
Introduction

Homocysteine refers to a defined chemical compound: it
is a sulfur amino acid with a free thiol (sulfhydryl) group.
In this article, the abbreviation Hcy refers to both homo-
cysteine itself (reduced Hcy) and its oxidized products.
Plasma total homocysteine (tHcy) denotes the sum of all
free and protein-bound Hcy species in plasma determined
after quantitative reduction [36]. Elevated tHcy, termed

“hyperhomocysteinemia”, has been established as an in-
dependent risk factor for cardiovascular disease [7] and is
caused by both genetic and acquired factors. Severe de-
fects of the Hcy metabolising enzyme cystathionine β-
synthase or methylenetetrahydrofolate reductase produce
the rare inborn errors termed homocystinuria and are
characterized by markedly elevated tHcy, i.e., severe hy-
perhomocysteinemia [27, 39]. Folate or cobalamin defi-
ciency [1] and renal failure [5] are common causes of
moderate to intermediate hyperhomocysteinemia.

Hyperhomocysteinemia is a steady-state condition
characterized by enhanced Hcy flux into the plasma com-
partment or/and impaired elimination of plasma Hcy. En-
hanced Hcy delivery into plasma is related to increased
Hcy export from tissues owing to imbalance between in-
tracellular Hcy formation and metabolism [37]. The alter-
native explanation is impaired elimination, but only
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in response to extracellular methionine, probably due to its capacity to form adenosylme-
thionine. Some but not all cell types have an ability to use extracellular Hcy as a methion-
ine source. Clearance studies in healthy subjects indicate that about 1.2 mmol Hcy is sup-
plied from the cells to plasma per 24 h, which is only about 5–10% of total Hcy formed.
Comparison of area under the curves after administration of Hcy and methionine shows that
about 10% of the methionine administered is released to plasma as Hcy. Notably, only a few
percent of Hcy from plasma is excreted unchanged in the urine, and this shows that most
tHcy in plasma is metabolized. Folate or cobalamin deficient patients have normal plasma
tHcy clearance, which suggests that their elevated tHcy level is due to increased Hcy export
from tissues into the plasma compartment. In contrast, the hyperhomocysteinemia in renal
failure is accounted for by a marked reduction in tHcy clearance, suggesting an important
role of kidney in elimination of Hcy from plasma.
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sparse data exist on the site of plasma Hcy clearance and
the possibility of re-uptake of plasma Hcy by tissues.

The present work describes the theories of the flux of
Hcy through the plasma compartment and reviews the ex-
perimental and clinical data on site of formation and elim-
ination of plasma Hcy.

Sites of plasma Hcy formation

The data on the source of Hcy in plasma are sparse and al-
most solely based on in vitro studies on blood cells [2, 9,
25] and cells in culture [9–11, 15, 30].

Blood cells

When whole blood is left at room temperature, there is a
time-dependent release of Hcy from blood cells [40]. No-
tably, the cellular Hcy is low, suggesting ongoing Hcy
production [25]. The process is temperature-dependent,
and plasma tHcy usually increases about 5–15%/h at
room temperature [40]. Based on studies on Hcy export
from blood cells in vitro, it has been suggested that blood
cells may be an important source of Hcy in plasma in vivo
[2, 25].

We observed that the Hcy increase in the plasma frac-
tion of whole blood is independent of plasma tHcy level
[14]. Four hours after collection of blood, tHcy had in-
creased about 2 µM in plasma samples with tHcy level
varying from < 5 µM to > 30 µM. These data do not sup-
port the statement that the plasma tHcy level in vivo is de-
termined by Hcy export from the blood cells. Moreover,
there is no increased Hcy export from blood cells incubated
with supraphysiological methionine concentrations [2, 25],
probably due to the low Km methionine adenosyltransferase
in these cells [23]. This lack of methionine response con-
trasts with the marked elevation of plasma tHcy observed
in subjects receiving peroral methionine load [39].

Cell culture experiments

Cell lines in culture export Hcy [9, 15, 30, 38] and the ex-
port rate is substantially higher in proliferating than in
stationary cells [9]. Moreover, high levels of medium me-
thionine [9], low levels of folates [10], nitrous oxide (in-
activating methionine synthase) [8, 10, 11, 15] or antifo-
late methotrexate [30, 38] increases the Hcy export rate
two- to three-fold. The maximal Hcy export usually does
not exceed 1–2 nmol/106 cells/h.

In freshly isolated human lymphocytes, the export rate
is 20–30 pmol/106 cells/h [9]. This is about 100 times higher
than the export rate from (red) blood cells (0.3 pmol/106

cells/h at 37°C) [25]. In PHA-stimulated (proliferating)
lymphocytes, the export rate approaches that observed in
the transformed and malignant cell lines [9]. In compari-
son, freshly isolated hepatocytes export 1–2 nmol/106

cells/h. Moreover, the Hcy export rate increases almost

15-fold when the methionine concentration in the medium
is increased from 15 to 1000 µM [9]. Thus, both in low
and high methionine medium, the non-proliferating hepa-
tocytes export 5–25 times more than proliferating cells.
Compared to stationary lymphocytes [9] and red cells
[25], the export rate from the liver cells is 3 to 4 orders of
magnitude higher.

Liver

The massive Hcy export from hepatocytes in vitro [9] and
the metabolic apparatus of the liver suggest a major role
of this organ in the overall Hcy homeostasis and Hcy pro-
duction. In addition to high levels of the ubiquitous en-
zymes methionine synthase and cystathionine β-synthase,
liver contains the enzyme catalyzing the alternate path-
way for Hcy remethylation, betaine-Hcy methyltrans-
ferase [12]. Most enzymes involved in Hcy metabolism
show a particularly high activity in the liver, which seems
to possess about 75% of total body capacity for trans-
methylation [41]. Liver contains a high level of guanido-
acetate methyltransferase involved in the biosynthesis of
creatine, which accounts for ~ 90% of the net flow of me-
thionine to homocysteine [22, 26]. Liver has an efficient
mechanism to handle excess methionine through a se-
quence of reaction, the first step of which is catalyzed by
the high Km methionine adenosyltransferase. This enzyme
directs methionine via S-adenosylmethionine to the trans-
methylation-transsulfuration pathway [13]. Such a cata-
bolic sequence requires the consumption of a non-essen-
tial methyl acceptor, forming an inert product. The con-
version of glycine to sarcosine catalyzed by the enzyme
glycine methyltransferase may serve this function [12].
Notably, this multifunctional enzyme is extremely abun-
dant in liver [42].

Hyperproliferative disorders

In children with acute lymphoblastic leukemia, plasma
tHcy is related to the number of white blood cells (mostly
leukemic cells), and treatment with cytotoxic drugs leads
to a simultaneous decline in plasma tHcy and the white
cells [24, 31]. Moreover, patients with psoriasis, a hyper-
proliferative disorder, also have higher plasma tHcy than
healthy subjects and other dermatological patients [29].
These data support the premise that a high burden of
rapidly proliferating cells may lead to elevated plasma
tHcy. Whether this is related to massive Hcy export from
such cells or metabolic effects including redistribution of
the folate pool is uncertain.

Elimination of plasma Hcy

The elimination of a compound from plasma is usually by
metabolism or urinary excretion. For plasma tHcy, urinary
excretion is related to the plasma tHcy level, but probably
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represents a minor elimination pathway; only 6 µmol/day
[28] or less than 0.05% of total cellular Hcy production
[26, 35] is excreted unchanged in the urine. The evidence
that Hcy can be taken up and metabolized by cells is not
new. Nearly 50 years ago, it was demonstrated in labora-
tory animals that Hcy can function as the sole source of
sulfur amino acids as long as vitamin and cofactor supply
is adequate [4], and later cell-culture studies have shown
that most benign and some transformed cell lines can uti-
lize Hcy for growth [21].

The homocysteine loading test

We have studied the kinetics of plasma tHcy by adminis-
tering Hcy (65 µmol/kg) both to healthy subjects [16] and
patients with hyperhomocysteinemia due to folate or
cobalamin deficiency [19] or chronic renal failure [18,
20]. In contrast to the methionine loading test [33], which
mainly reflects Hcy formation and release from cells
(probably the liver), the Hcy loading test yields informa-
tion about the elimination of Hcy from plasma.

In healthy volunteers receiving peroral Hcy loading
[16], tHcy in plasma declines at a rate of k = 0.2/h (T1/2 =
3.7 h). In two healthy subject receiving both a peroral and
an intravenous administration, we found a bioavailability
(AUCpo/AUCiv) of 50–65% [16, 20], and clearance was
about 0.1 l/min. With Hcy doses varying four-fold, the
elimination kinetics were constant and AUC showed a lin-
ear increase, suggesting first-order kinetics independent
of the Hcy dose [16].

We have also investigated the elimination of tHcy from
plasma after a peroral Hcy load in subjects with folate and
vitamin B12 deficiency before and after therapy with vita-
mins [19], in subjects with renal failure [20], and in het-
erozygous and homozygous homocystinurics (A. B. Gut-
tormsen et al., unpublished results).

In subjects with hyperhomocysteinemia due to cobal-
amin or folate deficiency, the mean plasma Hcy clearance
was not significantly different from that in healthy sub-
jects. Furthermore, vitamin therapy, which normalized the
plasma tHcy level, only marginal influenced the elimina-
tion half-life. In fact, several subjects with marked hyper-
homocysteinemia (> 50 µM) had T1/2 for tHcy, which was
shorter than observed in healthy subjects [19]. Thus, our
data suggest that the high plasma tHcy in cobalamin and
folate deficiency is not due to delayed elimination, but is
probably related to increased export of Hcy from tissues
into the plasma compartment (see below).

Preliminary data from homozygous and heterozygous
homocystinuria subjects (n = 17) indicate that they usu-
ally have normal T1/2 and thereby Hcy clearance. How-
ever, most of these subjects had relatively normal plasma
tHcy (≤ 15 µM). In one homozygote with elevated tHcy
level (33 µM), the decline in plasma tHcy initially seemed
normal, corresponding to an elimination half-life of less
than 3 h, but 4–6 h after the Hcy administration, there was
a rebound increase in plasma tHcy possibly due to food
intake (A. B. Guttormsen et al., unpublished).

In patients with chronic renal failure and fasting hyper-
homocysteinemia, we found a markedly prolonged T1/2
(about 13 h) due to a marked reduction in tHcy clearance
to about 0.03 l/min [20]. Notably, high-dose folic acid re-
duces fasting tHcy in renal patients even in the absence of
overt folate deficiency [5], but it did not affect tHcy clear-
ance in our patients [20]. This observation is in accor-
dance with normal tHcy clearance in folate and cobal-
amin-deficient patients before and after vitamin supple-
mentation [19].

Evidence that the kidney is an important metabolic site
for removal of plasma Hcy has recently been presented by
Bostom et al. [6]. They showed that in rats, there is a sub-
stantial renal arteriovenous difference in the plasma tHcy
level, which would correspond to a metabolism of about 1
mmol/day in the human kidney [6].

Single dose and steady-state kinetics

Equations and models

The plasma tHcy level is relatively stable over a 24-h pe-
riod, and in healthy young subjects, the fluctuation corre-
sponds to mean tHcy ±10% [17]. This indicates that the
supply of Hcy to and its elimination from plasma are rel-
atively constant. The level of plasma tHcy can therefore
be expressed as a steady-state concentration, Css:

Css = R0/Cl (1)

where R0 denotes the delivery of Hcy to plasma per unit
time and Cl refers to total plasma clearance.

The clearance can be obtained by following the plasma
concentration after giving a single dose (D) with a
bioavailability F, using the equations [32]:

Cl = F · D/AUC (2)

Cl = k · Vd = ln2 · Vd/T1/2 (3)

By combining Eqs. 1 and 3, we get:

Css = R0/k · Vd (4)

AUC, or area under the plasma concentration curve, is a
measure of the systemic exposure [32]. The rate constant
for elimination, k, denotes the fractional reduction in con-
centration per unit time, and Vd is the distribution volume.

From the equations above follow that the basal plasma
tHcy (i.e., Css) depends on the amount of Hcy released
from the tissues into plasma, the volume in which tHcy is
distributed (Vd) and the ability of the system to remove
Hcy (Cl).

Notably, the clearance of a compound can take place in
different organs, and this is expressed as:

Cltotal = Clhepatic + Clrenal + Clother (5)

Since our experiments with increasing Hcy doses suggest
that tHcy clearance is independent of plasma concentra-
tion [16], we assume that the clearance is the same both
during fasting and after a peroral Hcy load. Studies with

S47



subjects receiving a radioactive trace of Hcy that does not
influence plasma tHcy level support this assumption (A. B.
Guttormsen et al., unpublished). We can then use Eqs. 1–5
to present some tentative kinetic aspects of plasma tHcy.

Hcy released to plasma

In a healthy subject with a fasting tHcy level of 10.8 µM,
a total clearance of 80 ml/min was found after administra-
tion of an intravenous dose of Hcy [16]. The estimated de-
livery rate of Hcy to plasma in this subject according to
Eq. 1 is 1.2 mmol/24 h, or about 5–10% of total cellular
Hcy production [26, 35].

In methionine loading, the sulfur amino acid dose ad-
ministered is ten-fold higher than in Hcy loading. Still, the
AUC for plasma tHcy after methionine loading is lower
than after an intravenous Hcy loading [16, 29]. These data
may suggest that less than 10% of the administered me-
thionine is released to plasma as Hcy.

In a cobalamin-deficient subject who had a plasma
tHcy level of 140 µM, we found normal elimination half-
life, suggesting that his high level is due to increased rate
of Hcy influx into plasma. Using a clearance of 0.1 l/min
[16, 20] and Eq. 1, the cellular release of Hcy was esti-
mated to be about 20 mmol/24 h, or a major portion of
cellular Hcy production [26].

Hcy eliminated from plasma

Our data point to the kidney as an important organ in
plasma tHcy homeostasis. In renal failure, the tHcy clear-
ance is 0.03 l/min as compared to 0.1 l/min in healthy sub-
jects [20], i.e., a reduction by 70%. If the reduction in the
elimination is due to impaired renal metabolism, this sug-
gests that the normal kidney metabolizes about 70% of
tHcy in plasma (Eq. 5). This is in the same range esti-
mated by Bostom et al. studying arteriovenous extraction
in rats [6]. Notably, based on the concentration of non-
protein-bound Hcy in plasma [28] and a glomerular filtra-
tion rate of 125 ml/min [3], the amount of Hcy subjected
to glomerular filtration is only about 0.5 mmol/day in
healthy subjects. Since the amount of Hcy released to
plasma is estimated to be 1.2 mmol/day, this would imply
that both reabsorption from the tubular lumen and uptake
of Hcy from plasma takes place as described for the sulfur
amino acids cysteine and glutathione [34]. Conclusions
on the fate of plasma Hcy require additional studies on re-
nal and extrarenal handling of Hcy in healthy subjects and
in patients with renal failure.

Conclusion

Based on the available experimental and kinetic data, we
propose that the major fraction of Hcy in plasma derives
from the liver and is eliminated in the kidneys. Further
studies are required to substantiate this hypothesis.
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