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Abstract. We use a white noise approach to Malliavin calculus to prove the
following white noise generalization of the Clark-Haussmann-Ocone formula

T

Fw)= E[F]+/ E[DeF | 7] o W(t)dt

0

HereE[F] denotes the generalized expectatibgh- (w) = 3—5 is the (generalized)
Malliavin derivative,o is the Wick product andV(t) is 1-dimensional Gaussian
white noise. The formula holds for dll € * > L?(u), where &* is a space
of stochastic distributions and is the white noise probability measure. We also
establish similar results for multidimensional Gaussian white noise, for multi-
dimensional Poissonian white noise and for combined Gaussian and Poissonian
noise. Finally we give an application to mathematical finance: We compute the
replicating portfolio for a European call option in a Poissonian Black & Scholes
type market.
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1 Introduction

Let Bi(w) = B(t,w);t > 0,w € 2 be a 1-dimensional Wiener process (Brownian
motion) on a probability spacefX,.7 ,P) such thatB(0,w) = 0 a.s.P. For
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t > 0 let.7 be thec-algebra generated b{B(s,-);s < t}. Fix T > 0. The
Clark-Haussmann-Ocone (CHO) theorem states that ifF = F(w) € L?(P) is
F-measurable anB € Dy, (see definitions below), then

)
F(w) = E[F]+ /0 E[DF |- 77](w)dBy () (1.1)

whereD{F = g—i(t) denotes the Malliavin derivative df att. This result and

its generalizations have important applications in economics, where (basically)
E[D:F|.%] represents the replicating portfolio of a giv@naclaim F. (See, e.g.,
[K-O], [2)).

Usually this result is presented and proved in the context of analysis on the
Wiener space? = Cy([0, T]), the space of all real continuous functions onT]
starting at 0. Then one can identify each Wiener process Bétlv) with one
elementw(:) € £2, which is a computational advantage. It is in this setting that
the Malliavin derivative and its properties are usually studied. See, e.g., [N], [U].
However, the drawback with this setting is that the Malliavin derivative only
exists forF € D4 ,. This excludes many interesting applications. For example,
in mathematical finance one is interested in computing the replicating portfolios
of a givenT-claim F. If, say, the claim is a digital option of the form

F(w) = Xk ,00)(BT(W)) = {é :; Slgg i i

(1.2)

then D;F does not exist and formula (1.1) cannot be applied. The purpose of
this paper is to present a new proof of the Clark-Haussmann-Ocone formula in
the setting of white noise analysis. One of the advantages with this approach is
that it allows a generalization of the Clark-Haussmann-Ocone formula which is
valid for all .A-measurabld- € £*, a space of stochastic distributions which
containsL?(u), wherey is the white noise probability measurg ¢orresponds

to P in the Wiener space setting). The generalization has the form (See Theorem
3.15)

F(w) = E[F]+ /OT E[D(F|. 7] o Wedlt (1.3)

whereo denotes the Wick product ant); € (¥)* is white noise.E[F] is the
generalized expectation &f € <™, E[DF|Z#] is the generalized expectation
and the integral on the right hand side is arf(*-valued (Bochner) integral. In
view of the identity

T T
/Y(t,w)éB(t)=/ Y (t, w) o Wdt (1.4)
JO 0

valid for all Skorohod integrable processéé, w), we see that (1.3) is indeed a
generalization of (1.1). In fact, F € L?(u) then (1.3) simplifies to
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T
F(w)=E[F]+ / E[D:F|.Z]dB(t) (1.5)
0
whereD{F € <* E[D{F|.%] € L?(u) for a.a.t and
T
E[ / E[DtF|.%2dt} < 0 (Theorem 3.11) (1.6)
0

We emphasize that in the Wiener space setting another generalization of (1.1)
has been obtained by S. Ustunel [U, Theorem 1, p.44]. His generalization is valid
forall F € D_,, theMeyer-Watanabe distributions. SinceID),Oog.‘/('*, our result
is more general. Moreover, our approach is entirely different. Recently other
approaches to the Malliavin calculus and the Clark-Haussmann-Ocone theorem
have been given by Benth [B], de Faria et al. [dF-O-S], adg&/[V].

Our white noise setup can be easily modified to cover more general situ-
ations. This is demonstrated in Sects. 4-6. In Sect. 4 we prove the following
multidimensional version of the generalized Clark-Haussmann-Ocone theorem:

Let B(t,w) = (Bai(t,w1),...,Bm(t,wm))iw = (w1,...,wm) € {2 be m-
dimensional Brownian mot|0n Wlth f||trat|or¢(m) Then if F € (&*)" is
Z™_measurable, we have

}ow(t w) | dt (1.7)

F(w):E[F]+/OT szle{

where we have used the notatiélg’wil, e a ) for the Malliavin gradient of

att (Theorem 4.2). If we replace th8aussian white noise probability measure

1 by the Poissonian white noise probability measute (on the same underlying
space¥”’(R)), then we obtain a similar theory where Gaussian white nai¢e

is replaced by Poissonian white nolgét) and Brownian motiomB(t) is replaced

by compensated Poisson proc€3d). The spacess ™ = & *(v) can be defined

in a similar way as for the Gaussian case and the Malliavin gradient too. Thus
we obtain the following generalized Clark-Haussmann-Ocone theorem for the
compensated Poisson process:

If F € <*(um) is measurable with respect to the filtratio,™ of the
m-dimensional compensated Poisson pro@@€y, then

F(w):E[F]+/O ZE {(t

This result is proved in Sect. 5 (See Theorem 5.3). We also point out how the
above theory can be modified to cover the case with combinations of Gaussian
and Poissonian noises. Finally, in Sect. 6 we apply our results to compute the
replicating portfolios for the European call option in a Poisson Black and Scholes

4““’] oVi(t,w) | dt (1.8)
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type market: Consider a markg{t) = (A(t), S(t)) consisting of two investment
possibilities:

i) a bank account, where the price\(t) at timet is given by
dA(t) = p(t)A(t)dt ; A0)=1 (1.9)
i) astock, where the prices(t) at timet is given by
dS(t) = p(t)S(t)dt + o (t)S(t)dQ(t) ; S(0)=x >0 (1.10)

wherep(t), u(t), ando(t) aredeterministic functions inL?[0, T] (T > 0 constant),
o(t) > e for somee > 0, and where(t) = P(t) —t is the compensated Poisson
process. Let{(t,w), n(t,w)) denote theortfolio, i.e.,&(t), n(t) gives the number
of units of investments #1, #2, respectively, held by an agent atttime

Consideru(t) = 4020, and find a new measure Such thatQ(t) :=
fé u(s)ds + Q(t) is a compensated Poisson process with respect e will
prove the following theorem.

Theorem 6.1 The price V (0) of a European call option with payoff F(w) =
(S(T) — K)* in the Poissonian market defined by (1.9), (1.10) and satisfying

)
u(t) < 1 — ¢ for some e; > 0, isgiven by V(0) = o J, P

the replicating portfolio for this claimis given by

E;[F]. Moreover,

L TS E WY T — 1) — (K — YY(T — )
0 = esn® El(o®YY(T —t) — (K — Y/(T —1))")
XK /@ 1),00 (Y (T = 1)]y=s() (1.11)
where
t t
Y = yexp[ / I[1+ o(s)]dQ(s) + / ((9)
0 0
—0(s) + In[1 + o(S)](1 — u(s)))ds] (1.12)
and

V() — n®)SE)

€0= "5

(1.13)

2 Background from white noise theory

In this section we briefly recall some of the basic concepts and results from
Gaussian white noise theory. Our presentation and notation will follow that of
[H-@-U-Z] closely. More information about white noise analysis can be found
in [H-K-P-S].

Let 2 =.'(R) be the space of tempered distributions on thelseff real
numbers and let be theGaussian white noise probability measure on (2 defined
(in virtue of the Bochner-Minlos theorem) by the property
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/ € <9 (w) = e 1o (2.1)
2

for all ¢ € .7 (R) (the Schwartz space of rapidly decreasing smooth functions on
R), where||¢[|? = [, ¢*(x)dx and < w, ¢ > denotes the action ab € .7”'(R)

on ¢. (¥"(R) is the dual of. (R)). Note that ifw € L?(R), then< w, ¢ >=

Jr w(X)@(x)dx. From (2.1) we deduce that

E[<-¢>]=0 and E[<-,¢ > =[|¢|® ¢ € .7 (R) (2.2)

where E = E, denotes expectation with respect to This isometry allows
us to define a Brownian motioB(t) = B(t,w) as the continuous version of
B(t) = B(t,w) = < w, xp,4(-) > (which exist inL?(1)) where

1 ifo<s<t
Xpo,4(8) = { -1 if-t<s<0O (2.3)
0 otherwise
Then < w, >= [ (t)dB(t) for all v € LAR). We let.7f denote ther
algebra generated {¥B(S, -) Jo<s<t. If f(t1, ..., th) € L2(RM), i.e.,f, is symmetric
and |[fa|[Z2gm = Jgn f2(ts, - -, t)dts - - - dta < 00, then we can define thieerated
[td integral

A f,dBEN := n!/oo (/t -.-(/tz f(tl,...,tn)dB(tl))---)dB(tn) (2.4)

— 00 — 00 — 00

In the following we let

2/ d"

ha(x) = (-1)'e/2 -

(e’x2/2> :n=0,12,... (2.5)
be theHermite polynomials and we let{¢,}22, be the basis of2(R) consisting
of the Hermite functions

En(X) = 773N — 1)) 26 /?h,_1(vV2X) n=1,2,... (2.6)

Several parts of the theory can be carried out without the explicit use of
this particular basis. In some cases, however, the choice of an explicit basis is
important. For example, explicit estimates&ft) are needed to deduce that the
Gaussian white noisé/(t, -) defined in (3.12) belongs to the space&)* of Hida
distributions.

If f :R" — R andg: R™ — R are two functions, we let @ g : R™" — R,
resp.f®g : R™" — R, be thetensor product, resp.symmetric tensor product
of f andg (see [H-@-U-Z, Sect. 2.2]). Similarly we 16*" =f @ --- @ f (n
times) be the tensor powers bf The set of multi-indicesy = (o, . .., am) of
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nonnegative integers is denoted By = (N}).. HereN = {1,2,...} is the set of
natural numbers andlp = NU {0}. If z = (z,2,...) is a sequence of numbers
or functions, we use the multi-index notation

%=z if a=(w,...,om) €T
We list some of the basic results we need:

Theorem 2.1 (I1td 1951 [1]) Suppose 1, ..., ¥, are orthonormal functions in
L2(R). Then for all multi-indices o = (as, . .., an) € .7, we have

[ 0008100 = (< 0 >)- iy < i >)
Corollary 2.2
[ €5 00a87I700 = Ho)
where H, (w) = hy, (K w, & >) - -y (K w, & >),a = (aq,...,an) € 7.
Corollary 2.3 Let ¢ denote the Wick product, defined by
(Ha ©Hp) (W) =Hasp(w) ; a,8€ .7

and extended linearly ([H-@-U-Z, Def.2.4.1]). Then if f, € L2(R"), gn € L2(R™),
we have

(Z/ fndB®”> o (Z/ gndB®”> :Z/ fn & gmdB M)
n RN n RN mn RM*N

Proof
£®adB®\a| o §®ﬂdB®\5| =H, oHg =Hasp
Rlel RIBI
- / D @lats| = / g0 g ebiggelars)
Rla+B] Rle+B|
using Corollary 2.2. |

Corollary 2.4 < w,¢ >°"= ||<b\|”hn(<|“|’(;ﬁ>), where < w, ¢ >"=< w,¢ >

oo < w, ¢ > (N times)

< w, ¢ >oN= (/R(ﬁds)m = / $2"dBE"

= ol [ ()" e = el (<)

by Corollary 2.2. O

Proof
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Recall that
t
E[ / u(s,w)dB(s)|.%'} = / u(s, w)dB(s)
R 0

From this we deduce that (see [H-@-U-Z,p 47])

Lemma 2.5
E[ [ fdB®"|.7] = / fa X0 dBE
RN RN

Sochastic test functions and stochastic distributions

The following spaces of stochastic test functiofs, = < (1), and stochastic
distributions & * = <*(u), have been studied by Potthoff and Timpel (1995).
See [P-T] and the references therein.

Definition 2.6
(i) Let k € N. We say thaf (w) = 3222 [ fdB®" belongs to the spac ()
if

oo
1%, = Z m||fn||52(mn)e2kn < oo (2.7)
n=0

We define
cw=2=%
keN

and equip with the projective topology.
(i) We say that a formal expansion

G= Z/ gndB®"
n=0 /R"
belongs to the spacg”_4(u) (g € N) if

o0
%= Z N[ |F2gnye 21" < o0 (2.8)
n=0

|G|

We define
crm=9=J v
geN

and equip¢ ™ with the inductive topology. Note tha# ™ is the dual of¢’, with
action

<G,f >= g n! /R" fn(X)gn (x)dx (2.9)
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if G € &* andf € < is as above. Also note that the connection between the
expansion

Gw) =) / gndB®" (2.10)
n=0 /R"
and the Hermite expansion
Gw) =) CaHa(w) (2.11)
is given by
)= cat® (%) n=0,12,... (2.12)
|a]=n

(see [H-@-U-Z, (2,2.33)]). Since this gives
I [ ondB= g = gl ey = 3 e (2.13)
|ae]=n

it follows that we can express tHé -norm of G in terms of the Hermite expan-
sion as follows:

o0

16115 =) ( > C§a!)e2’“ ez (2.14)

n=0 |al=n

Two important properties of these spaces are the following (see [P-T] for a proof):
f,ge ¥ = foge ¥ (2.15)

and
f,ge o™ = fogeo” (2.16)

We also recall theHida stochastic test function space (.°) and theHida
stochastic distribution space (.¥°)* as follows: For a formal expansidnw) =

> wc.7 CaHa(w) define the norm

If[15k := > cAal(2N)<“ for k € Z (the integers) (2.17)
ac7

where ()K= (2. 1)k1(2. 2)ke2 ... 2m)kem if o = (ag, ..., om). Let
(.y/)o,k = {f; ||f ||0}k < OO} (2.18)
and define

() = () ox (2.19)

keN
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with projective topology, and

) = J(o—q (2.20)
geN

with inductive topology. Note that
()& cld(u)ce* ()

For more information about these and related spaces see [H-K-P-S] and [H-@-
U-Z]. We now extend the concept of conditional expectatiorcté. This has
been done in a different context by Benth and Potthoff [B-P].

Definition 2.7 Let F = Y 2 [, fadB®" € <*. Then the conditional expecta-
tion of F with respect to% is defined by

E[F|.7%] = Z/R fo - x[0qndB®" (2.21)
n=0 /R"

Note that this coincides with the usual conditional expectatidh & L2(1).
Also note that

|E[F|ZA]|ls < ||F|ls forallr eZ (2.22)
In particular
E[F|7#A] € ™ for all t (2.23)

Lemma 28 LetF,G € < *. Then
E[F ¢ G|#A] = E[F|A] ¢ E[G|A]

Proof We may assume, without loss of generality, that= [, f,dB®" =
2 aj=n Ca Jgn £¥+dB®" and similarly withG. Then Corollary 2.3 and Definition

2.7 give
E[F ¢ G| %] = E[/

fn®gmdB®(m+“)|.%”}
Rm+n

Jemn T2 &gm - x[0,gmndBE™

/ fn - X[0,1"@gm - X[0,yndBE™™
Rm"‘n

E[F|.7] o E[G|. 7]
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From now on we will use the following notation: As before {gt&,, ... be

the Hermite functions, and put
Xi = Xi(w) =< w, & >:/§i (s)dB(s); i =1,2,... (2.24)
R
and

XO(w) = / t &(s)dB(s); i =1,2,... (2.25)
0

and
X = (Xg, Xg,...), XO=(x® x0, . )

Note that with this notation we have
X*(w) = (Xf“1 O o XM (w) = Hy(w) if a=(a1,...,am) (2.26)

for all multi-indicesa.

Corallary 29 If F =3 c,X°* € &&*, then
E[F| 7] =) ca(XO)®
Proof We know thatE[X; | #A] = Xi(t). Now apply Lemma 2.8. O
Definition 2.10 We say that- € <™ is .74 -measurable if
E[F|.7A]=F
Corollary 211 F € &* is.Z-measurable if and only if F can be written

F = ca(XM)*™ (convergencein )

for some numbers c,,.

Remark A general discussion of¢ and * and the related spaces” and
&% =P can be found in [G-K-S].
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3 The 1-dimensional case

Let us first recall the definition of a directional derivative:

Definition 3.1 Let F : ./(R) — R be a given function and let € .. Then
we say thaf has adirectional derivative in the direction ~ if

D,F(w) = Im% (Fw+ey) — F(w)) (3.1)

exists in (¥)*. If this is the case, we calD,F the directional (or Gateaux)
derivative ofF in the directiony.

Example 3.2 Let F(w) = [; ¢(t)dB(t) =< w, ¢ > for some¢ L2(R). Then, if
v € L3(R), we have
D,F(w) = IimO% (Kwtey, o> — <w,¢p>)=<7y,¢ >= / ~y(t)o(t)dt (3.2)
e— R

Proof By linearity we have< w + ey, ¢ >=< w, ¢ > +ec < v, ¢ >. Hence

1
E(<W+677¢>7<w7¢>):<7a¢>

Motivated by this example we make the following definitions:
Definition 3.3 A function Z(t) : R — ()* is (¥)*-integrable if
< Z(@t),f >e LY(R) forall f e (¥) (3.3)

Then the {#)*-integral of Z(t), denoted by [, Z(t)dt, is the unique .¢")*-
element such that

< /RZ(t)dt,f >:/R<Z(t),f >dt; fe() (3.4)

It is a consequence of Proposition 8.1 in [H-K-P-S] that (3.4) defihea(t)dt
as an element of¥)*.

Definition 3.4 We say thatF : .’(R) — R is differentiable if there exists a
mapK : R — (.)* such that

K(t,w)y(t) is (¥)*-integrable
and
D,F(w) = / K (t,w)y(t)dt for all v € L3(R) (3.5)
R
In this case we put
dF
DiF(w) := a(t,w) =K(t,w); teR (3.6)

The set of all differentiablé : .’ — R is denoted byD.
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Example 3.5 If F(w) =< w, ¢ > as in Example 3.2, then we see by (3.2) that
is differentiable and

DiF (w) = ¢(t) 3.7)

PX)=> cax®; x €RY,co €R (3.8)
is a polynomial, we define its Wick version &t= (Xg, ..., Xm) by
P°(X) =) caX*® (3.9)
Such (finite) sums are callggtochastic) polynomials.

Lemma 3.6 (The chain rule 1) Let P(x) =", c,x“ bea polynomial in n vari-
ables X = (X3, X2, . . ., Xn) € R". Then P(X) € D, P°(X) € D and

n

DPO) =D (- X6 0 = 3 e Y ax 6 (310

i=1
and
f oP° 0)
_ . _ Sy ola—e) g
DP*(X) = > o (X1, -, X)&i (1) = %jcaiza.x Gt) (3.11)
Here and in the following, € = (0,0, ...,1) is the i’th unit vector (with 1 on
entryi).

Proof PutF(w) = P(X(w)) and choosey € L?(R). Then by the classical chain
rule we have

TF@re) —F@) = T P+ ) — PX()

= LMW e <78 >) - PXE)

— Zl: g—i(X(w)) <7,& > inL?), ase — 0

since
E.[IX(@)N] < oo forall N € N

We conclude that

D,F(w) =/]R <i:1 %(X(w))-fi (t)> y(t)at
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Similarly, let G(w) = P°(X) = X°*(w) for somea € .7, and choosey € L?(R).
Then

16+ )~ G) = T (w+ ) ~ X))

= HHalo* )~ Ha@) = (H hay (< @+ €9,6 >) — [ P (< 0.6 >)>

AOZh’ (<w,& >) [ hoy(<w,§ >)- <v.6 >
Bk

= Za. 1< w, & >) [[ hoy(< w,§ >) < 7,6 >
7

= Zaix“a*f“)(w) <7, >,
i
where we have used the well known property
hi,(X) = mhy_1(X); m=1,2,...
for Hermite polynomials. O

Let

W(t,w) =Y &OHo W) (3.12)

i=1
be Gaussian white noise. We haveW(t,-) € (.(¥)* for all t and
T T
/ X(t,w)dB(t) =/ X(t,w) o W(t,w)dt (integration in (*)*) (3.13)
0 0

for all Skorohod integrable processkggt). See [H-@-U-Z, Theorem 2.5.9] and
the references therein. Note thatdf is as in (2.24), then

t = X (t)
is differentiable in )* and
8( [ ae0e@) = S ( [ aewes) =gowo < ¢y
By induction this gives

Lemma 3.7 (The chain rule 1) Let
P(x) = Z CaX”
be a polynomial in R". Let

X :/jo (s)dB(s)
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be asin (2.24). Then

9 pox® PN x®
op (xt)—z(axj (XO)o 5 OW()

Lemma 3.8 (The Clark-Ocone formula for polynomials) Let F(w) be .7 -
measurable and suppose F (w) = P°(X) for some polynomial P(x) = >  c,x%, X
= (Xg, ..., Xp) With Xj =< w, & > asin (3.9). Then

(i) F(w) = P°(X™) where XV =< w,§ - xpo.1y >

and

(i) F(w) = E[F]+ [] E[D:F|.Z]dB(t)

Proof We haveF (w) = E[F|.7] = P°(X(M) by Corollary 2.9. Hence by Lemma
3.6 and Lemma 3.7

T _ T n aP i _
| eoFimeo= [ g Z(m) ()6 (7] 5B ()

/ < )(x“))s.(t)ow(t)dt

/ P<>(x<t>)dt—‘ Po(X®) = Po(xM) — Po(X©)
0

F — P°(0) =F — E[F]
O

We proceed to consider a Clark-Haussmann-Ocone formula for the space
L2(u). Suppose thaE (w) = Y, caHa(w) € <. Then as noted in (2.26), we
may write

F)= 3 caX*(w)

HenceF is a limit in &&™* of stochastic polynomials. So in view of Lemma 3.6,
it is natural to make the following definition:

Definition 3.9 Let F(w) = > caHa(w) € ¢ *. Then we define thetochastic
derivative of F att by

DiF (w) = S—Z(t,w)

Z Ca Z Qi Ha—e(i)(w) -&i (t) (314)
> (D conen (B + DGO Ha(w)

B
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Remark The stochastic derivative is also called tHeda derivative or - in the
context of the Wiener space - ti\alliavin derivative.

The following result is crucial:

Lemma 3.10
a) ppose F € &*. Then DiF € &* for aa.t € R.
b) Suppose F, Fy, € & for all m € N and

Fnm— Fin<™
Then there exists a subsequence {Fn, }¢2, such that

DiFm — DiF in&™ foraat>0

Proof
a) SupposeF (w) =, CoHa(w) € &*. Then

DtF(w) anzal a— e(')(w) £|(t)
=y (ch.)(ﬁ. + 160 Halw) = Zgg(t)Hg(w)
B

where

gp(t) = Z Cae) (B + 1) (1)

Chooseq < oo s.t.[|F[[7 = 35 30 0 -m Coale 1™ < oo ( see (2.8)). We
will prove that

|IDF

DY ( > géﬂl)e‘(q”)“ < oo for a.a.t
n|Bl=n

Note that

2
[ 0a= [ (st +060) @ =3B+ 17

So
> ([ aa)or= 3 (X St + 13 +On)
Bl=n Bl=n = i
< Y+ oG +DE+)N <(n+1) > cial

|Bl=n i lee|=18]+1

Hence using the fact thah ¢ 1)e~" < 1 for all n, we get
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Lo = [ 3 ( 3 e eina

|8]=n
Z(n+1)( Z Cﬁa!)e_z(qﬂ)n (3.15)

lor]=|Bl+1

2”:( > cia!)efzqngnF

N ef=lsl+L

IN

IN

2
< q < o0

Therefore
||DcF

% . <oo foraat

So
DiF € & 4_1 C &&* fora.a.t

b) It suffices to prove that iG, — 0 in %_q, then there exist a subsequence
{Gm }r2; such thaD; Gy, — 01in ™ ask — oo, for a.at. By (3.15) we see that
IDtGml|%_,_, — 0 in L%(R). So there exist a subsequendéD:Gn, ||+, .}t
such that

[IDtGm||z ., — 0 fora.a.t ask — oo (3.16)

HenceD;G,, — 0in & for a.a.t ask — oo. The last part follows from (2.22).
([l

Theorem 3.11 (The Clark-Haussmann-Ocone theorem for L?(1)) Let A
denote Lebesgue measure on R. Let F(w) € L?() be .77 -measurable. Then

(t,w) — E[D{F [ Z](w) € L(\ x p)
and
.
F(w) = E[F] +/ E[D:F |.Z]dB(t)
0

Proof Let F(w) =3 c 7 CaHa(w) be the chaos expansion Bfand put

Fn(w) = Z CaHa(w) = Z Ca X

aE aeT

where. %, = {a € .7 ; |a] < n &length (@) < n}. Then by Lemma 3.8, we
have

Fn(w) = E[Fa] + /OT E[D(Fn|.Z]dB(t) for all n (3.17)

By the It representation theorem we know that there is a unigfiew)
which is.Z%-adapted and such that

E[/T uz(t,w)dt} < 00
0
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and such that
-
F)= E[F]+/ u(t,w)dB(t) (3.18)
0

SinceF, — F in L?(u), we conclude that

E [/OT (E[DiFnl-72] — u(t,w))zdt}
= E[(Fn—F —E[F,]+E[F]))] = 0 asn —
So
E[D{Fn|- 7] — u(t,w) in L>(\ x p)

On the other hand, by Lemma 3.10 b), we know that, by taking a subsequence,

E[D:Fn|-Z#] — E[D:F|.%] in &* for a.a.t
By taking another subsequence, we obtain that

E[DiFn|-Z] — u(t,w) in L?(u) for a.a.t
We conclude that

u(t,w) = E[D{F|.%] for a.a.t

and the proof is complete. a

We proceed to prove a Clark-Haussmann-Ocone theorentfor First we
establish some auxiliary results:

Lemma312 Let F € <4 C ()" and f € (). Then, with ||f||og asin
(2.17),

-

" In2

Proof SupposéF(w) =", awHa(w), f(w) = Zﬁ agHg(w). Then

| <F.f > <[IFllz_ - [Ifllog: G

| <F.f>[=]) adbao!|

E(E anet) =X X w0 ( £ )’

lee|=m M laf=m ]=m )

2 —2gqm ) 2 2 2gm \ 2

< (S(Z o)) (TS o)
< Flloe (Yo baat@0)™) " = [Flls, -l llog
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Lemma 3.13 LetF € ‘&, f € (¥). Then
/ < E[DF|.%],f >2dt < 00
R
Proof By Lemma 3.12 and (3.15), we have

[ <EDFLALT 2 < [ [EDEIAE ok
R R (3.19)
< ||f||§7f,/ |IDF|[% dt < oo for somep € N
R

]

Lemma 3.14 Suppose Fp,F € &* and F, — F in (¥)* asn — co. Then, as
n— oo

/T E[DiFn| 7] o W(t)dt — /T E[DF|. 7] o W(t)dt in (¥)*  (3.20)
0 0

Proof Note that both integrals in (3.20) exist by Lemma 3.13. Moreover, by
(3.19) and (3.15) we also get fore (), for somep € N

T

;
‘</ E[D:Fn| 7] <>W(t)dt—/ E[D{F|.7] o W(t)dt, f >‘
0 0

1
2

T T
| 1< EDFn~ FUALE > ot < VTl ([ ID(Fs - P )
0 0

IN

VTI[flloplIFn = Fll% ., — 0 asn — oo
Since this holds for alf < ("), (3.20) follows. O

Theorem 3.15 (The Clark-Haussmann-Ocone theorem for &™) Let F(w) €
& be. 7 -measurable. Then

DiF € & and E[DF|#A] € ¢* foraa.t

E[DiF|.Z] ¢ W(t) isintegrable in ((¥")* and

F(w) = E[F]+ /OT E[DF|.7] o W(t)dt (3.21)

where E[F] denotes the generalized expectation of F.

Proof Let Fn(w) = > .c7
by Lemma 3.8, we have

CoHa(w) be as in the proof of Theorem 3.11. Then

Fo(w) = E[F.] + /OT E[DeFol. 7] o W(t)ct
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for all n. Therefore
T
F () =E[F]+ im_ [ E[DF, 1] o Wt
— 00 0

The limit must exist ing™* and hence in.¢)*. The result then follows from
Lemma 3.14. (]

Example 3.16 Let ¢ : [0,T] — R be a deterministic function such that
T .
16113 1) = Jy #%(s)ds < oo. Define

Y(t) = /Ot #(S)dBs, 0<t<T (3.22)

Then the Donsker delta functiafy(r)(-) : R — &, see [A-@-U], is given
by the expression

1 —Y(T))%?
b y) = ———— - exp [_(yz(z))] (3.23)
N 19llfom
In this case the generalized expectation is given by
1 y?
E[vm()] = ———— - eXp | 5y — (3:24)
NeaT 19llfory
and from the chain rule we get
E[Dtdy ) (y)|-#]
_ 02 _ (3.25)
_ L e | YO yYO)
\/ 2719115 1 2(|9llio.1 19107

Using (3.24) and (3.25) in (3.21), we get a Clark-Haussmann-Ocone formula
for this particular Donsker delta function. Moreover, the formula can be integrated
toget explicit formulas fofT -claims of the formf (Y(T)) wheref : R — R is
bounded and measurable, see the results in [A-@-U].

4 The multidimensional Gaussian case

The framework for multidimensional Gaussian white noise theory is based on
the following construction:

Let i be the Gaussian white noise probability measure/6f{R), as defined
in Sect. 2. Fix a natural numben and put

2:="R) x - x."(R) (m factors)
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and
tm =g X - x pu (m factors) (4.1)
Forw = (w1,...,wnm) € 2 and¢ = (¢1,...,¢m) €. =7 (R) x --- x . (R)
we put
m
<w,p>=> <wi, > (4.2)
i=1

Then we see that
/ & <> (w) = e 3191 (4.3)
(%}

where||g||? = o0 [[¢i |2, i ¢ = (41, ¢m) € .7. As in the casen = 1,
we get that

é(1:7("}) = (él(ta w1)7 RN én’l(ta wm)) = (< W1, X[0,t] >, < wm X[0,t] >)

has a continuous versioB(t,w), which will be anm-dimensional Brownian
motion onR. Let.7™ =.7 x ... x.7 (m factors) be the set of ath-tuples
I'=@W, ..., 4™ of multi-indices~¥) €.7. ForI" € .7™ define

m
Hp = H(}n)(w) = H H.o (4.4)
i=1

Then the family{H} ¢ >~ constitutes an orthogonal basis 1of(xy,) and

|Hp |72, = TV = 700 A1 (4.5)

+(see [H-@-U-Z, Theorem 2.2.3]). We now proceed to define the spacasd
&* usingHr :If G(w) =3 ,cymCrHp(w) andr € Z, define

oo

IGI, = 1161 gy = (D cBr1)e? (4.6)
n=0 |I'|=n
and
G = % (um) ={G ; [[G||% < oo} (4.7)
Then put
& =% (um) = ﬂ % with projective topology (4.8)

and
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T =" (um) = U ¢+ with inductive topology (4.9)
reN

The Hida spaces¥’) = (¥)m and (¥*)* = (¥);, are defined similarly. The
Wick product is defined by

( 3 apHp) <>( 3 bA]HIA) =Y arbHp (4.10)
A

regm Aegm

One verifies that (2.15) and (2.16) still holds in this setting. Triuttidimen-
sional Gaussian white noise is defined by

W(ta w) = (Wl(t,wl)a e an(tvwm)) (411)
where
Wi(twj) = ) &(®Hew (W) (4.12)
k=0

(similar to (3.12). Thedirectional derivative of F : {2 — R in the direction
v =(M,-..,7m) € (L3(R))M is defined by

D.F(w)= I@O%(F (w+ey) — Fw)) (imitin (%)) (4.13)

We say thatF : 2 — R is differentiable if there exists a maK =
Ky, ..., Kn) i R = (()*)™ such that

D, F(w) = /R K(t,w) - y()dt for all 4 € (L2(R))™ (4.14)

whereK (t,w) - y(t) = 3%, Kj (t, w)yj (t). If this is the case, we put

) =Kitw) s 1<i<m (4.15)

and we call the vector
OF OF
K(t,w) = (%(t,w), o aT(t’“’)) (4.16)
m

the stochastic gradient of F (at t). The reader can easily verify that in this
modified setting the proofs in the 1-dimensional case carries over to the multi-
dimensional case with only minor modifications. Thus we obtain (compare with
Theorem 3.11 and Theorem 3.15):
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Theorem 4.1 (The Clark-Haussmann-Ocone formula for L?(um)) LetF(w) €
L2(1um) be measurable with respect to the o-algebra .7 ™ which is generated by
{Bi(s,w)}o<s<T,1<i<m- Then

OF

E F ™) € L(um)
wj

(t.w) € T (um) and E[2(t,w)
8wi

foraa t,1<j < m. Moreover,

E[/OT (zm:E[‘;f_ (t,w)\%m)]z)dt} < 00
j=1 '

and we have
T~ OF
F) = EulFl+ [ Y BT 108 ()
=t '

Theorem 4.2 (The Clark-Haussmann-Ocone formula for &*(um)) LetF(w) €
& *(um) be .7 ™-measurable. Then

OF

. OF .
——(t,w) € C*(um) and E[-—(t, W) F™] € L (1um)
8&]]' awi

foraa t,1<j <m. E[25(t,w).5™] isintegrable in ()" (im) and

T m
F@=EIF [ (DBl A oW u))d
=1 '

5 The Poissonian case

The white noise machinery can also be adapted to the Poissonian case. To achieve
this we replace the measuredefined by (2.1) by thé oissonian white noise
probability measure defined on¥”’(R) by

/,, e <@ 9> du(w) :exp[ / (eiW) - 1)dx} .6 € .7 (R) (5.1)
S!(R) R
Then we obtain d&oisson process P(t,w) as the right-continuous version of
P(t,w) =< w, xp.g() > (5.2)
This gives
<w0>= [ o0Pe0 s S @)

If we define
Qt,w)=Pt,w)—t; teR
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(the compensated Poisson process), then we obtain thaF any () can be
represented as a sum of iterated integrals with respe@t to

FE =Y [ m(0dQ™" (0 (5.3)
n=0 /R"
whereg, € L2(R") for all n. Moreover,
IFiE2) = D n!llnIFzqen) (5.4)
n=0

There is also a basis of polynomials analogous to the Hermite functionals
H.(w) in the Gaussian case. These are calledGharlier polynomials and de-
noted byC, (w); a € .7. The first Charlier polynomials are

CO(w) = 1a CEU)(w) =< w7§] > _Ej (55)

(whereg; = [, & (t)dt),
Ceinretr (W) =< w, & >< w, § >
— <w,§§ > —<w,§ > <w § > & — & (5.6)
We have
E.[CaCsl = aldap

We refer to [B-G], [H-@-U-Z], [H-d], [IY] and the references therein for more
information. We now proceed as in the Gaussian case to define the Poissonian
versions )., ¢ (v), & *(v), and (¥);, of the stochastic test function and dis-
tribution spaces.¥”), <, <*, and (¥)* we defined in (2.19), (2.20), (2.7), and
(2.8). For example, the Poissonian Hida test function sp&€g, (consists of all
expansions

Fw) =) a.Calw)

aET
such that

IFI20x = D a2al(@N)** < oo (5.7)
acd

for all k € N. The Poissonian Wick producti§ defined on the Charlier polyno-
mials by

(CadCh)W)) = Carsw) ; o, B €T (5.8)

and extended linearly to);,. As in the Gaussian case, we get that all the four
spaces.t),, & (v), ¥ *(v), and (¥)} are closed under Wick products and that
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the Wick product is a commutative, associative and distributive (over addition)
binary operation on these spaces.

In spite of the many similarities, there are important distinctions between
the Gaussian and the Poissonian case. For example, in the Gaussian case we
have seen that with our definition (3.1), (3.5) of directional derivafyeand
Malliavin derivativeDy, we have both the ordinary chain rule (5.9) and the Wick
chain rule (5.10)/(5.11):

Di(< w,& >N =n<w, & >"H () (5.9)

and
Di(< w,& > =n < w, & >°0D g(1) (5.10)

ie.,
Dt (Hneor (w)) = NH(n 1) (W)&i (t) (5.11)

See Lemma 3.6.

If we maintain our definitions (3.1),(3.5) in the Poissonian case, then as before
we get that the ordinary chain rule (5.9) holds. HowetezWick chain rule will
fail. To see this, consider the following example:

Example 5.1 Let F(w) =< w, & >%2. Then by (5.5) and (5.6)

F) = Cow) +&)2=Chnw)+2Xnw)E +&  (5.12)

<w§ > —<w, &> (5.13)
Therefore, by (5.9),
Di(<w,§ >P)=2<w, 6 >60) - 6M*F2<w & > &) (514
Equivalently, using (5.5),
Dt (Caetr () = 2C0n (W)&i (t) — &7(t) 7 2Ccn (W)&i (t) (5.15)

The reader may find these results contradictory in view of the following “argu-
ment”

1 3 3
im = (<w+ey,§ > — <w,§ >%)
e—0 €

lim 2 (< w,& > +e < 7,6 >) P < w6 7 (5.16)

e—0 €

Im2<w§ >< 7,6 >+ <76 >=2<w,§ >< 7,6 >
€E—r

which - if it were correct - would imply that



The Clark-Haussmann-Ocone theorem 489

‘D (<w,& > =2<w,§ ><7,§ > (5.17)

which seemingly contradicts (5.13). However, there is a flaw in the argument
leading to (5.16), because F(w) =< w, & >°?, then by (5.12)

<w+tey,§ >%2= Flwtey)=<wtey, & >2 — <w+€’y,§i2>
= <w, & S22 <w, & >< 7,86 >+ <y, & >?

—<w, > —e<y, 8> (5.18)
= < w, & > 42 <w, & >< 6 > HEE <, 6 >P—e <y, >

= (<w,& >+ < 7,8 >) P —e <7, E>F(<w, & > +e <7, & >)?

which shows that the equality (5.15) is false.

Since it is theMck chain rule and not the ordinary chain rule that is needed in our
proof of the Clark-Haussmann-Ocone formula, we must in the Poissonian case
abandon the Malliavin derivativ®; based on the directional derivati, in

the definitions (3.1), (3.5) and replaBe by the stochastic derivativ®; defined
analogously to (3.14):

Definition 5.2 Let F(w) = > c7a.Cq(w) € < *(v). Then we define the
stochastic derivative of F att by
DiF () = f(t W)=Y Ca Y 8, Co i (@)§i() (5.19)
t _d(JJ ) - ~ oY : aai a—eli) i .

Note that with this definition the ordinary chain rule doest hold. For
example, from (5.12) and the Wick chain rule, we get

Dt (< w, & >2) =Dy (< w, & >+ <w, &2 >) (5.20)

=2<w, & > &(t)+ (1) (5.21)

More precisely,D is a finite difference operator, cf. Th. 6.5 of [IY], and
(1.12) in [D-K-W]. In particular, from Proposition 1 of [N-V] we have

DiFWw)=F+d&) - Fw), aa. tw
if F is in theL2 domain ofD, whered; € .¥”(R) is the Dirac measure at The

Poissonian white noise is defined by

V(t,w) =) §(t)Co(w)

j=1
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We see thaV/ (t, ) € (%)} for all t and as in the Gaussian case we get

T T
/ Y (t, w)dQ(t, w) = / Y (t, w)3V (t, w)dt (5.22)
0 0

for all Q-Skorohod integrabl¥ (t, w). With these definitions the proofs of Sect. 3
carry over to the Poissonian case. We omit the details.

In the multidimensional Poissonian case we put
N=9"R) x---x.¥"(R) (k factors)

and

w=vx---xv (K factors)

and proceed as in Sect. 4. Again one can verify that the proofs of Sect. 3 carry
over also to the Poissonian case. Again we omit the details. The results are:

Theorem 5.3 (The Clark-Haussmann-Ocone formula for L%(vx) and & * ()
Interpreted within the framework of D; and &, the Clark-Haussmann-Ocone for-
mula applies for L2(v) and & * ().

Remark Other approaches to stochastic calculus/Malliavin calculus for jump pro-
cesses can be found in [B-C], [B-G-J], and [E-T]. In [P], the CHO formula has
been expressed using both the finite difference operator and the derivation with
respect to jump times of [C-P].

Similarly to obtain a white noise theory for the case withGaussian noises
andk Poissonian noises, we consider the measure

O = Omk = um X %

on
2=9"®R) x - x.7'(R) (m+Kk factors)

By considering appropriate tensor products of the Hermite polynorfigland

the Charlier polynomial€s, we obtain an orthonormal basis fof(Om) just

as explained in the beginning of Sect. 4. See [H-@] for more information about
this construction. We encourage the reader to (once again) verify that the proofs
of Sects. 3 and 4 carry over.

Theorem 5.4 (The Clark-Haussmann-Ocone formula for the spaces L2(pam <
) and & (um x k) Interpreted within the framework of D; and &, the Clark-
Haussmann-Ocone formula applies for L2(um x k) and & (um x k).
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6 Application to mathematical finance: Hedging in a Poissonian market

As an application of the results above, consider a marqg} = (A(t), S(t))
consisting of two investment possibilities:

(i) abank account, where the priceA(t) at timet is given by

dA(t) = p(DA(t)dt ; AQD) = 1 (6.1)

(ii) a stock, where the prices(t) at timet is given by

dS(t) = p(t)S(t)dt + o(t)S)dQ(t) ; S(0) =x > 0 (6.2)

wherep(t), u(t), ando(t) aredeterministic functions inL?[0, T] (T > 0 constant),
o(t) > e for somee > 0. As beforeQ(t) = P(t) — t is the compensated Poisson
process. It is well known (see, e.g., [H-@, Example 2.2]) that the solution of
(6.2) is given by

t t
S(t) =x exp {/o In[1 + o(s)]dQ(S) +/0 (u(S) — o(s) +In[L + o(s)])ds| (6.3)

Let (¢(t,w),n(t,w)) be aportfalio, i.e., £(t), n(t) gives the number of units of
investments #1, #2, respectively, held by an agent at tirfiée total valueV (t)
at timet of such a portfolio is then given by

V(1) = OAC) +n(t)S(t) (6.4)

Assume that the portfolio iself-financing, in the sense that

dV (t) = ()dA(t) +n(t)dS(t) (6.5)
From (6.4) we get
UK W (6.6)
which substituted in (6.5) gives
dV (t) = p(t)V (t)dt + o (t)n(t)S(t) (“(t)a(_t)”(t)dt + dQ(t)) (6.7)
Define
u(t) = ”(t)azt)p(t) (6.8)
Suppose

ut) <1-—¢ for somee; > 0 (6.9)
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Then by the Girsanov theorem for the compensated Poisson process (see [B-V-
W]), we get: If we define the measureoh .72t by
do(w) = Z7(w)dv(w),

where

Zr(w) = exy [— / ' u(t)dQ(t)} (6.10)

exp [ /0 ! In[1 — u(t)]dP(s) + /O ' u(t)dt} (6.11)

(see, e.g., [H-F,(2.43)]), then the process

Qt,w) = /0t u(s)ds + Q(t, w) (6.12)

is a compensated Poisson process with respect to the meas@bstituting
(6.11) into (6.7), we get

dV (t) = p(t)V ()dt + o (©)n(t)SH)dQ()
or

e Jo P95y 1y = v (0) + /O " e Ly 9 Ly (B (6.13)

Suppose we want to hedge a give#r-measurable clainf (w) > 0. Then we
seekV (0) andn(t) such thatv(T) =F a.s., i.e.,

e o R () = v (0) + /OT e h % onmsnadn  (6.14)

Define .
G(w) = e o AIBE ()

If G € L(P), then by Theorem 5.1 applied towe get (withD; denoting the
stochastic derivative w.r.t;)”

.
G(w)=Ea[G]+/O E;[D:G|.941dQ(t) (6.15)

(Observe tha@(t) andQ(t) generate the same filtratiod?; = %:t) Comparing
(6.13) with (6.14), we get, by uniqueness,

V(0)=e Jo POBE,[F] (the price of the clainF) (6.16)
and

w0 = ek A0S 1B F L) (6.17)
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As an example, consider theuropean call option, i.e.,
F(w) = (S(T) - K)* (6.18)
whereK > 0 is some constant (the exercise price). We may write
F(w) =f(S(T)) wheref (x) = (x —K)"; x>0
From Prop. 1 of [N-V] we have
DiF () = F(w+6) — F(w) = (S(T)(w + &) — K)* = (S(T)(w) — K)* (6.19)
By (6.3) and (6.11) we have

S(T) = x exp [ JoIn[L+o()1dQ®) + [ (u(t) (6.20)
—o(t) + IN[L + o(®)](L — u(t)))ct] (6.21)

hence
S(T)(w + ) = (L +0()S(T)(w) (6.22)

Combining this with (6.18), we get for@t <T
DiF = (1 +())S(T) — K)X[k /140 t).<](S(T))

+o (D)S(T)x1K 00)(S(T))

a()S(T) XK /1+0(1)),00) (S(T)) + (S(T) — K)x(k sasoy k) (S(T))  (6:23)

a(®)S(T)X[K /a+o(1)),00) (S(T)) — (K = S(T)) X[k /(1401),00) (S(T))

(e(®)S(T) — (K — S(T)) )Xk /@+o1)),00)(S(T)),
and

Es[DiF | 74] = Es[(a(t)S(T)
(6.24)

—(K = S(T) )Xk /@@+o(1)),00) (ST FA].

By the Markov property of the procesXt) with respect tov"(see (6.19)), we
see that

Es[(c()S(T) — (K — S(T) )Xk /2+0),00) (S(T)) - 4]
= E[(o(®)YY(T —t) — (K — YY(T —t))) (6.25)

XK /(140 (1),00) (Y (T — t)]y=s(),
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whereYY(t) is the process defined by

dY¥(t) = YY(©)((u(t) — u(t) In[L + o(®)])dt + o(t)dQ(t)) ; YY(0) =y (6.26)

i.e.

YY(t) = yexp [ /0 t In[1 + o(s)]dO(s) (6.27)

+ / t (1u(s) — o(s) +In[1 +o(s)](1 —u(s)))ds|  (6.28)
0

Since the law ofQ(t) is known, we can also write down an explicit formula
for the expression (6.22). We summarize what we have found in the following

Theorem 6.1 The price V (0) of a European call option with payoff
F(w) = (S(T) = K)*

in the Poissonian market defined by (6.1), (6.2) and satisfying (6.9), is given by
(6.15). Moreover, thereplicating portfolio £(t), n(t) for thisclaimisgiven by (6.6)
and

o = Sl e

e Es[(c@YY(T —t) — (K = YY(T —1))")

1
a(S(0) (6.29)

XK /(14 (1)),00) (Y Y (T — t)]y=s)
with YY(t) given by (6.25).

Remark The formula (6.15) for the pric&/(0) is well-known. However, the
hedging formula (6.25) appears to be new. Note that the alternative approach
often used to compute hedging strategies (the PDE approach) seems difficult to
apply here because it involves the calculation of

of
87(T - t,X)

wheref (T — t,x) is the price at timel —t if S(t) = x. One can expresk in
terms of an expectation with respectit@nd this leads to a series expansion for

f. This series, however, cannot be differentiated term by term. Pricing in models
described by pure jumps ([Aa], [Ac]) and possibly also jumps and diffusions
([Ab]) is treated in many papers, see e.g., [Aa], [Ab] and [Ac] with references
therein. To our knowledge no such paper to date solves the question of finding
replicating portfolios.
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