
Engineering with Computers (2001) 17: 287–298
 2001 Springer-Verlag London Limited

Approximate Shape Quality Mesh Generation

B. Simpson1, N. Hitschfeld2,3 and M.-C. Rivara3

1Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada; 2Integrated Systems Laboratory,
ETH-Zürich, Zürich, Switzerland; 3Department of Computer Science, University of Chile, Chile

Abstract. We present two techniques for simplifying the
list processing required in standard iterative refinement
approaches to shape quality mesh generation. The goal of
these techniques is to gain simplicity of programming,
efficiency in execution, and robustness of termination. ‘Shape
quality’ for a mesh generation method usually means that,
under suitable conditions, a mesh with all angles exceeding
a prescribed tolerance is generated. The methods introduced
in this paper are truncated versions of such methods. They
depend on the shape improvement properties of the terminal-
edge LEPP-Delaunay refinement technique; we refer to them
as approximate shape quality methods. They are intended
for geometry-based preconditioning of coarse initial meshes
for subsequent refinement to meet data representation needs.
One technique is an algorithm re-organization to avoid
maintaining a global list of triangles to be refined. The re-
organization uses a recursive triangle processing strategy.
Truncating the recursion depth results in an approximate
method. Based on this, we argue that the refinement process
can be carried out using a static list of the triangles to be
refined that can be identified in the initial mesh. Comparisons
of approximate to full shape quality meshes are provided.

Keywords. Quality triangulation; Mesh generation;
Pre-conditioning

1. Introduction

In general terms, (planar) quality mesh generation
(qmg) has come to mean generating a mesh for a
given domain in the plane, possibly including
internal features, which meets specified size and
triangle shape requirements. These two types of
requirements are quite different. The size require-
ment depends very strongly on the specifics of the
application for the target mesh. It is typically vari-

Correspondence and offprint requests to: B. Simpson, Department
of Computer Science, University of Waterloo, 200 Waterloo
Avenue W, Waterloo, Ontario N2L 3G1, Canada. E-mail:
rbsimpson�uwaterloo.ca

able throughout the given domain and, if the require-
ment is stated as an upper bound on triangle size
measures is relatively easily met by refinement
algorithms. The shape requirement is predominantly
motivated by the benefits for most applications of
having triangles that are roughly equilateral (albeit
possibly in some non-Euclidean metric in the case
of anisotropic meshes [1]). These motivations are
connected to optimality properties and to compu-
tational robustness. Hence, the shape criterion has
typically been a global lower bound on the minimal
angle of each triangle, and it is not usually related
to the specifics of an application. It has not been
simple to ensure that refinement methods meet this
criterion.

The study of how to meet a global shape criterion
has been undertaken particularly in computational
geometry [2–8]. We will refer to the problem of
refining a Constrained Delaunay Triangulation
(CDT) on a given Planar Straight Line Graph
(PSLG) to meet a minimum angle bound, while
respecting the edges of the PSLG as a shape quality
mesh generation problem. Algorithms that solve this
problem are reviewed below in section 2. Viewed
slightly differently, a histogram of shape quality for
mesh generated by these methods would show a
sharp cut-off at some prescribed minimum quality
parameter. One context for shape quality mesh gen-
eration problem is as an intermediate step in the task
of generating a mesh to serve data representation for
an application. In this context, shape quality is, in
effect a form of geometry based pre-conditioning
for the application driven mesh which is usually
much larger. As such, it may not be necessary to
have a mesh whose shape quality metric histogram
has an absolute cut-off at a prescribed minimum
quality parameter; but a mesh with a ‘good’ shape
quality histogram may be good enough.

Using this premise, in this paper we discuss
methods that generate meshes that approach good

288 B. Simpson et al.

quality but are simpler to implement, more efficient
to execute, and have robust termination conditions.
The methods exploit the shape improvement proper-
ties of the terminal edge LEPP-Delaunay technique,
reviewed in Section 5, for selecting the vertex for
Delaunay insertion in the refinement process. We
discuss two main topics for developing such
methods. The more general one describes replacing
the iterative refinement organization of conventional
qmg methods as discussed in Section 2 by a recur-
sive one as discussed in Section 3. Central to this
reorganization is the identification of small edges in
the input PSLG. It is then proposed to identify as
an approximate method the procedure formed by
truncating the recursion at a fixed arbitrary, but
small, depth. We argue that, due to the shape
improvement properties of the refinement method,
the largest gains in shape improvement occur at the
smaller levels of refinement.

The second technique involves simplifying the list
of triangles to be refined at the top level of recursive
refinement. At this top level, the triangles to be
refined are all identifiable with small edges in the
initial CDT of the PSLG, possibly with some prepro-
cessing required to introduce some additional small
constrained edges. In Sections 5 and 6, we show
that by identifying these triangles with their small
constrained edges, and relaxing the application of
the small angle criterion appropriately, we can obtain
a simple static list representation of the triangles
requiring refinement. The approximate method then
makes a single scan down this list, applying
recursive refinement to each triangle. A comparison
of meshes generated by the approximate and full
iterative versions of terminal-edge LEPP Delaunay
refinement are presented in Section 6.

2. Iterative Refinement for Shape
Quality Mesh Generation

We formulate the shape qmg problem and review
some of the features of Delaunay refinement algor-
ithms for it. The region to be meshed is described
by a PSLG, P [2]. This is presented to algorithms
via the constrained Delaunay triangulation of P,
which we denote �(0) ([9, p. 85, 10]). A refinement
of �(0) is a mesh, �, on the same region as �(0) such
that the edges of � cover those of P. An edge of
� that lies on an edge of P is a boundary edge. It
may be an internal boundary edge (two neighboring
triangles in �,) or an external one. A Delaunay
refinement of �(0) is a refinement that is a constrained
Delaunay triangulation of its boundary edges. By

the term ‘shape quality mesh for angle tolerance
�tol’, then, we will mean a Delaunay refinement of
�(0), �(�tol), such that the smallest angle in �(�tol) at
a vertex that is not incident on two boundary edges
is not less than �tol.

We will refer to:

� a triangle with its smallest angle � than �tol as
a bad triangle;

� a triangle with exactly one angle � than �tol as
a 1-small-angle triangle;

� a triangle with two angles � than �tol as a 2-
small-angle triangle.

The iterative Delaunay refinement approach to
shape qmg involves the repeated use of the Delaunay
insertion operation to remove each bad triangle t in
the current mesh, �. This operation has two major
subtasks: selecting a point, P to be inserted as a
new vertex in � and updating the mesh to include
P. The use of powerful techniques for improving
the mesh in these two subtasks is crucial to the
success of this approach both theoretically and prac-
tically.

The second task is the familiar Delaunay vertex
insertion to update the old mesh, �, to a new
mesh, ��, which is a Delaunay refinement of �.
Algorithmically, the update can be accomplished by
a simple insertion of P followed by a series of edge
swaps [5], or equivalently, as the Delaunay kernel
operation [9], which involves the explicit removal
of the cavity of P in �, denoted Cav(P)1, and the
insertion of the ball of P in ��, denoted B(P)2. This
can be expressed by the formula (the Delaunay
kernal [11], p. 55]):

�� � � � Cav(P) � B(P) (1)

This update might be implemented by modifying
the memory space of a deleted bad triangle to
represent a newly added one. Whatever the im-
plementation is, it will reflect these set operations.
We use such set notation and operations to abstract
representation dependent details in our following
discussion.

An iterative Delaunay refinement algorithm com-
putes a sequence of Delaunay refinements, �(n), n �
0, 1, 2, . . . and it maintains a representation of the
set, S, of bad triangles in �(n). So, in addition to
updating � the Delaunay refinement algorithm must
update S from being the set of bad triangles in �
to S�, the set of bad triangles in ��. We introduce

1 Cav(P) is the set of triangles in � with P in their circumcircle.
2 B(P) is the set of triangles in �� incident on P.

289Approximate Shape Quality Mesh Generation

subsets Sdel � S � Cav(P) and Sadd � S� � B(P),
and express this update as

S� � S � Sdel � Sadd (2)

Iterative Delaunay refinement methods for shape
qmg typically take the form of the following Qual-
ity-Mesh-Generation procedure. It calls a procedure
Delaunay-Insertion, which takes as input a triangle
t to be refined in mesh � and the minimum angle
tolerance. It performs the two tasks of Delaunay
insertion referred to above, and returns the two sets
Sadd and Sdel as well as updating �:

Quality-Mesh-Generation (P, �tol)
Input: a PSLG P (defined by a set of vertices
and edges) and a tolerance parameter �tol (�tol

� 30°)
initialize � � �(0)

initialize S � {t � � � t is a bad triangle�
for t in S do

(Sadd,Sdel) � Delaunay-Insertion (t, �,�tol)
S � S � Sdel � Sadd

end for

An algorithm based on this outline would have
to specify:

� some data structure for the set S. This would be
a dynamic data structure supporting insertions and
deletions as per the set update operation (2);

� the order of access to the elements of S for the
for loop.

The approximate qmg methods that we describe
below permit implementations which can use a small
array of size computable from the initial CDT, �(0).
This array can be processed in a sorted order with
no modifications required of it during refinement.

Chew [3] laid the theoretical basis for Delaunay
refinement based on circumcircle insertion. Quality
meshes are assured with angles between 30° and
120° for some limits on the angles present in the
initial CDT, and termination is assured by a lower
limit on the sizes of triangle in the mesh. A compre-
hensive treatment of an iterative form of the shape
quality algorithm for this approach was presented
by Ruppert [7], as well as the variable size aspect
of the algorithm. Termination is rigorously estab-
lished for �tol � 20° under restrictions on the bound-
ary edge angles. It is observed that termination is
to be expected for a wider range of �tol, and prepro-
cessing to handle difficult boundary configurations
is discussed. This algorithm development stream
culminated in the implementation of Triangle by
Shewchuk [8]. This paper includes a discussion of

the list structures used to represent the set S of
bad triangles, and a discussion of the difficulty in
developing robust heuristics for treatment of edges
in the initial �(0) that meet at small angles.

The Longest Edge Propagation Path (LEPP) tech-
nique for identifying insertion points for refinement
was initially adapted to the quality mesh generation
problem using Delaunay insertion by Rivara and
coauthors [4,12,13]. It has subsequently been
developed to the form presented as the terminal-
edge Delaunay algorithm [5,14]. The terminal-edge
LEPP-Delaunay algorithms are guaranteed to pro-
duce quality meshes for �tol up to 30° [14], with
an adequate preprocessing of infrequent boundary
related configurations which appear in the initial
CDT. In Section 5, we discuss approximation modi-
fications of the terminal-edge LEPP(t) technique.

3. Approximate Shape Quality Mesh
Generation

Mesh generation by refinement generally proceeds
from a very coarse initial triangulation of the domain
to be meshed (e.g. its CDT), to a large mesh whose
triangle sizes and shapes are computed to control
the error in some data representation. The initial
mesh is essentially a data structure for the geometry
of the region. The shape quality mesh generation
task we have just described increases the mesh size
somewhat to improve the triangle shape solely on
the basis of the geometry. It in effect preconditions
the mesh for the task of generating a discretization
suitable to an application. This geometrically based
shape improvement may be interleaved with size
distribution motivated refinement, or carried out as
a separate preprocessing step. But in any case, the
effect is an intermediate one in the total process of
producing a final mesh. It seems appropriate, then, to
look for simpler and more efficient preconditioning
methods, which we are referring to as approximate
shape quality mesh generation algorithms.

We turn to formalizing the requirements of
approximate qmg.

Definition 1. A small edge detail (sed) of the input
PSLG P, is a directed edge, e→, of its CDT, �(0),
with a 1-small-angle triangle, tneigh, on its right and
the small angle of tneigh opposite e→.

Note that an undirected, internal edge of the
augmented input PSLG can be a sed for one of its
directions, and not for the other; alternatively it
could be a sed for both directions. We assume that

290 B. Simpson et al.

an arbitrary input CDT has been ‘preprocessed’, i.e.
extended so that it:

(a) contains only 1-small-angle triangles,
(b) the shortest edge of every 1-small-angle triangle

is a constrained edge, i.e. belongs to P.

For the theoretical discussion, this means that the
CDT of a general PSLG must be preprocessed to
refine all its 2-small-angle triangles [15], and any
new edges opposite small angles added to P. Some
comments on our experience with implementing
such preprocessing are given in Section 6. See that
‘small’ for an edge in this context means relative
to some length of its immediate neighbors in �(0).
It follows trivially from the definition that:

Lemma 1. A sed is the smallest edge of its defining
neighboring triangle.

A sed is removed by a refinement of � that results
in a modification of its neighboring triangle so that
it ceased to be a 1-small-angle triangle.

We note that, at least in principle, a boundary
edge that is a sed in one or both of its directions
could be split by a refinement that created two
smaller seds. This would introduce algorithmic com-
plications, as well as the undesirable effect of mak-
ing seds even smaller. We discuss in Section 5 how
to avoid this situation.

Our approach to approximate quality mesh gener-
ation uses a re-organization of the Quality-Mesh-
Generation outline of Section 2 to incorporate a
recursive form of Delaunay insertion that we will
designate Delaunay-Insertion-R. Delaunay-
Insertion-R uses a general procedure Select-Inser-
tion-Point (t, �), which is an abstraction for the
method of refinement. It includes the semi-global
methods based on LEPP and circumcircle insertion
referred to above. Select-Insertion-Point takes as
input a triangle, t, to be refined that belongs to the
mesh, �. It returns the new vertex. P*, to be inserted
in � and a triangle, t*, used to locate P* in � for
the Delaunay insertion. Its input parameters are
unchanged.

Delaunay-Insertion-R also calls procedure
UpDate-Mesh (P,t,�,Scum

del, �tol) to perform a Delau-
nay insertion (1), and keep track of the changes to
the set S of bad triangles in �. The input to UpDate-
Mesh is:

� a vertex, P, not in mesh �,
� a triangle t to locate P in �,
� a set, Scum

del, of bad triangles no longer in �,
� the small angle tolerance, �tol.

As its output, UpDate-Mesh returns the set Sadd,
as described in Eq. (2). It modifies � as mentioned,
and modifies Scum

del by adding the set of bad triangles
removed from � by the update. P, t and �tol are
unchanged.

The inputs t, �, and �tol for Delaunay-Insertion-
R are as previously described; it also takes a set of
bad triangles, Scum

del , not in �. This set is updated by
UpDate-Mesh to accumulate the triangles removed
during a call to Delaunay-Insertion-R. When this
procedure returns, it has updated Scum

del and �. The
superscript cum on Scum

del is a reminder that this set
accumulates bad triangles over all recursive subcalls
by the parent procedure Delaunay-Insertion-R.

Note that the loop for removing t from the input
mesh � has been incorporated into Delaunay-
Insertion-R, so, unlike the Delaunay-Insertion of
Section 2, which inserts one vertex per call, it can
insert more than one vertex even without the recur-
sive quality enhancement loop being executed.

Delaunay-Insertion-R (t, Scum
del , �, �tol)

Note: no Sadd in parameter list�
while t is not in Scum

del do
(P*, t*) � Select-Insertion-Point(t, �)
Sadd � UpDate-Mesh (P*, t*, �, Scum

del , �tol)
{Sadd is a temporary set local to Delaunay-Insertion-R�

for s in Sadd � Scum
del do

Delaunay-Insertion-R(Scum
del ,�)

{refer to this as the recursive quality enhancement�
Sadd � Sadd � {s�
end for
end while

return

Theorem 1. On a return from Delaunay-Insertion-
R, triangle t has been removed from � and no new
bad triangles have been added to �.

Proof by induction. There are two looping struc-
tures that must terminate if Delaunay-Insertion-R
is to return. The recursion occurs in the inner for
loop which we have called the recursive enhance-
ment process. The import of the theorem is then,
that if the inner for loop terminates all its instances,
and the outer while terminates, then the procedure
returns as stated. The recursion ends only if all calls
to UpDate-Mesh do not return any bad triangles,
(Sadd � NULL), during the execution of the outer
while. In this case, a return from Delaunay-
Insertion-R implies the outer while exits with
t � Scum

del , i.e. � is as stated in the theorem.
We now assume that the theorem is true for the

recursive quality enhancement calls. If the for loop

291Approximate Shape Quality Mesh Generation

terminates, then particular at each pass through the
loop Delaunay-Insertion-R returns. By the induc-
tion assumption, at the bottom of the for loop the
current triangle s has been remove from and no
new bad ones added to it, and Sadd is reduced in
size. The for loop terminates, having removed all
the bad triangles created by the Delaunay insertion
of P* into �. Since we are assuming that Delaunay-
Insertion-R, returns, we must have t � Scum

del , and
hence � satisfies the statement of the theorem.

This completes the proof, but we also note that
the outer loop, the while t remains a bad triangle
loop, has been shown to terminate in Rivara and
Hitschfeld [5], assuming the inner for loop always
terminates.

The modified form of Quality-Mesh-Generation
then looks like this:

Quality-Mesh-Generation-R (P, �tol)
Input: a PSLG, P (defined by a set of vertices

and edges) and a tolerance parameter �tol

Construct � the CDT of P, including prepro-
cessing
S � {t � � � t is a bad triangle�

for t in S do
Scum

del � 	;
Delaunay-Insertion-R(�,t,Scum

del ,�tol) S � S �
Scum

del

end for

The maintenance of set S in this top level module
is simplified, since no additions to S take place at
this level as indicated by Theorem 1. We note
that this organization for Quality-Mesh-Generation
partially specifies the order of access to the bad
triangle set, S.

Theorem 2. If Quality-Mesh-Generation-R termin-
ates, then the resulting mesh meets the shape qual-
ity criterion.

Clearly, the termination of Quality-Mesh-
Generation-R is tied to the termination of Quality-
Mesh-Generation; it is only to be expected under
the restrictions on �tol and the angles present in the
initial mesh, �(0). We can get an approximate quality
mesh generation algorithm by truncating the
recursion at some depth. The intuitive justification
for limiting the depth of the recursive quality
enhancement is that for a good choice of insertion
point, and Delaunay insertion, the quality of the
new triangles should be improving with each level
of recursion. Evidently,

Theorem 3. A truncated version of Quality-Mesh-
Generation-R terminates, for any �tol.

The price of definitive termination is, of course, that
the result of Theorem 2 cannot be expected to
extend to a truncated version of Quality-Mesh-
Generation-R. In fact, while we expect that a trunc-
ated version of Quality-Mesh-Generation-R would
produce a good triangle as the the neighbor of every
sed of the initial CDT, �(0), this does not seem
proveable in a direct way, if at all.

For simplifying implementations, an important
feature of Quality-Mesh-Generation-R is that no
additions to S take place during the processing of
triangles in S at the top level of recursion. So, at
this level, all the bad triangles to be processed
are known from the initial (preprocessed) CDT.
Moreover, each bad triangle can be identified with
a sed, which lies on a constrained edge of the
CDT. The implications of this for simplifying an
implementation are described below in Section 6.

We intend the introduction of Delaunay-
Insertion-R to be seen as primarily a conceptual
organization rather than a template for a recursive
implementation. Tests with terminal edge LEPP-
Delaunay base refinement (described in the next
section and in Section 6) indicate that significant
shape improvement is already usually achieved with
one level of recursion. So an efficient implemen-
tation would be to simply unroll the recursion for
one level, rather that implementing recursive pro-
cedures, literally.

4. Comparing these Methods: An
Example

To demonstrate these ideas, we present some
meshes generated for the ‘A’ shaped domain
distributed with the Triangle quality mesh gener-
ation program [8]. Figure 1 shows the initial CDT

Fig. 1. Initial mesh.

292 B. Simpson et al.

Fig. 2. Iterative refinement (no recursion).

Fig. 3. Approximate shape quality: one recursion level.

for this domain; and Fig. 2 shows a shape quality
mesh generated by iterative refinements using the
terminal edge LEPP Delaunay method (see Sec-
tion 5.) The angle tolerance is �tol � 30° for
the meshes shown here. Figure 3 and 4 show the
approximate shape quality meshes generated by
Quality-Mesh-Generation-R truncated at 1 and 2
levels of recursion, respectively.

The iterative refinement mesh is generated with
the set of bad triangles, S, ordered largest first. We
note that the order imposed on the processing of
bad triangles by the recursive organization is not
largest first. This is likely why there are more
triangles in the meshes generated by the truncated
recursive methods.

Fig. 4. Approximate shape quality: two recursion level.

5. Simplifying the Use of the
Terminal-edge LEPP-Delaunay
Method

To present a further simplification, we first present
some specifics of the terminal-edge LEPP-Delaunay
algorithm [5,14], in the approximate quality mesh
generation framework just presented. For any bad
quality triangle t, the longest edge propagation path
of t, LEPP (t), is found as the finite sequence of
increasing neighbor triangles, LEPP(t)�{tk,k � 1,
m�, where tj is the neighbor of tj�1 by the longest
edge of tj�1 for j � 2, m and t1 � t, and the
associated terminal-edge is the common longest edge
l of both terminal triangles tm�1 and tm if this edge
exists. In the case that LEPP(t) is an interior
sequence of triangles (without involving constrained
edges), the midpoint of the terminal-edge is selected
for point insertion. Some boundary related edge
point insertions must be also considered in the case
where LEPP(t) includes constrained edges or verti-
ces. Thus, the terminal-edge Delaunay algorithm can
be described as the following Select-Insertion-Point
procedure. It calls a procedure named Risky-Vertex-
Boundary-Terminal-Triangle, which returns true
or false depending on a boundary related configur-
ation of terminal triangles of the LEPP (see else-
where [5,14] for details).

(P*,t*) � Select-Insertion-Point(t,�)
Compute the sequence, {tk, k � 1, m�, of triangles

in LEPP(t)
for k � 1 to m; accept the first instance of do

case � 1 ⇔ tk has a longest edge on the
boundary

case � 2 ⇔ (not case �1) and largest angle (tk)
� 120° and second longest edge on the boundary

case � 3 ⇔ (not case � 1,2) and k � m�1 or
m and Risky-Vertex-Boundary-Terminal-Triangle (tk)

case � 4 ⇔ (not case � 1,2,3) and k � m
i.e. tm�1, tm are a pair of terminal triangles sharing
a terminal-edge
end for

Select insertion vertex as:

Switch (case):
case � 1: P* � midpoint of longest edge of t* �
tk – boundary insertion
case � 2: P* � midpoint of second longest edge
of of t* � tk – boundary insertion
case � 3: P* � midpoint of second longest edge
of of t* � tk – internal insertion

293Approximate Shape Quality Mesh Generation

case � 4: P* � midpoint of longest edge of t* �
tm – internal insertion
end Switch

1. Since this procedure always selects the longest,
or second longest, edge of a triangle, and a sed
is necessarily the shortest edge of its defining
triangle, we have the following:

Theorem 4. Approximate quality mesh gener-
ation based on Select-Insertion-Point never
selects a sed for the directed edge to be refined.

2. Case 3, in which Risky-Vertex-Boundary-
Terminal-Triangle is invoked, is required in the
terminal-edge method to ensure termination of
the iterative refinement algorithm in a case that
otherwise can result in fractal refinement and
non-convergence. However, if an approximate
method is designed by truncating Delaunay-
Insertion-R, then the method is guaranteed to
converge. In this case, the simplification of drop-
ping case 3 is possible.

3. The criterion of case 2 that the largest angle (tk)
� 120° is not essential. It is included because it
is known [14], that triangles with angles in excess
of 120° are modified by the terminal edge Delau-
nay insertion method automatically.

We now look at a simplification that can be made
in the top level of Quality-Mesh-Generation-R. If
we could be sure that an edge which is a sed in
one, or both, of its directions would not be selected
for splitting by Select-Insertion-Point selection,
then the maintenance of the set of current bad
triangles), S, at the top level of the recusion would
be substantially simplified. Unfortunately, this is not
guaranteed by Theorem 4.

Figure 5 shows how, in general, processing the
defining neighbour of one sed can lead to bisection
another. It shows a triangle, t1, that defines a sed

Fig. 5. Example: sed splitting.

on edge AB. LEPP(t1) leads to triangle ta, which is
well shaped and has second longest edge BC which
is a constrained edge, i.e. an internal boundary edge.
The neighbouring triangle, tb, defines CB as a sed.
But case 2 of Select-Insertion-Point requires the
bisection of BC.

We can, however, reduce the likelihood of the
processing of one sed in S leading to the splitting
of another by processing S on a largest defining
triangle first basis. For processing triangle t1, of
longest edge lmax (t1), the shortest edge that can
be chosen for bisection has length greater than
lmax (t1)/2. This is because:

1. the sizes of longest edges in the sequence
LEPP (t1) are increasing;

2. Select-Insertion-Point can select either the long-
est, or second longest edge for bisection.

We can see qualitatively that if in Fig. 5 the longest
edge of tb were significantly shorter than lmax (t1),
then edge CB could not be the second longest edge
of a triangle in LEPP (t1). This leads us to the
common idea to access S by a largest defining
triangle first ordering.

To be more quantitative about this, we need to
develop a limit on the maximum size of a sed in
terms of the longest edge of its defining triangle and
the angle tolerance, �tol. This we do in Theorem 5:

Theorem 5. Let t be a 1-small-angled triangle with
longest edge of length lmax. Let its shortest edge
have length lmin and be opposite angle
min. Then

1. lmin � lmax/cos(�tol) � cotan (
min)sin(�tol)) (3)
2. Let f* be the (smallest positive) solution of
cos(�tol) � cotan (f*�tol)sin(�tol) � 2 (4)
and let �(�tol) � sin(�tol)/(2 � cos(�tol)). Then f*
depends on �tol according to

f*(�tol) � arctan*�(�tol))/�tol (5)
� 1/(1 � �2

tol/2)

3. If
min � f* (�tol)�tol then

lmin � lmax/2 (6)

Proof (Part 1). Let the intermediate and maximal
angles of t be
int and
max, respectively, and let
lmax be the length of the longest edge. Then
int
�tol, and

max � � � (
int �
min) � � (�tol (7)
�
min)

The sine law for triangles and Eq. (7) indicate that

294 B. Simpson et al.

lmin � (sin(
min)/sin(
max))lmax (8)

� (sin(
min)/sin(
min � �tol))lmax (9)

But

sin(
min � �tol)/sin(
min) (10)

� [sin(
min)cos(�tol) � cos(
min)sin(�tol))]/sin(
min)

from which Eq. (3) follows.

Proof (Part 2). Let the vertices of t be labeled ABC,
with AB being the longest edge, of length lmax, and
BC the shortest edge, of length lmin. Figure 6 shows
the edge AB of t lying along the positive x-axis
(i.e. in longest edge coordinates [1].) This figure
shows as dashed lines the region in which C can
lie if t is a 1-small-angle triangle.

The point Y is located at x � lmax/2 such that
angle YAB � �tol. Since the smallest angle,
min,
is at A and is less than �tol, C must lie below AY.
The angle ABY is also equal to �tol. Since t has
only one small angle, C must lie above BY. The
dashed circular arc through B is part of the circle
of radius, lmax centered on A. Since AC is shorter
than lmax, C must lie inside this circle. So C must
lie in the sector XYB.

The dotted circle of radius centered on B belongs
to the circle of radius lmax/2; evidently, lmin � lmax/2
if C lies inside this circle. However, the diagram
shows a small shaded region in which C can lie
and not be inside this circle. The bottom right corner
of this shaded region is denoted Z. We define
f* (�tol) by

f*(�tol)�tol � angle ZAB (11)

If
min � f*(�tol)�tol, then C lies inside the dotted
circle, which establishes Eq. (6). To establish Eq.
(4), see that

�B � Z� � lmax/2 (12)
� lmaxsin(f*(�tol)�tol)/sin(
max)

If we replace
min in Eq. (10) by f* (�tol)�tol, we
get (4).

Fig. 6. Geometry of lmin bound (3).

The implication of Theorem 5 for the largest first
ordering of S for an approx qmg method using
LEPP-Delaunay selection is derived from Theorem
6.

Theorem 6. Let t be the triangle defining the largest
sed in S. Select-Insertion-Point can only select P
on an edge that has a sed associated with one of
its directions if

1. It terminates in case 2 of Select-Insertion-
Point, and

2. This edge is an internal boundary edge, and, for
one of its neighbours

min(t) � f*(�tol)�tol (13)

Proof. Select-Insertion-Point will terminate with a
triangle t* and point P that is the midpoint of one
of its edges. Let us call this edge the insertion edge
and let e→(t*) be its directed edge on which t* is its
neighbor. In cases 1, 3, and 4. Select-Insertion
Point either selects an internal edge of or a bound-
ary edge of length � lmax (t*) lmax (t). In any
case, the insertion edge cannot be associated with
a sed.

Assume that the selection process terminates in
case 2, and that the insertion edge is an internal
boundary edge. Let t� be the triangle neighboring
on this edge with the opposite direction, i.e. �e→(t*)
� e→(t�). Then

lmin(t�) � lmax(t*)/2 lmax(t)/2 (14)

By Lemma 1, e→(t*) cannot be a sed. Let us assume
that t� is a 1-small-angle triangle, so that e→(t�) is a
sed. Unless
min (t�) � f* �tol,

lmin(t�) � lmax(t�)/2 � lmax(t)/2 (15)

so lmin (t�) cannot be processed as a result of LEPP-
Delaunay refinement of t.

We would like to have the simplicity of an
approximate qmg method which does not split exist-
ing seds in S. Theorem 6 shows that the approx
qmg method with LEPP-Delaunay point selection
can split seds, but only under specific circumstances
that are unlikely to be common. Note that the
approximation, f* (�tol) � 1/(1 � �2

tol/2) and (13)
show that for a bad triangle t to meet these con-
ditions, it must be very close to meeting the angle
criterion, at least for small �tol. In fact, for �tol �
30° � �/6 radians, 1/(1 � �2

tol)/2 � 0.88, while
the exact value of f* (�tol) is 0.80. So the simplest
way to gain this simplicity would seem to be to
extend the approximate nature of the method by

295Approximate Shape Quality Mesh Generation

removing the sed that would be bisected from S
(but still bisect it as a boundary edge), i.e. referring
to Fig. 5, to make tb an acceptable triangle of the
approximate quality mesh, in this case. This has the
effect of possibly allowing a triangle that does not
meet the angle tolerance as a neighbor of a boundary
edge, in some evidently rare circumstances.

6. Implementation and Some
Comparisons

We present a comparison between meshes generated
by a standard iterative quality mesh generation pro-
gram organization and those generated by an
approximate shape quality mesh generation program
based on truncated recursion (Section 3), and a sed
based list (Section 5). Both programs use the same
vertex selection technique, (terminal-edge LEPP) and
use a CDT Delaunay insertion mesh update. The
angle tolerance used in all cases is angTol � 30°.
Consequently, the comparison differences are due to
the simplified list processing carried out in the
approximate shape qmg program, which we detail
below. The iterative implementation is implemented
as outlined in Quality-Mesh-Generation of Section
2. It uses a dynamic list for the bad triangle set
which it repeatedly scans using a heuristic to select
the larger triangles first.

In the sed-based recursive implementation, tri-
angles are refined by a version of recursive Delaunay
refinement as outlined in Delaunay-Insertion-R of
Section 3, truncated at a preset maximum recursion
level. This level is set to one in most of our tests.
The program does not keep a list of bad triangles
directly. Instead, prior to commencing the refinement
process, it builds an array of seds present in the
initial (preprocessed) mesh, sorted by decreasing
length. We will refer to it as the sed list. The
program carries out a single scan of the sed list,
processing the (current) neighbouring triangle of
each sed by Delaunay-Insertion-R.

The point of listing seds instead of bad triangles
is that the program can act on a static list. The
Delaunay insertions that occur when one bad triangle
is being processed typically modify other bad tri-
angles. In terms of the set, S, of bad triangles, a
modification of a bad triangle is its deletion from
the set and, possibly, the addition of another; this
is what necessitates dynamic list representations for
S. Because seds are constrained edges of the CDT
of the mesh, they are not modified by the Delaunay
insertions. Moreover, the arguments of Section 5
show that a sed is not selected for bisection in the

refinement process of a triangle connected to another
sed of greater size. Although the neighbouring tri-
angle of a sed may be modified during the pro-
cessing of a sed earlier in the sed list, the sed itself
is unchanged. Since triangle modifications by the
terminal edge LEPP-Delaunay insertion are shape
improving, the new neighbour will have a bigger
smallest angle. In fact, it may no longer be a bad
triangle by the time the associated sed is reached
in the sed list scan. In the set terminology of
Quality-Mesh-Generation-R of Section 3, the bad
triangle that originally defined the sed appears in
Scum

del for the refinement of an earlier triangle.
Recall that before building the representation of

the bad triangle list in Quality-Mesh-Generation-
R, we indicated that the initial �(0) should be prepro-
cessed to ensure that each bad triangle is associated
with some sed. We found that our results for the
approximate qmg technique were sensitive to the
choice of 2-small-angle triangles to preprocess. If
one simply preprocesses all of them in the initial
mesh, then for some of the test cases, the method
generated an unnecessarily large number of triangles.
We now restrict the preprocessing to triangles with
maximum angle � 120°. The terminal edge LEPP-
Delaunay insertion process automatically modifies
triangles with larger maximum angles; see Rivara
and Hitschfeld [5]. These other 2-small-angle tri-
angles are treated as one-small-angle triangles using
the sed opposite the smallest angle.

The figures for each case presented come in verti-
cally displayed pairs (with one exception). One fig-
ure of the pair displays the mesh generated by
either the full iterative shape qmg method or by the
approximate shape qmg method. The other figure of
the pair shows a histogram of the common shape
quality metric, the ratio of the longest edge to the
circumradius, normalized to 1 for an equilateral
triangle. This metric is denoted QK in George and
Borouchaki [6].

Figure 7 shows the mesh generated by the
interative shape qmg program for a ‘fat comma’

Fig. 7. Iterative Refinement (no recursion) cursion.

296 B. Simpson et al.

Fig. 8. One level of recursion.

Fig. 9. Iterative Refinement shape quality.

shape. Figure 9 shows the histogram of associated
triangle shape metrics. The single poorly shaped
triangle in evidence in the histogram is located at
the tip of the tail of the comma. The histogram of
Qk for the mesh generated by the approximate
method, shown in Fig. 10, is generally quite good,
but the distribution shows a tail of five triangles in
the 0.15 to 0.4 range

The next test case has a simple geometry that
belies its difficulty as a test for shape quality mesh
generation. The initial PSLG has a square external
boundary and a pair of isolated line segments that
meet in the center at a small angle, and are signifi-
cantly different in length. They can be seen as the
heavier line segments in the center of Fig. 11.
This configuration was used by Shewchuk [8] in a
discussion of the difficulty of ensuring termination
of algorithms for isolating small angles of the PSLG
as part of iterative shape qmg algorithms.

Figure 11 shows the mesh generated by the iterat-
ive qmg program, and Fig. 13 shows the correspond-
ing histogram of shape quality triangle metrics. The
program used a reasonably successful heuristic to

Fig. 10. Approx shape QMG shape quality.

Fig. 11. Iterative refinement.

Fig. 12. Two levels of recursion.

Fig. 13. Triangle quality histogram.

handle the small internal angles of the r(0). Figures
12 and 14 shows the corresponding plots for the
approximate shape qmg program with two levels of
recursion. This is our most challenging test for the
approximation technique; there are 10 triangles
below the 0.4 quality cut-off in the interative distri-
bution and this is an improvement over the mesh
generated by one level of recursion. There are two
test cases that we have studied in which there is
significant additional refinement incurred by a
second level of recursion: the A shape shown in
Section 3 is the other one. Notice that even with two
levels of refinement, substantially fewer triangles are
generated by the approximate qmg method in this
case. For iterative refinement, heuristics are required
to prevent the base method from producing too
many triangles in this case, or even not terminating.
It appears that the approximate method has the
opposite difficulty; without some special treatment
of this configuration, it terminates prematurely.

297Approximate Shape Quality Mesh Generation

Fig. 14. Triangle quality histogram.

Fig. 15. Iterative refinement.

We also tested a large complicated polygonal
region of geographical data that is the outline of a
watershed. The polygonal boundary of this domain
consists of 536 vertices. Since the mesh is quite
large, only the one generated by the iterative shape
qmg program is shown in Fig. 15. In Fig. 16, we
show the histogram of triangle quality for the 2204
triangles in the mesh generated by the iterative
shape qmg program. In Fig. 17, we show the corre-
sponding histogram for the 2882 triangles in the
mesh generated by the approximate qmg method
with one level of recursion. A small tail of lower
quality triangles are again in evidence in the shape
quality metric histogram of the approximate qmg

Fig. 16. Iterative refinement, triangle quality.

Fig. 17. One level of recursion, triangle quality.

based mesh. But the approximate method produces
a perhaps surprisingly good mesh for this relatively
complicated domain. It generated about 25% more
triangles, however.

The recursive refinement approximate shape qmg
method quite generally produces more triangles that
the iterative refinement method; 150 versus 248 for
the ‘fat comma’, 88 versus 129 for the A shape
shown in Fig. 2. The reverse is true for the second
test case above, the square with segment meeting
as a small angle in the centre; for this case the
ratio is 88 (iterative) to 51. Since our intended goal
for the recursive refinement approximate shape qmg
method is to produce initial triangulations for further
size refinement, these somewhat larger meshes do
not seem to be a disadvantage.

7. Conclusions and Further
Investigations

We have discussed how some ideas of approximate
shape quality mesh generation can simplify the
maintenance of the bad triangles set, S, of Delaunay
refinement methods. Iterative refinement forms of
qmg as typified by Quality-Mesh-Generation of
Section 2 use a global list of bad triangles in the
current mesh that is managed in the top level of
the modularization. This is a dynamic data structure
that supports insertions and deletions as well as
access for selection and modification.

In the recursive organization described in Section
3, the set of bad triangles is distributed into the
modularization. The growth of the set is handled
in local sets of the recursive Delaunay-Insert-R
procedure. These sets are small, which makes their
list representation processing more efficient. The
part of the set handled at the top level does not
grow. However, in general its entries may require
modification due to the action of Delaunay-Insert-
R. An approximate method constructed by limiting
the levels of recursion is then guaranteed to termin-
ate, since the growth of S has been curtailed.

In Section 5, a further simplification is described

298 B. Simpson et al.

that uses specific details of the terminal-edge point
selection scheme of the LEPP-Delaunay approach
to triangle shape improvement. Using it in conjunc-
tion with the recursive organization of refinement
an approximate qmg method can be designed that
uses a small global array of size computable in
advance of refinement plus distributed local storage.
This array can be processed in sorted order with no
modifications of it required during the refinement.

An important extension of this investigation is to
identify how best to incorporate these approximate
shape quality techniques with a data representation
driven size requirement for full mesh generation. It
seems likely to us that the shape criterion can simply
be dropped after the pre-conditioning of the initial
�(0) by an approximate shape quality method. Modi-
fied terminal-edge LEPP algorithms for the approxi-
mate size and shape qmg problem can be envisaged.
Another intriguing challenge is to identify how this
idea of simplifying methods through judicious
approximations could be used to advantage for space
meshing. Formally, the techniques applied in this
paper apply directly to three space.

Acknowledgements

The contributions of the first author have been supported
by the Natural Science and Engineering Research Council
of Canada and the ones of the second and third authors
have been partially supported by Fondecyt 1981033

References

1. Simpson, R. B. (1994) Anisotropic mesh transform-
ations and optimal error control. Appl Num Math, 14,
183–198

2. Bern, M., Eppstein, D. (1992) Mesh generation and

optimal triangulation. In: F.K. Huang, (editor) Com-
puting in Euclidean Geometry. World Scientific

3. Chew, L. P. (1993) Guaranteed-quality mesh gener-
ation for curved surfaces. 9th Annual Symposium on
Comp Geometry, San Diego, CA, 274–280

4. Rivara, M. C. (1997) New longest-edge algorithms
for the refinement and/or improvement of unstructured
triangulations. Int J Num Methods, 40, 3313–3324

5. Rivara, M. C., Hitschfeld, N. (1999) LEPP-Delaunay
algorithm: a robust tool for producing size-optimal
quality triangulations. Proc 8th Int Meshing Round-
table, 205–220

6. Rivara, M. C., Inostroza, P. (1997) Using longestside
bisection techniques for the automatic refinement of
delaunay triangulations. Int J Num Meth Eng, 40,
581–597

7. Ruppert, J. (1995) A Delaunay refinement algorithm
for quality 2-dimensional mesh generation. J Algor-
ithms, 18, 548–585

8. Shewchuk, J. R. (1996) Triangle: Engineering a 2D
quality mesh generator and delaunay triangulator. First
Workshop on Applied Computational Geometry. Phila-
delphia, PN, 124–133

9. George, P. L., Borouchaki, H. (1998) Delaunay Tri-
angulation and Meshing. Hermes

10. Chew, L. P. (1994) Constrained delaunay triangulation.
Algorithmica, 4, 97–108

11. Borouchaki, H., George, P. L. (1997) Aspects of 2-d
delaunay mesh generation. Int J Num Meth Eng, 40,
1957–1975

12. Rivara, M. C. (1996) New mathematical tools and
techniques for the refinement and/or improvement of
unstructured triangulations. Proc 5th Int Meshing
Roundtable, Pittsburgh, PN, 77–86

13. Rivara, M. C., Palma, M. (1997) New LEPP algor-
ithms for quality polygon and volume triangulation:
Implementation issues and practical benhavier. In: S.
A. Cannan and S. Saigal (editors), Trends Unstructured
Mesh Generation. ASME, 1–8

14. Rivara, M. C., Hitschfeld, N., Simpson, R. B. (2001)
Terminal edges Delaunay (small angle based) algor-
ithm for the quality triangulation problem. Computer-
Aided Design 33, 263–277

15. Joe, B., Simpson, R. B. (1986) Triangular meshes for
regions of complicated shape. Int J Num Meth Eng,
23, 751–778

