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Abstract. We show that in the presence of massive particles, such as nucleons, the standard low-energy
expansion, in powers of meson momenta and light-quark masses, in general converges in only part of the
low-energy region. The expansion of the scalar form factor σ(t), for instance, breaks down in the vicinity of
t = 4M2

π . In the language of heavy baryon chiral perturbation theory, the proper behaviour in the threshold
region results only if the multiple internal-line insertions generated by relativistic kinematics are summed
up to all orders. We propose a method that yields a coherent representation throughout the low-energy
region, while keeping Lorentz and chiral invariance explicit at all stages. The method is illustrated with a
calculation of the nucleon mass and of the scalar form factor to order p4.
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1 Introduction

The effective low-energy theory of strong interaction is
based on a simultaneous expansion of the Green functions
of QCD in powers of the external momenta and of the
quark masses (chiral expansion), In the vacuum sector,
where the only low-energy singularities are those gener-
ated by the Goldstone bosons, dimensional regularization
yields homogeneous functions of the momenta and Gold-
stone masses, so that each graph has an unambiguous or-
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der in the chiral expansion. In the sector with baryon num-
ber 1, however, the low-energy structure is more compli-
cated. The corresponding effective theory can be formu-
lated in manifestly Lorentz invariant form [1], but it is
not a trivial matter to keep track of the chiral order of
graphs containing loops within that framework: In gen-
eral, the chiral expansion of the loop graphs starts at the
same order as that of the corresponding tree graphs, so
that the renormalization of the divergences also requires
a tuning of those effective coupling constants that occur
at lower order – in particular, the nucleon mass requires
renormalization at every order of the series.

Most of the recent calculations avoid this complication
with a method referred to as heavy baryon chiral pertur-
bation theory (HBχPT) [2–5]. The starting point of that
method is the same Lorentz invariant effective Lagrangian
that occurs in the relativistic approach. The loop graphs,
however, are evaluated differently: The Dirac spinor that
describes the nucleon degrees of freedom is reduced to
a two-component field, and the baryon kinematics is ex-
panded around the nonrelativistic limit. At the end of
the calculation, the amplitude may then be recast into
Lorentz invariant form. This method keeps track of the
chiral power counting at every step of the calculation, at
the price of manifest Lorentz invariance.

Mojžǐs [6] and Fettes, et al. [7], have evaluated the
πN-scattering amplitude to order p3 within that frame-
work. The explicit result is remarkably simple, the one-
loop graphs being expressible in terms of elementary func-
tions. On general grounds, the outcome of this calculation
must be the same as what is obtained if the representa-
tion of the scattering amplitude given in [1] is expanded
around the nonrelativistic limit; that representation also
holds to order p3. Indeed, Ellis and Tang [8] have shown
that this is the case.



644 T. Becher, H. Leutwyler: Baryon chiral perturbation theory in manifestly Lorentz invariant form

Quite apart from the fact that the nonrelativistic ex-
pansion turns the effective Lagrangian into a rather volu-
minous object, and that care is required to properly ana-
lyze the corresponding loop graphs1, HBχPT suffers from
a deficiency: The corresponding perturbation series fails to
converge in part of the low-energy region. The problem is
generated by a set of higher-order graphs involving inser-
tions in nucleon lines. A similar phenomenon also appears
in the effective field theory of the NN interaction [13]. It
arises from the nonrelativistic expansion, and does not oc-
cur in the relativistic formulation of the effective theory.

The purpose of the present paper is to present a method
that exploits the advantages of the two techniques dis-
cussed above and avoids their disadvantages. In Sects. 3
and 4, we demonstrate the need to sum up certain graphs
of HBχPT, using the example of the nucleon scalar form
factor. Next, we show that the infrared singularities of the
various one-loop graphs occurring in the chiral perturba-
tion series can be extracted in a relativistically invariant
fashion (Sects. 5 and 6). The method we are using here
follows the approach of Tang and Ellis [8]. There is a slight
difference, insofar as we do not rely on the chiral expan-
sion of the loop integrals – that expansion does not always
converge. A comparison with HBχPT is given in Sect. 7,
where we also show that our procedure may be viewed
as a novel method of regularization, which we call “in-
frared regularization”. The method represents a variant
of dimensional regularization. While that scheme permits
a straightforward counting of the powers of momentum at
high energies, infrared regularization preserves the low-
energy power-counting rules that underlie chiral pertur-
bation theory. Renormalization is discussed in Sect. 8. We
then analyze the convergence of the chiral expansion of
the one-loop integrals, and show that the expansion co-
efficients relevant for πN scattering can be expressed in
terms of elementary functions (Sect. 9). Whenever that
expansion converges, the result agrees with the one ob-
tained within HBχPT. We also construct an explicit low-
energy representation of the triangle graph, for which the
nonrelativistic expansion fails. The method is illustrated
with an evaluation of the chiral perturbation series for the
nucleon mass, the wave-function renormalization constant
and the scalar form factor. The physics of the result ob-
tained for the form factor and for the σ term is discussed
in Sects. 12 and 13. We demonstrate that a significant part
of the infrared singularities that are proportional to M3

π is
common to both the form factor and to the πN-scattering
amplitude, and thus drops out when the predictions of the
theory are considered. The observation leads to a specific
reordering of the chiral-perturbation series that reduces
the matrix elements of the perturbation quite substan-
tially. The effects generated by the ∆(1232) are discussed
in some detail (Appendix D), and we also compare our
framework with the ancestor of the effective theory de-
scribed here: the static model. Section 14 contains our
conclusions.

1 Wave-function renormalization, for instance, is not a trivial
matter [9–12].

2 Effective Lagrangian

The variables of the effective theory are the meson field
U(x) ∈ SU(2) and the Dirac spinor ψ(x) describing the de-
grees of freedom of the nucleon. The effective Lagrangian
contains two pieces,

Leff = Lπ + LN .

The first part is the well-known meson Lagrangian, which
only involves the field U(x) and an even number of deriva-
tives thereof. For the second part, which is bilinear in ψ̄(x)
and ψ(x), the derivative expansion contains odd as well as
even terms:

LN = L(1)
N + L(2)

N + L(3)
N + . . .

The explicit expressions involve the quantities u, uµ, Γµ

and χ±. In the absence of external vector and axial fields,
these are given by

u2 = U , uµ = iu†∂µUu
† ,

Γµ = 1
2 [u†, ∂µu] , χ± = u†χu† ± uχ†u .

At leading order, the effective Lagrangian is fully deter-
mined by the nucleon mass and by the matrix element
of the axial charge (m and gA denote the corresponding
leading order values, and Dµ ≡ ∂µ + Γµ):

L(1)
N = ψ̄ (iD/−m)ψ + 1

2 gA ψ̄ u/ γ5ψ ,

We disregard isospin-breaking effects. The Lagrangian of
order p2 then contains four independent coupling con-
stants2

L(2)
N = c1 〈χ+〉 ψ̄ ψ − c2

4m2 〈uµuν〉 (ψ̄ DµDνψ + h.c.) (1)

+
c3
2

〈uµu
µ〉 ψ̄ ψ − c4

4
ψ̄ γµ γν [uµ, uν ]ψ .

Below, we apply the machinery to the scalar form factor.
This quantity does not receive any contribution from L(3)

N ,
but two of the terms in L(4)

N ,

L(4)
N = − e1

16
〈χ+〉2ψ̄ ψ +

e2
4

〈χ+〉 2(ψ̄ ψ) + . . . , (2)

do generate contributions proportional to e1M
4
π and

e2M
2
π t, respectively.

2 We use the conventions of [3]. In this notation, the coupling
constants of [1] are given by: m cGSS

1 =F 2c1, m cGSS
2 =−F 2c4,

m cGSS
3 = −2F 2c3, m (cGSS

4 − 2 m cGSS
5 ) = −F 2c2 (to order p2,

the terms cGSS
4 and cGSS

5 enter the observables only in this
combination), while those of [14] read: 16 a1 = 8 m c3 + g2

A,
8 a2 = 4 m c2 − g2

A, a3 = m c1, 4 a5 = 4 m c4 + 1 − g2
A. In the

numerical analysis, we work with Fπ = 92.4MeV, gA = 1.267,
Mπ = Mπ+ .
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Fig. 1. Triangle graph. The solid, dashed, and wiggly lines
represent nucleons, pions and an external scalar source, re-
spectively

3 Scalar form factor

We first wish to show that, in the sector with baryon
number 1, the standard chiral expansion in powers of me-
son momenta and quark masses converges in only part
of the low-energy region. For definiteness, we consider
the scalar form factor of the nucleon in the isospin limit
(mu = md = m̂),

〈N(P ′, s′)| m̂ (ūu+ d̄d) |N(P, s)〉 = ū′u σ(t) ,

t = (P ′ − P )2 .

The first two terms occurring in the low-energy expansion
of this form factor were worked out long ago, on the ba-
sis of a one-loop calculation within the Lorentz invariant
formulation of the effective theory [1]. In that expansion,
t, m̂ and M2

π are treated as small quantities of O(p2),
while the nucleon mass represents a term of O(p0). In
view of the quark-mass factor occurring in the definition
of σ(t), the low-energy expansion starts at order p2, with
a momentum-independent term generated by L(2)

N :

σ(t) = −4c1M2
π

+
3 g2

AM
2
πmN

4F 2
π

{
(t− 2M2

π) γ(t) − Mπ

8πmN

}
+O(p4) (3)

The constant c1 occurring here is a renormalized version
of the bare coupling constant in (1). Since the renormal-
ization depends on the framework used, we do not discuss
it at this preliminary stage. The contribution of order p3

is generated by the triangle graph shown in Fig. 1, and is
fully determined by Fπ and gA.

The term involves the convergent scalar loop integral

γ(t) =
1
i

∫
d4k

(2π)4
1

(M2− k2−iε) (M2−(k−q)2−iε)

× 1
(m2−(P−k)2−iε)

(4)

Here and in the following, we identify the masses occurring
in the loop integrals with their leading order values,Mπ →
M , mN → m.

The function γ(t) represents a quantity ofO(1/p). Since
the external nucleon lines are on the mass shell, the func-
tion exclusively depends on t = q2, M and m. The func-
tion is analytic in t, except for a cut along the positive

real axis, starting at t = 4M2. The triangle graph also
shows up in the analysis of the πN-scattering amplitude
to one-loop order, so that the function γ(t) is relevant also
for that case.

The imaginary part of γ(t) can be expressed in terms
of elementary functions [1]:

Imγ(t) =
θ(t− 4M2)

8π
√
t (4m2 − t)

arctan

√
(t− 4M2)(4m2 − t)

t− 2M2 .

(5)

Dropping corrections of order t/m2 = O(p2), this expres-
sion simplifies to

Imγ(t) =
θ(t− 4M2)
16πm

√
t

{
arctan

2m
√
t− 4M2

t− 2M2 +O(p2)

}
.

(6)

The problem addressed above shows up in this formula:;
the quantity

x =
2m

√
t− 4M2

t− 2M2

represents a term of O(1/p). The standard chiral expan-
sion of Imγ(t) thus corresponds to the series arctanx =
π/2−1/x+1/(3x3)+ . . . , which, however, only converges
for |x| > 1. In the vicinity of t = 4M2, the condition is
not met, so that the chiral expansion diverges. The prob-
lem arises because the quantity x takes small values there,
while the low-energy expansion treats x as a large term of
O(1/p). In the region |x| < 1, we may instead use the con-
vergent series arctanx = x−x3/3+ . . . , but this amounts
to an expansion in inverse powers of p.

The rapid variation of the form factor near t = 4M2

is related to the fact that the function arctan z exhibits
branch points at z = ± i. The analytic continuation of
γ(t) to the second sheet therefore contains a branch point
just below the threshold:

(t− 4M2)(4m2 − t)
(t− 2M2)2

= −1 → t = 4M2 − M4

m2 .

This implies that, in the threshold region, the form fac-
tor does not admit an expansion in powers of meson mo-
menta and quark masses. As is shown in [3], the heavy-
baryon perturbation series to O(p3) coincides with the chi-
ral expansion of the relativistic result [1], and it is noted
in [5] that this representation does not make sense near
t = 4M2. The corresponding imaginary part amounts to
the approximation arctanx → π/2, so that the singu-
larity structure on the second sheet is discarded. Within
HBχPT, an infinite series of internal-line insertions must
be summed up to properly describe the behaviour of the
form factor near the threshold. The relativistic formula
(3), on the other hand, does apply in the entire low-energy
region, because it involves the full function γ(t) rather
than the first one or two terms in the chiral expansion
thereof.
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4 Low-energy expansion near the threshold

We conclude that in the threshold region, the low-energy
structure cannot be analyzed in terms of the standard
chiral expansion. The first two terms of this expansion,
i.e., the first two terms of the heavy-baryon perturbation
series,

Imγ1(t) =
θ(t− 4M2)
32πmM

{
πM√
t

− α (t− 2M2)√
t (t− 4M2)

}
, (7)

provide a decent representation only if t is not close to the
threshold.

To resolve the structure in the threshold region, we
need to consider an expansion that does not treat the
quantity x as large. This can be done by replacing the
variable t with the dimensionless parameter

ξ =
√
t− 4M2

αM
, α =

M

m
,

and expanding the amplitude at fixed ξ, so that the mo-
mentum transfer

t = (4 + α2ξ2)M2

stays close to the threshold.
For the imaginary part, the expansion at fixed ξ takes

the form

Imγ(t) =
θ(t− 4M2)
32πmM

{
arctan ξ +O(p2)

}
.

At large values of ξ, this representation smoothly joins the
one provided by the heavy-baryon expansion, where t/M2

is kept fixed. To amalgamate the two, we note that, in
the threshold region, the quantity Imγ1(t) reduces to the
first two terms of the series arctan ξ ≡ π/2− arctan 1/ξ =
π/2 − 1/ξ + . . . Hence the difference between Imγ(t) and
the first two terms of the heavy baryon perturbation series
is approximately given by

Imγ2(t) =

θ(t− 4M2)
32πmM

{
αM√
t− 4M2

− arctan
αM√
t− 4M2

}
. (8)

Outside the threshold region, Imγ2(t) is negligibly small:
In the chiral counting of powers, it represents a term of
order p2. The representation

Imγ(t) = Imγ1(t) + Imγ2(t) +O(p) (9)

holds irrespective of whether t/M2 or ξ is held fixed. In-
deed, one may verify that on the entire interval 4M2 ≤
t ≤ 20M2, the formula differs from the expression in (6)
by less than 1 %.

Finally, we turn to the function γ(t) itself. As men-
tioned above, the loop integral cannot be expressed in
terms of elementary functions. We may, however, give an
explicit representation that holds to first nonleading order

P P

k

P-k

Fig. 2. Self energy

of the low-energy expansion, throughout the low-energy
region. The calculation is described in Appendix A; it
leads to a representation of the form

γ(t) = γ1(t) + γ2(t) +O(p) . (10)

The first term corresponds to the result obtained in HBχPT
[3]. This piece explodes in the vicinity of the threshold, like
its imaginary part. The explicit expression for the remain-
der reads

γ2(t) =
1

32πmM

{
αM√

4M2 − t
− ln

{
1 +

αM√
4M2 − t

}}
.

(11)

In the language of HBχPT, this term is generated by
multiple internal-line insertions. It takes significant val-
ues only in the immediate vicinity of the threshold, where
it cures the deficiencies of γ1(t). Indeed, this term does
account for the branch cut at t = 4M2 −M4/m2, which
is missing in γ1(t).

5 Infrared singularities in the self-energy

Having established the need to sum certain graphs of the
heavy baryon chiral perturbation series to all orders, we
now formulate a general method that leads to a repre-
sentation where the relevant graphs are automatically ac-
counted for. The method relies on dimensional regular-
ization: We analyze the infrared singularities of the loop
integrals for an arbitrary value of the dimension d.

To explain the essence of the method, we first con-
sider the simplest example: the self-energy graph shown
in Fig. 2. We again focus on the corresponding scalar loop
integral

H =
1
i

∫
ddk

(2π)d

1
(M2 − k2 − iε) (m2 − (P − k)2 − iε)

.

5.1 Singular and regular parts

The integral H = H(P 2,M2,m2) converges for d < 4. We
need to analyze H for nucleon momenta close to the mass
shell, P = mv + r, where v is a timelike unit vector and
r is a small quantity of order p. It is convenient to work
with the dimensionless variables

Ω =
P 2 −m2 −M2

2mM
, α =

M

m
, (12)

which represent quantities of order Ω = O(p0) and α =
O(p), respectively (recall that m is the larger one of the
two masses, α ' 1/7).



T. Becher, H. Leutwyler: Baryon chiral perturbation theory in manifestly Lorentz invariant form 647

In the limit M → 0, the integral develops an infrared
singularity, generated by small values of the variable of
integration, k = O(p). In that region, the first factor in
the denominator is of O(p2), while the second is of order
p. Accordingly, the chiral expansion of H contains contri-
butions of O(p d−3). We may enhance these by consider-
ing small dimensions. For d < 3, the leading term in the
chiral expansion of H exclusively stems from the region
k = O(p), which generates a singular contribution of or-
der p d−3, as well as nonleading terms of order p d−2, p d−1,
. . . The remainder of the integration region does not con-
tain infrared singularities, and thus yields a contribution
that can be expanded in an ordinary power series. For
sufficiently large, negative values of d, the infrared region
dominates the chiral expansion to any desired order.

To work out the infrared singular piece, we use the
standard Schwinger–Feynman parametrization

1
a b

=
∫ 1

0

dz
{ (1 − z) a+ z b }2 . (13)

Performing the integration over k, we obtain

H = κ

∫ 1

0
dz C

d
2 −2 , κ = (4π)− d

2 m d−4 Γ (2 − d
2 ) , (14)

C = z2 − 2αΩ z (1 − z) + α2(1 − z)2 − iε .

In this representation, the infrared singularity arises from
small values of z: There, the factor C vanishes if α tends
to zero. We may isolate the divergent part by scaling the
variable of integration, z = αu. The upper limit then
becomes large. We extend the integration to ∞ and define
the infrared singular part of the loop integral by

I = κ

∫ ∞

0
dz C

d
2 −2 = καd−3

∫ ∞

0
duD

d
2 −2 , (15)

D = 1 − 2Ω u+ u2 + 2αu (Ω u− 1) + α2 u2 − iε .

For short, we refer to I as the infrared part of H. The
remainder is given by

R = −κ
∫ ∞

1
dz C

d
2 −2 . (16)

The decomposition3

H = I +R (17)

neatly separates the infrared singular part from the regu-
lar part: For noninteger values of the dimension, the chiral
expansion of I exclusively contains fractional powers of p,

I = O(p d−3) +O(p d−2) +O(p d−1) + . . . ,

while the corresponding expansion of R is an ordinary
Taylor series,

R = O(p 0) +O(p 1) +O(p 2) + . . .

3 In the terminology of Ellis and Tang [8], I represents the
soft component of the amplitude, while R is the hard com-
ponent. We do not use these terms to avoid confusion with
the standard concepts, which concern the behaviour at short
rather than long distances.

5.2 Properties of the decomposition

For an arbitrary value of d, the explicit expressions for the
quantities H, I, R involve hypergeometric functions. In
four dimensions, the corresponding integrals are elemen-
tary. We will give the explicit representations for d = 4
when we discuss renormalization (see Sects. 8 and 9).

In terms of the dimensionless variables α and Ω, the
chiral expansion of the infrared part takes the form

I = md−4αd−3
(
i0 + α i1 + α2 i2 + . . .

)
. (18)

The coefficients in, which only depend on Ω, are obtained
by expanding the integrand in (15) in powers of α. The
corresponding explicit expressions also involve hypergeo-
metric functions. The expansion coefficients of the remain-
der, on the other hand, are simple polynomials of Ω:

R =
md−4 Γ (2 − d

2 )

(4π)
d
2 (d− 3)

×
{

1 − αΩ + α2 1 + (d− 6)Ω2

(d− 5)
+ . . .

}
. (19)

The series contains poles at d = 3, 4, 5 . . . We now wish to
show that, for d < 3, the chiral expansion of R converges
throughout the low-energy region.

The integrand of the representation (16) is analytic
in α, except for the cuts associated with the zeros of C.
These are located at

α =
z

z − 1

(
−Ω ±

√
Ω2 − 1

)
.

The expansion of the integrand thus converges in the disk

|α| < |Ω ±
√
Ω2 − 1 | . (20)

The condition is obeyed for all real values of Ω in the
interval

−1 + α2

2α
< Ω <

1 + α2

2 α
.

This range corresponds to 0< P 2< 2m2 + 2M2 and thus
generously covers the entire low-energy region. Moreover,
for d < 3, the integral converges uniformly, so that R is
analytic in α: The series (19) converges for all values of Ω
in the above interval.

In the case of I, the representation (15) is relevant.
The zeros of the term D are located at

α =
1
u

−Ω ±
√
Ω2 − 1 .

In the range −1 < Ω < 1, the square root is imaginary, so
that

the zeros occur at |α|2 = (1/u − Ω)2 + 1 − Ω2. This
expression has a minimum at u = 1/Ω. On the entire in-
terval of integration, the chiral expansion of the integrand
thus converges if |α|2 < 1 −Ω2, or, equivalently,
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−
√

1 − α2 < Ω <
√

1 − α2 . (21)

Again, the integral converges uniformly for d < 3. Hence
the series (18) converges if Ω is in the range (21). This
interval is considerably more narrow than the one found
above, but in the present context, the above result suf-
fices: It demonstrates that the two parts occurring in the
decomposition of the self-energy can unambiguously be
characterized by their analytic properties at low energies.
Since the functions I, R are analytic in the external mo-
menta, their values are uniquely determined outside the
above region also. Indeed, we will show in Sect. 9 that
the chiral expansion of I also converges in the entire low-
energy region.

5.3 Representation in terms of modified propagators

It is instructive to interpret the above decomposition in
terms of the formula (13). The infrared part results if the
integral is taken from 0 to ∞ rather than from 0 to 1,∫ ∞

0

dz
{ (1 − z) a+ z b }2 =

1
a (b− a)

.

This shows that the decomposition (17) corresponds to
the two terms in the algebraic identity

1
a b

=
1

a (b− a)
− 1
b (b− a)

. (22)

Note, however, that the iε prescription drops out in the
difference b−a, so that the integral over k of the individual
terms on the right is ambiguous. To avoid the ambiguity,
we may, for instance, equip the two masses with different
imaginary parts. The proper expression for the infrared
part reads

I =
1
i

∫
ddk

(2π)d

1
M2 − k2 − iε

× 1
m2 − P 2 + 2Pk −M2 − iε

. (23)

It differs from H in that the term k2 occurring in the
nucleon propagator is replaced by M2. The regular part,
on the other hand, is given by

R = −1
i

∫
ddk

(2π)d

1
m2 − (P − k)2 − iε

× 1
m2 − P 2 + 2Pk −M2 − iε

. (24)

The expression involves two heavy-particle propagators,
one where the term with k2 is retained, one where this
term is replaced by M2.

The function H is symmetric with respect to an inter-
change of M and m. The term I collects those contribu-
tions of the expansion in powers of α = M/m that involve

fractional powers of M , while R collects the fractional
powers of m. The operation M ↔ m, k ↔ P − k inter-
changes a and b, so that the two terms on the right-hand
side (r.h.s.) of (22) are mapped into one another. This sug-
gests that an interchange of the two masses takes I into
R and vice versa. The argument does not follow through,
however: The difference in the iε prescriptions shows that
the operation does not take the integral in (23) into the
one in (24). The sum I+R, of course, is symmetric under
an interchange of the two masses.

In the heavy-baryon chiral-perturbation series, the scal-
ar self-energy graph of Fig. 2 is replaced by an infinite
string of one-loop graphs, involving an arbitrary number
of internal-line insertions (Fig. 3). The corresponding scal-
ar loop integrals are obtained from the relativistic version
with P = mv + r, treating both r and k as small quan-
tities of order p and expanding the nucleon propagator in
powers of p:

1
2mv · (k − r) − (k − r)2 − iε

=
1

2mv · (k − r) − iε
+

(k − r)2

{2mv · (k − r) − iε}2 + . . .

The integral over the leading term converges for d < 3,
yielding a contribution of order p d−3 that depends on the
vector r only through the projection v · r. The integral
over the second term of the series converges for d < 2
and yields a term of order p d−2, etc. The individual con-
tributions are not Lorentz invariant, but the series may
be reordered in such a manner that only the Lorentz in-
variant combination 2mv · r + r2 = P 2 −m2 enters: The
heavy-baryon series then reproduces the expansion of I in
(18), term by term.

To demonstrate that this is so, we recall that the in-
frared part dominates the chiral expansion to any desired
order if d is sufficiently negative: For d < 3−n, the region
k = O(p) yields all of the terms in the chiral expansion of
the integral H, up to and including p d−3+n. In that region
of integration, however, it is legitimate to interchange the
integration with the expansion. This is precisely what is
done in the heavy-baryon approach. Hence that approach
does yield the expansion of I, to any finite order: The in-
frared part of the relativistic loop integral represents the
sum of the corresponding integrals occurring in the heavy-
baryon series. The difference between the two formulations
of the effective theory resides in the regular part: In the
heavy-baryon approach, this part is absent. The represen-
tation in (24) shows that R corresponds to a loop formed
with two nucleon lines. Evaluating integrals of this type
in the manner described above, the rules of HBχPT [15]
indeed yield R = 0, order by order.

5.4 Dispersive representation

The function H(P 2,M2,m2) obeys a dispersion relation,
which in four dimensions requires one subtraction. Setting
s = P 2 and suppressing the other variables, the relation
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+ + +   ...

Fig. 3. Internal-line insertions. The
double line denotes the heavy-baryon
propagator [2m v · (k − r) − iε]−1; the
cross, an insertion of (k − r)2

takes the form

H(s) = H(s0)

+
s− s0
π

∫ ∞

s+

ds′

(s′ − s0) (s′ − s− iε)
ImH(s′) ,

ImH(s) =
ρ(s)

16π s
θ(s− s+) , s± = (m±M)2 . (25)

The function ρ(s) stands for the familiar two-body phase-
space factor

ρ(s) =
√

(s− s+) (s− s−) = 2Mm
√
Ω2 − 1 .

The logarithmic divergence of the loop integral manifests
itself in the subtraction constant H(s0), which contains a
pole at d = 4. If we subtract at threshold, s0 = s+, the
subtraction constant is given by4

H(s+) =
Γ (2 − d

2 )

(4π)
d
2 (d− 3)

md−3 +Md−3

(m+M)
.

The structure of this expression is typical: It contains a
term with a fractional power of M , and one with a frac-
tional power of m, representing the infrared singular and
regular parts, respectively,

I(s+) =
Γ (2 − d

2 )

(4π)
d
2 (d− 3)

Md−3

(m+M)
,

R(s+) =
Γ (2 − d

2 )

(4π)
d
2 (d− 3)

md−3

(m+M)
.

The dispersion relation (25) is a variant of the formula
(14): In the limit d → 4, the corresponding representation
forH(s)−H(s+) is proportional to

∫ 1
0 dz ln(C/C+), where

C+ is the value of C at s = s+. Since C is linear in s,

C =
z(1 − z)
m2 (s′ − s− iε) ,

s′ =
m2

1 − z
+
M2

z
,

ds′

ρ(s′)
=

|dz|
|z(1 − z)| ,

the argument of the logarithm reduces to (s′−s− iε)/(s′−
s+). With an integration by parts this indeed leads to
(25). Note that, on the interval 0 < z < 1, the function
s′ = s′(z) has a minimum at

zmin =
M

m+M
, s′

min = s+ .

4 While the representation for the subtraction term holds in
any dimension, the one for the discontinuity is valid only in
the limit d → 4.

The map z → s′ thus covers the interval (m+M)2 < s′ <
∞ twice.

In the Feynman parameter representation, the only dif-
ference among H, I, and R is that the integrations ex-
tend over different intervals. The one relevant for R is
1 < z < ∞, which is mapped onto −∞ < s′ < 0. Ac-
cordingly, R has a cut along the negative real axis, but is
analytic in the right half-plane. The discontinuity across
the cut is only half as big as in the case of H, because the
interval is now covered only once:

ImR(s) =
ρ(s)

32π s
θ(−s) .

The expression holds only for s 6= 0: In addition to the
cut, the function R(s) contains a pole at s = 0. In view of
the singular behaviour of the discontinuity, the dispersion
relation cannot be written in the form (25). Instead, we
may establish a twice-subtracted dispersion relation for
sR(s) (compare (31) in Sect. 8):

R(s) =
s+m2 −M2

s

m+M

2m
R(s+)

+
(s− s+) (s− s−)

32π2 s

∫ 0

−∞

ds′

ρ(s′) (s′ − s− iε)
.

In contrast to the subtraction term in the dispersion rela-
tion for the full integral H(s), the one occurring here does
not represent a constant, but contains a pole at s = 0.
That point, however, is far outside the region covered by
chiral perturbation theory. Neither the subtraction term
nor the dispersion integral contains singularities in the
low-energy region. The dispersive representation neatly
demonstrates that the chiral expansion of R is an ordi-
nary Taylor series.

The function I is the difference between H and R and
hence has a cut on the left as well as one on the right:

Im I(s) =
ρ(s)

16π s

{
θ(s− s+) − 1

2
θ(−s)

}
.

Note that the infrared part possesses the same disconti-
nuity across the right-hand cut as the full integral, even
far away from the threshold.

6 Generalization

We now generalize the above analysis to arbitrary one-
loop graphs.

All of these can be reduced to integrals of the form

Hµ1...µr
mn =

1
i

∫
ddk

(2π)d

kµ1 . . . kµr

a1 . . . am b1 . . . bn
.
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The denominator stems from the meson and nucleon prop-
agators:

ai = M2 − (k − qi)2 − iε ,
bj = m2 − (Pj − k)2 − iε .

Part of the numerator is generated by the derivative cou-
plings characteristic of chiral-perturbation theory. The re-
mainder arises from the term k/ that occurs in the nu-
merator of the nucleon propagator, Pj/ − k/ +m. The ex-
ternal meson momenta qµ

i represent quantities of order
p. The nucleon momenta Pµ

j are close to the mass shell,
P 2

j = m2 +O(p).
On account of Lorentz invariance, the above integral

may be decomposed in a basis formed with tensor poly-
nomials of the external momenta Pµ

i , qµ
k . Inverting this

representation, the coefficients of the decomposition may
be expressed in terms of scalar integrals, where the mo-
mentum factors are replaced either by their projections
onto the external momenta or by factors of k2. These,
however, represent linear combinations of the terms ai, bk
occurring in the denominator5

k2 = M2 − a1 ,

P1 · k = 1
2 (b1 − a1 + P 2

1 −m2 +M2) ,
. . .

If the graph in question involves several different exter-
nal momenta, the above procedure may be rather clumsy,
but it shows that all one-loop integrals arising in the πN
system may be expressed in terms of the scalar functions

Hmn =
1
i

∫
ddk

(2π)d

1
a1 . . . am b1 . . . bn

, (26)

so that it suffices to study the properties of these6 .

6.1 Singular and regular parts

The self-energy corresponds to H = H11, and the triangle
graph to

γ = H21. Concerning the counting of powers of mo-
mentum, loops that do not involve the propagation of a
heavy particle are trivial: The integral then represents a
homogeneous function of order p d−2m, so that a regular
part does not occur:

Im0 = Hm0 , Rm0 = 0 .

In the opposite extreme, where the graph exclusively
involves nucleon propagators, we may shift the variable
of integration with k′ = k − P1. The denominator then
depends on the external momenta only through the dif-
ferences Pj − P1, which represent small terms of O(p).

5 Without loss of generality, we may put one of the external
momenta to zero, say q1.

6 A more efficient method is described in [16]. As shown
there, the tensor integrals may be generated by applying suit-
able differential operators to the scalar ones.

In Euclidean space, the integrand is thus approximately
given by (m2 + k′ 2)−n, so that the region k′ = O(m)
dominates. For d < 2n − r, the first r terms of the chiral
expansion may be worked out by performing the expan-
sion under the integral – the coefficients are polynomials
in the external momenta. Hence the integral does not con-
tain any infrared singularities:

I0n = 0 , R0n = H0n .

If the loop contains meson as well as nucleon propaga-
tors, the integral involves both an infrared singular and a
regular piece. The infrared singularities arise from the re-
gion k = O(p). There, each of the pion propagators yields
a factor of p−2, while each of the nucleon propagators
yields a factor of p−1, so that the infrared region gener-
ates a contribution of order p d−2m−n.

We may combine all of the mesonic propagators by
means of the formula

1
a1 . . . am

=
(

− ∂

∂M2

)(m−1)∫ 1

0
dx1 . . .

∫ 1

0
dxm−1

X

A
.

The numerator is given by (m ≥ 2 and X = 1 if m = 2)

X = x2 · (x3) 2 · · · (xm−1)m−2 .

The denominator is obtained recursively, with

Ap+1 = xpAp + (1 − xp) ap+1 (p = 1, . . . ,m− 1),
A1 = a1 , A = Am .

The result for A is quadratic in k,

A = Ā− (k − q̄)2 − iε .

The constant term Ā is of order p2, while q̄ represents a
linear combination of external momenta, and is of order
p. Likewise, if there are several nucleon propagators, we
may combine these with

1
b1 . . . bn

=
(

− ∂

∂m2

)(n−1)∫ 1

0
dy1 . . .

∫ 1

0
dyn−1

Y

B
,

Y = y2 · (y3) 2 · · · (yn−1)n−2 .

In this case, the denominator is of the form

B = B̄ − (P̄ − k)2 − iε ,

with P̄ 2 = m2 +O(p), B̄ = m2 +O(p). The loop integral
then becomes

Hmn =(
− ∂

∂M2

)(m−1)(
− ∂

∂m2

)(n−1)∫ 1

0
dxdy XY

1
i

∫
ddk

(2π)d

1
AB

,

where we have abbreviated the integral over the m+n−2
Feynman parameters by

∫ 1
0 dxdy. The integral over k is

the one studied in Sect. 5,

1
i

∫
ddk

(2π)d

1
AB

= H(P 2,M2,m2)
P→P̄−q̄, M2→Ā, m2→B̄

,



T. Becher, H. Leutwyler: Baryon chiral perturbation theory in manifestly Lorentz invariant form 651

so that the analysis given there may be taken over. The
decomposition H = I +R leads to an analogous splitting
for the general scalar one-loop integral:

Hmn = Imn +Rmn .

In particular, the representation for Imn reads

Imn = (27)∫ 1

0
dxdy XY

(
− ∂

∂Ā

)(m−1)(
− ∂

∂B̄

)(n−1)

I
(
(P̄ − q̄)2, Ā, B̄

)
.

In view of the formula (15), the representation of the in-
frared part in terms of Feynman parameters coincides with
the one obtained for the full integral Hmn, except that the
integration over one of these parameters – the one needed
to combine the meson propagators with the nucleon prop-
agators – runs from 0 to ∞ rather than from 0 to 1. Per-
forming the derivatives with respect to the masses, and
integrating over k, we obtain

Imn =
Γ (m+ n− d

2 )

(4π)
d
2

×
∫ 1

0
dxdy XY

∫ ∞

0
dz (1 − z)m−1 zn−1 C

d
2 −m−n ,

C = (1 − z) Ā+ z B̄ − z (1 − z) (P̄ − q̄)2 − iε . (28)

The analogous representation for Rmn is obtained by re-
placing the interval of integration for z by 1 < z < ∞,
and changing the overall sign.

6.2 Uniqueness of the decomposition

Formally, we may expand this representation in the same
manner as the self-energy: Set Pj = mv + rj , rescale the
variable of integration with z = αu, and expand the in-
tegrand in powers of qi, rj and M . The same result is
obtained, term by term, if we treat the loop momentum
k in the integral (26) as a quantity of O(p), and perform
the chiral expansion under the integral. Applying the pro-
cedure also to Rmn, we obtain two series of the form

Imn = (29)

md−2m−2nαd−2m−n
(
i0mn + α i1mn + α2 i2mn + . . .

)
,

Rmn = md−2m−2n
(
r0mn + α r1mn + α2 r2mn + . . .

)
.

While the dimensionless coefficients ipmn are nontrivial
functions of the variables q1/M , . . . , qm/M and r1/M ,
. . . , rn/M , those occurring in the expansion of Rmn are
polynomials.

As discussed in detail in Sect. 3, the chiral expansion
generally makes sense in only part of the low-energy re-
gion. In the representation (28), the problem arises from
the fact that it is not always legitimate to interchange the
integration over the Feynman parameters with this expan-
sion – the integral Imn, as such, describes the low-energy
behaviour perfectly well.

We again emphasize that the decomposition of the in-
tegral into an infrared part and a remainder is uniquely
characterized by the analytic properties of the two pieces,
even if the expansion (29) holds in only part of the low-
energy region. The proof closely follows the one given in
Sect. 5.2; we indicate only the modifications needed to
adapt it to the present, more general situation. As shown
in Sect. 5.2, the chiral expansion of I and R does converge
in part of the low-energy region. In the present context,
the range (21) corresponds to

− c <(P̄ − q̄)2 − Ā− B̄ < c , (30)

c = 2
{
Ā (B̄ − Ā)

} 1
2 .

The quantities Ā, B̄, q̄ and P̄ depend on the parameters
x1, . . . , xm−1, y1, . . . , yn−1 used to combine the meson
and nucleon propagators, respectively; the condition (30)
must be met for all values of these parameters in the range
0 ≤ xi, yj ≤ 1. If this is the case, the chiral expansion of
the integrand on the r.h.s. of (27) converges.

It is not difficult to see that the low-energy region does
contain a domain where the above condition is met. The
vectors q̄ and P̄ are contained in the polyhedron spanned
by the corners qi and Pi, respectively. We may, for in-
stance, take all of the qi to be much smaller than M , and
put the Pi in the immediate vicinity of a vector P that sits
on the nucleon mass shell, such that Ā ' M2, B̄ ' m2,
(P̄ − q̄)2 ' m2. The condition is then obviously met in the
entire region of integration. Moreover, the integral over
the Feynman parameters converges uniformly there. This
completes the proof.

7 Comparison with HBχPT

In the framework of the relativistic effective theory, the
evaluation of an amplitude to one-loop order thus yields
three categories of contributions, arising from (a) tree
graphs, (b) the infrared singular part and (c) the regular
part of the one-loop integrals. At a given order of the chiral
expansion, the one-particle irreducible components of the
regular parts are polynomials in the external momenta. In
coordinate space, these contributions thus represent local
terms: They are equivalent to the tree graph contributions
generated by a suitable Lagrangian, ∆L. So, if we replace
the effective Lagrangian by

L′
eff = Leff +∆L ,

we may drop the regular parts of the loop integrals. The
resulting representation is identical to the one obtained
in the heavy-baryon approach, except that the infrared
parts of the one loop graphs are included to all orders –
the problems afflicting the chiral expansion of the infrared
singularities are avoided. We add a few remarks concern-
ing the above relation between the term Leff relevant for
the original form of the effective theory and the effective
Lagrangian occurring in our framework, L′

eff .
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7.1 Lorentz invariance

First, we note that both of these schemes are character-
ized by a Lorentz invariant effective Lagrangian: By con-
struction, the term ∆L is Lorentz invariant. In explicit
formulations of HBχPT, the invariance of the effective
Lagrangian is by no means manifest. One of the reasons
is that the equations of motion are used to eliminate two
of the four components of the Dirac spinor that describes
the nucleon in the relativistic formulation of the theory. In
fact, it is perfectly legitimate to use the equations of mo-
tion; the resulting modification of the effective Lagrangian
is equivalent to a change of variables. The operation, how-
ever, destroys manifest Lorentz invariance; in terms of the
new variables, the transformation law of the field takes a
rather complicated form.

The point here is that all of that can be avoided. In-
stead of explicitly performing the chiral expansion of the
Lagrangian and evaluating the perturbation series with
the corresponding nonrelativistic propagators, we may sim-
ply replace the integrands of the various loop integrals by
their chiral series, i.e., perform the nonrelativistic expan-
sion before doing the integral [8]. As discussed above, this
procedure amounts to replacing the relativistic loop inte-
grals by their infrared parts. The result for the various
amplitudes of interest is the same as the one obtained
within the standard approach, except that our method
accounts for the mass insertions to all orders.

7.2 Chiral symmetry

Both the relativistic and the heavy baryon formulations of
the effective theory are based on an effective Lagrangian
that is manifestly invariant under chiral transformations.
In the above construction, this property of the term L′

eff
is not evident. Although the equivalence with the stan-
dard heavy baryon approach ensures chiral symmetry, it
is instructive to see how this property arises within the
present framework.

For this purpose, we first formulate chiral symmetry in
terms of objects that are amenable to an evaluation in the
framework of the effective theory: Consider all Green func-
tions of the type 〈N(P ′, s′)|T O1 . . . Or|N(P, s)〉, where
the operators Oi represent vector, axial, scalar or pseudo-
scalar quark currents. Chiral symmetry implies that, in
the limit where the quark masses are set equal to zero,
these matrix elements are interrelated through a set of
Ward identities. We now analyze the implications of these
identities for the regular parts of the one-loop graphs re-
sponsible for the term ∆L.

At one-loop order, the Green functions are represented
by a sum of three contributions belonging to the three
categories (a), (b), (c) specified in the beginning of the
section. Since Leff is invariant under chiral symmetry, the
tree-graph contributions (a) obey the Ward identities. Fur-
thermore, dimensional regularization preserves the sym-
metries of the Lagrangian. Hence the sum of the contri-
butions from the one loop graphs (b) plus (c) also obeys

these identities, for any value of the regularization param-
eter d. Now, the chiral expansion of the infrared singular
(regular) part only contains fractional (integer) powers of
the chiral-expansion parameter p. Hence the Ward identi-
ties can be satisfied by the sum of the two pieces only if
they are obeyed separately by the two parts: The vertices
collected in ∆L obey the same set of linear constraints as
the vertices contained in Leff . This explains why the term
∆L is invariant under chiral transformations7.

7.3 Infrared part as an alternative regularization

Since Leff contains all terms permitted by Lorentz invari-
ance and chiral symmetry, the modification Leff → Leff +
∆L is equivalent to a change of the effective coupling con-
stants: The bare coupling constants to be used in the orig-
inal form of the relativistic effective theory differ from
those occurring in our scheme. In this respect, the two
methods of calculation appear to be two different regular-
izations of the theory; for the physical amplitudes to be
independent thereof, the values of the bare couplings must
be tuned to the regularization used.

Note, however, that the two prescriptions for the eval-
uation of the loop integrals generally lead to different
results, even if these integrals are convergent. Viewing
Hµ1...µr

mn and Iµ1...µr
mn as two different regularizations of the

same integral, we are outside the standard class of ad-
missible regularizations (e.g., dimensional, Pauli–Villars,
momentum-space cutoff, . . . ).

For a Lagrangian that contains all of the Lorentz in-
variant vertices that can be formed with the field and its
derivatives, it would be natural to take the loop integrals
as being defined only modulo an arbitrary Lorentz invari-
ant polynomial. In our context, that class is too large.
Since the effective Lagrangian is chiral invariant, the same
coupling constant determines the strength of an entire
string of vertices. A change in one of the couplings gener-
ates a specific polynomial contribution in several different
amplitudes. Conversely, if we are removing a polynomial
from one of the loop integrals, we need to subtract a cor-
responding term in some of the other loop integrals, too
– otherwise, the procedure would yield amplitudes that
do not obey all of the Ward identities. It is essential here
that dimensional regularization preserves the symmetry
and that this procedure allows us to unambiguously iden-
tify the infrared part for all of the integrals. At any finite
order of the chiral expansion, the difference between the
dimensional regularization Hµ1...µr

mn and the infrared part
Iµ1...µr
mn is a polynomial and the polynomials occurring in

different loop integrals are correlated in such a manner
that the Ward identities are obeyed: If we consistently re-
place all of the integrals by their infrared parts, the con-
tent of the theory remains the same. Hence, it is legitimate
to think of the infrared part as an alternative regulariza-

7 For the case of the purely mesonic vertices, it is explicitly
demonstrated in [17] that the Ward identities indeed imply a
symmetric effective Lagrangian, but we did not perform the
corresponding analysis for the present, more general case.
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tion of the loop integrals and to indicate this with the
symbol

∫
I
ddk :

Iµ1...µr
mn =

1
i

∫
I

ddk

(2π)d

kµ1 . . . kµr

a1 . . . am b1 . . . bn
.

The standard regularizations yield the smoothest pos-
sible high-energy behaviour: The expansion in inverse pow-
ers of p starts with p d+r−2m−2n. The high-energy be-
haviour is crucial for renormalizability, but in the context
of effective low-energy theories, it is irrelevant, because
the high-energy domain is outside the reach of the frame-
work anyway. The infrared regularization Iµ1...µr

mn instead
yields maximally smooth behaviour at low energies: All of
the regular contributions of order p0, p1, . . . are absorbed
in the effective coupling constants, so that the low-energy
expansion starts with an infrared singular piece of order
p d+r−2m−n.

In principle, the analysis given in the preceding section
may be extended to arbitrary graphs. The leading infrared
singularity originates in the region where all of the loop
momenta are small. Disregarding momentum factors that
may arise from the vertices or from the propagators, the
leading infrared singularity occurring in the low-energy
expansion of a graph with ` loops, and m mesonic and n
baryonic propagators is of order p ` d−2m−n; the counting
of powers is the same as in heavy baryon chiral perturba-
tion theory. At the present stage of our understanding, the
extension beyond the one-loop approximation is a rather
academic issue, however. In the case of πN scattering, for
instance, significant progress could be achieved by extend-
ing the known results to order p4. With the method out-
lined above, this should require rather little effort: It suf-
fices to (i) replace the dimensional regularization used in
[1] by the infrared regularization, and (ii) add the contri-
butions from the one-loop graphs generated by L2.

8 Renormalization

We now consider the behaviour of the loop integrals in the
limit d → 4, again starting with the self-energy.

8.1 Self-energy

The integral over the Feynman parameter z in (15) only
converges for d < 3. The continuation to d → 4 may be
performed as follows. The factor C is of the form

C = C0 + C1(z − z0)2 , z0 =
α (Ω + α)

1 + 2αΩ + α2 ,

C0 =
α2(1 −Ω2)

1 + 2αΩ + α2 , C1 = (1 + 2αΩ + α2) .

Now we replace C
d
2 −2 by C0 C

d
2 −3+ C1(z−z0)2 C d

2 −3. The
second term is proportional to the derivative of C

d
2 −2. An

integration by parts leads to

I = κ

∫ ∞

0
dz C

d
2 −2

=
κ

d− 3

{
αd−4 z0 + (d− 4)C0

∫ ∞

0
dz C

d
2 −3
}
. (31)

Since the remaining integral converges for d < 5, the right-
hand side can now be continued analytically to d = 4. The
factor κ contains a pole there:

κ =
Γ (2 − d

2 )

(4π)
d
2

md−4 = −2 λ̄− 1
16π2 +O(d− 4) ,

λ̄ =
md−4

(4π)2

{
1

d− 4
− 1

2

(
ln 4π + Γ ′(1) + 1

)}
.

We have expressed the singularity in terms of the standard
pole term λ, which contains a running scale µ. The scale
relevant here is the mass of the nucleon: λ̄ represents the
value of λ at the scale µ = m. The renormalized ampli-
tude, which we denote by Ī, is obtained by removing the
pole

Ī = I − λ̄ ν ,

ν = −P 2 −m2 +M2

P 2 .

For the regular part and for the full integral, the renor-
malizations read

R̄ = R+ (2 + ν) λ̄ , H̄ = H + 2 λ̄ .

By construction, we have

H̄ = Ī + R̄ .

The counter term for H is momentum-independent, but
the quantity ν is not. As ν does not contain infrared sin-
gularities, its expansion in powers of M2 and P 2 −m2 is
an ordinary Taylor series.

8.2 Renormalization scale

It is important here that, in the relativistic formulation
of the effective theory, loops involving nucleon propaga-
tors contain an intrinsic scale, even in the chiral limit:
the nucleon mass. This is in marked contrast to both
the mesonic sector and to the standard heavy baryon ap-
proach, where dimensionally regularized loop integrals are
scale-invariant in the chiral limit, so that the removal of
the divergences necessarily involves a free parameter, the
running scale. As is well known, this does not give rise to
ambiguities, because the renormalization of the loop inte-
grals only requires polynomial counter terms: It suffices to
tune the coupling constants of those terms in the effective
Lagrangian that enter at the order of the chiral expansion
considered – the result for quantities of physical interest
then becomes scale-independent.
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In the present context, the situation is different. The
chiral expansion of the infrared part I contains arbitrar-
ily high orders – in the language of standard HBχPT,
we are summing up an infinite number of graphs. Their
renormalization requires counter term polynomials of ar-
bitrarily high order: Heavy baryon graphs of O(pn) call
for counter terms of O(pn). Indeed, the chiral expansion
of the counter term λ̄ ν contains polynomials of arbitrarily
high order. If we were to work with an arbitrary running
scale, we would need to include infinitely many terms in
the effective Lagrangian and tune their scale dependence
properly – only then would the amplitudes become scale
independent.

This cannot be done in practice, nor is it necessary.
All of the loop integrals that require counter terms with a
nonpolynomial momentum dependence contain an intrin-
sic scale, and we may identify the renormalization scale
with this one, i.e., set µ = m. A running scale is needed
only for loops formed exclusively with mesonic propaga-
tors, which do not contain an intrinsic one.

8.3 Other one-loop graphs

The generalization to other one-loop graphs is straightfor-
ward. Concerning the full scalar integrals, only the self-
energy H requires renormalization: For m + n > 2 the
functions Hmn represent convergent integrals in four di-
mensions. Nevertheless, the infrared parts of H12 and H21
do contain a pole at d = 4, because the integral over z in
the representation (28) only converges for m+ n > 3. We
define the renormalized infrared parts by

Īmn = Imn − λ̄ νmn .

For m+ n > 2, the full integral converges, so that

R̄mn = Rmn + λ̄ νmn if m+ n > 2 .

As shown in Sect. 6, Hmn, Imn and Rmn may be rep-
resented as integrals over a derivative of H, I, and R,
respectively. The counter terms for Imn or Rmn are thus
given by a derivative of ν with respect to the masses. In
accord with the statements made above, ν is linear in M2

and m2, so that

νmn = 0 if m > 2 or n > 2 .

In the case of I12 (triangle graph with one meson and two
nucleon propagators), the formula (27) involves a single
Feynman parameter:

I12 = −
∫ 1

0
dy

∂I

∂B̄

(
(P̄ − q̄)2, Ā, B̄

)
,

q1 = q̄ = 0 , P̄ = y P1 + (1 − y)P2 ,

Ā = M2 , B̄ = m2 − y(1 − y)(P1 − P2)2 .

The counter term is thus given by

ν12 = −
∫ 1

0

dy
{y P1 + (1 − y)P2}2 = − 1

(P1 · P2)
arctanh η

η
,

η =

√
(P1 · P2)2 − P 2

1P
2
2

(P1 · P2)
.

As was to be expected on general grounds, the counter
term does not contain any infrared singularities. Since η
represents a term of O(p), the chiral expansion starts with

ν12 = − 1
(P1 · P2)

+O(p2) .

The renormalization of the function I21 (triangle graph
with two mesons, and one nucleon propagator) may be
worked out in the same manner. The corresponding counter
term is given by

ν21 = −ν12
P1→P , P2→P−q

(32)

This completes the list of renormalizations for the scalar-
loop integrals.

9 Convergence of the chiral expansion
and explicit representations

In Sect. 5, we have shown that, in the case of the self-
energy, the chiral expansion of the infrared part converges
if the variable Ω is in the range (21). We now wish to show
that the expansion actually converges throughout the low-
energy region. This is most easily done on the basis of an
explicit representation.

9.1 Explicit representation of the self-energy

At d = 4, the integral remaining on the r.h.s. of (31) is
elementary. In terms of the variables Ω and α of (12), the
result for the renormalized infrared part reads (−1<Ω<
1)

Ī = − 1
8π2

α
√

1 −Ω2

1 + 2αΩ + α2 arccos
(

− Ω + α√
1 + 2αΩ + α2

)

− 1
16π2

α(Ω + α)
1 + 2αΩ + α2 (2 lnα− 1) . (33)

In accord with the power counting of HBχPT, the chi-
ral expansion of Ī starts at order p. The coefficients are
nontrivial functions of Ω:

Ī = − α

16π2

{
2
√

1 −Ω2 arccos (−Ω) +Ω (2 lnα− 1)
}

+O(α2) .

For the regular part and the full integral, respectively, the
explicit expressions may be written in the form (−1<Ω<
1):

R̄ =
1

8π2

α
√

1 −Ω2

1 + 2αΩ + α2 arcsin

(
α

√
1 −Ω2

√
1 + 2αΩ + α2

)

+
1

16π2

1 + αΩ

1 + 2αΩ + α2 ,

H̄ = − 1
8π2

α
√

1 −Ω2

1 + 2αΩ + α2 arccos(−Ω)

− 1
8π2

α(Ω + α)
1 + 2αΩ + α2 lnα+

1
16π2 .
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In agreement with (19), the chiral expansion of the regular
part starts at O(p0) and only contains polynomials:

R̄ =
1

16π2

{
1 − αΩ + α2}+O(α3) .

9.2 Chiral expansion of the self-energy

Consider now the expansion of the function H̄ in powers
of α at fixed Ω. The radius of convergence is determined
by the zeros of the denominator, which occur at α = −Ω±√
Ω2 − 1. Hence the chiral expansion of H̄ converges in the

disk (20); the convergence region is the same as the one
relevant for R. In view of Ī = H̄ − R̄, the statement also
holds for the expansion of the infrared part. This proves
the claim made above.

It is essential here that we consider the chiral expan-
sion at fixed Ω. If we instead set P = mv + r, expand in
powers of r and M and collect terms of the same order, a
phenomenon similar to the one encountered in the chiral
expansion of γ(t) occurs. The ordering of the double series
amounts to setting r = M r̄ and expanding in powers of
M at fixed r̄. The parametrization implies

Ω = v · r̄ +
M

2m
(r̄2 − 1) .

In contrast to the expansion considered above, where Ω
stays put, we are now expanding this variable around the
value v · r̄.

The loop integral has a branch point at the threshold,
P 2 = (m + M)2. In the variable Ω, this singularity oc-
curs at Ω = 1. In the limit M → 0, the branch point is
mapped into the plane v · r̄ = 1. Accordingly, the radius
of convergence becomes small if r̄ happens to be close to
this plane: The coefficients of the expansion blow up if
v · r̄ tends to 1. In other words, the series only converges
in part of the low-energy region. This illustrates the fact
that the convergence of the nonrelativistic expansion is a
rather delicate matter, sensitive to the details of the in-
frared structure.

9.3 Other one-loop integrals

As shown in Sect. 6.2, there is a range of external mo-
menta where the chiral expansion converges, for all one-
loop graphs. The example of the triangle graph shows,
however, that the low-energy region in general contains
holes, where the chiral expansion breaks down. Even for
the self-energy, we need to order the series suitably for the
expansion to converge throughout the low-energy region.
In that case, this can be done by expanding at fixed Ω.
We do not know of a corresponding set of variables for the
general loop integral.

Our method does not rely on the chiral expansion of
the loop integrals – on the contrary, the problems afflict-
ing that expansion motivated the present work. We have
reformulated HBχPT such that the relevant infrared sin-
gularities are summed up.

a b c

Fig. 4. One-loop graphs contributing to the self-energy of the
nucleon. The cross denotes a vertex from L(2)

N

For loop integrals with more than two vertices, the
explicit representation becomes complicated. As is well
known, all of the one-loop graphs can be expressed in
terms of dilogarithms. A much simpler representation may,
however, be given if we resort to the approximation dis-
cussed in Sect. 4, which amounts to summing up only the
leading infrared singularities. In that section, we studied
the low-energy properties of the function γ(t) – in the
above terminology, this function coincides with H21, ex-
cept that the two external nucleon momenta are put on
the mass shell (P 2 = m2, q2 = t, Pq = 1

2 t). We considered
two different expansions, one at fixed t/M2, the other at
fixed (t− 4M2)/M4 and then joined the two. For a corre-
sponding representation of the infrared part, we refer to
Appendix A and B. An alternative procedure might be to
look for a uniformizing variable replacing t. The break-
down of the chiral expansion is generated by the fact that
the form factor contains a branch point on both the first
and the second sheets, and that the two move together if
the mass of the nucleon is sent to infinity.

As shown in Appendix B, the sum of the leading in-
frared singularities of all one-loop integrals that are rel-
evant for the scalar form factor and for the elastic πN-
scattering amplitude can be represented in terms of ele-
mentary functions, but we cannot offer a general method
that would lead to such a representation. In a given case,
the issue may be settled by trial and error, for instance by
numerically comparing the infrared part in the kinematic
region of interest with the first one or two terms in the
chiral expansion thereof. If the expansion fails, we may
search for an improved approximation – this is what we
did in the case of the triangle graph.

10 Chiral expansion of the nucleon mass

As a first illustration of our method, we now evaluate the
physical mass of the nucleon to order p4. The two-point
function of the field ψ(x) may be represented in the form

i

∫
ddx eiPx〈0|T ψ(x) ψ̄(0)|0〉 =

1
m+Σ − P/

.

The leading contribution to Σ = Σ(P ) is of order p2; it
stems from the term 4 c1M2ψ̄ψ contained in L(2)

N . The
one-loop graphs shown in Fig. 4 are generated by L(1)

N ,
L(2)

N and start contributing at order p3. Finally, there is a
tree graph contribution from L(4)

N (see (2)):

Σ = −4 c1M2 +Σa +Σb +Σc + e1M
4 +O(p5) .
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The explicit expressions for the loop contributions are ob-
tained with the standard rules of relativistic perturbation
theory:

Σa =
3 g2

A

4F 2 (m+ P/ )
{
M2I + (m− P/ )P/ I(1) −∆N

}
,

Σb =
3M2∆π

F 2

{
2c1 − P 2

m2d
c2 − c3

}
,

Σc = −4c1M2 ∂Σa

∂m
.

The mass insertion in graph c arises from the shift m →
m2 = m − 4c1M2 in the nucleon propagator, generated
by the term from L(2)

N mentioned above. We could have
replaced the mass in the free part of the Lagrangian by
m2, so that the graph 4c would then be absent.

The only difference from the standard evaluation of
the graphs is that the loop integrals are regularized in a
different manner. In particular, the full scalar self-energy
integral (Fig. 4a) is replaced by the infrared part thereof,
I = I(P 2,M2,m2) – we have discussed the properties of
this function in detail in the preceding sections. The term
∆N denotes the scalar nucleon propagator at the origin,

∆N =
1
i

∫
I

ddk

(2π)d

1
m2 − k2 − iε

.

In infrared regularization, that term vanishes, because it
does not contain any infrared singularities (see Sect. 6):

∆N = 0 .

For purely mesonic loops, such as the one occurring in
Fig. 4b, there is no difference between dimensional and
infrared regularization: The integral

∫
I
ddk coincides with

the ordinary d-dimensional integral. The graph is propor-
tional to the pion propagator at the origin, which we de-
note by ∆π,

∆π =
1
i

∫
I

ddk

(2π)d

1
M2 − k2 − iε

= 2M2
(
λ̄+

1
16π2 ln

M

m

)
.

Finally, the integral I(1) may be expressed in terms of I
(see Appendix B) :

I(1) =
1

2P 2

{
(P 2 −m2 +M2) I +∆π −∆N

}
.

The same relation also holds in dimensional regularization.
The physical mass of the nucleon, which we denote by

mN , is determined by the position of the pole in the two-
point function. In view of the factor m−P/ , the term I(1)

does not contribute. Evaluating the quantity I with the

explicit expression in (33), we obtain

mN = m− 4 c1M2 − 3 g2
AM

3

32πF 2

+k1M
4 ln

M

m
+ k2M

4 +O(M5) , (34)

k1 = − 3
32π2F 2m

(
g2

A − 8 c1m+ c2m+ 4 c3m
)
,

k2 = ē1 − 3
128π2F 2m

(
2 g2

A − c2m
)
.

The formula agrees with the result of [11,12]. The bare
constants M , F , m, gA, c1, c2, c3, c4 remain finite when
the regularization is removed, but e1 contains a pole at
d = 4. The quantity ē1 is the corresponding renormalized
coupling constant at scale µ = m :

ē1 = e1 − 3λ̄
2F 2m

(
g2

A − 8 c1m+ c2m+ 4 c3m
)
. (35)

11 Wave-function renormalization

The wave-function renormalization constant is the residue
of the pole in the two-point function and is determined by
a derivative of the self-energy with respect to the momen-
tum,

Z−1 = 1 − ∂Σ

∂P/ P/ = mN

.

With the above expression for Σ, which is valid to order
p4, we can extract the residue to accuracy p3. The result,

Z =

1−9M2g2
A

2F 2

{
λ̄+

1
16π2

(
ln
M

m
+

1
3

− πM

2m

)}
+O(M4) ,

is in agreement with those obtained within the heavy-
baryon formalism. For a detailed discussion of the matter,
see [12].

Note that the multiplicative renormalization ψren =
Z− 1

2ψ does not render the two-point function finite at
d = 4. The reason is the following. We may collect all
of the correlation functions associated with ψ and ψ̄ by
adding a term of the form η̄ ψ + ψ̄ η to the effective La-
grangian, where η(x) is an anticommuting external field.
Such a term, however, breaks chiral symmetry: Under a
chiral rotation, the field ψ transforms with a matrix that
involves the pion field. We cannot subject η to the same
rotation, because this field stays put when the meson vari-
ables are integrated out. So, off the mass shell, the cor-
relation functions of the effective field are regularization-
dependent objects. In the context of the effective field the-
ory, these are without significance – the field ψ(x) merely
represents a variable of integration.

Instead we could consider the field Ψ = uψR + u† ψL,
which does transform by a factor that is independent of
the meson field: ΨR → VR ΨR, ΨL → VL ΨL. Accordingly,
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the counter terms needed to renormalize the quantum
fluctuations generated by the term η̄ Ψ + Ψ̄ η are chiral-
invariant. In contrast to the correlation functions of ψ,
those of Ψ can unambiguously be worked out. Indeed,
these variables are relevant for the low-energy analysis of
QCD operators that are formed with three-quark fields
and carry the quantum numbers of the nucleon: The lead-
ing term in the effective field-theory representation of such
an operator is a multiple of Ψ .

The main point is that the correlation functions of ψ
do not represent physical quantities. The graphs for, say,
the scalar form factor or the nucleon mass also involve
nucleons propagating off the mass shell, but the result is
uniquely determined by the Lagrangian; the low-energy
representation of these quantities in terms of the renor-
malized coupling constants is independent of the regular-
ization used. The representation for the correlation func-
tions of the effective field is unambiguous on the mass
shell only. On-shell matrix elements, such as form factors
or scattering amplitudes, may be obtained by extracting
the residues of the relevant poles in suitable correlation
functions – in that connection, only the on-shell proper-
ties matter.

12 Scalar form factor to order p4

In Sect. 3, we considered the low-energy representation
of the scalar form factor to O(p3). We now extend that
representation to the next order of the expansion (for a
calculation of the scalar form factors within SU(3), based
on HBχPT, see [18]). For this purpose, we treat the quark
masses mu,md as external fields and calculate the re-
sponse of the transition amplitude 〈N(P ′, s′)out|N(P, s)in〉
to a local change in these fields. Within the effective the-
ory, the transition amplitude may be worked out by treat-
ing the term χ in the effective Lagrangian as a space-time-
dependent quantity and evaluating the two-point func-
tion 〈0 out|Tψ(x) ψ̄(y)| 0 in〉 in the presence of this exter-
nal field: The transition amplitude is determined by the
residue of the double pole occurring in the Fourier trans-
form of this quantity at P 2 = m2

N , P ′ 2 = m2
N . To extract

the residue, we amputate the external nucleon legs, eval-
uate the remainder at P 2 = P ′ 2 = m2

N and multiply the
result with the wave-function renormalization constant Z.

12.1 Evaluation of the graphs

The tree graph contributions from L(2)
N and L(4)

N read:

σtree = Z (−4c1M2 + 2 e1M4 + e2M
2t) .

The one-loop graphs are shown in Fig. 5.
All of these, except the one in Fig. 5a, represent contri-

butions of O(p4). When performing the perturbative cal-
culation, it is convenient to include the term 4 c1M2ψ̄ ψ
in the free part of the Lagrangian, replacing m by m2 =
m−4 c1M2. The nucleons occurring in the various graphs
then propagate with m2. Note that the difference m2 −P 2

a b c

d e

Fig. 5. The loop graphs contributing to the scalar form factor
at O(p4)

represents a quantity of order p. In the propagator, the
shift m → m2 thus generates a first-order correction.
The distinction between m, m2 and mN only matters
in the triangle diagram 5a. In fact, graph 5b represents
the change occurring in this diagram if m is replaced by
m2; this graph is absent if the mass insertion from c1 is
included in the free part of the Lagrangian. In view of
mN −m2 = O(p3), we may also replace the factors of mN

arising from the matrix elements ū′P/u and ū′P/ ′u by m2.
The contributions from the one-loop diagrams then take
the form:

σa + σb = −3M2g2
A

2F 2 {4m3I
(1)
21 (t) −mJ(t)}

m→m2
,

σc = −6 c1M4

F 2 J(t)

−3 c2M2

8F 2m2

{
2 t (4m2 − t) J (1)(t) − 2 t2J (2)(t) + t2J(t)

}
−3 c3M2

2F 2

{
(t− 2M2) J(t) + 2∆π

}
,

σd =
3 c1g2

AM
2

F 2

{
4M2m2I12(t) − 4m2I(1)(m2) +∆π

}
,

σe =
6 c1M2

F 2 ∆π .

The notation is specified in Appendix B. With the rela-
tions given there, the various invariants may be expressed
in terms of the basic functions J(t), I(s), I21(t) and I12(t).
The individual terms entering the combination 4m3I

(1)
21 (t)

−mJ(t) are of order p0, but the leading terms cancel: The
low-energy expansion of σa starts at only O(p3), in accord
with the counting of powers in graph 5a. Hence we may
ignore the difference between m2 and m in the above ex-
pression.

The loop graphs contain divergences proportional to
M4 and to M2t, respectively. The renormalization (35) of
the coupling constant e1 removes the first one. The second
one requires the following renormalization of e2:

ē2 = e2 +
1

2F 2m

{
3 g2

A + c2m+ 6 c3m
}
λ̄ .
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12.2 Result

We write the result for σ(t) = σtree +σa +σb +σc +σd +σe

in the form

σ(t) = σ + σ̃(t) ,

where σ ≡ σ(0) represents the value of the form factor at
the origin, and is referred to as the σ term. According to
the Feynman–Hellmann theorem, this term represents the
derivative of the nucleon mass with respect to the quark
masses mu, md, or, equivalently,

σ = M2 ∂ mN

∂M2 .

Indeed, the sum of the contributions from the various
graphs agrees with the derivative of the formula (34) for
the nucleon mass.

For the remainder, the calculation yields:

σ̃(t) =
3 g2

AM
2m

4F 2 {(t− 2M2) Ī21(t) + 2M2Ī21(0)} (36)

+{k3M
4 + k4M

2t} J̄(t) + k5M
2t+O(p5) ,

k3 = − 1
F 2 {6 c1 − c2 − 3 c3} ,

k4 = − 1
8F 2m

{
3 g2

A + 2 c2m+ 12 c3m
}
,

k5 =
1

384π2F 2m

{
9 g2

A + 2 c2m+ 36 c3m
}

− 1
8π2 k4 lnα+ ē2 .

The only difference from the result of an analogous calcu-
lation in HBχPT is that the representation for the func-
tion Ī21(t) given in Appendix B also covers the vicinity
of t = 4M2, where the heavy-baryon representation fails.
The value of σ(t) at the Cheng–Dashen point t = 2M2

was given earlier, in [19] – our expression confirms this
result.

12.3 Unitarity

Unitarity offers an instructive test of the momentum de-
pendence. Within the effective theory, the contributions
from intermediate states containing more than two pions
only show up at three-loop order. Hence the representa-
tion obtained for the form factor must obey the elastic
unitarity relation [20]

Imσ(t) =

θ(t− 4M2
π)

3
√
t− 4M2

π

2
√
t (4m2

N − t)
σ?

π(t) f0
+(t) +O(p7) , (37)

where σπ(t) is the form factor associated with the σ term
of the pion,

σπ(t) = 〈π0(p′)|m̂ (ū u+ d̄ d)|π0(p)〉

and f0
+(t) is the t-channel I = J = 0 partial-wave ampli-

tude of πN scattering.
To calculate the left-hand side of the unitarity con-

dition, we recall that the function Ī21(t) represents the
renormalized infrared part of the triangle integral γ(t) in-
troduced in Sect. 3. At any finite order of the low-energy
expansion, the difference between the infrared part and
the full integral is a polynomial, so that Im Ī21(t) = Im γ(t).
The explicit expression was given in (5). For J̄(t), the
imaginary part reads

Im J̄(t) = θ(t− 4M2)
√
t− 4M2

16π
√
t

.

The quantities on the r.h.s. of the unitarity condition are
needed only at tree-level order, where σπ(t) = M2. The
corresponding approximation for the πN-scattering am-
plitude is given in Appendix C. The comparison shows
that the representation obtained for the form factor in-
deed obeys the unitarity condition, up to contributions
that are beyond the accuracy of a one-loop calculation.

12.4 Value at the Cheng–Dashen point

The low-energy theorem that underlies determinations of
the σ term from πN data relates the scattering ampli-
tude to the scalar form factor at the Cheng–Dashen point,
where t = 2M2

π . It is therefore of interest to evaluate the
difference

∆σ = σ(2M2
π) − σ(0) ,

with the above representation of the form factor. The re-
sult is of the form

∆σ = ∆1M
3 +∆2M

4 ln
M

m
+∆3M

4 +O(M5) ,

∆1 =
3 g2

A

64πF 2 .

The terms of order M4 involve the coupling constants of
L(2)

N :

∆2 =
3 g2

A

16π2F 2m
+

c2
16π2F 2 +

3 c3
8π2F 2 , (38)

∆3 =
3(2 + π) g2

A

128π2F 2m
− 3(4 − π) c1

16π2F 2

+
(14 − 3π) c2

192π2F 2 +
3 c3

16π2F 2 + 2 ē2 .

To express these in terms of observable quantities, we com-
pare the tree graphs for the πN-scattering amplitude gen-
erated by L(1)

N + L(2)
N with the subthreshold expansion of

Höhler and collaborators [21] (see Appendix C). Since that
comparison allows us to determine the effective coupling
constants only up to corrections of order M , we denote
the resulting estimates by c(0)i :

c
(0)
1 = − F 2

4M2 ,
{
d+
00 + 2M2 d+

01

}
, c

(0)
2 =

F 2

2
d+
10, (39)

c
(0)
3 = −F 2 d+

01 , c
(0)
4 =

1
2m

{
F 2 b−00 − 1

2

}
.
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The above expressions for ∆2 and ∆3 then take the form

∆2 =
3 g2

A

16π2F 2m
+

d+
10

32π2 − 3 d+
01

8π2 ,

∆3 =
3(2 + π) g2

A

128π2F 2m
+

3(4 − π) d+
00

64π2M2

+
(14 − 3π) d+

10

384π2 +
3(2 − π) d+

01

32π2 + 2ē2 .

The difference between F and Fπ or M and Mπ is beyond
the accuracy of the representation (36). We replace F by
Fπ = 92.4 MeV and use the mass of the charged pion.
For the same reason, we may identify the bare coupling
constant gA with the experimental value gA = 1.267 ±
0.0035 [22]. Using the values of the subthreshold coeffi-
cients quoted in Appendix C, we then obtain ∆1M

3 =
7.6 MeV, ∆2M

4 lnα = 7.8 MeV and (∆3 − 2 ē2)M4 =
−1.4 MeV. These terms add up to

∆σ = 14.0 MeV + 2M4ē2;

compare with the result of the dispersive calculation of
[20]:

∆σ = 15.2 ± 0.4 MeV . (40)

The comparison shows that the contribution from the cou-
pling constant ē2 is small, as it should be.

The above calculation resolves an old puzzle: The lead-
ing term in the chiral expansion of ∆σ – the one of order
M3 – accounts for only half of the result. The terms of or-
der M4 are numerically of the same size, because they are
enhanced by a chiral logarithm. The underlying physics
can be sorted out by noting that the elastic unitarity con-
dition (37) leads to the representation

∆σ =
∫ ∞

4M2
π

dt n(t)σ?
π(t) f0

+(t) , (41)

n(t) =
3M2

π

√
t− 4M2

π

π t
3
2 (t− 2M2

π) (4m2
N − t)

.

The one-loop calculation discussed above replaces the pion
σ term by the first term in the chiral series, σπ(t) →
M2

π . The contribution proportional to g2
A represents the

value of the dispersion integral that results if the partial
wave amplitude is replaced by the Born approximation
f 0
B+(t) = O(p), given in (C.2). The remainder is dom-

inated by the coupling constant c3, which generates a
polynomial contribution8 to the partial-wave amplitude:
f0
+(t)c3 = (2M2 − t) c3m2/4πF 2 = O(p2).

The tree approximation for f0
+(t) is shown in Fig. 6,

together with the Born term (the tree graph from L(1)
N

alone). To indicate the weight in the dispersion integral

8 Since the corresponding contribution to the scattering am-
plitude only depends on t, the t-channel partial-wave projec-
tion is trivial, and is obtained by multiplying the relevant term
in D+(ν, t) by the factor (4m2 − t)/16π = m2/4π + O(p2).

nf0
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Fig. 6. The t-channel I = J = 0 partial wave f0
+(t). The

normalization factor n is chosen such that ∆σ is the area under
the curve (dotted: Born approximation; dashed-dotted: tree
graphs of L(1)

N + L(2)
N ; full: dispersion theory. All quantities in

units of Mπ)

(41), we plot the corresponding contributions to the quan-
tity n(t) f0

+(t). We also depict the result of the dispersive
evaluation described in [20], which includes the higher or-
ders of the chiral series9 and is therefore complex – the
curve shown represents the quantity n(t) |f0

+(t)|. Qual-
itatively, the picture is quite similar to the one found
for the imaginary part of the scalar form factor of the
pion, Imσπ(t): The higher-order effects tend to amplify
the leading-order terms in that case as well [23,24].

The figure demonstrates that, at low energies, the tree
approximation to the scattering amplitude provides a
rather decent representation. The Born term alone, how-
ever, only dominates in the immediate vicinity of t =
4M2

π , where it exhibits the peculiar structure discussed
in Sect. 4. For

√
t > 380 MeV, the contribution generated

by the coupling constants c1, c2 and c3 is more important
than the one proportional to g2

A.
Although the straightforward expansion of ∆σ in pow-

ers of the quark masses is well defined and can be unam-
biguously worked out, the first term of that series does not
yield a decent approximation. The term arises from the in-
frared singularity generated by the Born approximation.
On the one hand, the contributions from the second term
of the chiral expansion are suppressed by one power of
M ; on the other, they are enhanced by a chiral logarithm.
Hence, they are equally important numerically.

12.5 The σ term

Finally, we turn to the value of the form factor at t = 0.
The first four terms in the chiral expansion of the nucleon
mass were given in (34). The corresponding expansion for

9 The value quoted in (40) also accounts for the higher-order
terms in the form factor σπ(t), which we are ignoring here,
because they start showing up in ∆σ only at O(p5).
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σ ≡ σ(0) is of the form

σ = σ1M
2 + σ2M

3

+ σ3M
4 ln

M

m
+ σ4M

4 +O(M5) . (42)

The coefficients follow from the Feynman–Hellmann the-
orem:

σ1 = −4 c1 , (43)

σ2 = − 9 g2
A

64πF 2 ,

σ3 = − 3
16π2F 2m

(g2
A − 8 c1m+ c2m+ 4 c3m) ,

σ4 = − 3
64π2F 2m

(3 g2
A − 8 c1m+ 4 c3m) + 2 ē1 .

The tree approximation (39) for the effective coupling
constants c1, c2, c3 suffices to work out the numerical
values of σ2, σ3, as well as the corresponding contribu-
tion to σ4. With the values of the subthreshold coeffi-
cients quoted in Appendix C, we obtain σ2M

3 =−23 MeV,
σ3M

4 lnα=−9 MeV, (σ4 − 2 ē1)M4 =0.9 MeV. To evalu-
ate σ1 in an analogous manner, we need a more accurate
determination of c1, but we may instead take the experi-
mental value σ=45 MeV from [20]. This leads to the esti-
mate σ1M

2 +2 ē1M4 =76 MeV, subject to an uncertainty
of about 8 MeV.

These numbers show that the expansion of σ in powers
of the quark masses contains a large contribution from the
infrared singularity generated by the Born term, σ2M

3.
At the next order of the expansion, there is a logarithmic
infrared singularity, σ3M

4 lnα. The comparison with the
leading term σ1M

2 shows that this effect is of a size typ-
ical for chiral logarithms. The main difference from the
situation encountered in the mesonic sector is that the ex-
pansion contains odd as well as even powers of p. If the
series is truncated at order p3, we must expect a less accu-
rate representation than the one obtained in the mesonic
sector at one-loop order.

The determination of the coupling constant c1, to the
accuracy needed here , requires a calculation of the πN-
scattering amplitude to order p4, and is beyond the scope
of the present paper. We can, however, study the effects
generated by the leading infrared singularities in the val-
ues of the effective coupling constants. For this purpose,
we make use of the results reported in [1,6,7], where the
scattering amplitude is evaluated to order p3. The formu-
las for the coefficients of the subthreshold expansion given
in [7,25] imply that the corrections of O(p3) generate the
following shifts in the values of the effective coupling con-
stants:

c
(1)
i = c

(0)
i + δci (44)

δc1 = − 59 g2
A

1536πF 2 M , δc2 =
5 g4

A + 4
64πF 2 M ,

δc3 = −g2
A(48 g2

A + 77)
768πF 2 M , δc4 =

g2
A(g2

A + 1)
16πF 2 M .

As a check, we have applied the method discussed in Sect. 6
to the loop integrals that occur in the representation of

the scattering amplitude given in [1]. In the vicinity of
the point ν = t = 0, the chiral expansion converges for
all of these (see Appendix B). The result confirms the for-
mulas for the coefficients of the subthreshold expansion
quoted above and thus also corroborates the expressions
in (44) for the first-order shifts in the effective coupling
constants. The one for c1 allows us to establish the rela-
tion between the σ term and the subthreshold coefficients
to accuracy p3:

σ = F 2
π (d+

00 + 2M2
πd

+
01) +

5 g2
AM

3
π

384πF 2
π

+O(M4
π).

Comparing this with the prediction at tree level, σ =
F 2

π (d+
00 + 2M2

πd
+
01), where the third term is missing, we

find that the shift amounts to only 2.1 MeV: In the rela-
tion between the observables σ, d+

00, and d+
01, the effects

generated by the leading infrared singularities are an or-
der of magnitude smaller than those seen in the chiral
expansion of σ. This demonstrates that the large infrared
singular contribution that occurs in the chiral expansion
of the σ term at O(M3) also appears in the πN-scattering
amplitude – the relevant combination of subthreshold co-
efficients picks up nearly the same contribution. Note that
the magnitude of the σ term, as such, is not at issue here.
For the values of the coefficients d+

00, d
+
01 given in [21], the

tree-level and one-loop results for σ are 50 and 52 MeV,
respectively. We could have used a somewhat different in-
put, for instance one for which the outcome for the σ term
is 45 MeV – the difference between the tree and one-loop
approximations would be the same.

13 Discussion

13.1 Reordering of the perturbation series

The fact that the bulk of the infrared singular contribu-
tions occurring in the chiral expansion of the nucleon mass
and of the σ term merely amount to a shift of the bare
parameters was noted long ago [26]. In the preceding sec-
tion, we listed the change in the effective coupling con-
stants c1, c2, c3, c4 generated by the infrared singularities
at O(p3), and pointed out that, in the relations between
the observable quantities considered, these singularities
nearly cancel. We expect a similar, albeit less dramatic
reduction to occur in other quantities of physical inter-
est also. Some of the fluctuations seen in the published
results for the threshold parameters of πN scattering, for
instance, merely reflect the fact that the expansion of the
various observables in powers of the quark masses contain
large contributions from infrared singularities.

A more significant comparison of the results obtained
at tree-level and one-loop order results if one considers the
predictions of the effective theory: Instead of comparing
the contributions arising in the chiral expansion of a given
observable at various orders of the expansion, one may
compare the relations between observable quantities that
follow at tree-level order with those obtained at one-loop
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order. The effective coupling constants entering the one-
loop result are different from those relevant at tree-level
order. The tree-level values are the best choice for the
representation of the scattering amplitude to O(p2); those
in (44) are relevant for the improved representation of this
amplitude that accounts for the terms of O(p3).

The elimination of the coupling constants in favour of
physical quantities amounts to a reordering of the pertur-
bation series. In more explicit terms, the reordering we are
advocating here is the following (we restrict ourselves to
a discussion to one-loop order): The perturbation series
relies on a decomposition of the effective Lagrangian into
a leading term and a perturbation,

LN = L0 + L1 .

The standard ordering results if L0 is identified with the
first two terms of the derivative expansion. We argue that
the decomposition

L0 = L(1)
N + L(2)

N
ci→c

(0)
i

L1 = L(3)
N + L(4)

N + L(2)
N

ci→δci

,

with δci = ci − c
(0)
i , is a better choice, because it reduces

the magnitude of the perturbation L1. As for the standard
bookkeeping, an evaluation of the various observables to
O(p2) requires the calculation of the tree graphs belonging
to L0; for a representation to O(p4), we need to add the
tree graphs of L1 as well as the one-loop graphs of L0.

Two modifications occur when the perturbation series
is extended from O(p2) to O(p4): new graphs, and the
change δci in the values of the coupling constants (the
explicit expressions in (44) for the latter account for the
shifts of order δci = O(M), but do not include those of or-
der M2). As discussed above, the two effects partly cancel.
In the above bookkeeping, the change δci is booked among
the corrections, on the same footing as the contributions
from the loop graphs, both of which affect the observables
and are responsible for the shift in the coupling constants.
The cancellations between the two types of contributions
thus tend to reduce the magnitude of the perturbations
generated by L1.

At first sight, the claim that the values of the cou-
pling constants depend on the order at which the pertur-
bation series is considered may appear to contradict the
fact that these constants represent perfectly well-defined
quantities that determine the chiral expansion coefficients
of the various observables. As is well known, the results
found for these coefficients on the basis of a calculation to
some given order of chiral-perturbation theory represent
low-energy theorems that remain strictly valid if the ex-
pansion is carried to higher orders. We do not call this into
question, but merely emphasize that the result obtained
for the values of the coupling constants does depend on
the order to which the perturbation series is worked out.

To illustrate the need for a distinction between the cou-
pling constants, as such, and their values at a given order
of the perturbation series, we again consider the quantity
∆σ and focus on the chiral logarithm contained therein,

∆2M
4 lnα. The term arises from the infrared singular-

ity occurring at the lower end of the dispersion integral
(41). According to (38), the coefficient ∆2 contains a piece
that is proportional to the coupling constants c2 and c3. It
arises from the contribution to the partial wave f0

+(t) that
is generated by the tree graphs of L(2)

N . Hence the coupling
constants relevant for an evaluation of ∆2 are those per-
taining to the tree-level representation of the scattering
amplitude. If we were to calculate ∆2 with the improved
values of the coupling constants that follow from the re-
lations (44), we would in effect be using a tree-level rep-
resentation for f0

+(t) with the wrong coupling constants.
The point here is that the same one-loop graphs that give
rise to a change in the values of c2, c3 also modify the
partial-wave amplitude. Since a substantial fraction of the
infrared singularities occurring at O(p3) affects both the
term ∆σ and the scattering amplitude in the same way,
it does not make sense to account for one of the changes
without accounting for the other.

In a sense, the odd and even powers of the chiral se-
ries lead a life of their own. The quantity ∆σ illustrates
the fact that the leading terms in both of the subseries
need to be investigated in order to arrive at a significant
result. To our knowledge, the available one-loop results
for the πN-scattering amplitude account for the expan-
sion only to O(p3). It will be very interesting to compare
the predictions that follow from the representation of the
amplitude to O(p4) with those obtained from the same
experimental input at tree-level order.

The problem also occurs in the mesonic sector. The
infrared singularities are weaker there, because the ex-
pansion involves only even powers of p. At the precision
reached with a two-loop calculation, however, the need for
a distinction between the coupling constants, as such, and
the values found at a given order of the perturbation se-
ries manifests itself quite clearly. As discussed in [27,28],
for instance, inconsistencies may arise if the two-loop rep-
resentation for the ππ-scattering amplitude is evaluated
with the values of the coupling constants `1, `2 obtained
on the basis of a one-loop calculation from Ke4 decay.

13.2 The role of the ∆(1232)

The occurrence of a chiral logarithm explains why an eval-
uation of ∆σ to order M3 does not yield a decent approx-
imation for this quantity. The coefficient of the logarithm
involves the combination c2 + 6 c3 of effective coupling
constants; this combination is dominated by c3. It is un-
derstood why the value of this coupling constant obtained
from low-energy πN phenomenology is large: This con-
stant receives an important contribution from the singu-
larities generated by the∆(1232). In fact, it is noted in [29]
that a calculation of the scalar form factor that explicitly
includes the ∆ degrees of freedom yields a result for ∆σ

that is consistent with the one obtained from dispersion
theory.

The role of this state for the low-energy structure in the
baryonic sector is discussed in detail in the literature [8,
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21,29–31]. For a recent review, in particular of the small-
scale expansion that allows one to analyze the extension
of the effective theory in a controlled manner, we refer to
[32]. The extended theory is compared with the framework
used in the preceding sections in Appendix D, where we
also estimate the contributions to the effective coupling
constants that are generated by the ∆.

For the quantities analyzed in the present paper, it is
not essential whether the∆ is incorporated as a dynamical
variable in the effective Lagrangian or whether the effects
generated by this state are accounted for only indirectly,
through the values of the effective coupling constants: In
the domain studied here, the graphs describing the ex-
change of a ∆ are adequately described by those terms of
the chiral expansion that occur up to and including O(p4).

In the Mandelstam plane, the point around which the
chiral expansion is performed corresponds to s0 = m2 +
M2, t = 0. The expansion of the resonance denomina-
tors is controlled by the ratio x = (s − s0)2/(m2

∆ − s0)2.
For small values of s − s0 and t, in particular near the
Adler zero and for quantities like σ(0) or σ(2M2), the ex-
pansion rapidly converges. At the threshold, where x =
4M2m2/(m2

∆ − m2 − M2)2 ' 0.18, the expansion of the
resonance denominators is still under good control. For
higher energies, however, one must account explicitly for
the singularities generated by the ∆ in order to arrive at
a decent representation of the scattering amplitude.

In the mesonic sector, the ρ plays an analogous role.
Remarkably, as far as the expansion of the resonance de-
nominators is concerned, the convergence radius is roughly
the same: m2

∆ − m2 − M2 ' m2
ρ − 2M2 (the left-hand

side is even a little larger). The two Mandelstam trian-
gles, however, are of very different size: The one relevant
for ππ scattering is smaller by the factor M/m, so that the
threshold is much closer to the Adler zero. At the thresh-
old, the parameter that controls the expansion of the term
1/(m2

ρ −s) is very small indeed: x = 4M4/(m2
ρ −2M2)2 '

0.005. In the mesonic sector, an effective theory that does
not explicitly account for this singularity yields meaning-
ful results even well above the threshold.

13.3 Comparison with the static model

It is instructive to compare the framework discussed above
with the earliest version of an effective field theory for the
baryons, the static model. This model is characterized by
the Hamiltonian [33]:

H =
∫

d3x
1
2

{
π̇ 2 + ∇π 2 +M2

π π
2
}

+
∫

d3x
gA

2Fπ
ρ(x)ψ† (σ · ∇) (π · τ )ψ .

The nucleon is kept fixed at the origin, ψ(x) → ψ(t). The
corresponding four-dimensional space of states is spanned
by vectors that differ in the spin and isospin quantum
numbers; the operator ψ† . . . ψ generates transitions be-
tween these. The result for the self-energy of the nucleon

reads

E = − 3 g2
A

32πF 2
π

∫
d3xd3y ∇ρ(x) · ∇ρ(y)

e−Mπ|x−y |

|x − y | .

The function ρ(x) is normalized to
∫

d3x ρ(x) = 1; it de-
scribes the structure of a nucleon that is stripped of its
meson cloud.

In the relativistic formulation of the effective theory,
the nucleon is represented as a point particle, ρ(x) → δ(x),
and the leading contributions to the self-energy of the
nucleon arise from one-loop graphs. To compare the ex-
pressions for the self-energy, we note that in the static
model, the expansion of the exponential yields the series
1 −Mπr+M2

πr
2/2 −M3

πr
3/6 + . . . The second term van-

ishes upon integration, so that the series takes the form
E = E1+E2M

2
π+E3M

3
π+. . . In our formulation of BχPT,

only the infrared part of the loop integrals is retained, the
remainder being absorbed in the effective coupling con-
stants. In these terms, the term E1 is included in the bare
mass m, while E2 represents a contribution to the effective
coupling constant c1. The coefficient E3 is independent of
the shape of ρ(x), and the value E3 = −3 g2

A/32πF 2
π in-

deed reproduces the coefficient occurring in the chiral ex-
pansion (34) of the nucleon mass. At the next order of the
expansion, however, the static model fails: The self-energy
E does not contain a chiral logarithm. In fact, in the local
limit ρ(x) → δ(x), the expansion terminates at O(M3

π).
The deficiency arises because the model accounts only for
the leading term L(1)

N in the derivative expansion of the
effective Lagrangian; the formula (43) shows that, in the
static limit (m → ∞), the nucleon mass does not contain a
chiral logarithm if the coupling constants c1, c2, c3 ∈ L(2)

N
are turned off.

Quite a few other phenomena (πN scattering, magnetic
moments and electromagnetic form factors, pion photo-
production, Compton scattering, and nuclear forces, for
instance) were analyzed in detail within the static model,
which provides a simple intuitive picture for the basic low-
energy features (for an excellent overview, we refer the
reader Henley and Thirring [33]). A comparison of the re-
sults obtained using the modern version of the effective
theory with those found in this model would be most in-
structive.

13.4 Momentum-space cutoff

The formulation of the effective theory in terms of point-
like nucleons has the advantage of being model-independent.
It systematically accounts for all contributions arising to
a given order in the chiral expansion of the various observ-
ables. The price to pay is that the loop integrals cannot
be interpreted directly in physical terms. The machinery
does incorporate the finite extension of the nucleon, but
only indirectly, through the effective coupling constants. A
more intuitive picture of the meson cloud that does explic-
itly account for the finite size of the nucleon is proposed in
[26]. In that framework, the pointlike vertices are replaced
by form factors, which, in effect, cut the virtual meson
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momenta off. The proposal is based on the static model,
where the πN interaction is also equipped with a form fac-
tor, given by the Fourier transform of the function ρ(x).
The motivation for introducing such a cutoff was that the
matrix elements of the perturbations encountered in the
extension of BχPT from SU(2) to SU(3) are large. It does
not make much sense to truncate the straightforward ex-
pansion of the baryon masses in powers of mu,md and
ms at order p3. The net effect of a cutoff is qualitatively
similar to the one resulting from the reordering discussed
above: It reduces the magnitude of those terms that are
treated as perturbations.

The proposal is taken up in recent literature [34]. In
particular, the quantity ∆σ is studied within that frame-
work in [35]. In the language of the dispersion relation
(41), the calculation reported there essentially amounts
to replacing the partial-wave amplitude f0

+(t) by the Born
term (dotted line in Fig. 6) and cutting the dispersion in-
tegral off at moderate values of t. Such a calculation ev-
idently yields a much smaller value for ∆σ than the one
that follows, either from dispersion theory or from the
evaluation of the chiral perturbation series to order p4.
The analysis in Sect. 12.4 shows that the contributions
of order p3 and p4 are of a different origin. The terms of
order p4 are not properly accounted for by cutting off the
virtual momenta in the one-loop graphs of order p3.

More generally, the problem with the approach pro-
posed in [26] is that it is model-dependent. Moreover, in
general, introducing a cutoff ruins the Ward identities of
chiral symmetry. The model-independent method we are
proposing does preserve the Ward identities as well as the
infrared structure. The reordering of the perturbation se-
ries also leads to a more rapidly converging expansion.
It remains to be seen, however, whether this method will
provide a coherent understanding of the mass spectrum of
the baryon octet.

14 Conclusion

1. We have shown that BχPT can be formulated in
such a manner that both Lorentz invariance and chiral
power counting are preserved at every stage of the calcu-
lation. The method relies on the fact that – for noninte-
ger values of the dimension – the infrared singular parts
of the loop graphs can be unambiguously separated from
the remainder: They involve fractional powers of the chi-
ral expansion parameters, while the remainder admits an
ordinary Taylor series. The two parts are chiral invariant
by themselves , in the sense that they separately obey the
Ward identities of chiral symmetry. This allows us to re-
tain only the infrared singular parts of the loop integrals,
absorbing the remainder in the coupling constants of the
effective Lagrangian.

2. The calculations required by our method are nearly
identical to those relevant within the relativistic formula-
tion of the effective theory given in [1]. The Lagrangian
and the Feynman graphs are the same. The only difference
is that the loop integrals are replaced by the corresponding

infrared parts. At one-loop order, this is achieved by ex-
tending one of the Feynman parameter integrations from
the interval 0 < z < 1 to the interval 0 < z < ∞.

3. We have shown that, in the sector with baryon num-
ber 1, the chiral expansion breaks down in certain regions
of phase space. The nonrelativistic expansion that under-
lies HBχPT inherits this problem and also leads to tech-
nical difficulties of its own that are related to the fact that
the nonrelativistic expansion of infrared singularities is a
rather subtle matter. A coherent heavy baryon represen-
tation only results if the insertions required by relativis-
tic kinematics are summed up to all orders. The problem
arises from the interchange of the loop integration with
the nonrelativistic expansion, an operation which is not
always legitimate. The method we are proposing avoids
these difficulties ab initio, because it does not rely on a
nonrelativistic expansion of the loop integrals.

4. One of the advantages of chiral perturbation theory
is that, at the algebraic level, the results are unambiguous.
This implies that the chiral expansion of the representa-
tions obtained with the method proposed here must agree
with the results of HBχPT, order by order – even in those
cases where this expansion does not converge.

5. As our method avoids the nonrelativistic expansion
of the vertices, the number of graphs to be evaluated is
smaller than in HBχPT. The price to pay is that the sim-
plifications offered by nonrelativistic kinematics cannot be
made use of. As an example, we mention processes in-
volving external photons, such as pion photoproduction.
Bernard, Kaiser, Kambor, and Meissner [3] have shown
that, in the heavy baryon approach, many of the one-loop
graphs occurring in that context can be dropped: In the
nonrelativistic limit and in the Coulomb gauge, vertices
involving the coupling of photons to a nucleon line are
suppressed. Since our method leads to the same power-
counting rules as the nonrelativistic expansion, we expect
these simplifications to also apply within our framework,
but a relativistic formulation of the corresponding selec-
tion rules yet remains to be given.

6. In the baryonic sector, the expansion involves odd
as well as even powers of momenta. Most of the avail-
able calculations only account for the terms arising up
to and including O(p3). The corresponding representation
for the observables of physical interest is inherently less
accurate than the one obtained at one-loop order in the
mesonic sector, which holds up to and including O(p4). A
full one-loop calculation of the πN-scattering amplitude
yet remains to be carried out.

7. We have illustrated our method with an evaluation
of the σ term and of the corresponding form factor to
order p4. The form factor can be expressed in terms of
elementary functions throughout the low-energy region. In
the domain where the standard chiral expansion in powers
of momenta and quark masses is convergent, the result
agrees with the one obtained on the basis of HBχPT. The
representation constructed in the present paper, however,
also holds in the vicinity of t = 4M2

π , where the heavy
baryon chiral perturbation series diverges.
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8. The example of the form factor shows that the ex-
pansion of some of the observables in powers of the quark
masses contains a large contribution from the infrared sin-
gularities generated by the Born term, proportional to
g2

AM
3
π . We have shown, however, that the bulk of this

contribution is common to the σ term and to the πN-
scattering amplitude, so that it drops out when consider-
ing the predictions of the theory, i.e., the relations between
the observables.

9. Although the straightforward expansion of the var-
ious observables in powers of momenta and quark masses
is perfectly meaningful, it does not yield a suitable order-
ing of the perturbation series. We have proposed a model
independent reordering of this series, which can also be
performed in HBχPT. We have applied the reordering to
both the σ-term and the momentum dependence of the
scalar formfactor and find that, at least for these two cases,
the operation strongly reduces the magnitude of the cor-
rections. To see whether or not this is a peculiarity of the
observables considered here, it would be of interest to per-
form the operation with the known representation of the
πN-scattering amplitude to O(p3) [1,6–8].

10. We have discussed the effects generated by the
∆(1232) in some detail. This state plays a role similar
to the one of the ρ in the mesonic sector: In the Mandel-
stam plane, the singularities associated with the ∆ and
the ρ occur at about the same distance from the point
around which the chiral expansion is performed. As far as
the behaviour of the scattering amplitude in the vicinity of
the Adler zero is concerned, or for quantities such as σ(0)
or σ(2M2), the singularities generated by the ∆ are ad-
equately described by their contributions to the effective
coupling constants.

11. The physical region of πN scattering is further away
from the Adler zero than the physical region of ππ scat-
tering, by one power of m/M . Although at the threshold,
the singularities generated by the ∆ may still be replaced
by their contributions to the effective coupling constants,
we must expect the perturbation series for the threshold
parameters to converge less rapidly for πN scattering than
for ππ scattering.

12. In the experimentally accessible region, the ∆ does
play a prominent role. The work reported in [37] indicates
that, even in the vicinity of the resonance, a decent de-
scription of the observed behaviour of the scattering am-
plitude may be obtained by supplementing the tree graphs
of a simple resonance model with unitarity corrections. It
remains to be seen whether a systematic analysis of the
extended effective theory that includes the ∆ among the
dynamical variables and incorporates chiral symmetry ab
initio will allow us to establish direct contact with the
wealth of experimental data.

13. The problems discussed in the present paper are
not peculiar to the nucleons, but occur whenever the effec-
tive theory contains degrees of freedom that remain mas-
sive in the chiral limit. An application of our method to
πK scattering within SU(2)×SU(2) is described in [41] –
in that framework, the mass of the kaon sets the heavy
scale.

14. As is well known, the straightforward expansion
of the masses and current matrix elements of the baryon
octet [18] and the vector mesons [42] in powers of mu,
md and ms contains large contributions from infrared sin-
gularities (in particular terms proportional to M3

K). It
would be of considerable interest to apply the reordering
of the chiral-perturbation series proposed in Sect. 13.1
to these quantities: The procedure should lead to a more
rapidly converging expansion, so that the first few terms
may then provide a meaningful determination of the ratio
(md −mu)/(ms − m̂), for instance.
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A Low-energy representation
for the triangle graph

The function γ(t) may be expressed in terms of the imag-
inary part by means of the dispersion relation [1]

γ(t) = γ(0) +
t

π

∫ ∞

4M2

dt′

t′(t′ − t)
Imγ(t′) .

For t = 0, the integral (4) can be done explicitly. Expand-
ing the result in powers of α = M/m, the subtraction
constant becomes

γ(0) =
1

32πmM

{
1 +

1
π
α (2 lnα− 1) +O(α2)

}
.

For a representation of γ(t) up to and including first non-
leading order, we need the imaginary part only to this
accuracy. Inserting the representation (9) and performing
the integral, we obtain

γ(t) = γ1(t) + γ2(t) +O(p) ,

γ1(t) =
1

32πmM

{
1√
τ

ln
2+

√
τ

2−√
τ

+
2α (2−τ)
π
√
τ (4−τ) arcsin

√
τ

2
+

2
π
α (lnα−1)

}
,

γ2(t) =
1

32πmM

{
α√
4−τ − ln

(
1 +

α√
4−τ

)}
,

with τ ≡ t/M2. We have included the subtraction con-
stant in γ1(t), so that not only the imaginary part of the
term γ2(t), but also its real part, are is significant only in
the immediate vicinity of the threshold. At leading order
of the chiral expansion, the expression for γ1(t) reduces to
the known result of HBχPT [5]. The above formulas (i) ex-
tend that result to first nonleading order, and (ii) account
for the sum of internal-line insertions that determine the
behaviour in the vicinity of the threshold.
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In the notation used in the present paper, the func-
tion γ(t) represents the scalar integral H21 on the mass
shell (q2 = t, P 2 = m2, Pq = 1

2 t). The above approxi-
mate representation for this function is valid throughout
the low-energy region, but is accurate only modulo con-
tributions of O(p). For the calculation of the form factor
(Sect. 12), we need a corresponding expression for the
infrared part. For that purpose, it suffices to work out the
regular part R21 to the desired accuracy. As discussed in
Sect. 6, the integral may be represented as (q1 = 0, q2 = q,
P1 = P )

R21 =
Γ (3 − d

2 )

(4π)
d
2

∫ 1

0
dx
∫ ∞

1
dz (1 − z) C

d
2 −3 ,

C = (1 − z)
{
M2 − x(1 − x) q2

}
+z m2 − z (1 − z) {P − (1 − x) q}2

.

The chiral expansions of the regular parts are ordinary
Taylor series that converge throughout the low-energy re-
gion. Since the series starts only at O(p0), we can trun-
cate it at leading order, i.e., evaluate the above integral
for M = q = 0, P 2 = m2. This gives us

R21 = md−6 2Γ (2 − d
2 )

(4π)
d
2 (5 − d)

+O(p) .

The corresponding counter term was worked out in Sect. 8.
At leading order, (32) yields ν21 = m−2. Indeed the term
λ ν21 removes the pole of the Γ function at d = 4. Renor-
malizing at scale µ = m, we obtain

R̄21 = R21 + λ̄ ν21 = − 3
32π2m2 +O(p) .

A corresponding representation for the renormalized in-
frared part Ī21 is obtained by subtracting this term from
the formula for γ(t) given above (for an explicit expres-
sion, see Appendix B).

B Infrared parts of some loop integrals

Notation:

λ̄ =
md−4

(4π)2

{
1

d− 4
− 1

2

(
ln 4π + Γ ′(1) + 1

)}

α =
M

m

1 meson: ∆π = I10

∆π =
1
i

∫
I

ddk

(2π)d

1
M2 − k2 = 2M2

(
λ̄+

1
16π2 lnα

)

1 nucleon: ∆N = I01

∆N =
1
i

∫
I

ddk

(2π)d

1
m2 − k2 = 0

2 mesons: J = I20

{J , Jµ , Jµν} =
1
i

∫
I

ddk

(2π)d

{1 , kµ , kµkν}
(M2 − k2)(M2 − (k − q)2)

t = q2 ,

J(t) = J̄(t) − 2 λ̄− 1
16π2 (2 lnα+ 1)

J̄(t) ≡ J(t) − J(0) =
1

8π2

{
1 −

√
4M2 − t

t
arcsin

√
t

2M

}

Jµ = 1
2 q

µ J(t)

Jµν = (qµqν − gµνq2) J (1)(t) + qµqν J (2)(t)

J (1)(t) =
1

4 t (d− 1)
{(t− 4M2) J(t) + 2∆π}

J (2)(t) =
1
4
J(t) − 1

2 t
∆π

1 meson, 1 nucleon: I = I11

{I, Iµ} =
1
i

∫
I

ddk

(2π)d

{1 , kµ}
(M2 − k2)(m2 − (P − k)2)

s = P 2 , Ω =
s−m2 −M2

2Mm
,

I(s) = Ī(s) − s−m2 +M2

s
λ̄

Ī(s) = − 1
16π2

α(Ω + α)
1 + 2αΩ + α2 (2 lnα− 1)

− 1
8π2

α
√

1 −Ω2

1 + 2αΩ + α2 arccos
(

− Ω + α√
1 + 2αΩ + α2

)

Iµ = PµI(1)(s)

I(1)(s) =
1
2s
{
(s−m2 +M2) I(s) +∆π

}
2 mesons, 1 nucleon:

{I21 , I µ
21 } =

1
i

∫
I

ddk

(2π)d

1
m2 − (P − k)2

{1 , kµ}
(M2 − k2) (M2 − (k − q)2)

For the low-energy analysis of the scalar form factor and
of the πN-scattering amplitude to one-loop order, these
integrals are relevant only on the mass shell of the two
external nucleons,

P 2 = P ′ 2 = m2 , P ′ ≡ P − q , t = q2 .

The decomposition of the vectorial integral then simplifies
to

Iµ
21 = (Pµ + P ′ µ) I(1)

21 (t) + 1
2 q

µI21(t) ,

I
(1)
21 (t) =

1
2(4m2 − t)

{
(2M2 − t) I21(t)

− 2 I(m2) + 2 J(t)
}
,
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and the renormalization of the scalar integral reads

I21(t) = Ī21(t) +
4 λ̄√

t (4m2 − t)
arcsin

√
t

2m
.

The representation for γ(t) constructed in Appendix A,
which also holds near the threshold, but neglects terms
beyond next-to-leading order, implies

Ī21(t) =
1

32πmM

{
1√
τ

ln
2 +

√
τ

2 − √
τ

− ln
(

1 +
α√

4 − τ

)}

+
1

32π2m2

{
2 (2 − τ)√
τ(4 − τ)

arcsin
√
τ

2
+

π√
4 − τ

+ 2 lnα+ 1

}

+O(p) ,with τ = t/M2.

1 meson, 2 nucleons:

I12 =

1
i

∫
I

ddk

(2π)d

1
(M2 − k2)

1
(m2 − (P − k)2) (m2 − (P ′ − k)2)

In the context of πN scattering, there are graphs that
involve the values of I12 = I12 (P 2, P ′ 2, t) off the mass
shell and we therefore leave the variables P 2, P ′ 2 open.
The representation (28) yields

I12 (P 2, P ′ 2, t) = (4π)− d
2 Γ (3 − d

2 )
∫ 1

0
dy
∫ ∞

0
dz z C

d
2 −3 ,

C = M2(1 − z)2 + z2{m2 − y (1 − y) t}
− 2mMz (1 − z)Ω̄ ,

t = (P − P ′)2 , Ω̄ = y Ω + (1 − y)Ω′ ,

Ω =
P 2 −m2 −M2

2mM
, Ω′ =

P ′ 2 −m2 −M2

2mM
.

The expression for C shows that the momentum transfer
enters exclusively through m2 − y (1− y) t. The expansion
in powers of t thus only yields polynomials – the phe-
nomenon observed in the case of γ(t) does not occur here.
Removing the pole term at d = 4 (see Sect. 8.1), scaling
the variable of integration with z → αu, and expanding
in powers of α, we obtain

I12 (P 2, P ′ 2, t) = Ī12 (P 2, P ′ 2, t) + ν12 λ̄ ,

Ī12 (P 2, P ′ 2, t) = − 1
16π2m2

{
f1(Ω) − f1(Ω′)

Ω −Ω′

}

+
ν12

32π2 {2 lnα+ 1} +O(p2) ,

ν12 = − 1
m2

{
1 − αΩ − αΩ′ +O(p2)

}
,

f1(Ω) = (1 − αΩ)
√

1 −Ω2 arccos (−Ω) −Ω .

At leading and first nonleading order, the result is inde-
pendent of the momentum transfer. On the mass shell, it
reduces to

Ī12(t) ≡ Ī12 (m2,m2, t)

= − 1
32π2m2 (2 lnα+ 1) +

α

64πm2 +O(p2) .

1 meson, 3 nucleons:

I13 =
1
i

∫
I

ddk

(2π)d

1
(M2 − k2)(m2 − (P1 − k)2)

× 1
(m2 − (P2 − k)2)(m2 − (P3 − k)2)

The integral is relevant for πN scattering. Denoting the
momenta of the two incoming and outgoing particles by
P, q and P ′, q′, respectively, we have

P1 = P , P2 = P + q , P3 = P ′ ,
P 2 = P ′ 2 = m2 , q2 = q′ 2 = M2 ,

s = (P + q)2 = m2 +M2 + 2MmΩ , t = (q − q′)2 .

The chiral expansion starts at order 1/p. The coefficients
are readily worked out with the representation (28), set-
ting d = 4. As in the case of I12, the leading and first
nonleading terms are independent of t:

I13 = − 1
32π2Mm3Ω2 f0(Ω)

+
1

32π2m4Ω3

{
f0(Ω) +

π

4
Ω2 +Ω3

}
+O(p) ,

f0(Ω) =
√

1 −Ω2 arccos(−Ω) − π

2
−Ω .

C πN scattering in tree approximation

In connection with the unitarity condition for the scal-
ar form factor, we need the representation of the πN-
scattering amplitude to order p2. For this purpose, the
standard decomposition into the invariant amplitudes A
and B is not suitable, because the leading contributions
from the two cancel at low energies10. We replace A by
D ≡ A+ ν B,

T = ū′
{
A+

1
2

(q/ ′ + q/)B
}
u = ū′

{
D − 1

4m
[ q/ ′, q/ ]B

}
u ,

and work with the variables

ν =
s− u

4m
, νB =

t− 2M2

4m
.

10 An evaluation of the scattering amplitude to O(pn) suf-
fices to determine D(ν, t) to the same order, and yields B(ν, t)
to O(pn−2), but fixes A(ν, t) only to O(pn−1). Conversely, a
representation for the pair (D, B) to accuracy (pn, pn−2) fully
characterizes the scattering amplitude to O(pn), while an anal-
ogous representation for the pair (A, B) does not suffice, even
if A is assumed known to all orders.
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The tree graphs of the Lagrangian L(1)
N + L(2)

N yield

D+(ν, t) =
g2

Am

F 2

ν2
B

ν2
B − ν2 − 4 c1M2

F 2

+
2 c2 ν2

F 2 +
c3 (2M2 − t)

F 2 +O(p3) ,

B+(ν, t) =
g2

Am

F 2

ν

ν2
B − ν2 +O(p) , (C.1)

D−(ν, t) =
g2

Am

F 2

ν νB

ν2
B − ν2 − ν

2F 2 (g2
A − 1) +O(p3) ,

B−(ν, t) =
g2

Am

F 2

νB

ν2
B − ν2 − 1

2F 2 (g2
A − 1)

+
2 c4m
F 2 +O(p) .

The projection onto the t-channel I = J = 0 partial
wave reads

f0
+(t) = f 0

B+(t) +
m2

24πF 2

{−24M2c1 + (4M2 − t) c2 +

6 (2M2 − t) c3
}
+O(p3) ,

f 0
B+(t) =

g2
Am

3

4πF 2

{
arctan τ

τ
− t

4m2

}
,

τ =

√
(t− 4M2)(4m2 − t)

t− 2M2 . (C.2)

A comparison with the subthreshold expansion of Höhler,
et al. [21],

D+(ν, t) =
g2

πN

m

ν2
B

ν2
B − ν2 + d+

00 + d+
10 ν

2 + d+
01 t+ d+

20 ν
4 + . . . ,

B−(ν, t) =
g2

πN

m

νB

ν2
B − ν2 − g2

πN

2m2 + b−00 + b−10 ν
2 + b−01 t+ . . . ,

implies the following representations11 for the coupling
constants [38]:

c1 = − F 2

4M2

{
d+
00 + 2M2 d+

01

}
+O(M) ,

c2 =
F 2

2
d+
10 +O(M) , (C.3)

c3 = −F 2 d+
01 +O(M) ,

c4 =
1

2m
{
F 2 b−00 − 1

2

}
+O(M) .

The numerical values d+
00 = −1.46, d+

10 = 1.12, d+
01 = 1.14,

b−00 = 10.36 (in pion mass units [21]) thus lead to

c
(0)
1 = −0.60m−1

N , c
(0)
2 = 1.6m−1

N ,

c
(0)
3 = −3.4m−1

N , c
(0)
4 = 2.0m−1

N .

11 For a discussion of the corrections of order M , we refer to
Sect. 12.5.

The current algebra formula σ = −4 c1M2 then yields
σ = 50 MeV. Alternatively, replacing the input for d+

00

by σ = 45 MeV [20], we obtain c
(0)
1 = −0.54m−1

N and
d+
00 = −1.54.

D Contributions generated by the ∆

Effective Lagrangian

The ∆ degrees of freedom may be described in terms of
a Rarita–Schwinger spinor ψa

µ, which transforms with the
representation D1/2 × D1 of the isospin group. The con-
dition τaψa

µ = 0 eliminates the component with I = 1/2.
To lowest order, the relevant effective Lagrangian reads

L∆ = ψ̄a
µΛ

µνψa
ν + g∆F (ψ̄a

µ u
a
ν Θ

µν ψ + h.c.) , (D.1)

with ua
µ = (1/2) tr (τauµ). The kinetic term involves the

tensor

Λµν = −(iD/−m∆)gµν

+ i(γµDν + γνDµ) − γµ(iD/+m∆)γν ,

while the one occurring in the interaction is of the form

Θµν = gµν − ( 1
2 + Z)γµγν .

We use the notation of [21], where the coupling constant
g∆ carries the dimension of an inverse mass12. The ex-
pression for the width of the ∆ that follows from the tree
graphs of the above Lagrangian reads

Γ∆→Nπ =
g2

∆q
3
∆

24πm2
∆

{
(m∆ +m)2 −M2} ,

where q∆ is the momentum of the decay products for
the decay at rest. In the numerical evaluation, we use
m∆ = 1.232 GeV and the value of the coupling constant
advocated in [21] g∆ = 13.0 GeV−1, Fπ g∆ = 1.2. There
is considerable scattering in the numerical values used in
the literature. In particular, the experimental width im-
plies stronger coupling; the significance of this difference
is discussed in detail in [21], on the basis of an analysis of
the P33 wave. Some of the values found within the small-
scale expansion instead indicate a weaker coupling (see
[31] for a review of that expansion in HBχPT, and [8] for
the corresponding relativistic formulation).

Contribution to the πN-scattering amplitude

In addition to the coupling constant g∆ that determines
the residue of the poles arising from∆ exchange, the above
effective Lagrangian contains the parameter Z, which gen-
erates polynomial contributions to the scattering ampli-
tude (the representation obtained from the tree graphs of
12 In the literature, the coupling constant g∆ is often replaced
by the dimensionless quantity Fπg∆ = C/

√
2 [29,30] = hA [8]

= gπN∆[31].
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this Lagrangian can be found in [21]). To fix the value of
Z, we observe that the unitarity bounds [39] ensure an un-
subtracted dispersion relation for B+(ν, 0)/ν. The relation
represents this amplitude as a superposition of contribu-
tions arising from the various intermediate states. While
the nucleon generates the Born term in (C.1), the ∆ pro-
duces two peaks in the imaginary part, at ν = ±ω∆, where
ω∆ = (m2

∆ −m2 −M2)/2m. In the narrow width approx-
imation, the corresponding contribution to the dispersion
integral is of the form

1
ν
B+

∆(ν, 0) = b0

{
1

ω∆ − ν
+

1
ω∆ + ν

}
.

The tree-graph amplitude generated by the above effective
Lagrangian does contain such pole terms, but involves an
additive constant proportional to Z2. In the language of
the dispersion relation, this term corresponds to the inte-
gral over those intermediate states that remain when the
nucleon and the ∆ are removed. In order for the effective
Lagrangian in (D.1) to properly account for the contribu-
tions generated by the ∆, we must set Z = 0.

The corresponding expressions for the invariant ampli-
tudes read [21]:

A±
∆(ν, t) =

g2
∆

18m

{(
2

−1

)
(α1 + α2 t)

( 1
ν∆ − ν

± 1
ν∆ + ν

)
+
(
α3

0

)}
,

B±
∆(ν, t) =

g2
∆

18m

{(
2

−1

)
(β1 + β2 t)

( 1
ν∆ − ν

∓ 1
ν∆ + ν

)
+
(

0
β3

)}
,

with ν∆ = ω∆ + t/4m. The coefficients are fixed by the
masses. The expressions may be simplified by using the
parameter E∆ = (m2

∆ + m2 − M2)/2m∆ (the energy of
the nucleon in the rest frame of the ∆):

α1 = 2 (E∆ +m) {E∆ (2m∆ +m) −m (m∆ + 2m)} ,
α2 = 3 (m∆ +m)/2 ,

α3 = −4m (m∆ +m) (2m2
∆ +mm∆ −m2 + 2M2)/m2

∆ ,

β1 = 2 (E∆ +m)(E∆ − 2m) ,
β2 = 3/2 ,

β3 = 2m(m∆ +m)2/m2
∆ .

For the reason given in Appendix C, the amplitudes A±
are not suitable to sort out the low-energy structure. The
two terms in D± = A±+ν B± nearly cancel in the present
case also: The chiral expansion of D+

∆ and D−
∆ only starts

at O(p2) and O(p3), respectively. We do not list the cor-
responding explicit representations – these are readily ob-
tained from the above formulas.

Subtraction constants and saturation

The QCD Lagrangian does not contain parameters that
explicitly refer to the ∆, nor is this state singled out by
chiral symmetry. We are identifying the ∆ contributions
on the basis of a saturation hypothesis: The argument used
to pin down these contributions relies on the fact that the
dispersion relation for B+(ν, t)/ν does not contain a sub-
traction – we have determined the contributions from the
∆ by saturating this relation for t = 0. We now briefly dis-
cuss, from the same point of view, the dispersion relations
obeyed by the three other amplitudes. More specifically,
we wish to show that
– The dispersion relation forD+(ν, t) contains a subtrac-

tion, which ensures that this amplitude has an Adler
zero in the vicinity of the point ν = 0, t = 2M2.

– The amplitude D−(ν, t)/ν obeys an unsubtracted dis-
persion relation, which is closely related to the Adler–
Weisberger relation, and allows us to identify the ∆
contribution to the coupling constant gA.

– Finally, A−(ν, t)/ν also obeys an unsubtracted disper-
sion relation. The representation for this amplitude,
obtained by saturating the dispersion integral with the
∆, is identical with the one given above. This confirms
that the parameter Z must be set equal to zero.

For simplicity, we only consider the forward dispersion
relations, i.e., we set t = 0 (in the general case, the sub-
traction “constants” are functions of t). As the unitarity
bounds of [39] are not sufficiently strong to enable us to
discuss the subtractions occurring in the dispersion rela-
tions for the isospin-odd amplitudes, we invoke Regge-pole
analysis, which yields more specific information about the
asymptotic behaviour.

In the case of the isospin-even amplitudes, the asymp-
totics is dominated by Pomeron exchange: A+(ν, t),
D+(ν, t) ∝ ναP (t), B+(ν, t) ∝ ναP (t)−1, with αP (0) = 1
(we disregard the logarithmic terms arising from the fact
that the Pomeron does not represent a simple Regge pole).
Since the Regge behaviour is consistent with the unitar-
ity bounds, it merely confirms that B+(ν, 0)/ν obeys an
unsubtracted dispersion relation. The dispersive represen-
tation for D+(ν, 0), however, requires a subtraction (note
that D+(ν, t) is even in ν, so that a single subtraction
suffices). In fact, if this amplitude were to obey an un-
subtracted dispersion relation, the saturation with the ∆
would lead to a conflict with chiral symmetry, which im-
plies that D+ contains an Adler zero. In the above ex-
plicit representation, the zero arises because the subtrac-
tion constant α3 compensates the pole terms: D+

∆ (0, 2M2)
represents a term of order M4. The occurrence of a sub-
traction is essential in order for this to happen.

For the isospin-odd amplitudes, the ρ trajectory yields
the leading term: A−(ν, t), D−(ν, t) ∝ ναρ(t), B−(ν, t) ∝
ναρ(t)−1, with αρ(0) ' 1/2. This implies that the functions

Â(ν) =
1
ν
A−(ν, 0) , D̂(ν) =

1
ν
D−(ν, 0)

obey unsubtracted dispersion relations (the same also ap-
plies for B−(ν, 0), which represents the difference between
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the two). Indeed, the representation given for A−
∆(ν, 0)

is precisely the one obtained by saturating the unsub-
tracted dispersion relation for Â(ν) with the ∆. The one
for D−

∆ (ν, 0), however, does contain a subtraction term,
β3; this is in apparent conflict with the statement that
this amplitude obeys an unsubtracted dispersion relation.

Adler–Weisberger relation

To resolve the paradox, we consider the dispersion rela-
tion for D̂(ν), which, according to the above, is free of
subtractions:

D̂(ν) =
g2

Am

F 2

νB

ν2
B − ν2 +

2
π

∫ ∞

M

dν′

ν′ 2 − ν2 ImD−(ν′, 0) .

We have explicitly indicated the contribution from the
one-nucleon intermediate state, with νB = −M2/2m. The
comparison with the low-energy theorem (C.1) leads to an
on-shell variant of the Adler–Weisberger relation:

1
2F 2 (g2

A − 1) +
2
π

∫ ∞

M

dν′

ν′ 2 ImD−(ν′, 0) = O(p2) .

The imaginary part may be expressed in terms of total
cross sections. Dropping the corrections13 of order p2 and
replacing F by Fπ, the result obtained for the dispersion
integral yields a measurement of gA, based on total πN
cross sections. The result is in remarkably good agreement
with the value found from neutron decay [21].

Replacing the dispersion integral by the contribution
from the ∆, the above formula yields

g2
A = 1 +

2
9
F 2g2

∆

{(m∆ +m)2 −M2}2 {(m∆ −m)2 −M2}
m2

∆ (m2
∆ −m2 −M2)2

.

The corresponding numerical value, gA = 1.35, shows that
the contribution from the ∆ indeed dominates the disper-
sion integral: The remainder is about four times smaller
(and of opposite sign).

This resolves the paradox encountered above: The ex-
plicit representations for the amplitudes D±

∆, B±
∆ do not

include the effect generated by the ∆ in the value of the
coupling constant gA, which is treated as an indepen-
dent parameter – this is why the representations for D−

∆

and B−
∆ involve the subtraction term β3, despite the fact

that the full amplitudes obey unsubtracted dispersion re-
lations. The difference only concerns these two amplitudes:
The formulas in (C.1) show that the polynomial term pro-
portional to g2

A −1, which causes the paradox, only enters
the expressions for D− and B− (in A− = D− − ν B−, the
term drops out).

13 For an analysis of the terms of O(p2), we refer to Brown,
Pardee and Peccei [40].

Subthreshold expansion

The∆ contributions to the coefficients of the subthreshold
expansion are obtained by expanding the amplitudes in
powers of ν and t, with the result

d+
00∆ =

g2
∆

18mω∆
(4α1 + ω∆α3) ,

d+
10∆ =

2 g2
∆

9mω3
∆

(α1 + ω∆β1) ,

d+
01∆ = − g∆

18m2 ω2
∆

(α1 − 4α2mω∆) ,

b−00∆ = − g2
∆

18mω∆
(2β1 − ω∆β3) .

Numerically, this amounts to (d+
00∆, d

+
10∆, d

+
01∆, b

−
00∆) =

(−1.4, 0.8, 0.7, 5.3), in units of Mπ. The comparison with
the phenomenological values of [21], (d+

00, d
+
10, d

+
01, b

−
00) =

(−1.46, 1.12, 1.14, 10.36), shows that the ∆ indeed ac-
counts for a significant part of the curvature seen in the
scattering amplitude at small values of ν and t. The sit-
uation is similar to the one in the mesonic sector, where
the most important singularity that is not explicitly ac-
counted for in the effective theory is the one generated by
the ρ.

It is instructive to compare the chiral expansion of the
subthreshold coefficients with the small-scale expansion
thereof. In the chiral expansion, the coefficients are ex-
panded in powers of M at fixed m∆. The small-scale ex-
pansion results if the mass difference ∆ = m∆ −m is also
treated as a small quantity and the double series in M and
∆ is reordered by counting the ratio M/∆ as a quantity of
order 1. The chiral expansion yields a decent approxima-
tion for all of the above coefficients (the largest deviation
occurs in d+

10, but still amounts to less than 20%). The
small-scale expansion does not improve the accuracy of
this approximation; in fact, the discrepancy between the
leading term of that expansion and the full result for d+

10
is about twice as large as for the chiral series. The nu-
merical exercise shows that, as long as we stick to small
values of ν and t, the singularities generated by the ∆ do
not jeopardize the chiral-perturbation series.

Contribution to the effective coupling constants of L(2)
N

To read off the contributions of the ∆ to the effective cou-
pling constants of L(2)

N , we expand the above expressions
in powers of M and insert the result into (39). This leads
to14:

c∆1 = 0 , c∆2 = 2 cm (m∆ +m) ,

c∆3 = −c (4m2
∆ −m∆m+m2) , (D.2)

c∆4 = c (2m∆ −m)(m∆ +m) , c ≡ g2
∆F

2

9m2
∆(m∆ −m)

.

14 Note that the coupling constant c4 picks up an extra, small
negative contribution from the term cF

4 = −1/4m in (C.3).
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Numerically, these formulas yield (c∆1 , c
∆
2 , c

∆
3 , c

∆
4 ) = (0,

1.4, -2.0, 1.1)m−1
N . Again, the higher-order terms of the

chiral expansion do not significantly modify these esti-
mates: Evaluating the relations (39) with the full expres-
sions for the coefficients of the subthreshold expansion in-
stead of only the leading terms, we obtain (c∆1 , c

∆
2 , c

∆
3 , c

∆
4 )=

(−0.04, 1.2, −2.1, 1.2)m−1
N . In particular, the higher-order

effects generate a small contribution to the coupling con-
stant c1, which amounts to a shift in the σ term by about
3 MeV.

Contribution to ∆σ and to the coupling constants ē1, ē2

As discussed in Sect. 12.4, the corrections to the leading-
order result for the difference ∆σ = σ(2M2) − σ(0) are
dominated by the logarithmic term, ∆2M

4 lnM/m. A
significant fraction of this term is generated by the ∆:
Inserting the above expressions into (38), we obtain

∆2 ∆
= −g2

∆(6m2
∆ − 2m∆m+m2)

36π2m2
∆(m∆ −m)

. (D.3)

Numerically, this amounts to ∆2M
4 lnM/m = 5.9 MeV,

to be compared with the number 10.6 MeV, obtained by
inserting the phenomenological values for the combination
c2 + 6 c3 of effective coupling constants (the contribution
from gA is of opposite sign, and reduces this to 7.8 MeV).

The effects generated by the∆ in the scalar form factor
were analyzed quite some time ago [29]. That calculation is
equivalent to an evaluation of the dispersion integral (41)
in the approximation where the integrand is replaced by
the leading term of the small-scale expansion. The corre-
sponding representation for the contribution to the partial
wave f0

+(t) generated by ∆ exchange reads

f 0
∆+(t) =

2 g2
∆m

2

9π

{
2∆2 + t− 2M2

√
t− 4M2

arctan
√
t− 4M2

2∆
−∆

}
,

with ∆ ≡ m∆ − m. At low energies, this approxima-
tion yields a remarkably good representation for the full
partial-wave projection of the ∆ contribution to the scat-
tering amplitude. The leading term in the chiral expansion
of the dispersion integral then reads [32]:

∆σ ∆
=
g2

∆M
4

36π2∆

{
5
3

− π

4
− 5 ln

(
M

2∆

)
+O

(
M2

∆2

)}
.

The coefficient of the chiral logarithm occurring here in-
deed agrees with the leading term in the small-scale expan-
sion of the representation (D.3). Note that there is a differ-
ence between the chiral-perturbation series and the small-
scale expansion: In the former, chiral logarithms only start
showing up at O(p4), but for the latter, those generated
by the ∆ manifest themselves already at third order.

The remainder of the above representation amounts to
an estimate for the ∆ contribution to the coupling con-
stant e2:

ē∆
2 =

g2
∆

144π2∆

{
10 ln

(
2∆
m

)
+ 7 +O

(
M2

∆2

)}
.

The formula confirms that the coupling constant ē2 is
small: Numerically, the corresponding contribution to ∆σ

amounts to 0.7 MeV.
The analogous estimate for the ∆ contribution to the

low-energy constant e1 may be obtained from the small-
scale expansion of the nucleon mass [32]. The comparison
with (34) yields

ē∆
1 = − g2

∆

48π2∆

{
6 ln

(
∆

2m

)
+ 5 +O

(
M2

∆2

)}
.

Numerically, this corresponds to a contribution to the σ
term of 5.7 MeV.

Note that, if the degrees of freedom of the ∆ occur as
dynamical variables of the effective theory, the quantum
fluctuations also generate graphs that contain ∆ prop-
agators instead of nucleon propagators. The small-scale
expansion allows a coherent counting of powers also for
these graphs. The width of the ∆, for instance, represents
a term of third order, so that the corresponding shift of the
pole in the propagator does represent a correction which
perturbation theory is able to cope with. There is a dif-
ference from the framework described above, insofar as
the constants m and c1 now pick up renormalization. At
leading order, the ∆ is degenerate with the nucleon, so
that the loop graphs containing ∆ propagators also give
rise to infrared singularities. The method described in the
present paper may be extended to analyze these [8].

References

1. J. Gasser, M.E. Sainio, and A. Svarc, Nucl. Phys. B307,
779 (1988)

2. E. Jenkins and A.V. Manohar, Phys. Lett. B 255, 558
(1991)

3. V. Bernard, N. Kaiser, J. Kambor, and U.-G. Meissner,
Nucl. Phys. B 388, 315 (1992)

4. G. Ecker, Czech. J. Phys. 44, 405 (1994)
5. V. Bernard, N. Kaiser, and U.-G. Meissner, Int. J. Mod.

Phys. E4, 193 (1995)
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