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Abstract. This paper presents a heuristic solution procedure for a very
general resource–constrained project scheduling problem. Here, multiple
execution modes are available for the individual activities of the project.
In addition, minimum as well as maximum time lags between different
activities may be given. The objective is to determine a mode and a start
time for each activity such that the temporal and resource constraints are met
and the project duration is minimized. Project scheduling problems of this
type occur e.g. in process industries. The heuristic is a multi–pass priority–
rule method with backplanning which is based on an integration approach
and embedded in random sampling. Its performance is evaluated within an
experimental performance analysis for problem instances of real–life size
with 100 activities and up to 5 modes per activity.

Key words: Resource–constrained project scheduling – Maximum time
lags – Multi–mode case – Heuristic

1 Introduction

For projects in practice (e.g. in civil engineering, process industries), it
is often possible to perform the individual activities in alternativemodes
which differ w.r.t. processing time, time lags to other activities, and resource
requirements. In this way, time–resource and resource–resource tradeoffs
(cf. [9]) are reflected. By way of example, we consider two modes of the
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activity “installation of a machine” which belongs to the project “building
a factory”. If this activity is performed in mode 1, it lasts seven hours and
two skilled workers are required. If it is executed in mode 2, one skilled
and three unskilled workers are needed and the processing time equals four
hours.

Becauseof technological ororganizational constraints,time lagsbetween
the start and completion times of different activities have to be obeyed. In
addition tominimumtime lags,maximumones, which occur e.g. in chem-
ical or food industries, might be given. For example, let us consider the
activities “melting metal” and “filling (liquid) metal into mould” belonging
to our example project “building a factory”. A minimum time lag between
these activities has to be observed because the latter can be begun after the
completion of the former at the earliest. Moreover, a maximum time lag has
to be met: The latter activity has to be completed a certain amount of time
after the completion of the former at the latest because otherwise, the metal
is no longer liquid enough.

In addition,wehave to consider that the capacities of theresourceswhich
are taken up by the activities are limited. The multi–mode case allows for
taking into account limitedrenewableandnonrenewableresources. Renew-
able resources (e.g. machines, manpower) are available at each point in time
independently of their utilization formerly whereas nonrenewable resources
(e.g. money, energy) are depleted by use.

The planning of these projects can be done w.r.t. alternative objectives
such as the maximization of the net present value, the minimization of the
resource costs, or the minimization of the duration of the project. Since the
latter objective is very important in practice, we focus on it in this paper.

Project scheduling problems of this type can be modelled as instances of
the Multi–Mode Resource–Constrained Project Scheduling Problem with
minimum and maximum time lags, MRCPSP/max. The objective is to de-
termine a mode and a start time for each activity such that the time lags
and the resource constraints are obeyed and the project duration is min-
imized. Following the classification schemes for project scheduling pro-
posed by [3] and [13], MRCPSP/max is denoted byMPS | temp | Cmax
andm, 1T | gpr,mu | Cmax, respectively.

MRCPSP/max is in double respect a generalization of resource–con-
strained project scheduling problems which have been dealt with in litera-
ture. On the one hand, MRCPSP/max is more general than the Resource–
Constrained Project Scheduling Problem with minimum and maximum time
lags, RCPSP/max (cf. [4], [6], [19], [22]). Here, for each activity only one
execution mode is available. On the other hand, MRCPSP/max is a gen-
eralization of the Multi–Mode Resource–Constrained Project Scheduling
Problem, MRCPSP (cf. [14], [15], [24], [25], [26], [27], [28]). Here, only
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minimum time lags can be taken into account. A survey of existing solu-
tion procedures for resource–constrained project scheduling problems can
be found in [3].

To the best of our knowledge, apart from two (heuristic) tabu search
procedures (cf. [4], [10]) and an (exact) branch–and–bound–procedure (cf.
[12]), the literature on MRCPSP/max is completely void. Since these pro-
cedures have difficulties w.r.t. the determination of a feasible solution for
“large” problem instances (with 100 activities and 3 to 5 modes per ac-
tivity, cf. Section 5) we devise a new procedure for MRCPSP/max. It is a
multi–pass priority–rule method with backplanning.

The remainder of this paper is organized as follows: InSection 2,we state
the model for MRCPSP/max. Section 3 is devoted to the solution approach
our heuristic is based on. The priority–rule method itself is presented in
Section 4. An experimental performance analysis follows in Section 5.

2 Model

Let a project consist of a finite setV = {0, 1, . . . , n, n + 1} of activities.
Activity 0 represents the start andactivityn+1 the completion of the project.
Both activities are dummy activities.

For each activityj ∈ V a setMj = {1, . . . , |Mj |} of (execution)
modes is available. Activities0 andn + 1 can be performed in only one
mode:M0 := Mn+1 := {1}. Each activityj ∈ V has to be performed in
exactly one modeµ ∈ Mj .

The processing time of activityj executed in modeµ is denoted by
pjµ ∈ ZZ≥0. The processing time of activities0 andn + 1 equals0: p01 :=
pn+11 := 0. Sj andCj stand for the start time and the completion time
(of the performance) of activityj, respectively. If we defineS0 := 0, Sn+1
stands for the project duration. Provided that activityj starts in modeµ at
timeSj , it is being executed at each point in timet ∈ [Sj , Sj + pjµ [ .

Between the start timeSj of activity j, which is performed in mode
µ ∈ Mj , and the start timeSl of activity l (l �= j), which is performed
in modeλ ∈ Ml, a minimum time lagdmin

jµlλ
∈ ZZ≥0 or a maximum time

lagdmax
jµlλ

∈ ZZ≥0 can be given. Note, that a time lag between activityj and
activity l depends on modeµ as well as on modeλ. A minimum (maximum)
time lag betweenSj andCl, Cj andSl, and betweenCj andCl can be
expressed by a minimum (maximum) time lag betweenSj andSl (cf. [2]).

Activities and time lags are represented by an activity–on–node (AoN)
networkN = 〈V,E; δ〉with nodesetV , arc setE, andarcweight functionδ.
Each element of node setV represents an activity. In the following, we do
not distinguish between an activity and the corresponding node. An arc
〈j, l〉 ∈ E indicates that a time lag betweenSj andSl has to be observed.
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Arc weight functionδ assigns to each arc〈j, l〉 ∈ E a |Mj | × |Ml|–matrix
(δjµlλ)µ∈Mj ,λ∈Ml

of arc weights as follows: For a minimum time lagdmin
jµlλ

wesetδjµlλ := dmin
jµlλ

. For amaximum time lagdmax
lλjµ

wesetδjµlλ := −dmax
lλjµ

.
Rρ denotes the set of renewable resources andRν the set of nonrenew-

able resources.Rρ
k ∈ ZZ>0 stands for the capacity of renewable resourcek

(k ∈ Rρ) which is available at each point in time.Rν
k ∈ ZZ>0 stands for the

capacity of nonrenewable resourcek (k ∈ Rν) which is available in total.
Provided that activityj is performed in modeµ, rρ

jµk units of renewable
resourcek (k ∈ Rρ) are used at each point in time at which activityj is
being executed. Moreover,rν

jµk units of nonrenewable resourcek (k ∈ Rν)
are consumed in total. For activities0 andn+1 we setrρ

01k := rρ
n+11k := 0

(k ∈ Rρ) andrν
01k := rν

n+11k := 0 (k ∈ Rν).

Definition 1 A schedule(M,S) consists of a mode vectorM and a start
time vectorS. A mode vectorM = (mj)j∈V assigns to each activityj ∈ V
exactly onemodeµ ∈ Mj . A start time vectorS = (Sj)j∈V assigns to each
activityj ∈ V exactly one point in timet ≥ 0 as start timeSj withS0 := 0.

With A(M,S, t) := {j ∈ V |Sj ≤ t < Sj + pjµ} denoting the set of ac-
tivities being executed at timet for a given schedule(M,S), MRCPSP/max
can be stated as follows:

Min. Sn+1 (1)
s.t. Sl − Sj ≥ δjmj lml

(〈j, l〉 ∈ E) (2)∑
j∈A(M,S,t)

rρ
jmj k ≤ Rρ

k (k ∈ Rρ; t ≥ 0) (3)
∑
j∈V

rν
jmj k ≤ Rν

k (k ∈ Rν) (4)

mj ∈ Mj (j ∈ V ) (5)
Sj ≥ 0 (j ∈ V ) (6)
S0 = 0 (7)

The objective is to determine a schedule(M,S) such that the time lags (2)
are observed, the constraints w.r.t. the renewable resources (3) and the non-
renewable resources (4) are met, and the project duration is minimized
(1). Such a schedule is calledoptimal. A schedule(M,S) obeying (2),
(3), and (4) is calledfeasible. Since MRCPSP/max is a generalization of
RCPSP/max, MRCPSP/max isNP–hard (cf. [2]). Even the corresponding
feasibility problem isNP–complete (cf. [12]).

An example for an MRCPSP/max instance is depicted in Figure 1. The
project consists of six activities. Activities 1 to 4 can be performed in two
modes. (Hence, thereexist 16differentmodevectors.) Furthermore, one lim-
ited renewable resource and one limited nonrenewable resource are given.
Five units of the renewable resource are available at each point in time,
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Fig. 1.MRCPSP/max instance(P1)

and ten units of the nonrenewable resource can be consumed in total in the
course of the project.

Let us consider the case in which activity 1 is performed in mode 2: The
corresponding processing timep12 equals three units of time. Two units of
the renewable resource are used at each point in time at which activity 1 is
being executed. Furthermore, two units of the nonrenewable resource are
consumed in total. As indicated above, the weights of all incident arcs, i.e.
arcs〈1, 2〉, 〈0, 1〉, and〈3, 1〉, are mode–dependent. By way of example, let
us consider arcs〈1, 2〉 and〈3, 1〉: Provided that activity 2 is performed in
mode 1, the performance of activity 2 is allowed to start one unit of time
afterS1 at the earliest. If activity 2 is executed in mode 2, its performance
must not start beforeS1. Provided that activity 3 is executed in mode 1 (2),
the performance of activity 3 has to start two units (one unit) of time after
S1 at the latest.

3 Solution approach

In this section,wedescribe thesolutionapproachofourpriority–rulemethod.
It is derived from a division of MRCPSP/max into subproblems.

MRCPSP/max can be divided into two subproblems: Mode assignment
problem MAP and RCPSP/max. Subproblem MAP is the problem of deter-
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mining a mode vectorM such that the constraints (4) are observed. Such a
mode vector is calledfeasible. MAP is polynomially solvable for|Rν | = 1
andNP–complete for|Rν | ≥ 2 (cf. [14]). Subproblem RCPSP/max is the
problem of determining a start time vectorS for a feasible mode vector
M such that the constraints (2) and (3) are met and the project duration is
minimized (1). RCPSP/max isNP–hard, and the corresponding feasibility
problem isNP–complete (cf. [2]).

In analogy to MRCPSP (cf. [14], [25]), we distinguish between two solu-
tionapproaches forMRCPSP/maxdependingon thesequence inwhich these
subproblems are handled. Thedecompositionapproach relies on sequen-
tially dealing with both subproblems: Having solved MAP by determining
a feasible mode vectorM , we obtain an RCPSP/max instance. Hereafter,
we compute a start time vectorS by means of a solution procedure for
RCPSP/max. The tabu search procedures of [4] and [10] rely on this ap-
proach. Theintegrationapproach is based on simultaneously dealing with
MAP and RCPSP/max: The determination of mode vectorM and start time
vectorS is done in parallel. This approach is made use of by the branch–
and–bound procedure of [12] and by the priority–rule method presented in
this paper.

Similar to the integration approach for MRCPSP (cf. [25]), wesched-
ule the activities one after the other. (To schedule an activity means to as-
sign a mode and a start time to it.) Hence, our procedure is aconstruc-
tion method. In this way, a sequence of feasiblepartial schedules is cre-
ated where “partial” indicates that not all activities have been scheduled.
For example, w.l.o.g., we assume that activities0, 1, . . . , j are scheduled
one after the other. Then, the respective sequence of partial schedules is
((m0, 0, . . . , 0), (S0,−∞, . . . ,−∞)), ((m0,m1, 0, . . . , 0), (S0, S1,−∞,
. . . ,−∞)), . . . , ((m0,m1, . . . ,mj , 0, . . . , 0), (S0, S1, . . . , Sj ,−∞, . . . ,
−∞)).

But if, different from MRCPSP, maximum time lags have to be observed,
it can happen that a given feasible partial schedule cannot be extended to
a feasible schedule because at least one nonscheduled activity cannot be
scheduled without violating maximum time lags to scheduled activities. In
this case, it is necessary to perform abackplanningstep, i.e., to unschedule
some scheduled activities.

In order to detect as early as possible whether a given feasible partial
schedule cannot be extended to a feasible schedule (and hence to save com-
putation time),weapply a so–calledfeasibility test(cf. Section 4.3). Itmakes
use of a special relaxation of an MRCPSP/max instance, namedminimal
problem instance (cf. Definition 3), which is based on amode setvector (cf.
Definition 2). In addition, this relaxation is needed for the determination of
priority–rule values (cf. Section 4.2).
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Definition 2 A mode set vector̃M = (M̃j)j∈V assigns to each activity

j ∈ V a nonempty set̃Mj ⊆ Mj of modes.

The (simultaneous) assignment of several modes to an activity is expressed
by a fictitious execution mode. Associated with this special mode are fic-
titious processing timesmin

µ∈M̃j
pjµ (j ∈ V ), resource requirements

min
µ∈M̃j

r�,ν
jµk (j ∈ V ; k ∈ R�,ν), and arc weightsδM̃

jl := min
µ∈M̃j

min
λ∈M̃l

δjµlλ (〈j, l〉 ∈ E). With A(M̃, S, t) := {j ∈ V |Sj ≤ t <

Sj + min
µ∈M̃j

pjµ} denoting the set of activities being executed at timet

for a given mode set vectorM and start time vectorS, we give the following
definition.

Definition 3 Let an MRCPSP/max instance(P ) and a mode set vector̃M
be given. The corresponding minimal problem instance(P M̃) is defined as
follows:

Min. Sn+1 (8)
s.t. Sl − Sj ≥ min

µ∈M̃j

min
λ∈M̃l

δjµlλ (〈j, l〉 ∈ E) (9)
∑

j∈A(M̃,S,t)

min
µ∈M̃j

rρ
jµk ≤ Rρ

k (k ∈ Rρ; t ≥ 0) (10)

∑
j∈V

min
µ∈M̃j

rν
jµk ≤ Rν

k (k ∈ Rν) (11)

Sj ≥ 0 (j ∈ V ) (12)
S0 = 0 (13)

(P M̃)corresponds toafictitious (single–mode)RCPSP/max instancewhere,
in addition, constraints (11) w.r.t. nonrenewable resources have to be met.
By way of example, the minimal problem instance(P M̃

1 ) corresponding to

(P1) is depicted in Figure 2.NM̃ = 〈V,E; δM̃〉 with δM̃
jl = min

µ∈M̃j

min
λ∈M̃l

δjµlλ (〈j, l〉 ∈ E) denotes the network of(P M̃). The length of

a longest path (distance) from activity j to activity l (j, l ∈ V ) in NM̃ is

denoted bydM̃
jl . The distance matrixDM̃ = (dM̃

jl )j,l∈V can be computed
by means of the Floyd–Warshall algorithm inO(|V |3) time (cf. [18], [20]).

Proposition 1 Let an MRCPSP/max instance(P ) and a mode set vector
M̃ be given. IfM̃ = M holds,(P M̃) represents a relaxation of(P ).

As indicated above,(P M̃) is used in order to find out whether there exists a
feasibleschedule(M,S)which isbasedonpartial schedule((m′

0, . . . ,m′
j , 0,

. . . , 0), (S′
0, . . . , S′

j ,−∞, . . . ,−∞)), i.e., whereml = m′
l andSl = S′

l
(l = 0, . . . , j). Obviously, to that partial schedule corresponds exactly one
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Fig. 2.Minimal MRCPSP/max instance(P M̃
1 )

mode set vector̃M = ({m0}, . . . , {mj}, {Mj+1}, . . . , {Mn+1}). If, us-

ing the feasibility test, we can show that the relaxation(P M̃)w.r.t. the partial
schedule does not have a feasible solution, we know that there does not exist
such a feasible schedule(M,S).

4 Priority–rule method

This section is organized as follows: At first, we describe how the priority–
rule method works in principle (cf. Section 4.1). Next, we give a detailed
description of the essential elements of the procedure: the priority rules (cf.
Section 4.2), the feasibility test (cf. Section 4.3), and the backplanning (cf.
Section 4.4). Finally, the complete procedure is presented (cf. Section 4.5).

4.1 Basic concepts

As mentioned in Section 3, the procedure is a construction method where the
activities are scheduled one after the other. At the beginning, only activity 0
is scheduled. Consequently, the initial mode set vectorM̃ equalsM. At
each step of the algorithm, we schedule an activity by assigning a mode and
a start time to it. In this way, we try to obtain a feasible schedule(M,S).
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When we schedule an activity, we restrict̃M appropriately. Hence, to each
step of the procedure belong a current mode set vectorM̃ and thus a current

minimal problem instance(P M̃).
The set of scheduled (nonscheduled) activities is denoted byC (C). At the

beginning, we setC := {0}, C := V \{0}, m0 := 1, mj := 0 (j ∈ V \{0}),
S0 := 0, Sj := −∞ (j ∈ V \{0}), andM̃ := M.

At each step, we do the following: Firstly, we select an activityj� ∈ C
to be scheduled by means of anactivity–selection priority rule. Secondly,
we choose a (feasible) modeµ� ∈ M̃j� by means of amode–selection
priority rule. Thirdly, we try to find a (feasible) start timet� for activity j�

in modeµ�.
In casesuchapoint in timet� is found,wescheduleactivityj� inmodeµ�

at timet� and setC := C \{j�}, C := C ∪ {j�}, mj := µ�, Sj := t�, and
M̃j := {µ�}. If we are not able to determine a (feasible) start timet�, we
either select amodeµ�′ ∈ M̃j� withµ�′ �= µ� and try to schedule activityj�

in modeµ�′ or we performbackplanning step 1. Provided that there does not
exist any modeµ ∈ M̃j� such that activityj� can be scheduled in modeµ,
backplanning step 2is performed.

We select activities out ofC until eitherC is empty, i.e. all activities are
scheduled (C = V ), or until a prescribed maximum number of backplanning
steps has been performed. In the former case, a feasible schedule has been
found. In the latter case, the algorithm terminateswithout having determined
a feasible solution.

4.2 Priority rules

In [10] a priority–rule method for RCPSP/max is presented. Here, it is es-
tablished that, on the average, performing the procedure several times using
a different priority rule at each pass leads to better objective function values
(but also to higher computational times) than performing the procedure only
once with a unique priority rule. The reason is, that the application of one
and the same priority rule does not lead to the best objective function value
for each problem instance. Therefore, we make use of a multi–pass approach
for MRCPSP/max.

For eachpass,weneedonepriority rule for the selectionof anactivity and
one priority rule for the selection of a mode. There are many priority rules
that are possible. In particular, the concept of the minimal problem instance

(P M̃) allows for the application of priority rules that have been proposed
in literature for the single–mode case (cf. [1]). In the following, we present
three activity– and three mode– selection priority rules. They are used in our
procedure because they have turned out to be themost successful ones. Thus,
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we have nine different combinations of an activity– and a mode–selection
rule. We start with the description of the activity–selection rules.

The first activity–selection priority rule (“A1”) is referred to as latest
start time (LST) rule in literature (cf. [1]). Based on the project network

NM̃ of the current minimal problem instance(P M̃) and the start times of
the scheduled activitiesl ∈ C, the priority–rule value of an activityj ∈ C
equals its latest start time

LSj� := min(d − dM̃
j�,n+1,min

l∈C
(Sl − dM̃

j�l)), (14)

where

d :=
∑
j∈V

max( max
µ∈Mj

pjµ , max
〈j,l〉∈E

max
µ∈Mj

max
λ∈Ml

δjµlλ) (15)

represents an upper bound on the minimum project duration. When we fix
the start time of an activity, the latest (earliest) start times of the nonsched-
uled activities might decrease (increase). Therefore, it could happen that
we cannot find any feasible start time for a nonscheduled activity. In order
to detect such an infeasibility early, we assign the highest priority to the
activity with the smallest priority–rule value. In this way, we try to save
computation time.

The second rule (“A2”) is based onNM̃, too. The priority–rule value of
an activityj ∈ C equals the difference between its latest start timeLSj� and
its earliest start time

ESj� := max(dM̃
0j� ,max

l∈C
(Sl + dM̃

lj�)). (16)

This rule is referred to as minimum slack(MSLK) rule in literature (cf. [1]).
Since the priority–rule value reflects the maximum number of possible start
times of the corresponding activity, its priority increases with decreasing
priority–rule value. This is done in order to – like for the LST rule – detect
infeasibility early within the scheduling process.

The third rule (“A3”) takes into account the current availability of the
nonrenewable resources (cf. [14]). For each modeµ ∈ M̃j of each activity
j ∈ C we determine the mean relative consumption

1
|Rν |

∑
k∈Rν

rν
jµk

Rν
k
′ (17)

of the nonrenewable resources.Rν
k
′ := Rν

k − ∑
l∈C rν

lml
k stands for the

remaining capacity of resourcek (k ∈ Rν). The priority–rule value of an
activity j ∈ C equals the minimum of the values (17) associated with its
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modesµ ∈ M̃j . The activity with the highest priority–rule value receives
the highest priority. In this way, we are able to detect infeasibility w.r.t. this
type of resources early within the scheduling process.

Next, we present the mode–selection priority rules. The first rule (“M1”)
is referred to as shortest processing time (SPT) rule in literature (cf. [1]).

The priority–rule value of a modeµ ∈ M̃j� equalspj�
µ
. The priority of a

mode increases with decreasing priority–rule value.
Thesecond rule (“M2”) isamodificationofapriority rule that isproposed

in [10]. For each modeµ ∈ M̃j� we determine the average weight of all arcs

which are incident with activityj� in networkNM̃ under the assumption,
that modeµ is chosen. Thus, the priority–rule value equals

1
|{〈j, l〉 ∈ E|j = j� ∨ l = j�}|

·
( ∑

〈i,j�〉∈E

1

|M̃i|
∑

ι∈M̃i

δiιj�
µ

+
∑

〈j�,l〉∈E

1

|M̃l|
∑

λ∈M̃l

δj�
µlλ

)
.

The mode with the lowest value receives the highest priority. We expect that
the application of the first and the second mode–selection rule leads to rather
low objective function values.

The third mode–selection priority rule (“M3”) corresponds to the third
activity–selection rule. The priority–rule value of a modeµ ∈ M̃j� equals
(17). The highest priority is assigned to the mode with the lowest value.

4.3 Feasibility test

In this subsection, we describe how to check the feasibility of scheduling
activity j� in modeµ� on the basis of the current partial schedule and the
current minimal problem instance. The feasibility test consists of four steps.
In step 1,we study the feasibilityw.r.t. the nonrenewable resources. In step 2,
we check the feasibility w.r.t. the project network of the minimal problem
instance. In step 3, we investigate the feasibility w.r.t. the project network of
the minimal problem instance where we additionally take into account the
start times of the scheduled activities. In step 4, we study the feasibility w.r.t.
the renewable resources. If any of these tests fails, we know that the current
partial schedule together with activityj� scheduled in modeµ� cannot be
extended to any feasible schedule. In the following, we give a more detailed
description of these steps.

In step 1 (cf. Algorithm 1), we establish whether the choice of modeµ�

leads to aν–resource conflict. A ν–resource conflict occurs if the capacity of
at least one nonrenewable resource is exceeded by the overall consumption
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of the activities. For this purpose, we make use of an auxiliary mode set
vectorM̃′ := M̃ where we set̃M′

j� := {µ�}. M̃′ is also used in steps 2
and 3.

Algorithm 1 (Feasibility test step 1)

FOR k ∈ Rν DO

IF
∑
j∈V

min
µ∈M̃′

j

rν
jµk > Rν

k THEN RETURN FALSE

RETURN TRUE

Remark 1The time complexity of Algorithm 1 isO(|Rν |∑j∈V |Mj |).
In step 2 (cf. Algorithm 2), we check whether scheduling activityj� in

modeµ� leads to a cycle of positive length in networkNM̃′
of the resulting

minimal problem instance(P M̃′
). This investigation is done by means of

the corresponding distance matrixDM̃′
which is derived fromDM̃. A cycle

of positive length occurs if we havedM̃′
il + dM̃′

li > 0 for at least one pair
i, l ∈ V of activities.

Algorithm 2 (Feasibility test step 2)

DM̃′
:= DM̃

FOR 〈i, j�〉 ∈ E DO

δM̃′
ij� := min

ι∈M̃i

δiιj�
µ�

; UpdateDM̃′

FOR 〈j�, l〉 ∈ E DO

δM̃′
j�l := min

λ∈M̃l

δj�
µ� lλ ; UpdateDM̃′

IF ∃ i, l ∈ V : dM̃′
il + dM̃′

li > 0 THEN RETURN FALSE

RETURN TRUE

Remark 2The time complexity of Algorithm 2 isO(|V |2 ∑
〈i,j�〉∈E |Mi|∑

〈j�,l〉∈E |Ml|).
In step 3 (cf. Algorithm 3), we compute the earliest start timeESj� and the

latest start timeLSj� of activity j� based on distance matrixDM̃′
and start

timesSl of the scheduled activitiesl ∈ C. This feasibility test step fails if
we establishESj� > LSj� .

Algorithm 3 (Feasibility test step 3)

ESj� := max(dM̃′
0j� ,max

l∈C
(Sl + dM̃′

lj� ))
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LSj� := min(d − dM̃′
j�,n+1,min

l∈C
(Sl − dM̃′

j�l ))

IF ESj� > LSj� THEN RETURN FALSE

RETURN TRUE

Remark 3The time complexity of Algorithm 3 isO(|V |).
In step4 (cf.Algorithm4),weestablishwhether apoint in timet� exists, such
that scheduling activityj� in modeµ� at this point in time does not cause a
!–resource conflict. A !–resource conflict occurs, if there exists a point in
time t at which the capacity of at least one renewable resource is exceeded
by the usage of the activities being executed att. Based on the current partial
schedule withpartial mode vectorM andpartial start time vectorS, we
define apartial resource profilerρ

k(C,M, S, t) :=
∑

j∈A(C,M,S,t) rρ
jmj k for

each resourcek ∈ Rρ with A(C,M, S, t) := {j ∈ C|Sj ≤ t < Sj +
pjmj

} denoting the set of scheduled activities being executed at timet.

rρ
k(C,M, S, t) reflects the total usage of the setC of scheduled activities of

resourcek ∈ Rρ at timet.
For the determination oft� we can restrict ourselves to a finite setT of

possible start times. A feasible start time of activityj� must be included in
the interval[ESj� , LSj� ], which is also calledtime window. As we want
to minimize the project duration, we try to schedule activityj� as early as
possible. Therefore, we search fort� “from the left to the right” beginning
with ESj� and continuing at such points in time which equal the completion
time of at least one scheduled activity. Hence, we have

T := {ESj�} ∪ {t ∈ ]ESj� , . . . , LSj� ] |t = Cl ∧ l ∈ C}. (18)

For a given point in timet ∈ T we have to see whetherrρ
k(C,M, S,

t′) + rρ
j�
µ�k ≤ Rρ

k (k ∈ Rρ; t′ ∈ T ′) holds.T ′ denotes the set of points in

time for which we have to find out whether a!–resource conflict occurs.
Since it is sufficient to take into account the start times of the scheduled
activities we have

T ′ := {t} ∪ {t′ ∈ ] t, . . . , t + pj�
µ�

[ |t′ = Sl ∧ l ∈ C}. (19)

Algorithm 4 (Feasibility test step 4)

FOR t ∈ T DO

found := TRUE

FOR t′ ∈ T ′ DO
FOR k ∈ Rρ DO

IF rρ
k(C,M, S, t′) + rρ

j�
µ�k > Rρ

k THEN found := FALSE
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IF found THEN

ESj� := t

RETURN TRUE

RETURN FALSE

Remark 4The time complexity of Algorithm 4 isO(|V |2|Rρ|).

4.4 Backplanning

As mentioned in Section 4.1, we differ between two backplanning steps. In
the following, these steps are described in detail.
Backplanning step 1(cf. Algorithm 5) is performed if step 3 or step 4 of

the feasibility test fails. The basic idea is, that we try to “enlarge” thetime
window[ESj� , LSj� ] of activity j� by increasingLSj� such that step 3 or
step 4 do no longer fail because ofESj� > LSj� or t� �≤ LSj� , respectively.

To increaseLSj� wehave to right–shift somescheduledactivities:Firstly,

we unschedule each activityl ∈ C with Sl < ESj� + dM̃′
j�l by setting

Sl := −∞. Let C′
denote the set of activities to be unscheduled. Sec-

ondly, we increase the earliest start timeESl of each activityl ∈ C′
to

ESj� + dM̃′
j�l . Hence, when we (later) reschedule an activityl ∈ C′

at time
S′

l, we haveS′
l > Sl. Note that, if backplanning step 1 is performed after

step 4 of the feasibility test,ESj� equals the earliest point in timet with

LSj� < t ≤ d − dM̃′
j�,n+1, at which activityj� can be scheduled in modeµ�

without causing a!–resource conflict.
After the unscheduling ofC′

we have to update the earliest and the latest
start time of each activityl ∈ C. If this update yieldsESl > LSl for at
least one activityl ∈ C, the unscheduling ofC′

is undone and modeµ� is
excluded from further consideration. Else, the mode of activityj� is fixed
to µ� by settingM̃j� := {µ�}.

In order to keep the complexity of our priority–rule method low, the
modeml of each activityl ∈ C′

remains unchanged. For the same reason, we
perform no backplanning but exclude modeµ� from further consideration,
if step 1 or step 2 of the feasibility test fails.

Algorithm 5 (Backplanning step 1)

C′ := {l ∈ C|Sl < ESj� + dM̃′
j�l } ; C := C \ C′

; C := C ∪ C′

FOR l ∈ C′
DO Sl := −∞ ; ESl := max(ESl, ESj� + dM̃′

j�l )

FOR l ∈ C DO
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ESl := max(ESl,max
j∈C

(Sj + dM̃′
jl )) ; LSl := min(LSl,min

j∈C
(Sj −

dM̃′
lj ))

IF ∃ l ∈ C : ESl > LSl THEN

C := C \ C′
; C := C ∪ C′

; M̃j� := M̃j�\{µ�}
FOR l ∈ C DO UpdateESl, LSl

ELSE M̃j� := {µ�}
RETURN

Remark 5The time complexity of Algorithm 5 isO(|V |2).
Backplanning step 2(cf. Algorithm 6) is performed if activityj� cannot be
scheduled in any modeµ ∈ M̃j� . In this case, we unschedule the previously
selected activityj�′ and prevent the rescheduling ofj�′ for a certain number
of scheduling steps.

Algorithm 6 (Backplanning step 2)

Determinej�′ ; C := C \{j�′} ; C := C ∪ {j�′} ;

mj�′ := 0 ; Sj�′ := −∞ ; M̃j�′ := Mj�′ ; DetermineDM̃

FOR l ∈ C DO UpdateESl, LSl

RETURN

Remark 6The time complexity of Algorithm 6 isO(|V |3).

4.5 Algorithm

In this subsection, we give a rough pseudo–code description of the priority–
rule method (cf. Algorithm 7).

Algorithm 7 (Priority–rule method)

C := {0} ; C := V \{0} ; (M,S) := ((1, 0, . . . , 0), (0,−∞, . . . ,−∞))

M̃ := M ; DetermineDM̃ and d ; ES := (dM̃
j0 )j∈V ; LS := (d −

dM̃
j,n+1)j∈V

WHILE C �= ∅ DO
Selectj� ∈ C ; found := FALSE

WHILE M̃j� �= ∅ AND NOT found DO

Selectµ� ∈ M̃j�
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IF Algorithm 1 = TRUEAND Algorithm 2 = TRUETHEN

IF Algorithm 3 = TRUEAND Algorithm 4 = TRUETHEN

found := TRUE ;C := C \{j�} ; C := C ∪ {j�}
mj� := µ� ; Sj� := ESj� ; M̃j� := {µ�} ; UpdateDM̃

FOR l ∈ C DO UpdateESl, LSl

ELSE Algorithm 5

ELSE M̃j� := M̃j�\{µ�}
IF M̃j� = ∅ THEN Algorithm 6

RETURN (M,S)

Since one pass of Algorithm 7 takes only a little amount of time (approxi-
mately 0.1 seconds for problem instanceswith 100nondummyactivities)we
extend the multi–pass approach by embedding it intoregret–based biased
random sampling(cf. [7], [8]): The execution of Algorithm 7 is repeated
until a prescribed time limit is reached. At each pass, we use a combination
of an activity–selection and a mode–selection priority rule. (Hence, each
combination is used again after eight passes.) At this, we determine activ-
ity j� and modeµ� not in a deterministic but in a stochastic manner by using
the priority–rule values as a basis for aroulette selection. This means that
the probability of the selection of an activity or a mode with high priority
is higher than the probability of the selection of an activity or a mode with
low priority, respectively.

If a pass of Algorithm 7 returns a feasible schedule(M,S), Sn+1 can
be used as a tighter upper boundd for the following passes. The result of
the sampling procedure equals the schedule with the lowest project duration
among all feasible schedules which have been returned by Algorithm 7.

5 Computational results

In this section, we evaluate the performance of our priority–rule method.
In Section 5.1, we describe the benchmark test set which is made use of
in the following subsections. The impact of the available computation time
and certain control parameters is analyzed in Sections 5.2 and 5.3, respec-
tively. In Sections 5.4 and 5.5, we investigate the effect of the priority rules
and the backplanning feature, respectively. Finally, the priority–rule method
is compared with the other existing heuristic solution procedures for MR-
CPSP/max (cf. Section 5.6).
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Table 1.Parameter setting

Parameter Value(s)

n 100
m 3, 4, 5
|Rρ| 3
|Rν | 3
RT 0.50
RF � 1.00
RF ν 1.00
RS� 0.25, 0.50, 0.75
RSν 0.25, 0.50, 0.75

5.1 Benchmark problem instances

In order to evaluate the performance of the priority–rule method a test set
has been generated using the problem generator ProGen/max (cf. [23]). The
most important control parameters used for the full factorial design are given
by Table 1. In an attempt to keep the size of the experiment small, certain
parameters have been fixed at specific values (according to [4]). For each
parameter combination, 10 problem instances have been generated. Hence,
this test set consists of 270 MRCPSP/max instances.

In the following, we explain the meaning of the control parameters. For
a more detailed description we refer to [16], [17], [22], and [23]:

– n denotes the number of nondummy activities of the project.
– m stands for the number of modes which are available for each activity

j ∈ {1, . . . , n}.
– The restrictivenessRT (cf. [23]) reflects the degree of parallelity of

the corresponding network without cycles. With increasing degree of
parallelity,RT decreases.

– The resource factorRF (cf. [21]) corresponds to the average percentage
of resources required per activity.RF is defined for renewable resources
(RF �) as well as for nonrenewable resources (RF ν).

– The resource strengthRS (cf. [14]) reflects the ratio of resource capacity
and resource demand and is defined for renewable resources (RS�) as
well as for nonrenewable resources (RSν).

The parametersRT , RF �, RF ν , RS�, andRSν are normalized to the
interval [0,1].

Next, we describe the impact of these parameters on the size and the
difficulty of a problem instance (cf. [22]): The size of a problem instance
is influenced by the parametersn, m, |Rρ|, and |Rν |. It increases with
increasing parameter values. The parametersRT , RF �, RF ν , RS�, and
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Table 2.Feasible

m 10 sec. 100 sec.

3 100 100
4 100 100
5 100 100

Table 3.Deviation

m 10 sec. 100 sec.

3 113 97
4 178 156
5 256 221

RSν reflect the difficulty of a problem instance: According to [22], difficult
instances are characterized by a high degree of parallelity (i.e. a low value
of RT ) and high resource factorsRF � andRF ν . In [4], it is reported that
the influence ofRS� andRSν on the difficulty can be characterized by a
bell–shaped curve and a U–shaped curve, respectively.

The full factorial analysis has been done on an Intel Pentium III 800 MHz
personal computer with 256 MB SDRAM under the operating system Win-
dows 2000. All algorithms have been coded in ANSI C using the MS Vi-
sual C++ 6.0 Developer Studio.

5.2 Impact of time bounds

In this subsection, we test the performance of our priority–rule method
(“Prio”) w.r.t. two time bounds: 10 seconds and 100 seconds. In Table 2, we
give for each value ofm and for each time bound the percentage of problem
instances of the test set for which a feasible solution has been determined
by “Prio” within the given amount of computation time. Within 10 seconds,
all instances have already been solved to feasibility.

In Table 3, we give the average percentage deviation of the objective
function value from a lower bound value on the minimum project duration
(cf. [12]). It can be seen, that, as expected, the deviation increases with
increasing value ofm. If the available amount of computation time is in-
creased from 10 seconds to 100 seconds, the average percentage deviation
for the whole test set decreases from 182% to 158%.

5.3 Impact of control parameters

The most important control parameters which have been varied arem,RS�,
andRSν . In the following, we try to find out the influence of the latter two
parameters on the performance of “Prio”. The corresponding deviations
from a lower bound value (for a time bound of 10 seconds) can be found in
Table 4. Here, each row (column) is associated with a certain value ofRS�

(RSν). For “Prio”, themost difficult instancesare thosewith amediumvalue
of RS� and a low value ofRSν . The entries of Table 4 seem to support the
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Table 4.Control parameters

RS�\ν 0.25 0.50 0.75

0.25 287 134 122
0.50 291 135 140
0.75 265 134 135

statement given in [4] that the influence ofRS� (RSν) on the difficulty of a
problem instance can be described by means of a bell–shaped (U–shaped)
curve.

5.4 Effect of priority rules

In this subsection, we analyze the impact of the priority rules on the per-
formance of “Prio” (w.r.t. a time bound of 10 seconds). For this, we firstly
compare “Prio” with a version, named “Rand”, where all priority rules have
been replaced by a simple random priority rule. Secondly, we investigate
the effect of the priority rules by means of a comparison with “Rand”.

In Table 5, we give for each value ofm the percentage of problem in-
stances for which a feasible solution has been determined within the given
amount of time. “Rand” determines for only 85% of the instances of the test
set a feasible solution. In Table 6, we give the average percentage deviation
of the objective function value from a lower bound value on the minimum
project duration for those instances for which a feasible solution has been
found by “Prio” and “Rand’ ’. It turns out that, for the whole test set, the de-
viation w.r.t. “Prio” (162%) is much smaller than the deviation w.r.t. “Rand”
(311%).

Next, we try to find out the effect of the individual priority rules. For
this, for each priority rule, we have implemented a version of “Rand” which
differs in the sense that the respective rule replaces the corresponding sim-
ple random priority rule. The resulting versions are named according to the
priority rules (“A1”, “A2”, “A3”, “M1”, “M2”, and “M3”) and compared
with “Rand”. From Table 5, we can conclude that – w.r.t. the criterion “fea-
sibility” – the most effective activity- and mode-selection priority rules are
“A2” and “M3”, respectively. The corresponding values for the whole test
set equal 87% (for “A2”) and 99% (for “M3”).

From Table 6 we can draw the conclusion that – w.r.t. the criterion “de-
viation from a lower bound value” – the most effective activity– and mode–
selection priority rules are “A1” and “M1”, respectively. The corresponding
values for the whole test set equal 306% (for “A1”) and 170% (for “M1”).
Note, that thedeviationsarebasedon those instanceswhichhavebeensolved
to feasibility by “Rand” and the respective version of “Rand”.



354 R. Heilmann

Table 5.Feasible – Priority rules

m Prio Rand A1 A2 A3 M1 M2 M3

3 100 79 79 81 74 79 80 99
4 100 88 91 91 88 88 89 99
5 100 88 87 89 87 87 89 100

Table 6.Deviation – Priority rules

m Prio Rand A1 A2 A3 M1 M2 M3

3 89 180 178 178 180 95 96 177
4 159 305 300 303 303 171 184 297
5 229 435 427 431 429 235 270 422

Table 7.Feas. – Backplanning

m Prio B0

3 100 31
4 100 37
5 100 37

Table 8.Dev. – Backplanning

m Prio B0

3 101 111
4 165 183
5 253 262

Summing up it may be concluded that the strength of “Prio” lies es-
pecially in the combination of all priority rules which leads to a superior
performance compared to “Rand”.

5.5 Effect of backplanning

The impact of the backplanning procedures on the performance of “Prio” is
analyzed in the following. For this, we have implemented a version without
backplanning, named “B0”. As can be seen from Table 7, the percentage
of instances solved to feasibility without the backplanning feature is very
small: Only 35% of the instances of the test set could have been solved to
feasibility by “B0”. In Table 8, we give the average percentage deviations
from a lower bound value for those instances for which a feasible solution
has been found by “Prio” and “B0”. For the whole test set, we have 177%
for “Prio” and 189% for “B0”.

All in all, it can be said that the backplanning feature is an essential part
of “Prio”. In particular, this holds for the criterion “feasibility”.
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Table 9.Feas. – 10 sec.

m TSDR TSF Prio

3 28 39 100
4 33 46 100
5 42 59 100

Table 10.Dev. – 10 sec.

m TSDR TSF Prio

3 151 117 80
4 286 171 131
5 433 229 200

Table 11.Feas. – 100 sec.

m TSDR TSF Prio

3 53 39 100
4 61 46 100
5 67 59 100

Table 12.Dev. – 100 sec.

m TSDR TSF Prio

3 40 105 63
4 91 151 113
5 164 215 170

5.6 Comparison with other heuristics

In this subsection, we compare “Prio” with the heuristics of [4] (“TSDR”) and
[10] (“TSF”), which were reimplemented. (Details of the parameter settings
of “TSDR” and “TSF” can be found in [5] and [11], respectively.) Two time
bounds – 10 seconds and 100 seconds – have been given. The evaluation
criteria are the percen tage of problem instances for which a feasible solution
has been determined by the respective heuristic and the average percentage
deviation of the objective function value from a lower bound value for those
instances for which a feasible solution has been determined by all heuristics
within the given amount of time.

For a time bound of 10 seconds (cf. Tables 9 and 10), the best results
are obtained by “Prio”. Here, as has already been shown in Section 5.2,
for all instances of the test set a feasible solution has been found and the
average deviation for the whole test set equals 146%. “TSDR” determines for
only 34% and “TSF” for only 48% of the instances of the test set a feasible
solution. The average deviation from a lower bound value equals 309% and
180%, respectively.

For a time bound of 100 seconds (cf. Tables 11 and 12), the results (for
the whole test set) are as follows: The percentage of instances for which
a feasible solution has been determined by “TSDR” increases from 34% to
60%, and the average deviation decreases from 309% to 108%, which is
smaller than the corresponding value obtained by “Prio” (124%). “TSF” is
not able to solve more instances to feasibility within 100 seconds than within
10 seconds. The corresponding average percentage deviation equals 165%.
All in all, we can conclude that especially “TSDR” takes advantage of the
additional amount of available computation time.
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6 Conclusions

In this paper, a heuristic for MRCPSP/max has been presented. This pri-
ority–rule method with backplanning relies on an integration approach for
MRCPSP/max which is adapted from that for MRCPSP. For this approach,
a special relaxation has been presented, which allows for the application of
priority rules for the single–mode case and of a very effectice feasibility
test. The heuristic is embedded in random sampling thereby using different
combinations of priority rules.

The computational performance analysis has shown that the priority–
rule method is able to determine a feasible solution for each instance of
the test set whereas the existing solution procedures have difficulties in this
regard. It is essential that a procedure, which is applied in practice, returns
a feasible solution within a small amount of time.

Areas of further research are e.g. the improvement of the priority–rule
method w.r.t. optimality and its adaptation to resource–constrained project
scheduling problems with a different objective function.
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Advances in project scheduling, pp 113–134. Elsevier Science, Amsterdam

2. Bartusch M, M̈ohring R, Radermacher FJ (1988) Scheduling project networks with
resource constraints and time windows. Annals of Operations Research 16: 201–240

3. Brucker P, Drexl A, M̈ohring R, Neumann K, Pesch E (1999) Resource–constrained
project scheduling: notation, classification, models, and methods. European Journal of
Operational Research 112: 3–41

4. De Reyck B (1998) Scheduling projects with generalized precedence relations: exact
and heuristic procedures. PhD thesis, Katholieke Universiteit Leuven, Belgium

5. De Reyck B, Herroelen W (1997) The multi–mode resource–constrained project
scheduling problem with generalized precedence relations. Onderzoeksrapport 9725,
Katholieke Universiteit Leuven, Belgium
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