
Algorithmica (1998) 22: 76–90 Algorithmica
© 1998 Springer-Verlag New York Inc.

Learning Boxes in High Dimension1

A. Beimel2 and E. Kushilevitz3

Abstract. We present exact learning algorithms that learn several classes of (discrete) boxes in{0, . . . ,
` − 1}n. In particular we learn: (1) The class of unions ofO(logn) boxes in time poly(n, log`) (solving an
open problem of [16] and [12]; in [3] this class is shown to be learnable in time poly(n, `)). (2) The class of
unions of disjoint boxes in time poly(n, t, log`), wheret is the number of boxes. (Previously this was known
only in the case where all boxes are disjoint in one of the dimensions; in [3] this class is shown to be learnable
in time poly(n, t, `).) In particular our algorithm learns the class of decision trees overn variables, that take
values in{0, . . . , `−1}, with comparison nodes in time poly(n, t, log`), wheret is the number of leaves (this
was an open problem in [9] which was shown in [4] to be learnable in time poly(n, t, `)). (3) The class of
unions ofO(1)-degenerate boxes (that is, boxes that depend only onO(1) variables) in time poly(n, t, log`)
(generalizing the learnability ofO(1)-DNF and of boxes inO(1) dimensions). The algorithm for this class uses
only equivalence queries and it can also be used to learn the class of unions ofO(1) boxes (from equivalence
queries only).

Key Words. Boxes, Discrete geometric objects, Decision trees, Exact learning, Multiplicity automata,
Hankel matrices.

1. Introduction. The learnability (under various learning models) of geometric con-
cept classes was studied in many papers (e.g., [8], [11], [13], and [5]). Particular attention
was given to the case of discrete domains of points (i.e.,{0, . . . , ` − 1}n) and concept
classes which are defined as unions of boxes in this domain (e.g., [22], [23], [15], [2],
[16], [17], and [24]).

One of the reasons that unions of boxes seem to be interesting concepts is that they
naturally extend DNF formulae (in other words, in the case` = 2 any union oft boxes is
equivalent to a DNF formula witht-terms). That is, a box can be viewed as a conjunction
of nonboolean properties of the form “the attributexi is in the range betweenai and
bi .” Similar to the special case of DNF functions, the learnability of unions of boxes in
time poly(n, t, log`) (wheret is the number of boxes in the union) is an open problem
in all models of learning. Note that to represent such a function2(t · n · log`) bits are
required. Hence efficiency is defined as polynomial int,n, and log̀ . Research on the
problem of learning the class of unions of boxes (again, with similarity to the case of

1 A preliminary version of this paper appeared in the proceedings of the EuroCOLT ’97 conference, published
in volume 1208 of Lecture Notes in Artificial Intelligence, pages 3–15, Springer-Verlag, New York, 1997.
Part of the research by A. Beimel was done while he was a Ph.D. student at the Technion. The research by
E. Kushilevitz was supported by Technion V.P.R. Fund 120-872 and by the Japan Technion Society Research
Fund.
2 DIMACS Center, Rutgers University, P.O. Box 1179, Piscataway, NJ 08855, USA.
beimel@dimacs.rutgers.edu. http://dimacs.rutgers.edu/∼beimel.
3 Department of Computer Science, Technion, Haifa 32000, Israel. eyalk@cs.technion.ac.il.
http://www.cs.technion.ac.il/∼eyalk.

Received January 19, 1997; revised June 4, 1997. Communicated by P. Auer and W. Maass.

Learning Boxes in High Dimension 77

DNF formulae) attempts to learn subclasses of this class. There are two main directions:
(1) Subclasses in which the number of dimensions,n, is limited to O(1). In this case
unions of boxes (and more general geometric concept classes) are known to be learnable
in the PAC model [13] and even in the weaker on-line model [5]. (2) Subclasses in which
the number of boxes in the union is limited toO(1) (but the number of dimensions is
not restricted). Again, this subclass is learnable in the PAC model [21] and in the on-line
model [24].

In this work we generalize some of the state-of-the-art results inexact learningof
DNF formulae [6], [4], hence strengthening several results in direction (2) above. In
particular we show:

1. The class of all unions ofO(logn)boxes can be learned in time poly(n, log`) (solving
an open problem of [16] and [12]; in [3] this class is shown to be learnable in time
poly(n, `)). This generalizes a similar result for the class ofO(logn)-term DNF [7],
[9], [10], [19], [4].

2. The class of all unions of disjoint boxes (and, more generally, unions of boxes in which
each point belongs to at mostO(1) boxes) can be learned in time poly(n, t, log`),
wheret is the number of boxes (in [3] this class is shown to be learnable in time
poly(n, t, `)). This generalizes similar results for learning disjoint DNF and satisfy-
O(1) DNF [6], [4]. (Previously such a result was known only in the case where all
boxes are disjoint in one of the dimensions [11], [14]; in this case in fact equivalence
queries are sufficient.) In particular our algorithm learns the class of decision trees
with comparison nodes in time poly(n, t, log`), wheret is the number of leaves (the
learnability of this class was an open problem in [9]; in [4] it was shown that this
class is learnable in time poly(n, t, `)).

3. The class of all unions ofO(1)-degenerate boxes, that is boxes that depend only on
O(1) variables, can be learned in time poly(n, t, log`), wheret is the number of
boxes. In this case only equivalence queries are used, i.e. we learn this class in the on-
line model [20]. This result generalizes the learnability ofO(1)-DNF and of boxes in
O(1) dimensions. The class ofk-degenerate boxes was previously considered in [17],
[18], and [24]. Our algorithm for this class also learns the class of unions ofO(1)
boxes from equivalence queries only.

The first two results are obtained in two steps: First, in Section 3, we show how to learn
these classes but with complexity which is polynomial in` (and the other parameters of
the problem). This result appears in [3] and is a straightforward generalization of results
in [4]. It is included in this paper for the sake of completeness. Then, in Section 4, we
prove the main result of this paper: we show how to (adaptively) select a “small” subset
of the domain{0,1, . . . , ` − 1} which is sufficient for the learning. Hence, we give a
reduction that convertsany algorithm for learning unions of boxes whose complexity
is polynomial in` to an algorithm with complexity which is polynomial only in log`
(and the other parameters of the problem). Finally, in Section 5 we show how to convert
a simple poly(n, t, `) algorithm that learns unions ofO(1)-degenerate boxes into a
poly(n, t, log`) algorithm. In this case the poly(n, t, `) algorithm that we start with
does not use membership queries. We use a refined conversion which also does not use
memberships queries; hence we get an algorithm with equivalence queries only. This
conversion uses specific properties of the poly(n, t, `) algorithm.

78 A. Beimel and E. Kushilevitz

2. Preliminaries

2.1. The Learning Model. The learning model we use is theexact learningmodel [1]:
Let C be a class of functions and letf ∈ C be atarget function. A learning algorithm
may propose, in each step, a hypothesis functionh by making anequivalence query(EQ)
to an oracle. Ifh is logically equivalent tof , then the answer to the query is YES and
the learning algorithm succeeds and halts. Otherwise, the answer to the EQ is NO and
the algorithm receives acounterexample—an assignmentz such thatf (z) 6= h(z). The
learning algorithm may also query an oracle for the value of the functionf on a particular
assignmentzby making amembership query(MQ) onz. The response to such a query is
the valuef (z). We say that the learning algorithmlearnsa class of functionsC, if for every
function f ∈ C the learning algorithm outputs a hypothesish that is logically equivalent
to f and does so in time polynomial in the “size” of a shortest representation off .

We sometimes restrict the learning algorithm to use EQs only. This is equivalent to
Littlestone’son-linemodel of learning [20].

2.2. Classes of Boxes. In this section we define the classes of boxes that we learn in
this paper. We consider unions ofn-dimensional boxes in [`]n (where [̀] denotes the
set{0,1, . . . , `− 1}). Formally, a box in [̀]n is defined by two corners(a1, . . . ,an) and
(b1, . . . ,bn) (in [`]n) as follows:

Ba1,...,an,b1,...,bn = {(x1, . . . , xn) : ∀i, ai ≤ xi ≤ bi }.

We view such a box as a boolean function that gives 1 for every point in [`]n which is
inside the box and 0 to each point outside the box. More generally, the boolean function
corresponding to theunionof boxesB1, . . . , Bt is defined to be 1 for every point in [`]n

which is inside (at least) one of thet boxes and 0 otherwise.
Denote byBOXt the set of all functions that correspond to unions of (at most)t boxes

and byDISJ-BOXt the set of all functions that correspond to unions of (at most)t disjoint
boxes. Ak-degenerate box is a box that depends only onk variables, where a boxdepends
on thei th variable if eitherai 6= 0 or bi 6= ` − 1. Denote byk − DBOXt the set of all
functions that correspond to unions of (at most)t k-degenerate boxes. For the case` = 2
the classBOXt corresponds to the class oft-term DNF, the classDISJ-BOXt corresponds to
the class (t-term) disjoint DNF, and the classk−DBOXt corresponds to the class (t-term)
k-DNF. Note that the number of boxes,t , for a function ink − DBOXt can be at most(n

k

) · `2k. This is poly(n, `), for k = O(1), but may be much larger than log`.

Notation. We end this section with some useful notation. Given a setL ⊆ [`] (such
that 0∈ L) and a lettera ∈ [`] we denote bybac the largest value inL which is at most
a, that is,bac 4= max{σ ∈ L : σ ≤ a}. Similarly, we denotedae 4= min{σ ∈ L : σ > a}
(if σ ≤ a for everyσ ∈ L, thendae 4= `). Whenever we use these notations the ground
setL will be clear from the context. Denote byfL the function f restricted to the range
Ln, that is, fL : Ln → {0,1} and fL(x) = f (x) for everyx ∈ Ln. Note that if f is a
union of at mostt boxes, then so isfL .

Learning Boxes in High Dimension 79

3. Learning Boxes Using Hankel Matrices. We consider the learnability, in the exact-
learning model, of the classesDISJ-BOXt andBOXO(logn). Our starting point is a recent
algorithm of [4] and [3] for learning multiplicity automata. In [3] it is shown that this
algorithm can be used to learnDISJ-BOXt andBOXO(logn) in time polynomial in` and
the other parameters of the problem (this is a straightforward generalization of results in
[4]). For the sake of completeness we prove this result in this section. In addition, in the
Appendix we briefly sketch the algorithm of [4] and [3]. Then, in the next section, we
show how to reduce the complexity to be polynomial in log`.

We start with some notations. LetKbe a field, let6 be an alphabet, and letf : 6n→ K
be a function. TheHankel matrixcorresponding tof , denotedF , is defined as follows:
each row ofF is indexed by a stringx ∈ 6≤n; each column ofF is indexed by a
string y ∈ 6≤n; the (x, y) entry of F contains the value off (x ◦ y) (where ◦ denotes
concatenation) ifx ◦ y is of length (exactly)n and the value 0 otherwise.

THEOREM3.1 [4]. There is an algorithmLEARN HANKEL that learns every function
f : 6n → K with time (and query) complexitypoly(n, rank(F), |6|), whererank is
defined with respect to the fieldK. (See the Appendix.)

By the above theorem, to prove the learnability of a concept class it is sufficient to
give an upper bound on rank(F) for the matrices corresponding to functions in the class.
For convenience (and efficiency), we fixK to be GF(2) (although the next lemma holds
for any field).

LEMMA 3.2. Let B1, . . . , Bt be t boxes in[`]n such that there is no point x∈ [`]n which
belongs to more than s boxes and let f be the function corresponding to the union of
these boxes(e.g., for s= 1 we get the functions inDISJ-BOXt). Then

rank(F) ≤ (n+ 1) ·
s∑

i=1

(
t

i

)
.

PROOF. Let Fd denote the submatrix ofF whose rows are indexed by stringsx ∈ 6d

and whose columns are indexed by stringsy ∈ 6n−d (see Figure 1). Note that by the
definition of F all entries which are not in one of the submatricesFd are zeros. Hence,
by linear algebra, rank(F) = ∑n

d=0 rank(Fd). Therefore, it is sufficient to prove, for

everyd, that rank(Fd) ≤∑s
i=1

(t
i

)
.

Let B be any box and denote the two corners ofB by (a1, . . . ,an) and(b1, . . . ,bn).
Define functions (of a single variable)pj (zj): [`] → {0,1} to be 1 if aj ≤ zj ≤ bj

(1 ≤ j ≤ n). Let g: [`]n → {0,1} be defined by
∏n

j=1 pj (zj) (i.e., g(z1, . . . , zn) is 1 if
and only if(z1, . . . , zn) belongs to the boxB). LetG be the Hankel matrix corresponding
to g and letGd be its corresponding submatrix. Every row ofGd is indexed byx ∈ 6d,
and itsyth coordinate can be written as

Gd
x(y) = g(x ◦ y) =

(
d∏

j=1

pj (xj)

)(
n−d∏
j=1

pj+d(yj)

)
,

80 A. Beimel and E. Kushilevitz

Fig. 1.The Hankel matrixF .

wherex = x1 · · · xd andy = y1 · · · yn−d. Now, for everyx, the term
∏d

j=1 pj (xj) is just
a constantαx ∈ {0,1}. Thus, every rowGd

x(y) is just a constant times the vector whose
yth coordinate is

∏n−d
j=1 pj+d(yj). This implies that rank(Gd) ≤ 1. Finally, note that if

gi is the function corresponding to the boxBi , then f can be expressed as

f = 1−
t∏

i=1

(1− gi)

=
∑

i

gi −
∑
i, j

(gi ∧ gj)+ · · · + (−1)t+1
∑
|S|=t

∧
i∈S

gi

=
∑

i

gi −
∑
i, j

(gi ∧ gj)+ · · · + (−1)s+1
∑
|S|=s

∧
i∈S

gi ,

where the last equality is by the assumption that no point belongs to more thans boxes.
Also note that each term of the formh = ∧i∈S gi is an intersection of boxes which is
a box by itself. Hence, by the above, the rank of the matrixHd corresponding to each
of these terms is at most 1. Since we wrotef as a linear combination of

∑s
i=1

(t
i

)
such

terms we get, by linear algebra, that rank(Fd) ≤∑s
i=1

(t
i

)
.

Combining the above lemma with Theorem 3.1 we get:

COROLLARY 3.3. The classBOXO(logn) can be learned in timepoly(n, `).

COROLLARY 3.4. The classDISJ-BOX can be learned in timepoly(n, t, `) (where t is
the number of boxes in the target functions).

In [19] it is shown how to learnO(logn)-term DNF using deterministic automata. The
algorithm of [19] can also be modified to learn the classBOXO(logn) in time poly(n, `),
yielding a different proof for Corollary 3.3.

Learning Boxes in High Dimension 81

4. Reducing the Dependency oǹ. In this section we reduce the dependency of our
algorithm oǹ . For this, we define the notion ofsensitiveletters:

DEFINITION 4.1. A letterσ ∈ [`] is called i -sensitivewith respect tof if there exist
lettersc1, . . . , ci−1, ci+1, . . . , cn ∈ [`] such that

f (c1, . . . , ci−1, σ − 1, ci+1, . . . , cn) 6= f (c1, . . . , ci−1, σ, ci+1, . . . , cn).

A letterσ is calledsensitivewith respect tof if σ is i -sensitive for somei .

LEMMA 4.2. Let f be a function inBOXt . Then there are at most2nt sensitive letters
with respect to f.

PROOF. If f (c1 · · · ci−1, σ − 1, ci+1 · · · cn) = 0 and f (c1 · · · ci−1, σ, ci+1 · · · cn) =
1, then for some boxBj the letterσ is the i th coordinate of the lower corner. If
f (c1, . . . , ci−1, σ − 1, ci+1, . . . , cn) = 1 and f (c1, . . . , ci−1, σ, ci+1, . . . , cn) = 0, then
for some boxBj the letterσ − 1 is thei th coordinate of the upper corner. Since there
are at mostt boxes, inn dimensions, and each is defined by its two corners, the lemma
follows.

In Figure 2 we describe an algorithm to learn the classesBOXO(logn) andDISJ-BOX.
The idea behind the algorithm is to learn the set of sensitive letters with respect tof as
part of learning the functionf . At each stage, with the set of current letters, denotedL,
the algorithm tries to learn the function using the algorithmLEARN HANKEL as a black
box. Either the algorithm succeeds, or it finds another sensitive letter and starts a new
execution of the algorithmLEARN HANKEL.

While executing the algorithmLEARN HANKEL as a black box, the algorithm simulates
the MQs and EQs tofL asked by this black box, using its membership and equivalence
oracles for f . To answer an MQ aboutfL , it simply uses the oracle forf (this is
correct sincefL(x) = f (x) for every x ∈ Ln). To simulate an equivalence query
EQ(h) to fL , using the corresponding oracle forf , the hypothesish is extended to
a hypothesish′: [`]n → {0,1} by h′(x1, . . . , xn) = h(bx1c, . . . , bxnc). (The intuition
behind this definition is that ifL contains all sensitive letters, thenf (x1, . . . , xn) =
fL(bx1c, . . . , bxnc).) If EQ(h′) returns a counterexampley, then there are two cases. If
f (y1, . . . , yn) = f (by1c, . . . , bync), then(by1c, . . . , bync) is a counterexample toh, and
the algorithm passes this counterexample to the black box. Otherwise, iff (y1, . . . , yn) 6=
f (by1c, . . . , bync), then there must be a sensitive letterσ in the interval{byi c+1, . . . , yi }
for some indexi . This sensitive letter is found with logn + log` MQs using a binary
search. Then this sensitive letter is added toL and a new execution ofLEARN HANKEL

is started.
Using the algorithmLEARN SENSITIVEwe prove the following results:

THEOREM4.3. The classBOXO(logn) can be learned in timepoly(n, log`).

PROOF. We use the algorithmLEARN SENSITIVE to learn the classBOXO(logn). As re-
marked, for everyL the function fL is also a union ofO(logn) boxes. By Corollary 3.3,

82 A. Beimel and E. Kushilevitz

ALGORITHM LEARN SENSITIVE

1. L ← {0}
2. Learn the functionfL using the algorithmLEARN HANKEL.

To answer membership queries aboutfL simply use the oracle forf .
To simulate an equivalence query EQ(h) to fL :
(a) Defineh′: [`]n → {0,1} ash′(x1, . . . , xn) = h(bx1c, . . . , bxnc).

Ask whetherh′ ≡ f .
If the answer is “YES” halt with outputh′.
Otherwise, we have a counterexample(y1, . . . , yn) ∈ [`]n.

(b) If f (y1, . . . , yn) = f (by1c, . . . , bync) (this is checked using an
MQ) then(by1c, . . . , bync) is a counterexample toh—pass this
counterexample to the algorithm for learningfL and continue its
execution.
Otherwise, proceed to Step (3).

3. (f (y1, . . . , yn) 6= f (by1c, . . . , bync).)
Find an index 1≤ i ≤ n such that

f (by1c · · · byi−1c, yi · · · yn) 6= f (by1c · · · byi−1c, byi c, yi+1 · · · yn)

(this is found withO(logn) MQs using a binary search).
Then find a letterσ such thatbyi c + 1≤ σ ≤ yi and

f (by1c · · · byi−1c, σ−1, yi+1 · · · yn) 6= f (by1c · · · byi−1c, σ, yi+1 · · · yn)

(this is found withO(log`) MQs using a binary search).
SetL ← L ∪ {σ } and start Step (2) again.

Fig. 2.An algorithm for learning the sensitive letters.

learning the functionfL (Step (2)) ends within time poly(n, |L|). It ends either by identi-
fying the target functionf , or by adding a new sensitive letter toL (Step (3)). In addition,
onceL contains all sensitive letters then, for every point(y1, . . . , yn) ∈ [`]n,

f (y1, . . . , yn) = f (by1c, . . . , bync).(1)

At this point, since there are no more sensitive letters, the algorithm forfL will find a
hypothesish ≡ fL which by (1) impliesh′ ≡ f . By Lemma 4.2 the size ofL, and hence
the number of times Step (3) is executed, isO(n logn). Each time a new sensitive letter
is inserted toL we spend poly(n, log`) time searching for such a letter. To conclude,
algorithmLEARN SENSITIVE learns the classBOXO(logn) in time poly(n, log`).

The above theorem solves an open problem of [16] and [12]. The following theo-
rem shows the learnability of disjoint boxes in time poly(n, t, log`). This significantly
improves over [11] and [14] where a similar result was shown for the case where there
exists a dimension in which all the boxes are disjoint.

Learning Boxes in High Dimension 83

THEOREM4.4. The classDISJ-BOX can be learned in timepoly(n, t, log`) (where t is
the number of boxes in the target function).

PROOF. Again, we use the algorithmLEARN SENSITIVEto learn this class. By Lemma 4.2
the size ofL, and hence the number of times Step (3) is executed, isO(nt). Each time
a new sensitive letter is inserted toL we spend poly(n, log`) time searching for such
a letter. By Corollary 3.4 learning the functionfL (Step (2)) takes time poly(n, t, |L|)
(observe that the functionfL always consists of a union of at mostt disjoint boxes).
To conclude, algorithmLEARN SENSITIVE learns any function inDISJ-BOXt in time
poly(n, t, log`).

A special case of disjoint boxes are functions which are represented by decision trees
where each node contains a boolean query of the form “Isxi ≥ θ?” (and where the
variablesxi and the constantsθ take values in [̀]). The learnability of this class was an
open problem in [9]. In [4] it was shown that this class is learnable in time poly(n, t, `)
(wheret here denotes the number of leaves in the tree corresponding tof). Algorithm
LEARN SENSITIVEshows that this class can in fact be learned in time poly(n, t, log`).

REMARK 4.5. Obviously, Corollary 3.4 and Theorem 4.4 can be easily extended to
the case where no pointx is contained in more thans boxes, fors = O(1) (note that
Lemma 3.2 is already formulated in a way that allows this extension). Also, Theorem 4.3
can be extended to learning decision trees of depthO(logn), where each node contains
a boolean query of the form “doesx belong to a boxB?” (for this result we can use
Corollary 4.11 from [4] to learnfL , and slightly generalize Lemma 4.2). In particular
this shows the learnability ofany function of O(logn) boxes, and not onlyunionsof
boxes.

REMARK 4.6. An improved complexity can be obtained if instead of collecting all the
sensitive letters in a single setL we would maintain a separate setLi for the i -sensitive
letters.

REMARK 4.7. A box is just the product ofn intervals, one in each dimension. We
can consider more general boxes which are products of (at most)m intervals in each
dimension. Such a general box can be viewed as the union ofmn “regular” boxes.
Nevertheless, it can be easily seen that our algorithms can be extended to this case as
well, with a small increase in the complexity. For example, the union oft disjoint, general
boxes can be learned in time which is poly(n, t, log`,m). This is because Lemma 3.2
still holds, and since the number of sensitive letters is now bounded by 2mnt.

5. Learning O(1)-Degenerate Boxes. In this section we show how to learn the class
k− DBOXt , for k = O(1), using only EQs. This generalizes the learnability of unions of
boxes inO(1) dimensions and, as will be shown, can be used to learn unions ofO(1)
boxes in [̀]n. Again, we start with an algorithm which is polynomial in` and convert it
into an algorithm which is polynomial in log̀. We use a refined transformation which

84 A. Beimel and E. Kushilevitz

ALGORITHM ELIMINATE BOXES

1. Make a listQ of all width onek-degenerate boxes.
2. Define a hypothesish as the union of all boxes in the listQ.
3. Ask EQ(h).

If the answer is “YES” halt with outputh.
4. Otherwise, the answer is “NO” andy is a counterexample.

Remove all the boxes inQ that containy.
Goto 2.

Fig. 3.A poly(n, `) algorithm forO(1)-degenerate boxes.

does not use MQs. However, this transformation is not general and uses specific properties
of the algorithm that we start with.

We first define the class ofwidth one boxeswhich is a certain class of boxes that we
use in our algorithm.

DEFINITION 5.1. A width one boxis a box in which for every dimension either the
width is 1 (i.e.,ai = bi) or the box does not depend on thei th variable (i.e.,ai = 0 and
bi = `− 1).

It is a simple observation that everyk-degenerate box can be written as the union of
at most`k width onek-degenerate boxes, and hence every function ink − DBOXt can
be written as the union of at mostt · `k width onek-degenerate boxes. In Figure 3 we
describe a simple algorithm,ELIMINATE BOXES, which learns the classk − DBOXt with
complexity which is polynomial iǹ , for k = O(1). This algorithm is a variant of the
standard elimination algorithm for learningk-DNF [25].

Note that algorithmELIMINATE BOXESuses only EQs (i.e., no MQs). We start with a
simple observation about the algorithm.

CLAIM 5.2. Let f , the target function, be any function in k− DBOXt . In every step of
algorithmELIMINATE BOXES f ≤ h (i.e., f (x) = 1 implies h(x) = 1).

PROOF. As remarked,f can be represented as a union of width onek-degenerate boxes.
Let Q? be the set of these boxes. For proving the claim, it suffices to prove that at any
time Q? ⊆ Q. This is obviously true at the beginning, sinceQ containsall width one
k-degenerate boxes. Whenever a counterexampley is received, sinceQ? ⊆ Q it must
be thath(y) = 1 and f (y) = 0; hence, when the boxes that containy are removed from
Q, none of them is inQ?. Therefore, afterQ is modified in Step (4) stillQ? ⊆ Q.

We next prove that the algorithm is correct.

LEMMA 5.3. AlgorithmELIMINATE BOXES learns the class k− DBOXt , for k = O(1),
in time(and query) complexitypoly(n, `).

Learning Boxes in High Dimension 85

PROOF. By the code, if the algorithm halts, then its hypothesis is equivalent tof . We
have to prove that the algorithm must halt within poly(n, `) time. By Claim 5.2, for every
counterexample,h(y) = 1 while f (y) = 0. Thus, every equivalence query removes
at least one width onek-degenerate box fromQ. The size ofQ when the algorithm
starts is the number of all width onek-degenerate boxes which is less than`knk. Thus,
algorithm ELIMINATE BOXES uses at most̀knk equivalence queries, and runs in time
poly(nk, `k).

Using the transformation of Section 4 together with algorithmELIMINATE BOXESwe
can learn the classk−DBOXt in time poly(n, t, log`) with EQs and MQs. However, our
goal is an algorithm that does not use MQs and still has complexity which is polynomial
in log`. The idea is again to learn the sensitive letters adaptively. There are two problems
in learning the sensitive letters without MQs. The first problem is that when algorithm
LEARN SENSITIVE (Figure 2) gets a counterexample(y1, . . . , yn) it decides, using an
MQ, whether it can return(by1c, . . . , bync) as a counterexample to the algorithm that
learns the restricted functionfL (Step (2b)). Since we know that every counterexample
in the algorithmELIMINATE BOXESis a negative counterexample (that is,f (y) = 0 while
h(y) = 1), we pass all the negative counterexamples to the algorithm forfL , while every
positive counterexample is used to look for a sensitive letter (we prove below that this
strategy works). The second problem that we face is how to search for a sensitive letter
without using MQs. We use an idea of [11] and [12]: if there is a sensitive letter in a set
{a,a+ 1, . . . ,b} wherea andb are inL, then add(a+ b)/2 to L (if (a+ b)/2 is not
an integer, then add(a + b− 1)/2). In this case the setL of letters that is used by the
algorithm will be a superset of the sensitive letters. However, the size ofL will still be
relatively small.

In Figure 4 we describe our algorithmFAST ELIMINATION . Every time that this algo-
rithm reaches Step (6) it adds at least one new letter toL. Furthermore, ifL contains all
the sensitive letters, then the algorithm finds a hypothesis that is equivalent tof . Thus,
sinceL ⊆ [`], algorithmFAST ELIMINATION will eventually halt with the right answer.
As in Lemma 5.3, ifL is the set of letters when the algorithm halts, then the complexity
of the algorithm is poly(nk, tk, |L|k). Thus, it remains to prove that when the algorithm
FAST ELIMINATION halts,L is small. This is based on the next claim.

CLAIM 5.4. Every time algorithmFAST ELIMINATION reaches Step(6) there exists an
index i and a sensitive letterσ in {byi c + 1, . . . , dyi e − 1}.

PROOF. If the algorithm reaches Step (6), thenf (y) = 1, i.e., there exists somek-
degenerate boxB = Ba1,...,an,b1,...,bn in f that contains the counterexampley. Consider
the boxB′ = Ba′1,...,a

′
n,b
′
1,...,b

′
n

where ifai = 0 andbi = `−1, thena′i = 0 andb′i = `−1,
and otherwisea′i = b′i = byi c. This is a width onek-degenerate box overL that contains
(by1c, . . . , bync). Sinceh(by1c, . . . , bync) = 0, this boxB′ is not in Q. Let z be the
counterexample that removedB′ from Q in some previous execution of Step (5) after
the last execution of Step (2) (thus,L has not changed sincez removedB′ from Q). For
1 ≤ i ≤ n definewi = yi if B depends on thei th variable andwi = zi otherwise. By
definition, f (w1, . . . , wn) = 1 while f (z1, . . . , zn) = 0. Thus, there exists an indexi

86 A. Beimel and E. Kushilevitz

ALGORITHM FAST ELIMINATION

1. L ← {0}.
2. Make a listQ of all width onek-degenerate boxes over the current setL.
3. Define a hypothesish: Ln→ {0,1} as the union of all boxes inQ.

Extend the hypothesis to [`]n by

h′(x1, . . . , xn)
4= h(bx1c, . . . , bxnc).

4. Ask EQ(h′).
If the answer is “YES” halt with outputh′.
Otherwise, the answer is “NO” andy is a counterexample.

5. If h′(y) = 1 and f (y) = 0 then:
Remove all boxes that contain(by1c, . . . , bync) from Q.
Goto (3).

6. (h′(y) = 0 and f (y) = 1.)
For i = 1 ton do:

If dyi e + byi c is even thenL ← L ∪ {(dyi e + byi c)/2}
else L ← L ∪ {(dyi e + byi c − 1)/2}.

Goto (2).

Fig. 4.A poly(n, t, log`) algorithm forO(1)-degenerate boxes.

such that

f (w1, . . . , wi−1, wi , zi+1, . . . , zn) = 1

while

f (w1, . . . , wi−1, zi , zi+1, . . . , zn) = 0.

This implies that there exists a sensitive letterσ such that eitherzi < σ ≤ yi or
yi < σ ≤ zi . Furthermore,zi 6= wi and B depends on thei th variable. Therefore,
bzi c = byi c (since(bz1c, . . . , bznc) ∈ B′) which impliesbyi c ≤ zi < dyi e. To conclude,
if zi < σ ≤ yi , thenbyi c ≤ zi < σ ≤ yi < dyi e. Thus, the sensitive letterσ is in the
interval{byi c + 1, . . . , dyi e − 1}. The caseyi < σ ≤ zi is similar.

The next theorem completes the analysis of algorithmFAST ELIMINATION .

THEOREM5.5. The class k−DBOXt , for k = O(1), can be learned in time(and query)
complexitypoly(n, t, log`) using equivalence queries only.

PROOF. We use the algorithmFAST ELIMINATION to learn the classk − DBOXt , for
k = O(1). If L contains all sensitive letters, then, by Claim 5.4, we can get only
counterexamplesy such thath′(y) = 1 and after at most|Q| such counterexamples the
algorithm finds a hypothesis equivalent tof . Therefore, again by Claim 5.4, the algorithm
reaches Step (6) at most log` times per each sensitive letter. By Claim 4.2, there areO(nt)

Learning Boxes in High Dimension 87

sensitive letters; hence, the algorithm reaches Step (6) onlyO(nt log`) times, and each
time it adds at mostnnew letters toL. That is,|L| = O(n2t log`)and the number of boxes
in Q (each time the algorithm reaches Step (2)) isO(|L|knk) = poly(nk, tk, logk `). Each
time algorithmFAST ELIMINATION asks an EQ and does not reach Step (6) it holds that
h(y) = 1, i.e., there is a box inQ that contains(by1c, . . . , bync) and the algorithm
removes this box fromQ. In other words, after at most|Q| = poly(nk, tk, logk `) EQs
the algorithm reaches Step (6). That is, the running time is poly(nk, tk, logk `) which is
poly(n, t, log`) for k = O(1).

REMARK 5.6. AlgorithmFAST ELIMINATION can be used to learn the class of all unions
of O(1) boxes with only EQs. (This was an open problem in [15] that was later solved
in [24].) The idea is that if we have a function that can be represented as a union of
O(1) boxes, then its negation can be represented as a union ofO(1)-degenerate boxes.
Let f be a union ofk boxes, that is (using the notation of the proof of Lemma 3.2),
there exist functionspm, j : [`] → {0,1} for 1 ≤ m ≤ k and 1≤ j ≤ n such that
f =∨k

m=1

∏n
j=1 pm, j (xj), andpm, j (xj) = 1 if xj is in some interval. Therefore,

f =
∨

i1,...,i k∈{1,...,n}

k∏
j=1

pj,i j (xi j).

In words, a pointx is not in the union ofk boxes if there exist coordinatesi1, . . . , i k such
that for everyj the variablexi j is not in thei j -interval of the boxBj (i.e., pj,i j (xi j) = 0).
Note thatpj,i j (xi j) is a union of (at most) two intervals. Thus,f can be represented
as a union of at mostnk generalized boxes as defined in Remark 4.7. Each such gen-
eralized box can be represented as a union of at most 2k (simple)k-degenerate boxes.
Thus, f can be represented as a union ofO(k2knk) k-degenerate boxes, and algorithm
FAST ELIMINATION , as it is, learns the class of union ofO(1) boxes in time poly(n, log`).

Acknowledgments. We would like to thank the EuroCOLT ‘97 program committee
members and the anonymous referees for helpful comments.

Appendix. Learning Using Hankel Matrices. In this Appendix we briefly describe
the algorithm of [4] and [3], which learns a functionf using its Hankel matrixF
(the definition of the Hankel matrix of a function appears in Section 3). The version
described here is limited to functionsf : 6n→ K which is what we need for the current
paper (whereas the original algorithm works for the more general case of functions
f : 6? → K). Also we do not describe the most efficient version of the algorithm that
exploits the specific structure of the Hankel matrix corresponding to functions of the
form f : 6n → K (as described in Figure 1). For full details (including a formal proof)
the reader is referred to [4], [3].

The idea is as follows: at any given step the algorithm will have a matrixF̂ which is
anr × r submatrix ofF , the Hankel matrix corresponding tof . The rows ofF̂ will be
indexed by stringsX = {x1, . . . , xr } and the columns of̂F will be indexed by strings

88 A. Beimel and E. Kushilevitz

Y = {y1, . . . , yr } (note that based onX andY the matrixF̂ can be generated usingr 2

MQs). We maintain the property that̂F is of full rank (i.e., it has rankr). Obviously the
rank of F̂ is bounded by the rank ofF . The algorithm will start by asking EQ(0). If the
target function is identically 0 we are done. Otherwise we will get a counterexamplez
such that f (z) = 1. We initializex1 = ε, x2 = z, y1 = ε, y2 = z so we get a 2× 2
matrix F̂ of rank 2.

The structure of the algorithm is as follows. Given̂F we show below how to construct
a hypothesish such that from a counterexamplez satisfying f (z) 6= h(z)we can always
find a row and column such that adding them toF̂ increases the rank by 1. If we can do
this, then after at most rank(F) iterations we are done. In addition all the computations
that we describe can be performed efficiently. The total running time of the algorithm is
poly(n, rank(F), |6|). So it remains to show how we construct the hypothesis and how
we process the counterexamples.

Constructing a Hypothesis. We need to define a procedure/functionh that on inputw
efficiently computes a valueh(w). For everyxi ∈ X andσ ∈ 6 we look at ther -tuple
corresponding to the entries ofF in row xi ◦σ and columns inY. Denote thisr -tuple by
F̂xi ◦ σ (the tupleF̂xi ◦ σ is generated usingr MQs). SinceF̂ is a full rank matrix we can
find (efficiently) coefficientsai, j,σ such that

F̂xi ◦ σ =
r∑

j=1

ai, j,σ F̂xj .

Now, givenw, we can computeh(w) as follows. We use the coefficients of the above
r ·|6| linear dependencies to express (efficiently) every vectorF̂w as a linear combination
of F̂x1, . . . , F̂xr (this representation of̂Fw is not necessarily correct). This is done by
induction;w = ε is easy sincex1 = ε. Now, if we already expressed̂Fw =

∑r
i=1 awi F̂xi

then we writeF̂w ◦ σ =
∑r

i=1 awi F̂xi ◦ σ . Notice that ifawi are the “correct” coefficients,
i.e., Fw =

∑r
i=1 awi Fxi , thenFw ◦ σ =

∑r
i=1 awi Fxi ◦ σ (sinceFw ◦ σ,v = Fw,σ ◦ v). Using

the coefficientsai, j,σ we get

F̂w ◦ σ =
r∑

i=1

awi

[
r∑

j=1

ai, j,σ F̂xj

]
=

r∑
j=1

[
r∑

i=1

awi ai, j,σ F̂xj

]
,

so the coefficientaw ◦ σj is computed by
∑r

i=1 awi ai, j,σ . Finally, for everyw, since we

can computêFw in particular we can efficiently computeh(w) 4= F̂w,ε (note that if F̂w
is “correct”, i.e.,F̂w indeed contains the correct values as inF , then in particular̂Fw,ε =
Fw,ε = f (w)).

Processing a Counterexample. Suppose thatz is such thatf (z) 6= h(z). We claim
that z can be partitioned toz = w ◦σ ◦v such that adding a roww to X and a column
σ y (for somey ∈ Y that we will find) to Y will increase the rank of̂F by 1. This
partition can be found by considering all prefixesw of z (and in fact can be found
more efficiently using the appropriate binary search). To see this, observe that there
must exist a prefixw for which the coefficientsawi computed by the above algorithm
are correct, i.e.,Fw =

∑r
i=1 awi Fxi (this is tested by the algorithm by verifying that

F̂w =
∑r

i=1 awi F̂xi), but for these coefficientŝFw ◦ σ 6=
∑r

i=1 awi F̂xi ◦ σ . (Forw = ε the

Learning Boxes in High Dimension 89

coefficients are certainly correct and if no suchw exists it follows, by induction, that the
coefficients ofF̂z are also correct, which implies thath(z) = f (z)—a contradiction.)
In particular, for suchw, there existsy ∈ Y such thatF̂w(σ y) 6= ∑r

i=1 awi F̂xi (σ y).
It follows that if we add the columnσ y to Y, then the rowF̂w must be indepen-
dent of the previous rowŝFx1, . . . , F̂xr , as needed (since if̂Fw depends on̂Fx1, . . . , F̂xr

the coefficients must beaw1 , . . . ,a
w
r but addingσ y to Y eliminates this possibility).

References

[1] D. Angluin. Queries and concept learning.Machine Learning, 2(4):319–342, 1988.
[2] P. Auer. On-line learning of rectangles in noisy environments. InProc. 6th Annual ACM Workshop on

Computational Learning Theory, pages 253–261, 1993.
[3] A. Beimel, F. Bergadano, N. H. Bshouty, E. Kushilevitz, and S. Varricchio. Learning functions rep-

resented as multiplicity automata. Submitted for publication, 1997. Preliminary version: On the ap-
plications of multiplicity automata in learning. InProc. 37th Annual IEEE Symp. on Foundations of
Computer Science, pages 349–358, 1996.

[4] A. Beimel, F. Bergadano, N. H. Bshouty, E. Kushilevitz, and S. Varricchio. On the applications of
multiplicity automata in learning. InProc. the37th Annual IEEE Symp. on Foundations of Computer
Science, pages 349–358, 1996.

[5] S. Ben-David, N. H. Bshouty, and E. Kushilevitz. A composition theorem for learning algorithms with
applications to geometric concept classes. InProc. 29th Annual ACM Symp.on the Theory of Computing,
pages 324–333, 1997.

[6] F. Bergadano, D. Catalano, and S. Varricchio. Learning sat-k-DNF formulas from membership queries.
In Proc. 28th Annual ACM Symp. on the Theory of Computing, pages 126–130, 1996.

[7] A. Blum and S. Rudich. Fast learning ofk-term DNF formulas with queries.Journal of Computer and
System Sciences, 51(3):367–373, 1995.

[8] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and the Vapnik–Chervonenkis
dimension.Journal of the ACM, 36:929–965, 1989.

[9] N. H. Bshouty. Exact learning via the monotone theory. InProc. 34th Annual IEEE Symp.on Foundations
of Computer Science, pages 302–311, 1993. Journal version:Information and Computation, 123(1):146–
153, 1995.

[10] N. H. Bshouty. Simple learning algorithms using divide and conquer. InProc. 8th Annual ACM Workshop
on Computational Learning Theory, pages 447–453, 1995.

[11] N. H. Bshouty, Z. Chen, and S. Homer. On learning discretized geometric concepts. InProc. 35th Annual
IEEE Symp. on Foundations of Computer Science, pages 54–63, 1994.

[12] N. H. Bshouty, P. W. Goldberg, S. A. Goldman, and H. D. Mathias. Exact Learning of Discretized
Geometric Concepts. Technical Report WUCS-94-19, Washington University, 1994.

[13] N. H. Bshouty, S. A. Goldman, H. D. Mathias, S. Suri, and H. Tamaki. Noise-tolerant distribution-free
learning of general geometric concepts. InProc. 28th Annual ACM Symp. on the Theory of Computing,
pages 151–160, 1996.

[14] Z. Chen and S. Homer. The bounded injury priority method and the learnability of unions of rectangles.
Annals of Pure and Applied Logic, 77(2):143–168, 1996.

[15] Z. Chen and W. Maass. On-line learning of rectangles and unions of rectangles.Machine Learning,
17(2/3):23–50, 1994.

[16] P. W. Goldberg, S. A. Goldman, and H. D. Mathias. Learning unions of boxes with membership and
equivalence queries. InProc. 7th Annual ACM Workshop on Computational Learning Theory, 1994.

[17] J. C. Jackson. An efficient membership-query algorithm for learning DNF with respect to the uniform
distribution. InProc. 35th Annual IEEE Symp. on Foundations of Computer Science, pages 42–53, 1994.

[18] J. C. Jackson. The Harmonic Sieve: A Novel Application of Fourier Analysis to Machine Learning
Theory and Practice. Ph.D. thesis, Technical Report CMU-CS-95-184, School of Computer Science,
Carnegie Mellon University, 1995.

90 A. Beimel and E. Kushilevitz

[19] E. Kushilevitz. A simple algorithm for learningO(logn)-term DNF.Information Processing Letters,
61(6):289–292, 1997.

[20] N. Littlestone. Learning when irrelevant attributes abound: a new linear-threshold algorithm.Machine
Learning, 2:285–318, 1988.

[21] P. M. Long and M. K. Warmuth. Composite geometric concepts and polynomial predictability.Infor-
mation and Computation, 113(2):230–252, 1994.

[22] W. Maass and G. Tur´an. On the complexity of learning from counterexamples. InProc. 30th Annual
IEEE Symp. on Foundations of Computer Science, pages 262–273, 1989.

[23] W. Maass and G. Tur´an. Algorithms and lower bounds for on-line learning of geometrical concepts.
Machine Learning, 14:251–269, 1994.

[24] W. Maass and M. K. Warmuth. Efficient learning with virtual threshold gates. InProc. 12th International
Conf. on Machine Learning, pages 378–386. Morgan Kaufmann, San Mateo, CA, 1995.

[25] L. G. Valiant. A theory of the learnable.Communications of the ACM, 27(11):1134–1142, 1984.

