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Summary 

Consider a sum of independent and identically distributed random vectors 
with finite second moments, where the number of terms has a geometric 
distribution independent of the summands. We show that the class of limit­
ing distributions of such random sums, as the number of terms converges to 
infinity, consists of multivariate asymmetric distributions that are natural 
generalizations of univariate Laplace laws. We call these limits multivariate 
asymmetric Laplace laws. We give an explicit form of their multidimensional 
densities and show representations that effectively facilitate computer sim­
ulation of variates from this class. We also discuss the relation to other 
formerly considered classes of distributions containing Laplace laws. 
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1 Introduction 

We discuss a class of multivariate and not necessary symmetric distributions, 
that naturally extend properties of and reduce to Laplace distribution in one 
dimension. Recall that a classical Laplace distribution with scale parameter 
a can be defined either through its characteristic function ( ch.f.), 

1 
¢>(t) = 1 + a2t2, -oo < t < oo, 

or through its probability density function (p.d.f.), 

1 f(x) = -e-lxlfu, -oo <X< oo. 
2a 

(1) 

{2) 

Kozubowski and Podgorski (1998a) noticed that a class of distributions, in­
troduced in Hinkley and Revankar (1977) and proposed by Madan et al. 
(1998) for modeling stock price data, admits the following characterizations, 
which parallel those of symmetric Laplace distribution given by (1), 

• The characteristic function: 

• The density function: 

1 "' { exp (- ;-x) , if x ~ 0 
f(x) = ~~ exp (;,.x), if x < 0, 

where"'= 2a/(JL + J4a2 + JL2). 

• Limiting distribution in the random summation scheme: 

Np 

Y =lim VPL (Xi- JL(1- .JP)), 
p-+0 

i=l 

(3) 

(4) 

(5) 

where Xi are i.i.d. variables with mean f-L and variance 2a2, and inde­
pendent of geometrically distributed NP" Note that in the symmetric 
case, the centering JL(1 - ..JP) is not necessary in order to ensure exis­
tence of the distributional limit. 

• Normal variance-mean mixture: 

Y ~ aV'fZX :+ JLZ, (6) 

where X and Z are independent with standard normal and standard ex­
ponential distributions, respectively. (Here and in the sequel we follow 
the standard convention that when expressing equalities in distribution, 
the random variables appearing on the same side of the equation are 
independent.) 
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• Exponential mixture: 
d Y = aiZ, (7) 

where I takes on the values =t=~±I with probabilities -2
1 =t= 11 

2V IL2+4u2' 

while Z is standard exponential. 

Since the above properties naturally extend those of symmetric Laplace laws 
(when f.L = 0), we shall refer to the distributions given by (3) as asymmetric 
Laplace (AL) laws. 

A symmetric Laplace distribution has already been extended to the mul­
tivariate case: McGraw and Wagner (1968) listed a bivariate Laplace dis­
tribution as a special case of elliptically contoured law, while Johnson and 
Kotz (1970) provided its density function. The same distribution appeared 
in Anderson (1992) as a special case of multivariate Linnik law. In the fol­
lowing section, we extend the multivariate symmetric Laplace distributions 
as given in Anderson (1992) to asymmetric laws. We show that these dis­
tributions satisfy multivariate versions of the basic properties (3) - (7) of 
univariate Laplace laws, and thus we feel that the term multivariate asym­
metric Laplace (AL) laws is a properly justified name for members of this 
class. 

Ernst (1998) proposed another class of multivariate distributions based on 
elliptic contouring, and called them generalized Laplace distributions. How­
ever, his class does not coincide with those used before for multivariate gen­
eralizations of Laplace distributions. Further, unlike our AL laws, the gen­
eralizations of Laplace distributions of Ernst (1998) admit neither univariate 
nor multivariate symmetric Laplace marginals. 

Johnson (1987) states that because density functions of multivariate La­
place distributions involve Bessel functions, they have limited practical use 
and their computer generation is troublesome as well. We believe that the 
first issue raised by Johnson (1987) is not a problem as Bessel functions are 
not hard to handle numerically and many modern packages have implemented 
them as standard functions (including Matlab, Maple, and Mathematica). 
We also address the second issue and present a simple and effective method of 
random variate generation of multivariate AL laws, extending the symmetric 
case of Anderson (1992). Thus, we argue that AL laws are ready for practical 
applications. 

In this work we concentrate on density functions and methods of gen­
erating random variates from the AL family, referring to Kozubowski and 
Podgorski (1998b) for more in depth theoretical results. 
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2 Multivariate Asymmetric Laplace Distribu­
tions 

We define multivariate AL distributions by an extension of the characteristic 
function (3), and list their properties which parallel the ones in the univariate 
case. In particular, we characterize Al densities and present a representation 
that leads to a simple method of computer simulation of multivariate AL 
random variables. 

Definition 2.1 A random vector Y in nd is said to have multivariate asym­
metric Laplace distribution (AL) if its ch.f. is given by 

[ 
I ] -

1 

w(t) = I+ 2t':Et- im't , (8) 

where mE Rd and :E is ad X d non-negative definite symmetric matrix. 

Remark. Note that if m = 0, the characteristic function depends on t only 
through t':Et and thus the corresponding AL law belongs to the class of 
elliptically contoured multivariate distributions (see, e.g., Johnson (I987)). 

As a direct consequences of the definition we obtain the next proposition, 
which shows that all marginal distributions of anAL r.v. Yare AL. 

Proposition 2.1 Let Y' = (Y1 , ... , Yd) be AL with the parameters m and 
:E, and let A be an l x d real matrix. Then, the random vector Y A = A Y is 
AL with the parameters Am and A:EA'. 

Proof. The assertion follows from the relation 

WAy(t) = Eei(AY)'t = EeiY'A't = Wy(A't) (9) 

and the fact that the matrix A:EA' is non-negative definite whenever :E is. 
0 

2.1 Densities 

The densities of multivariate AL laws can be written explicitly in terms of 
Bessel functions. Throughout this subsection, we assume that distributions 
are non-singular in nd, d ~ I. Recall that the modified Bessel function of 
the third kind of order v has an integral representation 

I (u)v (XJ ( u2
) . Kv(u) = 2" 2" Jo z-v-l exp -z-

4
z dz, (IO) 

valid for complex u with the non-negative real part of u2
• We have the 

following form of the AL densities (for y =I 0) 

2 y'E-
1

m ( ':E-1 ) v(2 

g(y) = (27r~d/2i:Eil/2 2 :m':E.:'lm Kv ( J(2 + m':E-lm)(y':E-ly))' 

(11) 
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where v = (2 - d) /2. This formula follows directly from the representa­
tion given in Subsection 2.3 (see Kozubowski and Podgorski (1998b) for the 
derivation). Let us discuss several special cases. 
Case 1. In the elliptically contoured case (m = 0), we obtain 

g(y) = (2n)df;l~ll/2 (y'~-ly/2r/2 Kv ( ..j2y'~-ly), Y -1- o, 

which coincides with multivariate symmetric Laplace distributions of Mc­
Graw and Wagner (1968), Johnson and Kotz (1970), and Anderson (1992), 
but is different from the class of elliptically contoured distributions considered 
in Ernst (1998). 
Case 2. In the one dimensional case we have ~ = a 11 and the ch.f. (8) 
simplifies to (3) with a 2 = a 11 /2 and fl.= m. Further, for v = 1/2, the Bessel 
function (10) simplifies to K1;2(u) = -Jil2e-uju, and the AL density (11) 
reduces to (4). In the symmetric case (fl.= 0) we obtain Laplace distribution 
with mean zero and variance 2a2. 
Case 3. In the bivariate case the formula simplifies to 

Writing 

~ [ al/a2 p ] 
= ata2 p a2/at 

and letting m' = (m1, m2), we obtain the five parameter bivariate AL density, 

g(x, y) = 

exp [((m1a2/a1- m2p) x + (m2al/a2- m1p) y) j(a1a2(1- p2))] 
--~~--~------~--~---=====~----~----------~x 

na1a2~ 

where 

C( ) 
- ..j2ala2(1- p2) + mra2/al- 2mtm2p + m~al/a2 

mt,m2,at,a2,P - (1 ...2) · 
a1a2 - p 

In Figure 1, we present several examples of bivariate AL densities. In the 
top-left figure, we have 

g(x,y) = ~Ko ( ..j2(x2 + y2)). 

which might be called the standard bivariate Laplace density, as it corre­
sponds to m1 = m2 = 0, p = 0, and a1 = a2 = 1. The top-right picture 
corresponds to 

g(x,y) = 3~Ko (v2·5/3· ..jx2 +8/5·xy+y2). 
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which arises when contouring is around the ellipsoid with the long axis along 
y = -x with p = -4/5, while the other parameters are as in the previous 
case. The remaining pictures correspond to various cases when m 1 f. 0 
and m 2 f. 0, and the distributions are no longer elliptically contoured. The 
middle-left figure is a graph of the density 

g(x,y) = ~ex+YK0 (2..jx2 +y2 ), 

while the middle-right one corresponds to 

g(x, y) = 3~ e 5(x+y) K 0 ( v3 · 10/3 · ..jx2 + 8/5 · xy + y2) . 

At the bottom we present two cases with no "symmetries" between parame­
ters. 
Case 4. If dis odd, we obtain the density in the closed form. Indeed, suppose 
d = 2r + 3, where r = 0, 1, 2, ... , so that v = (2 - d)/2 = -r - 1/2. Since 
Kv(u) = K_v(u) and the Bessel function Kv with v = r + 1/2 has the well 
known closed form, 

( ) {if -u ~ (r + k)! ( )-k 
Kr+1/2 u = V 2;"e t:o (r- k)!k! 2u ' 

the AL density (11) simplifies to 

crey'"E-lm-Cy'y•E-ly r (r + k)! ( I 1 ) -k 

g(y) = r+l L ( k)lkl 2CVy "£- Y , y f. 0, 
( 2n..jyl"£-1y) 1"£11/2 k=O r- .. 

where v = (2-d)/2 and C = J2 + m 1"£-1m. In the three dimensional space, 
we have r = 0 and the density has a particularly explicit form, 

2.2 Distributional Limits 

We have a complete analogy with the one dimensional case. Namely, a ran­
dom vector Y in Rd has an AL distribution with parameters m and "£, if 
and only if there exist a sequence Yi, i ~ 1, of i.i.d. r.v.'s in Rd with the 
mean vector m and the covariance matrix "£ such that 

(12) 

where Np is a geometrically distributed random variable independent of the 
sequence Yi. Relation (12) can be proved via Cramer-Wold device coupled 
with proposition 2.1, see Kozubowski and Podgorski (1998b) for details. 
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Figure 1: Six examples of bivariate asymmetric Laplace densities: Top: m1 = 
m 2 = 0, u1 = u2 = 1, p = 0 (left) and p = -0.8 (right); Middle: m 1 = m2 = 
1, u1 = u2 = 1, p = 0 (left) and p = -0.8 (right); Bottom: m 1 = -2, m2 = 1, 
u1 = 0.5, u2 = 2, p = 0 (left) and p = -0.8 (right). 

2.3 Normal Distribution with Random Mean and Co-
variance 

Let Y be an AL random vector with the parameters m and :E, let X be 
a normal random vector centered at zero and with the covariance matrix 
:E, and let Z be a standard exponential random variable independent of X. 
Then the following representation holds 

(13) 
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To verify (13), write the right-hand side of (13) as 

Eeit'(mZ+VZX) = 100 

eit'mZ.p(zlf2t)e-zdz, (14) 

conditioning on Z and denoting the ch.f. of X by .P. Since .P ( t) = e -t' :m;2 , 

(14) produces (8). 

Remark. It follows from the representation (13) that EY = m and VarY= 
:E + mm'. Indeed, since EXiXj = aii and EZ2 = 2, we have: 

E(Yi}j) 

so that 

E[(miZ + Z112 Xi)(mi + Z 112 Xj)] 

mimiEZ2 + E(Z)E(XiXj) = 2mimi + aii• 

The above representation can be used to effectively simulate multivari­
ate AL random vectors through generation of multivariate normal random 
vectors and standard exponential random variables. In Figure 2, we present 
results of computer generation of bivariate AL random vectors and compare 
the results with the corresponding bivariate normal samples. As in the uni­
variate case, we see greater peakedness and longer tails of AL laws compared 
with the normal distribution. Note that for m = 0 both random variables 
have the same theoretical means and covariances (see the Remark above), 
although from the figure it may appear that the AL r.v. has greater variabil­
ity. 

2.4 Polar Representation 

The complete analog of the one-dimensional representation given by (7) is 
presently an open question. Below we discuss such a representation for the 

case m = 0. Here, from (13), we obtain y .#::. VZRV, where R = vX':E-1 X 
and U = y'X/(X':E-1 X). It is a well known that Rand U are indepen­
dent, and R2 has Chi-square distribution with d degrees of freedom, while 
U is distributed uniformly over the ellipsoid {y : y'~-1y = 1} (in the one 
dimensional case this independence simply means that for a normal random 
variable X centered at zero, U = sign(X) and R = lXI are independent). 
Further, set R = VZR to obtain the representation 

Y4RV,, (15) 

where R is a positive random variable, independent of U, with density 
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Figure 2: Monte Carlo simulations of bivariate asymmetric Laplace samples 
(left) vs. normal samples (right) (sample size equal to 2000). Top: m1 = 
m2 = 0, a-1 = a-2 = 1, p = 0. Bottom: m 1 = m2 = 1, a-1 = a-2 = 1, p = 4/5. 

Note that in the univariate case, where d = 1 and :E = au, we have R :1:. 
Z / 1/'2, where Z is standard exponential, while U is a random variable taking 
on values ±foll with equal probabilities. Thus, the representation (15) 
coincides with (7) with a = ..;a;;[2. 
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