(x),

so A ⊆L Fas
L
(A).

(iii) ⇒ (i) Assume that Fas �∈Lfas, i.e. R is not reflexive. This means that
R(x0, x0)< 1 for some x0 ∈X. For A= {x0} we have

Fas
L
(A)(x0) = supy∈X(R(x0, y)⊗A(y)) = R(x0, x0)⊗ 1

= R(x0, x0) < 1 = A(x0).

Therefore A �⊆L Fas
L
(A).

Note that for properties stated in the above propositions, commutativity of L is
not necessary.

6.3 Fuzzy Rough Sets in Sfas Spaces

Proposition 6. For any complete and integral residuated lattice (L,∧,∨,⊗,
→,⇒, 0, 1) and for any L–fuzzy approximation space Fas=(X, R) the following
conditions are equivalent:

(i) Fas∈Sfas

(iii) Fas
L
(Fas

L
(A)) ⊆L A for every A∈FL(X)

(ii) A ⊆L Fas
L
(Fas

L
(A)) for every A∈FL(X).

Proof. (i)⇒(ii) For every A∈FL(X) and for every x∈X,

Fas
L
(Fas

L
(A))(x)

= supy∈X(R(x, y)⊗ infz∈X(R(y, z)→A(z)))
� supy∈X(R(x, y)⊗ (R(y, x)→A(x))) Lemma 1(i)
= supy∈X(R(x, y)⊗ (R(x, y)→A(x))) symmetry of R
�A(x) Lemma 1(vi).

Hence, indeed, Fas
L
(Fas

L
(A)) ⊆L A.

(ii) ⇒ (i) Assume that Fas �∈Sfas, that is there exist x0, y0 ∈X such that
R(x0, y0) �=R(y0, x0). Consider the following two cases:

Fuzzy Rough Sets Based on Residuated Lattices 289

Case 1: Assume R(x0, y0)�R(y0, x0). Since R(x0, y0) �=R(y0, x0), we have
R(y0, x0)<R(x0, y0), so by Lemma 2(ii),

R(y0, x0)→R(x0, y0)< 1. (2)

For A= x0R, by Lemma 1(ii), we have:

Fas
L
(Fas

L
(A))(y0)→A(y0)

= [supx∈X(R(y0, x)⊗ infz∈X(R(x, z)→R(x0, z)))]→R(x0, y0)
� (R(y0, x0)⊗ infz∈X(R(x0, z)→R(x0, z)))→ R(x0, y0) Lemma 1(ii)
=R(y0, x0)⊗ 1→R(x0, y0) Lemma 2(ii)
=R(y0, x0)→R(x0, y0) L is integral
< 1. from (2).

Applying again Lemma 2(ii) we get Fas
L
(Fas

L
(A))(y0) A(y0), which gives

Fas
L
(Fas

L
(A)) �⊆L A.

Case 2: Let R(x0, y0) R(y0, x0). Then R(x0, y0)→R(y0, x0)< 1 by Lemma
2(ii). Take A= y0R. Similarly we have:

Fas
L
(Fas

L
(A))(x0)→A(x0)

= (supy∈X(R(x0, y)⊗ infz∈X(R(y, z)→R(y0, z))))→R(y0, x0)

�R(x0, y0)→R(y0, x0)< 1,

so Fas
L
(Fas

L
(A))(x0) A(x0). Again Fas

L
(Fas

L
(A)) �⊆L A.

(i)⇒(iii) For every A∈FL(X) and for every x∈X,

Fas
L
(Fas

L
(A))(x)

= supy∈X(R(x, y)⊗ infz∈X(R(y, z)→A(z)))
� supy∈X(R(x, y)⊗ (R(y, x)→A(x))) Lemma 1(i)
= supy∈X(R(x, y)⊗ (R(x, y)→A(x))) symmetry of R
≤ 0.5ex]A(x) Lemma 1(vi).

Hence Fas
L
(Fas

L
(A)) ⊆L A.

(iii)⇒ (i) As before, assume that R is not symmetric, i.e. R(x0, y0)�=R(y0, x0)
for some x0, y0 ∈X. Consider the following two cases.

Case 1: Assume R(x0, y0)�R(y0, x0). Since R(x0, y0) �=R(y0, x0), we have
R(y0, x0) R(x0, y0). Then, by Lemma 2(ii) it follows

R(y0, x0)→R(x0, y0)< 1. (3)

For A= {y0}, by Lemma 1(iii), supz∈X(R(x0, z)⊗A(z))=R(x0, y0), so

Fas
L
(Fas

L
(A))(y0) = infx∈X(R(y0, x)→ supz∈X(R(x, z)⊗A(z)))

� R(y0, x0)→R(x0, y0)< 1 =A(y0)

by (3). Hence A �⊆L Fas
L
(Fas

L
(A)).

290 Anna Maria Radzikowska and Etienne E. Kerre

Case 2: Let R(x0, y0) R(y0, x0). Applying again Lemma 2(ii) we get

R(x0, y0)→R(y0, x0)< 1. (4)

For A= {x0} we have supz∈X(R(y0, z)⊗A(z))=R(y0, x0), so

Fas
L
(Fas

L
(A))(x0) = infy∈X(R(x0, y)→ supz∈X(R(y, z)⊗A(z)))

� R(x0, y0)→R(y0, x0)< 1 =A(x0)

by (4). Again A �⊆L Fas
L
(Fas

L
(A)).

Again, for properties stated in the above proposition, L need not be commuta-
tive.

6.4 Fuzzy Rough Sets in Efas Spaces

In this section we consider L–fuzzy rough sets in approximation spaces with
Euclidean fuzzy relations. In these spaces the following properties hold.

Proposition 7. For any complete, commutative and integral residuated lattice
(L,∧,∨,⊗,→, 0, 1) and for any L–fuzzy approximation space Fas=(X, R) the
following conditions are equivalent:

(i) Fas∈Efas

(ii) Fas
L
(A) ⊆L Fas

L
(Fas

L
(A)) for every A∈FL(X)

(iii) Fas
L
(Fas

L
(A)) ⊆L Fas

L
(A) for every A∈FL(X).

Proof.
(i)⇒ (ii) Let R be a fuzzy Euclidean relation, i.e. R(x, y) ⊗ R(x, z)�R(y, z)
for all x, y, z ∈X. Then for every A∈FL(X) and for every x∈X,

Fas
L
(Fas

L
(A))(x)

= infy∈X(R(x, y)→ supz∈X(R(y, z)⊗A(z)))
	 infy∈X(R(x, y)→ supz∈X((R(x, y) ⊗R(x, z))⊗A(z))) assumption
= infy∈X(R(x, y)→ (R(x, y)⊗ supz∈X(R(x, z)⊗A(z)))) Lemma 4(v)

	 infy∈X supz∈X(R(x, z)⊗A(z)) Lemma 1(v)

= Fas
L
(A)(x).

Then Fas
L
(A) ⊆L Fas

L
(Fas

L
(A)).

(ii)⇒(i) Assume that Fas �∈Efas, that is R is not Euclidean. This means that
R(x0, y0) ⊗ R(x0, z0) R(y0, z0) for some x0, y0, z0 ∈X. By Lemma 2(ii) this is
equivalent to

R(x0, y0)⊗R(x0, z0)→R(y0, z0) < 1 for some x0, y0, z0 ∈X. (5)

Let us consider A= {z0}. By Lemma 1(iii), Fas
L
(A)(y)= supz∈X(R(y, z)⊗A(z))

=R(y, z0) for any y∈X. Hence we have:

Fuzzy Rough Sets Based on Residuated Lattices 291

Fas
L
(A)(x0)→Fas

L
(Fas

L
(A))(x0)

= R(x0, z0)→ infy∈X(R(x0, y)→Fas
L
(A)(y))

=R(x0, z0)→ infy∈X(R(x0, y)→R(y, z0))
�R(x0, z0)→ (R(x0, y0)→R(y0, z0)) Lemma 1(ii)
= R(x0, z0)⊗R(y0, z0)→R(y0, z0) Lemma 2(iii)
< 1 from (5).

Then, again from Lemma 2(ii), Fas
L
(A)(x0) Fas

L
(Fas

L
(A))(x0), so we get

Fas
L
(A) �⊆L Fas

L
(Fas

L
(A)).

(i)⇒(iii) For every A∈FL(X) and for every x, y, z ∈X,

R(y, z)→A(z)� (R(x, y)⊗R(x, z))→A(z)

by Lemma 1(ii). Next, by Lemma 2(iii),

(R(x, y)⊗R(x, z))→A(z) = R(x, y)→ (R(x, z)→A(z)),

so we get for every A∈FL(X) and every x, y ∈X,

Fas
L
(A)(y)
= infz∈X (R(y, z)→A(z))
� infz∈X (R(x, y)→ (R(x, z)→A(z)))
=R(x, y)→ infz∈X (R(x, z)→A(z))
=R(x, y)→Fas

L
(A)(x)

by Lemma 4(ii). Therefore, for every A∈FL(X) and every x∈X,

Fas
L
(Fas

L
(A))(x)

= supy∈X(R(x, y)⊗ Fas
L
(A)(y))

� supy∈X[R(x, y)⊗ (R(x, y)→Fas
L
(A)(x))]

�Fas
L
(A)(x)

by Lemma 1(vi). This implies Fas
L (

Fas
L
(A)
)
⊆L Fas

L
(A).

(iii)⇒(i) Assume that R is not Euclidean, i.e. for some x0, y0, z0 ∈X,

R(x0, y0)⊗R(x0, z0) R(y0, z0).

Then, by Lemma 2(ii)

(R(x0, y0)⊗R(x0, z0))→R(y0, z0) < 1 for some x0, y0, z0 ∈X. (6)

292 Anna Maria Radzikowska and Etienne E. Kerre

Consider A= y0R. Then, by Lemma 4(i) we have

Fas
L
(Fas

L
(A))(x0)→Fas

L
(A)(x0)

= [supy∈X[R(x0, y)⊗ infz∈X(R(y, z)→R(y0, z))]]
→ [infz∈X(R(x0, z)→R(y0, z))]

= infy∈X[(R(x0, y)⊗ infz∈X(R(y, z)→R(y0, z)))
→ (infz∈X(R(x0, z)→R(y0, z)))]

� (R(x0, y0)⊗ infz∈X(R(y0, z)→R(y0, z)))
→ (infz∈X(R(x0, z)→R(y0, z)))

= (R(x0, y0)⊗ 1)→ (infz∈X(R(x0, z)→R(y0, z)))
= R(x0, y0) → (infz∈X(R(x0, z)→R(y0, z)))

by Lemma 2(ii) and assumption that L is integral. Next, by Lemma 1(ii),

R(x0, y0) → [infz∈X(R(x0, z)→R(y0, z))]
�R(x0, y0) → (R(x0, z0)→R(y0, z0)),

so we have:
Fas

L
(Fas

L
(A))(x0)→Fas

L
(A)(x0)

�R(x0, y0)→ (R(x0, z0)→R(y0, z0))
= (R(x0, y0)⊗R(x0, z0))→R(y0, z0)
< 1

by (6) and Lemma 1(vi). Therefore, again by applying Lemma 2(ii), we get
Fas

L
(Fas

L
(A))(x0) Fas

L
(A)(x0) so Fas

L
(Fas

L
(A)) �⊆L Fas

L
(A).

6.5 Fuzzy Rough Sets in Tfas Spaces

Proposition 8. For any complete, commutative and integral residuated lattice
(L,∧,∨,⊗,→, 0, 1) and for any L–fuzzy approximation space Fas=(X, R) the
following conditions are equivalent:

(i) Fas∈Tfas

(ii) Fas
L
(A) ⊆L Fas

L
(Fas

L
(A)) for every A∈FL(X)

(iii) Fas
L
(Fas

L
(A)) ⊆L Fas

L
(A) for every A∈FL(X).

Proof.

(i)⇒(ii) For every A∈FL(X) and for every x∈X,

Fas
L
(Fas

L
(A))(x)

= infy∈X(R(x, y)→ infz∈X(R(y, z)→A(z)))
= infy∈X infz∈X(R(x, y)→ (R(y, z)→A(z))) Lemma 4(ii)
= infz∈X infy∈X(R(x, y)⊗R(y, z)→A(z)) Lemma 2(iii)
	 infy∈X(R(x, z)→A(z)) assumption and Lemma 1(ii)
=Fas

L
(A)(x).

Fuzzy Rough Sets Based on Residuated Lattices 293

This immediately implies Fas
L
(A) ⊆L Fas

L
(Fas

L
(A)).

(ii) ⇒ (i) Assume that Fas �∈Tfas. It follows than that for some x0, y0 ∈X,
supz∈X(R(x0, z)⊗R(z, y0)) R(x0, y0), which by Lemma 2(ii) gives

(supz∈X(R(x0, z)⊗R(z, y0)))→R(x0, y0)< 1 for some x0, y0 ∈X. (7)

Consider A=x0R. Note that by Lemma 2(ii),

Fas
L
(A)(x0)= infz∈X(R(x0, z)→R(x0, z))=1.

Therefore, by Lemma 2(i),

Fas
L
(A)(x0)→Fas

L
(Fas

L
(A))(x0)

=1→ infz∈X(R(x0, z)→ infy∈X(R(z, y)→R(x0, y)))
= infz∈X(R(x0, z)→ infy∈X(R(z, y)→R(x0, y))).

Next, by Lemma 4(ii),

infz∈X(R(x0, z)→ infy∈X(R(z, y)→R(x0, y)))
= infy∈X infz∈X(R(x0, z)→ (R(z, y)→R(x0, y))).

Furthermore, by Lemma 2(iii),

R(x0, z)→ (R(z, y)→R(x0, y))= (R(x0, z)⊗R(z, y))→R(x0, y).

Therefore we have:

Fas
L
(A)(x0)→Fas

L
(Fas

L
(A))(x0)

= infy∈X infz∈X(R(x0, z)⊗R(z, y)→R(x0, y))
= infy∈X(supz∈X(R(x0, z)⊗R(z, y))→R(x0, y))

by Lemma 4(i). Finally, by (7) we have:

infy∈X(supz∈X(R(x0, z)⊗R(z, y))→R(x0, y))
� (supy∈X(R(x0, z)⊗R(z, y0)))→R(x0, y0)< 1,

whence Fas
L
(A)(x0)→Fas

L
(Fas

L
(A))(x0)< 1. By Lemma 2(ii) this implies

Fas
L
(A)(x0) Fas

L
(Fas

L
(A))(x0).

Then Fas
L
(A) �⊆L Fas

L
(Fas

L
(A)).

(i)⇒(iii) For every A∈FL(X) and for every x∈X,

Fas
L
(Fas

L
(A))(x)

= supy∈X(R(x, y)⊗ supz∈X(R(y, z)⊗A(z)))
= supz∈X supy∈X(R(x, y)⊗R(y, z)⊗A(z)) Lemma 4(v)

� supz∈X supy∈X(R(x, z)⊗A(z))) assumption and Lemma 1(i)

= Fas
L
(A)(x).

Then Fas
L
(Fas

L
(A)) ⊆L Fas

L
(A).

294 Anna Maria Radzikowska and Etienne E. Kerre

(iii)⇒(i) Assume that Fas �∈Tfas, i.e. R is not transitive. This means that for
some x0, y0 ∈X, supz∈X(R(x0, z)⊗R(z, y0)) R(x0, y0). By Lemma 2(ii),

supz∈X(R(x0, z)⊗R(z, y0))→R(x0, y0)< 1. (8)

For A= {z0} we have Fas
L
(A)(y)= supz∈X(R(y, z)⊗A(z))=R(y, z0) for every

y ∈X, so

Fas
L
(Fas

L
(A))(x0)→Fas

L
(A)(x0)

= [supy∈X(R(x0, y)⊗ supz∈X(R(y, z)⊗A(z)))]→R(x0, z0)
= [supz∈X supy∈X(R(x0, y)⊗R(y, z)⊗A(z))]→R(x0, z0)
= [supz∈X(supy∈X(R(x0, y)⊗R(y, z))⊗A(z))]→R(x0, z0)
= [supy∈X(R(x0, y)⊗R(y, z0))]→R(x0, z0)
< 1

by (8). Then Fas
L
(Fas

L
(A))(x0) Fas

L
(A)(x0), which immediately implies

Fas
L
(Fas

L
(A)) �⊆L Fas

L
(A).

6.6 Fuzzy Rough Sets in Specific Fuzzy Approximation Spaces

We conclude the chapter by giving properties of fuzzy rough sets in some more
specific classes of fuzzy approximation spaces.

Corollary 2. For any complete, commutative and integral residuated lattice
(L,∧,∨,⊗,→, 0, 1) and for any L–fuzzy approximation space Fas=(X, R) the
following conditions hold:

(i) R is reflexive and transitive iff
– Fas

L
(Fas

L
(A)) = Fas

L
(A) for every A∈FL(X)

– Fas
L
(Fas

L
(A)) = Fas

L
(A) for every A∈FL(X)

(ii) if R is an L–equivalence relation then
– Fas

L
(Fas

L
(A)) = Fas

L
(A) for every A∈FL(X)

– Fas
L
(Fas

L
(A)) = Fas

L
(A) for every A∈FL(X).

Proof. (i) Results from Propositions 5 and 8.
(ii) By transitivity of R we get from Proposition 8

Fas
L
(A) ⊆L Fas

L
(Fas

L
(A)) (9)

Next, reflexivity of R implies

Fas
L
(A) ⊆L Fas

L
(Fas

L
(A)) for every A∈FL(X). (10)

Furthermore, from (9) and Proposition 2(ii),

Fas
L
(Fas

L
(A)) ⊆L Fas

L
(Fas

L
(Fas

L
(A))). (11)

Fuzzy Rough Sets Based on Residuated Lattices 295

Finally, symmetry of R implies by Proposition 6,

Fas
L
(Fas

L
(Fas

L
(A))) ⊆L Fas

L
(A). (12)

(11)–(12) imply Fas
L
(Fas

L
(A)) ⊆L Fas

L
(A) which by (10) gives for every

A∈FL(X), Fas
L
(A)=Fas

L
(Fas

L
(A)).

The second equality can be proved in the analogous way.

7 Conclusions

In this paper, we have generalized the notion of fuzzy rough sets taking an
arbitrary residuated lattice as a basic algebraic structure. Several classes of these
L–fuzzy rough sets have been considered and basic properties of these classes
have been investigated.

This paper gives a basis for further investigations. The theory of rough sets
gave rise to a wide methodology for analyzing incompleteness of information
in information systems. It is therefore natural to consider hybrid fuzzy–rough
systems. In particular, an interesting problem concerns fuzzy decision rules: how
to combine methods commonly applied in fuzzy logics with reasoning methods
traditionally developed within the framework of rough set theory.

Moreover, as we have pointed out, fuzzy rough approximators correspond to
the basic fuzzy modal operators Having established main properties of partic-
ular classes of fuzzy rough sets, we can formulate characteristic axioms for the
corresponding systems of fuzzy modal logics. The problem of axiomatization of
these logics is, in general, an open problem.

These problems are investigated in our ongoing papers.

Acknowledgements

The work was carried out in the framework of COST Action 274 on Theory and
Applications of Relational Structures as Knowledge Instruments.

References

1. R. P. Dilworth, N. Ward. Residuated lattices. Trans. Amer. Math. Soc. 45, 1939,
pp. 335–354.

2. D. Dubois, H. Prade. Rough fuzzy sets and fuzzy rough sets. Int. J. of General
Systems 17: 2-3 , 1990, pp. 191–209.

3. D. Dubois, H. Prade. Putting fuzzy sets and rough sets together, in: Intelligent
Decision Support: Handbook of Applications and Advances of Rough Sets Theory
(R. S�lowiński (ed.)).Kluwer, 1992, pp. 203–232.

4. F. Esteva, L. Godo. . Monoidal t–norm based logic: towards a logic for left–
continuous t–norms.Fuzzy Sets and Systems 124, 2001, pp. 271–288.

5. J. A. Goguen.(1967). L–fuzzy sets.Journal of Mathematical Analysis and Applica-
tions 18, pp. 145–174.

296 Anna Maria Radzikowska and Etienne E. Kerre

6. P. Hajek .Metamathematics of Fuzzy Logics, Kluwer, 1998.
7. A. Nakamura. Fuzzy rough sets. Notes on Multiple–Valued Logic in Japan 9: 8,

1988, pp. 1–8.
8. S. Nanda, S. Majumdar Fuzzy rough sets. Fuzzy Sets and Systems 45, 1992, pp.

157–160.
9. E.Or�lowska (ed.) .Incomplete Information: Rough Set Analysis. Springer, 1998.

10. S. K. Pal, A. Skowron.Rough Fuzzy Hybridization: A New Trend in Decision Mak-
ing.Springer Singapore, 1999.

11. Z. Pawlak. Rough sets. Int. Journal of Computer and Information Science 11: 5,
1982, pp. 341–356.

12. Z. Pawlak.Rough Sets: Theoretical Aspects of Reasoning about Data.Kluwer, 1991.
13. L. Polkowski, A. Skowron.Rough Sets and Knowledge Discovery vols. 1, 2.Physica,

1998.
14. A. M. Radzikowska, E. E. Kerre. Fuzzy rough sets revisited, in: Proceedings EU-

FIT’99, Aachen, 1999, (published on CD).
15. A. M. Radzikowska, E. E. Kerre.A comparative study of fuzzy rough sets. Fuzzy

Sets and Systems 126, 2001, pp. 137–155.
16. A. M. Radzikowska, E. E. Kerre.A general calculus of fuzzy rough sets. Submitted.
17. H. Rasiowa, R. Sikorski. The Mathematics of Metamathematics. PWN – Polish

Scientific Publishers, 1970.
18. R. S�lowiński (ed.).Intelligent Decision Support: Handbook of Applications and Ad-

vances of Rough Sets Theory.Kluwer, 1992.
19. H. Thiele. On the definition of modal operators in fuzzy logic, in: Proceedings

ISMVL-93, Sacramento, California, 1993, pp. 62–67.
20. H. Thiele. Fuzzy Rough Sets versus Rough Fuzzy Sets – An Interpretation and a

Comparative Study using Concepts of Modal Logics.Technical Report No CI-30/98,
University of Dortmund, 1998. Also in Proceedings EUFIT’97, Aachen, 1997, pp.
159–167.

21. H. Thiele. Generalizing the explicit concept of rough set on the basis of modal
logic. To appear in: Computational Intelligence in Theory and Practice. Advances
in Soft Computing, Physica.

22. E. Turunen.Mathematics Behind Fuzzy Logics. Physica, 1999.
23. L. A. Zadeh.Fuzzy sets.Information and Control 8, 1965, pp. 338–358.
24. W. P. Ziarko (ed.). Rough Sets, Fuzzy Sets and Knowledge Discovery, Springer

London, 1994.

Semantics of Fuzzy Sets in Rough Set Theory

Yiyu Yao

Department of Computer Science
University of Regina
Regina, Saskatchewan

Canada S4S 0A2
yyao@cs.uregina.ca

www.cs.uregina.ca/~yyao

Abstract. The objective of this paper is to provide a semantic frame-
work for fuzzy sets in the theory of rough sets. Rough membership func-
tions are viewed as a special type of fuzzy membership functions inter-
pretable using conditional probabilities. The relationships between fuzzy
membership functions and rough membership functions, between core
and support of fuzzy set theory and lower and upper approximation of
rough set theory, are investigated. It is demonstrated that both theories
share the same qualitative properties. Interpretations of fuzzy sets in
rough set theory lead to constraints on membership values. Two types
of constraints on membership values are studies, namely, constraints on
membership values of related elements and constraints on membership
values of related sets. The classical rough set model and generalized rough
set models are discussed.

1 Introduction

The theory of rough sets deals with the approximation of sets under indiscerni-
bility [7, 8]. The theory of fuzzy sets handles vague concepts by allowing partial
memberships [23]. Both theories are motivated by the practical needs to man-
age and process uncertainty inherent in real world problem solving. They are
different and complementary generalizations of classical set theory [2, 10, 14].

Semantic interpretation of a fuzzy membership grade is one of the fundamen-
tal issues of fuzzy set theory [4]. Dubois and Prade examined three main seman-
tics of membership functions, namely, similarity, preference and uncertainty [3,
4]. Each of them underlies a particular class of applications. The co-existence of
multiple interpretations shows the richness of the concept of fuzzy sets.

The similarity based semantics relies on relationships between objects of a
universe in terms of a similarity, a dissimilarity, or a distance function. The
membership of an object is the degree of proximity of the object to the proto-
type elements of a fuzzy set [4]. The similarity based semantics imposes certain
qualitative and quantitative constraints, reflecting the similarity of objects. The
more similar an object is to the prototype elements of a fuzzy set, the greater is
its membership grade, and vice versa. The membership grades can be computed

J.F. Peters et al. (Eds.): Transactions on Rough Sets II, LNCS 3135, pp. 297–318, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

298 Yiyu Yao

by means of an increasing function of the similarity between an object and the
prototype elements of a fuzzy set [3, 4].

The theory of rough sets is based on a well studied and practical notion
called equivalence relations. Equivalence relations are defined and explained in
terms of an information table, such as a database. By focusing on one particular
type of uncertainty, namely, the discernibility or indistinguishability of elements,
rough set theory has a systematic treatment of its semantic interpretations. The
formulation and interpretation of rough sets as defined by rough membership
functions, set-theoretic operators, as well as rough set approximation operators
are inseparable parts of the theory.

Equivalence relations describe a specific type of similarity between objects.
Other types of binary relations are also used in generalizations of rough sets [20].
A question arises naturally is whether we can adopt the methodologies used in
the study of rough sets to investigate fuzzy sets. We attempt to provide a pos-
itive answer to the question in this paper. Similarity based semantics of fuzzy
sets is discussed in terms of rough sets. While many investigations of fuzzy sets
focus on quantitative study of the theory, we focus on the qualitative aspects of
the theory. Rough membership functions are viewed as a special type of fuzzy
membership functions interpretable using conditional probabilities. Rough set
approximations are related to the core and support of a fuzzy set. Based on
these connections, we demonstrate that both theories share the same qualita-
tive features. We also study qualitative constraints on membership values and
approximation operators based on discernibility and similarity of elements. The
constraints and approximation operators are studied in detail with respect to
the classical rough set model based on equivalence relations or partitions, gen-
eralized rough set models based on arbitrary binary relations, and generalized
rough set models based on coverings [15].

2 A Critical Review of Fuzzy Sets

The notion of fuzzy sets provides a convenient tool for representing vague con-
cepts by allowing partial memberships [23]. Depending on the characteristics of
membership values, two types of fuzzy sets have been studied [6]. If fuzzy mem-
bership functions take a single value from the unit interval [0,1] or a lattice, the
corresponding fuzzy sets are known as type 1 fuzzy sets. If fuzzy membership
functions take type 1 fuzzy sets as their values, the corresponding fuzzy sets are
known as type 2 fuzzy sets.

In this paper, we restrict our discussion to the classical fuzzy sets, i.e., the
type 1 fuzzy sets. Furthermore, we assume that the universe, namely, the ref-
erential set on which fuzzy sets are defined, is finite. For simplicity, we use the
same symbols for both standard set-theoretic relations and operators and fuzzy
set-theoretic relations and operators.

2.1 Fuzzy Set Systems

Let U be a finite and non-empty set called universe. A fuzzy subset of U is
defined by a membership function:

Semantics of Fuzzy Sets in Rough Set Theory 299

μA : U −→ [0, 1]. (1)

Fuzzy set inclusion and equality can be defined component-wise. A fuzzy set μA
is a subset of another fuzzy set μB, written μA ⊆ μB if and only if μA(x) ≤ μB(x)
for all x ∈ U . Fuzzy set μA is equal to fuzzy set μB, written μA = μB if and only
if μA(x) = μB(x) for all x ∈ U . Obviously, μA = μB if and only if μA ⊆ μB and
μB ⊆ μA.

There are many definitions for fuzzy set complement, intersection, and union.
The standard min-max system proposed by Zadeh is given component-wise
by [23]:

μ¬A(x) = 1− μA(x),
μA∩B(x) = min(μA(x), μB(x)),
μA∪B(x) = max(μA(x), μB(x)). (2)

A crisp subset of U may be viewed as a degenerated fuzzy set. In this case, the
membership function is the characteristic function taking only two values 0 and
1. The min-max fuzzy set-theoretic operators reduce to the classical set-theoretic
operators when characteristic functions are used.

In general, one may define fuzzy set operators using triangular norms (t-
norms) and conorms (t-conorms) [1, 5, 6]. A t-norm is a function from [0, 1]×[0, 1]
to [0, 1] and satisfies the following conditions: for a, b, c ∈ [0, 1],

(i). Boundary conditions
t(0, 0) = 0,
t(1, a) = t(a, 1) = a;

(ii). Monotonicity
(a ≤ c, b ≤ d) =⇒ t(a, b) ≤ t(c, d);

(iii). Symmetry
t(a, b) = t(b, a);

(iv). Associativity
t(a, t(b, c)) = t(t(a, b), c)).

For clarity, some of the conditions are explicitly listed, although they can be
obtained from other conditions. For example, the symmetry implies t(1, a) =
t(a, 1). We only need either t(a, 1) = a or t(1, a) = a. The condition t(0, 0) = 0
follows from t(1, a) = a, the symmetry and the monotonicity. The boundary
conditions ensure that a t-norm reduces to standard set intersection when only
crisp sets are involved. The monotonicity suggests that fuzzy set intersection
keep the monotonicity of set intersection with respect to set inclusion. Another
version of monotonicity is given by b ≤ c =⇒ t(a, b) ≤ t(a, c).

Some commonly used t-norms are tb(a, b) = max(0, a + b − 1), tmin(a, b) =
min(a, b), the product operator tp(a, b) = ab, and tw defined by boundary con-
ditions and tw(a, b) = 0, ∀(a, b) ∈ [0, 1) × [0, 1). These t-norms are related by
inequality [1, 6]:

300 Yiyu Yao

tw(a, b) ≤ tb(a, b) ≤ tp(a, b) ≤ tmin(a, b). (3)

Moreover, any t-norm is bounded by tw and tmin, i.e.,

tw(a, b) ≤ t(a, b) ≤ tmin(a, b). (4)

It provides the bounds of the membership values of the intersection of two fuzzy
sets.

Suppose n : [0, 1] −→ [0, 1] is an operator called negation. With respect to a
negation operator, the dual of a t-norm is given by n(t(n(a), n(b))) and called a
t-conorm, which is a function s mapping [0, 1]× [0, 1] to [0, 1] and satisfying the
boundary conditions:

(i′). Boundary conditions
s(1, 1) = 1,
s(a, 0) = s(0, a) = a,

and conditions of monotonicity, symmetry, and associativity. Suppose the nega-
tion operator is defined by n(a) = 1 − a. The t-conorm s corresponding to a
t-norm t is given by:

s(a, b) = n(t(n(a), n(b)))
= 1− t(1− a, 1− b). (5)

The t-conorms of tmin, tp and tb are smax(a, b) = max(a, b), sp(a, b) = a+ b−ab,
and sb(a, b) = min(1, a + b), respectively. The t-conorm corresponding to tw
is given by the boundary conditions and sw(a, b) = 1, ∀(a, b) ∈ (0, 1] × (0, 1].
Similarly, we have:

smax(a, b) ≤ sp(a, b) ≤ sb(a, b) ≤ sw(a, b). (6)

Any t-conorm is bounded by smax and sw:

smax(a, b) ≤ s(a, b) ≤ sw(a, b). (7)

It provides the bounds of the membership values of the union of two fuzzy sets.
Combining with equation (4), we have:

t(a, b) ≤ min(a, b) ≤ max(a, b) ≤ s(a, b), (8)

which expresses the connection between fuzzy set intersection and union.
Let t and s be a pair of t-norm and t-conorm. We define fuzzy set intersection

and union component-wise by:

μA∩B(x) = t(μA(x), μB(x)),
μA∪B(x) = s(μA(x), μB(x)). (9)

An important feature of fuzzy set operators as defined by t-norms and t-conorms
is that they are truth-functional operators. In other words, membership functions
of complement, intersection, and union of fuzzy sets are defined based solely on
the membership functions of the fuzzy sets involved [14].

Semantics of Fuzzy Sets in Rough Set Theory 301

2.2 Qualitative Characterization of Fuzzy Sets

Although the conditions on t-norms and t-conorms are expressed in quantitative
forms, they are of qualitative nature that characterize a large class of functions.
From t-norms, one can easily obtain the following qualitative conditions:

(I). Boundary conditions
μ∅∩∅ = ∅,
μU∩A = μA∩U = μA,

(II). Monotonicity
[μA ⊆ μC , μB ⊆ μD] =⇒ μA∩B ⊆ μC∩D,

(III). Commutativity
μA∩B = μB∩A,

(IV). Associativity
μ(A∩B)∩C = μA∩(B∩C).

For the t-conorms, we have:

(I′). Boundary conditions
μU∪U = U,

μ∅∪A = μA∪∅ = μA,

(II′). Monotonicity
[μA ⊆ μC , μB ⊆ μD] =⇒ μA∪B ⊆ μC∪D,

(III′). Commutativity
μA∪B = μB∪A,

(IV′). Associativity
μ(A∪B)∪C = μA∪(B∪C).

Compared with the quantitative conditions on t-norms and t-conorms, the qual-
itative properties are easier to interpret. By the boundary conditions and mono-
tonicity, we have:

μA∩B ⊆ μA ⊆ μA∪B, (10)

which corresponds to the quantitative condition in equation (8).
The qualitative conditions are much weaker than the quantitative conditions.

Under the qualitative conditions, fuzzy set intersection does not have to be truth-
functional. If we assume the truth-functionality of fuzzy set operators, we can
obtain the quantitative properties from the qualitative ones.

The concepts of core and support have been introduced and used as approx-
imations of a fuzzy set [6]. The core of a fuzzy set A is a crisp subset of U
consisting of elements with full membership:

core(μA) = {x ∈ U | μA(x) = 1}. (11)

302 Yiyu Yao

The support is a crisp subset of U consisting of elements with non-zero mem-
bership:

support(μA) = {x ∈ U | μA(x) > 0}. (12)

With 1− (·) as fuzzy set complement, and a pair of dual t-norm and t-conorm
as fuzzy set intersection and union, the following properties hold:

(F1) core(μA) = ¬(support(μ¬A)),
support(μA) = ¬(core(μ¬A)),

(F2) core(μA∩B) = core(μA) ∩ core(μB),
support(μA∩B) ⊆ support(μA) ∩ support(μB),

(F3) core(μA∪B) ⊇ core(μA) ∪ core(μB),
support(μA∪B) = support(μA) ∪ support(μB),

(F4) core(μA) ⊆ μA ⊆ support(μA).

Property (F1) easily follows from the definition of negation operator n(a) = 1−a.
The core of a fuzzy set is the complement of the support of the complement of
the fuzzy set, and vice versa. Properties (F2) and (F3) follow from the properties
of t-norm and t-conorm. The core of fuzzy set intersection can be obtained from
the intersection of the cores of two fuzzy sets, and the support of fuzzy set union
can be obtained from the union of the supports of two fuzzy sets. However,
the support of fuzzy set intersection and the core of fuzzy set union cannot be
thus obtained. Property (F4) suggests that a fuzzy set lies within its core and
support.

By the boundary conditions of t-norms and t-conorms, we have:

(support(μA) ∩ core(μB)) ∪ (core(μA) ∩ support(μB)) ⊆ support(μA∩B),
core(μA∪B) ⊆ (support(μA) ∪ core(μB)) ∩ (core(μA) ∪ support(μB)).

When the min-max system, or the (tp, sp) system, is used, the subset relation-
ships become equality in (F2) and (F3), namely:

(F2′) support(μA∩B) = support(μA) ∩ support(μB),
(F3′) core(μA∪B) = core(μA) ∪ core(μB).

In order to have properties (F2′) and (F3′), we need the following additional
properties on t-norms and t-conorms:

(v). [a �= 0, b �= 0] =⇒ t(a, b) �= 0;
(v′). [a �= 1, b �= 1] =⇒ s(a, b) �= 1.

Unlike the standard properties of t-norms and t-conorms, they cannot be easily
expressed in qualitative terms.

Semantics of Fuzzy Sets in Rough Set Theory 303

3 A Semantic Framework for Fuzzy Sets

In the previous discussion, we focused on the qualitative properties of fuzzy set
theory. Successful applications of fuzzy sets depend on, to a large extent, the
interpretations of various notions of the theory. In this section, we present a
semantic framework for the interpretation of fuzzy membership values, which is
closely related to rough set theory [18].

When applying the theory of fuzzy sets, we do not deal with an abstract
notion of sets. More often than not, the referential set U contains objects rele-
vant to a particular problem. Furthermore, we must have some information or
knowledge about the objects under consideration. Such knowledge enables us
to derive a more concrete and operational theory of fuzzy sets. Within the re-
stricted theory, it is possible to discuss semantic interpretations of membership
values.

In order to build a semantic framework for fuzzy sets, we consider the fol-
lowing two levels of knowledge about the universe:

Representations of objects: It is assumed that elements of the universe U
are not abstract entities, but physical objects described in terms of a set
of attributes, properties or features. We perceive these objects through
their features.

Relationships between objects: It is assumed that the available knowl-
edge and information is sufficient for us to construct a certain structure
on the universe U . That is, U contains related and interconnected, rather
than isolated, elements.

The two assumptions are reasonable. For solving any real world problem, we
must have at least some information about the objects under consideration.
We should be able to observe, measure, or describe the objects based on their
properties. The fact that we consider a set of objects U together implies that
they must be somehow related.

At a more concrete level, we assume that each attribute has a set of values.
One can observe certain relationships between attribute values. For example,
one can use the trivial equality relation. From the first level knowledge, we can
build the second level knowledge. The theory of rough set is developed based on
the two levels of knowledge [8]. The first level of knowledge is represented by an
information table. The second level of knowledge is represented by an equivalence
relation on the universe. The equivalence relation on U can be defined with
respect to an information table.

Let K represent the available information and knowledge about the universe.
In contrast to the abstract fuzzy set theory, we consider the pair (U,K) in an
operational fuzzy set theory. The knowledge K provides a basis for the defi-
nition of fuzzy sets and fuzzy set-theoretic operators. More specifically, we are
interested in a constructive theory of fuzzy sets, in which fuzzy sets are explicitly
constructed based on the knowledge K. A similar structure is used by Zhang and
Zhang for the study of a granular computing approach for problem solving [25].

304 Yiyu Yao

A constructive fuzzy set theory uses a triplet (U,K,M), where M refers to a
method by which fuzzy sets are constructed. Since the construction of fuzzy
sets is an inseparatable part of the theory, one can easily provide a semantic
interpretation of fuzzy sets.

In the rest of this paper, the proposed semantic framework is used to interpret
fuzzy sets in rough set theory. The knowledge K is given in terms of equivalence
relations (partitions), non-equivalence relations, and coverings of U . The method
M is discussed according to different types of knowledge. This may provide a
possible solution to a fundamental difficulty with fuzzy set theory regarding
semantic interpretations of fuzzy membership values.

4 Classical Rough Membership Functions
and Rough Set Approximations

The notion of indiscernibility provides a formal way to describe the relationships
between elements of a universe. Two elements are said to be indiscernible, indis-
tinguishable, or equivalent if one cannot differentiate them based on the available
information or knowledge. The theory of rough sets is a model of uncertainty
developed based on the notion of indiscernibility [7, 14, 16].

4.1 Rough Membership Functions

Let E ⊆ U × U be an equivalence relation on a finite and non-empty universe
U . That is, E is reflexive, symmetric, and transitive. The relation E induces a
partition U/E of the universe U , i.e., a family of disjoint subsets of the universe
known as equivalence classes. The equivalence relation represents the available
knowledge about the universe. In the presence of indiscernibility, we are forced
to consider an equivalence class as a whole instead of individuals. It is there-
fore expected that any model of uncertainty should take into consideration the
equivalence or indiscernibility of elements.

The pair, apr = (U,E), is called an approximation space. An element x ∈ U
belongs to one and only one equivalence class. Let

[x]E = {y | xEy}, (13)

denote the equivalence class containing x. For a subset A ⊆ U , we define a rough
membership function [9, 11, 21]:

μA(x) =
|[x]E ∩A|
|[x]E |

, (14)

where |·| denotes the cardinality of a set. The rough membership value μA(x) may
be interpreted as the conditional probability that an arbitrary element belongs
to A given that the element belongs to [x]E . The set A is called a generating set
of the rough membership μA.

Rough membership functions may be interpreted as fuzzy membership func-
tions in terms of the probabilities defined simply by the cardinalities of sets.

Semantics of Fuzzy Sets in Rough Set Theory 305

With this interpretation, one can define at most 2|U| fuzzy sets. Two distinct
subsets of U may derive the same rough membership function. By definition, the
membership values are all rational numbers.

The theory of fuzzy sets is typically developed as an uninterpreted mathemat-
ical theory of abstract membership functions without the above limitations [6].
In contrast, the theory of rough set provides a more specific and more con-
crete interpretation of fuzzy membership functions. The source of the fuzziness
in describing a concept is the indiscernibility of elements. The limitations and
constraints of such an interpreted sub-theory should not be viewed as the dis-
advantages of the theory. In fact, such constraints suggest conditions that can
be verified when applying the theory to real world problems. It might be more
instructive and informative if one knows that a certain theory cannot be applied.
Explicit statements of conditions under which a particular model is applicable
may prevent misuses of the theory.

When interpreting fuzzy membership functions in the theory of rough sets,
we have the constraints:

(rm1) μU (x) = 1,
(rm2) μ∅(x) = 0,
(rm3) xEy =⇒ μA(x) = μA(y),
(rm4) x ∈ A =⇒ μA(x) �= 0

μA(x) = 0 =⇒ x �∈ A,

(rm5) μA(x) = 1 =⇒ x ∈ A,

x �∈ A =⇒ μA(x) �= 1,
(rm6) A ⊆ B =⇒ μA(x) ≤ μB(x).

Property (rm3) is particularly important. It shows one type of constraints on
membership values. Elements in the same equivalence class must have the same
degree of membership. That is, indiscernible elements should have the same
membership value. Such a constraint, which ties the membership values of in-
dividual elements according to their connections, is intuitively appealing. The
two properties in (rm4) are equivalent. An element in A must have a non-zero
membership, while an element with zero membership cannot be in A. Similarly,
properties in (rm5) state that an element with full membership must be in A,
and an element not in A cannot have a full membership. Property (rm6) shows
another type of constraints on membership values. A subset of a set generates a
fuzzy subset of the corresponding fuzzy set generated by that set.

The constraints on rough membership functions have significant implications
on rough set-theoretic operators. Rough membership functions corresponding
to ¬A, A ∩ B, and A ∪ B must be defined using set-theoretic operators and
equation (14). By laws of probability, we have:

(o1) μ¬A(x) = 1− μA(x),
(o2) μA∪B(x) = μA(x) + μB(x)− μA∩B(x),

A ∩B = ∅ =⇒ μA∪B(x) = μA(x) + μB(x),

306 Yiyu Yao

(o3) max(0, μA(x) + μB(x) − 1) ≤ μA∩B(x) ≤ min(μA(x), μB(x)),
(o4) max(μA(x), μB(x)) ≤ μA∪B(x) ≤ min(1, μA(x) + μB(x)).

Unlike the commonly used fuzzy set operators as typically defined by t-norms and
t-conorms, the new intersection and union operators are non-truth-functional.
That is, it is impossible to obtain rough membership functions of A ∩ B and
A ∪ B based solely on the rough membership functions of A and B. One must
also consider their overlap and their relationships to the equivalence class [x]E .

By property (o2), we have the following formula to calculate the membership
function of a set:

μA(x) =
∑
y∈A

μ{y}(x). (15)

Thus, rough membership functions corresponding to singleton subsets of U play
an important role. They serve as a basis of rough membership functions gener-
ated by non-singleton subsets.

4.2 Rough Set Approximations and Approximation Operators

In an approximation space, a subset A ⊆ U is approximated by a pair of sets
called the lower and upper approximations [9]:

apr(A) = {x ∈ U | μA(x) = 1}
= core(μA),

apr(A) = {x ∈ U | μA(x) > 0}
= support(μA). (16)

They are indeed the core and support of the fuzzy set μA.
The lower and upper approximations may be viewed as two operators from

2U to 2U , where 2U is the power set of U . The system (2U ,¬,∩,∪, apr, apr)
is called a rough set algebra [13]. It may be considered as the Boolean algebra
(2U ,¬,∩,∪) with two added unary operators apr and apr. One can verify that
the approximation operators satisfy the following conditions: for subsets A,B⊆U ,

(R1) apr(A) = ¬(apr(¬A)),
apr(A) = ¬(apr(¬A)),

(R2) apr(A ∩B) = apr(A) ∩ apr(B),
apr(A ∩B) ⊆ apr(A) ∩ apr(B),

(R3) apr(A ∪B) ⊇ apr(A) ∪ apr(B),
apr(A ∪B) = apr(A) ∪ apr(B),

(R4) apr(A) ⊆ A ⊆ apr(A),

Property (R1) suggests that approximation operators are a pair of dual opera-
tors. By (R2) and (R3), the lower approximation operator is distributive over
set intersection, and the upper approximation operators is distributive over set

Semantics of Fuzzy Sets in Rough Set Theory 307

union. By comparing with (F1)-(F4), we can see that rough set approximation
operators satisfy the same properties of core and support of fuzzy sets. In other
words, fuzzy sets in general and fuzzy sets defined in rough set theory share the
same qualitative characteristics.

Rough set approximations can be re-expressed in the following equivalent
forms:

apr(A) = {x ∈ U | [x]E ⊆ A}
= {x ∈ U | ∀y ∈ U(xEy =⇒ y ∈ A)},
=
⋃
{[x]E | [x]E ⊆ A},

apr(A) = {x ∈ U | [x]E ∩A �= ∅}
= {x ∈ U | ∃y ∈ U(xEy, y ∈ A)}
=
⋃
{[x]E | [x]E ∩A �= ∅}. (17)

They represent two additional definitions of rough set approximations [19]. The
element based definition focuses on single elements of U . An element x ∈ U
is in the lower approximation, i.e., μA(x) = 1, if and only if for all y ∈ U ,
xEy implies y ∈ A. An element x ∈ U is in the upper approximation, i.e.,
μA(x) �= 0, if and only if there exists a y ∈ U such that xEy and y ∈ A. This
definition clearly relates rough set theory to modal logic [20]. It is useful in the
generalization of rough sets using non-equivalence relations. On the other hand,
the equivalence class (granule) based definition focuses on equivalence classes
of the partition U/E. The lower approximation apr(A) is the union of those
equivalence classes which are subsets of A. The upper approximation apr(A) is
the union of those equivalence classes which have non-empty intersections with
A. This definition is useful when generalizing rough sets using coverings of the
universe. The equivalence of the two definitions can be seen from property (rm3),
namely, elements in the same equivalence class have the same membership.

Rough membership functions describe a particular type of fuzziness induced
by indiscernibility of elements. In an approximation space apr = (U,E), a set
is referred to as non-fuzzy if it generates a crisp subset of U . More specifically,
a set is non-fuzzy if apr(A) = A = apr(A). In other words, a subset A of U is
non-fuzzy if the indiscernibility does not lead to fuzziness in our perception of
A. The empty set, the equivalence classes, and unions of equivalence classes are
non-fuzzy. The set of non-fuzzy sets, denoted by Def(U), consists of ∅ and U ,
and is closed under ¬, ∩ and ∪. That is, Def (U) is a sub-Boolean algebra of
2U . All other subsets of U induce non-crisp fuzzy sets. By the equivalence class
based definition, both μapr(A) and μapr(A) are crisp sets apr(A) and apr(A).

4.3 Main Features of the Rough Set Based Semantics of Fuzzy Sets

From the proposed semantic interpretation of fuzzy sets in the theory of rough
sets, one can observe several important features. They are important for under-
standing the semantics of fuzzy sets. They are summarized below.

308 Yiyu Yao

Fuzzy sets as a derived notion. Fuzzy sets are not treated as the primitive
notion, but a derived notion. In particular, a fuzzy set is generated by a crisp
set using an equivalence relation. By treating fuzzy sets as a derived notion,
one is able to develop different semantics of fuzzy sets. Other primitive no-
tions, which have sound semantic interpretations, can be used to define fuzzy
sets. In rough set theory, the notion of equivalence relations can be easily
defined and explained using an information table [8].

Representation of the source of fuzziness. The indiscernibility, repre-
sented by an equivalence relation, is the source of fuzziness in rough set
theory. With respect to indiscernibility, some subsets of the universe can-
not be precisely described, and are consequently described by fuzzy subsets.
By explicitly defining the source and the form of fuzziness, we have a clear
understanding of the meaning of fuzzy sets. Furthermore, even under the in-
discernibility of elements, certain subsets of the universe are non-fuzzy. The
distinction made between fuzzy and non-fuzzy subsets may provide more
insights to the semantics of fuzzy sets.

Qualitative representation of fuzzy sets. The core and support are qualita-
tive representations of a fuzzy set. In rough set theory, the core and support
are referred to as the lower and upper approximations of a set. Although
fuzzy sets defined in rough set theory are a special class of fuzzy sets, they
share the same qualitative properties of any fuzzy set system defined by a
pair of dual t-norm and t-conorm. This implies that the semantics of fuzzy
sets presented here is not as restricted as it appears.

Constraints on fuzzy membership functions. The proposed semantics of
fuzzy sets clearly shows two types of constraints on fuzzy membership func-
tions. One type of constraints suggests that the membership values of two
related elements are related. The other type of constraints suggests that fuzzy
membership functions generated from two related sets (concepts) should be
related. It should also be pointed out that the constraints on fuzzy member-
ship functions are of a qualitative nature.

Constraints on fuzzy set-theoretic operators. Within rough set theory,
there are constraints on fuzzy set-theoretic operators. It is clearly shown that
fuzzy set-theoretic operators are not truth-functional.

Our discussions rely on a qualitative characterization of fuzzy sets. Rough set
approximations are core and support of fuzzy sets. The t-norms and t-conorms
deal with qualitative requirements on fuzzy set-theoretic operators. The quali-
tative semantic interpretation of fuzzy sets may provide more insights into the
theory of fuzzy sets.

5 Generalized Rough Sets by Non-equivalence Relations

Standard rough sets are defined based on an equivalence relation, i.e., a reflexive,
symmetric and transitive relation, on a finite and non-empty universe [7]. Yao et
al. considered generalized rough sets based on an arbitrary binary relation [13,
20].

Semantics of Fuzzy Sets in Rough Set Theory 309

5.1 Binary Relations

Let R ⊆ U × U be a binary relation on a finite and non-empty universe U . For
two elements x, y ∈ U , if xRy, we say that x is R-related to y. Let

Rs(x) = {y ∈ U | xRy},
Rp(x) = {y ∈ U | yRx}, (18)

denote the successor and the predecessor neighborhoods of x induced by the
binary relation R. Additional neighborhoods defined by a binary relation have
also been studied [12, 17].

Different classes of binary relations can be obtained by considering the fol-
lowing properties:

serial : ∀x ∈ U∃y ∈ U [xRy],
∀x ∈ U [Rs(x) �= ∅],

inverse serial : ∀x ∈ U∃y ∈ U [yRx],
∀x ∈ U [Rp(x) �= ∅],

reflexive : ∀x ∈ U [xRx],
∀x ∈ U [x ∈ Rs(x)],

symmetric : ∀x, y ∈ U [xRy =⇒ yRx],
∀x, y ∈ U [y ∈ Rs(x) =⇒ x ∈ Rs(y)],

transitive : ∀x, y, z ∈ U [(xRy, yRz) =⇒ xRz],
∀x, y ∈ U [y ∈ Rs(x) =⇒ Rs(y) ⊆ Rs(x)],

Euclidean : ∀x, y, z ∈ U [(xRy, xRz) =⇒ yRz],
∀x, y ∈ U [y ∈ Rs(x) =⇒ Rs(x) ⊆ Rs(y)].

A relation is called a tolerance (compatibility) relation if it is reflexive and
symmetric.

From a binary relation R, we can define four binary relations:

x ≡R y ⇐⇒ Rs(x) = Rs(y),
x ≈R y ⇐⇒ Rs(x) ∩Rs(y) �= ∅
x .R y ⇐⇒ Rp(x) = Rp(y),
x ∼R y ⇐⇒ Rp(x) ∩Rp(y) �= ∅. (19)

Relations ≡R and .R are reflexive, symmetric, and transitive, and hence are
equivalence relations. Relations ≈R and ∼R are symmetric. If R is a serial re-
lation, then ≈R is also reflexive, and hence a tolerance relation. If R is inverse
serial, ∼R is reflexive, and hence a tolerance relation. While ≡R and .R show
strong connections between elements of U , ≈R and ∼R show some weak con-
nections. Two elements are considered to be equivalent if they have the same
successor (predecessor) neighborhood, and similar if their successor (predecessor)
neighborhoods have a non-empty overlap.

5.2 Rough Membership Functions

The pair apr = (U,R) is called an approximation space, with the relation R
representing the relationships between elements of U . One can define rough

310 Yiyu Yao

membership functions by extending equation (14) using neighborhoods induced
by a binary relation [14]. We consider the definition based on the successor
neighborhoods. For a subset A ⊆ U , a rough membership function can be defined
by substituting [x]E with Rs(x) in equation (14) as follows:

μA(x) =
|Rs(x) ∩A|
|Rs(x)| . (20)

We assume that relation R is at least serial, i.e., Rs(x) �= ∅ for all x ∈ U . Under
this assumption, the rough membership function is well defined.

Recall that we can identify at least two types of constraints. One type sug-
gests that membership values of related elements should be related. Another
type suggests that two rough membership functions obtained from two related
generating sets should be related. It is naturally expected that relationships
given by binary relations should impose some constraints on rough membership
functions.

For an arbitrary binary relation R, we have:

(I) xRy ⇐⇒ μ{y}(x) �= 0.

If the relation R is reflexive, the following condition holds:

(II) μRs(x)(x) = 1.

They serve as basic properties for us to derive other properties of rough mem-
bership functions. Suppose the relation R is both serial and inverse serial. The
rough membership functions still satisfy (rm1), (rm2), and (rm6). Corresponding
to property (rm3), we have the following constraints:

(rm3.1) x ≡R y =⇒ μA(x) = μA(y);
(rm3.2) (μA(x) = 1, x ≈R y) =⇒ μA(y) �= 0,

(μA(x) = 0, x ≈R y) =⇒ μA(y) �= 1,
(rm3.3) x .R y =⇒ μ{x}(z) = μ{y}(z),
(rm3.4) (μ{x}(z) �= 0,¬(x ∼R y)) =⇒ μ{y}(z) = 0.

The first two properties state one type of constraints, namely, membership val-
ues of related elements are related. According to (rm3.1), if two elements are
equivalent, in the sense defined by ≡R, then they must have the same member-
ship value. According to (rm3.2), if an element y is similar to another element
x with full membership, in the sense defined by ≈R, then y cannot have a null
membership. Likewise, if y is similar to an element x with null membership,
then y cannot have a full membership. The last two properties show another
type of constraints, namely, rough membership functions derived from two re-
lated generating sets must be related. By (rm3.3), if x and y are equivalent, in
the sense of .R, we can conclude that {x} and {y} generate the same rough
membership function. By (rm3.4), if z has a non-zero membership value in μ{x}
and ¬(x ∼R y), we can conclude that z must have a zero membership value in

Semantics of Fuzzy Sets in Rough Set Theory 311

μ{y}. That is, if x is not similar to y, x and y generate totally different rough
membership functions in the sense that whenever z has a non-zero membership
value for one, it must have the zero membership value for the other.

Rough membership values defined using an arbitrary binary relation are also
conditional probabilities. Consequently, properties (o1)-(o4) hold for rough set
operators.

5.3 Rough Set Approximation and Approximation Operators

Similar to the classical case, a pair of rough set approximations can be defined
by the core and support of μA. That is, for a set A ⊆ U , we have [13, 20]:

apr(A) = core(μA),
= {x ∈ U | μA(x) = 1}
= {x ∈ U | Rs(x) ⊆ A}
= {x ∈ U | ∀y ∈ U(xRy =⇒ y ∈ A)},

apr(A) = support(μA)
= {x ∈ U | μA(x) > 0}
= {x ∈ U | Rs(x) ∩A �= ∅}
= {x ∈ U | ∃y ∈ U(xRy, y ∈ A)}. (21)

Independent of the properties of the binary relation, they satisfy properties (R1)-
(R3).

Properties of a binary relation determine the properties of approximation
operators apr and apr. With respect to the serial, reflexive, symmetric, transitive
and Euclidean properties, the approximation operators have the corresponding
properties:

(D) apr(A) ⊆ apr(A);
(T) apr(A) ⊆ A,

A ⊆ apr(A);
(B) A ⊆ apr(apr(A)),

apr(apr(A)) ⊆ A;
(4) apr(A) ⊆ apr(apr(A)),

apr(apr(A)) ⊆ apr(A);
(5) apr(A) ⊆ apr(apr(A)),

apr(apr(A)) ⊆ apr(A).

By combining properties of binary relations, we can produce more classes of
rough set models.

5.4 Classes of Rough Set Models

With respect to properties of a binary relation, such as reflexive, symmetric,
transitive, and Euclidean, we can identify additional constraints on rough mem-

312 Yiyu Yao

bership functions. For simplicity, we only consider constraints on membership
values with respect to the same fuzzy set. In this case, they are the re-expression
of properties (T), (B), (4) and (5) in terms of rough membership functions. Thus,
we use the same symbols to label the corresponding properties.

Reflexive Model. A reflexive relation is a special serial relation. In this case,
for all x ∈ U , xRx or equivalently x ∈ Rs(x). The corresponding equivalent
properties of rough membership functions can be stated as:

(T) μ{x}(x) �= 0;
x ∈ A =⇒ μA(x) �= 0;
μA(x) = 1 =⇒ x ∈ A.

They are in fact the properties (rm4) and (rm5). The equivalence of the proper-
ties can be easily shown. As an example, we show the equivalence of the first and
the last properties. Assume μ{x}(x) �= 0. By (I), we can conclude that x ∈ Rs(x).
If μA(x) = 1, we have Rs(x) ⊆ A. By combining x ∈ Rs(x) and Rs(x) ⊆ A, we
have x ∈ A. This means that the first property implies the last property. Now
assume μA(x) = 1 =⇒ x ∈ A. According to (II), we have μRs(x)(x) = 1. Thus,
x ∈ Rs(x), which implies μ{x}(x) �= 0. We have therefore showed that the last
property implies the first property.

Symmetric Model. For a symmetric relation, if x ∈ Rs(y) then y ∈ Rs(x),
namely, Rp(x) = Rs(x). Relations ≡R and .R become the same, and relations
≈R and ∼R become the same. In a symmetric model, we have the following
equivalent properties on a rough membership function:

(B) μ{y}(x) �= 0 =⇒ μ{x}(y) �= 0;
[x ∈ A, xRy] =⇒ μA(y) �= 0;
[μA(y) = 0, xRy] =⇒ x �∈ A;
[μA(y) = 1, xRy] =⇒ x ∈ A;
[x �∈ A, xRy] =⇒ μA(y) �= 1.

These properties are similar, in form, to properties (rm3.2) and (rm3.4). Fur-
thermore, they also contain conditions in (T). Property (B) states constraints
on the membership functions directly through the binary relation R. For exam-
ple, if y is R-related to an element x ∈ A, then y has a non-zero membership
value in μA. On the other hand, (rm3.2) and (rm3.4) state constraints indirectly
through R.

Transitive Model. For a transitive relation R, for all x, y ∈ U , if xRy, then
Rs(y) ⊆ Rs(x). For a transitive relation R, we have the connection between R
and ≈R and ∼R:

R is serial and transitive =⇒ [xRy =⇒ x ≈R y];
R is inverse serial and transitive =⇒ [xRy =⇒ x ∼R y]. (22)

Semantics of Fuzzy Sets in Rough Set Theory 313

In a transitive model, we have the following equivalent properties on membership
functions:

(4) μ{y}(x) �= 0 =⇒ μRs(x)(y) = 1;
[μA(x) = 1, xRy] =⇒ μA(y) = 1;
[μA(y) �= 1, xRy] =⇒ μA(x) �= 1;
[μA(x) �= 0, yRx] =⇒ μA(y) �= 0;
[μA(y) = 0, yRx] =⇒ μA(x) = 0.

Combining the above results with (rm3.2) and (rm3.4), we can obtain additional
properties.

Euclidean Model. For an Euclidean relation, for all x, y ∈ U , if xRy, then
Rs(x) ⊆ Rs(y). In this case, we have:

R is Euclidean =⇒ [xRy =⇒ x ≈R y];
R is inverse serial and Euclidean =⇒ [xRy =⇒ x ∼R y]. (23)

The following properties can be obtained:

(5) μ{y}(x) �= 0 =⇒ μRs(y)(x) = 1;
[μA(x) �= 0, xRy] =⇒ μA(y) �= 0;
[μA(y) = 0, xRy] =⇒ μA(x) = 0;
[μA(x) = 1, yRx] =⇒ μA(y) = 1;
[μA(y) �= 1, yRx] =⇒ μA(x) �= 1.

They can be used to infer additional properties.

Pawlak Model. A Pawlak model is characterized by an equivalence relation.
In this case, all four relations ≡R, ≈R, .R and ∼R are the same as the relation
R. An equivalence relation is an Euclidean relation. Thus, all the properties
established so far hold for a Pawlak model.

6 Generalized Rough Sets Based
on Coverings of the Universe

In a partition, an element belongs to one equivalence class and two distinct
equivalence classes have no overlap. Covering of the universe is a natural gen-
eralization of partitions, in which an element can be in more than one class of
a covering. This provides a more realistic model for the formulation of rough
sets [14, 24].

6.1 Coverings

A covering of the universe, C = {C1, . . . , Cn}, is a family of subsets of U such
that U =

⋃
{Ci | i = 1, . . . , n}. Two distinct sets in C may have a non-empty

314 Yiyu Yao

overlap. An element may belong to more than one class in C. The family C(x) =
{C ∈ C | x ∈ C} consists of sets in C containing x. With respect to a covering,
we construct the following equivalence relation:

x ≡C y ⇐⇒ ∀C ∈ C(x ∈ C ⇐⇒ y ∈ C)
⇐⇒ C(x) = C(y). (24)

Two elements are considered to be equivalent if they appear in the same family
of subsets in C. A tolerance relation ∼C can be defined by:

x ∼C y ⇐⇒ ∃C ∈ C(x ∈ C, y ∈ C)
⇐⇒ C(x) ∩C(y) �= ∅. (25)

That is, x and y are considered to be similar if they appear together in at least
one class of the covering.

6.2 Rough Membership Functions

The sets in C(x) describe different types or various degrees of similarity between
elements of U . For a set C ∈ C(x), we may compute a value |C ∩ A|/|C| by
extending equation (14). It may be interpreted as the membership value of x
from the view point of C. With respect to a covering C, we have a family of
values {|C ∩ A|/|C| | x ∈ C,C ∈ C}. Generalized rough membership functions
may be defined by using this family of values. We consider the following three
definitions [22]:

(minimum) μ
A
(x) = min

{
|C ∩A|
|C| | x ∈ C,C ∈ C

}
, (26)

(maximum) μA(x) = max
{
|C ∩A|
|C| | x ∈ C,C ∈ C

}
, (27)

(average) μ∗
A(x) = avg

{
|Ci ∩A|
|Ci|

| x ∈ C,C ∈ C
}
. (28)

The minimum, maximum, and average definitions may be regarded as the most
permissive, the most optimistic, and a balanced view, respectively, in defin-
ing rough membership functions. The minimum rough membership function is
determined by a set in C(x) which has the smallest overlap with A, and the
maximum rough membership function by a set in C(x) which has the largest
overlap with A. The average rough membership function depends on every set
in C(x).

The generalized rough membership functions have the following properties:

(grm0) μ
A
(x) ≤ μ∗

A(x) ≤ μA(x),
(grm1) μ

U
(x) = μ∗

U (x) = μU (x) = 1,
(grm2) μ∅(x) = μ∗

∅(x) = μ∅(x) = 0,

Semantics of Fuzzy Sets in Rough Set Theory 315

(grm3) x ≡C y =⇒ [μ
A
(x) = μ

A
(y), μ∗

A(x) = μ∗
A(y), μA(x) = μA(y)],

(grm4) (x ∼C y, μ
A
(x) = 1) =⇒ μA(y) = 1,

(x ∼C y, μA(x) = 0) =⇒ μ
A
(y) = 0,

(x ∼C y, μA(x) = 0) =⇒ μ∗
A(y) �= 1,

(x ∼C y, μ
A
(x) = 1) =⇒ μ∗

A(y) �= 0,
(grm5) x ∈ A =⇒ μ

A
(x) �= 0,

μ
A
(x) = 0 =⇒ x �∈ A,

x ∈ A =⇒ μA(x) �= 0,
μA(x) = 0 =⇒ x �∈ A,

(grm6) μA(x) = 1 =⇒ x ∈ A,

x �∈ A =⇒ μA(x) �= 1,
μ

A
(x) = 1 =⇒ x ∈ A,

x �∈ A =⇒ μ
A
(x) �= 1,

(grm7) A ⊆ B =⇒ μ
A
(x) ≤ μ

B
(x),

A ⊆ B =⇒ μA(x) ≤ μB(x).

Property (grm0) states the relationship between three membership functions.
A partition is a special type of covering. In this case, three rough membership
functions reduce to the same rough membership function. Properties (grm1)
and (grm2) show the membership values of two special sets, the empty set ∅
and the entire set U . Both (grm3) and (grm4) show the constraints on rough
membership functions imposed by the similarity of objects. From the relation
μ

A
(x) ≤ μ∗

A(x) ≤ μA(x), we can obtain additional properties. For example,
(grm5) implies that x ∈ A =⇒ μ∗

A(x) �= 0. Similarly, (grm6) implies that
μ∗

A(x) = 1 =⇒ x ∈ A.
For set-theoretic operators, one can verify the following properties:

μ¬A
(x) = 1− μA(x),

μ¬A(x) = 1− μ
A
(x),

μ∗
¬A(x) = 1− μ∗

A(x),
max(0, μ

A
(x) + μ

B
(x)− μA∪B(x)) ≤ μ

A∩B
(x) ≤ min(μ

A
(x), μ

B
(x)),

max(μA(x), μB(x)) ≤ μA∪B(x) ≤ min(1, μA(x) + μB(x) − μ
A∩B

(x)),
μ∗

A∩B(x) = μ∗
A(x) + μ∗

B(x) − μ∗
A∪B(x). (29)

We again obtain non-truth-functional rough set operators.
The minimum rough membership function may be viewed as the lower bound

on all possible rough membership functions definable using a covering, while the
maximum rough membership as the upper bound. The pair (μ

A
(x), μA(x)) may

also be used to define an interval-valued fuzzy set [6]. The interval [μ
A
(x), μA(x)]

is the membership value of x with respect to A.

316 Yiyu Yao

6.3 Rough Set Approximations and Approximation Operators

From the three rough membership functions, we define three pairs of lower and
upper approximations. For the minimum definition, we have:

aprm(A) = core(μ
A
)

= {x ∈ U | μ
A
(x) = 1}

= {x ∈ U | ∀C ∈ C(x ∈ C =⇒ C ⊆ A)},
aprm(A) = support(μ

A
)

= {x ∈ U | μ
A
(x) > 0}

= {x ∈ U | ∀C ∈ C(x ∈ C =⇒ C ∩A �= ∅)}. (30)

For the maximum definition, we have:

aprM (A) = core(μA)
= {x ∈ U | μA(x) = 1}
= {x ∈ U | ∃C ∈ C(x ∈ C,C ⊆ A)},
=
⋃
{C ∈ C | C ⊆ A},

aprM (A) = support(μA)
= {x ∈ U | μA(x) > 0}
= {x ∈ U | ∃C ∈ C(x ∈ C,C ∩A �= ∅)}
=
⋃
{C ∈ C | C ∩A �= ∅}. (31)

The lower and upper approximations in each pair are no longer dual operators.
However, (aprm, aprM) and (aprM , aprm) are two pairs of dual operators. The
first pair can be derived from the average definition, namely:

apr∗(A) = aprm(A), apr∗(A) = aprM (A). (32)

These approximation operators have been studied extensively in rough set the-
ory. Their connections and properties can be found in a recent paper by Yao [17].

7 Conclusion

By applying the techniques used in the study of rough sets, we propose a semantic
framework for fuzzy sets. Two salient features of the proposed framework are
the consideration of knowledge about the universe and the incorporation of a
method for constructing fuzzy sets. This leads to a constructive fuzzy set theory,
where fuzzy sets are explicitly constructed and interpreted.

Our examination of fuzzy sets and rough sets suggests that both theories
share the same qualitative properties. The lower and upper approximations of
rough set theory correspond to the core and support of fuzzy set theory. Sev-
eral methods are suggested for the construction of fuzzy sets, depending on the

Semantics of Fuzzy Sets in Rough Set Theory 317

available knowledge. Fuzzy membership functions are defined and interpreted in
classical and generalized rough set models.

The connections established between the two theories may enhance our un-
derstanding of each theory. The results may provide a possible solution to a
fundamental difficulty with fuzzy set theory regarding the semantic interpreta-
tions of fuzzy membership values.

References

1. Dubois, D. and Prade, P. A class of fuzzy measures based on triangular norms,
International Journal of General Systems, 8, 43-61, 1982.

2. Dubois, D. and Prade, H. Rough fuzzy sets and fuzzy rough sets, International
Journal of General Systems, 17, 191-209, 1990.

3. Dubois, D. and Prade, P. Similarity-based approximate reasoning, in: J.M. Zurada,
R.J. Marks II, C.J. Robinson (Eds.), Computational Intelligence: Imitating Life,
IEEE Press, New York, 69-80, 1994.

4. Dubois, D. and Prade, P. The three semantics of fuzzy set, Fuzzy Sets and Systems,
90, 141-150, 1997.

5. Klement, E.P., Mesiar, R. and Pap, E. Triangular Norms, Kluwer Academic Pub-
lishers, Dordrecht, 2000.

6. Klir, G.J. and Yuan, B. Fuzzy Sets and Fuzzy Logic: Theory and Applications,
Prentice Hall, New Jersey, 1995.

7. Pawlak, Z. Rough sets, International Journal of Computer and Information Sci-
ences, 11, 341-356, 1982.

8. Pawlak, Z. Rough Sets, Theoretical Aspects of Reasoning about Data, Kluwer Aca-
demic Publishers, Dordrecht, 1991.

9. Pawlak, Z. and Skowron, A. Rough membership functions, in: Advances in the
Dempster-Shafer Theory of Evidence, R.R. Yager and M. Fedrizzi and J. Kacprzyk
(Eds.), John Wiley and Sons, New York, 251-271, 1994.

10. Radzikowska, A.M. and Kerre, E.E. Fuzzy rough sets based on residuated lat-
tices, in: Rough, Fuzzy and Fuzzy Rough Sets, D. Dubois, J. Grzymala-Busse, M.
Inuiguchi, and L. Polkowski, Springer, Berlin, 2004.

11. Wong, S.K.M. and Ziarko, W. Comparison of the probabilistic approximate clas-
sification and the fuzzy set model, Fuzzy Sets and Systems, 21, 357-362, 1987.

12. Wu, W.Z. and Zhang, W.X. Neighborhood operator systems and approximations,
Information Sciences, 144, 201-217, 2002.

13. Yao, Y.Y. Two views of the theory of rough sets in finite universes, International
Journal of Approximation Reasoning, 15, 291-317, 1996.

14. Yao, Y.Y. A comparative study of fuzzy sets and rough sets, Information Sciences,
109, 227-242, 1998.

15. Yao, Y.Y. Generalized rough set models, in: Rough Sets in Knowledge Discovery,
Polkowski, L. and Skowron, A. (Eds.), Physica-Verlag, Heidelberg, 286-318, 1998.

16. Yao, Y.Y. Constructive and algebraic methods of the theory of rough sets, Infor-
mation Sciences, 109, 21-47, 1998.

17. Yao, Y.Y. Relational interpretations of neighborhood operators and rough set ap-
proximation operators, Information Sciences, 111, 239-259, 1998.

18. Yao, Y.Y. Rough sets and interval fuzzy sets, Proceedings of Joint 9th IFSA World
Congress and 20th NAFIPS International Conference, 2347-2352, 2001.

318 Yiyu Yao

19. Yao, Y.Y. Information granulation and approximation in a decision-theoretic model
of rough sets, manuscript, 2002.

20. Yao, Y.Y. and Lin, T.Y. Generalization of rough sets using modal logic, Intelligent
Automation and Soft Computing, an International Journal, 2, 103-120, 1996.

21. Yao, Y.Y. and Wong, S.K.M. A decision theoretic framework for approximating
concepts, International Journal of Man-machine Studies, 37, 793-809, 1992.

22. Yao, Y.Y. and Zhang, J.P. Interpreting fuzzy membership functions in the theory
of rough sets, Proceedings of The Second International Conference on Rough Sets
and Current Trends in Computing, LNAI 2005, 82-89, 2001.

23. Zadeh, L.A. Fuzzy sets, Information and Control, 8, 338-353, 1965.
24. Zakowski, W. Approximations in the space (U, Π), Demonstratio Mathematica,

XVI, 761-769, 1983.
25. Zhang, B. and Zhang, L. Theory and Applications of Problem Solving, North-

Holland, Amsterdam, 1992.

A New Proposal
for Fuzzy Rough Approximations

and Gradual Decision Rule Representation

Salvatore Greco1, Masahiro Inuiguchi2, and Roman S�lowiński3,4

1 Faculty of Economics, University of Catania, Corso Italia, 55,
95129 Catania, Italy

salgreco@mbox.unict.it
2 Department of Systems Innovation Graduate School of Engineering Science,

Osaka University, 1-3, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
inuiguti@sys.es.osaka-u.ac.jp

3 Institute of Computing Science, Poznan University of Technology,
60-965 Poznan, Poland

slowinsk@sol.put.poznan.pl
4 Institute for Systems Research, Polish Academy of Sciences, 01-447 Warsaw, Poland

Abstract. We propose a new fuzzy rough set approach which, differ-
ently from most of known fuzzy set extensions of rough set theory, does
not use any fuzzy logical connectives (t-norm, t-conorm, fuzzy implica-
tion). As there is no rationale for a particular choice of these connec-
tives, avoiding this choice permits to reduce the part of arbitrary in the
fuzzy rough approximation. Another advantage of the new approach is
that it uses only the ordinal property of fuzzy membership degrees. The
concepts of fuzzy lower and upper approximations are thus proposed,
creating a base for induction of fuzzy decision rules having syntax and
semantics of gradual rules. The decision rules are induced from lower and
upper approximations defined for positive and negative relationships be-
tween credibility of premise and conclusion; for this reason, there are
four types of decision rules. In addition to decision rule representation,
a new scheme of inference with a generalized fuzzy rough modus ponens
is proposed.

Keywords: rough sets, fuzzy sets, decision rules, gradual rules, ambi-
guity, credibility, modus ponens

1 Introduction

It has been acknowledged by different studies that fuzzy set theory and rough
set theory are complementary because of handling different kinds of uncer-
tainty. Fuzzy sets deal with possibilistic uncertainty, connected with imprecision
of states, perceptions and preferences (Dubois, Prade and Yager [8]). Rough
sets deal, in turn, with uncertainty following from ambiguity of information
(Pawlak [21]). The two types of uncertainty can be encountered together in real-
life problems. For this reason, many approaches have been proposed to combine

J.F. Peters et al. (Eds.): Transactions on Rough Sets II, LNCS 3135, pp. 319–342, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

320 Salvatore Greco, Masahiro Inuiguchi, and Roman S�lowiński

fuzzy sets with rough sets (Cattaneo [5], Dubois, Prade [7], Greco, Matarazzo,
S�lowiński [11–13], Inuiguchi, Tanino [18], Nakamura [19], Nakamura and Gao
[20], Polkowski [23], S�lowiński [24], S�lowiński, Stefanowski [25], Yao [27]). The
main preoccupation in almost all these studies was related to fuzzy extension of
Pawlak’s definition of lower and upper approximation using fuzzy connectives
(t-norm, t-conorm, fuzzy implication). In fact, there is no rule for the choice of
the “right” connective, so this choice is always arbitrary to some extend.

Another drawback of fuzzy extensions of rough sets involving fuzzy con-
nectives is that they are based on cardinal properties of membership degrees.
In consequence, the result of these extensions is sensitive to order preserving
transformation of membership degrees. For example, consider the t-conorm of
�Lukasiewicz as a fuzzy connective; it may be used in the definition of both fuzzy
lower approximation (to build fuzzy implication) and fuzzy upper approximation
(as a fuzzy counterpart of a union). The t-conorm of �Lukasiewicz is defined as,

T ∗(α, β) = min(α + β, 1).

Let us consider the following values of arguments:

α = 0.5, β = 0.3, γ = 0.2, δ = 0.1,

and their order preserving transformation:

α′ = 0.4, β′ = 0.3, γ′ = 0.2, δ′ = 0.05.

The values of the t-conorm are in both cases as follows:

T ∗(α, δ) = 0.6, T ∗(β, γ) = 0.5,
T ∗(α′, δ′) = 0.45, T ∗(β′, γ′) = 0.5.

One can see that the order of the results has changed after the order preserving
transformation of the arguments. This means that the �Lukasiewicz t-conorm
takes into account not only the ordinal properties of the membership degrees,
but also their cardinal properties. A natural question arises: is it reasonable to
expect from membership degree a cardinal content instead of ordinal only? Or,
in other words, is it realistic that human is able to say in a meaningful way not
only that

a) “object x belongs to fuzzy set X more likely than object y”,

but even something like

b) “object x belongs to fuzzy set X two times more likely than object y”?

We claim that it is safer to consider information of type a), because information
of type b) is rather meaningless for humans (see Bilgic, Turksen [3]).

The above doubt about the cardinal content of the fuzzy membership degree
shows the need for methodologies which consider the imprecision in perception

A New Proposal for Fuzzy Rough Approximations 321

typical for fuzzy sets but avoid as much as possible meaningless transformation
of information through fuzzy connectives.

The approach we propose for fuzzy extension of rough sets takes into account
the above request. It avoids arbitrary choice of fuzzy connectives and not mean-
ingful operations on membership degrees. Our approach belongs to the minority
of fuzzy extensions of the rough set concept that do not involve fuzzy connectives
and cardinal interpretation of membership degrees. Within this minority, it is
related to the approach of Nakamura and Gao [20] using α-cuts on fuzzy sim-
ilarity relation between objects; this relationship will be explained in the next
section.

We propose a methodology of fuzzy rough approximation that infers the
most cautious conclusion from available imprecise information. In particular, we
observe that any approximation of knowledge about Y using knowledge about
X is based on positive or negative relationships between premise and conclusion,
i.e,

i) “the more x is X , the more it is Y ” (positive relationship),
ii) “the more x is X , the less it is Y ” (negative relationship).

The following simple relationships illustrate i) and ii): “the larger the market
share of a company, the larger its profit” (positive relationship) and “the larger
the debt of a company, the smaller its profit” (negative relationship). These
relationships have been already considered within fuzzy set theory under the
name of gradual rules (Dubois, Prade [6]). In this article, we are extending the
concept of gradual rules by handling ambiguity of information through fuzzy
rough approximations.

Remark that the syntax of gradual rules is based on monotonic relation-
ship that can also be found in dominance-based decision rules induced from
preference-ordered data. From this point of view, the fuzzy rough approxima-
tion proposed in this article is related to the dominance-based rough set approach
(Greco, Matarazzo, S�lowiński [11, 14, 15]).

For the reason of greater generality, one could eventually drop the assump-
tion of the monotonic relationship between premise and conclusion in gradual
rules. For example, the gradual rule “the greater the temperature the better the
weather” is true in some range of temperature only (say, up to 30 degrees C). In
such cases, however, one can split the domain of the premise into sub-intervals,
in which monotonicity still holds, and represent the regularities observed in these
sub-intervals by gradual rules. For example, we can split the range of the tem-
perature into two open subintervals, under 30 degrees C and over 30 degrees
C, obtaining the two gradual rules: “the greater the temperature the better the
weather”, which is valid in the first interval, and “the smaller the temperature
the better the weather”, which is valid in the second interval. Therefore, the con-
cept of monotonicity in gradual rules is intrinsic to the idea of induction whose
aim is to represent regularities according to the simplest law (see, Proposition
6.363 of Wittgenstein [26]: “The process of induction is the process of assuming
the simplest law that can be made to harmonize with our experience”). We claim
that this simplest law is monotonicity.

322 Salvatore Greco, Masahiro Inuiguchi, and Roman S�lowiński

The above Proposition of Wittgenstein [26] is borrowed from the paper by
Aragones, Gilboa, Postelwaite, and Schmeidler [1] on a similar subject. Remark,
however, that these authors consider rules with non-monotonic relationships
between premise and conclusion, and, moreover, their rule induction procedure
is based on a cardinal concept of the credibility of information.

The plan of the article is the following. In the next section, we are defining
a syntax and a semantics of considered gradual rules; we also show how they
represent positive and negative relationships between fuzzy sets corresponding
to premise and conclusion of a decision rule. In Sect. 3, we are introducing fuzzy
rough approximations consistent with the considered gradual rules; the fuzzy
rough approximations create a base for induction of decision rules. In Sect. 4,
we propose a new scheme of inference with a fuzzy rough modus ponens adapted
to the considered decision rules. Sect. 5 is grouping conclusions and remarks on
further research directions.

2 Decision Rules with Positively
or Negatively Related Premise and Conclusion

We aim to obtain gradual decision rules of the following types,

– lower-approximation rule with positive relationship (LP-rule): “if condition
X has credibility C(X) ≥ α, then decision Y has credibility C(Y) ≥ β”;

– lower-approximation rule with negative relationship (LN-rule): “if condition
X has credibility C(X) ≤ α, then decision Y has credibility C(Y) ≥ β”;

– upper-approximation rule with positive relationship (UP-rule): “if condition
X has credibility C(X) ≤ α, then decision Y could have credibility C(Y) ≤
β”;

– upper-approximation rule with negative relationship (UN-rule): “if condition
X has credibility C(X) ≥ α, then decision Y could have credibility C(Y) ≤
β”.

The above decision rules will be represented by triples 〈X,Y, f+〉, 〈X,Y, f−〉,
〈X,Y, g+〉 and 〈X,Y, g−〉, respectively, where X is a given condition, Y is a
given decision and f+ : [0, 1] → [0, 1], f− : [0, 1] → [0, 1], g+ : [0, 1] → [0, 1]
and g− : [0, 1] → [0, 1] are functions relating credibility of X to credibility of Y
in lower- and upper-approximation rules, respectively. More precisely, functions
f+, f−, g+ and g− permit to rewrite the above decision rules as follows,

– LP-rule: “if condition X has credibility C(X) ≥ α, then decision Y has
credibility C(Y) ≥ β = f+(α)”;

– LN-rule: “if condition X has credibility C(X) ≤ α, then decision Y has
credibility C(Y) ≥ β = f−(α)”;

– UP-rule: “if condition X has credibility C(X) ≤ α, then decision Y could
have credibility C(Y) ≤ β = g+(α)”.

– UN-rule: “if condition X has credibility C(X) ≥ α, then decision Y could
have credibility C(Y) ≤ β = g−(α)”.

A New Proposal for Fuzzy Rough Approximations 323

An LP-rule can be regarded as a gradual rule (Dubois, Prade [6]); it can be
interpreted as: “the more object x is X , the more it is Y ”. In this case, the
relationship between credibility of premise and conclusion is positive and certain.
LN-rule can be interpreted in turn as: “the less object x is X , the more it is Y ”,
so the relationship is negative and certain. On the other hand, the UP-rule can
be interpreted as: “the more object x is X , the more it could be Y ”, so the
relationship is positive and possible. Finally, UN-rule can be interpreted as: “the
less object x is X , the more it could be Y ”, so the relationship is negative and
possible.

Example A. In this example we shall illustrate the usefulness of the above
definitions of four types of decision rules.

Let us consider a hypothetical car selection problem in which the maximum
speed is used for evaluation of cars.

We assume that the decision maker evaluates 10 sample cars, listed in Table
1, from the viewpoint of acceptability for his/her purchase. The evaluation score
is given as a degree of acceptability between 0 (strong rejection) and 1 (strong
acceptance), as shown in the bottom row of Table 1.

Table 1. Decision maker’s evaluation of sample cars.

Car A B C D E F G H I J

maximum speed (km/h) 180 200 210 200 190 240 210 220 200 230

Acceptability 0.3 0.4 0.6 0.8 0.2 0.9 0.7 0.9 0.7 1

In the decision maker’s opinion, a car whose maximum speed is more than
230 km/h is definitely speedy and a car whose maximum speed is less than 190
km/h is definitely not speedy. Therefore, we may define fuzzy set speedy car for
the decision maker by the following membership function,

μspeedy car(maximum speed(x))

=

⎧⎪⎨⎪⎩
0 if maximum speed(x) < 190,

maximum speed(x)− 190
40

if 190 ≤ maximum speed(x) ≤ 230,
1 if maximum speed(x) > 230,

where x is a variable corresponding to a car and maximum speed(x) is a function
which maps from the set of cars to maximum speed.

The values of μspeedy car are shown in Table 2. They correspond to credibility
of the statement that car x characterized by some maximum speed is speedy.

From Table 2, we can induce the following functions f+(·) and g+(·),

f+(α) =

⎧⎪⎪⎨⎪⎪⎩
0.2 if 0 ≤ α < 0.25,
0.4 if 0.25 ≤ α < 0.5,
0.6 if 0.5 ≤ α < 0.75,
0.9 if 0.75 ≤ α ≤ 1,

and g+(α) =

⎧⎪⎪⎨⎪⎪⎩
0.3 if α = 0,
0.8 if 0 < α ≤ 0.5,
0.9 if 0.5 < α ≤ 0.75,
1 if 0.75 < α ≤ 1.

324 Salvatore Greco, Masahiro Inuiguchi, and Roman S�lowiński

Table 2. Degrees of membership to X = speedy car, Y = acceptable car.

Car A B C D E F G H I J

μspeedy car 0 0.25 0.5 0.25 0 1 0.5 0.75 0.25 1

μacceptable car 0.3 0.4 0.6 0.8 0.2 0.9 0.7 0.9 0.7 1

Using functions f+(·) and g+(·), we can represent knowledge contained in Table 2
in terms of LP- and UP-decision rules having the following syntax:

– LP-rule: “if x is speedy car with credibility μspeedy car(maximum
speed(x)) ≥ α, then x is acceptable car with credibility f+(α) ≥ β”;

– UP-rule: “if x is speedy car with credibility μspeedy car(maximum
speed(x)) ≤ α, then x is acceptable car with credibility g+(α) ≤ β”.

The particular LP-rules induced from Table 2 are:

– “if μspeedy car(maximum speed(x)) ≥ 0, then μacceptable car(x) ≥ 0.2”,
– “if μspeedy car(maximum speed(x)) ≥ 0.25, then μacceptable car(x) ≥ 0.4”,
– “if μspeedy car(maximum speed(x)) ≥ 0.5, then μacceptable car(x) ≥ 0.6”,
– “if μspeedy car(maximum speed(x)) ≥ 0.75, then μacceptable car(x) ≥ 0.9”.

The particular UP-rules induced from Table 2 are:

– “if μspeedy car(maximum speed(x)) ≤ 0, then μacceptable car(x) ≤ 0.3”,
– “if μspeedy car(maximum speed(x)) ≤ 0.5, then μacceptable car(x) ≤ 0.8”,
– “if μspeedy car(maximum speed(x)) ≤ 0.75, then μacceptable car(x) ≤ 0.9”,
– “if μspeedy car(maximum speed(x)) ≤ 1, then μacceptable car(x) ≤ 1”.

The syntax of LP- and UP-rules is similar to the syntax of “at least” and
“at most” decision rules induced from dominance-based rough approximations
of preference-ordered decision classes (Greco, Matarazzo, S�lowiński [11, 14, 15]).

On the other hand, the syntax of LP- and UP-rules is more general than that
of usual gradual rules introduced in (Dubois, Prade [6]). Indeed, while the usual
gradual rules are statements of the type “if μX(x) ≥ α, then μY (x) ≥ α”, the
LP-rules state “if μX(x) ≥ α, then μY (x) ≥ β”. Therefore, the latter permits to
consider different credibility of premise and conclusion.

The above decision rules can be modeled using Gaines-Rescher implication
as follows:

– an LP-rule “if μX(x) ≥ α, then μY (x) ≥ β” is true with the credibility
I(f+(μX(x)), μY (x)), where

I(a, b) =
{

1 if a ≤ b
0 otherwise is the Gaines-Rescher implication;

– an LN-rule “if μX(x) ≤ α, then μY (x) ≥ β” is true with the credibility
I(f−(μX(x)), μY (x));

– a UP-rule “if μX(x) ≤ α, then μY (x) ≤ β” is true with the credibility
I(μY (x), g+(μY (x)));

A New Proposal for Fuzzy Rough Approximations 325

– a UN-rule “if μX(x) ≥ α, then μY (x) ≤ β” is true with the credibility
I(μY (x), g−(μY (x))).

For example, an LP-rule says that μY (x) ≥ f+(μX(x)) for any pair of objects
x and y. Remark that the implication used for modeling the above four gradual
rules is based on ordinal properties of its arguments which are membership
degrees of premise and conclusion. Moreover, the output of the implication is
crisp, i.e. either 1 (true) or 0 (false).

The usual gradual rules can also be expressed in terms of the Gaines-Rescher
implication, however, as these rules involve a single level of credibility α on the
premise and on the conclusion, the rule “if μX(x) ≥ α, then μY (x) ≥ α” is true
with credibility I(μX(x), μY (x)). When credibility of premise and conclusion is
different, say α and β, then in the implication I(·, ·) we need f+(μX(x)) instead
of μX(x) only.

Finally, let us observe that functions f+(α), f−(α), g+(α) and g−(α) can
be seen as modifiers (Zadeh [28]) that give restrictions on credibility of the
conclusion on the basis of credibility of the premise of a decision rule. Let us
also mention that Bouchon-Meunier and Yao [4] studied fuzzy rules in relation
with general modifiers and that Inuiguchi et al. [17] proposed to use modifiers for
specification of possibility and necessity measures useful for induction of fuzzy
rules.

3 Fuzzy Rough Approximations as a Basis
for Rule Induction

Functions f+(·), f−(·), g+(·) and g−(·) are related to specific definitions of lower
and upper approximations considered within rough set theory (Pawlak [21]). Let
us consider a universe of the discourse U and two fuzzy sets, X and Y , defined
on U by means of membership functions μX : U → [0, 1] and μY : U → [0, 1].
Suppose that we want to approximate knowledge contained in Y using knowledge
about X . Let us also adopt the hypothesis that X is positively related to Y ,
which means “the more x is in X , the more x is in Y ”.

Then, the lower approximation of Y , given the information on X , is a
fuzzy set App+(X,Y), whose membership function for each x ∈ U , denoted
by μ[App+(X,Y), x], is defined as follows,

μ[App+(X,Y), x] = inf
z∈U :μX (z)≥μX (x)

{μY (z)}. (1)

Interpretation of the lower approximation (1) is based on a specific meaning of
the concept of ambiguity. According to knowledge about X , the membership
of object w ∈ U to fuzzy set Y is ambiguous at the level of credibility ρ if
there exists an object z ∈ U such that μX(w) < μX(z), however, μY (w) ≥ ρ
while μY (z) < ρ. Thus, on the basis of knowledge about X and taking into
account positive relationship between X and Y , x belongs to fuzzy set Y without
ambiguity for any credibility level ρ ≤ μ[App+(X,Y), x].

326 Salvatore Greco, Masahiro Inuiguchi, and Roman S�lowiński

Remark that the above meaning of ambiguity is concordant with the domi-
nance principle introduced to rough set theory in order to deal with preference-
ordered data (Greco, Matarazzo, S�lowiński [11, 14, 15]). In this case, the domi-
nance principle says that, having an object with some membership degrees to
X and Y , its modification consisting in an increase of its membership to X
should not decrease its membership to Y ; otherwise, the original object and the
modified object are ambiguous.

Analogously, the upper approximation of Y given the information on X is a
fuzzy set App

+
(X,Y), whose membership function for each x ∈ X , denoted by

μ[App
+
(X,Y), x], is defined as follows,

μ[App
+
(X,Y), x] = sup

z∈U :μX (z)≤μX (x)

{μY (z)}. (2)

Interpretation of upper approximation (2) is based again on the above meaning
of ambiguity. On the basis of knowledge about X and taking into account the
positive relationship between X and Y , x belongs to fuzzy set Y with some
possible ambiguity at credibility level ρ ≤ ω, where ω is the greatest membership
degree of z ∈ U to Y , such that ω is exactly equal to μ[App

+
(X,Y), x]. In other

words, even if μY (x) would be smaller than ω, then due to the fact that there
exists z ∈ U with μX(z) ≤ μX(x), but μY (z) = ω > μY (x) (i.e., z and x are
ambiguous), another object w, such that μX(w) = μX(x), could belong to Y
with credibility ω.

Example A (cont.). According to Defs. (1) and (2), the lower and the upper
approximations of the set of cars described in Table 1 are presented in Table 3.

Table 3. Rough approximations of the set of cars

(X = speedy car, Y = acceptable car)

Car A B C D E F G H I J

μspeedy car 0 0.25 0.5 0.25 0 1 0.5 0.75 0.25 1

μacceptable car 0.3 0.4 0.6 0.8 0.2 0.9 0.7 0.9 0.7 1

μ[App+(X, Y), x] 0.2 0.4 0.6 0.4 0.2 0.9 0.6 0.9 0.4 0.9

μ[App
+
(X, Y), x] 0.8 0.8 0.8 0.8 0.3 1 0.8 0.9 0.8 1

The concept of ambiguity and its relation with rough approximations can be
illustrated on cars from Table 3. Let us consider car G. Its acceptability is 0.7.
However, there is another car, C, having not smaller membership to speedy car
than G, but a smaller membership degree to acceptable car than G. There-
fore, acceptability 0.7 for car G is ambiguous. The highest membership degree
to acceptable car for which there is no ambiguity is equal to 0.6. Therefore,
this value is the degree of membership of car G to the lower approximation of
the set acceptable car. Considering again car G, let us remark that there ex-
ists another car, D, having not greater membership degree to speedy car than

A New Proposal for Fuzzy Rough Approximations 327

G, but a greater membership degree to acceptable car than G. Therefore, G is
acceptable car with the membership 0.8 which is possible for the reason of am-
biguity between G and D. This is also the highest degree of membership of car
G to acceptable car taking into account the ambiguity; in consequence, it is the
membership degree of car G to the upper approximation of acceptable car.

These remarks on the concept of rough approximation can be summarized
by saying that for each car in Table 3, degrees of membership to the lower and
to the upper approximation of acceptable car, respectively, give for each car
the maximum degree of membership to acceptable car without ambiguity and
the maximum degree of membership to acceptable car admitting some possible
ambiguity.

The above definitions of fuzzy rough approximations are similar to definitions
of fuzzy lower and upper approximations in terms of α-cuts proposed first by
Nakamura and Gao [20]. They considered a fuzzy similarity relation on U and
α-cuts on this relation, and defined a membership degree to lower or upper
approximation for each level α and for each object x ∈ U , using the inf and
sup operators, respectively, on objects y ∈ U being similar to x in at least
degree α. Our use of sup and inf in the definitions (1) and (2) is very similar to
theirs, however, we do not consider any fuzzy similarity relation and the obtained
membership degrees to lower or upper approximation depend only on object
x ∈ U and not on the specific level of the α-cut. In this sense, our definitions are
non-parametric.

Let us comment on Defs.(1) and (2). Remark that, according to (1), we may
have situation where μX(x) = 0 and, nevertheless, μ[App+(X,Y), x] > 0; in
the above example, this corresponds to situation of car E. Analogously, ac-
cording to (2), we may have situation where μX(x) = 1 and, nevertheless,
μ[App

+
(X,Y), x] < 1. These situations are justified if one considers the knowl-

edge about X as a piece of knowledge about Y ; thus even if an object x has a zero
membership in X , it might have a non-zero membership in Y ; analogously, even
if object x belongs to X with degree of membership equal to one, it might have a
lower membership in Y . The above interpretation is coherent with the fact that,
in our case, membership functions μ[App+(X,Y), x] and μ[App

+
(X,Y), x] are

calculated from data. In other words, we adopt the hypothesis of “closed world”
for these calculations. If we discard this interpretation, then for μX(x) = 0,
μ[App+(X,Y), x] = 0, and for μX(x) = 1, μ[App

+
(X,Y), x] = 1, i.e., Defs. (1)

and (2) take the form:

μ[App+(X,Y), x] =

{
inf

z∈U :μX (z)≥μX (x)
{μY (z)} if μX(x) > 0,

0 otherwise,
(1’)

μ[App
+
(X,Y), x] =

{
sup

z∈U :μX (z)≤μX (x)

{μY (z)} if μX(x) < 1,

1 otherwise,
(2’)

Remark, however, that for infinitesimal increase of μX(x) = 0, or for infinitesimal
decrease of μX(x) = 1, Defs. (1’) and (2’) boil down to (1) and (2), respectively.

328 Salvatore Greco, Masahiro Inuiguchi, and Roman S�lowiński

Table 4. 2nd decision maker’s evaluation of sample cars

Car A B C D E F G H I J

Mileage (km/l) 12 12 13 14 15 9 11 8 14 13

Acceptability 0.6 0.5 0.6 0.8 0.9 0.3 0.5 0.3 0.8 0.6

Table 5. Membership degrees of lower and upper approximations

App+(X, Y) and App
+
(X, Y)

Car A B C D E F G H I J

μ[App+(X, Y), x] 0.5 0.5 0.6 0.8 0.9 0.3 0.5 0.3 0.8 0.6

μ[App
+
(X, Y), x] 0.6 0.6 0.6 0.8 0.9 0.3 0.5 0.3 0.8 0.6

Example B. Let us consider another data set concerning the car selection
problem, shown in Table 4.

We may define a fuzzy set X of gas saving car by the following membership
function,

μgas saving car(x) =

⎧⎪⎨⎪⎩
0 if mileage(x) < 9,

mileage(x)− 9
6

if 9 ≤ mileage(x) ≤ 15,

1 if mileage(x) > 15.

It has the following interpretation: “a car is definitely gas saving car if its
mileage is greater than 15”, and “a car is definitely not gas saving car if its
mileage is smaller than 9”. We may define a fuzzy set Y of acceptable car using
the degrees of acceptance from Table 4 as its membership grades.

Then, the lower and upper approximations App+(X,Y) and App
+
(X,Y)

have the membership degrees shown in Table 5.
On the contrary, we may define a fuzzy set Z of gas guzzler car by a

membership function μgas guzzler car(x) = 1 − μgas saving car(x). Clearly, set Z
is a complement of set X . In this case, the lower and upper approximations
App+(Z, Y) and App

+
(Z, Y) have the following constant membership functions:

μ[App+(Z, Y), x] = 0.3,
μ[App

+
(Z, Y), x] = 0.9.

Those approximations are not very useful, however. �
From Example B, we recognize that the definitions of App+(X,Y) and

App
+
(X,Y) are useful under the assumption that X is positively related with

Y , i.e., when we suppose that “the more μY (x), the more μX(x)” or “the less
μY (x), the less μX(x)”.

When X is negatively related with Y , then “the more μY (x), the less μX(x)”
or “the less μY (x), the more μX(x)”. In example B, this corresponds to rela-
tionship between gas guzzler car and acceptable car. We were able to see that
in this case the definitions of App+(X,Y) and App

+
(X,Y) are not useful, thus

we need another type of approximations.

A New Proposal for Fuzzy Rough Approximations 329

Table 6. Membership degrees of lower and upper approximations

App−(Z, Y) and App
−

(Z, Y)

Car A B C D E F G H I J

μ[App−(Z, Y), x] 0.5 0.5 0.6 0.8 0.9 0.3 0.5 0.3 0.8 0.6

μ[App
−

(Z, Y), x] 0.6 0.6 0.6 0.8 0.9 0.3 0.5 0.3 0.8 0.6

The following definitions of the lower and upper approximations are appro-
priate when X is negatively related with Y ,

μ[App−(X,Y), x] = inf
z∈U :μX (z)≤μX(x)

{μY (z)}, (3)

μ[App
−

(X,Y), x] = sup
z∈U :μX (z)≥μX(x)

{μY (z)}. (4)

Defs. (3) and (4) have similar interpretation in terms of ambiguity as Defs. (1)
and (2), and they are also concordant with the dominance principle. Moreover,
analogous remarks leading to Defs. (1′) and (2′) can be made for Defs. (3) and (4).

Of course, approximations (3) and (4) are not useful when X is positively re-
lated with Y . When X is not dependent on Y , it is not worthwhile approximating
Y by X .

Example B (cont.). For X = gas saving car and Y = acceptable car, the
lower and upper approximationsApp−(X,Y) and App

−
(X,Y) have the following

constant membership functions,

μ[App−(X,Y), x] = 0.3,
μ[App

−
(X,Y), x] = 0.9.

Those approximations are not very useful. On the other hand, if Z =
gas guzzler car, then the lower and upper approximations App−(Z, Y) and

App
−

(Z, Y) have the membership degrees shown in Table 6.
Comparing Table 6 with Table 5, we find that App−(Z, Y) = App+(X,Y)

and App
−

(Z, Y) = App
+

(X,Y). This equality will be proved generally in the
second part of the following theorem.

Theorem 1. The following properties are satisfied,

1) for each fuzzy set X and Y defined on U , and for each x ∈ U ,

1.1) μ[App+(X,Y), x] ≤ μY (x) ≤ μ[App
+
(X,Y), x],

1.2) μ[App−(X,Y), x] ≤ μY (x) ≤ μ[App
−

(X,Y), x],

2) for any negation N(·), being a function N : [0, 1] → [0, 1] decreasing and
such that N(1) = 0, N(0) = 1, for each fuzzy set X and Y defined on U ,
and for each x ∈ U ,

330 Salvatore Greco, Masahiro Inuiguchi, and Roman S�lowiński

2.1) μ[App+(X,Y c), x] = N(μ[App
−

(X,Y), x])
= N(μ[App

+
(Xc, Y), x]) = μ[App−(Xc, Y c), x],

2.2) μ[App
+
(X,Y c), x] = N(μ[App−(X,Y), x])

= N(μ[App+(Xc, Y), x]) = μ[App
−

(Xc, Y c), x],

2.1) μ[App−(X,Y c), x] = N(μ[App
+
(X,Y), x])

= N(μ[App
−

(Xc, Y), x]) = μ[App+(Xc, Y c), x],

2.2) μ[App
−

(X,Y c), x] = N(μ[App+(X,Y), x])
= N(μ[App−(Xc, Y), x]) = μ[App

+
(Xc, Y c), x],

where for a given fuzzy set W , the fuzzy set W c is its complement defined
by μW c(x) = N(μW (x)).

Proof. Since, obviously, μX(x) ≥ μX(x), we have

(i) μ[App+(X,Y), x] = inf
z∈U :μX (z)≥μX (x)

{μY (z)} ≤ μY (x).

Analogously, since μX(x) ≤ μX(x), we have

(ii) μY (x) ≤ sup
z∈U :μX (z)≤μX (x)

{μY (z)} = μ[App
+
(X,Y), x].

From (i) and (ii) we obtain 1.1). Property 1.2) can be proved similarly. Thus,
we proved 1).

According to the above definition of rough approximation, we have

(iii) μ[App+(X,Y c), x] = inf
z∈U :μX (z)≥μX (x)

{N(μY (z))}

= N

(
sup

z∈U :μX (z)≥μX (x)

{μY (z)}
)

= N

(
sup

z∈U :N(μX(z))≤N(μX (x))

{μY (z)}
)

= inf
z∈U :N(μX (z))≤N(μX(x))

{N(μY (z))}

and

(iv) N

(
sup

z∈U :μX (z)≥μX(x)

{μY (z)}
)

= N(μ[App
−

(X,Y), x]),

(v) N

(
sup

z∈U :N(μX(z))≤N(μX (x))

{μY (z)}
)

= N(μ[App
+
(Xc, Y), x]),

(iv) inf
z∈U :N(μX (z))≤N(μX (x))

{N(μY (z))} = μ[App−(Xc, Y c), x].

From (iii), (iv), (v) and (vi) we obtain 2.1). Properties 2.2)-2.4) can be proved
analogously. �

A New Proposal for Fuzzy Rough Approximations 331

Results 1) and 2) of Theorem 1 can be read as fuzzy counterparts of the fol-
lowing results well-known within the classical rough set theory: 1) says that fuzzy
set Y includes its lower approximation and is included in its upper approxima-
tion; 2) represents a complementarity property – it says that the lower (upper)
approximation of fuzzy set Y c being positively related to X is the complement
of the upper (lower) approximation of fuzzy set Y being negatively related with
X (see first line of (2.1) and (2.2)); moreover, the lower (upper) approximation
of fuzzy set Y c being negatively related with X is the complement of the upper
(lower) approximation of fuzzy set Y positively related with X (see first line
of (2.3) and (2.4)). Result 2) of Theorem 1 states also other complementarity
properties related to the complement of X (see second line of (2.1)-(2.4)); this
complementarity property has not been considered within the classical rough set
theory.

The lower and upper approximations defined above can serve to induce lower
and upper credibility decision rules (called also certain and possible credibility
decision rules) in the following way. Let us remark that inferring these decision
rules is equivalent to finding functions f+(·), f−(·), g+(·) and g−(·).

These functions are defined as follows: for each α ∈ [0, 1],

f+(α) =

{
sup

μX (x)≤α

{μ[App+(X,Y), x]} if ∃x ∈ U : μX(x) ≤ α,

0 otherwise,

f−(α) =

{
sup

μX (x)≥α

{μ[App−(X,Y), x]} if ∃x ∈ U : μX(x) ≥ α,

0 otherwise,

g+(α) =

{
inf

μX (x)≥α
{μ[App

+
(X,Y), x]} if ∃x ∈ U : μX(x) ≥ α,

1 otherwise,

and

g−(α) =

{
inf

μX (x)≤α
{μ[App

−
(X,Y), x]} if ∃x ∈ U : μX(x) ≤ α,

1 otherwise.

Example C. To give a more intuitive explanation of the fuzzy rough approx-
imation proposed in this paper, let us consider the following example in which
a continuous relationship between fuzzy set X and fuzzy set Y is assumed. The
relationship between the membership degrees of fuzzy sets X and Y is described
by function h : [0, 1] → [0, 1] such that μY (x) = h[μX(x)]. Function h(·) is
presented in Fig. 1.

Let us approximate fuzzy set Y using the knowledge about fuzzy set X . This
approximation permits to define LP- and UP-rules. The result is presented in
Fig. 2. Let us remark that in all its domain, function h(·) is contained between
functions f+(·) and g+(·). This is concordant with point (1.1) of Theorem 1
stating that the membership degree of fuzzy set Y (corresponding to a value of
function h(·)) is always greater than or equal to the membership degree of its

332 Salvatore Greco, Masahiro Inuiguchi, and Roman S�lowiński

Fig. 1. Function h(·) representing the relationship between fuzzy sets X and Y .

Fig. 2. Functions f+(·) and g+(·) representing, respectively, lower and upper approxi-
mations of fuzzy set Y subject to knowledge about fuzzy set X.

lower approximation (represented by a value of function f+(·)), and it is smaller
than or equal to the membership degree of its upper approximation (represented
by a value of function g+(·)).

Fig. 3 presents relationship between the membership degrees of two other
fuzzy sets W and Z described by function k : [0, 1] → [0, 1] such that μZ(x) =
k[μW (x)].

Let us approximate fuzzy set Z using the knowledge about fuzzy set W .
This approximation permits to define LN- and UN-rules. The result is presented
in Fig. 4. Also in this case, function k(·) is contained between functions f−(·)
and g−(·) in all its domain. This is concordant with point (1.2) of Theorem 1

A New Proposal for Fuzzy Rough Approximations 333

Fig. 3. Function k(·) representing the relationship between fuzzy sets W and Z.

Fig. 4. Functions f−(·) and g−(·) representing, respectively, lower and upper approx-
imations of fuzzy set Z subject to knowledge about fuzzy set W .

stating that the membership degree of fuzzy set Y (represented by a value of
function k(·)) is always greater than or equal to the membership degree of its
lower approximation (represented by a value of function f−(·)), and it is smaller
than or equal to the membership degree of its upper approximation (represented
by a value of function g−(·)).

4 Fuzzy Rough Modus Ponens

While the previous sections concentrated on the issues of representation, rough
approximation and decision rule induction, this section is devoted to inference
with a generalized modus ponens (MP).

334 Salvatore Greco, Masahiro Inuiguchi, and Roman S�lowiński

Classically, MP has the following form:

if X → Y is true
and X is true
then Y is true

MP has the following interpretation: assuming a consequence relation X → Y
(decision rule) and a fact X (premise), we obtain another fact Y (conclusion).
If we replace the classical decision rule above by our four kinds of decision rules,
then we obtain the following four generalized fuzzy-rough MP:

if μX(x) ≥ α→ μY (x) ≥ f+(α)
and μX(x) = α′

then μY (x) ≥ f+(α′)

⎫⎬⎭ (LP-MP)

if μX(x) ≤ α→ μY (x) ≥ f−(α)
and μX(x) = α′

then μY (x) ≥ f−(α′)

⎫⎬⎭ (LN-MP)

if μX(x) ≤ α→ μY (x) ≤ g+(α)
and μX(x) = α′

then μY (x) ≤ g+(α′)

⎫⎬⎭ (UP-MP)

if μX(x) ≥ α→ μY (x) ≤ g−(α)
and μX(x) = α′

then μY (x) ≤ g−(α′)

⎫⎬⎭ (UN-MP)

The above generalized fuzzy-rough MPs suppose that the premise is a crisp
fact, thus the conclusion is also a crisp fact. Precisely, the crisp facts mean
punctual membership degrees of x in X and x in Y . Remark that the generalized
fuzzy-rough MPs allow the inference with a fuzzy fact as premise, leading to a
fuzzy fact as conclusion. In this case, the fuzzy facts mean that the membership
degrees of x in X and x in Y are fuzzy numbers. These MPs will be called
generalized fuzzy2-rough MPs.

To explain this issue in more detail, let μX(x) = α̃ be a fuzzy premise in all
four generalized MPs. Let also start the explanation by fuzzy2-rough LP-MP. If
we know crisp μX(x) = α, we obtain crisp conclusion μY (x) ≥ f+(α) = β from
the fuzzy-rough LP-MP. Having the information μX(x) = α̃, a membership
grade μα̃(α) is assigned to the premise μX(x) = α. Let β̃ be a fuzzy num-
ber corresponding to the credibility of the conclusion μY (x) ≥ β. For given
μα̃(α), we are considering the conclusion μY (x) ≥ f+(α); its credibility μβ̃(β),
where β = f+(α), obviously depends on μα̃(α). This dependency should ob-
serve the following principle of coherence: considering two possible conclusions,
“μY (x) ≥ β1” and “μY (x) ≥ β2”, if β1 ≤ β2, then μβ̃(β1) ≥ μβ̃(β2); for exam-
ple, if “μY (x) ≥ β1” means μacceptable car(x) ≥ 0.5 and “μY (x) ≥ β2” means
μacceptable car(x) ≥ 0.7, then, according to LP-MP, we cannot assign to the
first conclusion a credibility smaller than that of the second conclusion, because
otherwise, it would mean that we give a smaller credit to the less demanding

A New Proposal for Fuzzy Rough Approximations 335

conclusion. Indeed, it would be quite paradoxical to conclude that we have cred-
ibility, say 1, for μacceptable car(x) ≥ 0.7 and only 0.6 for μacceptable car(x) ≥ 0.5:
this would mean that it is sure for us that μacceptable car(x) is greater than or
equal to 0.7, but we have some doubts if μacceptable car(x) is greater than of equal
to 0.5.

Varying α ∈ [0, 1], we get a family of conclusions μY (x) ≥ β = f+(α).
According to the above principle of coherence, the credibility β̃ of each conclusion
is a fuzzy number whose membership function μβ̃(·) is defined as follows,

μβ̃(β) =
{

sup{μα̃(α) : f+(α) ≥ β} if ∃α such that f+(α) ≥ β,
0 otherwise. (i)

In all other cases, a similar reasoning gives the following membership function
μβ̃(·),

– for fuzzy2-rough LN-MP:

μβ̃(β) =
{

sup{μα̃(α) : f−(α) ≥ β} if ∃α such that f−(α) ≥ β,
0 otherwise, (ii)

– for fuzzy2-rough UP-MP:

μβ̃(β) =
{

sup{μα̃(α) : g+(α) ≤ β} if ∃α such that g+(α) ≤ β,
0 otherwise, (iii)

– for fuzzy2-rough UN-MP:

μβ̃(β) =
{

sup{μα̃(α) : g−(α) ≤ β} if ∃α such that g−(α) ≤ β,
0 otherwise. (iv)

It is quite natural to assume that the credibility of the premise in a fuzzy2-
rough MP is represented by an LR-fuzzy number, i.e. convex, normal, continuous
fuzzy subset of the real interval [0, 1]. An LR-fuzzy number α̃ is represented
by the 6-tuple (αL, αU , ΔL, ΔU , L,R), with αL ≤ αU , ΔL ≥ 0, ΔU ≥ 0, and

Fig. 5. LR-fuzzy number.

336 Salvatore Greco, Masahiro Inuiguchi, and Roman S�lowiński

L, R being non-increasing functions in [0, 1] for which L(0) = R(0) = 1 and
L(1) = R(1) = 0, such that the membership function of α̃ is:

μα̃(α) =

⎧⎪⎪⎨⎪⎪⎩
L((αL − α)/ΔL) if α < αL and ΔL > 0,

1 if αL ≤ α ≤ αU ,
R((α− αU)/ΔU) if α > αU and ΔU > 0,

0 otherwise.

The membership function μα̃(·) can be interpreted as follows: [αL, αU] is an
interval of the “most possible” values and ΔL and ΔU are non-negative left and
right “spreads” of α̃ (see Fig. 5).

Taking into account (i) to (iv), when the premise is an LR-fuzzy number, the
conclusion in each of generalized fuzzy2-rough MPs is as follows:

– for LP-MP,

μβ̃(β) =

⎧⎨⎩
1 if f+(αU) ≥ β,

R((f+∗
(β) − αU)/ΔU) if f+(αU) < β ≤ f+(αU + ΔU) and ΔU > 0,

0 otherwise,

where, if ΔU > 0, then, for each β ∈]f+(αU), f+(αU + ΔU)],

f+∗(β) = inf{α ∈ [0, 1] : f+(α) ≥ β},

– for LN-MP,

μβ̃(β) =

⎧⎨⎩
1 if f−(αL) ≥ β,

L((αL − f−∗
(β))/ΔL) if f−(αL) < β ≤ f−(αL − ΔL) and ΔL > 0,

0 otherwise,

where, if ΔL > 0, then, for each β ∈]f−(αL), f−(αL −ΔL)],

f−∗(β) = sup{α ∈ [0, 1] : f−(α) ≥ β},

– for UP-MP,

μβ̃(β) =

⎧⎨⎩
1 if g+(αL) ≤ β,

L((αL − g+∗
(β))/ΔL) if g+(αL − ΔL) ≤ β < g+(αL) and ΔL > 0,

0 otherwise,

where, if ΔL > 0, then, for each β ∈ [g+(αL −ΔL), g+(αL)[,

g+∗(β) = sup{α ∈ [0, 1] : g+(α) ≤ β},

– for UN-MP,

μβ̃(β) =

⎧⎨⎩
1 if g−(αU) ≤ β,

R((g−∗
(β) − αU)/ΔU) if g−(αU + ΔU) ≤ β < g−(αU) and ΔU > 0,

0 otherwise,

where, if ΔU > 0, then, for each β ∈ [g−(αU + ΔU), g−(αU)[,

g−
∗(β) = inf{α ∈ [0, 1] : g−(α) ≤ β}.

A New Proposal for Fuzzy Rough Approximations 337

Fig. 6. Fuzzy2-rough LP-MP.

Fig. 7. Fuzzy2-rough UP-MP.

Figs. 6 and 7 illustrate the generalized fuzzy2-rough LP-MP and UP-MP. Gen-
eralized fuzzy2-rough LN-MP and UN-MP have analogous interpretation.

Let us remark that applying the above four types of generalized fuzzy2-
rough MPs for each value β we get a membership degree for the hypothesis that
the credibility of the conclusion (that is μY (x)) is greater than or equal to β,
denoted by μ+

β̃
(β) (case of LP-MP or LN-MP), and a membership degree for the

hypothesis that the credibility of the conclusion (that is μY (x)) is smaller than
or equal to β, denoted by μ−

β̃
(β) (case of UP-MP or UN-MP). On the basis of

the membership degrees μ+

β̃
(β) and μ−

β̃
(β), for each value of β, we can have the

following four situations:

338 Salvatore Greco, Masahiro Inuiguchi, and Roman S�lowiński

a) there is some possibility that credibility of the conclusion is greater than β
and there is no possibility that the credibility of the conclusion is smaller
than β, which means: μ+

β̃
(β) > 0 and μ−

β̃
(β) = 0,

b) there is no possibility that credibility of the conclusion is greater than β and
there is some possibility that the credibility of the conclusion is smaller than
β, which means: μ+

β̃
(β) = 0 and μ−

β̃
(β) > 0,

c) there is no possibility that credibility of the conclusion is greater than β and
there is no possibility that the credibility of the conclusion is smaller than
β, which means: μ+

β̃
(β) = 0 and μ−

β̃
(β) = 0,

d) there is some possibility that credibility of the conclusion is greater than β
and there is some possibility that the credibility of the conclusion is smaller
than β, which means: μ+

β̃
(β) > 0 and μ−

β̃
(β) > 0.

While situations a) and b) have a clear result, situations c) and d) have not.
In situation c) we have not enough information neither to say that the credibility
of the conclusion is greater than or equal to β nor to say that the credibility of
the conclusion is smaller than or equal to β. In situation d) we have contradictory
information that the credibility of the conclusion is simultaneously greater than
or equal to β and smaller than or equal to β. These four situations correspond
to four truth qualifications considered within the four-valued logic (Belnap [2])
and its fuzzy extensions proposed by Perny and Tsoukiàs [22], and by Fortemps
and S�lowiński [9] (for other applications of the four-valued logic within rough
set theory see Greco et al. [16]). Indeed, μ+

β̃
(β) corresponds to an argument in

favor of the proposition “credibility of conclusion is at least β”, while μ−
β̃

(β)
corresponds to an argument against the same proposition. Therefore,

– in situation a) the proposition is true (argument in favor and no argument
against),

– in situation b) the proposition is false (no argument in favor and argument
against),

– in situation c) the proposition is unknown (no argument in favor and no
argument against – see Fig. 8),

– in situation d) the proposition is contradictory (argument in favor and argu-
ment against – see Fig. 9).

5 Conclusions and Further Research Directions

In this paper we presented a new fuzzy rough set approach. The main advantage
of this new approach is that it infers the most cautious conclusions from avail-
able imprecise information, without using neither fuzzy connectives nor specific
parameters, whose choice are always subjective to a certain extent. Another ad-
vantage of our approach is that it uses only the ordinal properties of membership
degrees. We noticed that our approach is related to:

A New Proposal for Fuzzy Rough Approximations 339

Fig. 8. Fuzzy2-rough LP-MP and UP-MP with unknown proposition.

Fig. 9. Fuzzy2-rough LP-MP and UP-MP with contradictory proposition.

– gradual rules, with respect to syntax and semantics of considered decision
rules,

– fuzzy rough set approach based on α-cuts, with respect to the specific use
of sup and inf in the definition of lower and upper approximations,

– dominance-based rough set approach, with respect to the idea of monotonic
relationship between credibility of premise and conclusion.

We think that this approach gives a new prospect for applications of fuzzy rough
approximations in real-world decision problems. More precisely, we envisage the
following four extensions of this methodology:

340 Salvatore Greco, Masahiro Inuiguchi, and Roman S�lowiński

1) Multi-premise generalization: in this paper we dealt with relationships be-
tween membership degrees of fuzzy sets X and Y , however, in real-world
problems we are interested in relationships between membership degrees to
fuzzy sets Xi, i = 1, . . . , n, and Yj , j = 1, . . . ,m, which leads to consider-
ation of gradual decision rules of the type: “the larger the market share of
a company and the smaller its debt, the larger its profit and the better its
financial rating”;

2) Variable-precision rough approximation: in this paper we propose to calcu-
late the degree of membership to the fuzzy lower approximation on the basis
of non-ambiguous objects only, however, it might be useful in practical ap-
plications to allow a limited number of ambiguous objects as well; in this
way we may get less specific rules of the type: “the larger the market share of
a company, the larger its profit, in l% of the cases”, where l is a parameter
controlling the proportion of ambiguous objects in the definition of the lower
approximation.

3) Further generalization of modus ponens: in this paper, we introduced gen-
eralized fuzzy-rough modus ponens, so that we can infer a conclusion from
a gradual rule and a crisp or fuzzy fact. We may further extend the fuzzy-
rough modus ponens to infer a conclusion from multiple gradual rules, so
that we obtain a method for approximate reasoning.

4) Imprecise input data: the evaluation table from which the rough approx-
imations and gradual decision rules are induced may include imprecise or
missing values; such values can be represented by fuzzy numbers.

Acknowledgements

The research of the first author has been supported by the Italian Ministry of Ed-
ucation, University and Scientific Research (MIUR). The third author wishes to
acknowledge financial support from the State Committee for Scientific Research
and from the Foundation for Polish Science, subsidy no. 11/2001.

References

1. Aragones, E., Gilboa, I., Postlewaite, A., Schmeidler, D., From cases to rules:
induction and regression, 2002, manuscript

2. Belnap, N., A useful four-valued logic, in: Modern Uses of Multiple Valued Logics,
D. Reidel, Dordrecht, 1977, pp.8–37

3. Bilgic, T., Turksen, I. B., Measurement-theoretic justification of connectives in
fuzzy set theory, Fuzzy Sets and Systems, 76(3) (1995), 289–308

4. Bouchon-Mounier, B., Yao, J., Linguistic modifiers and gradual membership to a
category, International Journal on Intelligent Systems, 7 (1992) 26–36

5. Cattaneo, G., Fuzzy extension of rough sets theory, in: L. Polkowski, A. Skowron
(eds.), Rough Sets and Current Trends in Computing, LNAI 1424, Springer-Verlag,
Berlin 1998, pp.275–282

6. Dubois, D., Prade, H., Gradual inference rules in approximate reasoning, Informa-
tion Sciences, 61 (1992) 103–122

A New Proposal for Fuzzy Rough Approximations 341

7. Dubois, D. and Prade, H., Putting rough sets and fuzzy sets together, in:
R. S�lowiński (ed.), Intelligent Decision Support: Handbook of Applications and Ad-
vances of the Rough Sets Theory, Kluwer, Dordrecht, 1992, pp.203–232

8. Dubois, D., Prade, H., Yager, R., A Manifesto: Fuzzy Information Engineering, in:
Dubois, D., Prade, H., Yager, R. (eds.), Fuzzy Information Engineering, J.Wiley,
New York, 1997, pp.1–8

9. Fortemps, Ph., S�lowiński, R., A graded quadrivalent logic for ordinal preference
modelling: Loyola-like approach, Fuzzy Optimization and Decision Making, 1(1)
(2002) 93–111

10. Greco, S., Inuiguchi, M., S�lowiński, R., Dominance-based rough set approach us-
ing possibility and necessity measures, in: J.J. Alpigini, J.F. Peters, A. Skowron,
N. Zhong (eds.), Rough Sets and Current Trends in Computing, LNAI 2475,
Springer-Verlag, Berlin, 2002, pp.85–92

11. Greco, S., Matarazzo, B., S�lowiński R., The use of rough sets and fuzzy sets in
MCDM. Chapter 14 in: T. Gal, T. Stewart, T. Hanne (eds.), Advances in Multiple
Criteria Decision Making, Kluwer Academic Publishers, Boston, 1999, pp.14.1–
14.59

12. Greco, S., Matarazzo, B., S�lowiński, R., Rough set processing of vague information
using fuzzy similarity relations, in: C.S. Calude and G. Paun (eds.), Finite Versus
Infinite – Contributions to an Eternal Dilemma, Springer-Verlag, London, 2000a,
pp.149–173

13. Greco, S., Matarazzo, B., S�lowiński, R., Fuzzy extension of the rough set approach
to multicriteria and multiattribute sorting, in: J. Fodor, B. De Baets and P. Perny
(eds.), Preferences and Decisions under Incomplete Knowledge, Physica-Verlag,
Heidelberg, 2000b, pp.131–151

14. Greco, S., Matarazzo, B., S�lowiński, R., Rough sets theory for multicriteria decision
analysis. European J. of Operational Research 129(1) (2001) 1–47

15. Greco, S., Matarazzo, B., S�lowiński R., Multicriteria classification, in: W.Kloesgen
and J.Żytkow (eds.), Handbook of Data Mining and Knowledge Discovery, Oxford
University Press, New York, 2002, chapter 16.1.9, pp.318–328

16. Greco, S., Matarazzo, B., S�lowiński, R., Tsoukias, A., Exploitation of a rough
approximation of the outranking relation in multicriteria choice and ranking, in:
T.J. Stewart and R.C. van den Honert (eds.), Trends in Multicriteria Decision
Making. LNEMS 465, Springer-Verlag, Berlin, 1998, pp.45–60

17. Inuiguchi, M., Greco, S., S�lowiński, R., Tanino, T., Possibility and necessity mea-
sure specification using modifiers for decision making under fuzziness, Fuzzy Sets
and Systems 137(1) (2003) 151–175

18. Inuiguchi, M., Tanino, T., New Fuzzy Rough Sets Based on Certainty Qualifica-
tion, in S.K. Pal, L. Polkowski and A. Skowron (eds.): Rough-Neural Computing:
Techniques for Computing with Words, Springer-Verlag, Berlin, 2002, pp.277–296

19. Nakamura, A., Applications of fuzzy-rough classification to logics, in: R. S�lowiński
(ed.), Intelligent Decision Support: Handbook of Applications and Advances of the
Sets Theory, Kluwer, Dordrecht, 1992, pp.233–250

20. Nakamura, A., Gao, J.M., A logic for fuzzy data analysis, Fuzzy Sets and Systems,
39 (1991) 127–132

21. Pawlak, Z., Rough Sets, Kluwer, Dordrecht, 1991
22. Perny, P., Tsoukias, A., On the continuous extension of a four valued logic for

preference modeling, in: Proc. IPMU 1998, pp.302–309
23. Polkowski, L., Rough Sets: Mathematical Foundations, Physica-Verlag, Heidelberg,

2002

342 Salvatore Greco, Masahiro Inuiguchi, and Roman S�lowiński

24. S�lowiński, R., Rough set processing of fuzzy information, in: T.Y. Lin, A. Wild-
berger (eds.), Soft Computing: Rough Sets, Fuzzy Logic, Neural Networks, Uncer-
tainty Management, Knowledge Discovery. Simulation Councils, Inc., San Diego,
CA, 1995, 142–145

25. S�lowiński, R., Stefanowski, J., Rough set reasoning about uncertain data, Funda-
menta Informaticae 27 (1996) 229–243

26. Wittgenstein, L., Tractatus Logico-Philosophicus. Routledge and Kegan Paul, Lon-
don, 1922; fifth impression 1951

27. Yao, Y.Y., Combination of rough and fuzzy sets based on alpha-level sets, in:
T.Y. Lin and N. Cercone (eds.), Rough Sets and Data Mining: Analysis for Impre-
cise Data, Kluwer, Boston, 1997, pp.301–321

28. Zadeh, L.A., A Fuzzy Set-Theoretic Interpretation of Linguistic Hedges, J. Cyber-
netics, 2 (1972) 4–34

Emergent Rough Set Data Analysis

Yasser Hassan1 and Eiichiro Tazaki1

Department of Control and System Engineering, Toin University of Yokohama,
1614 Kurogane-cho, Aoba-ku, Yokohama 225-8502, Japan

{y fouad,tazaki}@intlab.toin.ac.jp

Abstract. Many systems in nature produce complicated behaviors,
which emerge from the local interactions of relatively simple individ-
ual components that live in some spatially extended world. Notably, this
type of emergent behavior formation often occurs without the existence
of a central control. The rough set concept is a new mathematical ap-
proach to imprecision, vagueness and uncertainty. This paper introduces
the emergent computational paradigm and discusses its applicability and
potential in rough sets theory. In emergence algorithm, the overall sys-
tem dynamics emerge from the local interactions of independent objects
or agents. For accepting a system is displaying an emergent behavior,
the system should be constructed by describing local elementary interac-
tions between components in different ways than those used in describing
global behavior and properties of the running system over a period of
time. The proposals of an emergent computation structure for imple-
menting basic rough sets theory operators are also given in this paper.

Keywords: rough sets, emergent behavior, reduct, rule induction, dis-
cretization

1 Introduction

In recent years, computer models and knowledge-based systems have become
important as aids for the management systems. In this methodology, the be-
havior of the overall software system arises (emerges) from the interactions of
quasi-independent computational agents or objects [10]. Each agent contains the
entire specification for its behavior, which includes interactions between it and
its computational environment and other agents. The high-level behavior of the
system is entirely the result of low-level interactions between agents and between
agents and their local environments. Computational science is able to extend the
benefits of experimental science into new phenomena that are not studied by tra-
ditional experimentation. The development of this computational approach can
currently be seen in a wide range of academic disciplines [1, 4, 7–9, 14, 16].

Knowledge discovery in databases [6, 17] is a form of machine learning, which
discovers interesting knowledge from database and represents the knowledge in
a high-level language. Data mining is a main step in the multi-stage process of
knowledge discovery [13]. It concentrates on exploration and analysis of large
quantities of data in order to discover meaningful patterns and rules. Rough
set methodology provides a powerful tool for knowledge discovery from large

J.F. Peters et al. (Eds.): Transactions on Rough Sets II, LNCS 3135, pp. 343–361, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

344 Yasser Hassan and Eiichiro Tazaki

and incomplete dataset [12]. Rough set approach is based on generalization of
the relation of being an element of a set. Calculation over basic indiscernibility
relations attaches to each considered property lower and upper approximation,
corresponding to elements that satisfy this property with certainty and which
possibly satisfy it, respectively [13]. Then, a subset of objects with considered
property is called rough with respect to a given knowledge about object indis-
cernibility, if its lower approximation is not equal to the upper one.

The purpose of rough set KDD [12] is to find models that describe or classify
the measurement data. Such models may take on a wide variety of forms accord-
ing to the model construction scheme used. The choice of modelling scheme bears
both on the nature of the pattern recognition problem, as well as on the purpose
of the modelling task. The goal here is to gain insight into the problem at hand
by analyzing the constructed model, i.e., the structure of the model is itself of
interest. The process of constructing a model is an iterated waterfall cycle with
possible backtracking on the individual sub-steps. It is therefore important to
have a set of tools available that render possible this type of flexible experimen-
tation. However, a complete model construction and experimentation tool must
comprise more than a collection of clever algorithms in order to be fully useful.
It is needed to set the tools in an environment such that intermediate results can
be viewed and analyzed, and decision for further processing made. Basically, an
environment to interactively manage and process data is required.

This paper argues that rough set theory belongs to a unique class of problem
solvers that display emergent behavior [1, 7–9], a method of problem solving
allows task specific knowledge to emerge from the interactions of problem solver
and a task description presented by information system. Demonstrations and
guidelines showing how to exploit emergent intelligence [1] to extend the problem
solving capabilities in rough sets and other soft computing are also presented.
Hence, a problem addressed in this paper is to establish a certain background for
constructing emergent system structure [7, 14], which might be able to perform
basic rough set operations, in particular, those that reduce the redundancy of
knowledge, if any. Such a system has to be equipped with facilities, which allows
us to find fundamental rough set concepts and a strategy for the development of
high performance solutions using emergent computation is illustrated in outline
form for a problem domain.

The structure of the chapter is as follows. In Sect. 2, we present the notion of
an emergent system and we construct rules to test if the system is emergence or
not. Sect. 3 presents rough set preliminaries. Standard rough set algorithms for
synthesis of decision rules from decision tables are described also. Sect. 4 presents
the new technique of rough sets to enhance the emergent behavior in problem
solving algorithm. Sect. 5 shows the guidelines to increase the observation of
emergent phenomena in rough set methodology. Some applications of emergent
rough set are presented in Sect. 6. The paper is concluded in Sect. 7.

2 Rough Set Theory

In this section we recall some basic notions related to information systems and
rough sets. Rough set concept, introduced by Pawlak [11], one of its essen-

Emergent Rough Set Data Analysis 345

tial merits being its direct relation to classification problems, is founded on the
assumption that each object is associated with some information (data, knowl-
edge). Objects that are characterized by the same information are said to be
indiscernible in the view of available data. This induces the indiscernibility re-
lation (equivalence relation) that is the mathematical basis of rough set theory.

Knowledge representation in rough set data analysis is constructed via an
information system. An information system [6] is a pair IS = (U,C), where U is
non-empty finite set of objects called the universe, and C = {c1, c2, . . . , cm} is a
non–empty finite set of mappings c : U → νc; each c ∈ C is called a conditional
attribute. Decision table DT = (U,C∪D) is a special case of information system
introduced in rough set theory as tool to present data, where the major feature
that differs it from the information system is the distinguished attribute set D,
where D ∩C = ∅, called the decision attribute set.

Let I ⊆ U ×U denote an equivalence relation of indiscernibility on U that is
defined as,

IB = {(x, y) ∈ U × U : b(x) = b(y), ∀b ∈ B}, (1)

where B ⊆ C. Objects x and y satisfying the relation I are indiscernible by
attributes from B; the relation I is reflexive, symmetric, and transitive.

An ordered pair AS = (U, I) is called an approximation space. According
to I, we can define two crisp sets BX and BX called the lower and the upper
approximation of the set of objects X in the approximation space AS,

BX = {x ∈ U : IB(x) ⊆ X}, and
BX = {x ∈ U : IB(x) ∩X �= ∅}, (2)

where IB(x) denotes the set of all objects indiscernible with x, i.e., the equiva-
lence class determined by x. Pawlak [11] defined a rough set to be a family of
subsets of a universe that have the same lower and upper approximations.

Table 1 has an example of a decision table where the set of attributes C =
{Sex, Clinical Stage}, the set of values of decision attribute is Vinfection =
{Y es, No}, and U = {P1, P2, · · · , P10}.

Table 1. An example.

U Sex Clinical Stage Infection

P1 F T Yes

P2 M T Yes

P3 F B No

P4 M T Yes

P5 M T Yes

P6 M T No

P7 F T Yes

P8 F B No

P9 M B No

P10 M T No

346 Yasser Hassan and Eiichiro Tazaki

The upper and lower approximations of the decision attribute “infection”
can be found as follows:

Xinfection=yes = {P1, P7}
Xinfection=yes = {P1, P2, P4, P5, P6, P7, P10}
Xinfection=no = {P3, P8, P9}
Xinfection=no = {P2, P3, P4, P5, P6, P8, P9, P10}

One of the problems related to practical applications of rough set methods
is whether the whole set of attributes is necessary and if not, how to determine
the simplified and still sufficient subset of attributes equivalent to the original.
The rejected attributes are redundant since their removal cannot worsen the
classification. There are usually several such subsets of attributes and those,
which are minimal with respect to inclusion, are called reducts.

Decision rules [12, 13] can be perceived as data patterns, which represent
relationships between attribute values of a classification system. If V =

⋃
{νc :

c ∈ C} ∪ νD, is a set of values for attributes, then the decision rule is a logical
formula: IF (c1 = ν1) & · · ·& (cn = νn) THEN (d = νd). The decision rule is
true in the decision table if {u ∈ U : c1(u) = ν1, . . . , cn(u) = νn} ⊆ {u ∈ U :
d(u) = νd}.

3 Rules of Emergent System

Traditionally, AI relied strongly on models of representation and direct per-
ception of the world [14]. It was mostly preoccupied with functional semantics.
Emergent systems [4, 7–9, 16] are philosophically and methodologically different
from traditional approaches. They replace the traditional high-level control by
scheme of functional modularization of behavior generating modules [7]. The
characteristics of emergent systems are examined. Instead of high–level com-
putation of behavior, the bottom–up (emergent) self–organization of simpler
components produces a variety of behaviors depending on the interaction of the
agent with its environment [15, 5]. The structure coupling of the agent and its
environment is the source of the behavior, and not just the agent control system
alone [14].

The difficulties we face in adopting a definition of the concept of emergence
are reminiscent of the complications faced by early Artificial Intelligence (AI)
researchers in defining intelligence. Researchers are of opinion that the concept
of intelligence is unlikely to subside in the foreseeable future, and the same, we
believe, holds for emergence, hence, we will consider a system as emergent if:

1. The environment and the system are complex enough to allow the mecha-
nisms of self–organization to occur in the situated interaction of agents in
the environment.

2. The system is self–replicating.
3. The system has been constructed by describing local elementary interactions

between components.

Emergent Rough Set Data Analysis 347

These conditions are the rules for diagnosing emergence, in other words, accept-
ing that the system has emergent behavior or not. There should be sufficient
interaction to have these agents constructing shared semantics by virtue of their
situated interactions with the world and each other, which provide a coupling
interaction between the system and its environment. Some of the above points
deserve further elaboration, or indeed, invite debate. Before treating these issues,
we wish to describe emergence in more detail. The emergent system has some
characteristics that should be satisfied when we construct it:

– Direct communications only happen with local neighbors.
– Absence of central control.
– The inability of individual participant components to view the state of the

system from a global perspective.
– The environment has the sufficient initial richness and structure to allow for

embodied emergent classification of that environment/system coupling.

Let us now consider the mathematical meaning of emergence. If n is the
size of the system, by π(n) we denote the amount of computation required to
simulate a system, and arrive at a prediction of the given phenomenon. Let ω(n)
be the amount of computation required to arrive at the result by performing
a creative analysis depending on our understanding of the symmetries of the
system that help us to deduce the future state whilst circumventing most of the
previous-required computation.

Let us consider an idealized means of prediction in that complex system,
requiring an amount of computation ωopt(n) based on perfect understanding [14].
Now, the related measure of understanding is given by

λ =
ωopt(n)− ω(n)

π(n)
(3)

So in order to consider a system as an emergence the two conditions are
required,

1. ω(n) ≥ π(n)
2. λ = 0

Global non-functional properties of a system, including those needed to fulfill
mission requirements, performance, often arise through the interactions among
components of the system. Global properties that prevail for a system as a
whole, but cannot or do not exist within individual components of that system,
are called emergent properties [14]. The definition of emergent properties can be
formed as follows; E is an emergent property of the system S if and only if

E ∈ V (∇S) and E �∈ V (si),

where ∇S is the second structure obtained by applying the interaction I to
the primitive S, and the observable properties of the primitives V (S), i.e., the
property E is emergent iff it is observable on phase ∇S, and not below it.

348 Yasser Hassan and Eiichiro Tazaki

4 Emergent Rough Sets

We will describe the emergent technique as well as the modification to the stan-
dard rough sets theory to construct what is called emergent rough set method-
ology.

4.1 Objects as the Low-Level Emergent Interaction Component

The main advantage of rough set theory is that it does not need any prelimi-
nary or additional information about data like probability in statistics or basic
probability assignment in Dempster-Shafer theory, grade of membership or the
value of possibility [13]. This means that rough set theory does not need any
global information and the global result of the interactions between objects is
the target of the method.

Analysis of information systems and, in particular, decision tables, belongs to
the most important tasks of Artificial Intelligence. The decision table describes
a finite subset of a collection, also referred to as a universe, of objects belonging
to different categories called decision classes.

Objects are the lower level of the system and then the interactions among
objects are the basis for emergent behavior that can be observed in the system.
Let us consider the mathematical formula for interactions between objects in the
system. Let a function σ : 2U → [0, 1] satisfy for all subsets X of universe U,

1. σ(∅) = 0, σ(X) ≤ 1 (4)
2. A ⊆ B ⊆ X implies σ(A) ≤ σ(B) (5)

For x �∈ X , we let
ψσ(X,x) = σ(X ∪ {x})− σ(X) (6)

that denotes the marginal contribution of x to σ(X ∪ {x}).
Let us now consider the second order differences, which are called the inter-

action values,

ψσ(X, {p1, p2}) = σ(X ∪ {p1, p2})− σ(X ∪ {p1})− σ(X ∪ {p2}) + σ(X) (7)

where p1, p2 �∈ X . Let us now perform the summation across all subsets of U ,

Ψσ(p1, p2) =
1
n

∑
X⊆U\{p1,p2}

ψσ(X, {p1, p2}) (8)

We say that p1, p2 ∈ U show a positive interaction if Ψσ(p1, p2) > 0 and they do
not interact otherwise.

Consequently each rough set has boundary-line examples, i.e. objects that
cannot be with certainty classified as members of the set or its complement.
These objects interact with other objects in the set and with the environment
(attributes), and the global result from these interactions is the determination
of lower and upper approximations.

Emergent Rough Set Data Analysis 349

Table 2. The values of ψ for objects in Table 1.

U |ψσ(p)|
P1 0.54

P2 0.58

P3 0.61

P4 0.58

P5 0.58

P6 0.58

P7 0.54

P8 0.61

P9 0.61

P10 0.58

Let take an example of the values of the interaction factor σ between objects
as in Table 1 and consider the σ function in the form,

σ(X) =
|(X −X)|
|X|

(9)

Then the values of the function ψ can be as in Table 2.

4.2 Equivalence Relation as Interaction Base

Rough set concept is based on the indiscernibility relation between objects. Sup-
pose we are given a finite set of objects U called the universe and a binary relation
I over U called indiscernibility relation. The indiscernibility relation can be an
equivalence relation or the tolerance relation. The second is more general than
the first one but for simplicity we assume that I is an equivalence relation. The
relation I is meant to express the fact that our knowledge about elements of
the universe is limited and therefore we are unable, in general, to discern among
them. That means that, in general, we are unable to deal with any single element
of the universe but only with clusters of similar elements (global view) that from
the mathematical point of view are equivalence classes of the indiscernibility
relation I.

Let us define what is called a Weighted Information System WIS = (U,C,W),
where U is the set of objects, C is the set of attributes, and W is the set
of weights related to the set of attributes C connected with each object. The
weighted decision table takes the form WDT = (U,C∪D,W). The values of the
set of weights W are determined according to the interactions between objects
and between objects and their environment. If object p1 interacts with object
p2, then weight value for attribute i related to object p1 is modified according
to the formula,

wi =
{

α, do1 = do2

−α, do1 �= do2 ,
(10)

where doi is the decision value on the object pi.

350 Yasser Hassan and Eiichiro Tazaki

Fig. 1. The modification in the attribute # 4 for random object from Monk data.

The value of α is determined according to similarity of attribute i between
these two objects,

α =
{

τ, i(p1) = i(p2)
−τ, i(p1) �= i(p2)

(11)

Weighted information system is a specific information table and, therefore, all
concepts of the rough set analysis can be adopted to it. Let us take an example
to show how the interaction between objects using the equivalence relation can
affect weight values of attributes.

Fig. 1 gives the example to the modification of weight values for one attribute
associated with random object taken from Monk data problem. From this figure,
it is clear that the weight value can be negative or positive according to the result
of interactions among objects.

4.3 Emergent Problem Decomposition of Self-replication

Von Neumann’s model [10] of self-replication is a system-theoretic criterion of
open-ended evolution. According to Von Neumann’s formulation, a symbol sys-
tem utilized for the construction of self-reproducing systems is not an isolated
artifact. Rather, in the context of construction, a symbol system entails a set
of available parts. That is, construction blueprints are cast on a symbol system
whose primitives are a finite set of parts. A given material symbol system cannot
represent everything, only what its primitive parts can construct.

A particular materiality is tied to specific construction building blocks. The
richer the parts, the smaller the required descriptions, but also the smaller the
number of classifiable categories or constructed morphologies.

Information about object, say x is represented by its attribute value vector.
The set of all objects with similar (to attribute value vector) value vectors cre-
ates the set I(x). The relation I(x) is in this case an equivalence relation. We
assume that to answer the question whether an object x belongs to an object set
X , we have to answer a question whether I(x) is in some sense included in X .
This measure is introduced by Polkowski and Skowron in their study on rough
mereology [13]. Whereas rough mereology firstly applied to distributed informa-
tion systems, its essential idea is rough inclusion: Rough inclusion focuses on

Emergent Rough Set Data Analysis 351

set-inclusion to characterize a hierarchical structure based on a relation between
a subset and superset. Thus, application of rough inclusion to capture the re-
lation between classes is equivalent to constructing rough hierarchical structure
between classes, which is also closely related to information granulation proposed
in [17]. Rough mereology [12, 13] can be regarded as a far reaching generalization
of mereology of Lesniewski [13], it does replace the relation of being a part with
a hierarchy of relations of being a part in a degree. Hence, we take as a primitive
notion a rough inclusion function rather than rough membership function [12].

This idea gives us the interpretation of the statement that the object x is
composed from parts x1, x2, . . . , xk. One can use rough inclusion μ(x, y) = r as
the statement: x is an element (subset) of y in degree r. Standard rough inclusion
function is defined for two sets x, y ⊆ U by the formula,

μ(x, y) =
|x ∩ y|
|x| (12)

The rough inclusion function μ(x, y) satisfies the following conditions for any
triple x, y and z:

1. μ(x, x) = 1 for any x ∈ U .
2. If μ(x, y) = 1 then μ(z, y) ≥ μ(z, x).
3. If μ(x, y) = 1 and μ(y, x) = 1 then μ(x, z) ≥ μ(y, z).
4. There is an object π such that for any object x : μ(π, x) = 1.
5. For any collection of objects Y there is an object x with the properties:

a. If non(μ(z, n) = μ(n, z) = 1) and μ(z, x) = 1 then there are t such
that non(μ(t, n) = μ(n, t) = 1) and τ ∈ Y such that μ(t, z) = μ(t, τ) =
μ(τ, x) = 1;

b. If τ ∈ Y then μ(τ, x) = 1;
c. If y satisfies the above two conditions then μ(x, y) = 1.

Any object x satisfying condition (a) is called a set of objects in Y ; if, in
addition, x satisfies (b) and (c), then x is called the class of objects in Y . These
notions allow for representations of collections of objects as objects.

The formula x = set(μU){x1, x2, . . . , xk} is interpreted as the statement
that the object x is composed from parts x1, x2, . . . , xk. One can interpreted
μ(x, y) = r as: x is an element (subset) of y in degree r; if y = set(μ)Y , then
μ(x, y) = r means that x is a member of the collection Y in degree r.

Rough inclusion can be generated from a given information system IS; for
instance, for a given partition P = {C1, . . . , Ck} of the set of attributes C, and
a given set of weights W = {w1, . . . , wk}, wi ∈ [0, 1] for i = 1, 2, . . . , k and∑k

i=1 wi = 1 we let:

μP,W (x, y) =
k∑

i=1

wi ·
||Ii(x, y)||
||Ci||

(13)

We call it a pre-rough inclusion [13].
Let consider an information system as in Table 3, where the set of objects

U = {p1, . . . , p6} and the set of attributes C = {English, French,German}.
Table 4 shows values of the initial inclusion when k = 1 and w1 = 1.

352 Yasser Hassan and Eiichiro Tazaki

Table 3. An example information system.

Object English French German

P1 Yes No No

P2 No No Yes

P3 No Yes No

P4 Yes Yes No

Table 4. Values of rough inclusion for information system in Table 3.

P1 P2 P3 P4

P1 1 0.33 0.33 0.66

P2 0.33 1 0.33 0.00

P3 0.33 0.33 1 0.66

P4 0.66 0.00 0.66 1

4.4 Emergence and Discretization

We can talk about two common problems that are inherent to any data mining
task: the problem of choosing a suitable data representation and the problem
of formulating a goal (or goals) of data modeling [12]. Finding the right repre-
sentation of data usually involves many steps. First, we have to decide which
attributes might be relevant to our problem. Continuous attributes should usu-
ally be discretized, i.e., numerical attributes are often rescaled.

When we come to analyze attributes with real values, we must undergo a
process called discretization (or quantization), which divides attribute’s values
into intervals. Such intervals form new values for attribute and, in consequence,
allow to reduce the size of attribute’s value set.

If DT = (U,C ∪ {d}) is a decision table with large card(Vc) for some c ∈ C,
then there is a very low chance that a new object will not match any of these
rules; hence, for decision tables with real value attributes, some discretization
strategies are built to obtain a higher quality of classification. This problem is
intensively studied in [12, 13].

Let DT = (U,C ∪ {d}) be a decision table where U = {x1, x2, . . . , xn}. We
assume Vc = [lc, rc) ⊆ R for any c ∈ C where R is the set of real numbers.
An arbitrary attribute c ∈ C defines a sequence vc

1 < vc
2 < · · · < vc

nc
, where

{vc
1, v

c
2, . . . , v

c
nc
} = {c(x) : x ∈ U}. Let Pc be a partition on Vc into subintervals:

Pc = {[bc
0, b

c
1), [b

c
1, b

c
2), . . . , [b

c
kc
, bc

kc+1)} (14)

for some integer kc, where lc < bc
0 < bc

1 < · · · < bc
kc

< bc
kc+1 = rc and Vc =

[bc
0, b

c
1) ∪ [bc

1, b
c
2) ∪ · · · ∪ [bc

kc
, bc

kc+1).
Fig. 2 gives an intuitive idea of cuts: “any cut can be treated as a linear

(k−1)-dimensional surface that divides the affine space Rk into two half-spaces”.
Any Pc is uniquely defined by the set of cuts on Vc : Bc = {bc

1, b
c
2 · · · , bc

k}.
In the sequel we often identify Pc with the set of cuts on Vc defined by Bc.

Emergent Rough Set Data Analysis 353

Fig. 2. The partition of the real line defined by the set of cuts {bc
1, · · · bc

k}.

Then any family Pc = {Pc : c ∈ C} of partitions can be represented in the form
Pc =

⋃
c∈C

c×Bc. Any (c, b) ∈ Pc will be also called a cut on Vc.

Any set of cuts P =
⋃

c∈C

Pc allows to construct from DT = (U,C ∪ {d})

a new decision table DT p = (U,Cp ∪ {d}) where Cp = {cp : c ∈ C} and
cp(x) = i⇔ c(x) ∈ [bc

i , b
c
i+1) for any x ∈ U and i ∈ {0, · · · , kc}.

Let another set of attributes C′ be built from the set C, where C′ is defined

by C′ =
{
cc
i : cc

i =
vc

i + vc
i+1

2
, 1 ≤ i ≤ nc − 1

}
.

The set C′ is called the initial set of cuts. Any cut bc
i ∈ C′ can be treated as

a Boolean function defined in U = {x1, . . . , Xn} as follows:

bc
i(xj) =

{
0 if c(xj) <

vc
i + vc

i+1

2
1 otherwise

(15)

Our algorithm for discretization is searching for a cut b ∈ C′, which discerns
the largest number of pair of objects and moves the cut b from Ct to the resulting
set of cuts R using only the local interactions between objects. The procedure is
continued until all pairs of objects from U , with different value of decision, are
discerned by cuts from the resulting set of cuts R.

The process of discretization for a continuous attribute begins with deter-
mining kc cuts for the values of attribute c ∈ C according to the Equal Width
Method and then construct the initial set of attributes Ct. It involves determin-
ing the domain of observed values of an attribute c ∈ C, i.e. [vc

min, v
c
max], and

dividing this interval into kc equally sized intervals, where kc ∈ N is a parame-

ter. One can compute the interval width: δ =
vc
max − vc

min

kc
and construct interval

boundaries: bc
i = vc

min + i× δ where i = 1, . . . , (kc − 1).
Next step in the process is to allow for objects to interact and adaptive

the set of cut values according to these interactions. If object j1 interacts with
object j2 and they have a different decision values, i.e., d(j1) �= d(j2) then the
cut value for attribute c such that j1 belongs to bc

h is modified by the value
(±(1/(c(j1)− c(j2)). In a similar way, that happens for a cut value for attribute
c of object j2.

Fig. 3 shows the modification values of set of cuts before and after the process
of local interaction between objects in the system for one attribute from medical
data set (see application section). We observe from the figure that the second
cut is deleted when after adaptation it becomes equal to the third cut. So we
have when the adaptation is finished four cuts only.

354 Yasser Hassan and Eiichiro Tazaki

Fig. 3. The adaptive (before and after the interactions between objects) for the set of
cuts for one attribute from the medical data.

4.5 Reduction of Information

Standard rough set methods are not always sufficient for extracting laws from
decision tables [12]. One of the reasons is that these methods are not taking into
account the fact that part of the reduct set is not stable in randomly chosen
samples of a given decision table. We propose a method for selection of feature
sets relevant for extracting laws from data based on the interactions between
objects. These sets of attributes are in most of senses the most stable reduct of
a given decision table.

The algorithm for reducing attributes, based on the idea of weighted decision
table, takes the form

1. Input
Decision table DT = (U,C ∪D).

2. Output
Reduct R.

3. Process
a. Convert the decision table DT into the weighted decision table WDT

by adding a distinguished set of weights W . Weight values are associ-
ated with the set of attributes and the interactions between objects (see
Sect. 4.2).

b. While (there is no object that does not interact) do
i. Interact object i with object j, i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , n}.
ii. For (a = 1 to m)

Modify the weight value associated with attribute a and object i
c. R = ∅
d. For (i = 1 to m)

If

(
n∑

j=1

ωij > 0

)
then R = R ∪ {a}

Emergent Rough Set Data Analysis 355

Fig. 4. The values of attribute weights for Monk dataset.

Fig. 4 shows the values of summed weights for attributes for the first Monk
dataset (see the section of applications). From this figure, we observe that at-
tribute number one has the largest value while the attribute number three has
the lowest value. From Fig. 4, we can calculate the reduct set as {attribute#1,
attribute#2, attribute#4, attribute#5}.

4.6 Induction of Decision Rules

The most popular method for classification algorithm construction is based on
learning rules from examples. The methods based on calculation of all reducts
allow to compute, for a given data, the descriptions of concepts by means of deci-
sion rules [6, 17]. Unfortunately, decision rules constructed in this way can often
be not appropriate to classify unseen cases. We propose a method of the deci-
sion rule generation on the basis of local interactions. We suggest that the rules
calculated by means of emergent technique are better predisposed to classify
unseen cases.

Decision rules are generated from reducts. So in order to compute decision
rules, reducts have to be computed first. When a set of reducts has been com-
puted then it is necessary to decide how to compute the set of decision rules.
We discuss methods based on the decision rule set calculation for any reduct.
We have implemented several methods. Let us consider two methods. Using the
first method we generate decision rules for the reduct R in the following way:
for any object, we take the value vector of conditional attributes from R and
the corresponding decision about the object. Unfortunately, the decision rules
generated by this method have bad performance, because the number of objects
supporting such rules is usually very small.

By applying the second method, we generate decision rules with minimal
number of descriptors for the table consisting of the object set equal to the
reduct domain of R, the conditional attribute set equal to R.

4.7 Emergent Phenomena of Classification Process

Emergent phenomena are those for which the amount of computation neces-
sary for prediction from an optimal set of rules, classifications and analysis,

356 Yasser Hassan and Eiichiro Tazaki

Table 5. The weight values for the set of rules induced from Monk data.

Rule Weight value

IF Sex=F AND Clinical Stage=B ⇒ Infection=No 0.6

IF Sex=F AND Clinical Stage=T ⇒ Infection=Yes 0.2

IF Sex=M AND Clinical Stage=B ⇒ Infection=No 0.0

even derived from an idealized perfect understanding, can never improve upon
the amount of computation necessary to simulate the system directly from our
knowledge of the rules and its interactions.

The behavior of a situated object in an environment is, in this sense, the
result of how the object classifies the environment. Thus, behavior is itself an
emergent property of the low level dynamics that implements the object. The
classification process is emergent because it is the result of the local interactions
of the basic components of the system and does not stem from a global controller.

Classification process of rough set methodology represents emergent compu-
tation in the strict sense. What emerges from the process is a highly adapted
rule-set that interacts with its environment to solve problems. This emergence
is the result of interactions between quasi-independent entities (classifications)
via the mechanisms specified in the bucket brigade, and between the classifiers
and their environment.

Another interesting form of emergence occurs when the logical language for
knowledge discovery in databases resulting from the rough set process includes a
decision rule. When the conditional semantics of the form IF 〈condition〉 THEN
〈decision〉 is available, the otherwise haploid structure creates a task dependent
representation with some interesting dominance characteristics. For each rule,
the condition part is first evaluated and based on its result the decision part is
taken. Since the condition part is dependent on the state of the environment,
then the decision part of the rule emerges dynamically and then it is determined
by the context of the environment. This permits an environment specific form
of dominance.

By giving a weight value for each rule, we can sort the set of rules and classify
any object to the first rule in the list that match it first. The weight value for
rule r that is derived from the weighted decision table WDT = {U,C∪{d},W},
takes the form:

weight(r) =
∑

p match r

∑
i∈r

Wpi

|r| (16)

where Wpi is the weight value of attribute i that exists in the condition part of
the decision rule r, and object p matches the rule r, and |r| is the number of
condition attributes that are contained in rule r.

Table 5 gives the weight values for set of rules that is induced from the
decision table in Table 1.

Emergent Rough Set Data Analysis 357

5 Guidelines to Increase Emergence in Rough Sets

In this section we will present some guidelines for directed emergent phenomena
in rough set theory. These guidelines should be taken in mind when we construct
a system based on rough sets that contains emergent phenomena.

Brute force methods [1], i.e., ones that blindly attack the problem, typically
provide little benefit, although they may provide a short-term benefit for simple
problems. Such strong coercion of the rough set method dynamics only compro-
mises the natural dynamics of the process. In fact, directly attacking the problem
often removes the ability for features to emerge from the dynamics altogether.
The desired properties should be coaxed out naturally by the dynamics of the
computation. Thus the solution should come from within the task. The algo-
rithm job is only to reinforce the progression toward improvement rather than
restrict the method that accomplishes it.

For most problems, there is no single rule matching the objects that is uni-
formly proficient across all possible decisions. In standard rough sets, the static
rules engineered knowledge ends up being either too general or too specific to
cover many objects. Opportunistic method like emergent latches on to what-
ever provides a benefit in the current problem-solving situation. Each rule may
produce a completely distinct classification since the features that emerge dur-
ing processing are dependent on the points in the problem space visited by the
algorithm. Generality of features that emerge are often minimal, but they are
pertinent to the specific problem or object begins attacked. The opportunism of
emergence and the diversity of the resulting structures may enlighten us as to
what our biases are and how they limit our ability to solve problems.

6 Applications

To verify the usefulness of the presented methodology, computational exper-
iments have been performed. We report results of experiments on the Monk
problems data and medical dataset.

Each dataset was divided into a training set and testing set, and the computa-
tions of rules have been done only on training data. The results of computations
of rules were applied to the classification of objects from the testing dataset. To
evaluate the classification process, we use a measure called classifier’s error rate,
which is defined by the ratio of the number of errors to the number of all cases.

6.1 Monk Problem Dataset

The attribute information in each monk problem is
Attribute#1: {1, 2, and 3}
Attribute#2: {1, 2, and 3}
Attribute#3: {1, 2}
Attribute#4: {1, 2, and 3}
Attribute#5: {1, 2, 3, and 4}
Attribute#6: {1, 2}

358 Yasser Hassan and Eiichiro Tazaki

Table 6. Results from the first Monk problem data.

Monk1 Monk2 Monk3

C4.5 00.00 % 34.72% 3.70%

Rough Set 11.32 % 22.91% 5.13%

Proposed Method 00.00 % 30.09% 2.77%

Thus, the six attributes span a space of 432 = 3× 3× 2× 3× 4× 2 examples
for monk’s data.

The First Monk Problem

It is to learn a concept description that can be formulated as a simple disjunctive
normal form. The target concept can be simply characterized by an expression:
[Attribute#2=1] OR [Attribute#4= Attribute#5] ♦ M1, which can be inter-
preted as: “if for an unknown entity, Attribute#2 takes value 1, or Attribute#4
and Attribute#5 take the same value, then regardless of the values of other at-
tributes classify the entity as an instance of concept M1”. The set of training
set is 124 training examples (62 positive and 62 negative). The set of testing
examples includes all possible 432 cases (216 positive and 216 negative).

The Second Monk Problem

It relates to the following concept “if exactly two of six given attributes take their
first value for the given entity, then classify the entity as an instance of class
M2”. The training set contains 169 examples (105 positive and 64 negative), and
the test data is 432 cases (190 positive and 242 negative).

The Third Monk Problem

It is to learn a concept which is: IF [Attribute#2 �= 4] and [Attribute#5 =1 or 2]
or [Attribute#1=1] and [Attribute#2=3] ♦ M3. The training set contains 122
examples (62 positive and 60 negative), and test data is 432 cases (204 positive
and 228 negative). It has 5% additional noise (misclassifications) in the training
set.

Table 6 gives the information about results of our experiments with Monk
problems data. The set of rules that is produced by our method is the best result
with respect to third Monk dataset. For second Monk data, our new method gives
result better than C4.5 but not better than standard rough set method. For the
first Monk dataset, our proposed method and C4.5 give the same result which
is better than standard rough set method.

6.2 Medical Dataset (Biopsy Dataset)

We report results of experiments on the Medical datasets (Biopsy dataset). The
data was obtained from the Department of Urology and Pathology, Kitasato
University School of Medicine, Japan. More details about the data were given
in [2, 3].

Emergent Rough Set Data Analysis 359

Table 7. The attribute description of the medical dataset (Biopsy dataset).

Attribute Name Description

Age The age of patients

Total PSA Prostate specific antigen.

Free PSA Free prostate specific antigen

Free Total ratio Free PSA / Total PSA

PSA density Total PSA / Gland Vol.

PSATZ Total PSA / Transitional zone volume in prostate

Gland vol. Prostate size

TZ vol. Transitional zone in prostate

DRE Digital rectal examination

Table 8. The result of classification error for medical dataset.

Proposed method Neural Networks Standard Rough Set

0.146 0.159 0.162

The description of the attributes is shown in Table 7. The decision attribute
is the pathological result; 0 means no cancer, and 1 means has cancer.

The present method shows the highest accuracy for prediction of pathological
stage after radical surgery and biopsy result. As new strategy, the model is
essential for diagnosis and treatment selection of prostate cancer.

As the result from our new approach with the medical data, we observe very
good rules like:

IF (2.16<Total PSA<9.81) AND (0.0693<Free Total ratio<0.53)
AND (0.07<PSA density<0.54) AND (0.11<PSA TZ density<2.35)
AND (16.619<Gland vol<141.4) AND (3.5<TZ vol<87.7) AND
(1.5<DRE<2.0) THEN (Patho=0).

This rule is true for 148 cases from 246 is the size of data with accu-
racy=0.840909 and rule coverage=0.712551. As well as the rule:

IF (2.16<Total PSA<9.81) AND (0.0693<Free Total ratio<0.53)
AND (0.07<PSA density<0.54) AND (0.11<PSA TZ density<2.35)
AND (16.619<Gland vol<141.4) AND (3.5<TZ vol<87.7) AND
(3.5<DRE<4.0) THEN (Patho=0)

Which has support as 13 cases with rule accuracy=0.565217 and rule coverage=
0.093117.

There exist a set of rules that is induced from C4.5 method, but there does
not exist any rule can cover many cases as first rule.

Table 8 shows the classification error for our new method and compares it
with artificial neural networks and standard rough set method. We get the set of
cuts for neural network and standard rough sets from the medical domain. From
Table 8, we observe that our method is the best result than neural networks
model and standard rough set method.

360 Yasser Hassan and Eiichiro Tazaki

Table 9. The cuts values derived from the proposed method for medical dataset.

Attribute Cut 1 values Cut 2 value Cut 3 value Cut 4 value Cut 5 value

Age 39-58 58-60 60-68 68-91 ——–

Total PSA 2.05-2.11 2.11-2.1669 2.1669-9.81 9.81-9.93 ——–

Free PSA 0.21-0.4 0.4-1.3029 1.3029-5.21 ———- ——–

Free Total ratio 0.04-0.05 0.05-0.06 0.06-0.0693 0.0693-0.53 0.53-0.71

PSA density 0.04-0.06 0.06-0.07 0.07-0.54 ——– ——–

PSA TZ density 0.07-0.077 0.077-0.11 0.11-2.35 ——– ——–

Gland vol 8.2-15.4 15.4-15.6 15.6-16.619 16.619-141.4 ——–

TZ vol 1.8-3.5 3.5-87.7 ——– ——– ——–

DRE 1.5-2.0 2.0-2.5 2.5-3.0 3.0-3.5 3.5-4.0

Only C4.5 method can make discretization for continuous attributes same as
our proposed method, but C4.5 discretization is binary divisions for the possible
values of the attribute. We show the set of cuts that is derived from our algorithm
as in Table 9. From this table, we observe that the set of cuts is better from the
view of logic than binary division of C4.5 method.

7 Conclusions

The objective of this paper was to setup a methodology for the emergent rough
set design which in particular terms means that we were supposed to propose
a fully emergent system for implementing basic rough set theory notions. The
research results will have important impact on development of new methods
for KDD, in particular for development of algorithmic methods for pattern ex-
traction from data. We are convinced that progress in the above areas is of the
utmost importance for creating new methods, algorithms, software as well as
hardware systems which prove the applicability of rough set techniques to chal-
lenging problems of data mining, knowledge discovery and other important areas
of applications.

In this approach, we define the term emergence and give the rules that must
be satisfied to the system to be emergence. Next, we present some new techniques
for rough set methodology that depend on the emergent computation. The global
results of these techniques depend only on local interactions between objects.
In this work we have discussed the discretization problem with regard to the
discernibility relation of objects defined by cuts.

In the practical parts of our study, we use the Monk data problem and medical
dataset. We need to continue this direction of study toward complete emergent
system that depends on rough sets theory. We have now an interesting open
problem for future research as a continuous decision problem. We have consid-
ered decision tables with discrete decision. However, for some problems (e.g.,
control problems) one should take into account that the decision is continuous.
New strategies for discretization of attributes in decision tables with continuous
decision are needed.

Emergent Rough Set Data Analysis 361

References

1. Angeline, Peter J. Genetic programming and emergent intelligence, in: K. E. Kin-
near, Jr.(ed.), Advances in Genetic Programming, MIT Press, 1994

2. Egawa, S., Suyama, K., Yoichi, A., Matsumoto, K.,Tsukayama, C., Kuwao, S.,
and Baba, S., A study of pretreatment nomograms to predict pathological stage
and biochemical recurrence After radical prostatectomy for clinically resectable
prostate cancer in Japanese men, Japan Journal of Clinical Oncology 31(2) (2001)
74–81

3. Egawa, S., Suyama, K., Matsumoto, K., et. al, Improved predictability of extra-
capsular extension and seminal vesicle involvement based on clinical and biopsy
findings in prostate cancer in Japanese men, Urology 52(3) (1998) 433–40

4. Gotts, N., Emergent phenomena in large sparse random arrays of Conway’s ‘Game
of Life’, International Journal of System Science 31(7) (2000) 873–894

5. Hanson, J., Crutchfield, J., Computational mechanics of cellular automata: An
example, Physica D103 (1997) 169–189

6. Hassan, Y., Tazaki, E., Knowledge discovery using rough set combined with genetic
programming, Proceeding of RSTGC’2001 International Conference 5(1) (2001)
75–79

7. Hassan, Y., Tazaki, E., Emergence in combined system structure of rough set
theory and genetic programming, in: N. Baba, L. C. Jain, R. D. Howlett (Eds.),
Proceeding of Knowledge-based Intelligent Information Engineering Systems & Al-
lied Technologies: International Conference KES’ 2001, Part 2, IOS press, 2001,
pp.1458–1462

8. Hassan, Y., Tazaki, E., Adaptive behavior in cellular automata using rough set
theory, Applied Artificial Intelligence Journal 17(2) (2003) 1–21

9. Hassan, Y., Tazaki, E., Emergence computation using new model of cellular au-
tomata, Applied Artificial Intelligence Journal, 17(1) (2003) 39–69

10. Olson, R., Sequeira, R., Emergent computation and the modeling and management
of ecological systems, Computers and Electronics in Agriculture 12 (1995) 183–209

11. Pawlak, Z., Rough sets, International Journal of Computer and Information Sci-
ence 11(5) (1982) 341–356

12. Polkowski, L., Skowron, A. (Eds.), Rough Sets in Knowledge Discovery, Physica-
Verlag, Heidelberg, 1998

13. Polkowski, L., Tsumoto, S., Lin, Y., (Eds), Rough Set Methods and Applications,
Physica-Verlag, Heidelberg, 2000

14. Rocha, L., Joslyn, C., Simulations of embodied evolving semiosis: Emergent se-
mantics in artificial environments, The Proceedings of the Conference on Virtual
Worlds and Simulation, 1998, pp.233–238

15. Sipper, M., Studying artificial life using a simple, general cellular model, Artificial
Life Journal 2(1) (1995) 1–35

16. Thornton, C., Brave mobots use representation: Emergence of representation in
fight-or-flight learning, Minds and Machines 7 (1997) 475–494

17. Ziarko, W. (Ed.), Rough Sets, Fuzzy Sets, and Knowledge Discovery, Springer-
Verlag, Berlin, 1994

Author Index

An, Aijun 1
Apostoli, Peter 151
Armengol, Eva 14

Cattaneo, Gianpiero 208
Cercone, Nick 1
Ciucci, Davide 208

Esteva, Francesc 14

Godo, Llúıs 14
Greco, Salvatore 33, 319
Grzymala-Busse, Jerzy W. 54

Hassan, Yasser 343
Huang, Xiangji 1
Huang, Yanhui 1

Inuiguchi, Masahiro 319

Kanda, Akira 151
Kerre, Etienne E. 278
Kikuchi, Hiroaki 107

Miyamoto, Sadaaki 189
Mukaidono, Masao 107

Perfilieva, Irina 63
Polkowski, Lech 151, 253

Radzikowska, Anna Maria 278
Ramı́k, Jaroslav 201

Sakai, Hiroshi 82
S�lowiński, Roman 33, 319
Stefanowski, Jerzy 33

Takagi, Noboru 107
Takahagi, Eiichiro 129
Tazaki, Eiichiro 343
Torra, Vicenç 14

Vlach, Milan 201

Yao, Yiyu 297

Żurawski, Marcin 33

	Frontmatter
	Feature Selection with Rough Sets for Web Page Classification
	On Learning Similarity Relations in Fuzzy Case-Based Reasoning
	Incremental versus Non-incremental Rule Induction for Multicriteria Classification
	Three Strategies to Rule Induction from Data with Numerical Attributes
	Fuzzy Transforms
	Possible Equivalence Relations and Their Application to Hypothesis Generation in Non-deterministic Information Systems
	Applications of Fuzzy Logic Functions to Knowledge Discovery in Databases
	Fuzzy Integral Based Fuzzy Switching Functions
	First Steps towards Computably-Infinite Information Systems
	Data Structure and Operations for Fuzzy Multisets
	A Non-controversial Definition of Fuzzy Sets
	Algebraic Structures for Rough Sets
	Rough Mereology as a Link between Rough and Fuzzy Set Theories. A Survey
	Fuzzy Rough Sets Based on Residuated Lattices
	Semantics of Fuzzy Sets in Rough Set Theory
	A New Proposal for Fuzzy Rough Approximations and Gradual Decision Rule Representation
	Emergent Rough Set Data Analysis
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

