
Engineering with Computers (2001) 17: 269–286
 2001 Springer-Verlag London Limited

Guaranteed-Quality Simplical Mesh Generation with Cell Size and
Grading Control

C. Ollivier-Gooch1 and C. Boivin2

Advanced Numerical Simulation Laboratory, Department of Mechanical Engineering, University of British Columbia, Vancouver,
BC, Canada

Abstract. Unstructured mesh quality, as measured geo-
metrically, has long been known to influence solution
accuracy and efficiency for finite-element and finite-volume
simulations. Recent guaranteed-quality unstructured meshing
algorithms are therefore welcome tools. However, these
algorithms allow no explicit control over mesh resolution or
grading. We define a geometric length scale, similar in
principle to the local feature size, which allows automatic
global control of mesh resolution and grading. We describe
how to compute this length scale efficiently and modify
Ruppert’s two-dimensional and Shewchuk’s three-dimensional
meshing algorithms to produce meshes matching our length
scale. We provide proofs of mesh quality, good grading, and
size optimality for both two- and three-dimensions, and present
examples, including comparison with existing schemes known
to generate good-quality meshes.

Keywords. Mesh grading; Mesh quality; Mesh
resolution; Quality guarantees; Unstructured mesh
generation

1. Introduction

Unstructured meshes are widely used in scientific
computing because automatic unstructured meshing
codes can readily generate meshes for arbitrarily
complex geometries. In contrast, structured meshing
for complex geometries often requires significant
user input to decompose the domain into blocks. In
the rush to embrace unstructured mesh technology,
however, one can lose sight of important issues
regarding mesh quality. While we do not yet have

Correspondence and offprint requests to: Professor C. Ollivier-
Gooch, Advanced Numerical Simulation Laboratory, Department
of Mechanical Engineering, University of British Columbia, 2324
Main Mall, Vancouver, BC V6T 1Z4, Canada. E-mail: cfog�
mech.ubc.ca
1 Supported in part by NSERC operating grant OPG194467.
2 Supported in part by an NSERC post-graduate scholarship.

a satisfactory theory relating geometric mesh quality
metrics to convergence and accuracy properties of
discrete solutions to physical problems, there are
some things that we can say. We know that the
accuracy [1] and solution efficiency [2,3] of finite-
element discretizations are impaired by the presence
of dihedral angles near 0° or 180°. Recent results
indicate that this problem extends to finite volume
methods as well [3].

In this context, we would like to use meshing
algorithms that provide some guarantee on the geo-
metric quality of the meshes they produce. During
the past decade, several researchers have proven
results guaranteeing high quality in some geometric
measure for triangular and tetrahedral meshes. In
two dimensions, Ruppert’s [4] and Chew’s [5] algor-
ithms are similar enough that Shewchuk was able
to analyze the two within a unified framework [6].
Shewchuk also presented a generalization of Rup-
pert’s algorithm to three dimensions. In both two
and three dimensions, the ratio of the circumradius
of a cell to its shortest edge length can be bounded
above. The two-dimensional bound for Shewchuk’s
improvement to Ruppert’s scheme3 is equivalent to
guaranteeing a minimum angle of 30°.

Shewchuk’s three-dimensional bound is somewhat
less strong, in that small and large dihedral angles
are allowed in the form of sliver tetrahedra. Slivers
are tetrahedra whose points lie nearly on a single
circle. Because the four points are nearly coplanar,
the circumradius of the tetrahedron is often quite
reasonable, sometimes even smaller than the shortest
edge length. Shewchuk speculates about the possi-
bility of removing these slivers from the mesh by

3 Although it is not strictly correct to do so, we will hereafter
refer to Shewchuk’s improved version of Ruppert’s two-dimen-
sional scheme as Ruppert’s scheme to avoid confusion with
Shewchuk’s three-dimensional scheme.



270 C. Ollivier-Gooch and C. Boivin

point insertion and shows experimental results, but
gives no proofs. Recently, several papers (for
example, [7]) have been published with algorithms
for sliver removal, including quality proofs. How-
ever, the provable bounds are too small to be of
practical interest.

The common failing of both Ruppert’s and Shew-
chuk’s schemes is the length scale of the generated
meshes. Each scheme produces meshes for which
the edge length is provably no smaller than a con-
stant factor times the local feature size, which is a
measure of how close together nearby surfaces lie.
This resolution is inadequate for many problems,
even stipulating that adaptive refinement will be
used. As an example, consider the case of stress
calculation for a square plate with a square hole.
The mesh generated by Ruppert’s scheme, shown
in Fig. 1(a) is clearly inadequate, and might not
even capture the solution well enough to indicate
that adaptive refinement is necessary; this problem
is often even worse for fluid mechanics problems,
where significant solution gradients can occur well
away from the boundaries.

In this paper, we present extensions to Ruppert’s
and Shewchuk’s algorithms to allow users better
control over initial cell size and grading while
retaining the other desirable properties of these
schemes. Figures 1(b) and 1(c) show meshes with
finer resolution that were generated by using our
improved scheme.

To provide the proper context for discussion of
our improvements, we will first review Ruppert’s
triangulation algorithm (as improved by Shewchuk)
and Shewchuk’s tetrahedralization algorithm briefly
in Section 2. We give a detailed description in
Section 3 of the modifications we have made to
provide flexibility in specifying cell size and grading
rate. We state quality results for both two- and
three-dimensional versions of our scheme in Section
4; the proofs are presented as appendices. In Section

Fig. 1. Three meshes for a plate with a hole, using different mesh scaling parameters.

5, we present examples comparing mesh size,
quality, and generation time for the original and
improved Ruppert/Shewchuk schemes with our pre-
vious meshing code.

2. Ruppert’s and Shewchuk’s
Guaranteed-Quality Meshing Schemes

Both Ruppert’s and Shewchuk’s schemes are
Delaunay insertion schemes, which means that
each algorithm presumes a constrained Delaunay
mesh as a starting point and provides instructions
on how to choose locations at which to insert
new points into the mesh to achieve good mesh
quality. In each case, there are restrictions on the
initial mesh – not just any Delaunay mesh will do.
We describe those restrictions first, then discuss the
refinement algorithms.

2.1. The Beginning: Input Restrictions

For provable mesh quality and size bounds to apply,
Ruppert’s scheme requires input geometries to have
no angles smaller than 60°. Shewchuk’s three-
dimensional scheme requires, roughly, that incident
segments in the input be separated by an angle of
60°; that incident facets be separated by 60°; and
that a segment incident on a facet not containing
that segment be separated from the facet by arccos

1
2√2

� 69.3°. In practice, smaller angles are accept-

able, although small angles (typically, those smaller
than the angle bound that one seeks to enforce)
require special treatment to prevent infinite refine-
ment; both Ruppert [4] and Shewchuk [6] provide
suggestions for how to do this.



271Guaranteed-Quality Simplicial Mesh Generation

2.2. The Middle: Point Insertion Rules

Given an initial constrained Delaunay triangulation,
both Ruppert’s and Shewchuk’s schemes proceed in
the same general way. Each removes badly shaped
cells by inserting points at their circumcenters. To
avoid creating small features in the mesh, both
schemes refuse to insert points that encroach into
protective regions around boundary entities. Instead,
points are inserted to split the encroached boundary
entities themselves, with care taken to ensure that
the triangulation remains constrained Delaunay. If
the initial triangulation contains any encroached
boundary entities, these are split before attempting
to remove badly shaped cells.

2.2.1. Ruppert’s Scheme
In Shewchuk’s modification to Ruppert’s scheme, a
vertex is said to encroach on a boundary edge if it
lies within the diametral lens shown in Fig. 2. This
diametral lens consists of the region between two
circular arcs passing through the endpoints of the
edge, each with its center on the other arc.

Ruppert’s two-dimensional scheme uses two sim-
ple insertion rules4:

1. If a triangle is badly shaped (i.e. it has an angle
smaller than 30°), then a point is inserted at its
circumcenter, unless

2. The new point encroaches on any visible bound-
ary edges, in which case those edges are bisected
instead. If this bisection point encroaches on any

Fig. 2. A diametral lens around a boundary edge in two
dimensions.

4 We ignore here for clarity some technical details regarding
handling of small input angles, etc, which are important for
achieving the angle bound given in Section 2.3. Interested readers
are encouraged to refer to Ruppert’s and Shewchuk’s work for
more information.

boundary edges, those edges must be split as
well. When a boundary edge is split, all points
in its diametral circle that are not boundary points
are removed from the mesh.

Boundary edge splitting takes priority over bad
cell removal.

2.2.2. Shewchuk’s Scheme
Following Ruppert, Shewchuk defines a boundary
segment as an edge present in the input geometry.
If a boundary segment is divided into parts by
subsequent point insertion, each part is called a
boundary subsegment. Shewchuk also defines a
boundary facet as a planar polygonal surface in
the input, bounded by boundary segments. When a
boundary facet is divided, either by triangulation or
addition of points in its interior, the parts are
referred to as boundary subfacets. A triangular
boundary subfacet is encroached if a point lies
within the equatorial lens of the triangle (shown in
Fig. 3) formed by the intersection of two spheres
passing through the vertices of the triangle, each
with its center on the surface of the other sphere.
A boundary subsegment is encroached if a point
lies within the unique sphere that has the subsegment
as its diameter.

We give below an outline of Shewchuk’s
scheme5:

1. If a tetrahedron is badly shaped – if its shortest
edge is too small in comparison to its circumrad-
ius – then insert a point at its circumcenter
UNLESS that point would encroach on any
boundary subfacet or subsegment, in which case
the cell circumcenter is not inserted. Instead,

Fig. 3. Equatorial lens (bold arcs) formed by a triangular sub-
facet. Two-dimensional sections of the lens are shaped like the
diametral lens around an edge.

5 Again, we omit some details for clarity. Please see Shewchuk
[6] for more information.



272 C. Ollivier-Gooch and C. Boivin

encroached boundary entities are split; if the
original cell still exists after splitting boundary
entities, then the cell is split.

2. If a vertex encroaches on a boundary subfacet
and the normal projection of the vertex into the
plane of the subfacet lies inside the subfacet,
split the subfacet. Subfacets are split by inserting
a point at their circumcenter UNLESS that point
would encroach on any subsegment, in which
case, the subfacet circumcenter is not inserted.
Instead, all encroached subsegments are split. If
the subfacet survives subsegment splitting, the
subfacet is split afterwards. Before a subfacet is
split, all points inside its equatorial sphere (not
the equatorial lens, which is point-free) are
deleted from the mesh.

3. If a boundary subsegment is encroached, it must
be split. If the newly-inserted vertex encroaches
on any other subsegments, those subsegments
should be split as well. Care must be taken with
handling of small input angles to prevent infi-
nitely recursive insertion.

Subsegment splitting takes priority over subfacet
splitting, which takes priority over bad cell removal.

2.3. The End: Mesh Quality Guarantees

Both Ruppert’s and Shewchuk’s schemes come with
mesh quality guarantees. The guarantees for Shew-
chuk’s modification to Ruppert’s scheme are
comfortably strong. The worst ratio of circumradius
to shortest edge length can be limited to one, which
implies a worst-case angle of 30°. If this bound is
relaxed slightly to allow only a worst-case angle of
arcsin(√3/4) � 25.7°, the mesh is guaranteed to dem-
onstrate good grading: the output mesh will not be
uniformly fine. In practice, these bounds are not
tight, and good grading can typically be obtained
with smallest angles as large as 32°. Finally, Ruppert
showed that the size of the output mesh will be
within a constant factor of the size of the smallest
possible mesh that satisfies the quality bound.

Shewchuk was able to prove a similar bound on
geometric shape quality for tetrahedral meshes. For
the version of the algorithm we describe, the best
bound on the ratio of circumradius to shortest edge
length for which Shewchuk was able to prove good

grading is
2√2
√3

. Shewchuk also provides a counterex-

ample showing that his scheme does not produce
optimally-sized meshes compared with the smallest
possible mesh that matches the input and satisfies

the quality bound6. Although Shewchuk’s scheme
has an agreeably strong bound on mesh quality, it
still allows some sliver tetrahedra, which are often
problematic for solution of partial differential
equations. Shewchuk demonstrates heuristically that
Delaunay refinement can remove most of the worst
tetrahedra from a mesh, although no proofs are
available. He also speculates that mesh reconnection
and smoothing are likely to be effective in removing
such tetrahedra; our examples in Section 5 will
demonstrate the effectiveness of these techniques.

3. Beyond Ruppert and Shewchuk:
Controlled Cell Size and Grading

We seek better control over length scale without
sacrificing guarantees of mesh quality, grading, and
size optimality. We define a geometric length scale
(in both two and three dimensions) based on the
local feature size lfs(p), which is in turn defined as
the radius of the smallest ball centered at that
point that touches two disjoint parts of the domain
boundary. We explicitly compute the local feature
size for each input vertex, then define the geometric
length scale LS(p) in terms of this:

LS(p) =
1
R

lfs(p) (1)

This gives control of resolution of input features,
with approximately R length scales spanning any
small feature. To achieve uniform resolution of
geometric features over the entire domain, R is a
constant; to allow user flexibility in determining
appropriate resolution for a given problem, R is
user-definable at run-time. Adaptive refinement will
of course still be necessary for proper resolution of
the physics of many problems.

In parallel with the properties of the local feature
size, we require that the length scale grow no faster
than linearly with distance. That is, for a new point
p inserted into the mesh near a point q, then the
length scale at p cannot exceed that at q by more
than a fixed constant times the distance between p
and q, regardless of the local feature size at p. For
points inserted into the mesh, then, the length scale
can be computed by using:

LS(p) = min�lfs(p)
R

, min
neighborsqi

LS(qi) +
1
G

�q� i − p� �� (2)

6 Shewchuk is silent on whether his algorithm produces meshes
of optimal size if cell size comparable to the local feature size
of the input is required.



273Guaranteed-Quality Simplicial Mesh Generation

Our length scale definition contains an �-Lipschitz
function, with two parameters. One of these, R,
controls the ratio of input boundary edge length to
final mesh boundary edge length, with finer bound-
ary discretization for larger values of R7. The other
parameter, G, controls how rapidly cell size can
change with distance. Larger values of G imply
slower increase in mesh size leaving the vicinity of
small geometric features in the mesh. Like R, G is
a constant for the entire mesh. The local feature
size can be recovered from our generalization by
setting R and G both to unity.

We modify Ruppert’s and Shewchuk’s schemes
to split cells that are too large in relationship to our
length scale. The remainder of this section describes
our approach in detail.

3.1. Setting an Initial Length Scale for Each
Vertex

Ruppert’s scheme does not actually use the local
feature size directly, and so makes no provision to
calculate it. We must calculate local feature size at
the original vertices of the mesh to determine length
scale there. To do this, we first construct a con-
strained triangulation of the input data. Then, for
each vertex p, we list each of its vertex neighbors
and all of the boundary entities (segments or facets)
incident on one of p’s neighbors, but not on p itself.
Because these lists are constructed by using the
mesh topology, segments invisible to vertex p are
never entered in the list, which would be a problem
with tree search approaches to finding nearby bound-
ary entities. For each vertex and boundary entity,
we find distance from p; the closest vertex or bound-
ary entity determines the local feature size at p
according to the definition.

3.2. Setting the Length Scale for New
Vertices

For each newly-inserted vertex p, we compute the
length scale LS(p) by using the rigorous definition
of Eq. (2). This requires that we know, for each
vertex, the identity of its nearest and second-nearest
boundary entities (those that determine its local
feature size); accordingly, each vertex stores this
information.

Initially, the mesh contains only boundary verti-

7 This implies that R should be one when meshing from well-
resolved boundary discretizations.

ces, for which the length scale is known. A new
vertex p is inserted. The immediate neighbors qi of
p are then checked. First, the maximum length scale
allowed at p by grading is found (second half of
Eq. (2)). Next, we construct a list of all boundary
entities that determine the local feature size of any
of the neighbors qi.

If the new vertex is a boundary vertex, all bound-
ary facets incident on cells incident on that vertex
are also listed to prevent the problem illustrated in
two dimensions in Fig. 4. In this instance, vertices
A through H are input vertices, each with its length
scale determined by the distance between itself and
the nearest non-incident boundary entity. When ver-
tex I is inserted, each neighbor is queried to find
which entities determined its length scale. In this
case, that list might include only A, AB, D, E, GH,
and H – not including DE, which is clearly the
entity required here. However, if all boundary facets
and segments incident on cells incident on I (that
is, cells AID, DIE, and EIH, which are incident on
boundary segments DE and AH) are added to the
list, then all is well.

Given all relevant boundary entities, the local
feature size is easy to calculate from its definition.
Then the definition of length (Eq. (2)) can be
invoked. Once the correct length scale for a vertex
is determined, this value is stored, along with the
identities of the boundary entities defining the local
feature size. This technique for computing the length
scale for new vertices can be applied equally easily
in two and three dimensions.

3.3. Deciding When to Divide a Cell

Now that the length scale is known at every vertex
in the mesh, we can control the resolution of the
mesh by changing the definition of a bad cell to
take into account the size of the cell. We split any
cell which is badly shaped, as before, but also split
cells whose circumradius is too large compared with

Fig. 4. Potential problem with length scale calculation.



274 C. Ollivier-Gooch and C. Boivin

the average of the length scale at their vertices. In
two dimensions, we choose not to split right tri-
angles with leg length equal to the length scale; this

means that circumradii as large as
√2
2

times the

length scale are permissible. Likewise, in three
dimensions we choose not to split right tetrahedra
with all three edges meeting at the right corner
having the same length as the length scale, implying

a permissible circumradius of
√3
2

times the length

scale. This is the only change we make to the
outline of Ruppert’s and Shewchuk’s algorithms.

3.4. Implementation of Encroachment
Checking

A major implementation challenge with Shewchuk’s
scheme is determining whether a candidate vertex
location encroaches on any nearby boundary entities.
To address this, we choose to use Watson’s scheme
[8] for point insertion. We implement Watson’s
scheme in a two-step process. First, we gather infor-
mation about which cells will be deleted from the
mesh as a result of inserting a new vertex, as well
as listing the existing faces of the mesh that must
be connected to the new vertex. With this infor-
mation in hand, we can identify encroached bound-
ary faces, because any that exist are tagged for
connection to the new vertex. Also, in three dimen-
sions, we can identify any boundary subsegments
on the hull and check them for encroachment, even
though these subsegments may not have any incident
boundary faces in the hull. With this approach, we
can reject a new vertex that would encroach on the
boundary before we modify mesh topology, avoiding
the need for backtracking.

4. Quality Guarantees for the
Modified Schemes

In both two-and three-dimensions, we have used an
approach similar to Ruppert’s [4] to show that our
schemes produce good quality meshes of optimal
size. In two dimensions, our results and the limi-
tations placed on input geometry are the same as
in Shewchuk’s [6] extension of Ruppert’s scheme.
That is, we require that all input edges be separated
by angles of at least 60°, and guarantee that the
maximum angle in the output mesh will not exceed
arcsin(√3/4) � 25.7°, even with control over cell

size and grading. We also obtain comparable guaran-
tees on termination and mesh size optimality. The
constants we obtain are more tightly bounded than
Ruppert’s for G � 1; this reflects fortuitously less
slack in the analysis rather than any particular virtue
of our scheme or of our analysis technique. The
proof of these results may be found in Appendix A.

In three dimensions, our input restrictions are
slightly different from Shewchuk’s. In particular,
our proofs require that incident facets be separated
by dihedral angles of 60°; that a segment and
facet sharing a vertex be separated by a dihedral
angle of at least 60°; and that incident segments
be separated by 90°. These conditions are suf-
ficient to prove that the ratio of tetrahedron cir-
cumradius to shortest edge length may be bounded
above by √2. At this limit, termination is guaran-
teed, but although the final mesh may be uniform
if the ratio of circumradius to shortest edge length
is precisely √2. This result is somewhat stronger
than Shewchuk’s result for comparable encroach-
ment rules; the difference in provable bounds
almost certainly is an artifact of input require-
ments or the method of proof rather than a sub-
stantive difference between the algorithms. In
three dimensions as in two, we are able to show
that our scheme produces meshes that are size
optimal, in the sense that no other scheme can
produce a mesh that has more than a constant
factor fewer cells while still meeting the same
shape quality bound and having edge lengths com-
parable to the length scale we use. The proof of
these results may be found in the Appendices.

5. Examples

For both two and three dimensions, we present
several example meshes. In each case, meshes gener-
ated using our new scheme are compared with
meshes generated by the original Ruppert (2D) or
Shewchuk (3D) scheme and with meshes generated
by a reference mesher. Both reference codes have
been described elsewhere [9], so we provide only a
brief description.

The two-dimensional reference code uses an
algorithm similar to Bossen and Heckbert’s pliant
meshing algorithm [10]. This algorithm passes iterat-
ively through the mesh, splitting edges that are too
long, deleting vertices that are too close to others,
and smoothing vertex locations. The scheme is
guaranteed to produce meshes with a minimum
angle of 30°, although for some cases the time
required to reach this bound is prohibitive. The 2D



275Guaranteed-Quality Simplicial Mesh Generation

Fig. 5. Results for a two-dimensional test case.

reference mesher also provides reasonable control
over mesh grading when a length scale function is
provided. Because vertex smoothing is done on the
fly, smoothing as a post-processing step does not
improve meshes generated using this algorithm, and
so no post-processing is performed.

The three-dimensional reference code is a Delau-
nay refinement scheme that uses circumcenter inser-
tion with simple heuristics to avoid inserting points
too near boundaries. Again, control over mesh grad-
ing is possible by splitting cells that are too large.
However, mesh quality is poor without extensive



276 C. Ollivier-Gooch and C. Boivin

Fig. 6. Four-element airfoil test case.

post-processing; we follow the recommendations in
Freitag and Ollivier-Gooch [11]: first, we perform a
pass of face- and edge-swapping to improve the
minimum sine of dihedral angle, followed by two
passes of optimization-based smoothing, then sys-
tematically work to remove remaining badly-shaped
tetrahedra, and finish with two more passes of opti-
mization-based smoothing. This procedure dramati-
cally improves mesh quality for most cases, although
at considerable expense in CPU time.

For Ruppert’s and Shewchuk’s schemes, and our
improvements to those schemes, we post-process
our meshes to improve the minimum sine of angles
in the mesh (dihedral angles, in 3D). In the process,
we must surrender (in 3D only) the strong bounds
on circumradius to shortest edge length that Shew-
chuk’s scheme guarantees. We consider this an
excellent tradeoff, because numerical methods are
sensitive to cells with poor dihedral angles, not
those with small shortest edges. In three dimensions,
we begin with local reconnection; in two dimen-
sions, the Delaunay triangulation already maximizes
the minimum sine of angles, so this step is unnecess-
ary. In both two and three dimensions, we apply
one pass of optimization-based smoothing, using the
floating threshold approach described by Freitag and
Ollivier-Gooch [11].

For these examples, we have used equatorial
spheres to protect subfacets when using variants of
Shewchuk’s scheme in three dimensions, rather than

the more complex choice of equatorial lenses. This
difference affects the size of the generated mesh
and the allowable angle between input facets, but
not the provable bound of circumradius to shortest
edge length.

5.1. Two-Dimensional Narrow-Gap Test

We begin with a geometry devised specifically to test
length scale calculation, including handling of narrow
gaps. Figure 5 shows meshes generated using the refer-
ence mesher, Shewchuk’s modification to Ruppert’s
scheme, our new scheme with R = G = 1, and our new
scheme with R = G = 6. Also included is a close-up
of the last mesh in the ‘neck’ region. This close-up
shows clearly that the length scale is smallest in the
middle of the neck, where the local feature size is
smallest. As the table indicates, each of the meshing
schemes produces high quality meshes for this
geometry, as measured either by angle or aspect ratio.
In addition to angle quality, we compute relative edge
length, as defined by edge length divided by length
scale; this calculation is done twice for each edge,
once for the length scale at each end point. A small
relative edge length implies an edge that is much
shorter than it should be. The schemes are similar in
matching edge length to length scale. Note that Rup-
pert’s scheme does well in this regard without explicit
control of the length scale; our scheme does as well,
or perhaps slightly better.



277Guaranteed-Quality Simplicial Mesh Generation

Fig. 7. Final meshes for cutout cube test case.

Our new scheme has an important advantage over
both of the comparison schemes. Compared with
the reference scheme, our scheme is about approxi-
mately twice as fast for meshes of non-trivial size8,

8 The relative CPU time column in all tables in this paper shows
relative time/cell generated, including post-processing and I/O.

because our scheme (and Ruppert’s) do not re-
examine each vertex and face multiple times to
determine whether the mesh is good enough locally.
Even with careful marking of parts of the mesh
as requiring no further improvement, the reference
scheme is inefficient in this respect. Compared with
Ruppert’s scheme, our scheme is more flexible,



278 C. Ollivier-Gooch and C. Boivin

Fig. 8. Meshes generated inside a truncated cube.

allowing user control over cell size and grading
without adversely affecting mesh quality.

5.2. Two-Dimensional Airfoil Test

As an example to demonstrate the impact of the
grading parameter G, we present in Fig. 6 closeup

views of meshes around a four-element airfoil. Once
again, the meshes for the reference scheme and the
variants of Ruppert’s scheme give meshes of good
and comparable geometric quality. With Ruppert’s
scheme, cell size varies quite rapidly away from
the boundary. Whether this increase is too
rapid depends upon the physical problem and dis-



279Guaranteed-Quality Simplicial Mesh Generation

cretization; we do not propose to dictate ‘correct’
grading rates based on any particular problem,
but to allow flexibility to generate meshes appro-
priate for a range of problems. The mesh in
Fig. 6(c) was generated using our scheme with
R = 1 and G = 6 to approximately match the grading
of the reference scheme; in this case, the speedup
for the modified Ruppert scheme over the reference
scheme is about a factor of 2.5 (as measured by
CPU time/cell). This case demonstrates the same
advantages of our new scheme as the previous case,
while also highlighting the fact that Ruppert’s
scheme can occasionally allow edges that are sig-
nificantly longer than desired, especially in parts of
a mesh where the length scale increases rapidly.

5.3. Three-Dimensional Cutout Cube

In this example, we compare several meshes
generated for a cube with much of its interior
hollowed out, as shown in Fig. 7. These meshes
were generated using our reference mesher, Shew-
chuk’s original scheme, our new scheme with
R = G = 1, and our new scheme with R = G = 2. This
example shows the best-case performance for the
reference scheme, producing a high-quality mesh for
a case where the mesh is relatively fine and uniform.
Mesh statistics for the final meshes are also given
in Fig. 7. Both Shewchuk’s scheme and our new
scheme, in both variants, give somewhat better
meshes than the reference scheme in terms of angle
quality for this simple case while using the same
or less CPU time per cell, including post-processing
and I/O time. In all four cases, the relative edge

Table 1. Comparison of mesh improvement for cutout cube test case

Mesh After . . . Min � Max � Bad cells Bad faces

Reference insert 0.67° 178.4° 11.8% 28.1%
swap 9.2° 164.6° 3.9% 37.9%
tet fix 19.4° 160.6° 0.85% 26.9%
smooth 20.0° 160.0°

Shewchuk insert 13.6° 160.5° 5.7% (none)
swap 26.6° 115.1° (none) (none)
smooth 26.6° 115.1°

New, R = G = 1 insert 0.92° 178.4° 3.9% 0.29%
swap 15.2° 156.9° 0.05% (none)
smooth 26.2° 150.1°

New, R = G = 2 insert 1.1° 178.0° 2.8% 3.7%
swap 15.9° 155.7° 0.03% (none)
smooth 25.3° 148.6°

lengths are pleasantly close to the ideal value of
one. Our new scheme matches the required length
scale well regardless of requested cell size and
grading.

Table 1 shows the effect of the post-processing
passes for each mesh. As Shewchuk speculates in
his thesis, swapping and smoothing dramatically
improve the quality of the meshes produced by his
scheme; the same is true for our schemes, since
they are based on Shewchuk’s. The reference mesher
sees significant benefit also, but only after special
effort to remove badly-shaped tetrahedra during
post-processing (see Freitag and Ollivier-Gooch [11]
for details on this procedure). The reason that Shew-
chuk’s scheme benefits so dramatically from post-
processing is that the few badly-shaped cells it
produces tend to be isolated, rather than falling in
clusters. The second-to-last column in Table 1 shows
the fraction of cells with dihedral angles less than
20° or larger that 150°, or solid angles smaller than
3°; Shewchuk’s scheme and our new scheme pro-
duce fewer of these than the reference mesher. The
last column in the table gives the fraction of faces
of the badly-shaped cells that are not shared with a
well-shaped tetrahedron. In this measure of isolation
of bad cells, Shewchuk’s scheme and ours are far
superior to the reference scheme, which allows the
mesh optimization routines more leeway to recon-
nect or relocate vertices advantageously.

5.4. Three-Dimensional Truncated Cube

As a final example, we present meshes generated in
a cube that has had one corner cut off 0.1% of the



280 C. Ollivier-Gooch and C. Boivin

way along each edge of the cube. This case is more
challenging, because the geometric length scale of
the boundary varies by three orders of magnitude.
Here we compare the reference mesher, Shewchuk’s
scheme, our new scheme with R = G = 1, and our
new scheme with R = 1 and G = 4, showing the
effects of grading. The meshes are shown in Fig. 8,
with the clipped corner pointing forwards; statistics
are also given. The reference scheme, which refines
only with the intent of matching a cell size distri-
bution, produces quite a poor mesh for this case,
both visually and statistically; from the picture, it
is impossible even to tell that the clipped corner
faces forward. In this case, the smallest dihedral
angle was 1.7° after point insertion, but – with 27%
of cells categorized as bad and fully 50% of the
faces of bad cells shared with other bad cells –
post-processing is ineffective. In contrast, Shew-
chuk’s scheme and ours produce excellent meshes.
The scheme with slower grading (G = 4) has many
more cells, especially far from the clipped corner,
as expected. In all four cases, the average relative
edge length is again near one, as it should be, but
the reference scheme has a very small minimum,
indicating a small feature in the mesh. Finally, note
that for this case, as for the cutout cube, our new
scheme is about twice as fast per cell as the refer-
ence scheme for all but the smallest meshes. Most
of this time difference is that our scheme requires
less post-processing; some may also be due to differ-
ences in execution time between Watson insertion
(in our new scheme) and Lawson insertion (insert-
then-swap, in the reference scheme).

6. Conclusions

We have described improvements to Ruppert’s
two-dimensional scheme and Shewchuk’s three-
dimensional scheme that allow explicit control over
mesh resolution and grading. Our new schemes com-
bine flexibility in setting cell size and grading;
generation of quality meshes; and efficiency.

We control cell size by defining a local length
scale that has the properties that it is bounded above
by the local feature size divided by a resolution
parameter and that the length scale can not increase
too fast, in the sense that the difference in length
scale between two points cannot exceed the distance
between them divided by a grading parameter.
Appropriate values of the resolution and grading
parameters will certainly vary from problem to prob-
lem, but we assume them to be constant within a
given mesh. Because we split cells with circumrad-

ius larger than √D/2 times the length scale, our
approach produces meshes with uniform resolution
of geometric features.

In both two- and three-dimensions, we have pro-
ven quality guarantees for our new scheme. In two
dimensions, we match the quality guarantees for
Shewchuk’s improvement to Ruppert’s scheme: all
angles in the final mesh are guaranteed to be larger
than arcsin(√3/4); in practice, we can routinely achi-
eve a minimum angle in excess of 30°. If the angle
bound is not strict, then we can show that the final
mesh is graded, i.e. that the mesh is not uniform.
In three dimensions, we have shown that, for input
segments and facets separated by 60°, we can achi-
eve a bound of √2 on the ratio of circumradius to
shortest edge length. If this ratio is strictly greater
than √2, then we can also show that the resulting
mesh is not uniform. Our bounds differ slightly
from Shewchuk’s, as do our requirements on input.
These differences are likely related more to differ-
ences in proof technique that to the merits of the
underlying schemes.

We have presented examples illustrating the
behavior of our new schemes and comparing them
with Ruppert’s and Shewchuk’s scheme, and with
existing reference schemes. Compared to the refer-
ence schemes, our new schemes are significantly
faster and produce better meshes. Compared to
Ruppert’s and Shewchuk’s schemes, mesh quality
and generation speed are comparable, but our
scheme provides good, explicit control on cell size
and grading.

Finally, we have demonstrated that the few
poorly-shaped cells that Shewchuk’s scheme and its
derivatives produce can be effectively removed by
local reconnection and smoothing. We also have
analyzed the bad cells present in these meshes before
and after post-processing, and conclude that Shew-
chuk’s scheme benefits so dramatically from post-
processing because the poor cells it does produce
tend to be separated from each other by good-
quality cells, allowing more freedom in reconnection
and smoothing.

References

1. Babuska, I., Aziz, A. (1976) On the angle condition
in the finite element method. SIAM J. Numer. Anal.
13, 214–226

2. Fried, I. (1972) Condition of finite element matrices
generated from nonuniform meshes. AIAA J, 10,
219–221

3. Freitag, L. A., Ollivier-Gooch, C. F. (2000) A cost/
benefit analysis of simplicial mesh improvement tech-



281Guaranteed-Quality Simplicial Mesh Generation

niques as measured by solution efficiency. Int. J.
Computational Geometry, 10(4), 361–382

4. Ruppert, J. (1995) A Delaunay refinement algorithm
for quality 2-dimensional mesh generation. J. Algor-
ithms, 18(3), 548–585

5. Chew, L. P. (1993) Guaranteed-quality mesh gener-
ation for curved surfaces. Proceedings Ninth Annual
Symposium on Computational Geometry, 274–280

6. Shewchuk, J. R. (1997) Delaunay Refinement Mesh
Generation. PhD thesis, School of Computer Science,
Carnegie Mellon University

7. Cheng, S.-W., Dey, T. K., Edelsbrunner, H., Facello,
M. A., Teng, S.-H. (1999) Sliver exudation. Sym-
posium on Computational Geometry, 1–13

8. Watson, D. F. (1981) Computing the n-dimensional
Delaunay tessellation with application to Voronoi
polytopes. Computer J. 24(2), 167–172

9. Ollivier-Gooch, C. F. (1998) An unstructured mesh
improvement toolkit with application to mesh improve-
ment, generation and (de-)refinement. AIAA 98–0218.
AIAA 36th Aerospace Sciences Meeting and Exhibit,
Reno, NV

10. Bossen, F. J., Heckbert, P. S. (1996). A pliant method
for anisotropic mesh generation. Proceedings Fifth
International Meshing Roundtable, 63–74

11. Freitag, L. A., Ollivier-Gooch, C. F. (1997) Tetra-
hedral mesh improvement using swapping and smoo-
thing. Int. J. Numer. Meth. Eng. 40, 3979–4002

Appendix A: Proof of Mesh Quality
in Two Dimensions

The proofs presented in this appendix follow closely the
approach used by Ruppert [4]. We assume that boundary
edges are protected by diametral lenses and that input
angles are greater than 60°, to prevent adjacent edges
from encroaching on each other. We will be able to
show the same bounds that Shewchuk obtained for this
encroachment definition. However, the constants in the
proof are tighter for grading factor G � 1 (slower changes
in cell size).

We now prove the following lemma, which, among
other results, will establish an angle bound for finite cell

Fig. 9. Lemma 1, Statement 2: p added as circumcenter of large
triangle T.

size and hence for algorithm termination. This lemma is
deliberately stated in language as similar as possible to
Ruppert’s Lemma 2, even to exact quotation of much of
the phrasing, although details of the proof and the derived
constants differ.

Lemma 1 (after Ruppert [4]). For fixed constants CL, CT

and CS, determined below, the following statements hold:

1. At initialization, for each input vertex p, the
distance to its nearest neighbor vertex is at least
lfs(p) � R · LS(p).

2. When a point p is chosen as the circumcenter of an
overly-large triangle, the distance to the nearest vertex
is at least LS(p)/CL. (p may be added to the triangu-
lation, or may be rejected because it encroaches upon
some segment.)

3. When a point p is chosen as the circumcenter of a
skinny triangle, the distance to the nearest vertex is at
least LS(p)/CT. (Again, p may be added to the triangu-
lation, or may be rejected because it encroaches upon
some segment.)

4. When a vertex p is added as the midpoint of a split
segment, the distance to its nearest neighbor vertex is
at least LS(p)/Cs.

Proof. Case 1. Statement 1 of Lemma 1 is true by the
definition of the length scale LS from the local feature
size lfs, provided only that the constant R in Eq. (1) is �1.

Having established the truth of Lemma 1 for the initial
mesh, we will proceed by induction to prove that it must
be true for all meshes generated by the algorithm. As
such, we will assume that Lemma 1 holds for all points
in the mesh and determine the bounds on CS, CT, CL, and
G that are required for Lemma 1 to hold for newly
inserted points.

Case 2. We consider first the case of insertion to split
a large triangle, as shown in Fig. 9. By definition, the

circumradius of �abc is larger than
√2
2

times the average

of the length scales at its vertices. The distance from p
to the nearest point is the circumradius of �abc, or

r �
√2
2

LS(a) + LS(b) + LS(c)
3

(3)

We can bound the length scale at p in terms of this same
average using Eq. (2)

LS(p) � LS(a) +
r
G

LS(p) � LS(b) +
r
G

LS(p) � LS(c) +
r
G

LS(p) �
LS(a) + LS(b) + LS(c)

3
+

r
G

LS(a) + LS(b) + LS(c)
3

� LS(p) −
r
G (4)



282 C. Ollivier-Gooch and C. Boivin

Combining inequalities (3) and (4) we get

r �
√2LS(p)

2
−

r√2
2G

r �
LS(p)

√2 +
1
G

(5)

This inequality places a lower bound on point spacing for
points inserted to split large triangles, and confirms
Statement 2 of Lemma 1, for any

CL � √2 +
1
G

(6)

The lower bound on CL becomes smaller for large values
of G, corresponding to slow change in cell size.

Case 3. We consider next the case of insertion to split
a badly shaped triangle, as illustrated in Fig. 10. Without
loss of generality, we can label vertices so that a and b
are connected by the shortest edge (of length lmin), and a
was inserted in the mesh after b (or both were input
vertices). The radius of the vertex-free circle around a is
r�. Four subcases for relating r� to LS(p) arise, depending
on why a was inserted in the mesh.

Subcase 3a: a was an input vertex. Then so was b,
Statement 1 of Lemma 1 applies, and the distance
lmin � R · LS (a).
Subcase 3b: a was inserted to split a large triangle. The
circumradius r� of that triangle is no larger than lmin, because
vertex b was not inside the circumcircle. Then Statement 2
of Lemma 1 applies, and lmin � r� � LS(a)/CL.
Subcase 3c: a was inserted to split a badly shaped triangle.
By a similar argument and using Statement 3 of Lemma
1, and lmin � r� � LS(a)/CT.
Subcase 3d: a was inserted to split an encroached bound-
ary edge. We know that b does not lie inside the diametral
lens of the edge a split, because otherwise b would
encroach on that edge. Statement 4 of Lemma 1 applies,
and lmin � r� � LS(a)/CS.

If we satisfy CS � CT = CL � 1 (which we will show is
possible), then the inequality lmin � LS(a)/CS (subcase 3d)
causes the most difficulty in satisfying Statement 3 of
Lemma 1 by making the length scale at p larger than that
for any other subcase.

We can relate the radius r of the circumcircle of �abc
to its smallest angle. The angle apb = 2� by geometry,

Fig. 10. Lemma 1, Statement 3: p added as circumcenter of
badly shaped triangle T.

and trigonometry gives lmin = 2r sin�. The definition of
length scale gives

LS(p) � LS(a) +
r
G

� CSlmin +
r
G

= 2rCS sin� +
r
G

This triangle is being split because � is less than the
required angle bound �. We can strengthen inequality (7)
by replacing � with �, and obtain

r �
LS(p)

1
G

+ 2CS sin�

Lemma 1 states that, for this case, r � LS(p)/CT, so we
require that

CT �
1
G

+ 2CS sin� (8)

Case 4. Now we turn our attention to the case in which
vertex p is added to the mesh to split a segment s, because
some vertex or triangle circumcenter lies inside the diame-
tral lens of s. This case is illustrated in Fig. 11. There are
three subcases:

Subcase 4a: a lies on a segment t, which can not share
a vertex with s, because we have assumed that input edges
are separated by 60°. Therefore, p and a lie on non-
adjacent segments, and the length scale at p is LS(p) �
1
R

�a� − p� �. To satisfy Lemma 1 in this subcase, we there-

fore require that CS �
1
R

. Because R � 1, this inequality

is always satisfied for CS � 1.
Subcase 4b: a is a point at the circumcenter of a large
triangle T. a has of course been rejected for insertion,
and all points inside the diametral circle of bc have been
removed, so p has no vertex remaining in the mesh closer
than a distance d. The circumradius r� of T is smaller
than the shorter of �a� − b� � and �a� − c� �, because T’s
circumcircle must be point-free. The worst case places a

at the apex of the diametral lens, so r� �
2

√3
d. Also, we

know from this lemma that LS (a)/CL � r�. The definition

Fig. 11. Lemma 1, Statement 4: p added to split an encroached
boundary edge. satisfied for CS � 1.



283Guaranteed-Quality Simplicial Mesh Generation

of the length scale gives (for the worst case, where a
approaches b or c)9

LS(p) � LS(a) +
1
G

d

� r′CL +
1
G

d

� d� 2
√3

CL +
1
G�

This inequality satisfies Lemma 1 provided that

CS �
1
G

+
2

√3
CL (9)

Subcase 4c: a is a point at the circumcenter of a skinny
triangle. The same reasoning can be applied as in the
previous subcase, with the result that

CS �
1
G

+
2

√3
CT (10)

To establish the truth of Lemma 1, we must find values
of CS, CT, and CL, that simultaneously satisfy Inequalities
6, 8, 9, and 10. We will establish tight bounds on each
constant by requiring equality in each case. Using only 8,
9, and 10 we find that

CS =
1
G

√3 + 2
√3 − 4 sin�

CT = CL =
1
G

√3 + 2√3 sin�

√3 − 4 sin�

These values are bounded for any angle bound

� � arcsin�√3
4 �, just as for Shewchuk’s modification to

Ruppert’s scheme. The constants are nearly identical to

Ruppert’s, with the addition of a constant factor of
1
G

;

this implies a tighter bound on shortest segment length in
comparison to the length scale than Ruppert was able to
show for the local feature size.

We can treat Equation 6 as establishing a lower bound

on the grading rate G �
1

CL−√2
. So long as G is finite,

the mesh will be non-uniform. Relating G to the angle
bound �,

G �
1

√2
sin� (2 + √3)
√3 − 4 sin�

The minimum theoretical grading rate G remains finite up
to the previously established angle bound. If the lower
bound for G is used, we have

CS =
√2

sin�

CT = CL =
√6(1 + 2 sin�)
sin� (2 + √3)

9 These two worst cases can not, of course, apply simultaneously.
With careful analysis, we could perhaps remove some slack from
the constants we derive, but we see no hope for improving the
angle bound for diametral lenses.

In summary, we have established that, for R � 1, we can
generate meshes with the same angle bounds as Shew-
chuk’s modification to Ruppert’s scheme. In the process,
we have placed bounds on the grading rate G and on the
length of the shortest edge in the mesh relative to the
local length scale (the constants CS, CT, and CL give
this information).

Appendix B: Proof of Mesh Quality
in Three Dimensions

The proofs presented in this appendix follow closely the
approach used by Ruppert [4], although more cases must
be handled in three dimensions. We assume:

� Boundary subfacets are protected by equatorial lenses.
� When a boundary subfacet is split, any vertex on or

inside its equatorial sphere is deleted from the mesh.
� Angles between facets are greater than 60° to prevent

adjacent facets from encroaching on each other. This
restriction only holds for pairs of facets that are visible
to each other and for which one facet projects onto
the other.10

� Any segment which projects onto a visible facet must
be separated from it by a dihedral angle of at least 60°.

� Boundary segments are protected by diametral spheres,
and must be separated from each other by 90°.

We now prove the following lemma, which among other
results will establish a bound B on the ratio of tetrahedron
circumradius to shortest edge length for finite cell size
and hence for algorithm termination. This lemma is also
deliberately stated in language as similar as possible to
Ruppert’s.

Lemma 2. For fixed constants CL, CT, CF and CS, deter-
mined below, the following statements hold:

1. At initialization, for each input vertex p, the distance to
its nearest neighbor vertex is at least lfs (p) = R · LS (p).

2. When a point p is chosen as the circumcenter of an
overly-large tetrahedron, the distance to the nearest
vertex is at least LS(p)/CL. (p may be added to the
tetrahedralization, or may be rejected because it
encroaches upon some subfacet or subsegment.)

3. When a point p is chosen as the circumcenter of a
skinny tetrahedron, the distance to the nearest vertex
is at least LS(p)/CT. (Again, p may be added to the
tetrahedralization, or may be rejected because it
encroaches upon some subfacet or subsegment.)

4. When a point p is chosen as the circumcenter of an
encroached subfacet, the distance to the nearest vertex
is at least LS(p)/CF. (p may be added to the tetra-
hedralization, or may be rejected because it encroaches
upon some subsegment.)

5. When a vertex p is added as the midpoint of a split
segment, the distance to its nearest neighbor vertex is
at least LS(p)/CS.

10 Following Shewchuk, we say that facets are ‘visible’ to each
other if there are no facets or segments between them in the
domain to be meshed. A facet (or segment) ‘projects’ onto
another facet if it intersects the right prism built on that facet.



284 C. Ollivier-Gooch and C. Boivin

Proof. Case 1. Statement 1 of Lemma 2 is true by the
definition of the length scale LS from the local feature
size lfs, provided only that the constant R in Eq. (1) is �1.

Having established the truth of Lemma 2 for the initial
mesh, we will proceed by induction to prove that it must
be true for all meshes generated by the algorithm. As
such, we will assume that Lemma 2 holds for all points
in the mesh and determine the bounds on CS, CF, CT, CL

and G that are required for Lemma 2 to hold for newly
inserted points.

Case 2. We consider first the case of insertion to split
a large tetrahedron, as shown in Fig. 12. By definition,
the circumradius of �abcd is greater than √3/2 times the
average of the length scales at its vertices. The distance
from p to the nearest point is the circumradius of T, or

r �
√3
2

LS(a) + LS(b) + LS(c) + LS(d)
4

(11)

We can bound the length scale at p in terms of this same
average using Eq. (2)

LS(p) � LS(a) +
r
G

LS(p) � LS(b) +
r
G

LS(p) � LS(c) +
r
G

LS(p) � LS(d) +
r
G

LS(p) �
LS(a) + LS(b) + LS(c) + LS(d)

4
+

r
G

(12)

Combining inequalities (11) and (12), we get

r �
√3LS(p)

2
−

r√3
2G

r �
LS(p)
2

√3
+

1
G

(13)

This inequality places a lower bound on point spacing
for points inserted to split large tetrahedra, and confirms
Statement 2 of Lemma 2 for any

Fig. 12. Lemma 2, Statement 2: p added as circumcenter of large
tetrahedron �abcd.

CL �
2

√3
+

1
G

(14)

The lower bound on CL becomes smaller for slow change
in cell size (corresponding to large values of G).

Case 3. We consider next the case of insertion to split
a badly shaped tetrahedron (one whose ratio of circumrad-
ius to shortest edge length, r/lmin, exceeded a fixed bound
B), as illustrated in Fig. 13. Without loss of generality,
we can label vertices so that a and b are connected by
the shortest edge (of length lmin), and a was inserted in
the mesh after b (or both were input vertices). The radius
of the vertex-free circle around a is r�; five subcases for
relating r� to LS(a) arise, depending on why a was
inserted:

Subcase 3a: a was an input vertex. Then so was b,
and Statement 1 of Lemma 2 applies. The distance
lmin � �ab� � R · LS(a).
Subcase 3b: a was inserted to split a large tetrahedron.
The circumradius r� of that tetrahedron is no larger than
lmin, because vertex b was not inside the circumsphere of
the tetrahedron a split. Then Statement 2 of Lemma 2
applies, and lmin � r� � LS(a)/CL.
Subcase 3c: a was inserted to split a badly shaped tetra-
hedron. By a similar argument as the previous subcase
and using Statement 3 of Lemma 2, lmin � r� � LS (a)/CT.
Subcase 3d: a was inserted to split an encroached bound-
ary subfacet. We know that b does not lie inside the
equatorial sphere of the encroached subfacet (which is
centered at a), because all points inside that sphere were
deleted before a was inserted. Statement 4 of Lemma 2
applies, and lmin � r� � LS(a)/CF.
Subcase 3e: a was inserted to split an encroached bound-
ary subsegment. We can use the same reasoning as the
previous subcase, and apply Statement 5 of Lemma 2 to
get lmin � r� � LS(a)/CS.

As we show, it is possible (in fact preferable) to choose
CS larger than all the other C’s. Then the inequality
lmin � LS(a)/CS (subcase 3e) causes the most difficult in
satisfying Statement 3 of Lemma 2 by making the length
scale at p larger than that for any other subcase.

We know that the cell �abcd is being split because it
is poorly shaped, implying that r/lmin � B. Combining this

Fig. 13. Lemma 2, Statement 3: p added as circumcenter of
badly shaped tetrahedron �abcd.



285Guaranteed-Quality Simplicial Mesh Generation

result with that of subcase 3e and the relationship between
length scale at p and a, we have11

LS(p) � LS(a) +
r
G

� CSlmin +
r
G

�
rCS

B
+

r
G

(15)

Statement 3 of Lemma 2 says that for a point inserted
to split a badly-shaped tetrahedron, LS(p) � rCT. For
Lemma 2 to hold, this must hold whenever Inequality 15
does, so we require that

CT �
1
G

+
CS

B
(16)

Case 4. Now we turn our attention to the case in which
vertex p is added to the mesh to split a subfacet f � �abc,
because some vertex or proposed tetrahedron circumcenter
z lies inside the equatorial lens of f. This case is illustrated
in Fig. 14. There are three subcases:
Subcase 4a: z lies on a segment or facet, which can not
share a vertex with f, because we have assumed that facets
are separated by 60° from segments and other facets
that project on them, making encroachment impossible.
Therefore, p and a lie on non-adjacent boundary entities,

and the length scale at p is LS(p) �
1
R

�a� − p� �. To satisfy

Lemma 2 in this subcase, we therefore require that

CF �
1
R

. Because R � 1, this inequality is always satisfied

for CF � 1.
Subcase 4b: z is a point at the circumcenter of a large
tetrahedron T. z has of course been rejected for insertion,
and all points inside the equatorial sphere of subfacet
�abc have been removed, so p has no vertex remaining
in the mesh closer than a distance r. The circumradius r�
of T is smaller than the shortest of za, zb, and zc, because
T’s circumcircle must be point-free. The worst case places
a at the apex of the equatorial lens of �abc, so r� �
2

√3
r. Also, we know from this lemma that LS(Z)/CL � r�.

Fig. 14. Lemma 2, Statement 4: p added to split an encroached
boundary facet.

11 Note that each inequality in the above sequence is a possible
source of slack in the constants we will later determine; in
practice, the inevitable accumulation of slack here and elsewhere
makes the algorithm perform better than we can prove.

The definition of the length scale gives (for the worst
case, where z approaches a, b or c)12

LS(p) � LS(z) +
1
G

r

� r′CL +
1
G

r

� r� 2
√3

CL +
1
G�

This inequality satisfies Lemma 2 provided that

CF �
1
G

+
2

√3
CL (17)

Subcase 4c: z is a point at the circumcenter of a skinny
tetrahedron. The same reasoning can be applied as in the
previous subcase, with the result that

CF �
1
G

+
2

√3
CT (18)

Case 5. Finally, we consider the case in which vertex p
is added to the mesh to split a subsegment s, because
some vertex or proposed tetrahedron circumcenter z lies
inside the diametral sphere of s, as shown in Fig. 15. The
same reasoning can be applied as in Case 4. However,
because the subsegment is protected by a diametral sphere
instead of an equatorial lens, the constant 2/√3 must be
replaced by √2. The constraints on the constants of Lemma
2 from this case are:

CS �
1
G

+ √2CL (19)

and

CS �
1
G

+ √2CT (20)

To establish the truth of Lemma 2, we must find
values of CS, CF, CT, and CL that simultaneously satisfy
inequalities (14), (16), (17), (18), (19), and (20) Provided
we choose

Fig. 15. Lemma 2, Statement 5: p added to split an encroached
boundary edge.

12 These two worst cases can not of course apply simultaneously.
As in two dimensions, with careful analysis, we could perhaps
remove some slack from the constants we derive, but we see no
hope for improving the aspect ratio bound.



286 C. Ollivier-Gooch and C. Boivin

CS �
B
G

1 + √2
B − √2

(21)

CT �
1
G

B + 1
B − √2

(22)

CT � CL �
2

√3
+

1
G

(23)

we will always satisfy inequalities (16), (19), and (20).
The last of these implies that inequality (18) is more
restrictive than inequality (17), so we can find a limit
for CF;

CF �
2

√3
CT +

1
G

�
2

√3
1
G

B + 1
B − √2

+
1
G

CF �
1
G

B(1 +
2

√3
) + (

2
√3

− √2)

B − √2
(24)

It is easy to show that, for the lower bounds on each
constant, CS is in fact the largest, as required by Case 3.

All of the constants are bounded for B � √2. As B →
√2, the additional condition that CT → CL implies that

1
G

1
B − √2

=
2

√3 (1 + √2)

This condition is sufficient to keep all constants bounded
except G, the grading parameter, which must go to infinity,
implying that the length scale of the mesh will be uniform.

In summary, for any R � 1 and all bounds B � √2 on
the ratio of circumradius to shortest edge length for the
worst tetrahedron in the mesh, all statements of Lemma
2 hold, and the nearest neighbor to a vertex newly inserted
into the mesh will be no closer than the length scale at
that vertex divided by a constant factor. We have also
established a limit on how quickly cells can change size
(a lower bound on G); this bound implies that as B →
√2, the mesh will become uniform.

Appendix C: Termination and Size
Optimality

In both two- and three-dimensions, we can use the
quality lemmas to prove the following theorem about
finite mesh size and mesh size optimality.

Theorem 1. Given a vertex p in the output triangu-
lar or tetrahedral mesh, its nearest neighbor vertex
q is at a distance at least LS(p)/(CS � 1/G). This
implies mesh size optimality.

Proof. Lemmas 1 (2D) and 2 (3D) handle the case
where p is inserted after q. If q is inserted last,
then we apply either lemma to q:

�q� − p� � �
LS(q)

CS

�q� − p��, soBut LS(p) � LS(q) �
G

�q� − p���q� − p� � � LS(p) −
CS

and the theorem follows, with only minor algebra.
Because the shortest edge in the mesh must be

longer than
LSmin

CS +
1
G

, each cell has a finite size, and

only a finite number of them will be required.
Therefore, the algorithm will always terminate.

We can say more than that. Because the shortest
possible edge is within a constant factor of the
length scale locally, the smallest possible triangle
(tetrahedron) is within the square (cube) of that
same factor of the size of a triangle (tetrahedron)
whose edges all match the length scale. This implies
that the size of the mesh must be within a constant
factor of the size of the smallest possible mesh
whose cells meet the quality bound and whose edges
have length within a constant factor of the length
scale locally.


