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Abstract. This paper studies competition in a network and how a network struc-
ture determines agents’ individual payoffs. It constructs a general model of com-
petition that can serve as a reduced form for specific models. The paper shows
how agents’ outside options, and hence their shares of surplus, derive from “op-
portunity paths” connecting them to direct and indirect alternative exchanges. An-
alyzing these paths, results show how third parties’ links affect different agents’
bargaining power. Even distant links may have large effects on agents’ earnings.
These payoff results, and the identification of the paths themselves, should prove
useful to further analysis of network structure.
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1 Introduction

Networks of buyers and sellers are a common exchange environment. Networks
are distinguished from markets by specific assets, or “links,” between particular
buyers and sellers that enhance the value of exchange. In many industries, for
example, manufacturers train particular suppliers or otherwise “qualify” suppliers
to meet certain criteria. The asset may also be less formal, as when a supplier’s
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understanding of a manufacturer’s idiosyncratic needs develops through repeated
dealings.1

This paper studies competition for goods in a network. The theory we develop
explains how third parties may affect the terms of a bilateral exchange. Bargaining
theory focuses primarily on bilateral negotiations. Yet strictly bilateral settings
seem to be the exception rather than the rule. The network model we develop
allows for arbitrarily complex multilateral settings. New links introduce new
potential exchange partners. We show how such changes in opportunities affect
matchings and divisions of surplus. In particular, we evaluate how third parties
can affect an agent’s “bargaining power” by changing, perhaps indirectly, its
outside options.

The networks we consider consist of buyers, sellers, and the pattern of links
that connect them. Each buyer demands a single unit of an indivisible good, and
each seller can produce one unit. A buyer can only purchase from a seller to
whom it is linked. Competition for goods will then depend on the link pattern.
If a linked buyer and seller negotiate terms of trade, each agent’s links to other
agents determine their respective “outside options.” Since alternative sellers or
buyers may be linked to yet other agents, the entire pattern of links affects
the value of these outside options and each agent’s “bargaining power.” For
example, in Fig. 1 below, the price buyer 3 would pay to either seller 1 or seller
3 depends on its links to buyers 1 and 2 or buyers 4 and 5 respectively, and
further depends on these buyers’ links to other sellers. The heart of this paper is
identifying precisely how such indirect links affect competitive prices and each
agent’s ability to extract surplus from an exchange.

The paper first develops a theory of competition in a network. There are po-
tentially many ways to model negotiations or competition for goods. This paper
takes a general approach: we characterize competitive prices and allocations as
those that satisfy a “supply equals demand” condition for the network setting. We
show that these prices yield payoffs that are individually rational and pairwise
stable. These are the minimal conditions that payoffs resulting from any negoti-
ation process or competition should satisfy. We show that there is range of such
competitive prices, as in Demange and Gale (1985). Basic results also show the
equivalence between these payoffs and the core of an assignment game (Shapley
and Shubik 1997). Competitive prices, then, distribute the surplus generated by
an efficient allocation of goods.

Armed with our general results, we turn to our central objective: studying
the relationship between network structure and agents’ competitive gains from
trade.

We first characterize the range of competitive prices in terms of network
structure. To do so, we define the notion of anopportunity path. An opportunity
path is a path of links from a buyer to a seller to another buyer to a seller, and so
on. These paths capture direct and indirect competition for a set of sellers’ goods.

1 Kranton and Minehart (2000a) introduces a model of buyer-seller networks, and Kranton and
Minehart (2000b) explores the role of neworks in indurstrial organization and discusses industry
examples.
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Fig. 1.

The influence of network structure, expressed in these paths, is quite intuitive.
For example, for the lower bound of a competitive price, we show that a buyer
i that obtains a good must pay at least the valuation of a particular buyer. This
buyer is not obtaining a good and is connected by an opportunity path to buyer
i . It is therefore buyeri ’s (perhaps indirect) competitor and can replace buyer
i in an allocation of goods. To prevent this replacement, buyeri must pay a
sufficiently high price: it must pay at least what this buyer would be willing pay
to obtain a good.2

The paper then asks how new links affect the prices paid by third parties.
Consider a manufacturer that “qualifies” a particular supplier. This investment
increases the value of an exchange between the two. It also affects the payoffs of
all other manufacturers and suppliers. Since the supplier now has an additional
sales option, it could extract greater rents from its other buyers. We call this
a supply stealing effect. On the other hand, since the manufacturer has access
to another source of supply, there is also asupply freeing effect. We evaluate
these effects by identifying two types of paths in a network, what we callbuyer
paths and seller paths. A path between a buyeri and the seller with the new
link, a seller path is detrimental to buyeri ’s payoffs. The link confers thesupply
stealing effect. A path between a buyeri and the buyer with the new link, a
buyer path, is beneficial to buyeri ’s payoffs. It confers asupply freeing effect.

For example, consider the network in Fig. 1 and add a link betweenb2 and
s2. The link, for example, frees supply forb1 which can more often obtain
goods froms1. Buyers with buyer paths benefit from the supply freeing effect.
In contrast,b4 suffers from a supply stealing effect. This effect will extend to
b5, which now must sometimes compete withb4 for s3’s output. As for sellers,
the supply freeing effect hurtss1 and the supply stealing effect helpss2 ands3.

These results provide a general framework to understand competition in a net-
work setting. With this general model, we can place specific models of network
competition in context. For example, an ascending-bid auction for a network

2 This value is also the social opputunity cost of buyeri obtaining a good.
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(Kranton and Minehart 2000a) yields the lowest competitive prices. Other exten-
sive form models would yield the same or different splits of surplus, or introduce
trade frictions that drive the allocation away from efficiency.

The theory of buyer and seller paths explains how third parties can affect
an agent’s bargaining power. Previous theories of stable matchings in marriage
problems and other such settings (e.g. Roth and Sotomayer 1990, Demange and
Gale 1985) view preferences (i.e., links) as exogenous. Hence, such comparative
statics are not an issue. In our setting, links are specific investments over which
agents ultimately make choices.3 The comparative statics provide a methodology
for studying how one agent’s investments in specific assets impact others’ returns.
Ultimately, then, these results can inform the study of strategic incentives to
invest in specific assets.4

Section 2 builds a model of buyer-seller networks and develops a general
notion of competition for goods. Section 3 characterizes the range of competitive
prices in terms of the network structure. Section 4 considers how changes in the
link pattern impact agents’ competitive payoffs. Section 5 concludes.

2 Competition in a network

2.1 Model of buyer-seller networks5

There is a finite set of sellersS that numberS ≡ |S| who each have the capacity
to produce one indivisible unit of a good at zero marginal cost. There is a finite
set of buyersB that numberB ≡ |B| who each demand one indivisible unit of a
good. Each buyeri , or bi , has valuationvi for a good, wherev = (v1, . . . , vB ) is
the vector of buyers’ valuations. We restrict attention to generic valuations where
vi > 0 for all buyersi andvi /= vk for all buyersi /= k .6

A buyer and seller can engage in exchange only if they are “linked.” Alink
pattern, or graph,G is aB ×S matrix, [gij ], wheregij ∈ {0, 1}, which indicates
linked pairs of buyers and sellers. For buyeri and sellerj , gij = 1 whenbi and
sj are linked, andgij = 0 when the pair is not linked. For a given link pattern
and a set of buyersB ⊆ B, let L(B ) ⊆ S denote the set of sellers linked to
any buyerin B . We call L(B ) the buyers’linked set of sellers. Similarly, for
a set of sellersS ⊆ S, let L(S ) ⊆ B denote the sellers’linked set of buyers.

Allocations of goods are feasible only when they respect the links between
buyers and sellers. Anallocation of goods, A, is a B × S matrix, [aij ], where

3 In Kranton and Minehart (2000a), we develop a model of network formation in which agents
invest in links. All the results in this paper apply to that model.

4 Incentives to invest in specific assets are a major theme in industrial organization and theory of
the firm literature. Classic contributions include Grossman and Hart (1990), Hart and Moore (1990),
and Williamson (1975). Most studies to date consider specific asset investment in bilateral settings;
the “outside option” is assumed but not modeled.

5 The following model of buyer-seller networks is from Kranton and Minehart (2000a).
6 This assumption is without loss of generality when buyers’ valuations are independently and

identically distributed with a continuous distribution. In this case, we would be concerned with
expected valuations, and non-generic valuations arise with probability zero.
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aij ∈ {0, 1}, whereaij = 1 indicates that buyeri obtains a good from sellerj .
For a given link patternG , an allocation of goods isfeasible if and only if
aij ≤ gij for all i , j and for each buyeri , if there is a sellerj such thataij = 1
thenaik = 0 for all k /= j andalj = 0 for all l /= i . The social surplus associated
with an allocationA is the sum of the valuations of the buyers that secure goods
in A. We denote the surplus asw(A; v).7

2.2 Competitive prices and allocations

We next consider competition for goods in this setting. Consider a price vector
p = (p1, . . . , pS ) which assigns a pricepj to each sellersj . Let ub

i andus
j denote

payoffs for each buyeri and sellerj , respectively. Letub = (ub
1 , . . . , ub

B
) and

us = (us
1, . . . , us

S
) denote payoff vectors. For a price vector and allocation (p, A),

payoffs are as follows: For sellerj , us
j = pj . For buyeri , ub

i = vi −pj if it obtains
a good from sellerj in A. Otherwise,ub

i = 0.
We say a price vector and allocation (p, A) is competitive when it satisfies

the following “supply equals demand” conditions for the network setting:

Definition 1. For a graph G and valuation v, a price vector and allocation (p, A)
is competitive if and only if (1) if a buyer i and a seller j exchange a good, then
vi ≥ pj ≥ 0 and pj = min{pk |sk ∈ L(bi )},(2) if a buyer i does not buy a good
then vi ≤ min{pk |sk ∈ L(bi )} and (3) if a seller j does not sell a good then
pj = 0.8

The first two requirements are that there is no excess demand: given pricesp, a
buyer would want to buy a seller’s good if and only if it is assigned the good inA.
That is, no more than one buyer demands any seller’s good. The last requirement
is that there is no excess supply: givenp, a seller would want to supply a good
if and only if it provides a good inA. That is, no seller that does not have a
buyer would wish to sell a good.

Our first set of results characterizes these competitive price vectors and allo-
cations.

We show that each competitive price vector and allocation (p, A) yields pay-
offs (ub , us ) that are bothindividually rational and pairwise stable. Individual
rationality simply requires that no agent earn negative payoffs. Pairwise stablity
requires no linked buyer and seller can generate more surplus together than they
earn in their joint payoffs. Formally,

7 We can writew(v, A) = v · A · 1, where 1 is anS × 1 matrix where each element is 1.
8 While these conditions may appear asymmetric with respect to buyers and sellers, they are not.

More complicated notation would allow us to define competitive prices in an obviously symmetric
manner. We have chosen to use the simpler notation in the text. The following definition is payoff
equivalent to the one above with appropriate translation of notation: Consider a price vector (pi

j ) for

i = 1, . . . , B and j = 1, . . . , S . A price vector and allocationA are then competitive if and only if
(1) if a buyeri and a sellerj exchange a good, thenvi ≥ pi

j ≥ 0 andpi
j = min{pi

k |sk ∈ L(bi )} and

pi
j = min{pk

j |bk ∈ L(sj )}; (2) if a buyeri does not buy a good thenvi ≤ min{pi
k |sk ∈ L(bi )} and

(3) if a sellerj does not sell a good then 0 = min{pk
j |bk ∈ L(sj )}.
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Definition 2. A feasible9 payoff vector (ub , us ) is stable if and only if (i) (individ-
ual rationality) ub

i ≥ 0; us
j ≥ 0 for all i , j ; and (ii) (pairwise stability) ub

i +us
j ≥ vi

for all linked pairs bi and sj .10

We should expect any model of competition or negotiations in networks to yield
stable payoffs, absent undue frictions in the negotiation process. It is straight-
forward to show that our “supply equals demand” conditions for prices and
allocations are equivalent to these stability conditions. For example, if at given
prices, only one buyer demands any seller’s good, then there is no buyer that
could offer a seller a different price that would make them both better off.

Proposition 1. If (p, A) is competitive, then us = p and the associated payoffs for
buyers ub are stable. If (ub , us ) are stable payoffs, then there is an allocation A
and the price vector p = us such that (p, A) is competitive.

Proof. Proofs are provided in the Appendix.

Our next result shows that a competitive price and allocation (p, A) always
involves an efficient allocation of goods.11 For a graphG and valuationv, an
efficient allocation of goods yields the greatest possible social surplus and is
defined as follows:

Definition 3. For a given v, a feasible allocation A is efficient if and only if,
given G , there does not exist any other feasible allocation A′ such that w(A′; v) >
w(A; v).

It is easy to understand why competitive prices are always associated with ef-
ficient allocations. If it were not the case, then there would be excess demand
for some seller’s good. A buyer that is not purchasing but has a higher valuation
than a purchasing buyer would also be willing to pay the sales price.

Proposition 2. For a graph G and valuation v, if a price vector and allocation
(p, A) is competitive, then A is an efficient allocation.

We next present a result that greatly simplifies the analysis of competitive
prices and allocations. The first part of the proposition shows the “equivalence”
of efficient allocations: in any efficient allocation, the same set of buyers obtains
goods.12 The second part of the proposition shows that the set of competitive price

9 Feasiblility requires that payoffs can derive from a feasible allocation of goods. The payoffs
(ub , us ) arefeasible if there is a feasible allocationA such that (i)ub

i = 0 for any buyeri who does not
obtain a good, (ii)us

j = 0 for any sellerj who does not sell a good, and (iii)
∑

i
ub

i +
∑

j
us

j = w(A; v).
10 We do not write the stability condition for buyers and sellers that are not linked because it is

always trivially satisfied.
11 This and the remainder of the results in this section derive from basic results on assignment

games. Assignment games consider stable pairwise matching of agents in settings such as marriage
“markets.” In our setting, the value of matches would be given byv and the graphG . Shapley and
Shubik (1972) develop the basic results we use in this section. Roth and Sotomayor (1990, Chap. 8)
provide an excellent exposition. We refer the reader to their work and our (1998) working paper for
proofs and details.

12 Proposition 3 below requires generic valuations. Otherwise, efficient allocations could involve
different sets of buyers. For example, in a network with one seller and two linked buyers, if the two
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vectors is the same for all efficient allocations. With this result we can ignore
the particular efficient allocation and refer simply to the set of competitive price
vectors for a graphG and valuationv. The result implies that the set of agents’
competitive payoffs is uniquely defined; it is the same for all efficient allocations
of goods.

Proposition 3. For a network G and valuation v:
(a) If A and A′ are both efficient allocations, then a buyer obtains a good in

A if and only if it obtains a good in A′ .
(b) If for some efficient allocation A, (p, A) is competitive, then for any efficient

allocation A′, (p, A′) is also competitive.

Our final result of this section shows that the set of competitive price vectors
for a graphG and valuationv has a well-defined structure. Competitive price
vectors exist, and convex combinations of competitive price vectors are also
competitive. There is a maximal and a minimal competitive price vector. The
maximal price vector gives the best outcome for sellers, and the minimal price
vector gives the best outcome for buyers. We will later examine how changes in
the network structure affect these bounds.

Proposition 4. The set of competitive price vectors is nonempty and convex. It
has the structure of a lattice. In particular, there exist extremal competitive prices
pmax and pmin such that pmin ≤ p ≤ pmax for all competitive prices p. The price
pmin gives the worst possible outcome for each seller and the best possible outcome
for each buyer. pmin gives the opposite outcomes.

2.3 Competitive prices, opportunity cost and network structure

In this section, we determine the relationship between network structure and the
set of competitive prices. To do so, we use the notion of “outside options” to
characterize the extremal competitive prices; that is, we relatepmax and pmin

to agents’ next-best exchange opportunities. We will see that the private value
of these opportunities can be determined by quite distant indirect links. The
relationships we derive below are a basis for our comparative static results on
changes in the link pattern.

We first formalize the physical connection between a buyer, its exchange
opportunities, and its direct and indirect competitors. A buyer’s exchange op-
portunities and competitors in a network are determined by its links to sellers,
these sellers’ links to other buyers, and so on. In a graphG , we denote apath
between two agents as follows: a path between a buyeri and a buyerm is writ-
ten asbi − sj − bk − sl − bm , meaning thatbi and sj are linked,sj and bk are

buyers have the same valuationv, then either one could obtain the good. The assumption of generic
valuations simplifies our proofs, but the results obtain for all valuations. If two efficient allocations
A and A′ involve different sets of buyers, and if (p, A) is competitive then there is a (p′, A′) that
gives the same payoffs and is also competitive. That is, each allocation is associated with the same
set of stable payoffs. In the two buyer example, for instance, the buyer obtaining the good always
paysp = v and both buyers earnub = 0.
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linked, bk andsl are linked, and finallysl andbm are linked. For a given feasible
allocationA, we use an arrow to indicate that a sellerj ’s good is allocated to a
buyerk : sj → bk .

For a feasible allocationA, we define a particular kind of path, anopportunity
path, that connects an agent to its alternative opportunities and the competitors
for those exchanges. Consider some buyer which we labelb1. We write an op-
portunity path connecting buyer 1 to another buyern as follows:

b1 − s2 → b2 − s3 → . . . bn−1 − sn → bn .

That is, buyer 1 is linked to seller 2 but not purchasing from seller 2. Seller 2 is
selling to buyer 2, buyer 2 is linked to seller 3, and so on until we reachbn . An
opportunity path begins with an “inactive” link, which gives buyer 1’s alternative
exchange. The path then alternates between “active” links and “inactive” links,
which connect the direct and indirect competitors for that exchange. Since the
path must be consistent both with the graph and the allocation, we refer to a path
as being “in (A, G ). ” We say a buyer has a “trivial” opportunity path to itself.

Opportunity paths determine the set of competitive prices. We next show that
pmax andpmin derive from opportunity paths in (A∗, G ), whereA∗ is an efficient
allocation of goods for a given valuationv. The results show how prices relate
to third party exchanges along an opportunity path and build on the following
reasoning. Suppose for given competitive prices, some buyer 1 obtains a good
from a seller 1 at pricep1. Suppose further that buyer 1 is also linked to a seller
2, through which it has an opportunity path to a buyern, as specified above.
Because buyer 1 does not buy from seller 2 and prices are competitive, it must
be thatp2 ≥ p1. That is, seller 2’s price is an upper bound forp1. Furthermore,
since buyer 2 buys from seller 2 but not seller 3, it must be thatp3 ≥ p2. That is,
seller 3’s price provides an upper bound onp2 and hence onp1. Repeating this
argument tells us that buyer 1’s price is bounded by the prices of all the sellers
on the path. That is,if a buyer buys a good, the price it pays can be no higher
than the prices paid by buyers along its opportunity paths.13

Building on this argument, let us characterizepmax. No price paid by any
buyer is higher than its valuation. Therefore,pmax

1 is no higher than the lowest
valuation of any buyer linked to buyer 1 by an opportunity path. We label this
valuationvL(b1).14 Our next result shows that whenpmax

1 /= 0, it exactly equals
vL(b1). To prove this, we argue that we can raisepmax

1 up to vL(b1) without
violating any stability conditions. When the price of exchange between a buyer
and a seller changes, the stability conditions of all linked sellers and buyers
change as well. The proof shows that we can raise the prices simultaneously
for a particular group of buyers in such a way as to maintain stability for all
buyer-seller pairs. Forpmax

1 = 0, we show that buyer 1 has an opportunity path
to a buyer that is linked to a seller that does not sell its good. This buyer obtains
a price of 0, which then forms an upper bound for buyer 1’s price. We have:

13 This observation is central to the proofs of most of our subsequent results. We present is as a
formal lemma in the appendix.

14 Since buyer 1 has an opportunity path to itself,pmax
1 ≤ vl .
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Proposition 5. Suppose that in (A∗, G ), a buyer 1 obtains a good from a seller
1. If pmax

1 > 0, then pmax
1 = vL(b1) where vL(b1) is the lowest valuation of any

buyer l inked to buyer 1 by an opportunity path. If pmax
1 = 0, then buyer 1 has an

opportunity path to a buyer that is linked to a seller that does not sell its good.

We can understand the valuevL(b1) as buyer 1’s “outside option” when purchas-
ing from seller 1. If buyer 1 does not purchase from seller 1, the worst it can
possibly do is pay a price ofvL(b1) to obtain a good. This is the valuation of
the buyer that buyer 1 would displace by changing sellers. This displaced buyer
could be arbitrarily distant from buyer 1. Buyer 1 can purchase from a new seller
and, in the process, displace a buyern on an opportunity path pictured above as,
follows: buyer 1 obtains a good from seller 2 whose former buyer 2 now pur-
chases from seller 3 whose former buyer 3 now purchases from seller 4 and so
on, until we reach buyern who no longer obtains a good. In order to accomplish
this displacement, buyer 1 must pay its new seller a price of at leastvn . This
price becomes a lower bound for the prices paid along the opportunity path, and
is just high enough so that buyern is no longer interested in purchasing a good.
As indicated by the above Proposition, the easiest such buyer to displace is the
one with the lowest valuation on opportunity paths from buyer 1.

We next characterize the minimum competitive pricepmin in terms of oppor-
tunity paths. The opportunity paths from a seller also determine a seller’s “outside
option.” Consider a seller 1 that is selling to buyer 1. We write an opportunity
path connecting seller 1 to another buyern as follows:

s1 − b2 → s2 − b3 → . . . sn−1 − bn .

The path begins with an “inactive” link, then alternates between active and in-
active links and ends with a buyer. Ifs1 has opportunity path(s) to buyers that
do not obtain goods,s1 will receive p1 > 0. The non-purchasing buyers at the
end of the paths set the lower bound ofp1. If p1 were lower than these buyers’
valuations, there would be excess demand for goods. Therefore,pmin

1 must be no
lower than the highest valuation of these non-purchasing buyers. We label this
valuationvH (s1); it is the highest valuation of any buyer that does not obtain a
good and is linked to seller 1 by an opportunity path. The proof of the next result
shows that ifpmin

1 > 0, thenpmin
1 is exactly equal tovH (s1). As in the previous

proposition, we show this by supposingpmin
1 > vH (s1) and showing it is possible

to decrease the price in such a way as to maintain all stability conditions. If and
only if pmin

1 = 0, thens1 has no opportunity paths to buyers that do not obtain
goods. We have

Proposition 6. Suppose that in (A∗, G ), a buyer 1 obtains a good from a seller
1. If pmin

1 > 0 then pmin
1 = vH (s1), where vH (s1) is the highest valuation of any

buyer that does not obtain a good and is linked to seller 1 by an opportunity path.
If and only if pmin

1 = 0, then all buyers linked to seller 1 by an opportunity path
obtain a good in A.

We can understand the valuevH (s1) as seller 1’s “outside option” when
selling to buyer 1. The worst seller 1 can do if it does not sell to buyer 1 is earn
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a pricevH (s1) from another buyer. This price is the valuation of the buyer that
would replace buyer 1 in the allocation of goods. The replacement occurs along
an opportunity path from seller 1 to a buyern as follows: seller 1 no longer
sells to buyer 1, but sells instead to buyer 2, whose former seller 2 now sells to
buyer 3, and so on until sellern − 1 now sells to buyern. To accomplish this
replacement, seller 1 can charge its new buyer a price no more thanvn . This
price forms a new lower bound on the opportunity path, and is just low so that
the new buyerbn is willing to buy. Out of all the buyersn that could replace
buyer 1 in this way, the best for seller 1 is the buyer with highest valuation.15

We conclude the section with a summary of our results on the set of com-
petitive prices and opportunity paths.

Proposition 7. A price vector p is a competitive price vector if and only if for an
efficient allocation A, p satisfies the following conditions: if a buyer i and a seller
i exchange a good, then vL(bi ) ≥ pi ≥ vH (si ) and pi = min{pk |sk ∈ L(bi )}, (ii)
if a seller i does not sell a good then pi = 0

We illustrate these results in the example below. We show the efficient allo-
cation of goods and derive the buyer-optimal and the seller-optimal competitive
prices,pmin andpmax, from opportunity paths.

Example 1. For the network in Fig. 2 below, suppose buyers’ valuations have
the following order:v2 > v3 > v4 > v5 > v6 > v1. The efficient allocation of
goods involvesb2 purchasing froms1, b3 from s2, b4 from s3, and b6 from s4,
as indicated by the arrows. In a competitive price vectorp, p1 is in the range
v3 ≥ p1 ≥ v1: To find pmin

1 , we look for opportunity paths froms1. Seller 1
has only one opportunity path to a buyer that does not obtain a good – tob1.
Therefore,vH (s1) = v1. For pmax

1 we look for opportunity paths fromb2. Buyer 2
has only one opportunity path – tob3.16 Therefore,vL(b2) = v3. The pricep2 for
seller 2 is in the rangev3 ≥ p2 ≥ v5: Seller 2 has two opportunity paths to buyers
who do not obtain a good – tob1 and b5. Sincev5 > v1, vH (s2) = v5. Buyer 3
has only a “trivial” opportunity path to itself. Therefore,vL(b3) = v3. We can,
similarly, identify the maximum and minimum prices fors3 and s4, giving us
pmin = (v1, v5, v5, 0) andpmax = (v3, v3, v4, v6). Any convex combination of these
upper and lower bounds, (βv1+(1−β)v3, βv5+(1−β)v3; βv5+(1−β)v4, (1−β)v6)
whereβ ∈ [0, 1], are also competitive prices.

3 Network comparative statics

In this section we explore how changes in a network impact agents’ competitive
payoffs.

15 Note thatvH (s1) is exactly the social opportunity cost of allocating the good to buyer 1. If buyer
1 did not purchase, the buyer that would replace it in an efficient allocation of goods, the “next-best”
buyer, has valuation ofvH (s1).

16 The path fromb2 to b4, for example, is not an opportunity path, because it does not alternative
between inactive and active links.
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Fig. 2.

3.1 Payoffs as functions of the graph

To compare payoffs between graphs, we first make a unique selection from set of
competitive payoffs for each graph. For a graphG and valuationv, we define the
price vectorp(G ) ≡ qpmin(G ) + (1−q)pmax(G ), whereq ∈ [0, 1] andpmin(G )
and pmax(G ) are the lowest and highest competitive prices forG given v. We
assume thatq is the same for all graphs and valuations. By Proposition 4, the
set of competitive prices is convex, so the price vectorp(G ) is competitive. For
a givenq and given valuationv, let ub

i (G ) and us
j (G ) denote the competitive

payoffs of buyeri and sellerj as a function ofG . Taking an efficient allocation
for (G , v), for a buyeri that purchases from sellerj , we haveus

j (G ) = pj (G )
andub

i (G ) = vi − pj (G ). Buyers who do not obtain a good receive a payoff of
zero, as do sellers who do not sell a good.

This parameterization allows us to focus on how changes in a network affect
an agent’s “bargaining power.” Withq fixed across graphs, the difference in an
agent’s ability to extract surplus depends on the changes in the outside options,
as determined by the graphs. We can see this as follows: The total surplus of an
exchange between a buyeri and a sellerj is vi . Of this surplus, in graphG a
buyeri earns at least its outside optionvi − pmax

j (G ) = vi − vL(bi ), wherevL(bi )
is derived from the opportunity paths inG . Similarly, sellerj earns at least its
outside optionpmax

j (G ) = vH (si ). The buyer then earns a proportionq of the
remaining surplus, and the seller earns a proportion (1− q). We have

ub
i (G ) = vi − vL(bi ) + q

[
vi − (

vi − vL(bi ) + vH (sj )
)]

= vi − pj (G ),

us
j (G ) = vH (sj ) + (1− q)

[
vi − (

vi − vL(bi ) + vH (sj )
)]

= pj (G ).

A change in the graph would impactvL(bi ) andvH (sj ) through a change in an
agent’s set of opportunity paths, and thereby affect agents’ shares of the total
surplus from exchange.17

17 This approach to “bargaining power” is often used in the literature on specific assets. For instance,
in a bilateral settting Grossman and Hart (1986) fix a 50/50 split (q = 1/2) of the surplus net agents’
outside options. They then analyze how different property rights change agents’ outside options.
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The proportionq could depend on some (unmodeled) features of the envi-
ronment, such as agents’ discount rates.18 An assumption of a “Nash bargaining
solution” would setq = 1

2. Specific price formation processes may also yield
a particular value ofq . An ascending-bid auction for the network setting, for
example, givesq = 1 (see Kranton and Minehart 2000a). In this sense, our pa-
rameterization provides a framework within which to place specific models of
network competition and bargaining. As long asq does not depend on the graph,
our payoffs are a reduced form for any model that yields individually rational
and pairwise stable payoffs.

3.2 Comparative statics on an agent’s network: Population and link pattern

We now study how changes in a network affect agents’ competitive payoffs.
We show changes in payoffs for any valuationv. We first consider the payoff
implications of adding a link, holding fixed the number of buyers and sellers.
We then consider adding new sets of buyers or sellers to a network. A priori, the
impact of these changes is not obvious. As mentioned in the introduction, there
are possibly many externalities from changing the link pattern.

Adding Links. We begin with preliminary results to help identify the source of
price changes when a link is added to a network. Consider a link patternG and
add a link between a buyer and a seller that are not already linked. Denote the
buyerba , the sellersa , and the augmented graphG ′. The first result shows that
an efficient allocationA′ for G ′ involves at most one new buyer with respect
to an efficient allocationA for G . We can trace all price changes to this buyer.
This buyer either replaces a buyer that purchased inA or is simply added to this
set of buyers. It is also possible that no new buyer obtains a good. In this case,
the second result says we can simply restrict attention to an allocation that is
efficient in both graphs.

If a new buyer does obtain a good, the efficient allocation changes along what
we call areplacement path, a form of opportunity path. The new buyern, which
we call thereplacement buyer, obtains a good from a seller, whose previous
buyer obtains a good from a new seller, and so on, along an opportunity path
from buyer n to some buyer 1. Buyer 1 either no longer obtains a good or
obtains a good from a previously inactive seller. Critically, we show that this
replacement involves the new link, and no other changes can strictly improve
economic welfare. (If any such improvement were possible, it could not involve
the new link and so would have been possible in the original graphG , and,
hence, the original allocationA could not have been efficient.)

Lemma 1. For a given v, if an efficient allocation A for G and an effcient
allocation A′ for G ′ involve different sets of buyers, then A and A′ are identical
except on a set of n or n + 1 distinct agents H = {(s1), b1, s2, b2, . . . , sn , bn} that

18 In bilateral bargaining with alternating offers, Rubinstein (1982) and others derivesq from
agents’ relative rates of discount.
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may or may not include the seller s1. These agents are connected by an opportunity
path (s1) → b1−s2 → b2−s2 → ...bn−1−sn → bn in (A′, G ′). The path includes
(relabeled) the agents with the additional link sa → ba . In (A, G ), this path is in
two pieces bn − sn → bn−1 − . . . sa+1 → ba and sa → ba−1 − . . . s2 → b1 − (s1),
with the new link between sa and ba the “missing” link. Buyer n obtains a good
in A′ but not in A. Buyer 1 obtains a good in A. Buyer 1 obtains a good in A′ if
and only if s1 ∈ H .

Lemma 2. For a given v, if an efficient allocation A for G and an efficient
allocation A′ for G ′ involve the same set of buyers, then A is efficient for both
graphs.

With these preliminary results, we can evaluate the impact of an additional
link on payoffs for different buyers and sellers in a network. Our first result
considers the direct effects of the link. We show that the buyer and seller with
the additional link (ba and sa ) enjoy an increase in their competitive payoffs.
Intuitively, the buyer (seller) is better off with more direct sources of supply
(demand).

Proposition 8. For the buyer and seller with the additional link (ba and sa ),
ub

a (G ′) ≥ ub
a (G ) and us

a (G ′) ≥ us
a (G ).

The result is proved by examining opportunity paths. Suppose that when the
link is added, a new buyer (the replacement buyer) obtains a good. By Lemma 1,
this buyer,bn , has an opportunity path toba in (A, G ). Becausebn does not
obtain a good inA, it must be facing a prohibitive “best” price of at leastvn .
This can only happen ifba ’s price, which is an upper bound of the prices of
sellers along the opportunity path, is at leastvn . In (A′, G ′), the direction of the
opportunity path is reversed. That is,ba now has an opportunity path tobn . The
price thatbn pays is now an upper bound onba ’s price. Sincebn pays at most its
valuation,ba ’s price is at mostvn . We have, thus, shown thatba pays a (weakly)
lower price and receives a higher payoff in (A′, G ′).

Our next results consider the indirect effects of a link. One effect, as men-
tioned in the introduction, is thesupply stealing effect. When a link is added
betweenba and sa , ba can now directly compete forsa ’s good. Buyers with
direct or indirect links tosa , then, should be hurt by the additional competition.
Sellers should be helped. On the other hand, there is asupply freeing effect. When
a link is added betweenba andsa , ba depends less on its other sellers for supply.
Some buyern that is not obtaining a good may now obtain a good from a seller
sk ∈ L(ba ). With less competition for these sellers’ goods, sellers should be hurt
and buyers helped.

We identify the two types of paths in a network that confer these payoff
externalities. If inG , there is a path connecting an agent andba , we say the
agent has abuyer path in G . If in G there is a path connecting an agent andsa ,
we say the agent has aseller path in G . Buyer paths confer the supply freeing
effect: A buyeri with a buyer path is indirectly linked to buyera and is, thus,
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in competition for some of the same sellers’ output. Whenba establishes a link
with another seller, it frees supply forbi . Sellers along the buyer path face lower
demand and receive weakly lower prices. Seller paths confer the supply stealing
effect: If bi has a seller path,bi faces more competition forsa ’s good; that is,ba

steals supply frombi . Competition for goods increases, hurtingbi and helping
sellers along the seller path.

We use these paths to show how new links affect the payoffs of third parties.
It might seem natural that the size of the externality depends on the length of the
path. The more distant the new links, the weaker the effect. The next example
shows that this is not the case. It is not the length of a path that matters, but how
it is used in the allocation of goods.

Fig. 3.

Example 2. In Figure 3 above, consider the impact onb2 of a link betweenb4

and s3. b2 has a short buyer path and a long seller path. However, the supply
stealing effiect (through the seller path) dominates. Without the link betweenb4

and s3, b2 always obtains a good (b2 always buys froms2, andb3 always buys
from s3). With the link, b2 is sometimes replaced byb4 and no longer obtains a
good. This occurs for particular valuationsv. For otherv, b2 is not replaced, but
the price it pays is weakly higher. Therefore,b2’s competitive payoffs fall for
any v.

We next show how the impact of buyer and seller paths depend on the network
structure. Our first result demonstrates the payoff effects when an agent only has
one type of path. Following results indicate payoff effects when agents have both
buyer and seller paths.

If an agent has only a buyer path or only a seller path inG , the effect of the
new link on its payoffs is clear. A buyer that has only a buyer path (seller path)
is helped (hurt) by the additional link. A seller that has only a buyer path (seller
path) is hurt (helped) by the additional link. We have the following proposition,
which we illustrate below.
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Proposition 9. For a buyer i that has only buyer paths in G , ub
i (G ′) ≥ ub

i (G ).
For a buyer i that has only seller paths in G , ub

i (G ′) ≤ ub
i (G ). For a seller j

that has only buyer paths in G , us
j (G ′) ≤ us

j (G ). For a seller j that has only
seller paths in G , us

j (G ′) ≥ us
j (G ).

Example 3. In the following graph, consider adding a link between buyer 4 and
seller 3. Sellers 1 and 2 have only seller paths and are better off. Seller 4 with
only a buyer path is worse off. Buyer 5 is better off because it has only a buyer
path. Buyers 1, 2, and 3 with only seller paths are worse off.

Fig. 4.

When agents have both buyer and seller paths, the overall impact on payoffs
is less straightfoward. Supply freeing and supply stealing effects go in opposite
directions. In many cases, however, we can determine the overall impact of a new
link. We begin with the agents that have links toba or sa . We show that the buyers
(sellers) linked to the seller (buyer) with the additional link are always weakly
worse off. For buyers (sellers), the supply stealing (freeing) effect dominates.

Proposition 10. For every bi ∈ L(sa ) in G , ub
i (G ′) ≤ ub

i (G ). For sj ∈ L(ba )
in G , us

j (G ′) ≤ us
j (G ).

The proof argues that for these buyers (sellers), there is in fact no supply
freeing (stealing) effect associated with the new link. To see this, consider a
bi ∈ L(sa ). Potentially,bi could benefit from the fact thatba ’s new link frees
the supply ofba ’s other sellers. We show that this hypothesis contradicts the
efficiency of the allocationA in G . Suppose, for example, thatbi benefits from
the new link because it is the replacement buyer. That is,bi obtains a good in
(A′, G ′), but not in (A, G ). By Lemma 1,bi replaces a buyer 1 along an op-
portunity path such asb1 − sa → ba − si → bi in (A′, G ′), as pictured below
in Fig. 5 where the new link is dashed. That is, in this example,bi obtained a
good directly fromsa in A and does not obtain a good at all inA′. Then, since
bi is linked to sa by hypothesis,bi could have replaced buyer 1 along the path
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b1 − sa → bi in G . If the replacement is efficient inG ′ then it is also efficient
in G . Hence,A could not have been an efficient allocation.19

Fig. 5.

We can show further that any buyer that is only linked to sellers that are, in
turn, linked toba is always better off with the additional link. For such a buyer,
the supply freeing effect dominates any supply stealing effect. We provide the
proposition, then illustrate below. The intuition here is simple. If the buyer obtains
a good, it must be from a seller linked toba . By our previous Proposition 10,
this seller is worse off inG ′. So any if its possible buyers must be better off.

Proposition 11. For every bi such that L(bi ) ⊆ L(ba ) in G , ub
i (G ′) ≥ ub

i (G ).

The next example shows how to apply this and previous results to evaluate the
impact of a link in a given graph.

Example 4. In Fig. 6 below, consider the impact of a link betweenb3 ands2. By
Proposition 8,b3 ands2 both enjoy an increase in their competitive payoffs. By
Proposition 10,b2, s1, b4, and s3 all have lower payoffs. By Proposition 11,b1

andb5 have higher payoffs. We can further show thatb6 has higher payoffs and
s4 has lower payoffs, since their only paths to the agents with the additional link
is throughb5.

Changing network by adding buyers of sellers. We conclude our analysis by
placing the above propositions in the context of earlier results on assignment
games. The literature on assignment games considered adding agents on one
side of a matching “market.” In our framework, this would be equivalent to
adding new buyers, or sellers, to a network. In this case, what we call the supply
stealing/freeing effects are easier to analyze because the new buyers or sellers
do not have any existing links; buyers and sellers are added along with all their
links. Intuitively, adding a new seller can only free supply and adding a new
buyer can only steal it.

19 The proof of Proposition 10 involves some subtlety. For example, the result does not generalize
to buyers linked to sellers linked to buyers linked tosa .
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Fig. 6.

The results below show that indeed adding a seller (buyer) along with all its
links must cause a net supply freeing (stealing) effect. The above intuition aside,
these results are interesting because, given the necessity of links for exchange in
a network, adding buyers (sellers) does not necessarily increase (decrease) the
effective buyer/seller ratio of an agent. For example, in the network in Fig. 1,
supposes1 is subtracted from the network. Becauses1 provides the links to the
rest of the network for buyers 1 and 2, these buyers are also effectively removed,
and the buyer-seller ratio would decrease for the remaining agents. At first glance,
it would seem that a lower buyer-seller ratio should help some buyers and hurt
some sellers. The next result, however, shows that this is not the case.

A buyer is always better off when sellers are added to its network, regardless
of the number of new buyers that compete for the albeit increased supply. Sellers
are always worse off. The proposition is proved by an application of an earlier
result due to Demange and Gale (1985, Corollary 3).

Proposition 12. Consider a graph G linking a collection of buyers and sellers.
Add any set of sellers S together with arbitrary links to the graph, and let G ′

denote the new graph. For all buyers i we have ub
i (G ) ≤ ub

i (G ′). For every
seller j /∈ S , we have us

j (G ) ≥ us
j (G ′).

We have an analogous result for adding buyers to a network. A seller is always
better off, regardless of the number of competing sellers that are effectively added
to the seller’s network. A buyer is always worse off.

Proposition 13. Consider a graph G linking a collection of buyers and sellers.
Add any set of buyers B together with arbitrary links to the graph, and let G ′

denote the new graph. For all sellers j , we have us
j (G ) ≤ us

j (G ′). For every
buyer i /∈ B, we have ub

i (G ) ≥ ub
i (G ′).
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4 Conclusion

This paper studies competition in buyer-seller networks, with particular atten-
tion to the role of network structure. When prior relationships are necessary for
exchange, we show that agents’ “outside options” depend on the entire web of
direct and indirect links. Even distant links may have large effects on an agent’s
earnings. In contrast, many models of bargaining and exchange simply assume
a fixed reservation value as an outside option. Some consider a limited number
of alternative trading partners, as in Bolton and Whinston (1993) where a buyer
may deal with two sellers. The present paper, to the best of our knowledge, is the
first to analyze outside opportunities when agents on both sides of an exchange
can have multiple alternative partners.20

We first develop a general model of network competition. This model char-
acterizes prices that satisfy a natural “supply equals demand” condition for the
network setting. Resulting payoffs are both individually rational and pairwise
stable. No individual agent or pair of agents can do better. Any specific model
of competition that yields individually rational, pairwise stable payoffs can be
represented by our payoff functions. A parameterq ∈ [0, 1] allows for different
splits of the surplus of exchange net agents’ “outside options.” It is these outside
options, then, that determine an agent’s bargaining power.

We show how these outside options derive from a given network structure.
We define a particular type of path in a network called anopportunity path.
Opportunity paths connect agents to their alternative exchange opportunities and
to their direct and indirect competitors. These paths determine agents’ outside
options. For example, the (perhaps indirect) demand from a (perhaps distant)
buyer along a path ensures that a seller receive at least a certain price elsewhere,
if it does not sell to its current buyer. This distant demand gives the seller its
outside option, which guarantees at least a certain share of the surplus from
exchange.

Finally, we consider how changes in third parties’ links impact agents’ pay-
offs. That is, we conduct comparative statics on the link pattern. Again, we parse
a network into paths.Seller (buyer) paths connect an agent to a particular seller
(buyer) and tell us whether it will be helped or hurt by that seller’s (buyer’s)
additional links. Seller paths generate what we call asupply stealing effect, since
the new link establishes an additional source of demand. Buyer paths generate
a supply freeing effect, since the new link establishes another source of supply.
Using these paths, we prove several results about differently connected buyers
and sellers.

In conclusion, the paper provides a general model of “outside options,” and
hence bargaining power, when exchange is limited by pre-existing relationships.
The model of network competition can serve as a reduced form for specific mod-
els of competition and bargaining. The network structure, through opportunity

20 A series of papers considers price formation in a market where anonymous buyers and sellers
meet pairwise (e.g. Gale, 1987, Rubinstein and Wolinsky, 1985). This effort differs from ours, because
we require buyers and sellers to be linked in order to engage in exchange.
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paths, buyer paths, and seller paths should affect the outcomes of these games
in the same way as they affect our competitive payoffs. These payoff results,
and the identification of the paths themselves, should also prove useful to further
analysis of network structure.

Appendix

Proof of Proposition 1.
Part 1: We show that if a price vector and allocation (p, A) satisfies Conditions
(1), (2), and (3) in the definition of a competitive price vector, then the associated
payoff vector is stable.

Individual rationality: For each buyeri and sellerj that exchange a good, indi-
vidual rationality is satisfied since 0≤ pj ≤ vi . Buyers and sellers that do not
exchange goods all earn a payoff of 0 which is also individually rational.

Pairwise stability: First consider linked buyers and sellers that exchange goods
in A: For a buyeri and sellerj , ub

i + us
j = vi − pj + pj = vi satisfying pairwise

stability. Next consider linked buyers and sellers that do not exchange goods
in A. For each buyeri linked to sellerk but obtains a good from sellerj , the
joint payoffs of buyeri and sellerk are ub

i + us
k = vi − pj + pk . By condition

(1), pj ≤ pk , which implies thatub
i + us

k ≥ vi , satisfying pairwise stability. For
each buyeri linked to sellerk who does not obtain a good from any seller, the
joint payoffs of buyeri and sellerk areub

i + us
k = pk . Condition (2) implies that

pk ≥ vi , so ub
i + us

k ≥ vi , satisfying pairwise stability.

Part 2: A stable payoff vector (ub , us ) is defined for a feasible allocation of
goodsA. We show that (p, A) is competitive, wherep = us . That is, we show
that (p, A) derived from (ub , us ) satisfies Conditions (1), (2), and (3).

Condition (1): For a buyeri purchasing from a sellerj : Individual rationality
implies that 0≤ pj ≤ vi . Pairwise stability implies thatub

i +us
k = vi −pj +pk ≥ vi

for all sk ∈ L(bi ). This impliespk ≥ pj for all sk ∈ L(bi ), or, in other words,
pj = min{pk |sk ∈ L(bi )}.

Condition (2): For a buyeri that is not purchasing a good, by the definition of
feasible stable payoffs,ub

i = 0. Pairwise stability then implies that 0 +pk ≥ vi

for all sk ∈ L(bi ). That is, buyeri ’s valuation is lower than the price charged by
any of its linked sellers:vi ≤ min{pk |sk ∈ L(bi )}.

Condition (3): For a sellerj that is not selling a good, by the definition of feasible
stable payoffs,us

j = 0, which impliespj = 0. �
Lemma A1. Suppose that in (A, G ), a buyer 1 has an opportunity path to a buyer
n. Let p be a competitive price vector. If buyer 1 obtains a good from a seller 1,
then p1 ≤ pn . If buyer 1 does not obtain a good, then v1 ≤ pn .

Proof. Sincebn−1 ∈ L(sn ) but sn−1 → bn−1, we havepn−1 ≤ pn . Sincebn−2 ∈
L(sn−1), but sn−2 → bn−2, we havepn−2 ≤ pn−1. Repeating this reasoning, we
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obtain p2 ≤ . . . ≤ pn . If buyer 1 obtains a good from a seller 1, then since
b1 ∈ L(s2), we havep1 ≤ . . . ≤ pn as desired. If buyer 1 does not obtain a good
from seller 1, then sinceb1 ∈ L(s2), we must havev1 ≤ p2 ≤ . . . ≤ pn .

Lemma A2. Suppose that in (A, G ), a buyer 1 has an opportunity path to a buyer
n. Let p be a competitive price vector. If buyer 1 obtains a good from a seller 1,
then p1 ≤ vn . If buyer 1 does not obtain a good, then v1 ≤ vn .

Proof. By individual rationality, a buyer never pays a price higher than its valu-
ation. Thereforepn ≤ vn . If buyer 1 obtains a good from a seller 1, then Lemma
A1 implies thatp1 ≤ vn . If buyer 1 does not obtain a good, then Lemma A1
implies thatv1 ≤ pn . So we have thatv1 ≤ pn ≤ vn as desired.

Proof of Proposition 5. We show thatpmax
1 is exactly equal tovL(b1), the lowest

valuation of any buyer on an opportunity path from buyer 1. The logic is that we
can raisep1 to vL(b1) without any violation of pairwise stability, but any higher
price would violate pairwise stability.

Let p̂max(b1) = min{pmax
k |sk ∈ L(b1), k /= 1}. By individual rationality and

pairwise stability for buyer 1, we must havepmax
1 ≤ min{v1, p̂max(b1)}. If

pmax
1 < min{v1, p̂max(b1)}, then we can raisepmax

1 up to min{v1, p̂max(b1)} with-
out violating pairwise stability for any buyer-seller pair containingb1. Raising
pmax

1 also does not violate pairwise stability for other buyer-seller pairs, since
other buyers inL(s1) already find seller 1’s price to be prohibitively high. This
contradicts the maximality ofpmax

1 . So we must havepmax
1 = min{v1, p̂max(b1)}.

Let Bp̂max(b1) = {bk |b1 has an o.p.(“opportunity path”) tobk and bk pays a
price pmax

k = p̂max(b1)}. Fix any bk ∈ Bp̂max(b1). By pairwise stability, we have
that for allsm ∈ L(bk ), pmax

m ≥ p̂max(b1). The inequality is strict (pmax > p̂max(b1))
if and only if sm sells its good to a buyerbm /∈ Bp̂max(b1).

If bk ∈ Bp̂max(b1) thenvk ≥ p̂max(b1).

Case I: pmax
1 > 0.

We argue that ifpmax
1 > 0, then there is abk ∈ Bp̂max(b1) with vk = p̂max(b1). If

bk ∈ Bp̂max(b1) then vk ≥ p̂max(b1). Suppose that for allbk ∈ Bp̂max(b1), we have
vk > p̂max(b1). If there is abk ∈ Bp̂max(b1) linked to an inactive seller, then it must
be that ˆpmax(b1) = 0 and hence thatpmax

1 = 0 contradicting our assumption.
Otherwise, it is possible to raise the price ˆpmax(b1) paid by all the buyers in

Bp̂max(b1) without violating stability: that is, individual rationality for any agent or
pairwise stability for any pair of agents. The pairs affected are all those (bi , sj )
for which eitherub

i or us
j changes. These are of two types: (i) (bi , sj ) where

sj ∈ L(bi ) andbi ∈ Bp̂max(b1) and (ii) (bi , sj ) wheresj ∈ L(bi ), bi /∈ Bp̂max(b1), and
sj sells a good to somebk ∈ Bp̂max(b1).

To preserve stability, we raise ˆpmax(b1) by a small enough amount that (1)
for eachbk ∈ Bp̂max(b1), the inequalityvk > p̂max(b1) is still satisfied; and (2) for
eachsj � inL(bk ) selling to a buyerbj /∈ Bp̂max(b1), the inequalitypmax

j > p̂max(b1)
is still satisfied.
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Requirement (1) insures that individual rationality still obtains for all buyers
whose payoffs have changed. Since sellers who sell goods to these buyers get
higher prices, their payoffs are also individually rational.

Consider pairwise stability. First consider pairs (bi , sj ) of type (i) above.
We have argued thatsj must sell a good to somebj . If bj ∈ Bp̂max(b1), then
pmax

j = p̂max(b1). Sosj receives the same price thatbi pays and pairwise stability

for (bi , sj ) is trivial. If bj /∈ Bp̂max(b1), then Requirement (2) insures pairwise
stability for (bi , sj ). Next consider pairs (bi , sj ) of type (ii) above. The sellerj
receives a higher payoff ˆpmax(b1) than before. Buyeri ’s payoff is unchanged, so
pairwise stability still holds.

We have shown that we can raise ˆpmax(b1) without violating the stability
conditions for any agents. This is a contradiction to the assumption that the prices
were maximal. Therefore, we must havevk = p̂max(b1) for somebk ∈ Bp̂max(1).
We can writepmax

1 = min{v1, vk}.
We next argue thatpmax

1 = min{v1, vk} is the lowest valuation out of all
buyers linked to buyer 1 by an o.p. (including itself). Ifb1 has an o.p. to any
other buyern then by Lemma A2,pmax

1 ≤ vn so that min{v1, vk} ≤ vn as desired.
We have argued that ifpmax

1 > 0, thenpmax
1 = vL(b1) wherevL(b1) is the

lowest valuation out of all buyers linked to buyer 1 by an o.p. (including buyer
1 itself).

Case II: pmax
1 = 0.

Finally, suppose thatpmax
1 = 0. By our genericity assumption,vk /= 0 for all

buyersk . So if pmax
1 = 0, it must be that ˆpmax(b1) = 0. It follows from the proof

above that there is abk ∈ Bp̂max(b1) linked to an inactive seller. (Otherwise, we
could raise ˆpmax(b1) to be above 0 without violating pairwise stability.) We have
thus shown thatb1 has an opportunity path to a buyer who is linked to a seller
who does not sell its good.

Proof of Proposition 6. The proof is similar to the proof of Proposition 5 and is
available from the authors on request.

Proof of Proposition 7. We will show the equivalence of conditions (i) and (ii)
to the definition of a competitive price vector.

Neccessity: If (p, A) is a competitive price vector, then conditions (i) and (ii) are
an immediate implication of Propositions 5 and 6.

Sufficiency: We show that a price vector satisfying conditions (i) and (ii) satisfies
Conditions (1), (2), and (3) in the definition of a competitive price vector.

We first show that if a buyeri and sellerj exchange a good, then 0≤ pj ≤ vi .
Since, by condition (i),pj ≥ vH (si ) > 0 (for genericv), we havepj > 0. Since
buyer i has a trivial opportunity path to itself,vL(bi ) ≤ vi . Condition (i) that
pj ≤ vL(bi ) then impliespj ≤ vi .

We next show that if a buyeri does not obtain a good, thenvi ≤ min{pk |sk ∈
L(bi )}. Consider ansk ∈ L(bi ). If sk is selling its good to some other buyerl ,
thenpk ≥ vH (sk ). Since buyeri is on an opportunity path to sellerk , it must be
that vH (sk ) ≥ vi . So pk ≥ vi as desired. Ifsk is not selling its good, then since
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buyer i is not obtaining a good, there is a violation of efficiency (sincevi > 0
by our genericity assumption). �
Proof of Lemma 1. We restate the lemma, because the notation is important.

Lemma 1. If efficient allocations in G and G ′ involve different sets of buyers,
then there are efficient allocations A for G and A′ for G ′ such that A and A′ are
identical except on a set of firms H = {(s1), b1, s2, b2, . . . , sn , bn} that may or
may not include the seller s1. These firms are connected by a path (s1) → b1−s2 →
b2 − s2 → . . . bn−1 − sn → bn in (A′, G ′). The path includes (relabeled) sa → ba .
In (A, G ), the same firms are connected by two paths bn −sn → bn−1−. . . sa+1 →
ba and sa → ba−1 − . . . s2 → b1 − (s1). Buyer n obtains a good in A′ but not in A.
Buyer 1 obtains a good in A. Buyer 1 obtains a good in A′ if and only if s1 ∈ H .

Proof. For each new buyer and any efficient allocations, we first construct paths
that have the structure of the paths in the Lemma. We then argue that there can
be at most one new buyer inA′. We then argue that we can choose the efficient
allocations to have the desired structure.

Choose any efficient allocationsA andA′. Let buyern be a buyer that obtains
a good inA′ but not inA. Buyern buys a good inA′, say from sellern. If sn did
not sell a good inA thenbn should have obtainedsn ’s good in (A, G ) unlessbn

andsn were not linked. That is, unlessbn = ba andsn = sa , we have contradicted
the efficiency ofA. If bn = ba and sn = sa , the hypothesis in the Lemma about
opportunity paths is trivially satisfied.

Otherwise, it must be thatsn did sell a good inA, say tobn−1 wherebn−1 /= bn .
If bn−1 does not obtain a good inA′, then the efficiency ofA′ implies that
vn−1 ≤ vn . If vn−1 < vn , this contradicts the efficiency ofA becausebn could
have replacedbn−1 in A. We rule out the casevn−1 = vn as non-generic.

So it must be thatbn−1 does obtain a good inA′, say from sn−1 where
sn−1 /= sn . Repeating the above argument shows thatsn−1 must have sold its
good in A to a bn−2 who also obtains a good inA′, and so on. Eventually,
this process ends withbn−k = ba and sn−k = sa and sa → ba in (A′, G ′). (By
construction, the process always picks out agents not already in the path. Also by
construction, the process does not end unless we reachbn−k = ba andsn−k = sa ,
but it must end because the population of buyers is finite.)

We have constructed two paths. InA′, we have constructed an opportunity
path fromba to bn . In A, we have constructed an o.p. (opportunity path) from
bn to ba .

If sa is inactive in A, we now have paths that have the structure of the
paths in the lemma. Otherwise,sa sells its good to a buyer, saybn−k−1 in A. If
bn−k−1 does not obtain a good inA′ then we again now have paths that have
the structure of the paths in the lemma. Otherwisebn−k−1 obtains a good inA′

from a seller, saysn−k−1. If this seller is inactive inA, we now have paths that
have the structure of the paths in the lemma. And so on. Eventually, this process
must end because it always picks out new agents from the finite population of
agents. This constructs the paths in the lemma.
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We next argue that there can be at most one new buyer inA′. Suppose there
are two new buyersn and n ′. For each one, we can construct a path toba and
sa as above. But this is a contradiction: since each seller has only one unit of
capacity, it is impossible for the two paths from buyersn andn ′ to overlap.

Finally, we show that we can chooseA and A′ as in the hypothesis of the
Lemma. Fix any efficient allocationsA andA′ and construct the paths as above.
Suppose that the path construction process above ends with an inactive seller
s1. In G ′ at the allocationA, buyer n has a path tos1 : bn − sn → bn−1 −
. . . sa+1 → ba − sa → ba−1 − . . . s2 → b1 − s1. We replace this with the path:
s1 → b1 − s2 → b2 − s2 → . . . bn−1 − sn → bn . This gives us an allocatioñA′

that is necessarily efficient inG ′ (the efficient set of buyers obtains goods) and
is related toA as in the hypothesis of the lemma.

Suppose that the path construction process above ends with a buyerb1 who
does not obtain a good in (A′, G ′). In G ′ at the allocationA, buyer n has an
opportunity path tob1 : bn−sn → bn−1−. . . sa+1 → ba−sa → ba−1−. . . s2 → b1.
We replace this with the path:b1 − s2 → b2 − s2 → . . . bn−1 − sn → bn . This
gives us an allocatioñA′ that is necessarily efficient inG ′ (the efficient set of
buyers obtains goods) and is related toA as in the hypothesis of the lemma.�
Proof of Lemma 2. Since by hypothesis the same set of buyers obtains goods in
A as in A′, A yields the same welfare as any efficient allocation inG ′. Since
G ⊂ G ′, A is also feasible inG ′ and hence efficient. �

We call the setH from Lemma 1 thereplacement set. We also refer to the
paths in the lemma as thereplacement paths. Buyern is thereplacement buyer,
and we say that buyer 1 is replaced by buyern.

The next four lemmas will be used in proofs below. They use the notation
and set up of Lemma 1. The first two characterize the maximal prices for buyers
in the replacement set. There are corresponding results for the minimal prices.
These second two results (which we state without proof) pin down the minimal
prices quite strongly.

Lemma A3. Let A and A′ be efficient allocations in G and G ′ involving different
sets of buyers as in Lemma 1. We assume the notation from Lemma 1. In G ,
vn ≤ pmax

n ≤ pmax
n−1 . . . ≤ pmax

a+1 and pmax
a = . . . = pmax

2 . If buyer 1 is replaced, then
pmax

2 = v1. If buyer 1 is not replaced, then pmax
2 = 0.

Proof. The inequalitiespmax
n ≤ pmax

n−1 . . . ≤ pmax
a+1 follow from the fact that there

is an opportunity path from buyern to buyera in (A, G ). Sincebn is linked to
sn but does not obtain a good inA, it must be thatvn ≤ pmax

n .
First suppose that buyer 1 is not replaced by buyern in A′. Then inA, buyer

1 is linked to an inactive seller and so pays a pricepmax
2 = 0 to seller 2. There is

an opportunity path from any buyer in{b2, . . . , ba−1} to b1 so by Proposition 5
we have 0 =pmax

2 = pmax
3 = . . . pmax

a .
Now suppose that buyer 1 is replaced by buyern in (A′, G ′). Let bi be

one of the set{b1, b2, . . . , ba−1}. If bi pays a price ofpmax
i+1 = 0 inG , then by

Proposition 5,bi has an opportunity path to a buyerl who is linked to an inactive



324 R.E. Kranton, D.F. Minehart

seller. InG ′ with the allocation A, buyer n has an opportunity path tobi and
hence tobl . But then buyern could be added to the set of buyers who obtain a
good without replacing buyer 1. This contradicts the efficiency ofA′.

So bi pays a positive pricepmax
i+1 . Let buyerL be the “price setting” buyer

– that is, the buyer with valuationvL(bi ) = pmax
i+1 . (We will say vL(bi ) = vL for

short.) By Proposition 5,bi has an opportunity path to buyerL . In G ′ with
the allocation A, buyer n has an opportunity path tobi and hence tobL. If
vL < v1, then it is more efficient for buyern to replacebL than to replaceb1.
This contradicts the efficiency ofA′. So it must be thatpmax

i+1 ≥ v1. Buyer i also
has an opportunity path to buyer 1. This implies thatpmax

i+1 ≤ v1. So it must be
that pmax

i+1 = v1 as desired. �
Lemma A4. Let A and A′ be efficient allocations in G and G ′ involving different
sets of buyers as in Lemma 1. We assume the notation from Lemma 1. In G ′,
vn = pmax′

n = . . . pmax′
a+1 = pmax′

a ≥ . . . ≥ pmax′
2 . If buyer 1 is replaced, then

pmax′
2 ≥ v1. If buyer 1 is not replaced, then it buys from s1 and pmax′

2 ≥ pmax′
1 .

Proof. There is an opportunity path in (A′, G ′) from b2 to bn . This implies that
pmax′

2 ≤ pmax′
3 ≤ pmax′

n . Sincebn buys a good fromsn , pmax′
n ≤ vn .

We argue thatpmax′
a = vn . This implies thatvn = pmax′

n = . . . = pmax′
a+1 = pmax′

a .
By Proposition 5 the pricepmax′

a is determined by buyera ’s opportunity paths
in (A′, G ′). All of these opportunity paths are also opportunity paths in (A, G )
except the one from buyera to buyern: ba − sa+1 → ba+1 − . . . sn → bn . By
Lemma A3, buyera pays a strictly positive pricepmax

a+1 in (A, G ) and so has a
price setting buyerL. Buyer L has the lowest valuationvL(ba ) (or vL for short)
of all buyers to which buyera has an opportunity path in (A, G ). There is an
opportunity path from buyern to buyerL in (A, G ). (Join the o.p. from buyern
to buyera [bn −sn → bn−1− . . . sa+1 → ba ] to the o.p. from buyera to buyerL.)
ThereforevL ≤ vn . If vL < vn , we have a contradiction to the efficiency ofA in
G because we could have replaced buyerL with buyern in (A, G ). Therefore
vL = vn or equivalentlypmax′

a = vn .
To finish the proof, suppose that buyer 1 is replaced, so that it does not obtain

a good inA′. Sinceb1 ∈ L(s2), it must be thatv1 ≤ pmax′
2 . If buyer 1 is not

replaced, then it buys froms1. Sinceb1 ∈ L(s2) it must be thatpmax′
2 ≥ pmax′

1 . �
Lemma A5. Let A and A′ be efficient allocations inG and G ′ involving different
sets of buyers as in Lemma 1. We assume the notation from Lemma 1. In G ,
vn ≤ pmin

n ≤ pmin
n−1 . . . ≤ pmin

a+1 and pmin
a = . . . = pmin

2 . If buyer 1 is replaced, then
pmin

a = vH (sa ) ≤ min{v1, . . . , va−1}. If buyer 1 is not replaced, then pmin
a = 0.

Proof. The proof is available on request from the authors. It is similar to the
proofs of Lemmas A3 and A4.

Lemma A6. Let A and A′ be efficient allocations in G and G ′ involvinq different
sets of buyers as in Lemma 1. We assume the notation from Lemma 1. In G ′,
pmin ′

n = . . . = pmin ′
a+1 = pmin ′

a = . . . = pmin ′
2 . If buyer 1 is replaced, then pmin ′

2 = v1.
If buyer 1 is not replaced, then pmin ′

2 = pmin ′
1 = 0.
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Proof. The proof is available on request from the authors. It is similar to the
proofs of Lemmas A3 and A4.

Proof of Proposition 8. We will prove the result forq = 0 (p = pmax). For
q = 1 (p = pmin) we proved this result in Kranton and Minehart (2000a) using
the fact that revenues are realized by an ascending bid auction. For otherq the
revenue functions are given by a convex combination of the extremal revenue
functions.

Fix q = 0. For a valuationv, we will choose efficient allocationsA inG and
A′ in G ′ as in Lemmas 2 and 1. That is eitherA = A′ or A and A′ differ only
on the replacement set of agents.

I. Buyers:ub
a (G ′) ≥ ub

a (G ).
Consider a valuationv. If A = A′, then every opportunity path for buyera in G

is also an opportunity path for buyera in G ′. If buyer a does not obtain a good
in A, then its payoff is 0 in both graphs. Otherwise, let buyera obtain a good
from seller j . By Proposition 5, buyera ’s price is the lowest valuation of any
buyer along an opportunity path. Since buyera has a larger set of opportunity
paths inG ′ we havepmax

j ≥ pmax′
j . That is, buyera earns a higher maximal

payoff in G ′ than inG .
If A /= A′, we use the notation from Lemma 1. The replacement buyern has

an opportunity path to buyera in (A, G ):

bn − sn → bn−1 − . . . sa+1 → ba .

Becausebn ∈ L(sn ) andbn does not obtain a good, it must be thatpmax
n ≥ vn .

Therefore buyera ’s price satisfiespmax
a+1 ≥ vn .

In (A′, G ′), buyera has an opportunity path to buyern:

ba − sa+1 → ba+1 − . . . sn → bn .

Buyer a obtains a good from sellera. By Lemma A2,pmax′
a ≤ vn .

We have shown that buyera pays a lower price in (A′, G ′) than in (A, G ).
Therefore, buyera earns a higher maximal payoff inG ′ than in G for all
genericv.

II. Sellers:us
a (G ′) ≥ us

a (G ).
Consider a valuationv. If A = A′, then every opportunity path for buyera

in G is also an opportunity path for buyera in G ′. If seller a does not sell a
good underA, then its payoff is 0 in both graphs. Otherwise, let some buyerb1

obtain a good from sellera in (A, G ). (This buyer cannot beba .) Consider an
opportunity path for buyer 1 inG ′. The path has the form

b1 − s2 → b2 − s3 → . . . bn−1 − sn → bn .

If the path is not an opportunity path inG then it must contain the link
ba − sa . But then the path has the form

b1 − s2 → b2 − s3 → . . . ba − sa → b1 − . . .
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That is, the path takes us fromsa back to buyer 1. The path therefore does
not link buyer 1 to any buyers that it was not already linked to by an opportunity
path in G . By Proposition 5, sellera has the same price and hence the same
payoff in both graphs.

If A /= A′, we use the notation from Lemma 1. There is a replacement buyer
n and a buyer 1 that buyern may or may not replace. If buyer 1 is not replaced,
then by Lemma A3,pmax

a = 0. That is, sellera earns a maximal payoff of 0
in (A, G ) and so is weakly better off in (A′, G ′). If buyer 1 is replaced, then
by Lemma A3,pmax

a = v1. Efficiency of A′ in G ′ implies thatvn ≥ v1. So
pmax

a ≤ vn .
By Lemma A4,pmax′

a = vn . Since sellera earns a weakly higher price inG ′,
it is weakly better off inG ′ than inG .

We have shown that sellera earns a weakly higher maximal payoff inG ′

than inG for all genericv. �
Proof of Proposition 9. We omit a proof of this as it is very similar to the proofs
of Propositions 10 and 11. It is available from the authors on request.

Proof of Proposition 10. We will prove these results forq = 0 (p = pmax). For
q = 1 (p = pmin), we proved the result in Kranton and Minehart (2000a). For
otherq , the results follow from the fact that the payoffs are a convex combination
of the payoffs forq = 0 andq = 1.

For a valuationv, we will choose efficient allocations A inG andA′ in G ′

as in Lemmas 2 and 1. That is eitherA = A′ or A and A′ differ only on the
replacement set of firms.

I. For everybi ∈ L(sa ), ub
i (G ′) ≤ ub

i (G ).
Fix a valuationv. SupposeA = A′. If bi does not obtain a good, its payoff is 0
in both graphs, so we are done. LetOi denote the set of buyers connected tobi

by an opportunity path in (A, G ) and letO ′
i denote the set of buyers connected

to bi by an opportunity path in (A′, G ′). We argue that these two sets are the
same. ClearlyO ′

i ⊇ Oi . Suppose there is somebk ∈ O ′
i that is not inOi . The

o.p. frombi to bk in (A′, G ′) must contain the linkba − sa , and since no good
is exchangedba must precedesa in the o.p. as follows:

bi − si+1 → bi+1 − . . . → ba − sa → ba+1 − . . . → bk .

But then sincebi ∈ L(sa ) in G , there is a more direct o.p. frombi to bk that
does not contain the linkba − sa given by:

bi − sa → ba+1 − . . . → bk .

Since this o.p. does not containba − sa , it is also an o.p. in (A, G ), so bk ∈ Oi

which contradicts our assumption.
We have shown thatOi = O ′

i By Proposition 5,bi pays the same price in
both graphs.

If A /= A′, we use the notation from Lemma 1. Suppose thatbi is the replace-
ment buyerbn . There is an o.p.bi − sa → ba−1 − . . . s2 → b1 in (A, G ). So bi

could have replacedb1 in G . This contradicts the efficiency ofA.
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Suppose thatbi is replaced bybn , then it is worse off inG ′, and we are
done.

Otherwisebi obtains a good inA and A′. Suppose thatbi ∈ H . If bi ∈
{b1, b2, . . . , ba−1} then by Lemmas A3 and A4, we are done becausebi pays
a higher price inG ′ and so is worse off. Becausebi obtains a good in bothA
and A′, we havebi /= bn . If bi ∈ {ba , . . . , bn−1}, then in (A, G ), bi obtains its
good from a sellers∗ ∈ {sa+1, sa+2, . . . , sn} and there is an o.p. frombn to b1 in
(A, G ) using the linkbi − sa as follows:

bn − sn → bn−1 − sn−1 → . . . s∗ → bi − sa → ba−1 − sa−1 → . . . → b1 .

Therefore,bn could have replacedb1 (or bumpedb1 to an inactive seller) inG
contradicting the efficiency ofA.

Suppose thatbi /∈ H . First note thatbi does not obtain a good fromsa in
either graph. Insteadbi has an o.p. tob1 in (A, G ). So by Lemma A2,bi has
pmax

i ≤ v1.
In G ′, suppose thatbi pays a positive price. Then by Proposition 5, there is

an o.p. frombi to a price setting buyerl , (that is,vl = vL(bi )) so thatpmax′
i = vl . If

this path is also an o.p. in (A, G ) we are done because by Lemma A2,pmax
i ≤ vl

and sobi is worse off in (A′, G ′). Otherwise the o.p. intersectsH . The path must
come in to a seller and leave at a buyer. Letbk be the last buyer in the intersection.
The portion of the o.p. frombk to bl is also an o.p. in (A, G ). If k ≤ a − 1,
then bi has an o.p. tobk in (A, G ) (namely:bi − sa → ba−1 − sa−1 . . . → bk )
and hence tobl in (A, G ). (Remark: This last step could not be generalized to
bi ∈ L(L(L(sa ))).) Then we are done because by Lemma A2,pmax

i ≤ vl and
bi is worse off in (A′, G ′). If k ≥ a, then bn has an o.p. tobk and hence to
bl in (A, G ). This implies thatpmax′

i = vl ≥ vn , because otherwisebn should
replacebl contradicting the efficiency ofA. Sincevn ≥ v1, we then have that
pmax′

i ≥ v1.We have already argued thatpmax
i ≤ v1 so bi is weakly better off in

G .
In G ′, suppose thatbi pays a price ofpmax′

i = 0. Thenbi has an o.p. to
a buyer that is linked to an inactive seller. By Lemma 1 this seller was also
inactive inA. If the o.p. is also an o.p. in (A, G ), we are done becausebi also
pays a price ofpmax

i = 0 in G and so is weakly better off inG . Otherwise the
o.p. intersectsH . The path must come in to a seller and leave at a buyer. Letbk

be the last buyer in the intersection. The portion of the o.p. frombk to the buyer
linked to the inactive seller is also an o.p. in (A, G ). If k ≥ a, then there is an
o.p. in (A, G ) from bn to bk . Joining the two paths gives an o.p. frombn to the
inactive seller. But this contradicts the efficiency ofA becausebn could obtain a
good without replacing any buyer. Ifk ≤ a − 1, there is an o.p. in (A, G ) from
bi to bk and hence frombi to the buyer linked to the inactive seller. (Remark:
This last step could not be generalized tobi ∈ L(L(L(sa ))).) We are done because
bi also pays a price ofpmax

i = 0 in G and so is weakly better off inG .
We have shown thatbi is weakly better off inG for genericv.

II. For sj ∈ L(ba ), us
j (G ′) ≤ us

j (G ).
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Fix a valuationv. SupposeA = A′. If sj is inactive, it gets 0 in both graphs and
we are done. Ifsj sells a good tobj , then by Proposition 5,pmax

j is the lowest
valuation of a buyer linked tobj by an o.p. Since every o.p. in (A, G ) is also an
o.p. in (A′, G ′), sj ’s price must be weakly lower inG ′ and we are done.

If A /= A′, we use the notation from Lemma 1. There is an o.p. frombn

to ba in (A, G ). If sj were inactive inA, then bn could have been added to
the set of buyers who obtain goods by using this o.p. as a replacement path:
sj → ba − sa+1 → ba+1 . . . → bn . This contradicts the efficiency ofA.

Suppose thatsj is active inA. If sj ∈ H , and j ≥ a + 1, then by Lemmas
A1 and A2,pmax

j ≥ vn andpmax′
j = vn . So sj is weakly worse off inG ′ and we

are done. Ifsj ∈ H , and j ≤ a, then becausesj is active,j /= 1. In A, sj sells
its good tobj−1. There is an o.p. frombn to ba in (A, G ) and also one from
bj−1 to b1. These paths can be joined by the linkageba − sj → bj−1 to give an
o.p. from bn to b1 in (A, G ). But this contradicts the efficiency ofA, because
bn could be brought in to the set of buyers who obtain goods inG using this
o.p. as the replacement path. (Remark: This last step could not be generalized to
sj ∈ L(L(L(ba ))) because the buyer thatsj is linked to inL(L(ba )) need not be in
the replacement path.)

If sj /∈ H , then sj sells its good to the samebj in both graphs where
bj /∈ H . If pmax

j = 0, then the fact thatba ∈ L(sj ) together with Lemma A1
implies thatpmax

a+1 = pmax
a+2 = . . . = pmax

n = 0. (Buyern has an o.p. to every buyer in
{ba , . . . , bn−1}.) But this contradicts pairwise stability for these prices in (A, G ),
becausebn would want to buy the good fromsn .

If pmax
j > 0, thenpmax

j = vl for the price setting buyerl (that is,vL(bj ) = vl ).
There is an o.p. frombj to bl and frombn to ba . These paths can be joined by
the linkageba − sj → bj to give an o.p. frombn to bl . Sincebn could replacebl

along this o.p., but does not, it must be thatpmax
j = vl ≥ vn .

If the o.p. from bj to bl is still an o.p. in (A′, G ′), we are done because
pmax′

j ≤ vl and sosj is weakly worse off inG ′. Otherwise the o.p. intersects
H . The o.p. entersH for the first time at a sellersk . Up to that point the path
(from bj to sk ) is the same in (A′, G ′) as in (A, G ). There is an o.p. in (A′, G ′)
from bk to bn . So we can join these by the linksk → bk to form an o.p. in
(A′, G ′) from bj to bn . By Lemma A2, we havepmax′

j ≤ vn . Therefore we have
pmax′

j ≤ vn ≤ pmax
j andsj is weakly worse off inG ′.

We have shown thatsj is weakly better off inG for genericv. �
Proof of Proposition 11. We prove this result forq = 0 (p = pmax). Similar
techniques prove the result forq = 1, and hence for otherq between 0 and 1.

For a valuationv, we will choose efficient allocationsA in G andA′ in G ′

as in Lemmas 2 and 1. That is eitherA = A′ or A and A′ differ only on the
replacement set of agents.

Fix a valuationv. SupposeA = A′. If bi does not obtain a good, its payoff is
0 in both graphs. Otherwise, it obtains a good fromsj ∈ L(ba ). By the proof of
Proposition 10,sj receives a weakly lower payoff inG ′ than inG . So its price
must be weakly lower, which means thatbi receives a weakly higher payoff in
G ′ and we are done.
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If A /= A′, we use the notation from Lemma 1. Ifbi does not obtain a good
in either graph, its payoff is 0 in both graphs and we are done. Ifbi receives a
good only inG ′ (bi is the replacement buyer), then it must be weakly better off
in G ′ and we are done. Ifbi receives a good only inG (i = 1 whereb1 is the
replaced buyer), then by Lemma A1,bi paid a price inG exactly equal to its
valuation. So it earns a payoff of 0 in both graphs and we are done.

Suppose thatbi obtains a good in both graphs. Letsi denote the seller that
sells its good tobi in A. If bi pays a strictly positive price tosi , let bl be the
price setting buyer (that is,vL(bi ) = vl ). Thenbi has an o.p. tobl . If this path
is also an o.p. tobl in (A′, G ′) then bi pays a price in (A′, G ′) that is weakly
lower thanvl . So bi is weakly better off inG ′ and we are done.

Otherwise, the path intersects the replacement setH . Suppose that neither
bi nor bl is in the replacement set. The intersection must begin with a seller and
end with a buyer. Letbk be the last buyer in the intersection. The portion of the
o.p. frombk to bl is also an o.p. in (A′, G ′). If k ≤ a − 1, consider the part of
the o.p. frombi to bk . Join the o.p.bn − sn → . . . ba+1 − sa+1 → ba − si → bi

to the beginning (this uses the assumption thatsi ∈ L(ba )) and the o.p. frombk

to b1 to the end. This forms an o.p. frombn to b1 in (A, G ). But this implies
that the allocationA′ is feasible inG which contradicts efficiency. Ifk ≥ a,
then joining the o.p. frombn to bk to the o.p. frombk to bl , forms an o.p. from
bn to bl in (A, G ). This means thatbn could replacebl in (A, G ). Since it does
not, it must be thatvl ≥ vn . That is,bi payspmax

i ≥ vn . In (A′, G ′), there is
an o.p. frombi to bn . (Becausek ≥ a, the o.p. frombi to bl in (A, G ) must
intersect the replacement set for the first time at a sellerm with m ≥ a + 1.
The part of the o.p. frombi to sm is an o.p. in (A′, G ′).) Join this to the path
sm → bm − sm+1 → . . . bn to form an o.p. frombi to bn in (A′, G ′). But then by
Lemma A2 it must be thatpmax′

i ≤ vn . That is,bi pays a weakly lower price in
G ′ and so is weakly better off. The cases thatbi or bl are in the replacement
set are similar (these are essentially special cases of what we have just proved.)

If bi pays a price of 0 in (A, G ), then it has an o.p. to a buyer who is linked
to an inactive seller. A similar argument to the previous paragraph (see also the
proof of this case in Proposition 10, I.) implies thatbi pays a price of 0 inG ′

and so is equally well off in both graphs.
Therefore,bi ’s payoff is at least as high in (A′, G ′) as in (A, G ) for all

valuationsv. �

Proof of Proposition 12. This result follows from Demange and Gale (1985)
Corollary 3 (and the proof of Property 3 of which the Corollary is a special case).
Demange and Gale identify two sides of the market, P and Q. We may identify
P with buyers and Q with sellers. (This identification could also be reversed.)
The way Demange and Gale add agents is to assume that they are already in
the initial population, but they have prohibitively high reservation values so that
they do not engage in exchange. “Adding” an agent is accomplished by lowering
its reservation value. (In our framework, we reduce the reservation value from
a very large number to zero.) They show that the minimum payoff for each
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seller is increasing in the reservation value ofany other seller (including itself).
That is, when sellers are added, the minimum payoff of each original seller
weakly decreases. They also show that the maximum payoff for each buyer is
decreasing in the reservation value of any seller. That is, when sellers are added,
the maximum payoff of each buyer weakly increases.

To complete the proof, we interchange the role of buyers and sellers. (In
Demange and Gale 1985, the game is presented in terms of payoffs, and there
is no interpretational issue involved in switching the roles of buyers and sellers.
In our framework, there is an interpretational issue in switching the roles, but,
technically, in terms of payoffs there is no issue.) Corollary 3 states that when
buyers are added, the maximum payoff for buyers is weakly decreasing and
the minimum payoff for sellers is weakly increasing. Interchanging the roles
of buyers and sellers gives us that when sellers are added to a population the
maximum payoff for each original seller weakly decreases and the minimum
payoff for each buyer weakly increases.

We have shown that when sellers are added to a network, both the minimum
and maximum payoff for each original seller weakly decreases. And both the
minimum and maximum payoff for each buyer weakly increases. Convex com-
binations of these payoffs therefore share the same property. That is, the buyers
are better off and the original sellers are worse off. �
Proof of Proposition 13. The proof is analogous to the one above and is available
from the authors on request. �
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