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Abstract Among the large number of gabbroic intru-
sions within the profile of the continental deep drilling
(KTB), several types can be distinguished. In this study
petrographic, geochemical investigations, conventional
U-Pb zircon data and results of Sr—Nd—Pb isotope
characteristics of meta-gabbros, amphibolites and felsic
rocks are reported. The main results are: U-Pb zircon
age data reveal a magmatic Cambro-Ordovician evolu-
tion of the Erbendorf-Vohenstrauss zone (ZEV). The
range of the ages of magmatic intrusions varies from
496 to 476 Ma, probably as a result of overlap of
magmatic and metamorphic processes. Cambro-Or-
dovician magmatic ages were observed within different
mafic (b unit) as well as in variegated units (v unit) of
the KTB profile. The Silurian-Devonian metamorph-
ism is dated at around 398 Ma. The Silurian as well as
the Variscan metamorphic events apparently did not
influence the U-Pb system. The Cambro-Ordovician
mafic rocks from the KTB scatter on a &-Nd evolution
diagram. Several meta-gabbros cluster around the -
NdT.500 value of +5, but others vary from +8.6 to
+0.65 and suggest variable degrees of contamination
with continental crust material. A contamination of
only 5-10% is required to reduce e-Nd from +8.6 to
approximately +5. According to the REE patterns
and the Sr—Nd—Pb data, the mafic rocks could either
derive from an enriched mantle source or else their
protolith magma originated from a depleted mantle
and was contaminated by continental crust. The data
for the mafic rocks of the ZEV are in accord with
observation by other authors regarding the evolution
of the Late-Proterozoic to Early Palaeozoic mag-
matism in the Bohemian massif.
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Introduction

In this paper, U-Pb zircon, Pb—Sr—Nd isotope and
major, trace and REE data of pre-Variscan rocks
(meta-gabbros, para-/orthogneisses, amphibolites) are
presented from the Variscan basement of NE Bavaria;
these include only rocks from the continental deep
drilling core. The pre-Variscan evolution of the Bohem-
ian massif — integrated into the Variscan basement — is
partly established by geochronological studies (see
Geological background). In such a polymetamorphic
context, the best — if not the only — possibility to obtain
reliable magmatic crystallisation ages is by the U-Pb
method applied to zircon and/or other accessory U-
bearing minerals.

The KTB drill site lies in the northern part of the
Erbendorf-Vohenstrauss zone (ZEV). The ZEV is a
small NW- to SE-trending metamorphic unit com-
posed of paragneisses and different types of mafic
rocks. In the north, the ZEV is bordered by mafic and
ultramafic rocks of the Erbendorf greenschist zone and
different meta-sediments and meta-volcanics. In the
east and south the ZEV borders against the high-grade
rocks of the Moldanubian unit. The contacts between
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Fig. 1a, b Sketch of the western part of the Bohemian massif. MN
Moldanubian zone; ST Saxothuringian zone; MM Miinchberg
massif; ZEV Zone of Erbendorf-Vohenstrauss; ZT T Zone of Tepla-
Taus; ZTM Zone of Tirschenreuth-Méhring; W Winklarn, high-
pressure rocks; /, 2 lower nappes; 3 Saxothuringian; 4 Moldanubian;
5 late-/post-Variscan granites; 6 KTB drill site; 7 Franconian Line;
¢ Lithological column of the KTB Hauptbohrung (HB) and geologi-
cal NE-SW cross section (Hirschmann et al. 1994). The numbers on
the left side of the profile refer to the sample numbers in Table 1
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them are marked by late Variscan dioritic and granitic
intrusions (Steinwald, Falkenberg, Leuchtenberg). In
the SW, the basement units are thrust upon the Permo-
Carboniferous and Mesozoic sediments by the fault
system of the Franconian lineament (Fig. 1). The north-
ern part of the ZEV can be subdivided into an upper
gneiss-rich unit (Pillersreuth subgroup; Hirschmann
1993) and a lower unit with abundant mafic rocks
(Windischeschenbach subgroup). Both units dip to the
southwest. The KTB drill site is situated in the lower
unit and comprises the Vorbohrung (VB) and the
Hauptbohrung (HB). Due to technical problems during
the drilling operation several separate holes exist (Hir-
schmann et al., in press).

The principle aim of this study was to define the
protolith age for mafic rocks, and furthermore, by com-
bining multi-isotope data of mafic rocks, to examine
the relative importance of mantle, crustal and mixed
magma sources as a function of time. The protolith age
information as well as the source data are compared
with other mafic complexes in Central Europe, and the
geodynamic implications for the evolution of the Vari-
scan basement are discussed.

Geological background

The Moldanubian basement of the Bohemian massif
(BM) contains numerous undated meta-gabbros and
other mafic/ultramafic rocks (Fig. 1). They are asso-
ciated with metamorphic rocks of igneous and/or sedi-
mentary origin. For most of these occurrences it is
typical that the associated country rocks do not reflect
the same metamorphic history as the igneous mafic
rocks. The country rocks of the Moldanubian were
metamorphosed at pressures between 3 and 4.5 kbar
and temperatures between 670 and 700°C (Bliimel
1983, 1984). Based on conventional as well as on ion-
probe data on detrital zircons, the ages of the meta-
sedimentary rocks range up to 3.8 Ga (Gebauer et al.
1989). The deposition of the meta-sedimentary rocks
took place after the Pan-African (or Cadomian)
orogenic cycle, 550 Ma ago. The first metamorphic
overprint of these sediments took place during the
Ordovician. Different metamorphic ages have been ob-
tained which probably reflect the presence of different
tectonic units. Grauert et al. (1974) obtained 488 +
20 Ma for the Ordovician metamorphism of rocks from
the low-pressure unit and Gebauer et al. (1989) re-
ported a similar age of 459 +8 Ma for the anatexis of
paragneisses from the Regensburg Forest. Teufel (1988)
dated monazites from cordierite-bearing gneisses and
the age of 455 +4 Ma may reflect an early high-grade
metamorphic event. In the SW part of the BM the
intrusion of the layered mafic/ultramafic Neukirchen-
Kdyne complex has been dated at 511+3 Ma
(Gebauer 1993). An age of 494 +2 Ma on another
mafic complex in the NE part of the BM, the Rudawy

Janowickie terrane, reflects magmatic intrusion (Oliver
et al. 1993). Bowes and Aftialon (1991) reported an
Ordovician intrusion age (496 +1 Ma) of meta-gab-
bros from the Marianske Lasne complex, a geological
unit close to the NE of the KTB.

The target area occupies the western margin of the
BM (Fig. 1). The zone of ZEV contains amphibolites,
paragneisses, orthogneisses, and meta-pegmatites, over
printed by variable degrees of metamorphism. Two
granites in the east of the ZEV, the Leuchtenberg and
Falkenberg granite, intruded at 326 +4 and 311 +
8 Ma (Siebel et al. 1995).

As high-pressure events are preserved and recog-
nised in mafic assemblages, dating of such rocks might
yield protolith ages as well as the age of the high-
pressure event. Geochemical data and Nd—Sr—Pb iso-
topic data are expected to give information on the
geotectonic environment of their protoliths. An oceanic
source would imply tectonic transport and stacking
within the meta-sedimentary rocks.

The metamorphic rocks of the VB and HB comprise
amphibolites, meta-gabbros, hornblende gneisses and
paragneisses which may occur interlayered by several
alternations. The upper section of the profile
(<3160 m) is characterised by paragneisses, amphi-
bolites and mafic-felsic units. The middle section
(3160—7260 m) is represented by amphibolites with mi-
nor intercalations of meta-gabbros and hornblende
gneisses. The lower section (7260-9100 m) again con-
sists of alternations of amphibolites and paragneisses.
The boundaries between all major units are marked by
cataclastic faults. As outlined in Fig. 1c the profile of
the KTB drill core can be subdivided into lithological
characteristic units: gneiss unit (g), variegated units (v)
and metabasic units (b).

The individual gneiss units differ by the amount and
distribution of metapelitic and metapsammitic para-
gneisses and minor intercalations of mafic rocks. The
variegated unit occurs in the upper and lower part of
the profile (Fig. 1b) and contains alkaline marble-bear-
ing amphibolites, metatrachytic metabasites, alkaline
amphibolites and gneisses. The metabasic unit is the
dominant part of the middle section and contains gar-
net amphibolites, meta-gabbros and minor intercala-
tions of gneisses. All metamorphic units (g, v, b) are
crosscut by mafic and felsic dykes related to the late-
Variscan granitoids (Siebel et al. 1995).

Analytical methods

U-PD zircon dissolution and chemical separation were
performed according to the method described by
Manshes et al. (1984) and von Quadt (1992); total Pb
blanks amounted to 30 and 70 pg. Pb was loaded on
a single Re filament with H3POu4 and silica gel; U was
loaded on a double Re filament with HNOs, and if



single zircons were analysed, on the same filament as
Pb. U and Pb concentration were determined using
a mixed 2°°Pb/?3°U spike. Linear fractionation effects
equivalent to 0.13 +0.005% per mass unit were correc-
ted, based on repeated measurements of the NBS SRM
981 lead standard. 2°°Pb/?°*Pb ratios greater than
3000 were measured by using an electron multiplier.
The reproducibility of measurements of the standard
was 0.1% for 2°°Pb/?°*Pb and 2°"Pb/?°*Pb and 0.2%
for the 2°8Pb/?°*Pb ratio (2 sigma). The reproducibility
of an internal laboratory zircon standard was 0.8%
for 2°°Pb/?3%U, 1.4% for 2°"Pb/?3*°U and 0.5% for
207Pb/296Pb ratio. The error ellipses on the concordia
diagram were calculated for individual fractions using
2-sigma errors (Roddick 1987) and regression lines
were calculated using the method of Ludwig (1980).

The procedures for Sm, Nd and REE whole-rock and
mineral analyses are modified from those reported by
Richard et al. (1976). After dissolution in open beakers
(HF cold, 24 h), the samples were treated in Teflon
(DuPont) bombs using HF—HNO3—HCIO4. The sam-
ples were spiked with either a highly enriched REE
tracer or a mixed '°°Nd-'*Sm tracer. A cation-ex-
change column was used to concentrate the REE;
Sm—Nd and REE were separated on a second column
containing Teflon powder coated with di-2-ethyl-hexyl-
orthophosphoric acid. No Sm interferences were ob-
served in the Nd measurement. The REE elements were
loaded with HCIl on different filament assemblies
(single, double, triple). All isotope measurements were
performed (dynamic mode) on a Finnigan MAT 261
mass spectrometer using a fixed multicollector system.
Several REE analyses (see Table 2) were performed on
an ICP-MS (Perkin Elmer) at the EMPA (Eidgenos-
sische Material- und Priifungs Anstalt).
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The Nd-isotopic ratios were normalised to '#°Nd/
144Nd = 0.7219. The reproducibility of the data was
estimated by measuring the La Jolla Standard. The
mean of 17 runs during this work was !43Nd/
144Nd = 0.512846 +7 (95% CI). Analysis of BHVO-I
yielded a '**Nd/'**Nd ratio of 0.512991 +14 (14
measurements). The reproducibility of the #7Sm/
144Nd ratio was estimated from replicate analyses to be
within 0.17%. The model ages, Tom and Tcn, were
calculated to be 0.1967, with '*7Sm/!**Nd = 0.213,
and 0.512638, with 43Nd/!**Nd = 0.513150, assuming
a depleted mantle evolving linearly with time (Gold-
stein et al. 1984).

Sample description

U-Pb zircon analyses have been performed on several
meta-gabbros, one amphibolite and two gneisses from
the lower levels of the KTB profile (Fig. 1b). Nd—Sr—Pb
whole-rock and mineral analyses were made on
gneisses, amphibolites and meta-gabbros.

The meta-gabbros are coarse-grained rocks with
partly preserved ophitic structures. These mafic rocks
consist mainly of clinopyroxene, garnet, amphibolite
and plagioclase. Minor amounts of biotite, rutile, zir-
con and pyrite are observed (Table 1). The main form-
ing minerals in the amphibolites are hornblende,
plagioclase, garnet and minor quartz and biotite.
The accessories are apatite, zircon, sphene and rutile.
The garnet contents are variable and the grain size
varies from 0.1 to 0.5 mm. The paragneisses consist
of plagioclase, quartz, biotite, garnet, sillimanite and
muscovite. Depending on their whole-rock alteration

Table 1 Sample description. qtz quartz; bio biotite; chl chlorite; zr zircon; grt garnet; hbl hornblende; sph sphene; epi epidote; kf kalifeldspar;

ap apatite; sil sillimanite; seri sericite; mus muscovite

Sample no. Sample Sample description Depths m Rock type

(see Fig. 1c)

1 39A5a qtz, kf, plag, bio, chl, zr, grt 256.67 Chlorite gneiss

2 47A45 qtz, plag, bio, hbl, grt 324.37 Chlorite gneiss

3 264, C1F, Clg, H10p(263) cpx, grt, amph, plag, +bio, qtz, ap, zr 1262-1265 Meta-gabbro

4 280, C2h, F2y, E2x cpx, grt, amph, plag, +bio, qtz, ap, zr 1334-1336 Meta-gabbro

5 882, H4ba cpx, grt, amph, plag, +bio, qtz, ap, zr 3606 Meta-gabbro

6 911, 1ab, lac, Elad, Elgfk cpx, grt, amph, plag, +bio, qtz, ap, zr 3718 Meta-gabbro

7 939, F1HK, E1GK cpx, grt, amph, plag, +bio, qtz, ap, zr 3834 Meta-gabbro

8 HO009, F39 cpx, grt, amph, plag, +bio, qtz, ap, zr 4688 Meta-gabbro

9 HO025, A2a, 2b, 3T, 4T, B5d  cpx, grt, amph, plag, +bio, qtz, ap, zr 6244-6245 Meta-gabbro

10 HO025, D13a, D12 cpx, grt, amph, plag, +bio, qtz, ap, zr 6247 Meta-gabbro

11 HO026, Ala, 1c, 4c, B6a cpx, grt, amph, plag, +bio, qtz, ap, zr 6304-6305 Meta-gabbro

12 HO027A1a, 2S cpx, grt, amph, plag, +bio, qtz, ap, zr 6355-6356 Meta-gabbro

13 HO030D1 hbl, plag, grt, +qtz, bio, kf, sph, ap 6668 Amphibolite/meta-gabbro
14 HO031A1K plag, qtz, bio, grt, sil, mus, =chl, seri 7011 Hornblende-gneiss

15 HO33A1T hbl, plag, grt, +qtz, bio, kf, sph, ap 7400.30 Amphibolite

16 HO034A3j plag, qtz, bio, grt, sil, mus, =chl, seri 8071.88 Garnet-sil biotite gneiss
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chlorite, sericite and others are observed. Intensely
altered rocks were collected from different depths at
256 and 324 m (Table 1). These altered rocks are called
chlorite gneiss or chlorite fels.

Results
Geochemical data

Major, trace and REE data for the studied rocks are
listed in Table 2. The samples comprise amphibolites
retrograded to different degrees, gneisses and meta-
gabbros. Selected trace element data are plotted in
Fig. 2. Most of the meta-gabbros represent a basaltic
liquid composition. When plotted on different discrim-
ination diagrams, e.g. Cr—Ti, Ti—Zr, Nb/Y-Zr/TiOx,
the meta-gabbros fall into either the ocean floor basalt
(OFB) or island arc basalt fields (IAT; Pearce 1982;
Pearce and Norry 1979).

Normalised REE data for selected samples are plot-
ted in Fig. 3. Most of the REE patterns are enriched in
LREE with one exception, sample H025b, which is
slightly depleted in LREE; meta-gabbros from the Vor-
bohrung (VB; Fig. 3a) have an (La/Lu)a ratio of 3.6,
whereas the meta-gabbros from the Hauptbohrung
(HB) show a (La/Lu). ratio of 2.4 (Fig. 3b). The am-
phibolite (Fig. 3c, H033) and the gneisses (Fig. 3c,
VB39A, VB47B) have a slightly enriched LREE part.
Two chlorite gneisses (Fig. 3c, VB39A, VB 47B) have
the highest REE concentration, (La/Lu). ratios of 8.4
and 19.9 and negative Eu anomalies. The high (La/Lu)a
ratio of the meta-gabbros from the VB is not combined
with a fractionation process (Table 2). All distribution
patterns of the mafic rocks point to a homogeneous
source such as an enriched mantle, probably contamin-
ation with Cadomian crust material.

The extended spider diagrams show a very homo-
geneous pattern for the meta-gabbros of the VB
(Fig. 2a). The meta-gabbros from the HB (Fig. 2b) dis-
play similar patterns, but several elements (La, Ce, Sr,
Zr) are scattered. Lead, potassium and strontium are
strongly enriched relative to an N-type MORB refer-
ence. The two gneisses (VB39A, VB47B) are extremely
enriched in Zr, Pb, K and Nb (Fig. 2¢), whereas the
patterns of the other gneisses and amphibolites are
more heterogeneous probably reflecting a mixture from
different source material.

Sr—Nd-Pb data

Sr, Nd and Pb isotopic data (Tables 3, 4) are sum-
marised in Fig. 4, which presents the '*3Nd/'**Nd
against 2°°Pb/?%4Pb and 2°"Pb/?°*Pb against 2°°Pb/
204pb ratios. The Nd—Pb plot (modified after Zindler

and Hart 1986) indicates possible source fields for dif-
ferent rock systems (Fig. 4a). Meta-gabbros span an
e-Nd range between 0.65 and 8.6. The highest value
occurs in sample HO026 (Table 4), a flat REE pattern
and a more primitive rock type than the others. The
two amphibolitic rocks (H033: —10.55; H030: —6.82)
as well as the hornblende gneiss (HO31: —0.69) have
very low ¢-Nd values and were probably contaminated
with a meta-sedimentary source rock. The felsic rock
type shows a wide range within the e&-Nd values from
0.21 to —16.9 (Table 4). The mean &-Nd value for the
mafic rocks cluster around 5.1. Similar values are ob-
tained for mafic/ultramafic rocks from the Mol-
danubian part of the BM, e.g. Winklarn (von Quadt
and Gebauer 1993), Neukirchen (Miethig 1995),
Saxonian Granulite Massif (von Quadt 1994) and
Miinchberg Gneiss massif (Stosch et al. 1989). Most of
these mafic rocks reveal a considerable increase in
Sm/Nd with differentiation, but no isochron can be
calculated for all the samples. The strontium system
may be disturbed in most rock samples, but those rocks
with negative &-Nd values show the expected high
87Sr/86Sr ratios (Table 4). Based on their Nd—Pb pat-
tern the source for the mafic rocks display a mixture
between a depleted mantle source (DMMA) and an
enriched source type (EM-II).

In Fig. 4b the mafic rocks are plotted in
a 2%5Pb/?°4Pb vs 2°7Pb/?°*Pb diagram; all data points
were corrected for T-500 and T-300 Ma. All meta-gab-
bros are characterised by a similar source type, ex-
pressed by a very constant p-value of 9.554 +0.032.
Higher p-values (Table 3) correlate with lower e-Nd
values. A best-fit line through the field of mafic rocks
on the 2°6Pb/?°4Pb-2°7Pb/??4Pb system point to a
homogenisation during the magmatic evolution of
these rocks in Cambro-Ordovician time. A factor anal-
ysis for different corrected Pb data demonstrate that
the time of 500 Ma has the best homogenisation for the
whole rocks. The U-Th—Pb whole-rock analyses of the
meta-gabbros show variable Th/U ratios from 1.64 to
5.61, the amphibolites from 0.4 to 2.1 and the chlorite
gneisses from 0.67 to 2.3. The lower Th/U ratios of the
more felsic rocks is related to an increase in U concen-
trations.

Whole-rock/garnet data

Two mafic rocks were selected for Sm/Nd geochronol-
ogy using whole rock and garnet (Table 4, samples 280,
939). No other mineral is suitable to detect the post-
magmatic overprint. The garnets were separated based
on their colour, but this selection did not increase the
spread of *7Sm/!'**Nd. The whole-rock garnet pairs
reflect the time of the metamorphic overprint with ages
of 398 +12 and 392 +20 Ma (Table 4). Similar meta-
morphic ages have been reported for other KTB rock
units based on Ar—Ar and K—Ar measurements on



S263

1L00  8€0  LIO 9500  TEOO  LTOO 920 0T0 70 110 PYO 65TO 0910 OKTO 6800  OIT0 |
$$0 8T 9T Wwo  TC0 9810 €81 ! 680 $90 167 8Ll €rl 671 6IL0  6£90 A
600 €0 LIO LOO $00 €00 820 ¥C0  ¥10  TI0 €50 WL
61 695 9IT 10T PO TUE0  TIE 66T LT 91 W9 6sT 9T 6EE 197 651 £a
80 TT $90 610 600 L0 §90 190 $E0 €0 SE'l oH
pLO  60€ 171 050  STO  T0TO 88T 891 80 T80 pLE  L0T  pFT T6T 6160 6160 "
€ 201 8€°0 00 600 LOO  8K0 80 €20 70 €0°T qL
SLT 919 LT PEL 650 P6KO  9PE e 98T Tl 66L  S6€ 69T I8¢ L6] €61 PO
LIO 650 LLO 80 810 810 €971 i 690 6L0 €97 0660  64LO 9Tl 0090  L9SO ng
6CT 959 TwT LT T90 S0 LPT S€T 90T 6Tl ws e €T pee Tl €L ws
6€1 §1€ 001 L9 90f  9FT 1638 98 SLT €0 881 LTI S8 88T 9L 9L PN
68€  I¥S ST 99T 6L0 LSO 1TT pLT 190 660 e id
851 SIL - TSE yOE  9TC 069  €6SI  L€T1 80T S9L €8T 191 198 6l 86 T6 D
LEL €rE 7638 wy  s6T LT WS 9%  S60  9LT €6 8L 6St  6¥8  ¥6E L0V el
LT €8T €98 80T 9780  LSE0 61T 680  $60 790 ocr 080  €IT yT o 95T 0T eL
80 65T T9E0 SLO  9S€0  86TO  L90 90 160 #50 LT L60  STI I 9pl 81l JH
€01 €01 61T £se 1Tl 6LY y b y b b 6€ €€ v 99 a4 aN
€€l 10T 88T 6£60 61T 680 I8 Wl S6T 6ET 8T b9l LT1 T LT o0
w of 0z L1 0z S1 91 bl L1 S1 61 L1 bl L1 bl pl €0
60T Iy TEeT e Pl 8L pS0 1Y 180 S§1 $80  ¥90  ¥90  $90 190 od
0 96 1016 091 16Tl IST 161 69¢ Lz psel pSs 559 089 a6 80¢ S06 S

4 4 1€ 9z Lz 1z 1 Lz 1T 81 Ly LE 0g Lz €€ pE 5
p81 p1T L11 76 0zl ¥9 66 1L 101 €9 171 (& 18 LL €L €9 uz

£ £ 91 9 L €2 au 62 8 6 S vT @ 0g 0g 9% D

p1 9z L1 09 (& au 0 5 9 09 19 St 9 6t 9% or 5o)

£ £ 6t 811 b 9 I€ 80C s61 st 9 0L 91T I 9z 011 N

9 9 001 0T8I 9 6L1 992 Ly L6T L61 we 6t 101 Svp phe D
0z (44 434 w6l LIT €1 T8¢ 91 891 8el €67 80C 8L1 891 S0¢ 9€T A
911 69Tl 8s1 80T 9Ll AR 88 8L LT e el ¥6 11 L6 L6 iz
@l 601 ¥T u L1 I s9€ L1 01 6 9 s 62 Lz sz ST A
€12 il 681 €0 L9T  YEL  t'S9 or€ €T 19¢ P61 eI 1S1 6LT 661 961 IS
6t 1T s 8 W 99L Iy L 0z 1 S1 L1 81 €1 81 €1 9y
s pLY 91§ 80 8¥9 96t €€l & ST €8 pee $01 Tl 011 38 ¥l eg
T6t 60¢ S1€ 9vE Tre d

9001  9¥'66  €€66  TL66  6L66 Y866 9T66 6566  6£66 6566 0066 Y696 8686 1T66  TEG6 P66 [eIoL
ST 990 ST0 OrT  8€0 $80 L0 080  SOT  Tr0 pLO  S90  sTT 1071 €T €0T O°H
a0 010 LEO wo 070 €20 SI0 o #00 900 90 €20 810 IT0  #I0 810 0%d
€re €59 LT SLO LT LT 9¥0 STO 0L0  1%0 €0  S90 950 6K0  LF0 650 0™
s spe b8l pIE 06T oIy 9LT 0T 661  SET 65T 89T 60T  S8T  L£T  ILT 07N
16 66T 979 Ter o ory ws 6L IT01 LOOI 101 €06 P6 PSS 96 6 9001 0¥
10T W0 9T L89  S6€ 6Th 199 LT6 S80I SL' b9  0TL YT T8L 1901 LOS O3
170 €10 910 810 ST0 pIo  LTO 910 €10 €10 wo 10 L0 910 LIO  STO OUN
LL9 69 1001 LTI 98 o8 L0TI 101 TTOl  9%6 L6TL 9901 1801  TEOI  €€0I 206 f0%d
I6L1  6TLL  8LSI 8IPT 6991 €061 LS9l €81 TLL 166l L8YT 99T 0S¥l €TLL ST 9Ll FOTIV
970 €0 691 SLT 91 680 €5T ST 960 860 [T 8¢ LT YT 0gT LE] oL
6909  €EL09  pE9S  TOSP  LE6S  99PS  €I'6y  00Ly  €I9Y P89y 998y 66LY  bELP  TO8y  T89F  bILY ‘018
SYVLp:  VSV6E  PEOH  €60H  I€0H  OSOH  LTOH  920H  9STOH  ¥STOH  GOOH 6£6 116 788 08¢ poT  ordweg

(wdd) syuowopd gAY pue 2081 (9, IM) SUdWIR Iofe]N T dqeL



S264

100

—e—VB 264
—+-VB 280
—=-VB 882

10 ——VB 911

Sample / N-MORB

0.1
100

10

Sample / N-MORB

_‘
o ©
o -

—
o

IS
=

Sample / N-MORB

0.01

RbBaTh U Nb K LaCePbNdSrSmHf Zr EuGdDy Y ErYb L‘u

Fig. 2a—c¢ Normalised trace element data for the meta-gabbros,
gneisses and amphibolites

muscovites (Wemmer and Ahrendt 1994; Henjes-Kunst
et al. 1994; Ahrendt et al. this volume) and for rocks of
the ZEV (Kreuzer et al. 1989; Teufel 1988; Abdullah
et al. 1995).

U-Pb zircon data

Most of the zircon samples are discordant as shown by
the projection of their U-Pb zircon data in Figs. 5-13.
Some of the data points overlap within error or cluster
around the concordia curve. The discordant data
points plot on discordia lines intersecting the concordia
curve between 476 and 496 Ma, with the lower intersec-
tions scattering between 0 and 45 Ma. There is thus no
indication of a postmagmatic metamorphic overprint
in the U-Pb zircon system. The Cambro-Ordovician
age is interpreted to approximate the intrusion age of
the mafic protoliths. The fan-shape cluster for the lower
intersection has no geological meaning and probably
indicates recent lead loss. A minor influence of the
Variscan metamorphism and/or the pre-Variscan high-
pressure event cannot be excluded. Similar discordant
composition of zircons from mafic/ultramafic rock
units have been reported by several authors (e.g. Oliver
et al. 1993; von Quadt 1992; Holzl and Kohler 1994;
Bowes and Aftialon 1991) for other areas of the BM.
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Fig. 3a—c The REE plot for the meta-gabbros, gneisses and am-
phibolites

Several samples yielded data points which overlap
the concordia curve. Some of these “concordant” sam-
ples (Figs. 5, 7, 8, 12), however, have distinct
206pp /238 ages. In view of the relatively large errors,
the presence of inherited lead in these samples cannot
be excluded. The fact that the data points with the
smallest analytical error do not plot on the curve prob-
ably points to the presence of inherited components.

Several single zircons (Table 5, nos. 2, 3, 29, 42)
yielded concordant ages and apparently do not contain
any old lead component. Abrasion of zircons enhanced
the likelihood of obtaining concordant data points, if
the abraded zircons contain no cores; however, the
expectation for additional age information has not
been confirmed.

In contrast to the multigrain analyses, the abraded
grains as well as single zircon analyses show low and
similar U concentrations. The U content of the zircons
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Fig. 5 2°7Pb/?°%Pb vs 238Pb/2°°Pb plot for zircons from the meta-
gabbro VB264, the numbers beside the data points refer to zircon
fractions in Table 5

from the chlorite gneisses, which have high Zr, Nb and
REE concentration (Table 2), is within the range of
185-240 ppm (Table 5).

The U of 200900 ppm content of zircons from meta-
gabbros is typical for mafic rocks (Oliver et al. 1993;
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Fig. 6 2°"Pb/?°%Pb vs 238Pb/2°°Pb plot for zircons from the meta-
gabbro VB280
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Fig. 8 2°7Pb/?°%Pb vs 238Pb/2°°Pb plot for zircons from the meta-
gabbro VB939

von Quadt and Gebauer 1993), and the correlation
between increase in U content and degree of discord-
ancy is shown in Figs. 5-8 and Table 4.

The meta-gabbros of the VB (Figs. 5-8) and HB
(Figs. 9-12) yield intrusion ages between 483 and
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496 Ma, whereas sample HO09 yields an age of 475 Ma,
which is 10 Ma younger. Within the analytical errors
all meta-gabbros define a mean value of 490 +5.5 Ma.
A major significant feature of the zircon data is the

Fig. 12 2°7Pb/2°°Pb vs 238Pb/295Pb plot for zircons from the meta-

gabbro H027
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Fig. 13 2°7Pb/2%°Pb vs 238Pb/2°°Pb plot for zircons from the
gneisses 39A and 47B

spread of ages. This spread is either interpreted as
a result of long magmatic activity or metamorphic
processes which follow rapidly soon after crystallisa-
tion. O’Brien et al. (in press) reported a high pressure
event, based on U-Pb zircon studies, in Ordovician
time.

Discussion

Implication for the formation of mafic complex of the
Bohemian massif

As shown in many studies, the U-Pb zircon method is
well suited to obtain crystallisation ages of (poly-)meta-
morphosed igneous rocks. All analysed samples yielded
at least one zircon fraction that was concordant within
analytical errors, which demonstrates that any effects of
postmagmatic disturbances can be minimised by selecting
the most homogeneous core-free zircons for abrasion.
Zircon can survive amphibolite-facies metamorphism,
as long as no partial melting occurs in the rock.
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A paleo-tectonic reconstruction of the pre-Variscan
evolution of the Bohemian massif (BM) leads to a sub-
duction and an enrichment process of the mantle ma-
terial. The degree of contamination of the mantle with
Cadomian crust can only be speculated on, but some
contamination is indicated by the Nd—Sr—Pb isotope
pattern and the 2°"Pb/?°4Pb vs 2°°Pb/2°4Pb diagram.
The magmatic ages determined for the meta-gabbros
from the KTB introduce an additional puzzle in under-
standing the pre-Variscan evolution of the BM. The
existence of a pre-Variscan basement in the BM was
detected by zircon U-PDb analyses. The oldest compon-
ent is found in zircons from paragneisses of the Regens-
burger Wald. Gebauer et al. (1989) used the SHRIMP
to detect a 3.8 Ga old zircon component. Further ages
at 2.4-2.6 and 1.9-2.2 Ga point to geological events
which probably belong to the evolution of the Gond-
wana continent as those data are unknown from the
northern continent Laurentia.

With the breakup of the Gondwana supercontinent
at the end of the Proterozoic a long period of volcanism
started and erosion products of the uplifted Cadomian
basement filled sedimentary basins. The timing of this
magmatic event within the BM was established by
Gebauver and Griinenfelder (1979) at 525 +40/

—31 Ma (Miinchberg gneiss complex), at 525 + 11 Ma

(ZEV; Teufel 1988), at 511 +3 Ma (Hohe Bogen;
Gebauer 1993) and at 494 +1 Ma (Marianske Lasne;
Bowes and Aftialon 1991). The latter age is supported
by the ages of the KTB bore hole profile (Figs. 5-13).
The very scarce outcrops of mafic rocks within the BM
are composed of meta-gabbros, amphibolites, serpen-
tinites and pyroxenites. The felsic magmatism that also
belongs to the rifting event is possibly documented by
orthogneisses; Teufel (1988) dated an amphibolitic or-
thogneiss of the ZEV at 530 Ma and a granitic orthog-
neiss from Bohmisch Bruck shows similar intrusion
ages (D. Gebauer, pers. commun.).

Several granitoid rocks from other tectonic units
yielded intrusion ages which fit within the time of
breakup of Gondwana. The granitoids from the Erzge-
birge intruded between 550 and 555 Ma (Kroner et al.
1994) and the Lusatian granitoids show a range of
zircon Pb—Pb ages between 542 and 587 Ma (Kroner
et al. 1994). In the region of SW Poland the granitoids
are younger and were dated at 482-487 Ma (Kroner
et al. 1994) and at 488-504 Ma (Oliver et al. 1993).
Most of these granitoid rocks are older than the mafic
magmatism in Cambro-Ordovician time and therefore
represent one possible member (¢-Ndrsso: —3.7 to

—7.7) for contamination of the mafic source with
a continental crustal source.

Constraints on source rocks — mantle-crust mixing

Only few geochemical/isotope-geochemical data of ma-
fic rocks of the BM are available. The ¢-Ndr.s00 values
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of the meta-gabbros of the KTB (Table 4), of eclogites
from Winklarn (von Quadt and Gebauer 1993), of
eclogites from Miinchberger gneiss massif (Stosch and
Lugmair 1990), of mafic rocks from Neukirchen
(Miethig 1995) and mafic rocks from the Saxonian
granulite massif (von Quadt 1993) show a wide range
from +8.5to +1.2. This observation is not surprising
in young and multiply overprinted and mixed source
material.

The geochemical and isotope-geochemical data of
the mafic rocks point to an enriched source, which is
characterised by high contents of LREE, Pb, Sr, K, U,
Th, Ba and Rb. Based on the pattern of enrichment
(Fig. 2; Table 3) one possible cause is contamination of
the mantle by subducted sediments or by assimilation
of Cadomian crust. However, the Th/U ratios (Table 3)
exclude a possible component from the lower continen-
tal crust. Only a few mafic rocks reflect the existence of
a depleted mantle component. Based on their charac-
teristic Sr—Nd—Pb isotope patterns, Uyeda (1982) fa-
voured a tectonic regime above subduction zones
which leads to a tensional stress across the arc-trench
gap. This causes subsidence of the trench so that the
sediments are efficiently subducted. Probably only
a few remnants of this mafic crust are tectonically
emplaced into the continental crust and intercalated
with continental crust. The fact that only very few relics
of the mafic crust of the pre-Variscan evolution have
been discovered leads to one speculation that most of
these were subducted.

The denudation of such mafic relics is related in
variable degree of erosion and/or tectonic processes.
Determining the time when the Cambro-Ordovician
sedimentary troughs were closed is difficult. Minimum
ages are indicated by ages of metamorphism and these
are up to Silurian (423 Ma; von Quadt and Gebauer
1993; Gebauer 1991), Devonian (380—-395 Ma; Stosch
and Lugmair 1991; Gebauer and Griinenfelder 1979;
von Quadt 1994) and Carboniferous metamorphic
ages. On the basis of data, it is difficult to establish if
there are several subcycles of metamorphism which
could reflect a gradual closing of the sedimentary basin.
In contrast to other parts of the European Variscides,
no Ordovician high-pressure metamorphism has been
detectable. If the interpretation of P. O’Brien (pers.
commun.) is correct, a first hint of an Ordovician high-
pressure event combined with a subduction process
was detected. The observation that Cambro-Or-
dovician metamorphic ages exist within the same rock
formation suggests the existence of Cambro-Ordo-
vician subduction. If subduction and uplift rates of

> 10 km/Ma (10 mm/year) are assumed (Baldwin et al.

1990), the complete orogenic cycle could have taken
place within a time span of 10 Ma. The zircon U-Pb
results do not contradict such a process. Together with
the Cambro-Ordovician protolith ages the geochro-
nological investigation of paragneisses of the BM point
to an Ordovician metamorphic event.



5270

A simple two-step mixing model calculation between
a depleted mantle member (¢-Ndrsoo = 8.5, Nd =
9.2 ppm, 2°"Pb/?%4Pb = 15.4, Pb = 0.5 ppm) and con-
tinental crust (e-Ndrsoo = — 10, Nd = 20 ppm, 2°’Pb/
204pb = 15.70, Pb = 12 ppm), as determined for the
Lusatian block (Kroner et al. 1994) show for the Nd
isotopes as well as for the Pb isotopes that an admix-
ture of 5-10% continental crust is required to reduce
the e-Nd value from +8.5to + 5 and an increase in the
207Pb/294Pb ratio from 15.4 to 15.56.

Comparison of U-Pb zircon data of the variegated group
and basic group

The magmatic intrusion ages of mafic rocks from differ-
ent b-units (Hirschmann et al. 1994) within the KTB
profile do not pertain to the magmatic evolution of the
gneiss units (g unit) and variegated units (v unit). Fur-
ther information for the g units are given by Grauert
et al. (1994) and Sollner et al. (1994 and this volume).
The v unit of the KTB profile consists of amphibolites,
gneisses, calcsilicate gneisses and biotite gneisses (Hir-
schmann et al. 1992). Two chlorite gneisses extremely
enriched in Nb and Zr (Table 2) were selected for U—
Pb zircon analyses. Based on morphology and cathod-
oluminescence studies these zircons seem to represent
a magmatic type. The calculated U-Pb ages of 494 and
497 Ma (Fig. 13; Table 5) are comparable with those
from Sollner et al. (1994 and this volume) and are
interpreted, in contrast to Sollner et al. (1994), to reflect
the time of a felsic magmatism within the v units. Based
on investigations by P. O’Brien (pers. commun.) the
Cambro-Ordovician event comprises a magmatic and
a metamorphic event related to a subduction scenario.
The existence of mafic and felsic magmatism does not
argue against a subduction scenario. If the magmatism
of the b and v units took place at different localities, the
tectonic intercalation for the observed profile of the
KTB was probably the result of the Devonian compres-
sion event. There are no indications for such processes
in post-Devonian time.

Conclusion

Nd-Pb isotope composition of the meta-gabbros
clearly demonstrates that the assumption of a uniform
source region is unrealistic. Instead, the ¢-Ndr values
were acquired by interaction of mantle and crustal
components. The Nd—Pb studies allow distinguishing
of (a) a mantle end member and (b) continental Cadom-
ian crust, as the other end member. No Archean crustal
material is detectable.

U-Pb zircon investigation of meta-gabbros from
different levels of the KTB profile are best interpreted
by a magmatic event in Cambro-Ordovician time.
U—Pb zircon analyses of two chlorite gneisses from the

v unit suggests the existence of a simultaneous felsic
magmatism in Cambro-Ordovician time.

The existence of a magmatic event within the b and
v unit leads to an interpretation that both events took
place within the same tectonic setting; the tectonic
stacking of the two units occurred in Devonian time
during the subduction process.
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