
Introduction

Neurological complications in patients suffering from ho-
mocystinuria due to cystathionine-β-synthase deficiency
include mental retardation, epileptic seizures, dystonia
and other pyramidal signs. These symptoms are generally
considered to be the consequence of vascular lesions [30].
However several clinical observations argue against this
theory, at least in some of these patients: (1) most patients
with mental retardation exhibit no focal neurological
symptoms; (2) MRI of the brain has revealed no alter-
ations in patients with severe mental retardation and dys-
tonia; (3) neuropathological studies showed no brain in-
farction in patients with dystonia; and (4) diet may im-
prove the mental status of patients [24].

Homocysteine (HCys) and related metabolites are
thought to be excitotoxic. The concept of excitotoxicity 

describes the potential neuronal damage due to excessive
activation of glutamate receptors [3, 20, 26, 27, 33, 37].

Seizures induced by intraperitoneal application of
HCys in mice and rats can be inhibited by non-(NMDA)
N-methyl-D-aspartate glutamate receptor antagonists [1,
7, 8, 13, 18]. Wuerthele et al. [47] described a similar acti-
vation of central neurons by HCys and glutamate. L-HCys
has been shown to inhibit glutamate decarboxylase with an
in vitro Ki of ~ 1 mM [40]. In addition homocysteic acid 
(L-HCA) and homocysteine sulphinic acid (L-HCSA) may
be candidate neurotoxins as they have been identified as
potent glutamate analogues and neurotransmitters acting
on NMDA and non-NMDA receptors [5, 6, 11, 19, 22, 33,
35, 38, 42, 44, 45]. L-HCA and L-HCSA are elevated in
the urine of patients with homocystinuria [2, 32]; however
the concentration of these substances in the CSF as well
as brain tissue of patients is unknown.
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Abstract The excitotoxic action of homocysteine and related sulphur-containing metabo-
lites was investigated in organotpyic cultures derived from rat brain cortex and hippocam-
pus by inhibition experiments using antagonists selective for different glutamate receptor
subtypes. In addition the direct interaction of these metabolites with glutamate receptors ex-
pressed in frog oocytes was tested by conventional two electrode voltage clamp techniques.

Key words Homocystinuria · Excitotoxicity · Organotypic cultures · Xenopus oocytes

Abbreviations APV amino-5-phosphonovaleric acid · CNQX 6-cyano-7-nitroquinoxaline-
2,3-dione · HCys homocysteine · HCA homocysteic acid · HCSA homocysteine sulphinic
acid · MK801 dibenzo-cyclo-heptenimine · NMDA N-methyl-D-aspartate

Conclusion Neurodegeneration and epilepsy observed in homocystinuria may be medi-
ated by L-homocysteic and L-homocysteine sulphinic acid. Both metabolites exhibit exci-
totoxic potency by interaction with different glutamate receptor subtypes.



Besides direct activation of excitatory amino acid re-
ceptors an increase in excitation may be mediated by re-
duction of inhibitory input and/or inhibition of transmitter
inactivation (e.g. glutamate reuptake). Following HCys
administration reduced cortical γ-aminobutyric acid con-
centrations were found in the rat and L-HCA and L-HCSA
are potent agonists of the glutamate uptake system [1, 4, 16].

Thus several data indicate that the neurological symp-
toms in homocystinuria might be a consequence of exci-
totoxic mechanisms.

Organotypic brain tissue cultures are a suitable model
to assess candidate neurotoxins [25, 43]. Using this ap-
proach, Vornov et al. [43] described typical lesion patterns
for different glutamate receptor agonists in hippocampal
slice cultures. In cosntrast to dissociated cell cultures,
organotypic cultures provide a more physiological sys-
tem, as e.g. different nerve cells with physiological cell
contacts and transmitter inactivation are present. To eluci-
date the excitotoxic potential of metabolites which may
accumulate in the CNS in homocystinuria we tested the
neurotoxic effects of L-HCys, L-methionine and related
metabolites (L-homocystine, S-adenosyl-L-homocysteine,
L-HCA, L-HCSA) in hippocampal and cortical organ-
otypic cultures from rat brain. In addition the effects of
these substances on glutamate receptor-mediated mem-
brane currents were investigated in frog oocytes express-
ing different glutamate receptor subtypes.

Methods

Organotypic cultures

Hippocampal and cortical slices were prepared from rat brain (6
days postnatal) [15]. The tissue was cut into 350 µm thick slices
with a McIlwain tissue chopper and incubated in Minimum Essen-
tial Medium (MEM) for 30 min at 4°C. The slices were cultivated
on membranes [39] (Nunc, 0.02 µm) which were inserted into 6-
well culture dishes. The culture medium consisted of 50% MEM,
25% Hanks balanced salt solution and 25% horse serum including
2 mM glutamine and 0.044% NaHCO3, pH 7.3 (38°C, 5% CO2)
[14].

Short-term incubation experiments with glutamate receptor 
agonists were performed in Hepes buffered salt solution (NaCl
143.4 mM, Hepes 5 mM, KCl 5.4 mM, MgSO4 1.2 mM, NaH2PO4
1.2 mM, CaCl2 2 mM, D-Glucose 10 mM) [43] containing either
glutamate, kainate (100 µM), or NMDA plus glycine (100 µM +
10 µM). After 30 min incubation with agonists, cells were trans-
ferred to serum-free medium (75% MEM, 25% BME, and 2 mM
glutamine) for a 24-h recovery period. Short-term incubation with
L-HCA, L-HCSA, DL-HCys (prepared by basic hydrolysis of its
thiolactone), L-homocystine, L-Met and S-adenosyl-L-HCys (10
µM–5 mM) was performed in the same way.

For long-term incubation over 7 days, DL-HCys, L-HCys, L-ho-
mocystine, L-Met and S-adenosyl-L-HCys (1–5 mM) were applied
within the culture medium on the 1st day of cultivation. The me-
dium was changed every day.

Application of antagonists

For protection experiments during short-term incubation, cultures
were pretrated with the non-competitive NMDA-receptor antago-
nist MK801 (dibenzo-cycloheptenimine) (20 µM, RBI) and the
non-NMDA-receptor and glycine site antagonist 6-cyano-7-nitro-
quinoxaline-2,3-dione (CNQX) (10 µm, RBI) for 20 min prior to

co-incubation with the respective agonists/metabolites. In long-
term experiments antagonists were added to the metabolite-con-
taining culture medium.

Examination of cell damage

Nuclei of degenerating cells were visualized by propidium iodide
(Sigma) staining [43]. Cell cultures were incubated at room tem-
perature for 3 min in serum-free medium containing propidium io-
dide (6.5 µm). The staining solution was then replaced by dye-free
medium and the cultures observed using a fluorescence micro-
scope (Axioscope, ZEISS).

Enzyme activities of methionine metabolism 
in cultures and tissue

Enzyme activities of cystathionine β-synthase [9], methylenete-
trahydrofolate reductase [10], and methionine synthase [10] were
examined in organotypic hippocampal cultures as well as in uncul-
tured brain tissue. For enzyme analysis the cultures were scraped
off the membranes. Cystathionine β-synthase (CBS) activities
(nmol/h/mg protein, presence of 1 mmol pyridoxal phosphate)
were as follows: (1) cultured brain tissue 43.4, n = 1; (2) uncul-
tured brain tissue 28.5, n = 1; (3) fibroblasts 15.2, n = 20.

Methylenetetrahydrofolate reductase activities (nmol/h/mg
protein, FAD present) were: (1) cultured brain tissue 9.2, n = 1; (2)
uncultured brain tissue 11.3, n = 1; (3) fibroblasts 8.5, n = 32. Me-
thionine synthase activities (nmol/h/mg protein, methylcobalamin
present) were as follows; (1) cultured brain tissue 1.9, n = 1; (2)
uncultured brain tissue 3.9, n = 1; (3) fibroblasts 9.1, n = 14. Cys-
tathione-β-synthase activity in organotypic cultures was relatively
high compared with uncultured brain tissue, whereas the activity
of methionine synthase is relatively low in cultured brain tissue as
compared to fibroblasts.

Electrophysiological investigations

To investigate if L-HCA, L-HCSA, DL-HCys, L-HCys, L-Met and
S-adenosyl-L-HCys exhibit any influence on glutamate receptors,
oocytes of Xenopus laevis were injected with mRNA isolated from
neocortical tissue of rat brain [31]. Expression of glutamate recep-
tors was ensured by electrophysiological measurements in buffer
supplemented with either NMDA plus glycine (100 µM + 10 µM)
or AMPA (100 µM) or kainate (100 µM). The effects of L-HCA,
L-HCSA, DL-HCys, L-HCys, L-Met and S-adenosyl-L-HCys were
tested by adding these substances (50 µM–1 mM in the presence of
10 µM glycine) to the medium in the absence or presence of the re-
spective glutamate receptor agonists. L-HCys was not tested as it
was insoluble in the oocyte buffer. Membrane currents were mea-
sured using the conventional two electrode voltage clamp tech-
nique. The holding potential was –70 mV.

Results

Short-term incubation (30 min) of hippocampal slice cul-
tures with glutamate receptor agonists (glutamate, kainate,
NMDA) induced similar lesion patterns to those described
for hippocampal roller cultures [42] (Fig. 1). Cell damage
was visualized by propidium iodide staining which labels
the nuclei of degenerating cells. Cortical cultures also ex-
hibited massive cell death after treatment with the same
agonists (Fig. 1). These effects were prevented by incuba-
tion with the respective receptor antagonists (MK801, 
20 µM; CNQX, 10 µM) indicating that glutamate sensi-
tive neurons were present in the culture. Short-term incu-
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bation (30 min) of hippocampal and cortical slices with L-
Met, S-adenosyl-L-HCys, DL-HCys, L-HCys, and L-homo-
cystine (10 µM–5 mM) did not lead to significant cell
death.

In contrast short-term incubation with L-HCA induced
massive neuronal death in both culture types. In hippo-
campal cultures cell death was restricted to the CA1 re-
gion when L-HCA was applied at a concentration of 100
µM (Fig.2a) spreading over all CA regions including the
dentate gyrus with increasing concentrations. Toxicity in
cortical cultures (Fig. 2b) appeared with 50 µM L-HCA.
Cell death in both cultures was almost completely pre-
vented by the NMDA receptor antagonist MK801, indi-
cating that L-HCA was acting predominantly on NMDA
receptors. Similar effects could be observed with cys-
teine-S-sulphate being less effective as L-HCA (neurotox-
icity: 1 mM for hippocampal and 100 µM for cortical cul-
tures (Fig. 2c, d). L-HCSA was toxic at a concentration of
1 mM to both hippocampal and cortical cultures (Fig. 2e, f).
Neurotoxicity was clearly attenuated but not completely

prevented by CNQX. Simultaneous application of MK801
further reduced the toxic effect.

In contrast to short-term experiments, long-term incu-
bation (7 days) of hippocampal and cortical cultures with
L-homocystine, L-HCys, DL-HCys and S-adenosyl-L-HCys
(5 mM respectively) resulted in cell death starting after 48
h. Cell death was not restricted to separated areas of the
cultures and could not be attenuated by application of glu-
tamate receptor antagonists. L-Met was not toxic even at
the highest concentration (5 mM).

Electrophysiological data of frog oocytes expressing
glutamate receptors showed that incubation with L-HCA
induced membrane currents comparable to those elicited
by NMDA (Fig.3). These membrane currents could be
completely blocked by application of the compatible
NMDA-receptor antagonist amino-5-phosphonovaleric acid
(APV) or by addition of Mg2+ which blocks the NMDA
receptor channel [28]. Membrane currents induced by L-
HCSA were different and characterized by large oscilla-
tions (Fig. 3). These membrane currents were attenuated
by CNQX but neither by APV nor by addition of Mg2+ in-
dicating that non-NMDA receptors had been activated.
The results correspond to those found for organotypic cul-
tures. The residual oscillations found in the presence of L-
HCSA and CNQX indicates that other glutamate (G-pro-
tein coupled) receptors had been additionally activated. L-
Met, S-adenosyl-L-HCys, DL-HCys and L-HCys did not
cause changes in oocyte membrane current. Activation of
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Fig.1 Cell death visualized by propidium iodide fluorescence in
organotypic slice cultures after incubation with glutamate receptor
agonists. a Hippocampus (NMDA, 100 µM), phase contrast. b
Same as in a, fluorescence. c Cortex (NMDA, 100 µM), phase
contrast. d Same as in c, fluorescence. (CA1 region CA1 of the
pyramidal cell layer, CA3 region CA3 of the pyramidal cell layer,
gyr gyrus dentatus, ou outer border of the cortical culture). Bar in
A: 200 µM for a–d



glutamate receptors by cysteine-S-sulphate could com-
pletely be inhibited by APV whereas the non-NMDA re-
ceptor antagonist MK801 prevented cell death in culture
experiments by only ~ 80%.

Discussion

Our findings from cell culture and oocytes experiments
indicate that excitotoxic mechanisms could play a role in
the development of neurological signs in patients with ho-
mocystinuria. L-HCA and L-HCSA were potent agonists
of glutamate receptors interacting with different gluta-
mate receptor subtypes. Our results in organotypic cell
cultures principally confirm earlier findings which showed
that L-HCA interacts with NMDA receptors and L-HCSA
with non-NMDA receptors [12, 21, 34, 26]. In contrast,
Lee et al. [23], and Pullan et al. [26] reported on interac-
tion of both L-HCA and L-HCSA with non-NMDA and
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Fig. 2 Cell death visualized by propidium iodide fluorescence in
organotypic slice cultures after incubation with metabolites. a Hip-
pocampus (L-HCA, 100 µM). b Cortex (L-HCA, 500 µM). c Hip-
pocampus (1 mM L-cysteine-S-sulphate). d Cortex (1 mM L-cys-
teine-S-sulphate). e Hippocampus (1 mM L-HCSA). f Cortex (1
mM L-HCSA). (CA1 region CA1 of the pyramidal cell layer, CA3
region CA3 of the pyramidal cell layer, gyr gyrus dentatus, ou
outer border of the cortical culture). Bar in A: 200 µm for a–f



NMDA receptors. The oscillation phenomena in oocyte
experiments suggest the L-HCSA in addition may act on
G-protein coupled receptors (e.g. metabotropic glutamate
receptors). It could be speculated that in vivo concentra-
tions of L-HCA and L-HCSA leading to neuronal damage
may be lower since diffusion problems inherent to the cell
culture model do not exist in vivo. L-HCA and L-HCSA
have been proposed as neurotransmitters of the rat and hu-
man brain. However the exact physiological function re-
mains unclear as most recently, cortical and cerebellar glia
cells were described to store the substances [5, 9, 17, 41].

Very high concentrations (5 mM) of L-HCys resulted in
neuronal death which could not be prevented by adminis-
tration of glutamate receptor antagonists. Thus other non-
glutamate receptor mediated mechanisms may lead to
neuronal damage in homocystinuria. As HCys-induced
seizures in neonatal rats could be prevented by glutamate
receptor antagonists we speculate that these seizures are
consequent to oxidation of HCys to L-HCA and/or L-
HCSA (see introduction).

In conclusion these results give evidence that excito-
toxic mechanisms may play a role in the development of
neurological signs in homocystinuria. The high vulnera-
bility of hippocampal pyramidal neurons to the metabo-
lites tested is in accordance with morphological findings
in patients described by White et al. [46].

We hope that these preliminary data will initiate the
analysis of relevant metabolites in CSF during follow up
of patients.
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