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Abstract. Assigning the values of a certain physico-
chemical property for individual amino acids to the cor-
responding codons, we can make an amino acid property
“landscape” on a four valued three dimensional sequence
space from a genetic code table. Eleven property land-
scapes made from the standard genetic code (SGC) were
analyzed. The evaluation of correlation for each land-
scape is done byu value, which represents the ratio of the
mean slope (as an additive term) to the degree of rough-
ness (as a nonadditive term). Theu-values for hydropa-
thy indices, polarity, specific heat, andb-sheet propen-
sity were considerably large with respect to SGC. This
implies that the additivity of the contribution from each
letter holds for these properties. To clarify the meaning
of the so-called mutational robustness of SGC, we next
examined correlations between the amino acid property
and the actual “site fitnesses” of a protein. The site fit-
nesses were derived from a set of binding preference
scores of amino acid residues at every site in MHC class
I molecule binding peptides (Udaka et al. in press). We
found that the SGC’su value for an amino acid property
is correlated with the significance of the property in the
protein function. Adaptive walk simulation on fitness (4
affinity) landscapes in a base sequence space for these
model peptides confirmed better evolvability due to the
introduction of SGC.
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Introduction

Evolvability of a protein is based on the structure of the
protein “fitness landscape” on a base sequence space (4
DNA space) when random mutagenesis takes place at the
base sequence level. In evolutionary molecular engineer-
ing, the concept of “fitness” in biology is expanded to a
quantitative measure of a certain physicochemical prop-
erty of a protein (i.e., enzymatic activity, affinity to a
ligand or structural stability). The structure of a fitness
landscape on the DNA space follows the two elemental
coding mechanisms. The first mechanism is the coding
of a protein’s function into an amino acid sequence and
is represented by the fitness landscape on the amino acid
sequence space (4 protein space). The structure of a
fitness landscape on the protein space is physicochemi-
cally determined by the primary structure and the envi-
ronmental condition. Many experiments demonstrated
statistical additivity in mutational effects in proteins
(e.g., Wells 1990). These observations suggest that fit-
ness landscapes on a local protein space around current
proteins are most likely the Mt. Fuji–type fitness land-
scape, which we have theoretically studied (Aita and
Husimi 1996; Aita et al. 2000). The second coding
mechanism is the coding of an amino acid by a triplet
codon according to a genetic code table. Amino acid
allocations in the genetic code table are critical in linking
the fitness landscape on the protein space to that on the
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DNA space. Therefore, we studied the organization of
the standard genetic code (SGC) in terms of the amino
acid property “landscape” on the four-valued three-
dimensional sequence space (codon space).

A vast number of studies have been made on the
natural genetic code, including the SGC. Particularly, the
mutational robustness against base substitutions in SGC
has been studied in various ways, where the “mutational
robustness” means that amino acids that have similar
physicochemical properties also have similar codons
(e.g., Haig and Hurst 1991; Di Giulio 1997; Freeland and
Hurst 1998; Trinquier and Sanejouand 1998). Some re-
search focused on what the most optimized code is (Di
Giulio et al. 1994) and evaluated the degree of the opti-
mization for SGC (Wong 1980; Di Giulio 1989). The
ideal genetic code seems to have a wide dynamic range
for each of the important properties and a mutational
robustness against base substitution. A type of the land-
scapes satisfying the contradictory requirements
(changeability and mutational robustness) is the Mt. Fu-
ji–type landscape based on the mutational additivity. The
height of the mountain represents the changeability, and
the smoothness on the slope represents the mutational
robustness. On the condition that a set of 20 property
values and a termination signal is given, the problem is
what the beneficial allocation of these values to 64
codons is. Our approach to the mutational robustness for
SGC is based on apparent additivity of the contribution
of individual letters in a codon to an amino acid property.
Thus, in the first half, we analyzed amino acid property
landscapes for 11 typical properties, including 3 hy-
dropathy indices using a model of the Mt. Fuji–type
landscape (Aita et al. 2000).

In the latter half, we studied the correlation between
the amino acid property and the “site fitness” to clarify
the meaning of the mutational robustness of SGC. Here,
the termsite fitnessis a free energy contribution (divided
by RT) from a certain amino acid residue at a site in an
amino acid sequence on the assumption of additivity of
residue contribution. Using a set of “binding preference
scores” of amino acid residues at every site of MHC class
I molecule binding peptides (Udaka et al. 1999) as a set
of model site fitnesses, we examined the correlation be-
tween the amino acid property and the site fitness and
linked the correlation with theu values for SGC. The
usefulness of these scores was verified by Udaka et al.
(1999), who have succeeded in predicting the affinity of
an arbitrary peptide to a given MHC class I molecule
using these scores.

Our interest focuses on the degree to which the SGC
provides the benefit on protein’s evolution, rather than
on what the most optimized code possible is (Di Giulio
et al. 1994) or on the origin of the genetic code (e.g., Di
Giulio 1997). Then we examined the effectiveness
through the climbability and stability for adaptive walk-
ers on fitness landscapes in DNA space for the MHC

class I molecule binding peptides, where the fitness is
defined as the sum of the site fitnesses. Another study
was done by Ardell and Sella (1999), in terms of the
quasispecies theory (Eigen et al. 1989). They suggested
that individuals with codes that are more error-correcting
with respect to mutation will have higher fitness than
those with less correcting codes. We also confirmed the
effectiveness of SGC on evolvability for the realistic
model peptides.

Analysis Method of an Amino Acid Property
Landscape in the Codon Space

The codon space is the four-valued three-dimensional
sequence space comprising of all codons. A base and an
amino acid are denoted byb (b { {a,u,g,c}) anda (a {
{A,C,D, . . . ,Y}), respectively. An amino acid, which is
assigned to a certain codon C, is denoted bya(C). A
value of a particular physicochemical property, such as
hydropathy or volume, for an amino acida is denoted by
9(a). We used the centered and autoscaled data of the
amino acid properties. Centering was done by subtract-
ing the averages from all data, and autoscaling was con-
ducted by the division of each variable by its standard
deviation. The amino acid property for a codon C is
defined by9C 4 9(a(C)). An amino acid property land-
scape in the codon space is defined as a set of9C.

Let {C1, C2, . . . , Cn} be a set of all codons except
stop codons, wheren 4 61 for the standard genetic code
(SGC). We carried out the linear regression analysis of
an amino acid property landscape for a genetic code,
using the following model. By introducing a quantity
yl(b), that is an apparent contribution to the amino acid
property from a baseb at thelth (l 4 1, 2, 3) letter, an
additive partVC of a 9C for a codon C is defined as

VC = VO + (
l=1

3

yl~bCl! (Eq. 1)

O is a particular codon that corresponds to the peak on
this model landscape (where we call this landscape “Mt.
Fuji–type”). bCl represents the base at thelth letter in a
codon C.

The base sequence of the codon O and unknown pa-
rametersVO andyl(b) are determined by the least squares
method to minimize the value ofSn

i41(9Ci
− VCi

)2 (we
have 10 unknowns). The values ofyl(b) is assigned to
satisfy

yl~b! H= 0, if b = bOl

,0, if b Þ bOl
(Eq. 2)

wherebOl denotes the base at thelth letter in the codon
O. For thelth letter, the mean value ofyl(b)’s over three
bases exceptbOl is denoted by«l. We define the “mean
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slope” of the amino acid property landscape as follows.
Consider the mean change in the property when, in a
certain codon, a certain base exceptbOl is replaced by
bOl. The mean change in the property is averaged over all
possible codons except stop codons in the codon space.
The mean slope is defined as this doubly averaged value
and is approximately given by〈|«l|〉 4 1/3 ∑l41

3 |«l|.
If the residual9Ci

− VCi
(i 4 1, 2, . . . ,n) after the

fitting procedure is small and distributes randomly in the
codon space, according to a near Gaussian distribution
with mean 0 and standard deviations, then we regard
this landscape as being a rough Mt. Fuji–type that has the
mean slope of〈|«l|〉, and the roughness ofs. We intro-
duce an indexu ≡ 〈|«l|〉/s, that is the ratio of the mean
slope to the roughness. Completing the above proce-
dures, we can identify “landscape properties,” such as
〈|«l|〉, s, andu.

It is desirable that the mean slope〈|«l|〉 is large to give
a wide dynamic range to various protein characters,
while it is also desirable that the roughnesss is small to
hold conservativeness or robustness to base substitution.
Therefore, ideal genetic codes should take largeu values.
We use theu value as a measure of evaluation for a
genetic code.

Analysis of the Standard Genetic Code

u Value for the Standard Genetic Code

We selected the following 11 amino acid properties that
seem important for protein properties: three hydropathy
indices (Eisenberg et al. 1982; Kyte and Doolittle 1982;
Sweet and Eisenberg 1983), polarity (Woese et al. 1966),
volume (Zamyatnin 1975), accessible surface area (Cho-

thia 1976), mass, specific heat (Privalov et al. 1989),
isoelectric point (Alff-Steinberger 1969),a helix propen-
sity, andb sheet propensity (Chou and Fasman 1978).
Based on the method described above, we analyzed the
11 amino acid property landscapes for the SGC. Sweet’s
and Kyte’s hydropathy indices were derived, respec-
tively, from Dayhoff’s mutation matrix of amino acid
replacement and an average of physicochemical proper-
ties of amino acids and spatial environmental data of
proteins residues. Eisenberg’s hydropathy index is
roughly proportional to the free energy required to trans-
fer an amino acid residue from the interior to the surface
of a water soluble protein. Polarity (polar requirement)
was derived from theRF values in amino acid chroma-
tography. The three hydropathy indices and polarity are
mutually correlated by |r| > 0.7, wherer is a correlation
coefficient. The scales of volume, accessible surface
area, and molecular weight are mutually correlated byr
> 0.91. The scale of specific heat is correlated with that
of accessible surface area (r 4 0.64) and volume (r 4
0.79). The scale ofb sheet propensity is correlated with
that of Kyte’s hydropathy (r 4 0.67), Sweet’s hydropa-
thy (r 4 0.82), and polarity (r 4 −0.77). Other combi-
nations do not show high correlation.

The result from analysis of the 11 property landscapes
is shown in Table 1. It is obvious that the three hydropa-
thy landscapes and polarity landscape have largeu val-
ues (u 4 1.1 ∼ 2.1); that is, their surfaces are consider-
ably correlated not only locally (within each codon block
composed of synonymous codons) but also globally
(over all codons). This result is consistent with the well-
known observations as mutational robustness in SGC
(e.g., Haig and Hurst 1991). Taking the Kyte’s hydropa-
thy landscape as a representative case, we show the over-
view of the landscape in Fig. 1A and the distribution of

Table 1. Characteristics of amino acid property landscapes for the standard genetic code

Index k Property r O VO 〈|«l|〉 s u Z1 Z2 Z3

1 hydropathya 0.90 uuu (Phe) 1.89 0.85 0.41 2.10 6.95 6.00 14.3
2 hydropathyb 0.92 guu (Val) 1.88 0.81 0.41 1.97 5.97 5.74 13.3
3 hydropathyc 0.80 guu (Val) 1.72 0.79 0.67 1.17 3.74 2.88 7.20
4 polarity 0.84 gaa (Glu) 1.38 0.63 0.48 1.31 3.52 2.73 7.22
5 volume 0.78 cug (Leu) 1.15 0.58 0.61 0.94 1.11 1.47 4.69
6 ASA 0.71 cag (Gln) 1.10 0.56 0.71 0.79 0.03 0.80 3.36
7 mass 0.74 cag (Gln) 1.04 0.54 0.66 0.83 −0.01 0.94 3.58
8 specific heat 0.78 cua (Leu) 1.68 0.74 0.63 1.18 2.49 2.30 6.87
9 isoelectric point 0.69 cga (Arg) 1.80 0.73 0.77 0.94 1.12 1.33 4.52
a a helix 0.61 gug (Val) 1.27 0.61 0.77 0.80 0.83 0.76 3.50
b b sheet 0.77 uuc (Phe) 1.53 0.69 0.63 1.10 2.25 2.18 6.24

Dm 8.58 8.23 18.3

The 11 amino acid properties were chosen: three hydropathy indices (a: Sweet and Eisenberg 1983; b: Kyte and Doolittle 1982; c: Eisenberg et al.
1982); polarity (Woese et al. 1966); volume (Zamyatnin 1975); accessible surface area (ASA; Chothia 1976); mass; specific heat (Privalov et al.
1989); isoelectric point (Alff-Steinberger 1969);a helix propensity; andb sheet propensity (Chou and Fasman 1978). The particular codon O
corresponds to the peak on the model landscape.Zm represents theZ score of the SGC’su value, based on a frequency distribution of theu values
obtained from 1,000 randomly generated variant codes ((m, `)-VC) according to shuffling mannerm (see text).r is a correlation coefficient between
the original value (9C) and additive one (VC). Dm represents the Mahalanobis’s generalized distance (see Appendix A). Other notations are defined
in the text.
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nl(b) for each letter in Fig. 1B. The most sensitive letter
is the second one (l 4 2), whereas the insensitive letter
is the third one (l 4 3). These results are consistent with
the well-known observation. We calculated the virtual
VCi

values for the three stop codons from Eq. 1 with the
obtained parameters for Kyte’s hydropathy: uaa→
−0.78; uag→ −0.83; and uga→ −0.28. These values are
hydrophilic.

The characteristics for other landscapes are qualita-
tively similar to those shown in Fig. 1. We found no
significant correlation between the residuals (9Ci

− VCi
)

and codon sequences.

Z Score for the Standard Genetic Code

To compare theu value for the SGC with those of other
genetic codes, we generated a set of 1,000 randomly
sampled variant codes by partial or complete shuffling of
the amino acid allocations in the SGC and subsequently

calculated theu value for each of the variant codes by
using the analysis method mentioned previously and de-
termined the frequency distribution for theu values. A
variant code was generated by repetition of interchang-
ing two amino acid allocations in the SGC, where the
interchanging process is performed in either of the fol-
lowing three manners.

Manner 1 (m1): Block Interchange with Restriction.
In the SGC, each amino acida { {A, C, D, . . . , Y} is
allocated in a codon block composed of synonymous
codons. The mutual interchange of two amino acid allo-
cations is performed by these blocks under the condition
that the shuffling process conserves the degeneracy of
each amino acid. The codon space is partitioned by the
blocks defined in the SGC, where the six synonymous
codons for serin are dealt with as a single block and the
translation termination signal is regarded as the 21st phe-
notype “Z” participating in the shuffling. Let Gk be a set
of amino acids having the same degeneracy ofk: G1 4

Fig. 1. Results of analysis of the Kyte’s hydropathy landscape for the
standard genetic code (SGC).A Overview of the Kyte’s hydropathy
landscape on the codon space. The codon space is projected on the
plane of the page. Each codon is located at the corresponding node, and
each of the amino acids allocated to the codons is represented by the
corresponding one-letter abbreviation. “stop” represents the stop
codon. Single point mutations are represented by the vectors shown as
arrows. The amino acid property of a codon is represented by a bar
standing at the corresponding node (arbitrary unit). The left side bars

and right side bars are original values (9C) and additive values (VC)
obtained from the analysis, respectively. The correlation coefficient
between them is 0.92. Note that the ordering of letters for each axis is
intentional to show the mountainous structure, however, the ordering
does not affect the results in this study at all.B Distribution of the
contributions (yl(b)) from each of the three letters for Kyte’s hydropa-
thy (top) and specific heat (bottom).Il is the site information for thelth
letter (Aita and Husimi 1996).
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{M, W}; G 2 4 {C, D, E, F, H, K, N, Q, Y}; G3 4 {I,
Z}; G4 4 {A, G, P, T, V}; and G6 4 {L, R, S}. |Gk| is
the number of elements in Gk. First, we pick out Gk
among {G1, G2, G3, G4, G6} with a probability of Pk,
wherePk is given by

Pk = S |Gk|
2 D/(

k
S |Gk|

2 D
Next, we pick out two arbitrary amino acids from Gk and
interchange their allocations.

Manner 2 (m2): Block Interchange Without Restric-
tion. The interchange of two amino acid allocations is
performed by the block, as in Manner 1, except that the
interchange of two amino acid allocations is unrestricted
and “Z” does not participate in the shuffling. Thus, the
degeneracy of each amino acid can drastically alter
through the shuffling process.

Manner 3 (m3): Interchange by a Codon Unit.The
interchange of two amino acid allocations is performed
by a codon unit. Thus, the degeneracy of each amino acid
is conserved through the shuffling process.

A variant code made by repetition of the interchang-
ing operation according to mannerm (m 4 m1, m2, m3)
by d times is denoted by (m, d)-VC (d represents some-
thing like “distance” between the SGC and each of the
variant codes). We generated a set of 1,000 (m1, d)-VCs
for each ofd 4 1, 2, 3, 4, 5, and 200 and obtained
distributions ofu values calculated from these variant
codes. Figure 2 shows these distributions for Kyte’s hy-
dropathy, specific heat,a helix propensity, andb sheet
propensity. Theu values for (m1, d)-VCs tend to decrease
as d increases. This suggests that the SGC is consider-
ably optimized with respect to the four amino acid prop-
erties. Furthermore, we obtainedu values for several
natural deviant codes (Fig. 2). In general,u values for
these deviant codes are close to that for the SGC, while
the code for yeast mitochondria has very low values.

The u value distributions for variant genetic codes
((m, d)-VC) tend to a steady distribution asd increases.
This steady distribution is almost attainable whend > 20.
A completely shuffled code whend → ` is denoted by
(m, `)-VC. Based on a frequency distribution of theu
values obtained from 1,000 randomly generated (m, `)-
VCs, we defineZ score for theu value of SGC, with
regard to each shuffling manner (m):

Zm ≡
uSGC− E@u~m,`!−VC#

SD@u~m,`!−VC#
(Eq. 3)

whereuSGCandu(m,̀ )-VC are theu value of the SGC and
that of a (m, `)-VC, respectively.E[] and SD[] are the
mean and standard deviation for a set of 1,000 (m, `)-

VCs. Three types ofZ scores (Z1, Z2, andZ3) are shown
in Table 1 for the 11 amino acid properties. The three
hydropathy indices—polarity, specific heat, andb sheet
propensity—showZ1 > 2.0 andZ2 > 2.0. This means that
the smoothness of the landscape for the SGC is beyond
the expectation from the structural regularity due to
codon blocks composed of synonymous codons in SGC
table (Maeshiro and Kimura 1998) and that the apparent
rough additivity holds in mutational effects on these
properties at the base level. TheZ1 seems slightly larger
than theZ2, with respect to seven properties. The reason
is that theSD[u(m2,`)-VC] for each property is much larger
than itsSD[u(m1,`)-VC].

From Amino Acid Landscape to Protein
Landscape: Case of MHC Class I Binding

Correlation Between Amino Acid Property and
Site Fitness

The largeu values for the SGC and their largeZ scores
suggest that several amino acid properties, such as hy-
dropathy (or polarity), have dramatically affected the
functions and physicochemical properties of proteins in
their evolution. In our previous study on Mt. Fuji–type
fitness landscapes (e.g., Aita and Husimi 1996), we in-
troduced the “site fitness,”wj(a), that is, a free energy
contribution (divided byRT) from a certain amino acid
residuea at thejth site in an amino acid sequence, on the
assumption of additivity of residue contribution. For a
protein or peptide in which the mutational additivity
holds, the site fitnesses can be experimentally measured
by using the positional scanning method (e.g., Houghten
et al. 1991; Udaka et al. 1995). We examined correla-
tions between site fitnesses (wj(a)) and amino acid prop-
erties (9(a)), by using a set of “binding preference
scores” of amino acid residues at every site of MHC class
I binding peptides (Udaka et al. 1995, 1999) as a set of
model site fitnesses. The score is the experimental value
obtained by the positional scanning method and defined
as the logarithm of the molar concentration of the mix-
ture of peptides that have bound half of the MHC class I
molecules (defined as logSD50). A set of the binding
preference scores of 19 amino acids (except cysteine) at
individual sites in the peptides is available for MHC
class I molecule Db, Kb, and Ld. The chain length of Db-,
Kb-, and Ld-binding peptides are 9-mer, 8-mer, and
9-mer, respectively. We gathered all the sites and num-
bered them asj 4 1, 2, . . . , 26. Thesite fitnesses,wj(a)
(j 4 1, 2, . . . , 26;a 4 A, D, . . . , Y), were derived from
the binding preference scores with a slight modification.
Details of the derivation are described in the Appen-
dix B.

Subsequently, we calculated the “site information”Ij

as a measure of tolerance to residue substitutions for
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each site (Aita and Husimi 1996).Ij is derived from a set
of site fitnesses at thejth site and takes a value between
0 and log2l, where l is the number of residue types
available at each site;l 4 19 in this case. Several “an-
chor” sites showing low tolerance to residue substitu-
tions take the large values of site information (Ij 4 1.4∼
3.6), while other tolerant sites take low values (Ij 4 0.1
∼ 0.8). Udaka et al. (1995) used another measure of the
tolerance and made the similar evaluation.

We calculated a correlation coefficient,rj, for the data
set {(9(a), wj(a))|a 4 A, D, . . . , Y} at each site, with
respect to each of the 11 amino acid properties. It was
obvious that the three hydropathy indices and polarity
are outstandingly well correlated with the site fitnesses at
half of the sites, including the anchor sites (Fig. 3). Fur-

thermore, the mean and weighted mean of |rj| over 26
sites, 〈|rj|〉, were calculated for each property. At a
weighting operation, we usedIj/∑j41

26 Ij as a weight for
thejth site. The reason is that the correlation between site
fitnesses and amino acid properties is more meaningful
for critical sites taking large site information. Interest-
ingly, irrespective of the mean or weighted mean, there is
a positive correlation between〈|rj|〉 anduSGCfor the nine
properties, except Kyte’s and Sweet’s hydropathy indi-
ces (Fig. 3). The correlation coefficient obtained from
the nine properties is 0.92 (p < 0.001). We also observed
a similar correlation (correlation coefficient is 0.73–
0.82) when using another set of site fitnesses, which
were derived from Houghten et al. (1992; Dooley et al.
1993). It is likely that the conservativeness of an amino

Fig. 2. Distribution for theu values obtained
from 1,000 (m1, d)-VCs for eachd value ofd 4

1, 2, 3, 4, 5, and 200.A Kyte’s hydropathy
versus specific heat, andB a helix propensity
versusb sheet propensity. The dot represents the
mean point of theu distribution for eachd
value, and the ellipse surrounding the dot
represents deviations of the first and second
principal components. Because the number of all
interchanges among amino acid allocations
according to shuffling mannerm1 is only 51, the
distribution ford 4 200 is close to that ford →
`. The location for the standard genetic code is
indicated by “SGC,” and those for several
mitochondrial codes are indicated by “MYe”
(yeasts), “MPI” (platyhelminths), “MNe”
(nematoda), “MEc” (echinodermata), “MTu”
(tunicata) and “MVe” (vertebrata).C Details of
the u distribution forA. The number of samples
of variant codes is 51 ford 4 1 and 1,000 ford
4 3 andd 4 200.
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acid property in SGC is correlated with the significance
of the property in a protein function.

We note that our aim is not to study MHC class I
binding peptides. Therefore, we omitted the details on
the substantial characteristics for them. The details were
discussed by Udaka et al. (1995, 1999).

Adaptive Walks on a Model Fitness Landscape in a
Base Sequence Space

To examine the effect of amino acid allocations in the
SGC or in other conceivable genetic codes on the evo-
lution of proteins, we introduced a model fitness func-
tion, defined as the sum of the site fitnesses of the 26
sites, and carried out numerical simulations of adaptive
walks on the model fitness landscape in the four-valued
78 (4 26 × 3)-dimensional base sequence space. We
define the fitness of a base sequence P as a concatenation
of 26 codons by

WP = (
j=1

26

wj~a~CPj!! # 0 (Eq. 4)

where CPj is the codon at thejth position in the concat-
enation P, anda(CPj) is the amino acid encoded by CPj.
The fitnessWP defined in Eq. 4 is considered on the
binding free energy scale of a ligand peptide having a
chain length of 26 to a virtual MHC-like receptor mol-
ecule: the dissociation constant between them is propor-
tional to exp(−WP). The rough additivity of the contri-
bution of each of the amino acid residues in several MHC
class 1 binding peptides was verified by Udaka et al.
(1999). Therefore, we considered that the validity of us-
ing Eq. 4 as a model of the fitness function has been
demonstrated. We note that the fitness landscape in the
19-valued, 26-dimensional amino acid sequence space is
of the Mt. Fuji–type uniquely defined, while the fitness
landscape in the 4 valued, 78-dimensional base sequence
space is affected by the genetic code used. We adopted
the following five cases with regard to genetic codes:

Code 0: SGC
Code 1: 1,000 examples of (m1, 1)-VC
Code 2: 1,000 examples of (m1, 2)-VC
Code 3: 1,000 examples of (m1, 3)-VC
Code 4: 1,000 examples of (m1, 5)-VC
Code 5: 1,000 examples of (m1, `)-VC

In this article, we call the fitness landscape defined by
SGC the “original landscape,” and call a fitness land-
scape defined by a (m1, d)-VC the “variant landscape.”
The question is whether the climbability and stability of
adaptive walkers on the original landscape are larger
than those on each of the variant landscapes.

Modeling of adaptive walks is critical in evaluating
the climbability for adaptive walkers. In evolutionary
molecular engineering, the environmental condition of
an evolving biopolymer can be controlled (Husimi 1989)
and any adaptive walk strategy can be taken. To simplify
the phenomena, we used the (1,N)-ES as the adaptive
walk strategies (Aita and Husimi 1998, 2000). This strat-
egy follows a simple rule: a parent on a fitness landscape
producesN descendants with single point mutations, and
subsequently the fittest among theN descendants will
become a new parent in the next generation (Rechend-
berg 1984). We setN 4 50, N 4 10, orN 4 3 through
a single adaptive walk process. Each walk was carried
out starting from a randomly chosen sequence through
1,000 generations. When nonsense mutations and muta-
tions to cysteine’s codons occurred, we resolved these
affairs by regenerating other mutants.

Let yt be the scaled fitness of a single adaptive walker
in the tth generation, where scaling is conducted by di-
vision of walker’s fitness (WP value) by |mean fitness of
randomly chosen sequences|4 19.4. Figure 4 shows
examples of time (4 generation) course ofyt on the
original landscape, for each case ofN 4 50,N 4 10, and
N 4 3. These time courses show alternation of plateau
and epochal changes due to the existence of terraces of
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synonymous codon blocks on the original landscape.
Similar characteristics can be observed with respect to
variant landscapes. Walkers taking the (1,N)-ES reached
a steady state after 100–300 generations at the most be-
cause a mutation-selection balance sets in.

One thousand walks were carried out in each ofCode
0–Code 5(where 1,000 walks were carried out for the
original landscape [Code 0] and a single walk was car-
ried out for each of the 1,000 variant landscapes [Code
1–Code 5]). We evaluated the climbability and stability
for the stationary state of a single adaptive walk by

yss≡
1

500 (
t=501

1,000

yt

dyss≡Î 1

500 (
t=501

1,000

yt
2 − yss

2

respectively. We averaged these values over 1,000 walks
for each ofCode 0–Code 5.

In Fig. 5A, the trial average of the climbability for

eachCode is plotted against the average ofu value for
Kyte’s hydropathy for the correspondingCode.Interest-
ingly, there is a positive correlation between them, where
the correlation coefficient is larger than 0.91 (p < 0.01)
for eachN value. The climbability on the original land-
scape seems better than that on most of the variant land-
scapes. The difference inyt value by 0.01 corresponds to
the change in association constant by 1.2-fold. The dif-
ference between the trial average ofyssvalue forCode 0
and that forCode 5 is about 0.04–0.05, which corre-
sponds to the change in association constant by 2.2–2.6-
fold. If we assume the deterministic selection, this affin-
ity gap seems large enough for the SGC to be selected
among other competitors in the origin of genetic codes.
Meanwhile, Fig. 5A shows that the climbability in the
case whenN 4 50 is less than that in the case whenN
4 10. The reason for the intuitively unexpected event
may be that the walker is likely to get trapped in a terrace
corresponding to a local optimum, as the search strategy
is close to the exhaustive search (see Fig. 4).

In Fig. 5B, the trial average of the stability for each
Codeis plotted against the average ofu value for Kyte’s

Fig. 3. Correlation between〈|rj|〉 anduSGC.
rj is a correlation coefficient between an
amino acid property9(a) and site fitness
wj(a) for the jth site in MHC class I binding
peptides.〈|rj|〉 represents the mean of |rj| over
26 sites. The 26 values of |rj| (j 4 1, 2, ? ? ?,
26) and〈|rj|〉 are plotted with small dots and
the index characters defined in Table 1,
respectively, against theuSGC value for each
of the 11 amino acid properties. A single dot
and the ellipse surrounding the dot represent
the mean and standard deviation of
distributions for randomly assigned property
values, respectively. The correlation
coefficients obtained from the nine properties
except Kyte’s and Sweet’s hydropathy
indices are 0.92 (p < 0.001).

Fig. 4. Time courses of three adaptive walks on the
original landscape (4 fitness landscape defined by the
standard genetic code) in the base sequence space.
The abscissa is the generationt. The ordinate is the
scaled fitnessyt.
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hydropathy for the correspondingCode. There is a nega-
tive correlation between them where the correlation co-
efficient is less than −0.88 (p < 0.01) for eachN value.
The tendency that the steady state for walkers is more
stable with theu value increasing is conspicuous in the
case whenN 4 3, which corresponds to the random
sampling search.

Our results demonstrates theu value of a genetic code
affects the climbability and stability in an adaptive walk,
and supports the predominance of SGC over almost other
conceivable genetic codes.

Discussion

Our approach to the evaluation of genetic codes is based
on the structure of amino acid property landscapes in the
codon space. Selecting 11 different physicochemical
properties for 20 amino acids, we analyzed their amino
acid landscapes for the SGC. As a result, we showed
these landscapes for several properties, such as hydropa-
thy or polarity, have a globally correlated structure. This
is beyond the expectation from the structural regularity
due to synonymous codon blocks in the SGC table. The

contribution from each letter in a codon is apparently
roughly additive to these properties. The results shown in
this paper are consistent with the conclusion of several
previous studies on mutational robustness in SGC (Haig
and Hurst 1991; Freeland and Hurst 1998; Trinquier and
Sanejouand 1998). Trinquier and Sanejouand observed
that hydrophobicity scales based on spatial environment
data of protein residues or on mutation matrices of amino
acid replacement generally show stronger conservative-
ness by the genetic code than those based on pure phys-
icochemical properties of isolated residues. This obser-
vation is compatible with ours that Sweet’s and Kyte’s
hydropathy indices showed outstandingly largeuSGCand
Zm values (they ranked first and second, respectively,
according to these criteria). It seems that this observation
is partly trivial because their frequency data of natural
protein residues reflects on amino acid allocations in the
SGC.

Our results indicate the simultaneous satisfaction of
the mutational robustness in various properties. This fact
is not fully understood with another hypothesis that the
mechanism of emergence of SGC inevitably brought the
mutational robustness. The hypothesis states that the bio-
synthetically related amino acids that share similar phys-

Fig. 5. A Correlation between the average of the
climbability (yss) for each type of genetic code (Code
0–Code 5) and the average ofu value for Kyte’s
hydropathy for the correspondingCode.Each error
bar represents the standard deviation. The manner of
calculating climbability is described in the text. The
statistics ofu value for Kyte’s hydropathy for each
Codeare taken from Fig. 2A.s, j, andm show the
case ofN 4 50, N 4 10, andN 4 3, respectively.
The correlation coefficient is as follows: 0.91 (p <
0.01) for s; 0.91 (p < 0.01) forj; 0.99 (p < 0.0001)
for m. B Correlation between the average of the
stability (dyss) for eachCodeand the average ofu
value for Kyte’s hydropathy for the corresponding
Code. The manner of calculating the stability is
described in the text. The correlation coefficient is as
follows: −0.90 (p < 0.01) fors; −0.96 (p < 0.001) for
j; −0.89 (p < 0.01) form.

321



icochemical properties might be assigned to similar
codons by historical constraints. A principle for mini-
mizing the frustration among various properties had to be
worked in the evolution of genetic code to improve the
mutational robustness. This principle might be kept
easier by evolution through introducing a new member
(or through improving the specificity of primitive fuzzy
allocation) than by evolution through shuffling the exist-
ing code table (Maynard-Smith and Szathmary 1995).
Evolution of genetic code from a primitive code table of
small number of amino acids has been discussed exten-
sively. Eigen created a plausible scenario for the evolu-
tion of the genetic code, that is, GNC→ RNY → NNN
(Eigen and Schuster 1978). We confirmed that this sce-
nario satisfies the condition of mutational robustness
judged fromZ score foru (data not shown).

To link the 11 amino acid property landscapes with a
protein fitness landscape on the base sequence space, we
used a set of binding preference scores of amino acids as
a model set of site fitnesses. Our examination showed
that the SGC’s mutational robustness for several amino
acid properties is actually meaningful for the binding of
peptides to MHC class I molecules and that the SGC
works well on the high climbability and stability for
adaptive walkers on the fitness (4 affinity) landscape
formed with the set of site fitnesses. The number of sites
where site-fitness data were available is too small to
generalize our findings. Using data of site fitnesses de-
rived from Houghten et al. (1992; Dooley et al. 1993),
we calculated the correlations between amino acid prop-
erty and site fitness and confirmed the similar positive
correlations. We therefore believe our findings may have
some generality.

Thus, we gave a clearer meaning to the concept of
mutational robustness of the SGC than before. Muta-
tional robustness of the SGC alters the interpretation of
the site fitness distributions in individual sites for the
protein landscape. If the random mutation takes place in
the amino acid sequence space, the wide dynamic range
of the site fitness leads to a drastic change of the property
of the protein, usually very deleterious for an evolved
protein. If the random mutation takes place in the base
sequence space, this wide dynamic range of site fitness
becomes apparently narrow in point mutagenesis with a
small mutation rate due to the correlated mapping of the
genetic code (SGC). Note that the situation is quite dif-
ferent in evolutionary molecular engineering using the
saturation mutagenesis.

Therefore, even if a protein would have the replica-
tion ability, the RNP (4 RNA + Protein) world would
not have been taken over by the protein world. The RNP
world must have more stable evolvability than this
imaginary protein world.

Random mutation in the base sequence space is
mapped into the correlated mutation in amino acid se-
quence space through the SGC. Therefore, Mt. Fuji–type

landscape of the SGC plays the role of a guardrail set
near the sharp ridge of the protein landscape. Moreover,
it is speculated on the analogy of the correlation between
amino acid property and site fitness that the correlated
mapping of the SGC reduces the ruggedness of a protein
landscape, that is, the mutational change in nonadditive
terms of a protein fitness. Thus, proteins make steadier
adaptive walk than in the case without second correlated
coding (the first coding was realized by the monomeric
sequence versus the polymer function relationship). This
is an example of evolution of evolvability of biopoly-
mers.
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Appendix A: Mahalanobis’s Generalized Distance

We calculated Mahalanobis’s generalized distanceDm

to make a simultaneous evaluation of theuSGCvalues for
11 properties, for each shuffling manner (m). Dm is de-
fined as

Dm 4 √tZm R−1Zm

whereR−1 is the inverse matrix of a correlation matrixR,
and tZm andZm are the row vector and column vector,
respectively:

R = 1
1 r12 ??? r1K

r12 1 ??? r2K

? ? ? ?? ? ? ?? ? ? ?
r1K r2K ??? 1

2 andZm = 1
Zm

~1!

Zm
~2!

???

Zm
~K!
2

rkk8 is the correlation coefficient betweenu(m,̀ )-VC val-
ues for thekth property and those for thek8th one (k, k8
4 1, 2,? ? ?, K(4 11)).Zm

(k) is theZm for thekth property.

Appendix B: Derivation of Site Fitnesses from
Binding Preference Scores

First, we multiplied each of the binding preference scores
by ln 10 to deal with them on the free energy scale. Let
scorej (a) be the score of an amino acid residuea located
at the jth site in a peptide sequence. We here take an
assumption that the binding free energyDGP between a
particular MHC class I molecule and a peptide with a
sequence P is approximately described by
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DGP = a × (
j=1

n

scorej~aPj! + b (Eq. A.1)

wherea andb are constants,n represents the chain length
of the peptide, andaPj represents the particular amino
acid residue at thejth site in the peptide sequence P. With
max(scorej), that represents the maximum ofscorej(a)
over all as for thejth site, Eq. A.1 is rewritten as

DGP = (
j=1

n

wj~aPj! + a (
j=1

n

max~scorej! + b (Eq. A.2)

where

wj(a) 4 a(scorej(a) − max(scorej)) (Eq. A.3)

Only the first term in Eq. A.2 depends on the sequence.
Therefore, we pick out this term and callWP 4 ∑v

j41

wj(aPj) the “fitness” of the peptide sequence P and call
wj(a) the “site fitness” of an amino acid residuea at the
jth site, respectively, in this study. The values ofa and
original scores are available in Udaka et al. (1999).
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