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ABSTRACT
We built empirical models to estimate the effects of
land cover on stream ecosystems in the mid-Atlan-
tic region (USA) and to evaluate the spatial scales
over which such models are most effective. Predic-
tive variables included land cover in the watershed,
in the streamside corridor, and near the study site,
and the number and location of dams and point
sources in the watershed. Response variables were
annual nitrate flux; species richness of fish, benthic
macroinvertebrates, and aquatic plants; and cover
of aquatic plants and riparian vegetation. All data
were taken from publicly available databases,
mostly over the Internet. Land cover was signifi-
cantly correlated with all ecological response vari-
ables. Modeled R2 ranged from 0.07 to 0.5, but large
data sets often allowed us to estimate with accept-
able precision the regression coefficients that ex-
press the change in ecological conditions associated
with a unit change in land cover. Dam- and point-
source variables were ineffective at predicting eco-

logical conditions in streams and rivers, probably
because of inadequacies in the data sets. The spatial
perspective (whole watershed, streamside corridor,
or local) most effective at predicting ecological re-
sponse variables varied across response variables,
apparently in concord with the mechanisms that
control each of these variables. We found some
evidence that predictive power fell in very small
watersheds (less than 1–10 km2), suggesting that
the spatial arrangement of landscape patches may
become critical at these small scales. Empirical mod-
els can replace, constrain, or be combined with
more mechanistic models to understand the effects
of land-cover change on stream ecosystems.

Key words: streams; rivers; land cover; land use;
dams; impoundments; spatial scale; nitrate; aquatic
plants; riparian vegetation; macroinvertebrates;
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INTRODUCTION

Streams and rivers are among the ecosystems most
affected by human activities (Dynesius and Nilsson

1994; Master and others 1997; Naiman and Turner
2000). The species composition (Richter and others
1997; Jansson and others 2000a), food web struc-
ture (Wootton and others 1996), nutrient cycling
(Johnes 1996; Meyer and others 1999; Vörösmarty
and others 2000a), and utility (Postel 2000; Vör-
ösmarty and others 2000b) of thousands of kilome-
ters of streams and rivers worldwide have been
greatly altered from their natural states. One of the
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main causes of these alterations is land-use change.
Land use is changing rapidly around the world (Mc-
Closkey and Spalding 1989; Vitousek and others
1997; Turner and others 1998); by 1994 about 75%
of the habitable part of the planet was disturbed by
human activity (Hannah and others 1994). Land-
use change affects stream ecosystems by altering
the timing, amount, and kind of inputs of water,
light, organic matter, and other materials to the
channel, which can have profound consequences
for all aspects of the stream ecosystem.

The precise relationships between land-use con-
version and ecological responses are difficult to es-
tablish because: (1) the types of land use, rates of
conversion, and spatial distribution of land use vary
considerably among watersheds and regions and
across political boundaries, (2) changes in land use
can drive channel morphology and hydrology into a
state of flux that may take many decades to stabilize
(Fitzpatrick and Knox 2000), (3) ecological re-
sponses may lag behind physical habitat modifica-
tions (for example, see Harding and others 1998)
and we do not always know the duration of such
lag effects, and (4) management actions have been
introduced to mediate the effects of development
on streams, yet we know little about their effective-
ness. Thus, understanding and predicting the effects
of land-use change on stream and river ecosystems
are difficult scientific problems and major chal-
lenges for contemporary ecology.

All available approaches to studying this problem
have significant weaknesses. The ideal approach—
replicated long-term experiments of entire water-
sheds—is usually prohibitively costly, logistically
impractical, and requires decades to deliver an an-
swer. Experimentation at smaller scales of space
and time can still be costly and logistically difficult.
The results of such studies may be difficult to gen-
eralize to other sites. Further, unless the experi-
mental study is long-term, its findings may be dom-
inated by transient responses of the system that do
not resemble its long-term responses (see, for ex-
ample, Tilman 1989). Uncontrolled observations on
streams whose watersheds simply differ in land
cover suffer from problems of inferring cause from
correlational patterns that are confounded by nu-
merous uncontrolled and cross-correlated variables,
large cross-site variability, and time lags (compare
Pickett 1989). Finally, mechanistic models linking
land cover to ecological responses of stream ecosys-
tems can be difficult to construct (Nilsson and oth-
ers 2002) and may be burdened with large and
unknowable errors. Thus, no single scientific ap-
proach is adequate for understanding the effects of
changing land use on stream ecosystems. Despite

the difficulties with each of these approaches, each
clearly can contribute significant (and sometimes
unique) information about how land-cover change
affects stream and river ecosystems. Ultimately, sat-
isfactory understanding of the ecological effects of
land-cover change in streams and rivers, like many
complex ecological problems, probably will require
a creative combination of these approaches (com-
pare Carpenter 1998).

One approach that can help us understand how
changes in land cover affect stream ecosystems is
empirical modeling (see, for example, Omernik
1976; Peters 1986; Cole and others 1991; Shipley
2000). Empirical models can be constructed using
either data collected expressly for the model or
suitable data collected for other purposes and ap-
propriated for use in the model (“third-party mod-
els”). The potential of this latter class of models is
growing rapidly as environmental monitoring and
research programs grow and as large data sets are
posted over the Internet.

An important issue with empirical (and other)
models is spatial scaling of variables. Stream ecosys-
tems are affected by processes occurring at different
spatial scales, from local shading caused by the can-
opy directly over a place on the streambed to re-
gional loading of materials from distant parts of the
water- or airshed. As tools for the analysis of Geo-
graphic Information System (GIS) become more
widespread and sophisticated, it will increasingly
become possible to choose the scale at which to
model these effects to optimize predictive power
and understanding.

Two particular scaling issues commonly confront
scientists interested in the effects of land cover on
stream ecosystems. The first (which we call “spatial
extent”) is the effect of watershed size on the pre-
dictive power of empirical models. Large water-
sheds usually contain many different land-cover
patches. The response of the stream is determined
jointly by many landscape elements, so nonspatially
explicit variables, such as the percentage of the
watershed in a given land-cover class, may be ade-
quate predictors of land-cover effects on streams
and rivers. In very small watersheds, though, the
number of land-cover elements usually is small, so
the idiosyncrasies of the spatial arrangement or
management of such individual elements may have
strong effects on stream ecosystems. Thus, we ex-
pect the predictive power of models based on non-
spatially explicit landscape variables to decline in
watersheds below some threshold size, at which
point the characteristics of individual landscape el-
ements become important.

The second issue has to do with the distribution
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of land cover within the watershed. Presumably,
landscape elements near the stream or river have
more influence on its ecosystem than elements in a
distant part of the watershed. Although land cover
often is assessed for the entire watershed, it is
equally possible to assess land cover in the riparian
corridor or local area around a sampling point to try
to account for this increased influence of near-
stream landscape elements. Such alternative assess-
ments of land cover (which we refer to as “spatial
perspective”) may have different predictive power
for different ecological response variables in the
stream or river.

We used large, third-party data sets to construct
empirical models of the effects of land-cover change
on stream ecosystems in the mid-Atlantic region.
Our goals were to answer the following questions:

● Can simple empirical models based on readily
available data be used effectively to describe eco-
logical responses to different land covers?

● How does using different spatial extents and spa-
tial perspectives affect our ability to describe the
ecological responses of streams to different land
covers?

METHODS

Choice of study area and variables

Our study required an area with diverse land cover
for which large data sets of interesting ecological
variables were available. We chose the Chesapeake
Bay watershed in the eastern United States (Figure
1) because it is a large area with diverse and chang-
ing land cover (Table 1) and has been well studied
by ecologists. We chose the following ecological
response variables: fish species richness, the per-
centage of fish species that are non-native, annual
flux of nitrate–N, species richness of benthic mac-
roinvertebrates, cover and species richness of
aquatic plants, and canopy cover by riparian vege-
tation. These variables are of interest to scientists
and managers and are likely to exhibit different
kinds of responses to land cover.

Ecological response variables

We obtained ecological data from state and federal
agencies (via the Internet, CD-ROMs, and personal
communication with agency personnel) and from
the literature. We recorded our effort to obtain,
collate, and process the data to help assess the fea-
sibility of using these large third-party data sets in
research. Different sampling points were used for
each of the ecological response variables, so our
analyses of the different ecological variables were
run separately.

Nitrate flux. Nitrate data were obtained from
four sources. Two of these were the US Geological
Survey: DDS-37, which includes data from selected
USGS National Stream Water Quality Monitoring
Networks (WQN; Alexander and others 1996), and
the National Water-Quality Assessment database
(USGS 2000a). We also queried the US Environ-
mental Protection Agency’s STORET database
(USEPA 2000a), with assistance from STORET staff,
and used data from (Jordan and others 1997). Some
of these data were nitrate–N � nitrite–N, while
others were only nitrate–N. We used both of these
data interchangeably, assuming that nitrite–N was a
small fraction of the total flux (Meybeck 1982). All
sites were sampled at least once a month for a year
and had data on daily water discharge. Nitrate flux
was calculated as the product of nitrate concentra-
tion (monthly means) and water discharge. In all,
we acquired data on nitrate flux for 110 sites that
were sampled between 1989 and 1999.

Plants. The Maryland Biological Stream Survey
(MBSS), a program of the Maryland Department of
Natural Resources (MDNR), provided data on spe-
cies richness of aquatic plants for 269 sites in that

Figure 1. Map of the study area.
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state (MBSS 2000); we randomly subsampled these
sites from the larger MBSS database. Data were
collected between 1995 and 1997 between 1 June
and 30 September (Mercurio and others 1999). The
USEPA’s Environmental Monitoring and Assess-
ment Program [EMAP; including data from the
Mid-Atlantic Integrated Assessment (MAIA)] col-
lected data on cover of aquatic plants and riparian
vegetation for 165 sites in Delaware, Maryland,
Pennsylvania, Virginia, and West Virginia (USEPA
1999a). Data were collected between 1993 and
1995 during April to mid-June (USEPA 1999b).
Cover of all macrophytes (excluding macroalgae)
was visually estimated along eleven 10-m-wide
transects across the stream as absent, sparse (less
than 10%), moderate (10%–40%), heavy (40%–
75%), or very heavy (greater than 75%). A site
mean cover was calculated by assigning cover class
midpoint values to each transect and taking the
simple mean of the 11 transects. Further details on
sampling and analysis were presented by (Lazor-
chak and others 1998) and (Chaloud and Peck
1994).

Benthic invertebrates. The USEPA EMAP database
also included data on species richness of benthic
macroinvertebrates for the same sites and times as
for plant cover (see above). Sampling for the MAIA
program occurred primarily near road crossings us-
ing standard USEPA rapid assessment techniques
for sampling riffles (Plafkin and others 1989) in the
Piedmont ecoregion and modified USEPA methods
for lowland coastal plain streams (USEPA 1997).
Both methods integrate multiple D-net “jabs” strat-
ified by habitat availability in shallow wadeable
habitats only (not pools). The first 100 macroinver-
tebrates were removed from random subsamples
and identified to genus or family. We used data for
303 sites at the family level to avoid confounding
land-use effects with local differences in commu-
nity structure resulting from differences in species
geographic ranges. Further details on sampling and
analysis were presented by (USEPA 1997), (Lazor-
chak and others 1998), and (Maxted and others
1999).

Fish. We analyzed fish species richness and the
percentage of fish species that were non-native (us-

Table 1. Characteristics of the Study Sites and Response Variablesa

Variable Watershed
Stream
Corridor Local

% open water 0.4 (0–10.3) 0.8 (0–20.3) 1.2 (0–59.3)
% urban 3.3 (0–92.8) 3.0 (0–89.0) 3.9 (0–100)
% forest 64.4 (2.2–100) 64.2 (0–100) 59.0 (0–100)
% pasture 23.7 (0–88.2) 23.5 (0–98.6) 24.9 (0–100)
% cultivated 6.6 (0–76.2) 5.7 (0–76.4) 5.8 (0–84.9)
% urban grasses 0.2 (0–13.1) 0.2 (0–16.3) 0.2 (0–52.8)
% wetland 1.5 (0–36.5) 2.8 (0–31.8) 4.9 (0–100)
Watershed area (km2) 288 (0.2–22,278)
Dam density (No./km2) 0.01 (0–2.6)
Minimum distance to dam (km) 3.9 (1–112.4)
Inverse-distance-squared dam density (No./km2) 0.1 (0–5.8)
Maximum storage (m3/km2) 12,614 (0–1,770,000)
Live storage (m3/km2) 6288 (0–1,518,000)
Point-source density (No./km2) 0.1 (0–7.7)
Minimum distance to point source (km) 2.9 (0–67.6)
Inverse-distance-squared point-source density

(No./km2) 1.4 (0–52.7)
Nitrate flux (kg N/ha y) 8.7 (0.04–50)
Aquatic plant species richness 0.39 (0–5)
Aquatic plant cover (%) 1 (1–100)
Riparian plant cover (%) 42 (0–97)
Macroinvertebrate richness 18.6 (0–33)
Fish species richness 10.5 (0–33)
% non-native fish species 17.1 (0–100)

aFigures shown are means, with ranges in parentheses. Dam and point-source variables were assessed only at the watershed perspective. Land-cover, dam, and point-source
variables assessed at the 944 sites used for the analysis of fish communities; other analyses used similar but smaller data sets.
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ing the criteria of Hocutt and others 1986) at 944
sites. Data were obtained from several sources. The
USEPA EMAP program (USEPA 1999a) sampled
streams using a single pass with an electrofisher in
multiple habitats throughout the stream and pro-
vided data for 165 sites. Data were collected be-
tween 1993 and 1995 during a two-month sam-
pling window from April to mid-June. Further
details on sampling and analysis for the EMAP pro-
gram were presented by (Lazorchak and others
1998) and (Chaloud and Peck 1994). Data for 33
sites in Delaware were obtained from the Delaware
Division of Fish and Wildlife (Mr. Craig Shirey,
Delaware Division of Fish & Wildlife, personal com-
munication). Fish were sampled with a backpack
electrofisher in the summer months of 1986, 1988,
1989, and 1990. The Maryland Biological Stream
Survey (MBSS 2000) provided data for 269 sites in
that state (we randomly subsampled these sites
from the larger MBSS database). Data were col-
lected between 1995 and 1997 from 1 June to 30
September using two electrofishing passes (Mercu-
rio and others 1999). The Pennsylvania Fish and
Boat Commission (PFBC) provided data on fish
communities from Pennsylvania (PFBC 2000). Data
were collected between 1975 and 1995 during an-
nual summer fish surveys. Sampling gear type was
not always included in the database, but, where
mentioned, a form of electrofishing was used (elec-
trobackpack, electrotowboat, day or night electro-
boat). We randomly selected 290 sites from this
large database. The PFBC (2000) data set is cen-
sored to remove rare and endangered species; we
determined that our study sites did not contain any
of these species and was therefore complete (David
Argent, Pennsylvania State University, personal
communication). Data for Virginia (from 1985 to
1990) were obtained from the Virginia Department
of Game and Inland Fisheries (Shelly Miller per-
sonal communication). We randomly chose 187
sites from this database.

All ecological variables were sampled in free-run-
ning reaches, not in impoundments. Therefore, our
analysis underestimates the impact of impound-
ments to the extent that impounded reaches differ
from the free-running reaches that they replaced.

Predictor variables
Land-cover data. For each point where ecological

data were available, we derived information on
land cover, dams, and point sources of pollution.
For this process, GIS layers for the various ecolog-
ical data sets were created using the reported lati-
tude and longitude for each sample site. Land-cover
data were calculated from the National Land-Cover

Data (NLCD) and were obtained from the Multi-
Resolution Land Characteristics Consortium
(MRLC) (USEPA 2000b). These data were devel-
oped from 30-m Landsat thematic mapper data
ranging from 1986 to 1994. We aggregated the
NLCD land-cover categories into seven land-cover
classes (Table 2). We overlaid the NLCD GIS layer
over the watershed, stream corridor, and local
boundaries to determine land cover within each of
these areas. The land-cover variables were calcu-
lated for three spatial perspectives: watershed,
stream corridor, and local (Figure 2). The watershed
perspective included land cover in the entire water-
shed of each sampling site, regardless of the size of
the watershed. To obtain this perspective, we delin-
eated watersheds using 90-m Digital Elevation
Models (DEM) obtained from the USGS (USGS
2000b). Using the National Hydrography Dataset
(USGS 2000c), the DEMs were modified to include
known stream locations (Moglen and Beighley
2000). Then, knowing elevation and applying the
rule that water flows in the direction of the steepest
downhill gradient, it is possible to infer flow direc-
tions, flow lengths, slopes, drainage area, and wa-
tershed boundaries (see, for example, O’Callaghan
and Mark 1984; Jensen and Domingue 1988; Tar-
boton and others 1991). For example, the drainage
area of a watershed was calculated as the number of
cells draining to the sampling site times the area of
an individual cell (0.0081 km2). Although only a
few of the ecological data sets included drainage
area for assessing our GIS-derived areas, a similar
application by (Beighley and others 2002) showed
that the delineation procedure we used resulted in
approximately � 5% error in drainage area for
watersheds ranging from 14 to 67,000 km2 in the
Chesapeake Bay Watershed. The stream corridor
perspective included land cover within the pixel
containing the stream plus one pixel on either side
of the stream, resulting in a 270-m-wide window
centered on the stream. The local perspective in-
cluded land cover within a circle (300-m radius)
centered on the sample site.

In addition, the DEM elevation and ecoregion
(Omernik 1987) at each sample site were deter-
mined. Ecoregions also were aggregated into major
physiographic provinces (that is, coastal plain, pied-
mont, or uplands).

Dam data. We obtained information on dams
from the National Inventory of Dams, a program of
the US Army Corps of Engineers (NID 2001). This is
the most comprehensive listing of dam information
for the United States and includes information on
77,000 dams in the United States and Puerto Rico.
The NID includes a dam only if it is in a high or
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significant hazard class, if it exceeds 7.6 m in height
and 18,500 m3 in storage, or if it exceeds 1.8 m in
height and 62,000 m3 in storage; consequently
many small dams are excluded. For each sampling
point, we calculated the density of dams (number/
km2) in the watershed, the closest dam upstream of
the study site based on hydrologic flow path length,
and the number of dams in the watershed weighted
by their inverse distance squared from the study
site. Additionally, two “storage” variables were cal-
culated from the NID database: maximum storage
and live storage (the difference between maximum
and normal storage—a measure of the ability of the
reservoir to alter hydrology downstream). Both of
these storage variables were summed over all res-
ervoirs upstream of the study site and normalized
by the area of its watershed.

Point-source data. We also used point-source data
as predictor variables. The point-source data used in
the study were obtained from USEPA BASINS da-
tabase (USEPA 2000c): Permit Compliance Sys-
tems, Industrial Facilities Discharge Sites, Toxic Re-
lease Inventory, National Priority List Sites, and
Hazardous and Solid Waste Sites. These databases
include a wide range of point sources, including
permitted industrial and municipal discharges,

wastewater treatment plants, landfills, Superfund
sites, and locations of handlers of hazardous wastes.
We interpreted this point-source information as a
general measure of industrial activity in the water-
shed. We calculated three point-source variables:
the density (number/km2) of point sources in the
watershed, the closest point source upstream of the
study site based on hydrologic flow path length, and
the number of point sources weighted by their in-
verse distance squared from the study site. Table 1
shows the range for all predictor variables in our
data sets.

Approach to statistical analysis

Our basic statistical tool was stepwise multiple lin-
ear regression, with forward selection of variables
and p � 0.15 to enter or remove variables. Cases
with missing data were excluded (that is, listwise
exclusion). Statistical analyses were done using
SYSTAT 8.0, SYSTAT 9.0, Statistica 5, and SPSS
10.0; comparisons among these packages showed
that they gave comparable results.

We ran a series of models (Figure 3) to examine
the relationships between land-cover and hydrolog-
ical variables and our ecological response variables.
In addition to the predictor variables mentioned

Figure 2. Diagram showing
the three different spatial
perspectives at which land
cover was assessed: a wa-
tershed, b stream corridor,
c local.

Table 2. Land-Use/Land-Cover Classifications Used in this Study Compared with MRLC Classes

Land Covers Used in This
Study MRLC Classes

Urban 21-Low Intensity Residential; 22-High Density Residential;
23-Commercial/Industrial/Transportation

Urban grass 85-Urban/Recreational Grasses
Cultivated land 82-Row Crops; 83-Small Grains; 84-Fallow
Pasture 71-Grasslands/Herbaceous; 81-Pasture/Hay
Open water 11-Open Water
Forest 41-Deciduous Forest; 42-Evergreen Forest; 43-Mixed Forest; 51-Shrubland
Wetland 91-Woody Wetlands; 92-Emergent Herbaceous Wetlands
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below, we used stream size (as log10 watershed
area), elevation at the study site, ecoregion, lati-
tude, and longitude as covariates, as appropriate.
Data were transformed prior to analysis as needed.
First, we examined the effectiveness of adding com-
plexity to our models by regressing the ecological
response variables against (1) land cover only, (2)
land-cover � dam variables, and (3) land-cover �
dam variables � point-source variables, and com-
paring the resulting models. Second, we examined
the effectiveness of assessing land cover from three
different spatial perspectives. Here, we ran regres-
sion models using (a) land cover of the watershed,
(b) land cover of the stream corridor, or (c) local
land cover around the study site as predictor vari-
ables. Third, we examined the effect of spatial ex-
tent on predictive power by running regressions of
the ecological response variables on land cover sep-
arately for watersheds of different sizes. We divided
our data set into subsets of equal size (but with n �
50) by watershed area and ran our analysis sepa-
rately on each subset.

We assessed the importance of our predictor vari-
ables in two ways. First, we simply examined the
slopes for all variables that were included in our
stepwise models. These slopes show the change in
an ecological response variable that is expected
from a unit change in the predictor variable. How-
ever, because predictor variables vary over different
ranges (for example, the percentage of forested land

in a watershed varies over a much greater range
than the percentage of open water for most water-
sheds), these slopes do not express the change in an
ecological response variable that might be expected
from changes in land cover. As an index of the
amount of variation to be expected in each inde-
pendent variable, we took the difference between
the 5th and 95th percentiles for each independent
variable in our data set. We then multiplied this
number by the regression slope to calculate the
expected variation in an ecological response vari-
able that might be induced by likely changes in each
independent variable. We call this quantity “scope
for change.”

Correlations between independent variables af-
fect the interpretation of our models in two ways.
First, the percentages of land in major land-cover
classes are inevitably negatively correlated with one
another. In our data sets, % forest was negatively
correlated with % pasture and % cultivated land
with r2 � 0.25–0.76, depending on spatial perspec-
tive. Thus, a significant positive relationship be-
tween % forest and an ecological response variable
might also be interpreted as evidence of a negative
relationship between that variable and % pasture or
% cultivated land. Second, the percentage of land
in a given land-cover class was correlated across
spatial perspectives, particularly between the wa-
tershed and stream corridor perspectives. Thus, the
% forest in the entire watershed was correlated
with the % forest in the stream corridor. Conse-
quently, even if land cover at only one spatial per-
spective were truly related to an ecological response
variable, we would observe weaker correlations at
other spatial perspectives.

RESULTS

Costs of analysis

Because the data used in this study were available
free of charge, our only costs were labor. It took
60–65 person-days to find and assemble the data
sets (Table 3). Three tasks were especially time-
intensive. First, it took about 18 person-days of
searching the Internet, telephone calls, and emails
to find appropriate data. This task was eased be-
cause many of the people contacted were helpful
and knowledgeable, but it was hampered because
none of us was very familiar with the study area
before undertaking this work. Second, because data
from different agencies came in different formats,
we spent considerable time bringing the data to-
gether into a form that we could use. Third, we
devoted several days to determining the appropri-

Figure 3. Flow chart showing the major steps in data
collection and analysis.
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ate DEM resolution and developing the drainage
network for the study region. Our final analyses
were done using a DEM pixel resolution of 90 m.
Initially the analyses were performed using 300-m
pixels, which resulted in poor inferred drainage
networks at small drainage areas (less than 30
km2). Because many of the sampling sites had small
drainage areas and one of the study goals was to
investigate the effects of drainage area on predictive
power, the 300-m pixel resolution was too coarse.
Although the study region has complete coverage at
30 m, the computational time and data storage
required to use this higher resolution data would
have been prohibitive.

Identity and effectiveness of predictor
variables

The regressions generally had low-to-moderate co-
efficients of determination (Tables 4 and 5). Land-
cover, dam, and point-source variables together ac-
counted for 26-100% of the overall R2 of these
models. Despite the modest contribution of such
variables in predicting ecological responses, the es-
timates of regression slopes often were fairly precise
(Figure 4).

Several land-cover variables affected ecological
response variables (Figure 4). A high proportion
of cultivated land was associated with high nitrate
flux, low fish species richness, and a high cover of
aquatic plants. The other agricultural land cover
(pastures) had quite different effects and was as-
sociated with high fish species richness, not with
high nitrate flux. Wetlands were consistently as-
sociated with high fish species richness, a low

percentage of non-native fish species, and high
aquatic plant species richness. Forested land was
negatively correlated with nitrate flux and the
proportion of non-native fish species and, not
surprisingly, positively correlated with riparian
plant cover. The percentage of open water ap-
peared to have large effects on nitrate flux (neg-
ative), % non-native fish species (positive), and
canopy cover (negative), although these correla-
tions were imprecise. Urban land cover was pos-
itively associated with the proportion of exotic
fish species and riparian canopy cover and nega-
tively associated with macroinvertebrate species
richness.

Given the differences in % coverage by each of
the land-cover classes, it appears that changes in %
forest, % wetland, and % cultivated land all have
great potential to change the ecological response
variables that we studied (Figure 4, right-hand pan-
els). Changes in % open water, % urban land, and
% pasture also have the potential to greatly affect
some ecological response variables.

Adding dam- and point-source variables to our
models increased predictive power by less than 5%
(Table 4). Fish species richness was slightly elevated
near dams and in watersheds with many dams
(data not shown). Riparian plant cover was weakly
associated with low amounts of storage capacity
and high amounts of live storage capacity in the
watersheds. Watersheds with a high density of
point sources tended to have reduced species rich-
ness of fish and macroinvertebrates (data not
shown), but this effect was weak (Table 4).

Table 3. Major Labor Costs (as Number of 8-h Days) Associated with Assembling Data Sets for Empirical
Analysesa

Task
Time
(days)

Computational
Complexity

Locating data and metadata 18 Low
Assembling and formatting ecological data 9 Low
Choosing appropriate resolution for DEM 5 High
Defining drainage network 5 High
Delimiting watersheds for study sites 5 Moderate
Selecting and preprocessing land-cover data 5 High
Calculating land cover at watershed perspective 1 Moderate
Calculating land cover at stream corridor perspective 2 Moderate
Calculating land cover at local perspective 3 Low
Calculating dam data from NID 3 Moderate
Calculating point-source data 5 High
Merging ecological and GIS data 2 Low

aExcludes the time required to run statistical models and analyze and write up results. Computational complexity refers to both algorithm development and computer power.
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Effects of spatial perspective

The spatial perspective at which land cover was
assessed affected the effectiveness of empirical
models in different ways for the different response
variables studied (Table 5). Land cover over the
whole watershed best predicted nitrate flux and
aquatic plant species richness. Fish species richness
and aquatic plant cover were most closely related to
land cover in the entire watershed or riparian cor-
ridor. In contrast, riparian plant cover was best
predicted by local land cover. Land cover in the
riparian corridor was the best predictor of macroin-
vertebrate species richness (Table 5). Thus, each
spatial perspective was optimal for at least one of
our response variables.

Effect of watershed size (spatial extent)

There was no general relationship between water-
shed size and the predictive power of empirical
models that held for all of the variables studied
(Figure 5). For some of our response variables (ni-
trate flux and plant cover), we had too few data to

test for a clear pattern. (The apparent decline in
predictive power for aquatic plant cover in large
watersheds is an artifact because none of the larger
streams had any aquatic plants.) Nevertheless, all
three of the variables for which we had many data
(plant, macroinvertebrate, and fish species rich-
ness) showed a decline in predictive power in very
small watersheds (less than 1–10 km2).

Comparisons among ecological response
variables

As hypothesized, the ecological response variables
we studied had a wide range of associations with
the predictor variables. Different variables were the
best predictors for different ecological responses.
Thus, % cultivated land was the best predictor for
nitrate flux, while % wetlands was the best predic-
tor for aquatic plant species richness (Figure 4).
Likewise, the spatial perspective that was most ef-
fective in predicting ecological responses differed
across variables (Table 5). Finally, the predictive
power of different models varied widely (Tables 4

Table 4. Increase in Predictive Power Associated with Adding Complexity as Dam- and Point-Source
Variables.a

Response Variable Contextual
�Land
Cover �Dams

�Point
Sources

Spatial
Perspective

Nitrate flux 0.12 0.54 0.55 0.55 Watershed
Aquatic plant species richness 0.27 0.42 0.42 0.43 Watershed
Aquatic plant cover 0 0.07 0.07 0.07 Watershed or

Stream corridor
Riparian cover 0 0.38 0.38 0.39 Local
Macroinvertebrate species richness 0.03 0.26 0.26 0.26 Stream corridor
Fish species richness 0.23 0.27 0.30 0.31 Watershed
% non-native fish 0.10 0.13 0.13 0.17 Local

aValues are adjusted multiple R2 for each model. Contextual variables are latitude, longitude, elevation, and log10 drainage area. Based on models run at the spatial perspective
having the highest R2 (see final column).

Table 5. Predictive Power (Adjusted R2) for Land-Cover Models Run at Different Spatial Perspectivesa

Response Variable Spatial Perspective

Watershed
Stream
Corridor Local

Nitrate flux 0.55 0.52 0.29
Aquatic plant species richness 0.42 0.34 0.28
Aquatic plant cover 0.07 0.07 0.03
Riparian plant cover 0.28 0.33 0.39
Macroinvertebrate species richness 0.21 0.26 0.19
Fish species richness 0.27 0.27 0.25

aModels include contextual, land-cover, dam-, and point-source variables. The highest R2 values for each ecological response variable are in bold.

Empirical Models of Land Cover and Streams 415



and 5). On the other hand, some patterns were
consistent across ecological response variables.
Thus, dam- and point-source variables were inef-
fective predictors of ecological responses and added
little to our models (Table 4). Further, to the extent
that our data set allowed us to discern scale depen-
dence of predictive power, it appears that predictive

power may decline at small spatial extents for some
variables (Figure 5).

DISCUSSION

We were able to construct empirical models that
shed light on the effects of land cover on stream
ecosystems and on the influence of spatial scaling
on our perception of those effects. The specific na-
ture of these effects varied considerably across eco-
logical response variables.

Performance of the empirical models
Review of model characteristics. Land cover of the

entire watershed, particularly the percentage of the
watershed in cultivated land, forest, and open wa-
ter, was the best predictor of nitrate flux (Figure 4
and Table 5). These correlations presumably are a
result of high loadings and low retention of nitrog-
enous fertilizers in cultivated fields, contrasted with
lower anthropogenic inputs and high retention of
nitrate in forests and open water. These results
agree with previous attempts to predict nitrogen
flux from large watersheds (for example, see Jordan
and Weller 1996; Caraco and Cole 1999; Galloway
2000; Vörösmarty and Sahagian 2000). Models
based on land cover in the 270-m-wide streamside
corridor were nearly as good as watershed-wide
models in predicting nitrate flux (Table 5). In such
streamside models, wetland cover was added as a
predictive variable (negatively correlated with ni-
trate flux), suggesting that wetlands close to the
stream channel may be biogeochemical hot spots
for nitrogen cycling (Lowrance and others 1984;
Peterjohn and Correll 1984). Models based on local
land cover were poor at predicting nitrate flux (Ta-
ble 5), suggesting that nitrate is readily moved from
distant parts of the watershed.

Aquatic plant species richness was readily pre-
dicted from the wetland cover of the watershed
(Tables 4 and 5 and Figure 4), suggesting the im-
portance of wetlands in supplying propagules to the
stream community. In contrast, aquatic plant cover
was correlated only weakly with the predictor vari-
ables. Perhaps this weak correlation was due in part
to the inadequacy of a single measurement of plant
cover, which presumably is temporally variable as a
result of floods and seasonal development of the
vegetation (Alvarez–Cobelas and others 2001). The
positive association between aquatic plant cover
and % cultivated land may be a result of increased
light and nutrients in these streams (Hansen and
others 2001). The positive association between ri-
parian plant cover and local forest cover probably

Figure 4. Influence of land-cover variables on ecological
response variables, assessed as the slope (partial regres-
sion coefficients) of the regression model and the “scope
for change.” “Scope for change” is the regression slope
multiplied by the amount of variation to be expected in
the predictor variable (see Methods). Only variables that
were significant in the stepwise multiple regression mod-
els are included. Results are for the spatial perspective
with the highest R2 (see Table 5).
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arose because the riparian trees themselves were
categorized as forest in the NLCD.

For macroinvertebrate species richness, the most
effective spatial perspective was the streamside cor-
ridor, with urban, forest, and wetland cover being
important (Figure 4 and Table 5). Several studies
(Richards and others 1997; Fitzpatrick and others
2001; Sponseller and others 2001) likewise have
found that reach-scale features were better predic-
tors than watershed-scale features of macroinverte-
brate community structure in streams. Many au-
thors (for example, Cummins 1993a; Maridet and
others 1998; Yeates and Barmuta 1999; Quinn and
others 2000) have found that streamside vegetation
is important to macroinvertebrate communities in
streams through its provision of leaf litter, shading
of the channel, and woody debris.

The spatial perspective at which land cover was
assessed did not have a strong effect on the effec-
tiveness of our models of fish species richness (Table
4), in contrast to some previous work suggesting
that watershed-scale processes were most impor-
tant (Roth and others 1996). Richness was posi-
tively related to cover of pasture and wetlands and
negatively related to cover of cultivated land. Many

studies (for example, Roth and others 1996; Walser
and Hart 1999; Cuffney and others 2000; Fitz-
patrick and others 2001) have shown that a high
cover of cultivated land results in low fish species
richness, probably a result of high loading of sedi-
ments, a lack of instream and streamside cover, and
alterations to thermal and hydrological regimes.
Wetlands also have been shown to have a positive
effect on fish species richness in streams (Roth and
others 1996).

This brief review of model characteristics suggests
several general points. First, the most effective pre-
dictor variables and spatial perspectives varied
widely across ecological response variables. Gener-
ally, the predictors and spatial perspectives best
used to predict each variable were readily interpret-
able in light of the ecological mechanisms thought
to control that variable. To the extent that each
response variable is controlled by its own distinct
set of mechanisms, there will be no single optimal
structure or scale to empirical models of the effects
of land use on stream ecosystems. Fitzpatrick and
others (2001) reached a similar conclusion in their
study of the effects of environmental variables as-
sessed at different scales on fish, macroinverte-
brates, and algae in Wisconsin streams.

Second, two land-cover variables had strong ef-
fects on several ecological response variables. In our
region, wetlands were associated with high species
richness of fish and aquatic plants and low richness
of non-native fish (Figure 4). Cultivated lands were
correlated with high nitrate flux, low fish species
richness, and high cover of aquatic plants. Notably,
the other agricultural land cover (pasture) had
none of these effects. Thus, wetlands and cultivated
fields had strong influences on the overall structure
of stream ecosystems in the Chesapeake Bay
watershed.

Finally, dam- and point-source variables were
consistently ineffective in predicting ecological re-
sponse variables (Table 4). Certainly, point-source
pollution is well known to have strong effects on
many aspects of stream ecosystems (Mason 1996).
However, our point-source variables may have
been ineffective predictors because this class con-
tained a wide range of sources with highly varied
historical and current effects on stream ecosystems.
Likewise, dams undoubtedly have strong, wide-
reaching effects on streams and rivers (Petts 1984;
Rosenberg and others 1995; Nilsson and Berggren
2000).

Three factors may be behind the weakness of
dam variables in our models. First, the sampling
programs that produced the data we used deliber-
ately avoided sampling in impoundments. Ecologi-

Figure 5. Prediction of ecological response variables for
different watershed sizes and spatial perspectives. Plots
show the total R2 of the models using all variables. Wa-
tershed size is given for the midpoint of each watershed-
size class.
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cal conditions in impoundments usually are radi-
cally different than those in free-flowing reaches
(Nilsson and others 1997; Jansson and others
2000b). As a result, the omission of impoundments
from the sampling programs led us to underesti-
mate the impacts of dams. Second, the National
Inventory of Dams is incomplete and does not con-
tain information on all of the numerous small dams
in the study area. Third, our characterization of
dams was very coarse and, in particular, contained
no information on how the dams actually altered
hydrology, temperature, water chemistry, or sedi-
ment dynamics of reaches downstream. A more
complete characterization of dams, along with in-
formation on ecological conditions in impound-
ments, probably would have led to different con-
clusions than our models suggested about the
effects of dams.

Adequacy of model power. The power of our mod-
els can be judged by two criteria: the R2 of the
model and the precision with which regression
slopes are estimated (for example, the standard er-
ror or coefficient of variation of the slope). The
former criterion is a measure of how much varia-
tion in a response variable is accounted for by the
predictor variables; it is relevant if the model is to be
used to predict an ecological variable at a specific
site. The latter is a measure of the precision with
which land-cover effects are known; it is relevant if
one is trying to describe the average change in an
ecological response variable that is expected from a
unit change in the predictor variable.

Because our models usually had R2 of 0.05–0.5
(Tables 4 and 5), they rarely will be adequate to
predict ecological conditions at a given site. On the
other hand, slopes often were estimated with good
precision (one third of the slopes shown in Figure 4
have CV � 25%), and may be quite adequate for
specifying the average amount of change in an eco-
logical response variable that is associated with a
specified difference in land cover. Many empirical
models in ecology have similar characteristics, with
good ability to quantify general trends but poor
ability to predict individual data points (Peters
1983, 1986; Brown 1995).

Several factors may underlie the imprecision of
our models. First, large measurement error is asso-
ciated with some of the variables. For example,
25% of the variation in fish species richness is ac-
counted for by differences in estimates of fish spe-
cies richness made a few days apart. Thus, the max-
imum R2 possible for a model based on a single
measurement of fish species richness (our models
were based on such single measurements) at each
site is 0.75. We do not have such direct estimates of

measurement error in other variables, but it prob-
ably was substantial.

Second, our land-cover classes (and other predic-
tor variables) are not homogeneous. What we
called “forested” land comprised forests with differ-
ent species compositions on different soils and in-
cluded such diverse habitats as quasinatural forests,
plantations, and urban woodlands. Other land-
cover classes are similarly heterogeneous. Likewise,
our characterization of impoundments by just a few
variables (Table 1) did not distinguish between
peaking hydropower operations and flood control
reservoirs, if they had the same live storage capac-
ity. This incomplete characterization of dams may
have led to our failure to detect the strong effects of
dams on ecological response variables.

Third, although the study area was chosen to be
relatively homogeneous in terms of climate and
biota, all large study areas are inevitably heteroge-
neous. Large-scale heterogeneity within the study
area may have introduced variance not accounted
for by our models. Where the data sets were large
enough (fish and macroinvertebrates), we subdi-
vided the data by physiographic province (coastal
plain, piedmont, or uplands) and ran separate mod-
els for each ecoregion. Although this subdivision
into presumably more homogeneous study areas
did not consistently increase R2 (Table 6), hetero-
geneity within our study region probably was an
important source of error.

Fourth, although the data sets we analyzed were
large, our analyses were clearly limited by the size
of the available data sets. The relatively large stan-
dard errors of the nitrate flux model (Figure 4),
despite its high R2 (0.55), reflects the effect of the
small size (n � 110) of the data set on nitrate flux.
Having a larger data set would increase the preci-
sion of slope estimates and may have allowed for an
increase in R2 by subdividing the data set. Further-
more, if we had had a larger data set, we could have
investigated the relationships between watershed
size and predictive power (Figure 5) in more detail.

Finally, our approach was basically a “snapshot,”
with the assumption that measured land-cover
variables had an instantaneous effect on ecological
response variables. There are at least two problems
with this assumption. There may be very important
time lags in the expression of land-cover changes
on stream ecosystems. Thus, the effects of land-
cover change may affect stream ecosystems for de-
cades. In fact, Harding and others (1998) found that
past land cover was a better predictor of present-
day diversity than current land cover. Also, the data
used in our analyses were not actually collected
contemporaneously but rather somewhere in the
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period 1986–1994, which could have introduced
some error. The former problem probably is more
serious than the latter.

Several strategies could improve the predictive
power of empirical models linking land cover and
stream ecosystems. First, larger data sets could im-
prove the precision of regression slopes, although
not necessarily R2 of the models. Second, making
land-cover classes more homogeneous through dis-
aggregation of very heterogeneous classes could
make empirical models more predictive, as well as
provide insight into the characteristics that give
land covers their effects on streams. Similarly, bet-
ter use of covariates or blocking within large, het-
erogeneous study areas could remove unwanted
variance from the models. Both of these last two
strategies require large data sets to be effective.
Finally, further exploration of the use of multiple
temporal scales (we used multiple spatial scales in
this study) could significantly improve empirical
models in the many situations where temporal lags
are important. Nevertheless, although all of these
strategies could significantly improve the perfor-
mance of empirical models, we doubt that they will
improve the empirical models enough to allow the
precise forecasting of conditions at a particular site.

Domains of models. Even when empirical models
have adequate predictive power, they are valid over
only a limited domain of conditions (domains of
scale in the sense of Wiens 1989). Our models, for
instance, could reasonably be expected to apply to
streams and rivers in the mid-Atlantic states east of
the Alleghenian Divide, and they may systemati-
cally fail outside of this region because of differ-
ences in the regional species pool, environmental
conditions (climate, soils), or details of land use
within a land-cover class (for example, amount of
fertilizer used on cultivated fields in different re-
gions). Furthermore, our models were based on a
particular range of values of predictor variables (Ta-
ble 1) and may not be reliable when extrapolated
beyond this range. Finally, if these models are used
to forecast future impacts of land-cover change,
there is an assumption of uniformitarianism—that
the processes that operated in the past to produce
the patterns we observed will continue to operate
unchanged in the future. This assumption will be
violated if, for example, residents begin using new
pesticides on their lawns or forest species composi-
tion changes because of the arrival of an exotic tree
species. Because of this last assumption, empirical
models such as ours must be used cautiously when
forecasting the future.

Influence of spatial extent and perspective

The spatial perspective at which land cover was
assessed had strong and variable effects on the per-
formance of our empirical models (Table 5 and
Figure 5). The most effective spatial perspective
differed among the ecological response variables
and was linked to the mechanisms thought to con-
trol each variable. Thus, broad spatial perspectives
(watershed or streamside corridor) were most effec-
tive in estimating the flux of nitrate, which is
thought to move readily through watersheds. The
importance of wetland cover assessed at broad (wa-
tershed) perspectives to aquatic plant species rich-
ness agrees with recent studies (see for example,
Nilsson and others 1993), suggesting that plant
propagules can be transported over long distances,
even during single flood events. In contrast, local or
streamside corridor perspectives were useful in es-
timating macroinvertebrate species richness and ri-
parian plant cover, which may be controlled by
more local processes such as shading and loading of
leaf litter and wood into the channel and provision
of egg-laying sites (Cummins 1993a, 1993; Gore
and others 1995; Maridet and others 1998; de Sza-
lay and Resh 2000). The relative insensitivity of fish
species richness to spatial perspective suggests that
processes operating at all three spatial scales are
important (compare Fitzpatrick and others 2001).
Examples include hydrological influences (water-
shed scale), loading of organic matter, including
allochthonous forage items (streamside corridor
scale), and canopy and streamside cover and local
channel form (local scale).

The effect of watershed size (spatial extent) was
less clear. For at least three of our response vari-
ables, predictive power appeared to drop off to
nearly zero in very small watersheds (less than 1–10
km2) (Figure 5), supporting the idea that nonspa-
tially explicit characteristics of watersheds are inad-
equate predictors at very small spatial scales. Given
that the average size of an individual landscape
patch in our study area was 0.3 km2, a typical
watershed of 3 km2 contained only ten patches. It is
reasonable to guess that the spatial arrangement of
such patches will matter when so few are present.
In addition, our ability to predict aquatic plant
cover rose dramatically (from R2 of 0.07 to as high
as 0.47) when we split the data set into watersheds
of different sizes. Other variables did not show a
clear pattern with watershed size, but our ability to
discern such patterns was limited by inadequate
data, even in our relatively large data sets. Thus, we
still cannot specify the watershed size at which the
mere percentage of land covers does not provide
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predictive value and the spatial arrangement of
landscape elements must be considered. This size
might vary from one region to another (especially
as patch size varies across regions) and from one
response variable to another.

Alternatively, predictive power may decline with
watershed size because of the increasing impor-
tance of organismal dispersal in small watersheds.
In a large river, the dispersal range of an organism
may be small compared to the scale of land-cover
influences; a site 1 km downstream of an agricul-
turally dominated site is also likely to be agricultur-
ally dominated. In contrast, in a small watershed,
the same dispersal distance may carry an organism
into a very different environment, in terms of land-
cover influences. Thus, in small watersheds, local
dispersal may homogenize the distributions of or-
ganisms relative to land-cover patterns.

CONCLUSIONS

Third-party empirical models based on large data
sets clearly can contribute to understanding the
effects of land cover on stream ecosystems. Our
models revealed strong relationships between land
cover and a wide range of ecological variables. The
models further suggested that the spatial scales over
which land cover and ecological variables were as-
sociated varied widely, depending on the mecha-
nisms thought to link land cover and each ecolog-
ical variable.

The potential of large, third-party empirical mod-
els probably will grow rapidly over the coming de-
cade. More and more ecological data sets are being
compiled and posted via the Internet. GIS data and
software are improving in several important ways
(Nilsson and others 2003). Land-cover and digital
elevation models will become available at finer spa-
tial scales, allowing scientists to explore the use of
fine spatial perspectives. Finer spatial resolution
may also allow for more precise distinctions be-
tween land covers that are now classed together in
heterogeneous cover classes. As land-cover maps

are routinely updated, it will be easier to evaluate
the importance of temporal change in land cover
(Harding and others 1998). Finally, we expect GIS
software to become more powerful and easier for
nonspecialists to use. For instance, we had to de-
velop the drainage network for the entire Chesa-
peake Bay watershed, which accounted for a large
portion of our total effort. Future software may
better unify the relationship between watershed
data management and applications. One form of
this concept is referred to as “Geo-Object” modeling
(Davis and Maidment 1999), in which the various
spatial data (DEM, land cover, stream network) are
organized as objects in a database that can be ex-
tracted with minimal effort through object-oriented
GIS applications. This system will reduce the de-
manding preprocessor work required to develop
predictor variables for empirical models. All of these
improvements are likely to result in incremental,
quantitative improvements in the predictive power
of empirical models, rather than a fundamental
qualitative shift in the utility of such models.

Broadly, there are three ways in which empirical
models may relate to more mechanistic models of
the effects of land-cover change on stream ecosys-
tems. Empirical models may replace more mecha-
nistic models if there is inadequate information or
resources to build reliable mechanistic models
(compare Nilsson and others 2003). However,
without an explicit consideration of mechanism,
empirical models may fail to give reliable predic-
tions if they are taken outside their domains (see
above). Alternatively, empirical models may be
used to constrain mechanistic models when both
are applied to the same conditions. The fact that
empirical models have such a strong grounding in
actual field conditions may make them useful in
testing various mechanistic models. Finally, empir-
ical models may be combined with mechanistic
models as part of a comprehensive program to un-
derstand the ecological effects of land-cover change
on streams and rivers. Benda and others (2002)
considered the problem of predicting ecological

Table 6. Differences in Predictive Power (Adjusted R2) Between Models for the Entire Study Region
Versus Models for Separate Physiographic Provinces (Coastal Plain, Piedmont, and Uplands)a

Variable R2 (region) R2 (province)

Macroinvertebrate species richness 0.25 0.21–0.66
Fish species richness 0.27 0.08–0.42
% non-native fish species 0.13 0.11–0.19

aModels were run at the most effective spatial perspective (compare with Table 5), for land-cover data only.
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change from economic or land-use change as a
logical chain of several steps. Some of these steps
may be empirical models, while others may be
mechanistic models, depending on the predictive
requirements and scientific understanding associ-
ated with each step. Thus, empirical modeling has
the potential to play several important roles in the
understanding of the effects of land-cover change
on running water ecosystems.
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