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Throughout, P is the semigroup presentation 〈a, b: bab2 = ab〉 for the semi-
group S1. Lallement and Rosaz, [5], have shown that the semigroups Sk having
presentations 〈a, b: b(ab)kb = ab〉 are residually finite. They also find normal
forms for elements of Sk . Specialized to k = 1, every element of S1 is either a
power of a or else it can be represented uniquely by a word in one of the forms
a`bpan or a`bpaban with p > 0. We begin by giving a new proof of this, which
also establishes some invariants for the set of words that represent an element of
S1. Our main goal here is to prove that the membership problem is solvable for
the presentation P. It follows easily from work of Golubov that the semigroups
Sk are not finitely separable.

Lemma 1. i) Suppose v ≡ b j`ab j`−1a · · · ab j1ab j0an with j0 > 0. Define q
by

q =
∑

even i

ji −
∑
odd i

ji.

If q > 0, then v = a`bqan mod P.
If q ≤ 0, then ` > 0 and v = a`−1b1−qaban mod P.
ii) Conversely, suppose that a word v on the alphabet {a, b} has exactly

k occurrences of the letter a and at least one occurrence the letter b so that we
may write v ≡ btkabtk−1a · · · abt1abt0 where at least one exponent ti is nonzero.
If v = a`bpan modulo P or if v = a`−1bpaban modulo P where ` ≥ 1 then
k = ` + n , tn > 0 and ti = 0 for i < n. For 0 ≤ i ≤ ` write ji for tn+i and
define q as in part a) using just the `+ 1 exponents ji. If v = a`bpan modulo
P where p > 0, then p = q. If v = a`−1bpaban modulo P where ` ≥ 1 and
p > 0, then p = 1− q.

Proof. i) Suppose v ≡ b j`ab j`−1a · · · ab j1ab j0an where j0 > 0. Let r be the
largest index such that jr > 0, so v ≡ a`−rb jrab jr−1a · · · ab j1ab j0an. We use
induction on r for 0 ≤ r ≤ `, to show that v = a`bqan mod P if q > 0 and
that v = a`−1b1−qaban mod P if q ≤ 0.
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Suppose first that r = 0. Then v ≡ a`bj0an and we are done with
q = j0 =

∑
even i ji −

∑
odd i ji.

Similarly, if r = 1, then v ≡ a`−1b j1ab j0an. If we are in the case where
j0 = 1, then

∑
even i ji −

∑
odd i ji ≤ 0 and we are done with q = 1 − j1 and

j1 = 1 − q. If j1 ≥ j0 > 1, then q = j0 − j1 ≤ 0, v ≡ a`−1b j1ab j0an =
a`−1b j1−j0+1aban mod P and we are done since j1− j0 + 1 = 1− q. If j1 < j0 ,
then q > 0, v ≡ a`−1b j1ab j0an = a`b j0−j1an mod P and we are done with
q = j0 − j1.

Assume then that r ≥ 2. If jr < jr−1 , then we can reduce the
occurrence of b jrab jr−1 within v ≡ a`−rb jrab jr−1a · · · abj1ab j0an to obtain
v = a`−r+1b jr−1−jrab jr−2a · · · ab j1ab j0an mod P and we are done by the in-
duction hypothesis. If jr ≥ jr−1 , let s be the largest index with s < r− 1 and
js > 0. If s = r − 2, then

v ≡ a`−rb jrab jr−1ab jr−2a · · · ab j0an
= a`−rb jrab jr−1+(jr−jr−1+1)ab jr−2+(jr−jr−1+1)a · · · abj0an mod P
≡ a`−rb jrab jr+1ab jr−2+jr−jr−1+1a · · · ab j0an
= a`−r+1bab jr−2+jr−jr−1+1a · · · ab j0an mod P

and we are done by the induction hypothesis. Similarly, if s < r − 2, then

v ≡ a`−rb jrab jr−1ar−s−2ab jsab js−1a · · · ab j0an
= a`−rb jrab jr−1ar−s−3abab js+1ab js−1a · · · ab j0an mod P
= a`−rb jrab jr−1ar−s−3bab2ab js+1ab js−1a · · · ab j0an mod P
= a`−rb jrab jr−1ab(ab2)r−s−3ab js+1a · · · ab j0an mod P
= a`−rb jrab jr+1ab1+(jr−jr−1+1)(ab2)r−s−3ab js+1a · · · ab j0an mod P
= a`−r+1abab jr−jr−1+2(ab2)r−s−3ab js+1a · · · ab j0an mod P

and we are again done by the induction hypothesis.

ii) For the converse direction, we want to use induction on the length of a
sequence of elementary transitions from a`bpan to v or a sequence of elementary
transitions from a`−1bpaban to v. For the base case, we need to observe that
the conclusions are true when this sequence has length 0. If v ≡ a`bpan in the
free semigroup on {a, b} , then we do have ti = 0 for 0 ≤ i < n, tn = p and
ti = 0 for n < i ≤ ` + n = k, so q =

∑
even i ji −

∑
odd i ji = j0 = tn = p.

Similarly, if v ≡ a`−1bpaban in the free semigroup on {a, b} , then ti = 0
for 0 ≤ i < n, tn = j0 = 1, tn+1 = j1 = p and ti = ji−n = 0 for
n+ 2 ≤ i ≤ `+ n = k, so 1− q = 1 +

∑
odd i ji −

∑
even i ji = 1 + j1 − j0 = p.

Suppose that a`bpan = w0 → w1 → · · · → wT = v is a sequence of
elementary transitions from a`bpan to v or that a`−1bpaban = w0 → w1 →
· · · → wT = v is a sequence of elementary transitions from a`−1bpaban to
v. Since ab and bab2 both contain just one occurrence of a , the number of
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occurrences of a in each wi will be `+n. Observe that no elementary transition
can ever involve a letter a from an (so we will have ti = 0 for 0 ≤ i < n) or lower
the rightmost nonzero exponent on a b to zero (so we will have tn = j0 > 0).
Every elementary transition will either raise or lower two consecutive exponents
on b ’s, so that

∑
even i ji and

∑
odd i ji will either both increase by one or

else both decrease by one and the value of q is invariant under elementary
transitions.

If v is a word on the alphabet in which both a and b occur, then v can be
written in the form b j`ab j`−1a · · · ab j1ab j0an where j0 > 0. We will define the
base for any such word to be

∑
even i ji−

∑
odd i ji. By Lemma 1, this number,

as well as ` and n will be the same for every word v′ on {a, b} which represents
the same element of S1 as v.

Given a set B = {bx1 , bx2 , . . . , bxN } of powers of b in the free semigroup
on {a, b} , it is clear that bP is in the subsemigroup of {a, b}+ generated by
B if and only if there are nonnegative integers m1,m2, . . . ,mN such that P =∑
mixi. The following lemma will be useful. This is a modest generalization of

an exercise in [6].

Lemma 2. Suppose that x1, x2, . . . , xN are positive integers and that the
greatest common divisor of this set of numbers is the number d. If z is any
natural number that is divisible by d and z is at least as large as x1x2 · · ·xN/dN ,
then there are nonnegative integers m1,m2, . . .mN such that z =

∑
mixi.

Theorem 3. The membership problem is solvable for the semigroup presen-
tation P = 〈a, b : bab2 = ab〉.

Proof. Suppose that v is a word on the alphabet {a, b} and that U is a
set U = {u1, u2, . . . , um} of words on the alphabet {a, b}. We need to exhibit
an algorithm for deciding whether or not v is equivalent modulo P to some
product of elements of U .

Write the set U as the disjoint union U = Ua ∪ Ub ∪ Umx where Ua =
{ui ∈ U : |ui|b = 0},Ub = {ui ∈ U : |ui|a = 0} and Umx = {ui ∈ U : |ui|a >
0 and |ui|b > 0}.

If v = bp, then v is not equivalent modulo P to any product of words
from U if Ub is empty. Suppose then that Ub is nonempty and, for the sake of
notation, describe Ub by Ub = {bx1 , bx2 , . . . , bxN }. Then v = bp is equivalent
modulo P to a product of elements of U if and only if there are nonnegative
integers m1,m2, . . . ,mN such that p =

∑
mixi. We can effectively determine

whether or not this occurs.

Replacing Ub by Ua , a very similar argument holds if v = at for some
t > 0.

Assume then that |v|a > 0 and |v|b > 0. Then, either we can write v in
normal form as v = a`bpan where p > 0 and ` + n > 0 or else we can write
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v in normal form as v = a`−1bpaban where p > 0 and ` ≥ 1. We will regard
the choice of form and `, p and n as fixed and known for the remainder of this
proof.

We will say that a finite sequence (ui1 , ui2 , . . . , uik) has an interesting
product if the product ui1ui2 · · ·uik is equivalent modulo P either to a word
a`bPan for some P > 0 or else, when ` ≥ 1, this product is equivalent modulo
P to a word a`−1bPaban for some P > 0 and all of the factors, with at most
one exception, are either in Ua or in Umx.

Since, with at most one exception, we require that uij ∈ Ua ∪ Umx for
every factor of an interesting product, we might have one factor which contains
no occurrences of a , but every other factor must contain at least one occurrence
of a. For every interesting product we have |ui1ui2 · · ·uik |a = ` + n, so the
number k of factors in an interesting product can be at most `+n+1 and there
are only a finite number of interesting products. We can effectively compute all
of these and compute the base of each. The set of interesting products is defined
for a fixed v in which both a and b occur. By construction and Lemma 1, each
interesting product will have the same number of occurrences of a as v and
will have the same number of occurrences of a to the right of the rightmost
occurrence of b .

Roughly stated, we will determine whether or not v is equivalent modulo
P to a product of words from U by inserting products of words from Ub
between the factors of interesting products. By Lemma 1, we will never find
v in this fashion if we insert a power of b between two of the rightmost n
occurrences of a in an interesting product. If ui1ui2 · · ·uik is an interesting
product, we say that the product has an insertion point between uij and
uij+1 if |uij+1 · · ·uik |a ≥ n. This insertion point has even parity or odd parity
according as |uij+1 · · ·uik |a−n is even or odd. An interesting product may have
no insertion points which occur between factors. An interesting product always
has a left-hand insertion point to the left of ui1 and this left-hand insertion
point has even parity when ` is even and has odd parity when ` is odd. If n = 0,
then an interesting product has a right-hand insertion point to the right of
the rightmost factor. Right-hand insertion points, when they exist, always have
even parity. When an interesting product has one of its factors in Ub , then there
will always be insertion points on both sides of this factor and these insertion
points will have the same parity.

If v is equivalent modulo P to a product of factors from U , then either
we will obtain an interesting product if we delete all of the factors from Ub which
occur in the product or else there is a factor from Ub in the product, positioned
to the left of an , such that we will obtain an interesting product when we delete
all of the factors from Ub except this one. If the set of interesting products is
empty, then we know that v is not equivalent modulo P to a product of factors
from U . When the set of interesting products is nonempty, it will suffice to
determine whether or not we can obtain a word equivalent to v by inserting
words on Ub at insertion points of any one of these interesting products. By
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Lemma 1, if we insert a word on Ub at an insertion point with even (odd) parity,
it does not matter which insertion point with even (odd) parity is used.

We examine each interesting product and determine whether 1) it has
both even and odd insertion points, 2) it has only even insertion points, or else
3) the product has only odd insertion points.

If Ub is empty, then v is equivalent to a product of words from U if and
only if v is equivalent modulo P to one or more of the interesting products.
Assume that Ub is nonempty and write again Ub = {bx1 , bx2 , . . . , bxN }. Write d
for the greatest common divisor of the positive integers xi.

Suppose first that we are examining an interesting product which has
both even and odd insertion points. By Lemma 2, we can construct words bzi

on Ub for every sufficiently large multiple, zi, of d. Using this, given any integer
multiple, z , of d , we can construct words bz1 and bz2 with z = z1 − z2 . When
d = 1, we can choose this difference to be the difference between the base of
v and the base of the interesting product. We then insert bz1 and bz2 into
appropriate insertion points with different parity and find that v is equivalent
modulo P to a product of words from U . If d > 1, then we see that we can
use this interesting product to construct v as a product of words from U if and
only if this interesting product has a base which is equivalent modulo d to the
base of v .

Suppose then that we are examining an interesting product which has
only even insertion points. (The case where the interesting product has only
odd insertion points is similar.) If the base of this interesting product is greater
than the base of v , then inserting powers of b at an even insertion points
will construct a word with a still greater base, and we will not be able to
use this interesting product to construct v as a product of words from U . If
the base of this interesting product is less than the base of v , then we can
effectively determine whether or not the difference z can be written as a sum∑
mixi where the mi are nonnegative integers. If this is possible, then we can

insert bz = (bx1)m1(bx2)m2 · · · (bxN )mN into the interesting product at any even
insertion point and obtain a product of words on U which is equivalent to v
modulo P. If the difference z cannot be written as such a sum, then we may
discard this interesting product from further considerations.

Example 4. Let U = {u1 = a4b2a7, u2 = ab5a3, u3 = a5, u4 = b6, u5 = b10}.
To illustrate the algorithm above, we will determine, for various words v whether
or not v is in the subsemigroup H of S1 that is generated by U . We see easily
that a15 and b32 are elements of H and that a34, b8 and b31 cannot be elements
of H. Since |u1|a = 11, |u2|a = 4, |u3|a = 5 while |u4|a = |u5|a = 0, we cannot
have that v is in H if v is any word with |v|a = 1, 2, 3, 6 or 7.

We examine in more detail whether or not v is in H for several cases
where |v|a = 20. In such cases, we can have v ∈ H if and only if v is equal
in S1 to a product of elements of U in which the total number of occurrences
of a in the factors is 20. We might have u4 and u5 occurring many times in
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such a product, but we must have that u1, u2 and u3 each occur exactly once
or else that u3 occurs four times while u1 and u2 do not occur or else that u2

occurs five times while u1 and u3 do not occur . We deduce that a word v
with |v|a = 20 can be in H if and only if it is equal to a product obtained by
inserting powers of u4 = b6 and u5 = b10 between (or following or preceding)
the factors in one of the eight products

u1u2u3 = a4b2a7 · ab5a3 · a5 u1u3u2 = a4b2a7 · a5 · ab5a3

u2u1u3 = ab5a3 · a4b2a7 · a5 u2u3u1 = ab5a3 · a5 · a4b2a7

u3u1u2 = a5 · a4b2a7 · ab5a3 u3u2u1 = a5 · ab5a3 · a4b2a7

u4
3 = a5 · a5 · a5 · a5 or u5

2 = ab5a3 · ab5a3 · ab5a3 · ab5a3 · ab5a3

If, for example, v = a18b5a2 , we see that no insertion of powers of b
between, before, or after the factors in any of these eight products will yield a
word which is equal to v in S1. In every product, the rightmost occurrence of
b is either too far to the left or too far to the right. We conclude that a18b5a2

is not in H. The same argument shows that a18bpa2 /∈ H and a17bpaba2 /∈ H
for every natural number p.

In the proof of Theorem 3 above, we have defined, given U and v , a set
of interesting products. For the set U of this example, we will always have that
the set of interesting products is the empty set if |v|a = 7 or if v = a18bpa2 or
v = a17bpaba2 for some natural number p .

If v = a8b7a12, then we see that the set of interesting products is
{u2u1u3, u4u2u1u3, u5u2u1u3, u2u4u1u3, u2u5u1u3} . The only interesting prod-
uct that we will need to consider in this case is u2u1u3 since the other four
are all obtained by inserting u4 or u5 at insertion points of this product. For
u2u1u3 = ab5a3 ·a4b2a7 ·a5 , we have a left-hand insertion point and an insertion
point between u2 and u1 . Both of these insertion points have even parity. The
base of u2u1u3 is −3. For either of u5u2u1u3 or u2u5u1u3 the base is 7, so
a8b7a12 ∈ H. It is not hard to see that a8bpa12 ∈ H for p odd and p ≥ 13. For
every even natural number p , we will have a8bpa12 /∈ H : since u4 and u5 are
both even powers of b, when we insert powers of u4 and u5 into u2u1u3 , we
can change the base value of −3 only by an even integer. With words v ending
in a12, we can insert powers of u4 and u5 into u2u1u3 only to the left of u2

or between u2 and u1. An insertion of bm in either of these locations will raise
the base by m . Since b6 is the smallest power of b that we may insert, we see
that a8ba12 /∈ H. Similarly, we see that a8bpb12 is in H if p = 3 or p = 9, but
is not in H if p = 5 or p = 11. We do have that a7b4aba12 ∈ H, since this is
u2u1u3. If p 6= 4, then a7bpaba12 /∈ H, since we can only raise and not lower
the base of u2u1u3 by inserting powers of u4 and u5.

If v=a15b2a5 , then none of the eight products displayed above are inter-
esting products, but we should examine the products u1u2u3, u2u1u3 and u4

3 in
the display. To achieve the final a5 factor, we will need to insert at least one fac-
tor u4 or u5 before the final u3 in each of these, and our set of interesting prod-
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ucts here will be {u1u2u4u3, u1u2u5u3, u2u1u4u3, u2u1u5u3, u
3
3u4u3, u

3
3u5u3} .

The base for u3
3u4u3 is 6. We can lower this by 4 if we insert another fac-

tor of u4 before the final u3 and an initial factor of u5 : the base for u5u
3
3u

2
4u3

is 2 so a15b2a5 ∈ H. This generalizes to show that a15bpa5 ∈ H for every even
p and that a14bpaba5 ∈ H for every odd p . Similarly, the base for u1u2u5u3 is
3 and we can insert additional factors of u4 and u5 into this product to show
that a15bpa5 ∈ H for every odd p and that a14bpaba5 ∈ H for every even p .

Finite separability is a semigroup property that is stronger than residual
finiteness. A definition is given in the next paragraph. If the semigroup S
is finitely separable, then the membership problem is solvable for every finite
presentation for S. An analogous result in group theory states that locally
extended residually finite (LERF) groups have solvable membership problems.
For both semigroups and groups, the proof that finite separability or LERF
implies solvability of the membership problem is very much like a standard
proof that residual finiteness implies solvability of the word problem.

A semigroup S is finitely separable if for every subsemigroup M of S
and every element s ∈ S−M, there is a finite semigroup Q and a homomorphism
Φ of S onto Q such that Φ(s) /∈ Φ(M). A semigroup S has finitely separable
subsets if for every subset M of S and every element s ∈ S−M, there is a finite
semigroup Q and a homomorphism Φ of S onto Q such that Φ(s) /∈ Φ(M).
The monoid S1 is obtained from S by adjoining a new identity element 1.
Following Golubov, [2], [3], for elements x, y ∈ S, we define the set [y : x] by
[y : x] = {(u, v) ∈ S1 × S1 : uxv = y}.

Theorem 5 (Golubov, [2], [3]). The semigroup S has finitely separable sub-
sets if and only if for every y ∈ S, there are only a finite number of distinct sets
[y : x] as x ranges over S .

For the semigroup S1 presented by P = 〈a, b : bab2 = ab〉 , it is fairly
easy to see that we have (bp, 1) ∈ [ab : abr] if and only if 1 + p = r We see from
this that [ab : abr1 ] 6= [ab : abr2 ] if r1 6= r2, so by Golubov’s characterization, S1

does not have finitely separable subsets. For the semigroup Sk , [5], presented
by 〈a, b : b(ab)kb = ab〉 , we see similarly that (((ba)k−1b)p, 1) ∈ [ab : abr] if
and only if 1 +p = r and then that Sk does not have finitely separable subsets.

Theorem 6 (Golubov, [2], [3]). Suppose that S is a semigroup without idem-
potents. Then S is finitely separable if and only if S has finitely separable
subsets.

Theorem 7 (Golubov, [2], [3]). Suppose that S is a nonregular semigroup
which satisfies the left cancellation law. Then S is finitely separable if and only
if S has finitely separable subsets.

It is easily seen that there are no idempotents in S1 , but it seems more
difficult to prove that there are no idempotents in Sk for k > 1. It is apparent
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that the semigroups Sk are not regular. As Lallement and Rosaz remark, it is
known, see [1], that the semigroups Sk are left cancellative. We thus see that
the semigroups Sk are not finitely separable.
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