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Abstract. This paper studies competition in a network and how a network struc-
ture determines agents’ individual payoffs. It constructs a general model of com-
petition that can serve as a reduced form for specific models. The paper shows
how agents’ outside options, and hence their shares of surplus, derive from “op-
portunity paths” connecting them to direct and indirect alternative exchanges. An-
alyzing these paths, results show how third parties’ links affect different agents’
bargaining power. Even distant links may have large effects on agents’ earnings.
These payoff results, and the identification of the paths themselves, should prove
useful to further analysis of network structure.
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1 Introduction

Networks of buyers and sellers are a common exchange environment. Networks
are distinguished from markets by specific assets, or “links,” between particular
buyers and sellers that enhance the value of exchange. In many industries, for
example, manufacturers train particular suppliers or otherwise “qualify” suppliers
to meet certain criteria. The asset may also be less formal, as when a supplier’s
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understanding of a manufacturer’s idiosyncratic needs develops through repeated
dealingst

This paper studies competition for goods in a network. The theory we develop
explains how third parties may affect the terms of a bilateral exchange. Bargaining
theory focuses primarily on bilateral negotiations. Yet strictly bilateral settings
seem to be the exception rather than the rule. The network model we develop
allows for arbitrarily complex multilateral settings. New links introduce new
potential exchange partners. We show how such changes in opportunities affect
matchings and divisions of surplus. In particular, we evaluate how third parties
can affect an agent’'s “bargaining power” by changing, perhaps indirectly, its
outside options.

The networks we consider consist of buyers, sellers, and the pattern of links
that connect them. Each buyer demands a single unit of an indivisible good, and
each seller can produce one unit. A buyer can only purchase from a seller to
whom it is linked. Competition for goods will then depend on the link pattern.

If a linked buyer and seller negotiate terms of trade, each agent’s links to other
agents determine their respective “outside options.” Since alternative sellers or
buyers may be linked to yet other agents, the entire pattern of links affects
the value of these outside options and each agent's “bargaining power.” For
example, in Fig. 1 below, the price buyer 3 would pay to either seller 1 or seller
3 depends on its links to buyers 1 and 2 or buyers 4 and 5 respectively, and
further depends on these buyers’ links to other sellers. The heart of this paper is
identifying precisely how such indirect links affect competitive prices and each
agent’s ability to extract surplus from an exchange.

The paper first develops a theory of competition in a network. There are po-
tentially many ways to model negotiations or competition for goods. This paper
takes a general approach: we characterize competitive prices and allocations as
those that satisfy a “supply equals demand” condition for the network setting. We
show that these prices yield payoffs that are individually rational and pairwise
stable. These are the minimal conditions that payoffs resulting from any negoti-
ation process or competition should satisfy. We show that there is range of such
competitive prices, as in Demange and Gale (1985). Basic results also show the
equivalence between these payoffs and the core of an assignment game (Shapley
and Shubik 1997). Competitive prices, then, distribute the surplus generated by
an efficient allocation of goods.

Armed with our general results, we turn to our central objective: studying
the relationship between network structure and agents’ competitive gains from
trade.

We first characterize the range of competitive prices in terms of network
structure. To do so, we define the notion ofaoportunity path. An opportunity
path is a path of links from a buyer to a seller to another buyer to a seller, and so
on. These paths capture direct and indirect competition for a set of sellers’ goods.

1 Kranton and Minehart (2000a) introduces a model of buyer-seller networks, and Kranton and
Minehart (2000b) explores the role of neworks in indurstrial organization and discusses industry
examples.
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The influence of network structure, expressed in these paths, is quite intuitive.
For example, for the lower bound of a competitive price, we show that a buyer
i that obtains a good must pay at least the valuation of a particular buyer. This
buyer is not obtaining a good and is connected by an opportunity path to buyer
i. It is therefore buyer’s (perhaps indirect) competitor and can replace buyer

i in an allocation of goods. To prevent this replacement, buyerust pay a
sufficiently high price: it must pay at least what this buyer would be willing pay
to obtain a good.

The paper then asks how new links affect the prices paid by third parties.
Consider a manufacturer that “qualifies” a particular supplier. This investment
increases the value of an exchange between the two. It also affects the payoffs of
all other manufacturers and suppliers. Since the supplier now has an additional
sales option, it could extract greater rents from its other buyers. We call this
a supply stealing effect. On the other hand, since the manufacturer has access
to another source of supply, there is alsaugply freeing effect. We evaluate
these effects by identifying two types of paths in a network, what webcstr
paths andseller paths. A path between a buyar and the seller with the new
link, a seller path is detrimental to buyer’s payoffs. The link confers thseupply
stealing effect. A path between a buydr and the buyer with the new link, a
buyer path, is beneficial to buyer’s payoffs. It confers aupply freeing effect.

For example, consider the network in Fig.1 and add a link betvilgeand
s. The link, for example, frees supply fd» which can more often obtain
goods froms;. Buyers with buyer paths benefit from the supply freeing effect.
In contrast,by suffers from a supply stealing effect. This effect will extend to
bs, which now must sometimes compete withfor s3's output. As for sellers,
the supply freeing effect hurtg and the supply stealing effect helgsands;.

These results provide a general framework to understand competition in a net-
work setting. With this general model, we can place specific models of network
competition in context. For example, an ascending-bid auction for a network

2 This value is also the social opputunity cost of buiebtaining a good.
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(Kranton and Minehart 2000a) yields the lowest competitive prices. Other exten-
sive form models would yield the same or different splits of surplus, or introduce
trade frictions that drive the allocation away from efficiency.

The theory of buyer and seller paths explains how third parties can affect
an agent’s bargaining power. Previous theories of stable matchings in marriage
problems and other such settings (e.g. Roth and Sotomayer 1990, Demange and
Gale 1985) view preferences (i.e., links) as exogenous. Hence, such comparative
statics are not an issue. In our setting, links are specific investments over which
agents ultimately make choicég.he comparative statics provide a methodology
for studying how one agent’s investments in specific assets impact others’ returns.
Ultimately, then, these results can inform the study of strategic incentives to
invest in specific assefs.

Section 2 builds a model of buyer-seller networks and develops a general
notion of competition for goods. Section 3 characterizes the range of competitive
prices in terms of the network structure. Section 4 considers how changes in the
link pattern impact agents’ competitive payoffs. Section 5 concludes.

2 Competition in a network
2.1 Model of buyer-seller networks®

There is a finite set of selle@that numbelS = |S| who each have the capacity

to produce one indivisible unit of a good at zero marginal cost. There is a finite
set of buyersB that numbeB = |B| who each demand one indivisible unit of a
good. Each buyer, or by, has valuation; for a good, wherey = (vy, ..., vg) is

the vector of buyers’ valuations. We restrict attention to generic valuations where
v; > 0 for all buyersi andwv; # vy for all buyersi # k.

A buyer and seller can engage in exchange only if they are “linkedihidA
pattern, or graph,¢ is aB x S matrix, [g;], whereg; € {0, 1}, which indicates
linked pairs of buyers and sellers. For buyesnd sellerj, gij = 1 whenb; and
s are linked, andy; = 0 when the pair is not linked. For a given link pattern
and a set of buyers”? C B, let L(.2#) C S denote the set of sellers linked to
any buyerin .7. We callL(.%?) the buyers’linked set of sellers. Similarly, for
a set of sellers” C S, let L(.¥") C B denote the sellerdinked set of buyers.

Allocations of goods are feasible only when they respect the links between
buyers and sellers. Aallocation of goods, A, is aB x S matrix, [a;], where

3 In Kranton and Minehart (2000a), we develop a model of network formation in which agents
invest in links. All the results in this paper apply to that model.

4 Incentives to invest in specific assets are a major theme in industrial organization and theory of
the firm literature. Classic contributions include Grossman and Hart (1990), Hart and Moore (1990),
and Williamson (1975). Most studies to date consider specific asset investment in bilateral settings;
the “outside option” is assumed but not modeled.

5 The following model of buyer-seller networks is from Kranton and Minehart (2000a).

6 This assumption is without loss of generality when buyers’ valuations are independently and
identically distributed with a continuous distribution. In this case, we would be concerned with
expected valuations, and non-generic valuations arise with probability zero.
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aj € {0,1}, wherea; = 1 indicates that buyeir obtains a good from sellgr.

For a given link pattern¥’, an allocation of goods ifeasible if and only if

a; < gj for alli,j and for each buyer, if there is a sellej such thata; = 1
thenay = 0 for allk #j anda; =0 for all | #i. The social surplus associated
with an allocatiorA is the sum of the valuations of the buyers that secure goods
in A. We denote the surplus ag(A; V).’

2.2 Competitive prices and allocations

We next consider competition for goods in this setting. Consider a price vector

p = (p1, ..., Pg) Which assigns a pricp, to each selles. Let uP and u? denote
payoffs for each buyef and sellerj, respectively. Leu® = (up,...,u2) and
us=(ug,..., L%) denote payoff vectors. For a price vector and allocatmm],

payoffs are as follows: For sellgru® = p;. For buyeri, ub = o — p; if it obtains
a good from sellej in A. Otherwiseu® = 0.

We say a price vector and allocatiop, f) is competitive when it satisfies
the following “supply equals demand” conditions for the network setting:

Definition 1. For agraph & and valuation v, a price vector and allocation (p, A)
is competitive if and only if (1) if a buyer i and a seller j exchange a good, then
v > pj > 0and p; = min{p«|sc € L(bi)},(2) if abuyer i does not buy a good
then v; < min{px|sc € L(bj)} and (3) if a seller j does not sell a good then
p =07

The first two requirements are that there is no excess demand: given priaes
buyer would want to buy a seller’s good if and only if it is assigned the godd in
That is, no more than one buyer demands any seller's good. The last requirement
is that there is no excess supply: givena seller would want to supply a good
if and only if it provides a good irA. That is, no seller that does not have a
buyer would wish to sell a good.

Our first set of results characterizes these competitive price vectors and allo-
cations.

We show that each competitive price vector and allocatm®\) yields pay-
offs (UP, us) that are bothindividually rational and pairwise stable. Individual
rationality simply requires that no agent earn negative payoffs. Pairwise stablity
requires no linked buyer and seller can generate more surplus together than they
earn in their joint payoffs. Formally,

7 We can writew(v,A) =v - A- 1, where 1 is arf x 1 matrix where each element is 1.

8 While these conditions may appear asymmetric with respect to buyers and sellers, they are not.
More complicated notation would allow us to define competitive prices in an obviously symmetric
manner. We have chosen to use the simpler notation in the text. The following definition is payoff
equivalent to the one above with appropriate translation of notation: Consider a price qé):lfmr(

i=1...,Bandj =1,...,S. A price vector and allocatioA are then competitive if and only if
(1) if a buyeri and a sellej exchange a good, thep > pj' >0 andpj' =min{p, |s« € L(bj)} and
pji = min{pjk\bk € L(5)}; (2) if a buyeri does not buy a good they < min{p}|sc € L(bi)} and
(3) if a sellerj does not sell a good then 0 = n{'pﬁbk € L(s)}
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Definition 2. A feasible® payoff vector (uP, u®) is stableif and only if (i) (individ-
ual rationality) u® > 0; u® > Ofor all i, j ; and (ii) (pairwise stability) uP+u® > v
for all linked pairs b; and s.*°

We should expect any model of competition or negotiations in networks to yield
stable payoffs, absent undue frictions in the negotiation process. It is straight-
forward to show that our “supply equals demand” conditions for prices and
allocations are equivalent to these stability conditions. For example, if at given
prices, only one buyer demands any seller’'s good, then there is no buyer that
could offer a seller a different price that would make them both better off.

Proposition 1. If (p, A) is competitive, then u® = p and the associated payoffs for
buyers uP are stable. If (uP, u) are stable payoffs, then there is an allocation A
and the price vector p = u® such that (p, A) is competitive.

Proof. Proofs are provided in the Appendix.

Our next result shows that a competitive price and allocatmi) always
involves an efficient allocation of goods.For a graph and valuationv, an
efficient allocation of goods yields the greatest possible social surplus and is
defined as follows:

Definition 3. For a given v, a feasible allocation A is efficient if and only if,
given &, there does not exist any other feasible allocation A’ such that w(A'; v) >
w(A; V).

It is easy to understand why competitive prices are always associated with ef-
ficient allocations. If it were not the case, then there would be excess demand
for some seller’s good. A buyer that is not purchasing but has a higher valuation
than a purchasing buyer would also be willing to pay the sales price.

Proposition 2. For a graph ¢ and valuation v, if a price vector and allocation
(p, A) is competitive, then A is an efficient allocation.

We next present a result that greatly simplifies the analysis of competitive
prices and allocations. The first part of the proposition shows the “equivalence”
of efficient allocations: in any efficient allocation, the same set of buyers obtains
goods!? The second part of the proposition shows that the set of competitive price

9 Feasiblility requires that payoffs can derive from a feasible allocation of goods. The payoffs
(uP, us) arefeasible if there is a feasible allocatiof such that (i).lib = 0 for any buyei who does not
obtain a good, (ii)JjS = 0 for any sellej who does not sell a good, and (iEi uib+zj ujS =w(A; V).

10 we do not write the stability condition for buyers and sellers that are not linked because it is
always trivially satisfied.

11 This and the remainder of the results in this section derive from basic results on assignment
games. Assignment games consider stable pairwise matching of agents in settings such as marriage
“markets.” In our setting, the value of matches would be givervtand the grapts’. Shapley and
Shubik (1972) develop the basic results we use in this section. Roth and Sotomayor (1990, Chap. 8)
provide an excellent exposition. We refer the reader to their work and our (1998) working paper for
proofs and details.

12 proposition 3 below requires generic valuations. Otherwise, efficient allocations could involve
different sets of buyers. For example, in a network with one seller and two linked buyers, if the two
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vectors is the same for all efficient allocations. With this result we can ignore
the particular efficient allocation and refer simply to the set of competitive price
vectors for a grapliy” and valuatiorv. The result implies that the set of agents’
competitive payoffs is uniquely defined; it is the same for all efficient allocations
of goods.

Proposition 3. For a network & and valuation v:

(@) If Aand A’ are both efficient allocations, then a buyer obtains a good in
Aif and only if it obtainsa good in A’ .

(b) If for some efficient allocation A, (p, A) is competitive, then for any efficient
allocation A, (p, A') is also competitive.

Our final result of this section shows that the set of competitive price vectors
for a graph& and valuationv has a well-defined structure. Competitive price
vectors exist, and convex combinations of competitive price vectors are also
competitive. There is a maximal and a minimal competitive price vector. The
maximal price vector gives the best outcome for sellers, and the minimal price
vector gives the best outcome for buyers. We will later examine how changes in
the network structure affect these bounds.

Proposition 4. The set of competitive price vectors is nonempty and convex. It
has the structure of a lattice. In particular, there exist extremal competitive prices
p™a and p™n such that p™" < p < p™ for all competitive prices p. The price
p™n gives the worst possible outcome for each seller and the best possible outcome
for each buyer. p™" gives the opposite outcomes.

2.3 Competitive prices, opportunity cost and network structure

In this section, we determine the relationship between network structure and the
set of competitive prices. To do so, we use the notion of “outside options” to

characterize the extremal competitive prices; that is, we rei&f& and p™n

to agents’ next-best exchange opportunities. We will see that the private value
of these opportunities can be determined by quite distant indirect links. The
relationships we derive below are a basis for our comparative static results on
changes in the link pattern.

We first formalize the physical connection between a buyer, its exchange
opportunities, and its direct and indirect competitors. A buyer's exchange op-
portunities and competitors in a network are determined by its links to sellers,
these sellers’ links to other buyers, and so on. In a grgphwe denote gath
between two agents as follows: a path between a bugeid a buyem is writ-
ten ash; — § — bx — s — by, meaning thab; ands are linked,s andby are

buyers have the same valuationthen either one could obtain the good. The assumption of generic
valuations simplifies our proofs, but the results obtain for all valuations. If two efficient allocations

A and A’ involve different sets of buyers, and ip,(A) is competitive then there is @' A") that

gives the same payoffs and is also competitive. That is, each allocation is associated with the same
set of stable payoffs. In the two buyer example, for instance, the buyer obtaining the good always
paysp = v and both buyers eamP = 0.
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linked, by ands are linked, and finally andby, are linked. For a given feasible
allocationA, we use an arrow to indicate that a seflex good is allocated to a
buyerk : 5 — by.

For a feasible allocatioA, we define a particular kind of path, apportunity
path, that connects an agent to its alternative opportunities and the competitors
for those exchanges. Consider some buyer which we lapalNe write an op-
portunity path connecting buyer 1 to another bugeas follows:

b1—32—>b2—%—>...bn_1—$1—>bn.

That is, buyer 1 is linked to seller 2 but not purchasing from seller 2. Seller 2 is
selling to buyer 2, buyer 2 is linked to seller 3, and so on until we rémgclin
opportunity path begins with an “inactive” link, which gives buyer 1’s alternative
exchange. The path then alternates between “active” links and “inactive” links,
which connect the direct and indirect competitors for that exchange. Since the
path must be consistent both with the graph and the allocation, we refer to a path
as being “in A ). ” We say a buyer has a “trivial” opportunity path to itself.

Opportunity paths determine the set of competitive prices. We next show that
p™> andp™" derive from opportunity paths irA¢, &), whereA* is an efficient
allocation of goods for a given valuatian The results show how prices relate
to third party exchanges along an opportunity path and build on the following
reasoning. Suppose for given competitive prices, some buyer 1 obtains a good
from a seller 1 at pricg;. Suppose further that buyer 1 is also linked to a seller
2, through which it has an opportunity path to a buyeras specified above.
Because buyer 1 does not buy from seller 2 and prices are competitive, it must
be thatp, > p;1. That is, seller 2’s price is an upper bound far Furthermore,
since buyer 2 buys from seller 2 but not seller 3, it must be phat p,. That is,
seller 3's price provides an upper bound mnand hence omp;. Repeating this
argument tells us that buyer 1's price is bounded by the prices of all the sellers
on the path. That isf a buyer buys a good, the price it pays can be no higher
than the prices paid by buyers along its opportunity paths.'3

Building on this argument, let us characterig@®. No price paid by any
buyer is higher than its valuation. Therefo}®* is no higher than the lowest
valuation of any buyer linked to buyer 1 by an opportunity path. We label this
valuationv*(b;).1* Our next result shows that whea"® # 0, it exactly equals
vt(by). To prove this, we argue that we can rajsg* up to v-(b;) without
violating any stability conditions. When the price of exchange between a buyer
and a seller changes, the stability conditions of all linked sellers and buyers
change as well. The proof shows that we can raise the prices simultaneously
for a particular group of buyers in such a way as to maintain stability for all
buyer-seller pairs. Fop"® = 0, we show that buyer 1 has an opportunity path
to a buyer that is linked to a seller that does not sell its good. This buyer obtains
a price of 0, which then forms an upper bound for buyer 1's price. We have:

13 This observation is central to the proofs of most of our subsequent results. We present is as a
formal lemma in the appendix.
14 since buyer 1 has an opportunity path to itsp[f®* < v.
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Proposition 5. Suppose that in (A*, &), a buyer 1 obtains a good from a seller
1. If pi"& > 0, then pI"®* = vt (b;) where v'(by) is the lowest valuation of any
buyer linked to buyer 1 by an opportunity path. If p"® = 0, then buyer 1 has an
opportunity path to a buyer that is linked to a seller that does not sell its good.

We can understand the valuk(b;) as buyer 1's “outside option” when purchas-

ing from seller 1. If buyer 1 does not purchase from seller 1, the worst it can
possibly do is pay a price af-(b,) to obtain a good. This is the valuation of

the buyer that buyer 1 would displace by changing sellers. This displaced buyer
could be arbitrarily distant from buyer 1. Buyer 1 can purchase from a new seller
and, in the process, displace a bugyesn an opportunity path pictured above as,
follows: buyer 1 obtains a good from seller 2 whose former buyer 2 now pur-
chases from seller 3 whose former buyer 3 now purchases from seller 4 and so
on, until we reach buyen who no longer obtains a good. In order to accomplish
this displacement, buyer 1 must pay its new seller a price of at tgasthis

price becomes a lower bound for the prices paid along the opportunity path, and
is just high enough so that buyeris no longer interested in purchasing a good.
As indicated by the above Proposition, the easiest such buyer to displace is the
one with the lowest valuation on opportunity paths from buyer 1.

We next characterize the minimum competitive pii®" in terms of oppor-
tunity paths. The opportunity paths from a seller also determine a seller’s “outside
option.” Consider a seller 1 that is selling to buyer 1. We write an opportunity
path connecting seller 1 to another buyeas follows:

Sl—b2—>SQ—b3—>...Sn,1—bn.

The path begins with an “inactive” link, then alternates between active and in-
active links and ends with a buyer. ¢f has opportunity path(s) to buyers that
do not obtain goodss; will receive p; > 0. The non-purchasing buyers at the
end of the paths set the lower boundmf If p; were lower than these buyers’
valuations, there would be excess demand for goods. Ther@iBfemust be no
lower than the highest valuation of these non-purchasing buyers. We label this
valuationv™ (sy); it is the highest valuation of any buyer that does not obtain a
good and is linked to seller 1 by an opportunity path. The proof of the next result
shows that ifp"™ > 0, thenp" is exactly equal ta! (s;). As in the previous
proposition, we show this by supposip§f™ > v"(s;) and showing it is possible

to decrease the price in such a way as to maintain all stability conditions. If and
only if pi"" = 0, thens; has no opportunity paths to buyers that do not obtain
goods. We have

Proposition 6. Suppose that in (A*, &), a buyer 1 obtains a good from a seller
1. If pi"n > 0 then pI"" = vM (s;), where v" (sy) is the highest valuation of any
buyer that does not obtain a good and is linked to seller 1 by an opportunity path.
If and only if p"" = 0, then all buyers linked to seller 1 by an opportunity path
obtain a good in A.

We can understand the valué'(s;) as seller 1's “outside option” when
selling to buyer 1. The worst seller 1 can do if it does not sell to buyer 1 is earn
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a pricev™ (sy) from another buyer. This price is the valuation of the buyer that
would replace buyer 1 in the allocation of goods. The replacement occurs along
an opportunity path from seller 1 to a buyeras follows: seller 1 no longer
sells to buyer 1, but sells instead to buyer 2, whose former seller 2 now sells to
buyer 3, and so on until seller — 1 now sells to buyen. To accomplish this
replacement, seller 1 can charge its new buyer a price no moreuvtharhis
price forms a new lower bound on the opportunity path, and is just low so that
the new buyet, is willing to buy. Out of all the buyers that could replace
buyer 1 in this way, the best for seller 1 is the buyer with highest valuation.

We conclude the section with a summary of our results on the set of com-
petitive prices and opportunity paths.

Proposition 7. A price vector p is a competitive price vector if and only if for an
efficient allocation A, p satisfies the following conditions: if a buyer i and a seller
i exchange a good, then v (b)) > pi > v"(s) and pi = min{px|sc € L(bi)}, (ii)
if a seller i does not sell a good thenp; =0

We illustrate these results in the example below. We show the efficient allo-
cation of goods and derive the buyer-optimal and the seller-optimal competitive
prices,p™" and p™®, from opportunity paths.

Example 1. For the network in Fig.2 below, suppose buyers’ valuations have
the following order.v, > v3 > v4 > vs > vg > v1. The efficient allocation of
goods involvesh, purchasing froms;, bs from s;, by from s3, and bg from s,

as indicated by the arrows. In a competitive price veqqp; is in the range
vs > p1 > vy: To find pI"", we look for opportunity paths frons;. Seller 1
has only one opportunity path to a buyer that does not obtain a goodbr= to
Therefore ™ (s1) = v1. For p"™® we look for opportunity paths frorh,. Buyer 2
has only one opportunity path — k.16 Thereforep-(b,) = vs. The pricep, for
seller 2 is in the ranges > p, > vs: Seller 2 has two opportunity paths to buyers
who do not obtain a good — to, andbs. Sincewvs > v1, v (s;) = vs. Buyer 3
has only a “trivial” opportunity path to itself. Therefore!(bs) = v3. We can,
similarly, identify the maximum and minimum prices fes and s, giving us
p™N = (vq, s, vs, 0) aNdP™@ = (vs, v3, v4, vs). ANy convex combination of these
upper and lower bounds3(1+(1—B)vs, Bvs+(1—B)vs; Bvs+(1—B)va, (1—B)ve)
where € [0, 1], are also competitive prices.

3 Network comparative statics

In this section we explore how changes in a network impact agents’ competitive
payoffs.

15 Note thatvH (s1) is exactly the social opportunity cost of allocating the good to buyer 1. If buyer
1 did not purchase, the buyer that would replace it in an efficient allocation of goods, the “next-best”
buyer, has valuation of" (sy).

16 The path fromb, to by, for example, is not an opportunity path, because it does not alternative
between inactive and active links.
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3.1 Payoffs as functions of the graph

To compare payoffs between graphs, we first make a unique selection from set of
competitive payoffs for each graph. For a grdghand valuatiorv, we define the
price vectop(%) = qp™"() + (1— q)p™™(%), whereq € [0, 1] andp™"(%)

and pM®( %) are the lowest and highest competitive prices forgivenv. We
assume thaty is the same for all graphs and valuations. By Proposition 4, the
set of competitive prices is convex, so the price vep(@$) is competitive. For

a givenqg and given valuatiorv, let u®(%) and ujs(.fé') denote the competitive
payoffs of buyer and sellefj as a function of&". Taking an efficient allocation
for (7, v), for a buyeri that purchases from sellgr we haveu®(¢) = pj (%)
anduP(&) = v — p; (%9). Buyers who do not obtain a good receive a payoff of
zero, as do sellers who do not sell a good.

This parameterization allows us to focus on how changes in a network affect
an agent’s “bargaining power.” Wit fixed across graphs, the difference in an
agent’s ability to extract surplus depends on the changes in the outside options,
as determined by the graphs. We can see this as follows: The total surplus of an
exchange between a buyieland a sellejj is v;. Of this surplus, in grapte” a
buyeri earns at least its outside option— p™{(%) = v; — v'(br), wherev"(by)
is derived from the opportunity paths itr. Similarly, sellerj earns at least its
outside optionp™{(:¢") = v"(s). The buyer then earns a proportignof the
remaining surplus, and the seller earns a proportion . We have

W) = — vt b) +q fu = (u —v-0) +0"(§))] = v — p(2),
ui(¥) = WM(§)+(1-Qq) [vi — (v — v (by) +1)H(§))] =pi ().
A change in the graph would impact(b;) and " (s) through a change in an

agent's set of opportunity paths, and thereby affect agents’ shares of the total
surplus from exchang¥.
17 This approach to “bargaining power” is often used in the literature on specific assets. For instance,

in a bilateral settting Grossman and Hart (1986) fix a 50/50 split (/2) of the surplus net agents’
outside options. They then analyze how different property rights change agents’ outside options.
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The proportiong could depend on some (unmodeled) features of the envi-
ronment, such as agents’ discount rafeAn assumption of a “Nash bargaining
solution” would setq = % Specific price formation processes may also yield
a particular value ofy. An ascending-bid auction for the network setting, for
example, giveg] = 1 (see Kranton and Minehart 2000a). In this sense, our pa-
rameterization provides a framework within which to place specific models of
network competition and bargaining. As longagsloes not depend on the graph,
our payoffs are a reduced form for any model that yields individually rational
and pairwise stable payoffs.

3.2 Comparative statics on an agent’s network: Population and link pattern

We now study how changes in a network affect agents’ competitive payoffs.
We show changes in payoffs for any valuatienWe first consider the payoff
implications of adding a link, holding fixed the number of buyers and sellers.
We then consider adding new sets of buyers or sellers to a network. A priori, the
impact of these changes is not obvious. As mentioned in the introduction, there
are possibly many externalities from changing the link pattern.

Adding Links. We begin with preliminary results to help identify the source of
price changes when a link is added to a network. Consider a link pétteamd
add a link between a buyer and a seller that are not already linked. Denote the
buyerb,, the sellers,, and the augmented gragfi’. The first result shows that
an efficient allocationd’ for &’ involves at most one new buyer with respect
to an efficient allocatior for . We can trace all price changes to this buyer.
This buyer either replaces a buyer that purchased @n is simply added to this
set of buyers. It is also possible that no new buyer obtains a good. In this case,
the second result says we can simply restrict attention to an allocation that is
efficient in both graphs.

If a new buyer does obtain a good, the efficient allocation changes along what
we call areplacement path, a form of opportunity path. The new buyeywhich
we call thereplacement buyer, obtains a good from a seller, whose previous
buyer obtains a good from a new seller, and so on, along an opportunity path
from buyern to some buyer 1. Buyer 1 either no longer obtains a good or
obtains a good from a previously inactive seller. Critically, we show that this
replacement involves the new link, and no other changes can strictly improve
economic welfare. (If any such improvement were possible, it could not involve
the new link and so would have been possible in the original gréphand,
hence, the original allocatioA could not have been efficient.)

Lemma 1. For a given v, if an efficient allocation A for & and an effcient
allocation A’ for &’ involve different sets of buyers, then A and A’ are identical
except on a set of n or n+ 1 distinct agents. 7% = {(s1), b1, %, b2, . . ., S, by } that

18 |n bilateral bargaining with alternating offers, Rubinstein (1982) and others degjvigem
agents’ relative rates of discount.
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may or may not includethe seller s;. These agents are connected by an opportunity
path(s;)) > b1—s - by—s, — ..bh_1—5y — by in (A, ). The path includes
(relabeled) the agents with the additional link s, — b,. In (A, %), thispath isin
two piecesby, — sy > b1 —...Ss1 2> bgand sy, > by — ... — by — (s1),
with the new link between s, and b, the “ missing” link. Buyer n obtains a good
in A but not in A. Buyer 1 obtains a good in A. Buyer 1 obtains a good in A if
andonly if s; € .77.

Lemma 2. For a given v, if an efficient allocation A for & and an efficient
allocation A’ for &’ involve the same set of buyers, then A is efficient for both

graphs.

With these preliminary results, we can evaluate the impact of an additional
link on payoffs for different buyers and sellers in a network. Our first result
considers the direct effects of the link. We show that the buyer and seller with
the additional link b, ands;) enjoy an increase in their competitive payoffs.
Intuitively, the buyer (seller) is better off with more direct sources of supply
(demand).

Proposition 8. For the buyer and seller with the additional link (by and s,),
UE(% ") > UB(%) and U3(7) > US(:%).

The result is proved by examining opportunity paths. Suppose that when the
link is added, a new buyer (the replacement buyer) obtains a good. By Lemma 1,
this buyer,b,, has an opportunity path tb, in (A, ). Becauseb, does not
obtain a good iMA, it must be facing a prohibitive “best” price of at least.

This can only happen ib,’s price, which is an upper bound of the prices of
sellers along the opportunity path, is at leagtIn (A", "), the direction of the
opportunity path is reversed. That s, now has an opportunity path tB. The
price thatb, pays is now an upper bound tgR'’s price. Sinceb, pays at most its
valuation,b,’s price is at mosty,. We have, thus, shown thbj pays a (weakly)
lower price and receives a higher payoff ¥ (<”).

Our next results consider the indirect effects of a link. One effect, as men-
tioned in the introduction, is theupply stealing effect. When a link is added
betweenb, ands,, b; can now directly compete fos,’'s good. Buyers with
direct or indirect links tcs,, then, should be hurt by the additional competition.
Sellers should be helped. On the other hand, theretippay freeing effect. When
a link is added betweedn, ands,, b, depends less on its other sellers for supply.
Some buyen that is not obtaining a good may now obtain a good from a seller
s« € L(by). With less competition for these sellers’ goods, sellers should be hurt
and buyers helped.

We identify the two types of paths in a network that confer these payoff
externalities. If in‘&, there is a path connecting an agent dgdwe say the
agent has duyer path in & . If in & there is a path connecting an agent and
we say the agent hassaller path in &. Buyer paths confer the supply freeing
effect: A buyeri with a buyer path is indirectly linked to buyerand is, thus,
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in competition for some of the same sellers’ output. Whgrestablishes a link
with another seller, it frees supply for. Sellers along the buyer path face lower
demand and receive weakly lower prices. Seller paths confer the supply stealing
effect: If b; has a seller pathy faces more competition fax's good; that isp,
steals supply fronb;. Competition for goods increases, hurtibgand helping
sellers along the seller path.

We use these paths to show how new links affect the payoffs of third parties.
It might seem natural that the size of the externality depends on the length of the
path. The more distant the new links, the weaker the effect. The next example
shows that this is not the case. It is not the length of a path that matters, but how
it is used in the allocation of goods.

o} b2 b3 be o

AEAN
AR

3, S2 S3 Sq

Fig. 3.

Example 2. In Figure 3 above, consider the impact bnof a link betweenb,

and s;. by has a short buyer path and a long seller path. However, the supply
stealing effiect (through the seller path) dominates. Without the link betlugen
ands;, b, always obtains a good{ always buys frons,, andbs always buys
from s3). With the link, b, is sometimes replaced by, and no longer obtains a
good. This occurs for particular valuationsFor otherv, b, is not replaced, but

the price it pays is weakly higher. Therefot®,s competitive payoffs fall for
anyv.

We next show how the impact of buyer and seller paths depend on the network
structure. Our first result demonstrates the payoff effects when an agent only has
one type of path. Following results indicate payoff effects when agents have both
buyer and seller paths.

If an agent has only a buyer path or only a seller patf¥inthe effect of the
new link on its payoffs is clear. A buyer that has only a buyer path (seller path)
is helped (hurt) by the additional link. A seller that has only a buyer path (seller
path) is hurt (helped) by the additional link. We have the following proposition,
which we illustrate below.
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Proposition 9. For abuyer i that has only buyer pathsin &, uP(%") > uP(%).
For a buyer i that has only seller pathsin &, uP(«¢") < uP(%). For a sdller j
that has only buyer pathsin &, uS(‘¢") < u®(:¢). For a seller j that has only
seller pathsin &, ujs(f/f”’) > us(7).

Example 3. In the following graph, consider adding a link between buyer 4 and
seller 3. Sellers 1 and 2 have only seller paths and are better off. Seller 4 with
only a buyer path is worse off. Buyer 5 is better off because it has only a buyer
path. Buyers 1, 2, and 3 with only seller paths are worse off.

b, b, b; b, b;
S S, S4 S4
Fig. 4.

When agents have both buyer and seller paths, the overall impact on payoffs
is less straightfoward. Supply freeing and supply stealing effects go in opposite
directions. In many cases, however, we can determine the overall impact of a new
link. We begin with the agents that have linkdapor s,. We show that the buyers

(sellers) linked to the seller (buyer) with the additional link are always weakly
worse off. For buyers (sellers), the supply stealing (freeing) effect dominates.

Proposition 10. For every by € L(s,) in &, uP(¢’) < uP(%). For § € L(ba)
in &, us(:g’) < uS(9).

The proof argues that for these buyers (sellers), there is in fact no supply
freeing (stealing) effect associated with the new link. To see this, consider a
b € L(s,). Potentially,bj could benefit from the fact thdi;’s new link frees

the supply ofb,’s other sellers. We show that this hypothesis contradicts the
efficiency of the allocatiorA in &. Suppose, for example, thit benefits from

the new link because it is the replacement buyer. Thab igbtains a good in

(A, %), but not in @, ). By Lemma 1,b; replaces a buyer 1 along an op-
portunity path such ab; — s, — by —s — by in (A, ¢”), as pictured below

in Fig.5 where the new link is dashed. That is, in this examplegbtained a
good directly froms, in A and does not obtain a good at all . Then, since

bi is linked tos, by hypothesish; could have replaced buyer 1 along the path
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b; —sa — bj in . If the replacement is efficient if¢” then it is also efficient
in % . Hence,A could not have been an efficient allocatitn.

bl ba bi

Fig. 5.

We can show further that any buyer that is only linked to sellers that are, in
turn, linked tob, is always better off with the additional link. For such a buyer,
the supply freeing effect dominates any supply stealing effect. We provide the
proposition, then illustrate below. The intuition here is simple. If the buyer obtains
a good, it must be from a seller linked by. By our previous Proposition 10,
this seller is worse off if¢’. So any if its possible buyers must be better off.

Proposition 11. For every by such that L(by) C L(ba) in &, uP(¢") > uP(%).

The next example shows how to apply this and previous results to evaluate the
impact of a link in a given graph.

Example 4. In Fig. 6 below, consider the impact of a link betwdgnands,. By
Proposition 83 ands, both enjoy an increase in their competitive payoffs. By
Proposition 10y, 51, b4, ands; all have lower payoffs. By Proposition 1l
andbs have higher payoffs. We can further show tbathas higher payoffs and

s4 has lower payoffs, since their only paths to the agents with the additional link
is throughbs.

Changing network by adding buyers of sellers. We conclude our analysis by
placing the above propositions in the context of earlier results on assignment
games. The literature on assignment games considered adding agents on one
side of a matching “market.” In our framework, this would be equivalent to
adding new buyers, or sellers, to a network. In this case, what we call the supply
stealing/freeing effects are easier to analyze because the new buyers or sellers
do not have any existing links; buyers and sellers are added along with all their
links. Intuitively, adding a new seller can only free supply and adding a new
buyer can only steal it.

19 The proof of Proposition 10 involves some subtlety. For example, the result does not generalize
to buyers linked to sellers linked to buyers linkedsto
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b b2 bs ba bs bs

St S2 S3 Sa

Fig. 6.

The results below show that indeed adding a seller (buyer) along with all its
links must cause a net supply freeing (stealing) effect. The above intuition aside,
these results are interesting because, given the necessity of links for exchange in
a network, adding buyers (sellers) does not necessarily increase (decrease) the
effective buyer/seller ratio of an agent. For example, in the network in Fig. 1,
supposes; is subtracted from the network. Becaugeprovides the links to the
rest of the network for buyers 1 and 2, these buyers are also effectively removed,
and the buyer-seller ratio would decrease for the remaining agents. At first glance,
it would seem that a lower buyer-seller ratio should help some buyers and hurt
some sellers. The next result, however, shows that this is not the case.

A buyer is always better off when sellers are added to its network, regardless
of the number of new buyers that compete for the albeit increased supply. Sellers
are always worse off. The proposition is proved by an application of an earlier
result due to Demange and Gale (1985, Corollary 3).

Proposition 12. Consider a graph < linking a collection of buyers and sellers.
Add any set of sellers S together with arbitrary links to the graph, and let <&’
denote the new graph. For all buyersi we have u’(¢) < uP(¢”). For every
seler j ¢ S, we have u*(<¢) > u3(¢").

We have an analogous result for adding buyers to a network. A seller is always
better off, regardless of the number of competing sellers that are effectively added
to the seller’'s network. A buyer is always worse off.

Proposition 13. Consider a graph <& linking a collection of buyers and sellers.
Add any set of buyers B together with arbitrary links to the graph, and let <&’
denote the new graph. For all sellers j, we have u*(-¢) < u¥(-"). For every
buyer i ¢ B, we have u’(%) > ub(<”).
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4 Conclusion

This paper studies competition in buyer-seller networks, with particular atten-
tion to the role of network structure. When prior relationships are necessary for
exchange, we show that agents’ “outside options” depend on the entire web of
direct and indirect links. Even distant links may have large effects on an agent’s
earnings. In contrast, many models of bargaining and exchange simply assume
a fixed reservation value as an outside option. Some consider a limited number
of alternative trading partners, as in Bolton and Whinston (1993) where a buyer
may deal with two sellers. The present paper, to the best of our knowledge, is the
first to analyze outside opportunities when agents on both sides of an exchange
can have multiple alternative partnéfs.

We first develop a general model of network competition. This model char-
acterizes prices that satisfy a natural “supply equals demand” condition for the
network setting. Resulting payoffs are both individually rational and pairwise
stable. No individual agent or pair of agents can do better. Any specific model
of competition that yields individually rational, pairwise stable payoffs can be
represented by our payoff functions. A parametet [0, 1] allows for different
splits of the surplus of exchange net agents’ “outside options.” It is these outside
options, then, that determine an agent’s bargaining power.

We show how these outside options derive from a given network structure.
We define a particular type of path in a network called gportunity path.
Opportunity paths connect agents to their alternative exchange opportunities and
to their direct and indirect competitors. These paths determine agents’ outside
options. For example, the (perhaps indirect) demand from a (perhaps distant)
buyer along a path ensures that a seller receive at least a certain price elsewhere,
if it does not sell to its current buyer. This distant demand gives the seller its
outside option, which guarantees at least a certain share of the surplus from
exchange.

Finally, we consider how changes in third parties’ links impact agents’ pay-
offs. That is, we conduct comparative statics on the link pattern. Again, we parse
a network into pathsSeller (buyer) paths connect an agent to a particular seller
(buyer) and tell us whether it will be helped or hurt by that seller's (buyer’s)
additional links. Seller paths generate what we callgply stealing effect, since
the new link establishes an additional source of demand. Buyer paths generate
a supply freeing effect, since the new link establishes another source of supply.
Using these paths, we prove several results about differently connected buyers
and sellers.

In conclusion, the paper provides a general model of “outside options,” and
hence bargaining power, when exchange is limited by pre-existing relationships.
The model of network competition can serve as a reduced form for specific mod-
els of competition and bargaining. The network structure, through opportunity

20 A series of papers considers price formation in a market where anonymous buyers and sellers
meet pairwise (e.g. Gale, 1987, Rubinstein and Wolinsky, 1985). This effort differs from ours, because
we require buyers and sellers to be linked in order to engage in exchange.
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paths, buyer paths, and seller paths should affect the outcomes of these games
in the same way as they affect our competitive payoffs. These payoff results,
and the identification of the paths themselves, should also prove useful to further
analysis of network structure.

Appendix

Proof of Proposition 1.

Part 1. We show that if a price vector and allocatigm A) satisfies Conditions

(1), (2), and (3) in the definition of a competitive price vector, then the associated
payoff vector is stable.

Individual rationality: For each buyer and sellelj that exchange a good, indi-
vidual rationality is satisfied since € p; < v;. Buyers and sellers that do not
exchange goods all earn a payoff of 0 which is also individually rational.

Pairwise stability: First consider linked buyers and sellers that exchange goods
in A: For a buyeri and sellerj, uP + ujS =wv — P + P = v satisfying pairwise
stability. Next consider linked buyers and sellers that do not exchange goods
in A. For each buyer linked to sellerk but obtains a good from sellg¢r the

joint payoffs of buyeri and sellerk areuP + u$ = v — p; + pc. By condition

(1), p < p«, which implies thaw® + u$ > v;, satisfying pairwise stability. For
each buyei linked to sellerk who does not obtain a good from any seller, the
joint payoffs of buyeri and sellerk areuP + ug = p. Condition (2) implies that

Pk > vi, souP +uf > v;, satisfying pairwise stability.

Part 2: A stable payoff vectoru?, us) is defined for a feasible allocation of
goodsA. We show that g, A) is competitive, wherg = us. That is, we show
that (o, A) derived from (1, us) satisfies Conditions (1), (2), and (3).

Condition (1): For a buyeri purchasing from a sellgr: Individual rationality
implies that 0< p; < v;. Pairwise stability implies that® +ug = v; =P tP« = vi
for all s¢ € L(by). This impliespx > p; for all sc € L(by), or, in other words,
P = min{pg|sc € L(bi)}.

Condition (2): For a buyer that is not purchasing a good, by the definition of
feasible stable payoffs)® = 0. Pairwise stability then implies that Opg > v

for all s € L(ly). That is, buyeii's valuation is lower than the price charged by
any of its linked sellersy; < min{pg|sc € L(bi)}.

Condition (3): For a sellejj that is not selling a good, by the definition of feasible
stable payoffspy® = 0, which impliesp; = 0. O

Lemma Al. Supposethatin (A, &), abuyer 1 hasan opportunity path to a buyer
n. Let p be a competitive price vector. If buyer 1 obtains a good from a seller 1,
then p; < pn. If buyer 1 does not obtain a good, then v; < pp.

Proof. Sinceb,_; € L(s,) buts,_; — by_1, we havep,_1 < pn. Sinceb,_, €
L(sh—1), buts,_» — b,_», we havep,_, < p,_1. Repeating this reasoning, we
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obtainp, < ... < p,. If buyer 1 obtains a good from a seller 1, then since
b; € L(s2), we havep; < ... < p, as desired. If buyer 1 does not obtain a good
from seller 1, then sinck; € L(s;), we must haveny < p; < ... < pn.

Lemma A2. Supposethatin (A, %), abuyer 1 hasan opportunity path to a buyer
n. Let p be a competitive price vector. If buyer 1 obtains a good from a seller 1,
then p; < vy. If buyer 1 does not obtain a good, then v; < vp,.

Proof. By individual rationality, a buyer never pays a price higher than its valu-
ation. Therefore, < v,. If buyer 1 obtains a good from a seller 1, then Lemma
Al implies thatp; < v,. If buyer 1 does not obtain a good, then Lemma Al
implies thatv; < p,. So we have that; < p, < v, as desired.

Proof of Proposition 5. We show thap™® is exactly equal ta'*(b;), the lowest
valuation of any buyer on an opportunity path from buyer 1. The logic is that we
can raisep; to v-(b;) without any violation of pairwise stability, but any higher
price would violate pairwise stability.

Let p™*(b1) = min{pd™®|sc € L(b1),k # 1}. By individual rationality and
pairwise stability for buyer 1, we must haya"® < min{vy, p"®(by)}. If
P < min{vy, P"*(by)}, then we can raisp™ up to min{vq, P7*(b1)} with-
out violating pairwise stability for any buyer-seller pair containimg Raising
pr"® also does not violate pairwise stability for other buyer-seller pairs, since
other buyers in_(s;) already find seller 1's price to be prohibitively high. This
contradicts the maximality gb"®. So we must have"® = min{vq, p"®(b1)}.

Let BP™®) = [ |b; has an o.p.(“opportunity path”) tb, and by pays a
price p" = pM¥(;)}. Fix any b, € BP"®), By pairwise stability, we have
that for allsy € L(bg), pm®* > p™@{(b;). The inequality is strictd™® > p™@(b,))
if and only if s, sells its good to a buyds, ¢ BP""®),

Amax

If b € BP™®) thenw, > pmaX(by).

Case l: pI"™ > 0.

We argue that ipl™ > 0, then there is & € BP™ ®) with v, = p™"(by). If

b, € BP™®) thenv, > p™(b,). Suppose that for alh, € BP""®) we have

v > P"(by). If there is aby € BP™®) linked to an inactive seller, then it must

be thatp™®{(b;) = 0 and hence thgs" = 0 contradicting our assumption.
Otherwise, it is possible to raise the prip8®(b;) paid by all the buyers in

BP™(®1) without violating stability: that is, individual rationality for any agent or

pairwise stability for any pair of agents. The pairs affected are all thigsg )

for which eitheruP or u® changes. These are of two types: [©),§) where

Amax, Amax,

§ € L(b) andb; € BP""®) and (i) (0, 5) wheres € L(bi), bi ¢ BP®), and
s sells a good to somky € BP™ ),

To preserve stability, we raigg"®(b;) by a small enough amount that (1)
for eachby, € BP"®), the inequalityv, > p™(by) is still satisfied; and (2) for
eachs jnL(by) selling to a buyeit; ¢ BP™®), the inequalityp™ > p™*{(by)
is still satisfied.
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Requirement (1) insures that individual rationality still obtains for all buyers
whose payoffs have changed. Since sellers who sell goods to these buyers get
higher prices, their payoffs are also individually rational.

Consider pairwise stability. First consider paits,§) of type (i) above.

We have argued thag must sell a good to somb,. If by € BP™®), then
p"* = pM*(by). Sos receives the same price tHatpays and pairwise stability
for (bi,s) is trivial. If by ¢ BP"™®) then Requirement (2) insures pairwise
stability for (o;,s). Next consider pairsh{,s) of type (ii) above. The selley
receives a higher payoff™(b,) than before. Buyer's payoff is unchanged, so
pairwise stability still holds.

We have shown that we can raip&?%(b,) without violating the stability
conditions for any agents. This is a contradiction to the assumption that the prices
were maximal. Therefore, we must havie = pP"®(b,) for someby, € BP™®).

We can writep™® = min{wvy, v }.

We next argue thap"® = min{v1, v} is the lowest valuation out of all
buyers linked to buyer 1 by an o.p. (including itself).bf has an o.p. to any
other buyemn then by Lemma A2p{"® < v, so that mifv1, v} < v, as desired.

We have argued that "™ > 0, thenp"® = v-(b;) wherev'(by) is the
lowest valuation out of all buyers linked to buyer 1 by an o.p. (including buyer
1 itself).

Casell: p"™=0.

Finally, suppose thap!"® = 0. By our genericity assumptiony # 0 for all
buyersk. So if pI"® = 0, it must be thap™®{(b;) = 0. It follows from the proof
above that there is b, € BP"®) Jinked to an inactive seller. (Otherwise, we
could raisep™®(b;) to be above 0 without violating pairwise stability.) We have
thus shown thab; has an opportunity path to a buyer who is linked to a seller
who does not sell its good.

Proof of Proposition 6. The proof is similar to the proof of Proposition 5 and is
available from the authors on request.

Proof of Proposition 7. We will show the equivalence of conditions (i) and (ii)
to the definition of a competitive price vector.

Neccessity: If (p, A) is a competitive price vector, then conditions (i) and (ii) are
an immediate implication of Propositions 5 and 6.

Sufficiency: We show that a price vector satisfying conditions (i) and (i) satisfies
Conditions (1), (2), and (3) in the definition of a competitive price vector.

We first show that if a buydrand sellej exchange a good, thenQp; < v;.
Since, by condition (i)p; > v"(s) > 0 (for genericv), we havep; > 0. Since
buyeri has a trivial opportunity path to itself-(5;) < v;. Condition (i) that
p < v-(by) then impliesp; < v;.

We next show that if a buyerdoes not obtain a good, then < min{px|s« €
L(bi)}. Consider arg, € L(by). If s is selling its good to some other buyker
thenpx > v (s¢). Since buyei is on an opportunity path to sell&s it must be
thatv (s¢) > vi. Sopk > v as desired. I is not selling its good, then since
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buyeri is not obtaining a good, there is a violation of efficiency (simce> 0
by our genericity assumption). O

Proof of Lemma 1. We restate the lemma, because the notation is important.

Lemma 1. If fficient allocationsin & and & involve different sets of buyers,
then there are efficient allocations A for <& and A’ for &’ such that A and A’ are
identical except on a set of firms .7 = {(s1), b1, S, bz, ..., s, by} that may or
may not include the seller s;. These firmsare connected by a path (s;) — b;—s —
bop—s —...bh_1—5 — by in (A, &’). The path includes (relabeled) s, — b,.
In (A, %), the same firms are connected by two pathsb, —s, — bh_1—...S+1 —
byands, — by_1—...5 — by —(s;). Buyer n obtainsa goodin A’ but not in A.
Buyer 1 obtains a good in A. Buyer 1 obtainsa good in A’ if and only if s, € .7%.

Proof. For each new buyer and any efficient allocations, we first construct paths
that have the structure of the paths in the Lemma. We then argue that there can
be at most one new buyer . We then argue that we can choose the efficient
allocations to have the desired structure.

Choose any efficient allocatiodsandA’. Let buyern be a buyer that obtains
a good inA’ but not inA. Buyern buys a good ir, say from sellen. If s, did
not sell a good iM thenb, should have obtaines,’s good in @, &) unlessb,
ands, were not linked. That is, unless = b, ands, = s;, we have contradicted
the efficiency ofA. If b, = b, ands, = s, the hypothesis in the Lemma about
opportunity paths is trivially satisfied.

Otherwise, it must be that, did sell a good irA, say tob,_; whereb,_1 # by.

If b,_; does not obtain a good A/, then the efficiency ofA implies that
vn_1 < vn. If vh_1 < vy, this contradicts the efficiency & becaused, could
have replacedb,_; in A. We rule out the case,_1 = v, as non-generic.

So it must be thab,_; does obtain a good i#, say froms,_; where
Sh—1 # S. Repeating the above argument shows that must have sold its
good inA to ab,_» who also obtains a good iA’, and so on. Eventually,
this process ends with, y = b, ands,_x = s, andsy — b, in (A, 7). (By
construction, the process always picks out agents not already in the path. Also by
construction, the process does not end unless we tgagh= b, ands, ¢ = S,
but it must end because the population of buyers is finite.)

We have constructed two paths. M), we have constructed an opportunity
path fromb, to b,. In A, we have constructed an o.p. (opportunity path) from
b, to b,.

If s, is inactive in A, we now have paths that have the structure of the
paths in the lemma. Otherwissg, sells its good to a buyer, sdy_k_; in A. If
bn_k_1 does not obtain a good iA’ then we again now have paths that have
the structure of the paths in the lemma. Otherviisex_1 obtains a good i
from a seller, saw, k1. If this seller is inactive inA, we now have paths that
have the structure of the paths in the lemma. And so on. Eventually, this process
must end because it always picks out new agents from the finite population of
agents. This constructs the paths in the lemma.
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We next argue that there can be at most one new buyAtf. iBuppose there
are two new buyers andn’. For each one, we can construct a pattbfcand
s, as above. But this is a contradiction: since each seller has only one unit of
capacity, it is impossible for the two paths from buyarandn’ to overlap.

Finally, we show that we can choogeand A’ as in the hypothesis of the
Lemma. Fix any efficient allocations andA’ and construct the paths as above.
Suppose that the path construction process above ends with an inactive seller
5. In &’ at the allocationA, buyern has a path tes; : by — s, — b1 —

o S+ — b — S5 = by — ... — by — 51, We replace this with the path:
Ss—>bhh—-ss—>bhb—-s—...bh_1—s — b,. This gives us an allocatioA’
that is necessarily efficient i’ (the efficient set of buyers obtains goods) and
is related toA as in the hypothesis of the lemma.

Suppose that the path construction process above ends with a iuy#io
does not obtain a good iA(, ¢’). In &’ at the allocatiorA, buyern has an
opportunity path td; : bp—s, 2> bh_1—. .. S41 > ba—S > bg1—... 5 — by
We replace this with the pathy; — s, -+ b, — s — ...by_1 — $5 — b,. This
gives us an allocatiod’ that is necessarily efficient if¢” (the efficient set of
buyers obtains goods) and is relatedMas in the hypothesis of the lemma.0

Proof of Lemma 2. Since by hypothesis the same set of buyers obtains goods in
A as inA’, A yields the same welfare as any efficient allocationr. Since
& C %', Ais also feasible if¢”’ and hence efficient. O

We call the set7Z from Lemma 1 theeplacement set. We also refer to the
paths in the lemma as theplacement paths. Buyern is the replacement buyer,
and we say that buyer 1 is replaced by buger

The next four lemmas will be used in proofs below. They use the notation
and set up of Lemma 1. The first two characterize the maximal prices for buyers
in the replacement set. There are corresponding results for the minimal prices.
These second two results (which we state without proof) pin down the minimal
prices quite strongly.

Lemma A3. Let Aand A’ beefficient allocationsin & and " involving different
sets of buyers as in Lemma 1. We assume the notation from Lemma 1. In &,
up < PR < pi® L. < piigfand pi* = ... = p"® If buyer 1is replaced, then
p'® = vq. If buyer 1 is not replaced, then pJ'®* = 0.

Proof. The inequalitiegp ™ < pi*®; ... < piig* follow from the fact that there
is an opportunity path from buyer to buyera in (A, ). Sinceb, is linked to
S, but does not obtain a good # it must be thaw, < pf"®~.

First suppose that buyer 1 is not replaced by buyer A’. Then inA, buyer
1 is linked to an inactive seller and so pays a pp§€* = 0 to seller 2. There is
an opportunity path from any buyer §b,,...,b,_1} to by so by Proposition 5
we have 0 9p"™ = pf™® = pi®

Now suppose that buyer 1 is replaced by bupemn (A, ¢”). Let by be
one of the set{by,by,...,ba_1}. If by pays a price op5* = 0in%, then by
Proposition 5b; has an opportunity path to a buylewho is linked to an inactive
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seller. In <&’ with the allocation A, buyern has an opportunity path th and
hence tob,. But then buyemn could be added to the set of buyers who obtain a
good without replacing buyer 1. This contradicts the efficiencyof

So by pays a positive pricg}3*. Let buyerL be the “price setting” buyer
— that is, the buyer with valuation“(b;) = p&%. (We will say v-(b;) = v for
short.) By Proposition 5b; has an opportunity path to buyér. In & with
the allocation A, buyern has an opportunity path tb; and hence td, . If
v < vy, then it is more efficient for buyen to replaceb, than to replace;.
This contradicts the efficiency &'. So it must be thapT3* > v1. Buyeri also
has an opportunity path to buyer 1. This implies thd8* < v;. So it must be
that ph3* = v, as desired. O

Lemma A4. Let Aand A’ beefficient allocationsin & and " involving different
sets of buyers as in Lemma 1. We assume the notation from Lemma 1. In &7,
vn = P o= plgY = pa®™ > ... > pd®L If buyer 1 is replaced, then
Py > v1. If buyer 1 is not replaced, then it buys froms; and pJ"® > p"@.

Proof. There is an opportunity path i\(, <¢”) from b, to b,. This implies that
py < pfa¥ < pMaX’ - Sinceb, buys a good frons,, pi®’ < vy.
We argue thap™®’ = vy,. This implies that, = p® = ... = pIg" = pa'®.
By Proposition 5 the pricp]"® is determined by buye’s opportunity paths
in (A, ). All of these opportunity paths are also opportunity pathsAn%)

except the one from buyex to buyern: by — Sj41 — bav1 — ...y — by, By
Lemma A3, buyera pays a strictly positive price]5* in (A, %) and so has a

price setting buyet.. BuyerL has the lowest valuation(b,) (or v for short)

of all buyers to which buyea has an opportunity path inPA(<¢). There is an
opportunity path from buyen to buyerL in (A, ). (Join the o.p. from buyem

to buyera [by, —sy — by_1—...Sa+1 — by] to the o.p. from buyea to buyerL.)
Thereforev, < vy. If v, < v, we have a contradiction to the efficiency Afin

¢ because we could have replaced bulyexith buyern in (A, %). Therefore

v = vy Or equivalentlypl™ = vy,

To finish the proof, suppose that buyer 1 is replaced, so that it does not obtain

a good inA'. Sinceb; € L(s), it must be that, < py®“. If buyer 1 is not
replaced, then it buys from . Sinceb; € L(s;) it must be thapy®’ > p"™@/. O

Lemma A5. Let A and A’ be efficient allocationsin&” and < involving different
sets of buyers as in Lemma 1. We assume the notation from Lemma 1. In &,
vy < PN < pmin L < pMitand pMt = ... = pin. If buyer 1 is replaced, then
pmin = yH (s3) < min{wy, ..., va_1}. If buyer 1 isnot replaced, then pT" = 0.

Proof. The proof is available on request from the authors. It is similar to the
proofs of Lemmas A3 and A4.

Lemma A6. Let Aand A’ be efficient allocationsin & and <" involving different
sets of buyers as in Lemma 1. We assume the notation from Lemma 1. In &7,
pmin/ = =pmin/ = pmin/ = = pMin’_|f puyer 1 is replaced, then p"’ = v;.
If buyer 1 is not replaced, then pn’ = pinin’ = Q,
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Proof. The proof is available on request from the authors. It is similar to the
proofs of Lemmas A3 and A4.

Proof of Proposition 8. We will prove the result forqg = 0 (p = p™). For
q =1 (p = p™") we proved this result in Kranton and Minehart (2000a) using
the fact that revenues are realized by an ascending bid auction. Forgother
revenue functions are given by a convex combination of the extremal revenue
functions.

Fix g = 0. For a valuatiorv, we will choose efficient allocation& in.& and
Ain &’ as in Lemmas 2 and 1. That is either= A’ or A and A’ differ only
on the replacement set of agents.

l. Buyers:u2(«%"’) > u2(%).
Consider a valuation. If A= A’, then every opportunity path for buyarin &
is also an opportunity path for buyarin ”. If buyera does not obtain a good
in A, then its payoff is 0 in both graphs. Otherwise, let bugeobtain a good
from sellerj. By Proposition 5, buyea’s price is the lowest valuation of any
buyer along an opportunity path. Since bugehas a larger set of opportunity
paths in.&” we havep™ > p™®’. That is, buyera earns a higher maximal
payoff in & than in&.

If A# A, we use the notation from Lemma 1. The replacement boyas
an opportunity path to buyex in (A, %):

bh—sh — bho1—...S+1 — ba.

Becausé, € L(s,) andb, does not obtain a good, it must be tipd?* > v),.
Therefore buyen’s price satisfiepl5 > vn.
In (A, &), buyera has an opportunity path to buyaer

Py —Sa+1 > Dar1 —...5 — by .

Buyer a obtains a good from sella. By Lemma A2,p"® < vy,.

We have shown that buyer pays a lower price inA/, ¢’) than in @, ).
Therefore, buyera earns a higher maximal payoff if¢”’ than in & for all
genericv.

Il. Sellers:u3(¢’) > us(%).

Consider a valuatiow. If A = A’, then every opportunity path for buyar
in & is also an opportunity path for buyarin <. If seller a does not sell a
good underA, then its payoff is 0 in both graphs. Otherwise, let some blyer
obtain a good from sellea in (A, ). (This buyer cannot be,.) Consider an
opportunity path for buyer 1 iry"”’. The path has the form

bh—s v bh—s5—...bh_1—5 — b, .

If the path is not an opportunity path i then it must contain the link
by — s;. But then the path has the form

bp—s 2bh—s55—...bg—Ss— b —...
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That is, the path takes us frog back to buyer 1. The path therefore does
not link buyer 1 to any buyers that it was not already linked to by an opportunity
path in &&. By Proposition 5, sellea has the same price and hence the same
payoff in both graphs.

If A#£ A, we use the notation from Lemma 1. There is a replacement buyer
n and a buyer 1 that buyer may or may not replace. If buyer 1 is not replaced,
then by Lemma A3p)'® = 0. That is, sellera earns a maximal payoff of 0
in (A, ¢) and so is weakly better off inA(, <”). If buyer 1 is replaced, then
by Lemma A3,pI"™ = v;. Efficiency of A in ¢’ implies thatv, > v;. So
P < vn.

By Lemma A4,pI"® = ;. Since sellea earns a weakly higher price i,
it is weakly better off in’¢”’ than in&.

We have shown that seller earns a weakly higher maximal payoff it
than in & for all genericv. O

Proof of Proposition 9. We omit a proof of this as it is very similar to the proofs
of Propositions 10 and 11. It is available from the authors on request.

Proof of Proposition 10. We will prove these results fag = 0 (p = p™®). For
q =1 (p = p™"), we proved the result in Kranton and Minehart (2000a). For
otherq, the results follow from the fact that the payoffs are a convex combination
of the payoffs forg = 0 andq = 1.

For a valuationv, we will choose efficient allocations A if¢” andA’ in &’
as in Lemmas 2 and 1. That is eithar= A’ or A and A’ differ only on the
replacement set of firms.

l. For everyb; € L(sy), uP(¢") < uP(%).

Fix a valuationv. SupposeA = A'. If by does not obtain a good, its payoff is 0
in both graphs, so we are done. L&t denote the set of buyers connecteio
by an opportunity path in4; ¢ and let¢%’ denote the set of buyers connected
to bj by an opportunity path inX, <”). We argue that these two sets are the
same. Clearly%’ O 7. Suppose there is sontg € (%’ that is not inc5. The
0.p. fromb; to by in (A’, &) must contain the linlb, — s5, and since no good
is exchangedb, must precede, in the o.p. as follows:

b —si1—bsy—...2by—ss > bas1—... = by

But then sincey; € L(sy) in &, there is a more direct 0.p. frofy to by that
does not contain the link, — s, given by:

bi 7Sa—>ba+17...~>bk.

Since this 0.p. does not contdip — s,, it is also an o.p. inA, %), sob, € &
which contradicts our assumption.

We have shown thati = %’ By Proposition 5,b; pays the same price in
both graphs.

If A#£ A, we use the notation from Lemma 1. Suppose Hhas the replace-
ment buyerb,. Thereisan o.pb; — s, > b1 — ... = by in (A %). Sob,
could have replacet); in . This contradicts the efficiency @
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Suppose thab; is replaced byb,, then it is worse off in’¢”’, and we are
done.

Otherwiseb; obtains a good imMA and A’. Suppose thab; € .7. If b €
{b1,by,...,ba_1} then by Lemmas A3 and A4, we are done becapspays
a higher price in¢”’ and so is worse off. Becausg obtains a good in boti
andA’, we haveb; # b,. If by € {ba,...,by_1}, then in @, %), by obtains its
good from a selles, € {Sa+1,Sa+2, - - -, Sn} and there is an o.p. fror, to by in
(A, %) using the linkb; — s, as follows:

bh—ss—bh1—S-1— ... b -S> ba1—S%_1—~...>b.

Thereforeb, could have replacet; (or bumpedb; to an inactive seller) iHg
contradicting the efficiency oA.

Suppose thalb, ¢ .77. First note thabt; does not obtain a good from in
either graph. Insteall has an o.p. td; in (A, ). So by Lemma A2p; has
P < vr.

In &, suppose that; pays a positive price. Then by Proposition 5, there is
an o.p. fromb; to a price setting buydr, (that is,v; = v-(b;)) so thatp™’ = v;. If
this path is also an o.p. if\(¢) we are done because by Lemma A2 < v
and sdy; is worse off in @/, ). Otherwise the o.p. intersec#’. The path must
come in to a seller and leave at a buyer. hebe the last buyer in the intersection.
The portion of the o.p. fronb to by is also an o0.p. In4, %). If k < a—1,
thenb; has an o.p. td in (A, %) (namely:bj — s, - by 1 —S-1... = k)
and hence tdy in (A, ). (Remark: This last step could not be generalized to
bi € L(L(L(sa))).) Then we are done because by Lemma A2 < v and
bi is worse off in @&, <¢”). If k > a, thenb, has an o.p. tdx and hence to
b in (A, ). This implies thatp™ = v > v,, because otherwisk, should
replaceb; contradicting the efficiency of. Sincev, > v1, we then have that
pM& > v;.We have already argued thglt® < v; sob; is weakly better off in

In %7, suppose thab; pays a price ofp™ = 0. Thenb; has an o.p. to
a buyer that is linked to an inactive seller. By Lemma 1 this seller was also
inactive inA. If the o.p. is also an o0.p. inA{ ), we are done becaus® also
pays a price op™ =0 in & and so is weakly better off itg". Otherwise the
0.p. intersects7Z. The path must come in to a seller and leave at a buyerLet
be the last buyer in the intersection. The portion of the o.p. foprto the buyer
linked to the inactive seller is also an o.p. ify, (). If k > a, then there is an
0.p. in A, %) from b, to bg. Joining the two paths gives an o.p. frdm to the
inactive seller. But this contradicts the efficiencyAobecausd, could obtain a
good without replacing any buyer. K < a — 1, there is an o.p. in4, ¢ from
b; to by and hence fronb; to the buyer linked to the inactive seller. (Remark:
This last step could not be generalizedtos L(L(L(sy))).) We are done because
bi also pays a price g™ =0 in & and so is weakly better off itz

We have shown thdt; is weakly better off in’g” for genericv.

Il. For § € L(ba), u?(:¢") < us(:2).
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Fix a valuationv. SupposeA = A'. If 5 is inactive, it gets O in both graphs and
we are done. I sells a good tdy;, then by Proposition 5p"® is the lowest
valuation of a buyer linked tb; by an o.p. Since every o.p. i\(‘¢) is also an
0.p. in A, "), 5’s price must be weakly lower iz’ and we are done.

If A # A, we use the notation from Lemma 1. There is an o.p. figm
to by in (A, %). If 5 were inactive inA, thenb, could have been added to
the set of buyers who obtain goods by using this o.p. as a replacement path:
§ — Da — Sa+1 — bas1... — bn. This contradicts the efficiency &.

Suppose thas is active inA. If 5 € .97, andj > a+ 1, then by Lemmas
Al and A2,p™ > v, and pjmax’ =v,. Sog is weakly worse off in%” and we
are done. Ifs € .77, andj < a, then becauss is active,j # 1. InA, § sells
its good tobj_1. There is an o.p. fron, to b, in (A, %) and also one from
bj_1 to b;. These paths can be joined by the linkdge- s — b;_, to give an
0.p. fromb, to by in (A ). But this contradicts the efficiency &, because
b, could be brought in to the set of buyers who obtain good&irusing this
0.p. as the replacement path. (Remark: This last step could not be generalized to
§ € L(L(L(ba))) because the buyer thgtis linked to inL(L(b,)) need not be in
the replacement path.)

If s ¢ .77, thens sells its good to the samlg in both graphs where
by ¢ 7. If p"®* = 0, then the fact thab, € L(g) together with Lemma Al
implies thatp)}3* = pIi3‘ = ... = py"® = 0. (Buyern has an o.p. to every buyer in
{ba,...,bs_1}.) But this contradicts pairwise stability for these pricesAn:¢),
becausdy, would want to buy the good frors,.

If @ > 0, thenp/™® = v, for the price setting buydr (that is,ot(ly) = vy).
There is an o.p. frony; to by and fromb, to b,. These paths can be joined by
the linkageb, — s — by; to give an o.p. fronb;, to by. Sinceb, could replacey
along this o.p., but does not, it must be tpd¥* = v > vn.

If the o.p. fromb; to by is still an o.p. in &, "), we are done because
pjma"’ < v and sos is weakly worse off in/g”’. Otherwise the o.p. intersects
. The o.p. enters# for the first time at a selles,. Up to that point the path
(from b; to ) is the same inA’, *¢") as in @, ). There is an o.p. inA’, ")
from by to b,. So we can join these by the lirdk — by to form an o.p. in
(A, &) from by to by. By Lemma A2, we hav@™ < v,. Therefore we have
P < v, < pM* ands is weakly worse off in”.

We have shown thag is weakly better off in’e” for genericv. O
Proof of Proposition 11. We prove this result fog = 0 (p = p™®). Similar
techniques prove the result fqr= 1, and hence for othay between 0 and 1.

For a valuatiornv, we will choose efficient allocation& in ¢ andA’ in &’
as in Lemmas 2 and 1. That is eithar= A’ or A and A’ differ only on the
replacement set of agents.

Fix a valuationv. SupposeA = A'. If bj does not obtain a good, its payoff is
0 in both graphs. Otherwise, it obtains a good frgne L(ba). By the proof of
Proposition 105 receives a weakly lower payoff if¥”’ than in&". So its price
must be weakly lower, which means tHatreceives a weakly higher payoff in
" and we are done.
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If A# A, we use the notation from Lemma 1.Hf does not obtain a good
in either graph, its payoff is 0 in both graphs and we are donb. iEceives a
good only in&” (b is the replacement buyer), then it must be weakly better off
in &’ and we are done. Iy receives a good only it (i =1 whereb; is the
replaced buyer), then by Lemma Al, paid a price ing exactly equal to its
valuation. So it earns a payoff of 0 in both graphs and we are done.

Suppose thab; obtains a good in both graphs. Lgtdenote the seller that
sells its good tdy; in A. If bj pays a strictly positive price tg, let by be the
price setting buyer (that ig;~(b;) = v). Thenb; has an o.p. tdy. If this path
is also an o.p. tdy in (A, ¢”) thenb; pays a price inA&’, ") that is weakly
lower thanv,. Sob; is weakly better off in’¢” and we are done.

Otherwise, the path intersects the replacementZétSuppose that neither
bi nor b, is in the replacement set. The intersection must begin with a seller and
end with a buyer. Leby be the last buyer in the intersection. The portion of the
0.p. fromby to by is also an o.p. in4/, ). If k < a — 1, consider the part of
the o.p. fromb; to by. Join the o.pby, — S, — ... bas1 — Sae1 > ba — 5§ — by
to the beginning (this uses the assumption that L(by)) and the o.p. fronby
to b; to the end. This forms an o.p. frotw, to by in (A, %). But this implies
that the allocationd’ is feasible in¢ which contradicts efficiency. Ik > a,
then joining the o.p. fronb, to by to the o.p. fromby to by, forms an o.p. from
b, to b in (A, £). This means thab, could replacey in (A, ). Since it does
not, it must be thav, > v,. That is,bj paysp™ > v,. In (A, ¢”), there is
an o.p. fromb; to b,. (Becausek > a, the o.p. fromb; to by in (A, %) must
intersect the replacement set for the first time at a sellevith m > a + 1.
The part of the o.p. froniy; to sy is an o.p. in A, <”).) Join this to the path
Sn — bm — Sn+1 — ... b,y to form an o.p. fronb; to by, in (A, &7). But then by
Lemma A2 it must be thgt™® < v,. That is,b; pays a weakly lower price in
¢’ and so is weakly better off. The cases thatr b, are in the replacement
set are similar (these are essentially special cases of what we have just proved.)

If bj pays a price of 0 in4, ), then it has an o.p. to a buyer who is linked
to an inactive seller. A similar argument to the previous paragraph (see also the
proof of this case in Proposition 10, I.) implies thatpays a price of 0 in¢”’
and so is equally well off in both graphs.

Therefore,b;’s payoff is at least as high inA(, ¢’) as in @, %) for all
valuationsv. O

Proof of Proposition 12. This result follows from Demange and Gale (1985)
Corollary 3 (and the proof of Property 3 of which the Corollary is a special case).
Demange and Gale identify two sides of the market, P and Q. We may identify
P with buyers and Q with sellers. (This identification could also be reversed.)
The way Demange and Gale add agents is to assume that they are already in
the initial population, but they have prohibitively high reservation values so that
they do not engage in exchange. “Adding” an agent is accomplished by lowering
its reservation value. (In our framework, we reduce the reservation value from
a very large number to zero.) They show that the minimum payoff for each
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seller is increasing in the reservation valueaof other seller (including itself).

That is, when sellers are added, the minimum payoff of each original seller
weakly decreases. They also show that the maximum payoff for each buyer is
decreasing in the reservation value of any seller. That is, when sellers are added,
the maximum payoff of each buyer weakly increases.

To complete the proof, we interchange the role of buyers and sellers. (In
Demange and Gale 1985, the game is presented in terms of payoffs, and there
is no interpretational issue involved in switching the roles of buyers and sellers.
In our framework, there is an interpretational issue in switching the roles, but,
technically, in terms of payoffs there is no issue.) Corollary 3 states that when
buyers are added, the maximum payoff for buyers is weakly decreasing and
the minimum payoff for sellers is weakly increasing. Interchanging the roles
of buyers and sellers gives us that when sellers are added to a population the
maximum payoff for each original seller weakly decreases and the minimum
payoff for each buyer weakly increases.

We have shown that when sellers are added to a network, both the minimum
and maximum payoff for each original seller weakly decreases. And both the
minimum and maximum payoff for each buyer weakly increases. Convex com-
binations of these payoffs therefore share the same property. That is, the buyers

are better off and the original sellers are worse off. O
Proof of Proposition 13. The proof is analogous to the one above and is available
from the authors on request. O
References

Bolton, P., Whinston, M.D. (1993) Incomplete contracts, vertical integration, and supply assurance.
Review of Economic Studies 60: 121-148

Demange, G., Gale, D. (1985) The strategy structure of two-sided matching m&s@ismetrica
53: 873-883

Demange, G., Gale, D., Sotomayor, M. (1986) Multi-item auctidoarnal of Palitical Economy 94:
863-872

Gale, D. (1987) Limit theorems for markets with sequential bargainlagrnal of Economic Theory
43: 20-54

Grossman, S., Hart, O. (1986) The costs and benefits of ownedshimal of Political Economy 94:
691-719

Hart, O., Moore, J. (1990) Property rights and the nature of the fiournal of Political Economy
98: 1119-1158

Kranton, R., Minehart, D. (1998Jompetition for Goodsin Buyer-Seller Networks. Mimeo, University
of Maryland and Boston University

Kranton, R., Minehart, D. (2000a) Theory of buyer-seller netwodkserican Economic Review
(forthcoming)

Kranton, R., Minehart, D. (2000b) Networks versus vertical integraff®ND Journal of Economics
(forthcoming)

Roth, A., Sotomayor, M. (1990Jwo-Sded Matching. Econometric Society Monograph, Vol. 18.
Cambridge University Press, Cambridge

Rubinstein, A. (1982) Perfect equilibrium in an bargaining mo#ebnometrica 50: 97-110

Rubinstein, A., Wolinsky, A. (1985) Equilibrium in a mkarket with sequential bargairiiegnomet-
ric 53: 1133-1150



Competition for goods in buyer-seller networks 331

Shapley, L. Shubik, M. (1972) The assignment game |: The dotternational Jounal of Game
Theory 1: 111-130
Williamson, O. (1975Markets and Hierarchies. Free Press, New York



