OR Spektrum (2001) 23: 335-357
Spektrum

(© Springer-Verlag 2001

Resource—constrained project scheduling:
a heuristic for the multi-mode casé

Roland Heilmann

Institut fur Wirtschaftstheorie und Operations Research, Univériiarisruhe,
KaiserstralRe 12, 76128 Karlsruhe, Germany (e-mail: heilmann@wior.uni-karlsruhe.de)

Received: September 22, 2000 / Accepted: May 18, 2001

Abstract. This paper presents a heuristic solution procedure for a very
general resource—constrained project scheduling problem. Here, multiple
execution modes are available for the individual activities of the project.
In addition, minimum as well as maximum time lags between different
activities may be given. The objective is to determine a mode and a start
time for each activity such that the temporal and resource constraints are met
and the project duration is minimized. Project scheduling problems of this
type occur e.g. in process industries. The heuristic is a multi-pass priority—
rule method with backplanning which is based on an integration approach
and embedded in random sampling. Its performance is evaluated within an
experimental performance analysis for problem instances of real-life size
with 100 activities and up to 5 modes per activity.

Key words: Resource—constrained project scheduling — Maximum time
lags — Multi-mode case — Heuristic

1 Introduction

For projects in practice (e.g. in civil engineering, process industries), it
is often possible to perform the individual activities in alternativedes
which differ w.r.t. processing time, time lags to other activities, and resource
requirements. In this way, time—resource and resource—resource tradeoffs
(cf. [9]) are reflected. By way of example, we consider two modes of the

* This research has been supported by the Deutsche Forschungsgemeinschaft (Grant Ne
137/4).

336 R. Heilmann

activity “installation of a machinewhich belongs to the projectsuilding

a factory'. If this activity is performed in mode 1, it lasts seven hours and
two skilled workers are required. If it is executed in mode 2, one skilled
and three unskilled workers are needed and the processing time equals four
hours.

Because of technological or organizational constraiim® lagdbetween
the start and completion times of different activities have to be obeyed. In
addition tominimumtime lags,maximumones, which occur e.g. in chem-
ical or food industries, might be given. For example, let us consider the
activities ‘melting metdl and “filling (liquid) metal into mould belonging
to our example projectiuilding a factory. A minimum time lag between
these activities has to be observed because the latter can be begun after the
completion of the former at the earliest. Moreover, a maximum time lag has
to be met: The latter activity has to be completed a certain amount of time
after the completion of the former at the latest because otherwise, the metal
is no longer liquid enough.

In addition, we have to consider that the capacities of¢keurcesvhich
are taken up by the activities are limited. The multi-mode case allows for
taking into account limitedenewableandnonrenewableesources. Renew-
able resources (e.g. machines, manpower) are available at each pointin time
independently of their utilization formerly whereas nonrenewable resources
(e.g. money, energy) are depleted by use.

The planning of these projects can be done w.r.t. alternative objectives
such as the maximization of the net present value, the minimization of the
resource costs, or the minimization of the duration of the project. Since the
latter objective is very important in practice, we focus on it in this paper.

Project scheduling problems of this type can be modelled as instances of
the Multi-Mode Resource—@nstrained Roject Sheduling_Poblem with
minimum and madnum time lags, MRCPSP/max. The objective is to de-
termine a mode and a start time for each activity such that the time lags
and the resource constraints are obeyed and the project duration is min-
imized. Following the classification schemes for project scheduling pro-
posed by [3] and [13], MRCPSP/max is denotedMd\PS | temp | Cinax
andm, 1T | gpr, mu | Cinax, respectively.

MRCPSP/max is in double respect a generalization of resource—con-
strained project scheduling problems which have been dealt with in litera-
ture. On the one hand, MRCPSP/max is more general thandgbeurRce—
Constrained Pject heduling Poblem with minimum and mamum time
lags, RCPSP/max (cf. [4], [6], [19], [22]). Here, for each activity only one
execution mode is available. On the other hand, MRCPSP/max is a gen-
eralization of the Milti-Mode Resource—0Gnstrained Boject Sheduling
Problem, MRCPSP (cf. [14], [15], [24], [25], [26], [27], [28]). Here, only

Resource—constrained project scheduling 337

minimum time lags can be taken into account. A survey of existing solu-
tion procedures for resource—constrained project scheduling problems can
be found in [3].

To the best of our knowledge, apart from two (heuristic) tabu search
procedures (cf. [4], [10]) and an (exact) branch—and—bound—procedure (cf.
[12]), the literature on MRCPSP/max is completely void. Since these pro-
cedures have difficulties w.r.t. the determination of a feasible solution for
“large” problem instances (with 100 activities and 3 to 5 modes per ac-
tivity, cf. Section 5) we devise a new procedure for MRCPSP/max. Itis a
multi—pass priority—rule method with backplanning.

The remainder of this paper is organized as follows: In Section 2, we state
the model for MRCPSP/max. Section 3 is devoted to the solution approach
our heuristic is based on. The priority—rule method itself is presented in
Section 4. An experimental performance analysis follows in Section 5.

2 Model

Let a project consist of a finite s&t = {0,1,... ,n,n + 1} of activities.
Activity 0 represents the start and activity- 1 the completion of the project.
Both activities are dummy activities.

For each activityj € V a setM; = {1,...,|M;|} of (execution)
modes is available. Activitie8 andn + 1 can be performed in only one
mode: M, := M, ;1 := {1}. Each activityj € V has to be performed in
exactly one modg € M.

The processing time of activity executed in mode: is denoted by
pj, € Z>o0. The processing time of activiti®sandn + 1 equals): pg, :=
pnt1, = 0. .S; andC; stand for the start time and the completion time
(of the performance) of activity, respectively. If we defingy := 0, S, 41
stands for the project duration. Provided that actiyistarts in mode: at
time S;, it is being executed at each point in time [S;, S; + p;, [.

Between the start timé&; of activity j, which is performed in mode
1 € M;, and the start time; of activity [(I # j), which is performed
in mode\ € M;, a minimum time Iaglﬁ’; € Z>o or a maximum time
lag dj”l‘;f € Z>(can be given. Note, that a time lag between actiyignd
activity [depends on modeas well as on modg. A minimum (maximum)
time lag betweers; andC;, C; and S;, and betweerC; and C; can be
expressed by a minimum (maximum) time lag betwseandS; (cf. [2]).

Activities and time lags are represented by an activity—on—node (AoN)
networkN = (V, E; 6) with node seV/, arc set, and arc weight functioé.
Each element of node skt represents an activity. In the following, we do
not distinguish between an activity and the corresponding node. An arc
(4,1) € Eindicates that a time lag betweéh and S; has to be observed.

338 R. Heilmann

Arc weight functions assigns to each afg, [) € £ a|M;| x |M;[-matrix
(6,15) uem; rem, Of arc weights as follows: For a minimum time Idgm

we seb;,;, = dmm Foramaximumtime lag" we sev;,;, := —dj\5".
R denotes the set of renewable resourcesﬁhdhe set of nonrenew-
able resources?; € Z -, stands for the capacity of renewable resource
(k € R”) which is available at each pointin timB; € Z- stands for the
capacity of nonrenewable resourcék € R") which is available in total.
Provided that activityj is performed in modeu, r?ﬂk units of renewable
resourcek (k € R”) are used at each point in time at which activjtys
being executed. Moreove@’u,g units of nonrenewable resourkdk € R”)

are consumed in total. For activitiégndn 41 we set , =17, , =0
(ke RP)andry =17, ., :=0(k€eR").

Definition 1 A schedulg M/, S) consists of a mode vectdr and a start
time vectorS. A mode vectol/ = (m;) ey assigns to each activityc
exactly one modg € M. A starttime vectof = (5;) ey assigns to each
activity j € V exactly one pointin time > 0 as start timeS; with Sy := 0.

With A(M, S,t) := {j € V|S; <t < S;+pj, } denoting the set of ac-
tivities being executed at timdfor a given schedulé)/, S), MRCPSP/max
can be stated as follows:

n+11

Min. SnJrl (1)
s.t. Si=8; = Gjuitm, ((4,1) € E) (2)
> r;.)m'k < Rj (keRr;t>0) (3)
JEA(M,S,t)
S . < Ry (k € R) @)
jEV msk
mj € M (jev) (5)
S; > 0 JevV) (6)
So = 0 (7)

The objective is to determine a sched(ld, S) such that the time lags (2)

are observed, the constraints w.r.t. the renewable resources (3) and the non-
renewable resources (4) are met, and the project duration is minimized
(1). Such a schedule is callexptimal A schedule(), S) obeying (2),

(3), and (4) is calledeasible Since MRCPSP/max is a generalization of
RCPSP/max, MRCPSP/maxAéP-hard (cf. [2]). Even the corresponding
feasibility problem is\“P—complete (cf. [12]).

An example for an MRCPSP/max instance is depicted in Figure 1. The
project consists of six activities. Activities 1 to 4 can be performed in two
modes. (Hence, there exist 16 different mode vectors.) Furthermore, one lim-
ited renewable resource and one limited nonrenewable resource are given.
Five units of the renewable resource are available at each point in time,

Resource—constrained project scheduling 339

(Pip) nerm;

v - (05,13) nem; rem
R{=5,R{ =10 Legend: [| e T

(r®

v
-7/1’“)“'EMJ' ,keERQ:Y

Fig. 1. MRCPSP/max instanagP;)

and ten units of the nonrenewable resource can be consumed in total in the
course of the project.

Let us consider the case in which activity 1 is performed in mode 2: The
corresponding processing timpe, equals three units of time. Two units of
the renewable resource are used at each point in time at which activity 1 is
being executed. Furthermore, two units of the nonrenewable resource are
consumed in total. As indicated above, the weights of all incident arcs, i.e.
arcs(1,2), (0,1), and(3, 1), are mode—dependent. By way of example, let
us consider arcél, 2) and (3, 1): Provided that activity 2 is performed in
mode 1, the performance of activity 2 is allowed to start one unit of time
after S; at the earliest. If activity 2 is executed in mode 2, its performance
must not start beforg;. Provided that activity 3 is executed in mode 1 (2),
the performance of activity 3 has to start two units (one unit) of time after
S, at the latest.

3 Solution approach

Inthis section, we describe the solution approach of our priority—rule method.

It is derived from a division of MRCPSP/max into subproblems.
MRCPSP/max can be divided into two subproblems: Mode assignment

problem MAP and RCPSP/max. Subproblem MAP is the problem of deter-

340 R. Heilmann

mining a mode vectol/ such that the constraints (4) are observed. Such a
mode vector is calleteasible MAP is polynomially solvable fofR"| = 1

and N P—complete fof R”| > 2 (cf. [14]). Subproblem RCPSP/max is the
problem of determining a start time vectSrfor a feasible mode vector

M such that the constraints (2) and (3) are met and the project duration is
minimized (1). RCPSP/max j§ P—hard, and the corresponding feasibility
problem is\“P—complete (cf. [2]).

In analogy to MRCPSP (cf. [14], [25]), we distinguish between two solu-
tion approaches for MRCPSP/max depending on the sequence inwhich these
subproblems are handled. THecompositiorapproach relies on sequen-
tially dealing with both subproblems: Having solved MAP by determining
a feasible mode vectay/, we obtain an RCPSP/max instance. Hereafter,
we compute a start time vectdér by means of a solution procedure for
RCPSP/max. The tabu search procedures of [4] and [10] rely on this ap-
proach. Thantegrationapproach is based on simultaneously dealing with
MAP and RCPSP/max: The determination of mode vegfoand start time
vector S is done in parallel. This approach is made use of by the branch—
and-bound procedure of [12] and by the priority—rule method presented in
this paper.

Similar to the integration approach for MRCPSP (cf. [25]), sohed-
ule the activities one after the other. (To schedule an activity means to as-
sign a mode and a start time to it.) Hence, our procedurecgnatruc-
tion method. In this way, a sequence of feasip&tial schedules is cre-
ated where “partial” indicates that not all activities have been scheduled.

For example, w.l.0.g., we assume that activities, ... , j are scheduled
one after the other. Then, the respective sequence of partial schedules is
((m07 07 o 70)7 (507 —00, ..., _OO))v ((m07m1707 cee 70)7 (507 Sla —00,

,—OO)),... ,((mo,ml,... ,mj,O,... ,0),(50,51,... ,Sj,—OO,... s
—o0)).

But if, different from MRCPSP, maximum time lags have to be observed,
it can happen that a given feasible partial schedule cannot be extended to
a feasible schedule because at least one nonscheduled activity cannot be
scheduled without violating maximum time lags to scheduled activities. In
this case, it is necessary to perforrbackplanningstep, i.e., to unschedule
some scheduled activities.

In order to detect as early as possible whether a given feasible partial
schedule cannot be extended to a feasible schedule (and hence to save com-
putation time), we apply a so—calléshsibility tes(cf. Section 4.3). It makes
use of a special relaxation of an MRCPSP/max instance, namidal
problem instance (cf. Definition 3), which is based an@de sevector (cf.
Definition 2). In addition, this relaxation is needed for the determination of
priority—rule values (cf. Section 4.2).

Resource—constrained project scheduling 341

Definition 2 A mode set vectaM = (ﬁ/lvj)jev assigns to each activity
J € V.anonempty set; C M; of modes.

The (simultaneous) assignment of several modes to an activity is expressed
by a fictitious execution mode. Associated with this special mode are fic-

titious processing timeminueﬂj pj, (j € V), resource requirements

min, o 7“3% (j € V;k € RoY), aniarc WeightsSJ/‘l" = min, o

AEM, 5j“l>\ ((],l> S E) With .A(M,S,t) = {j € V|S] <t<

Sj +min o pj, + denoting the set of activities being executed at time
J

for a given mode set vectdv! and start time vectas, we give the following
definition.

min

Definition 3 Let an MRCPSP/max instan¢€) and a mode set vectovl

be given. The corresponding minimal problem instafieé?) is defined as
follows:

Min. Sy (8)
s.t. S~ 82 min min 8, (1) €) 9)
peMj i AeM;
3 min %, < Ry (k€ R?; t >0) (10)
JEAM,S,t) nEM; "
X mn v < By ker)
J
S; >0 (GeV) (12)
So=0 (13)

(P/v‘) correspondsto afictitious (single—mode) RCPSP/max instance where,
in addition, constraints (11) w.r.t. nonrenewable resources have to be met.
By way of example, the minimalproblem ins@r(d@") cErresponding to

(Py) is depicted in Figure 2N™ = (V, E; §) with Ejfﬁ = min, 57
min,_ v 95,1, ((,1) € E) denotes the network afPM). The length of
a longest pathdistancg from activity j to activity / (j,/ € V) in NMis
denoted byt/}!. The distance matriD = (d}}'); ey can be computed
by means of the Floyd—Warshall algorithmdr{(|V'|3) time (cf. [18], [20]).

Proposition 1 Let an MRCPSP/max instan¢€’) and a mode set vector
M be given. ItM = M holds,(P™M) represents a relaxation ¢iP).

As indicated above,PM) is used in order to find out whether there exists a
feasible schedulg)/,) whichis based on partial scheddler, . . . ,m};, 0,
,0),(8, ..., 8%, —00,...,—00)), i.e., wherem; = mj andS; = 5

(I =0,...,5). Obviously, to that partial schedule corresponds exactly one

342 R. Heilmann

min pj,
uEMj __

v st
RY =5,R{ =10 Legend: &

3 o,v
(min Tj k)kGRQ~V
MEM]- H

Fig. 2. Minimal MRCPSP/max instan((eP{q)

mode set vectaM = ({mg},... Amib AM it AMaga}). I, us-

ing the feasibility test, we can show that the relaxatiBri!) w.r.t. the partial
schedule does not have a feasible solution, we know that there does not exist
such a feasible schedul&/, S).

4 Priority—rule method

This section is organized as follows: At first, we describe how the priority—
rule method works in principle (cf. Section 4.1). Next, we give a detailed
description of the essential elements of the procedure: the priority rules (cf.
Section 4.2), the feasibility test (cf. Section 4.3), and the backplanning (cf.
Section 4.4). Finally, the complete procedure is presented (cf. Section 4.5).

4.1 Basic concepts

As mentioned in Section 3, the procedure is a construction method where the
activities are scheduled one after the other. At the beginning, only activity O
is scheduled. Consequently, the initial mode set ve&f)equals/\/l. At

each step of the algorithm, we schedule an activity by assigning a mode and
a start time to it. In this way, we try to obtain a feasible schedie S).

Resource—constrained project scheduling 343

When we schedule an activity, we restriet appropriately. Hence, to each
step of the procedure belong a current mode set velet@and thus a current

minimal problem instanceP™).

The set of scheduled (nonscheduled) activities is denot€d®y At the
beginning, we sef := {0}, C := V\{0}, mg := 1, m; := 0 (j € V\{0}),
So:=0,S5; :=—00 (j € V\{0}), andM := M.

At each step, we do the following: Firstly, we select an actiyity= C
to be scheduled by means of aativity—selection priority ruleSecondly,
we choose a (feasible) modeg < Mvj* by means of anode—selection
priority rule. Thirdly, we try to find a (feasible) start timé for activity j*
in modey*.

Incase such a pointintiméis found, we schedule activigyf in modeu*
attimet* and seC := C\{j*}, C := CU {j*}, m; := p*, S; := t*, and
ﬁ/lvj := {u*}. If we are not able to determine a (feasible) start tirmeve
either selectamode’ ¢ Mvj* with %’ # * and try to schedule activity*
in modey*’ orwe performmbackplanning step.Provided that there does not
exist any modg: € M - such that activityj* can be scheduled in moge
backplanning step & performed.

We select activities out af until eitherC is empty, i.e. all activities are
scheduled = V), or until a prescribed maximum number of backplanning
steps has been performed. In the former case, a feasible schedule has been
found. Inthe latter case, the algorithm terminates without having determined
a feasible solution.

4.2 Priority rules

In [10] a priority—rule method for RCPSP/max is presented. Here, it is es-
tablished that, on the average, performing the procedure several times using
a different priority rule at each pass leads to better objective function values
(but also to higher computational times) than performing the procedure only
once with a unique priority rule. The reason is, that the application of one
and the same priority rule does not lead to the best objective function value
for each probleminstance. Therefore, we make use of a multi—-pass approach
for MRCPSP/max.

For each pass, we need one priority rule for the selection of an activity and
one priority rule for the selection of a mode. There are many priority rules
that are possible. In particular, the concept of the minimal problem instance

(PM) allows for the application of priority rules that have been proposed

in literature for the single—-mode case (cf. [1]). In the following, we present
three activity— and three mode-— selection priority rules. They are used in our
procedure because they have turned out to be the most successful ones. Thus,

344 R. Heilmann

we have nine different combinations of an activity— and a mode—selection
rule. We start with the description of the activity—selection rules.

The first activity—selection priority rule (“Al1") is referred to aatést
start ime (LST) rule in literature (cf. [1]). Based on the project network
N™M of the current minimal problem instan¢®M) and the start times of
the scheduled activitielsc C, the priority—rule value of an activity € C
equals its latest start time

LSj» :=min(d — d}¥',, min (S} — d¥h), (14)
where
d:= jezvmaX(lfg%}j Piur QX ax max 0july) (15)

represents an upper bound on the minimum project duration. When we fix
the start time of an activity, the latest (earliest) start times of the nonsched-
uled activities might decrease (increase). Therefore, it could happen that
we cannot find any feasible start time for a nonscheduled activity. In order
to detect such an infeasibility early, we assign the highest priority to the
activity with the smallest priority—rule value. In this way, we try to save
computation time.

The second rule ("A2”) is based M , too. The priority—rule value of
an activityj € C equals the difference between its latest start tinfg- and
its earliest start time

ESj := max(dé\;i,r?e%x(sl + dl/rﬁ)) (16)

This rule is referred to asimmum skck(MSLK) rule in literature (cf. [1]).
Since the priority—rule value reflects the maximum number of possible start
times of the corresponding activity, its priority increases with decreasing
priority—rule value. This is done in order to — like for the LST rule — detect
infeasibility early within the scheduling process.

The third rule (“A3") takes into account the current availability of the
nonrenewable resources (cf. [14]). For each m@@ﬂ/lvj of each activity
j € C we determine the mean relative consumption

! ik
> 17)
v 2 (
R verv T
of the nonrenewable resources}’ := R} — >, Tank stands for the

remaining capacity of resourde(k € R”). The priority—rule value of an
activity j € C equals the minimum of the values (17) associated with its

Resource—constrained project scheduling 345

modesu € Mvj. The activity with the highest priority—rule value receives
the highest priority. In this way, we are able to detect infeasibility w.r.t. this
type of resources early within the scheduling process.

Next, we present the mode—selection priority rules. The first rule (“M1")
is referred to ast®rtest pocessingitme (SPT) rule in literature (cf. [1]).
The priority—rule value of a mode € M equalsp;:. The priority of a
mode increases with decreasing priority—rule value.

The secondrule (“M2") is a modification of a priority rule that is proposed
in [10]. For each modg € ﬂ/lvj* we determine the average weight of all arcs

which are incident with activity* in network N under the assumption,
that modeu is chosen. Thus, the priority—rule value equals

1
{0 € Elj =5~ VvI=j*}

1 1
e 51) * I 6‘* .
> 2 et Y = Y b

(i,5*)EE LEMvi (7*,l)eE)\Ele

The mode with the lowest value receives the highest priority. We expect that
the application of the first and the second mode—selection rule leads to rather
low objective function values.

The third mode—selection priority rule (“M3”) corresponds to the third
activity—selection rule. The priority—rule value of a mgode M+ equals
(17). The highest priority is assigned to the mode with the lowest value.

4.3 Feasibility test

In this subsection, we describe how to check the feasibility of scheduling
activity 7* in modep* on the basis of the current partial schedule and the
current minimal problem instance. The feasibility test consists of four steps.
Instep 1, we study the feasibility w.r.t. the nonrenewable resources. In step 2,
we check the feasibility w.r.t. the project network of the minimal problem
instance. In step 3, we investigate the feasibility w.r.t. the project network of
the minimal problem instance where we additionally take into account the
start times of the scheduled activities. In step 4, we study the feasibility w.r.t.
the renewable resources. If any of these tests fails, we know that the current
partial schedule together with activify scheduled in modg* cannot be
extended to any feasible schedule. In the following, we give a more detailed
description of these steps.

In step 1 (cf. Algorithm 1), we establish whether the choice of mode
leads to as—resource conflictA v—resource conflict occurs if the capacity of
at least one nonrenewable resource is exceeded by the overall consumption

346 R. Heilmann

of the activities. For this purpose, we make use of an auxiliary mode set
vectorM’ := M where we seIM’* .= {u*}. M’ is also used in steps 2
and 3.

Algorithm 1 (Feasibility test step 1)

FOR k€ R¥ DO

IF > min r e R} THEN RETURN FALSE
]EVMEM’

RETURN TRUE
Remark 1The time complexity of Algorithm 1i(|R"| >y [M;]).

In step 2 (cf. Algorithm 2), we check whether scheduling activityin
modey.* leads to a cycle of positive length in netwakk*!’ of the resulting
minimal problem instanc(aPM). This investigation is done by means of
the corresponding distance matfi! which is denved fromDM. A cycle

of positive length occurs if we ha\tﬁf}/’ + dli > 0 for at least one pair
1,1 € V of activities.

Algorithm 2 (Feasibility test step 2)
DM .= pM
FOR (i,5*) € E DO

5%/1/ = min (5“] UpdateDM'
LEM;

FOR (j*,1) € E DO

6%/ = min J;+ s UpdateDM
)\EM

IF 34,01 € V:dM +dM >0 THEN RETURN FALSE
RETURN TRUE

Remark 2The time complexity of Algorithm 2 i€ (|V |2 > ijryer Ml
2+ ner [Mil)-

In step 3 (cf. Algorithm 3), we compute the earliest start tifng;- and the

latest start time..S;~ of activity ;* based on distance matix™’ and start
times.S; of the scheduled activitielse C. This feasibility test step fails if
we establishz'Sj« > LS.

Algorithm 3 (Feasibility test step 3)
T M M
ESj = maX(dOj*) T?EE’LCX(SZ + dl]’*)

Resource—constrained project scheduling 347

’

LSj+ := min(d — dﬁ7n+1, rl%iél(sl — dffl)
IF ES;« > LS;» THEN RETURN FALSE
RETURN TRUE

Remark 3The time complexity of Algorithm 3 i©(|V]).

In step 4 (cf. Algorithm 4), we establish whether a point in tirhexists, such
that scheduling activity* in modey* at this point in time does not cause a
o—resource conflictA p—resource conflict occurs, if there exists a point in
timet at which the capacity of at least one renewable resource is exceeded
by the usage of the activities being executed Based on the current partial
schedule withpartial mode vectorM and partial start time vectotS, we
define apartial resource profiler;(C, M, S,t) == 3" ,c ac.ar54) rfmjk for
each resourcé € R” with A(C,M,S,t) := {j € C|S; <t < §; +
pjmj} denoting the set of scheduled activities being executed at time
r(C, M, S, t) reflects the total usage of the gkof scheduled activities of
resource: € R at timet.

For the determination af* we can restrict ourselves to a finite geof
possible start times. A feasible start time of activitymust be included in
the interval[ES;+, LS;+], which is also calledime window As we want
to minimize the project duration, we try to schedule actiyityas early as
possible. Therefore, we search tor‘from the left to the right” beginning
with ES;~ and continuing at such points in time which equal the completion
time of at least one scheduled activity. Hence, we have

T:= {ESJ*} U {t € }ES]'*, R ,LS]’*] |t =Ci NIl € C} (18)
For a given point in timg € T we have to see Whetheg(c, M, S,
t') + 1 < Ry (k€ RP;t" € T') holds.T" denotes the set of points in
n*

time for which we have to find out whethergaresource conflict occurs.
Since it is sufficient to take into account the start times of the scheduled
activities we have

T’::{t}U{t'E]t,...,t+pj;*[\t/:Sl/\lEC}. (19)
Algorithm 4 (Feasibility test step 4)
FORt €T DO
found := TRUE
FOR ¢ € T DO

FOR k € R DO
IF r{(C. M, 5,t') +77. ;> R{ THEN found := FALSE

348 R. Heilmann

IF found THEN
ESj =t
RETURN TRUE

RETURN FALSE

Remark 4The time complexity of Algorithm 4 i©(|V |2|R”|).

4.4 Backplanning

As mentioned in Section 4.1, we differ between two backplanning steps. In
the following, these steps are described in detail.

Backplanning step (cf. Algorithm 5) is performed if step 3 or step 4 of
the feasibility test fails. The basic idea is, that we try to “enlarge’titme
window [ES;«, LS;+] of activity j* by increasingLS;« such that step 3 or
step 4 do no longer fail becauselof;» > LS;« ort* £ LS;«, respectively.

Toincreasd.S;- we have to right—shift some scheduled activities: Firstly,

we unschedule each activilye C with S; < ESj« + dﬁ by setting

S; = —oo. Let C' denote the set of activities to be unscheduljd. Sec-
ondly, we increase the earliest start tifheS; of each activityl € C to
ESj« + dng Hence, when we (later) reschedule an actii/ityfl at time

S;, we haveS; > S;. Note that, if backplanning step 1 is performed after
step 4 of the feasibility testyS;- equals the earliest point in timewith
LSj» <t<d- dj‘:‘,;@ﬂ, at which activity;* can be scheduled in mogg
without causing a—resource conflict.

After the unscheduling af’ we have to update the earliest and the latest
start time of each activity € C. If this update yieldsES; > LS, for at
least one activity € C, the unscheduling of' is undone and mode™ is
excluded from further consideration. Else, the mode of actiyitis fixed
to p* by settingM j« := {p*}.

In order to keep the complexity of our priority—rule method low, the

modem,; of each activity ¢ C' remains unchanged. For the same reason, we
perform no backplanning but exclude madefrom further consideration,
if step 1 or step 2 of the feasibility test fails.

Algorithm 5 (Backplanning step 1)

C={lec|s <ESq +d¥};c:=c\C;C:=Cul
FOR 1€ C DO 5 := —co0 ; ES) == max(ES;, ESj+ +d})
FOR [€ CDO

Resource—constrained project scheduling 349

ES; = max(ESl,r?éigc(Sj + dj/‘?,)) ; LS = min(LSl,r];g(rjl(Sj -
"))
IF3leC:ES, > LS, THEN
C:=C\C ;C:=CUCl ; Mjs :== M;:\{i*}
FOR [€ C DO UpdateES;, LS;
ELSE M, := {u*}
RETURN
Remark 5The time complexity of Algorithm 5 i€ (|V|?).

Backplanning step &f. Algorithm 6) is performed if activity* cannot be
scheduled in any moge < M . Inthis case, we unschedule the previously
selected activity*’ and prevent the rescheduling;of for a certain number
of scheduling steps.

Algorithm 6 (Backplanning step 2)
Determine;*’ ; € := C\{j*'} ; C:= CU {j*'};

Mjxr := 05 Sjur 1= —00; ﬂj*/ = M, DetermineDM
FOR [€ C DO UpdateES;, LS
RETURN

Remark 6 The time complexity of Algorithm 6 i€ (|V[3).

4.5 Algorithm

In this subsection, we give a rough pseudo—code description of the priority—
rule method (cf. Algorithm 7).

Algorithm 7 (Priority—rule method)
C:={0};C:=V\{0}; (M,S):=((1,0,...,0),(0,—00,...,—00))
M := M ; DetermineDM andd ; ES = (djf%’v)jev i LS = (d —
dﬂﬂ)jev
WHILE C # () DO

Selectj* € C ; found := FALSE

WHILE /\7]-* # () AND NOT found DO

Selectu* €]\—/lvj*

350 R. Heilmann

IF Algorithm 1 = TRUEAND Algorithm 2 = TRUETHEN
IF Algorithm 3 = TRUEAND Algorithm 4 = TRUETHEN
found := TRUE ;C :=C\{j*};C:=CU{j*}
M = w*; Sjx 1= ESj« ;Mvj* ={u*}; UpdateD/V‘
FOR [€ C DO UpdateE S;, LS;
ELSE Algorithm 5

ELSE Mj» := M\ {p*}
IF M. = () THEN Algorithm 6
RETURN (M, S)

Since one pass of Algorithm 7 takes only a little amount of time (approxi-
mately 0.1 seconds for problem instances with 100 nondummy activities) we
extend the multi—-pass approach by embedding it iegpet—based biased
random samplindcf. [7], [8]): The execution of Algorithm 7 is repeated
until a prescribed time limit is reached. At each pass, we use a combination
of an activity—selection and a mode—selection priority rule. (Hence, each
combination is used again after eight passes.) At this, we determine activ-
ity j* and mode.* not in a deterministic but in a stochastic manner by using
the priority—rule values as a basis foraulette selectionThis means that
the probability of the selection of an activity or a mode with high priority
is higher than the probability of the selection of an activity or a mode with
low priority, respectively.

If a pass of Algorithm 7 returns a feasible schedul¢, S), S,,+1 can
be used as a tighter upper bousdor the following passes. The result of
the sampling procedure equals the schedule with the lowest project duration
among all feasible schedules which have been returned by Algorithm 7.

5 Computational results

In this section, we evaluate the performance of our priority—rule method.
In Section 5.1, we describe the benchmark test set which is made use of
in the following subsections. The impact of the available computation time
and certain control parameters is analyzed in Sections 5.2 and 5.3, respec-
tively. In Sections 5.4 and 5.5, we investigate the effect of the priority rules
and the backplanning feature, respectively. Finally, the priority—rule method
is compared with the other existing heuristic solution procedures for MR-
CPSP/max (cf. Section 5.6).

Resource—constrained project scheduling 351

Table 1. Parameter setting

Parameter Value(s)

n 100

m 3,4,5

|R”| 3

IR”| 3

RT 0.50

RF*® 1.00

RFY 1.00

RS? 0.25, 0.50, 0.75
RSY 0.25, 0.50, 0.75

5.1 Benchmark problem instances

In order to evaluate the performance of the priority—rule method a test set
has been generated using the problem generator ProGen/max (cf. [23]). The
mostimportant control parameters used for the full factorial design are given
by Table 1. In an attempt to keep the size of the experiment small, certain
parameters have been fixed at specific values (according to [4]). For each
parameter combination, 10 problem instances have been generated. Hence,
this test set consists of 270 MRCPSP/max instances.

In the following, we explain the meaning of the control parameters. For
a more detailed description we refer to [16], [17], [22], and [23]:

— n denotes the number of nondummy activities of the project.

— m stands for the number of modes which are available for each activity
je{l,...,n}.

— The restrictivenesRT (cf. [23]) reflects the degree of parallelity of
the corresponding network without cycles. With increasing degree of
parallelity, RT decreases.

— The resource factaR F' (cf. [21]) corresponds to the average percentage
of resources required per activilgF' is defined for renewable resources
(RF?) as well as for nonrenewable resourc&s().

— Theresource strengfRS (cf. [14]) reflects the ratio of resource capacity
and resource demand and is defined for renewable resolR&3 &s
well as for nonrenewable resourcésy").

The parameter®R1, RF?, RF¥, RS? and RSY are normalized to the
interval [0,1].

Next, we describe the impact of these parameters on the size and the
difficulty of a problem instance (cf. [22]): The size of a problem instance
is influenced by the parameters m, |R”|, and|R"|. It increases with
increasing parameter values. The paramei&rs RF¢, RF”, RS¢, and

352 R. Heilmann

Table 2. Feasible Table 3. Deviation
m 10sec. 100 sec. m 10sec. 100 sec.
3 100 100 3 113 97
4 100 100 4 178 156
5 100 100 5 256 221

RS reflect the difficulty of a problem instance: According to [22], difficult
instances are characterized by a high degree of parallelity (i.e. a low value
of RT") and high resource factoi®F'¢ and RF". In [4], it is reported that

the influence ofRS? and RS on the difficulty can be characterized by a
bell-shaped curve and a U-shaped curve, respectively.

The full factorial analysis has been done on an Intel Pentium 111 800 MHz
personal computer with 256 MB SDRAM under the operating system Win-
dows 2000. All algorithms have been coded in ANSI C using the MS Vi-
sual C++ 6.0 Developer Studio.

5.2 Impact of time bounds

In this subsection, we test the performance of our priority—rule method
(“Prio”) w.r.t. two time bounds: 10 seconds and 100 seconds. In Table 2, we
give for each value of: and for each time bound the percentage of problem
instances of the test set for which a feasible solution has been determined
by “Prio” within the given amount of computation time. Within 10 seconds,
all instances have already been solved to feasibility.

In Table 3, we give the average percentage deviation of the objective
function value from a lower bound value on the minimum project duration
(cf. [12]). It can be seen, that, as expected, the deviation increases with
increasing value ofn. If the available amount of computation time is in-
creased from 10 seconds to 100 seconds, the average percentage deviation
for the whole test set decreases from 182% to 158%.

5.3 Impact of control parameters

The most important control parameters which have been varied aiRes'?,
andRS". In the following, we try to find out the influence of the latter two
parameters on the performance of “Prio”. The corresponding deviations
from a lower bound value (for a time bound of 10 seconds) can be found in
Table 4. Here, each row (column) is associated with a certain valR& 6f
(RS"). For“Prio”, the most difficultinstances are those with a medium value
of RS? and a low value oR25”. The entries of Table 4 seem to support the

Resource—constrained project scheduling 353

Table 4. Control parameters

RS°\Y 025 050 0.75

0.25 287 134 122
0.50 291 135 140
0.75 265 134 135

statement given in [4] that the influence®b¢ (RS”) on the difficulty of a
problem instance can be described by means of a bell-shaped (U-shaped)
curve.

5.4 Effect of priority rules

In this subsection, we analyze the impact of the priority rules on the per-
formance of “Prio” (w.r.t. a time bound of 10 seconds). For this, we firstly
compare “Prio” with a version, named “Rand”, where all priority rules have
been replaced by a simple random priority rule. Secondly, we investigate
the effect of the priority rules by means of a comparison with “Rand”.

In Table 5, we give for each value of the percentage of problem in-
stances for which a feasible solution has been determined within the given
amount of time. “Rand” determines for only 85% of the instances of the test
set a feasible solution. In Table 6, we give the average percentage deviation
of the objective function value from a lower bound value on the minimum
project duration for those instances for which a feasible solution has been
found by “Prio” and “Rand’ . It turns out that, for the whole test set, the de-
viation w.r.t. “Prio” (162%) is much smaller than the deviation w.r.t. “Rand”
(311%).

Next, we try to find out the effect of the individual priority rules. For
this, for each priority rule, we have implemented a version of “Rand” which
differs in the sense that the respective rule replaces the corresponding sim-
ple random priority rule. The resulting versions are named according to the
priority rules (“Al”, “A2”, "A3", “M1”, “M2”, and “M3") and compared
with “Rand”. From Table 5, we can conclude that — w.r.t. the criterion “fea-
sibility” — the most effective activity- and mode-selection priority rules are
“A2" and “M3”, respectively. The corresponding values for the whole test
set equal 87% (for "A2”) and 99% (for “M3").

From Table 6 we can draw the conclusion that — w.r.t. the criterion “de-
viation from a lower bound value” — the most effective activity—and mode—
selection priority rules are "“A1” and “M1”, respectively. The corresponding
values for the whole test set equal 306% (for “A1”) and 170% (for “M1").
Note, that the deviations are based on those instances which have been solved
to feasibility by “Rand” and the respective version of “Rand”.

354 R. Heilmann
Table 5. Feasible — Priority rules
m Prio Rand A1 A2 A3 M1 M2 M3
3 100 79 79 81 74 79 80 99
4 100 88 91 91 88 88 89 99
5 100 88 87 89 87 87 89 100
Table 6. Deviation — Priority rules
m Prio Rand A1 A2 A3 M1 M2 M3
3 89 180 178 178 180 95 96 177
4 159 305 300 303 303 171 184 297
5 229 435 427 431 429 235 270 422
Table 7.Feas. — Backplanning Table 8.Dev. — Backplanning
m Prio BO m Prio BO
3 100 31 3 101 111
4 100 37 4 165 183
5 100 37 5 253 262

Summing up it may be concluded that the strength of “Prio” lies es-
pecially in the combination of all priority rules which leads to a superior
performance compared to “Rand”.

5.5 Effect of backplanning

The impact of the backplanning procedures on the performance of “Prio” is
analyzed in the following. For this, we have implemented a version without
backplanning, named “B0”. As can be seen from Table 7, the percentage
of instances solved to feasibility without the backplanning feature is very
small: Only 35% of the instances of the test set could have been solved to
feasibility by “B0”. In Table 8, we give the average percentage deviations
from a lower bound value for those instances for which a feasible solution
has been found by “Prio” and “B0”. For the whole test set, we have 177%
for “Prio” and 189% for “BO".

All'in all, it can be said that the backplanning feature is an essential part
of “Prio”. In particular, this holds for the criterion “feasibility”.

Resource—constrained project scheduling 355

Table 9.Feas. — 10 sec. Table 10.Dev. — 10 sec.
m TSk TS Prio m TSk TS Prio
3 28 39 100 3 151 117 80
4 33 46 100 4 286 171 131
5 42 59 100 5 433 229 200
Table 11.Feas. — 100 sec. Table 12.Dev. — 100 sec.
m TSk TS Prio m TSk TS Prio
3 53 39 100 3 40 105 63
4 61 46 100 4 91 151 113
5 67 59 100 5 164 215 170

5.6 Comparison with other heuristics

In this subsection, we compare “Prio” with the heuristics of [4] (sd'pand

[10] (“TS¢™), which were reimplemented. (Details of the parameter settings

of “TSy:” and “TS.” can be found in [5] and [11], respectively.) Two time
bounds — 10 seconds and 100 seconds — have been given. The evaluation
criteria are the percen tage of problem instances for which a feasible solution
has been determined by the respective heuristic and the average percentage
deviation of the objective function value from a lower bound value for those
instances for which a feasible solution has been determined by all heuristics
within the given amount of time.

For a time bound of 10 seconds (cf. Tables 9 and 10), the best results
are obtained by “Prio”. Here, as has already been shown in Section 5.2,
for all instances of the test set a feasible solution has been found and the
average deviation for the whole test set equals 146%.,:."&termines for
only 34% and “T$’ for only 48% of the instances of the test set a feasible
solution. The average deviation from a lower bound value equals 309% and
180%, respectively.

For a time bound of 100 seconds (cf. Tables 11 and 12), the results (for
the whole test set) are as follows: The percentage of instances for which
a feasible solution has been determined by:T81creases from 34% to
60%, and the average deviation decreases from 309% to 108%, which is
smaller than the corresponding value obtained by “Prio” (124%):™i&S
not able to solve more instances to feasibility within 100 seconds than within
10 seconds. The corresponding average percentage deviation equals 165%.
All'in all, we can conclude that especially “I:3 takes advantage of the
additional amount of available computation time.

356 R. Heilmann
6 Conclusions

In this paper, a heuristic for MRCPSP/max has been presented. This pri-
ority—rule method with backplanning relies on an integration approach for
MRCPSP/max which is adapted from that for MRCPSP. For this approach,
a special relaxation has been presented, which allows for the application of
priority rules for the single—-mode case and of a very effectice feasibility
test. The heuristic is embedded in random sampling thereby using different
combinations of priority rules.

The computational performance analysis has shown that the priority—
rule method is able to determine a feasible solution for each instance of
the test set whereas the existing solution procedures have difficulties in this
regard. It is essential that a procedure, which is applied in practice, returns
a feasible solution within a small amount of time.

Areas of further research are e.g. the improvement of the priority—rule
method w.r.t. optimality and its adaptation to resource—constrained project
scheduling problems with a different objective function.

References

1. Alvarez—Valdes R, Tamarit JM (1989) Heuristic algorithms for resource—constrained
project scheduling: a review and empirical analysis. fmv8hski R, Wglarz J (eds)
Advances in project scheduling, pp 113-134. Elsevier Science, Amsterdam

2. Bartusch M, Mhring R, Radermacher FJ (1988) Scheduling project networks with
resource constraints and time windows. Annals of Operations Research 16: 201-240

3. Brucker P, Drexl A, Mhring R, Neumann K, Pesch E (1999) Resource—constrained
project scheduling: notation, classification, models, and methods. European Journal of
Operational Research 112: 3-41

4. De Reyck B (1998) Scheduling projects with generalized precedence relations: exact
and heuristic procedures. PhD thesis, Katholieke Universiteit Leuven, Belgium

5. De Reyck B, Herroelen W (1997) The multi-mode resource—constrained project
scheduling problem with generalized precedence relations. Onderzoeksrapport 9725,
Katholieke Universiteit Leuven, Belgium

6. Dorndorf U, Pesch E, Bn PH (1998) A time—oriented branch—and—bound algorithm
for resource constrained project scheduling with generalized precedence constraints.
Working paper, Institutifr Wirtschafts— und Gesellschaftswissenschaften, University
of Bonn

7. Drexl A (1991) Scheduling of project networks by job assignment. Management Sci-
ence 37: 1590-1602

8. Drexl A, Giunewald J (1993) Nonpreemptive multi-mode resource—constrained project
scheduling. IEE Transactions 25: 74-81

9. Elmaghraby SE (1977) Activity networks — project planning and control by network
models. Wiley, New York

10. FranckB (1999) Prioiétsregelverfahreriif die ressourcenbesémkte Projektplanung
mit und ohne Kalender. PhD thesis, Shaker, Aachen

Resource—constrained project scheduling 357

11. Franck B, Scéfer S, Seidel K (1998) Heuristiketirfdas Multi-Mode Project Schedul-
ing Problem. Working paper, Institute of Economic Theory and Operations Research,
University of Karlsruhe

12. Heilmann R (2000) A branch—and-bound procedure for the multi-mode resource—
constrained project scheduling problem with minimum and maximum time lags. Report
WIOR-578, University of Karlsruhesglbmitted toEuropean Journal of Operational
Research)

13. Herroelen W, Demeulemeester E, De Reyck B (1999) A classification scheme for
project scheduling. In: \Mgarz J (ed): Project scheduling: recent models, algorithms
and applications, pp 1-26. Kluwer, Boston

14. Kolisch R (1995) Project scheduling under resource constraints: efficient heuristics for
several problem classes. Physica, Heidelberg

15. Kolisch R, Drexl A (1997) Local search for nonpreemptive multi-mode resource-
constrained project scheduling. IIE Transactions 29: 987-999

16. Kolisch R, Schwindt C, Sprecher A (1999) Benchmark instances for project schedul-
ing problems. In: Welarz J (ed) Project scheduling: recent models, algorithms and
applications, pp 197-212. Kluwer, Boston

17. Kolisch R, Sprecher A, Drexl A (1995) Characterization and generation of a general
class of resource—constrained project scheduling problems. Management Science 41:
1693-1703

18. Lawler, EL (1976) Combinatorial optimization: networks and matroids. Holt, Rinehart,
and Winston, New York

19. Mohring R, Stork F, Uetz M (1998) Resource constrained project scheduling with time
windows: a branching scheme based on dynamic release dates. Working paper 596,
Fachbereich Mathematik, Technical University of Berlin

20. Neumann K, Morlock M (1993) Operations research. Hanséndden

21. Pascoe TL (1966) Allocation of resources C.P.M. Revue JiaecRecherche
Opérationnelle 38: 31-38

22. Schwindt C (1998a) Verfahren zurdsung des ressourcenbesuiitten Pro-
jektdauerminimierungsproblems mit planungsatgigen Zeitfenstern. PhD thesis,
Shaker, Aachen

23. Schwindt C (1998b) Generation of resource—constrained project scheduling problems
subject to temporal constraints. Report WIOR-543, University of Karlsruhe

24. Sbwinski R, Soniewicki B, Wglarz J (1994) DSS for multiobjective project schedul-
ing. European Journal of Operational Research 79: 220-229

25. Sprecher A (1994) Resource—constrained project scheduling — exact methods for the
multi-mode case. Berlin, Heidelberg, New York: Springer

26. Sprecher A, Drex| A (1998) Multi-mode resource—constrained project scheduling by a
simple, general and powerful sequencing algorithm. European Journal of Operational
Research 107: 431-450

27. Sprecher A, Hartmann S, Drexl A (1997) An exact algorithm for project scheduling
with multiple modes. OR Spektrum 19: 195-203

28. VanHove JC, Deckro R (1998) Multi-modal project scheduling with generalized prece-
dence constraints. Proceedings of the PMS Workshop: 137-140

