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Abstract. We propose a general modeling and optimization system for the effects
of a low toxic air pollutant on the inhabitants of different land-based ecosystems.
The pollution load can be traced through different ecotrophic levels, while health
effects are quantified on the basis of detailed cytodynamic effects in different or-
gans and tissues. The software packageOLAF (Optimal LocatingAir Polluting
Facilities) developed on the basis of this model does not only evaluate quantita-
tively the effects of a proposeddecision, but uses anefficient optimization technique
to optimize the location of a polluting facility with respect to the adverse effects of
the total pollution load on the inhabitants of the region under consideration.

Zusammenfassung.In dieser Arbeit wird ein allgemeines Modellierungs- und
Optimierungssystem für einen schwach toxischen Luftschadstoff und seine Wir-
kung auf die Bewohner verschiedener landgestützterÖkosysteme vorgeschlagen.
Dabei wird der Schadstoffeintrag durch verschiedeneökotrophe Stufen hindurch
simuliert und gesundheitliche Effekte der Bewohner der betrachtetenÖkosysteme
auf der Basis detaillierter zytodynamischer Effekte in verschiedenen Organen und
Gewebenquantifiziert. Das auf derBasis diesesSystemsentwickelteSoftwarepaket
OLAF (OptimalLocatingAir PollutingFacilities) quantifiziert nicht nur den Ein-
fluß einer bestimmten Standortentscheidung, sondern optimiert den Standort einer
schadstoffausstoßenden Anlage bezüglich der Negativeffekte auf die Bevölkerung
der betrachteten Region.

� Thisworkwassponsoredby theRegionBruxellesCapital under a “Research inBrussels”
grant. The author would hereby like to express his gratitude to Prof. Dr. F. Plastria from the
Vrije Universiteit Brussel for the many fruitful discussions he enjoyed with him during his
stay at the Vakgroep Beleidsinformatica.
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1 Introduction

Finding a location for an air polluting facility is usually a source of heated discus-
sions among local inhabitants and decision makers, since the effects of polluted air
on human health and the environment can be quite severe.

We propose a general modeling and optimization system for the effects of a low
toxic air pollutant on the inhabitants of different land-based ecosystems, including
health effects on humans or other beings. The pollution load can be traced through
different ecotrophic levels,whilehealtheffectsarequantifiedon thebasisof detailed
cytodynamic effects in different organs and tissues. The software packageOLAF
(Optimal LocatingAir Polluting Facilities) developed on the basis of this model
does not only evaluate quantitatively the effects of a proposed decision, but uses
an efficient optimization technique to optimize the location of the polluting facility
with respect to the adverse effects of the pollution on the inhabitants of the region
under consideration.

Up to now, the decision process with respect to environmental issues and health
concerns was mainly based on simulations of a small number of different decisions.
However, the need for an automated optimization process incorporating detailed
estimates of effects of the pollution has recently been acknowledged by the Euro-
pean Environmental Agency [18,4]. Unfortunately, up to now only few attempts
have been made to integrate the decision process into a general optimization pro-
cedure, thereby automatically minimizing a measure of risk. While some of the
models developed with respect to this are rather simplistic [15,14,1,20], others
use stochastic optimization techniques (see [16], [17] and the references therein),
methods which are known for their notoriously slow behavior.

The general strategy of the task is clear: after a simulation module has been
developed for simulating the environmental effects and the health effects for a
given choiceof parameterswhich characterize thepolluting facility, anoptimization
module to be developed can handle the task of finding optimal choices for the
describing parameter values.

However, it is quite obvious that a more detailed consideration of the problem
at hand is necessary. To this end, let us first focus on two main questions.

1.1 Two main questions

1. What are the parameters of the facility that can be controlled by the decision
makers?

2. How can the effects on the environment and on the health of certain individuals
be quantified?
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Fig. 1.General structure of the software developed including health effects

While there are no definite answers to these questions, we can give some recom-
mendations, thereby providing at least partial answers.

1. Since we are concerned with locating anewfacility, we can safely assume that
the question ”Must the facility be built anyway?” has already been answered
affirmatively. It remains to find an acceptable location for the facility. Therefore,
the actual location is represented by two (real-valued) unknowns or parameters
which have to be optimized. Moreover, since we are assuming that the main
environmental effect of the facility is airborne pollution, we consider the height
of the point of entry of the pollutant into the atmosphere (e. g. the height of the
smokestack) as an additional unknown.
We assume that production-dependent considerations have already fixed the
amount of pollutant released in a given time period, and we assume that the
amount released is constant in time. As a consequence, we are naturally led
to the conclusion that all the physical and toxicological characteristics of the
pollutant are prespecified. This leaves us with the width of the opening of
the ”smokestack” (or, alternatively, with the speed of the exhaust gas) as one
additional decision variable. For more details, we refer to Section 6.

2. On an individual level, a well-established measure for carcinogenic effects
within a certain organor tissue is thenumber ofmalignant cells appearingwithin
a certain time period. Likewise, a measure for cytotoxic effects is the number
of cells which have died during a fixed time period. Since we are dealing with
low-toxic doses, actual outbreaks of symptoms are not an issue here. Taking
now the position of a postulated central authority (i. e. a governmental health
care official),the total sum of all health effects over all individuals has to be
minimized. The same analysis holds with respect to environmental issues.
More details with respect to the evaluation of the health effects can be found in
Section 6.

The structure of the software system is depicted in Figure 1.
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1.2 The submodules

Having given a more detailed account on the decision variables and the quantifica-
tion of the effects to be minimized, we can now turn our attention to the simulation
of the fate of a pollutant through the biosphere. It was chosen to develop a general
modeling system to simulate the following subsystems of the environment and the
fate of the pollutant in them:

1. atmosphere,
2. land-based ecosystems,
3. individuals, and
4. individual organs.

Of course, this list of subsystems is not exhaustive. We deliberately skipped the
geosphere, the aquatic distribution of pollutants, the corresponding water-based
ecosystems, the simulation of the effects of a pollutant on cells, etc.

Note that the meteorological conditions of the atmosphere are independent of
the fate of the pollutant and of the location of the facility, but not vice versa. It
makes therefore sense to calculate the meteorological variables needed over the
time period of interest beforehand and use this data in subsequent simulation runs
inside the optimization module.

The discussion above leads in a natural way to a breakdown of the software
system into the following submodels and modules.

1. Themeteorological preprocessor,whichusesobservationalmeteorological data
to compute all the meteorological parameters needed for the time period of
interest in the spatial domain considered,

2. the air dispersion model, in which the distribution of the pollutant in the atmo-
sphere is simulated,

3. the ecosystem dispersion model, which simulates the fate of the pollutant in the
ecosystems considered, through different trophic levels, through food chains,
etc.,

4. the chemokinetic model, in which the concentration of the pollutant in different
organs of different individuals, living in the abovementioned ecosystems, is
traced,

5. the cytodynamic multistage model, which simulates the effects of the pollution
ondifferent cell populations in theorgansof the individual life formsconsidered,

6. the effect quantification module, agglomerating the cytodynamic effects on the
individuals to an effect at the population level, and finally

7. theoptimizationmodule,whichminimizes thiseffect byoptimizing thedecision
variables specified in Section 1.1.

The corresponding data flow between the submodules is depicted in Figure 2.
In the following sections, each of these parts is shortly described. For more details,
the reader is referred to the freely available project report [8].



OLAF 121

.........
..............

..........................
...............................................................................................................................................................................................................................................................................

..................
...........
....

.........
.............

....................................................................................................................................................................
............
.......

.........
...............

..............................
............................................................................................................................................................................................................................................................................................................

....................
...........
...

...........
.......................

..........................................................
....................................................................................................................................................................................................................................................................................................................................................................................

.........................
............
..

...........
.........................

..............................................................
.........................................................................................................................................................................................................................................................................................................................................................................................................................................

.............................
............
..

....................
....

....................
....

....................
....

....................
....

....................
....

....................
....

....................
....

........

........

........

........

........

........

........

.............
................

........................

........................

Meteorological Input Data

Meteorological Preprocessor

Computed Meteorological Data

Air Dispersion Module

Ecosystem Dispersion Module

Chemokinetic Module

Cytodynamic Module

Effect Quantification Module

Optimization Module

Population Data

Facility Parameters

Effects

Health Effect
Simulation

Simulation

Module

Module

Fig. 2.Submodules (rectangles), main data (ellipses) and data flow (arrows)

2 The meteorological preprocessor

A meteorological preprocessor takes observational meteorological data from a
given timeperiod andagiven spatial domain and computes out of this sparsedata set
all the meteorological information necessary to calculate pollutant concentrations
in the air later on.

At the present moment, the preprocessor in use is a modified version of the
MESOPAC II meteorological preprocessor [22,27], developed for the Environ-
mental Protection Agency of the U.S.A. This preprocessor interpolates given mete-
orological data in time and space and produces a gridded field of data in two vertical
layers of the atmosphere. This grid is thecomputational grid, whose grid points
represent all the receptor locations of the pollutants. WithinOLAF, each of these
receptor locations contains an ecosystem and some individuals whose response on
the pollution is modeled in other modules later on. More details with respect to the
preprocessor can be found in the user’s manual [27].

Since the meteorological data set provided by the preprocessor is independent
of the parameters of the pollutant and its source, the preprocessor needs to be
called only once during an optimization run. This strategy has been followed for
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the design of the code. Subsequent computational tests showed significant savings
in computation time.

3 The air dispersion module

The air dispersion module takes as input the data computed by the meteorological
preprocessor, the locational characteristics of the polluting facility, and the physical
and chemical characteristics of the pollutant, and computes out of this given data
the concentration of the pollutant in the air at ground level within the time period
considered. The amount of literature concerning solution methods to this problem
is monumental, see, e. g. the review article [21], which lists more than 100 different
algorithms.

The code used inOLAF to solve this problem is a modified version of the
MESOPUFF IIpuff superpositioncode [22,27,6]. TheMESOPUFF IIcode isable
to simulate the dispersion of several different pollutants on a scale of ca. 1000km in
west-east direction and ca. 600km in north-south direction. This makes the package
suitable for medium to long-range transportation simulation. Simple atmospheric
chemistry as well as wet and dry deposition processes are handled, too. All de-
position takes place on the predefined Cartesian grid. Moreover, several pollutant
sources including polluting areas can be present in the computational domain. In
this way, a background pollution of the atmosphere can be modeled.

As it is the case for the preprocessor, the air dispersion code can be replaced by
an arbitrary code capable of computing the desired values as long as the format of
the input and the output stays the same. More details with respect to the dispersion
model can be found in the user’s manual [27] and in an application protocol [6].

4 Ecology and chemokinetics

Both the ecosystem dispersion model and the chemokinetic model are described in
this section, since the modeling paradigm used for the two submodels is the same.

The ecosystem dispersion model takes as input the time- and space-dependent
air concentration of the pollutant at the predefined grid points and follows the fate
of the pollutant across the different trophic levels of the ecosystems considered.
Each grid point of the air dispersion model represents one local food web, through
which the trace of the pollutant is followed. The metabolism of a pollutant due to
microbial degradation is modeled according to Monod kinetics.

The chemokinetic model takes as input the time- and space-dependent expo-
sure of the individuals modeled to the pollutant under consideration and computes
the uptake and the distribution of the chemical in the different body tissues and
organs. Several different types of individuals can be simulated by specifying the
corresponding parameters. Here, the metabolism of the pollutant under considera-
tion is modeled by Michaelis-Menten kinetics, which is mathematically equivalent
to Monod kinetics.
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4.1 Compartment models

Both codes simulating the processes described above are based on a compartment
model of the system to be simulated [13,26] (also called continuously stirred tank
reactor (CSTR) model). Compartment models are well known in the literature and
have been widely used to model pollutant transport and dispersion on an ecosystem
level as well as on an individual level. These systems are of the following type,
and one of these systems is set up for each grid point of the computational grid
of the atmospheric dispersion model. The modeler divides the total system under
consideration (i. e. the ecosphere and the geosphere) inton ≥ 1 different com-
partments. Then, an exchange of pollution governed by first-order mass transfer
equations takes place. LetΩ ⊂ IR3 be the computational domain. The total mass
of pollutant over time in a compartmentk, k = 1, . . . , n, residing at a pointx ∈ Ω
is given by a functionmk(x, ·) : [0,+∞[−→ IR, which has to be approximated.

Forecosystemsand foodwebs,eachcompartmentusually representsonespecies
or one type of species. Species which feed on each other are connected by an inter-
change flow modeling their predating pattern, as described in the last section. See,
e. g., [13,12,26] for a list of examples.

Of course, the more detailed the ecosystem description is, the more detailed and
more realistic the compartment model will be. For example, it is possible to divide
a species into several distinct classes, each living spatially separated or equipped
with distinctive features (gender, age [24], etc). Each of these classes would then
be represented by a separate compartment.

4.2 Individual based chemokinetic models

In chemokinetic models, the modeler has to divide the body of an individual un-
der consideration into as many compartments as he or she wishes and define the
pathways for the pollutant between the body compartments and the ecosystem
compartments defined previously. Usually, each body compartment represents a
specific organ or a specific tissue type. In toxicology, models of this type are also
called physiologically based pharmacokinetic models (PBPK). See, e. g., [13, Sec-
tion 7.7] for a model describing cadmium transport in mammals or [5] for a model
describing the transport of the degreasing agent trichlorethylene and the monomer
1,1-dichlorethylene (widelyused in thepackaging industry) in rats.Several different
types of individuals can also be modeled by specifying the defining compartments
for each of them. For instance, it might make sense to use a group of compart-
ments to model the adult members of a species and along with this another group
of compartments as a more detailed model for the adolescents.

5 Toxicology: a cytodynamic multistage model

For each tissue and organ modeled in the chemokinetic model, the cytodynamic
model calculates quantitatively the carcinogenic and/or cytotoxic effects of the pol-
lutant in the corresponding tissue or organ. The approach adopted is an extension
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of the Armitage-Doll model of carcinogenesis and follows the cytodynamic model
as outlined, for example, in [7,3]. Note that this type of model is able to handle
hormetic behavior of a tissue to an outside response, a feature of strong interests
to toxicologists [2]. For each compartmentk, the modeler has to specify the num-
berr(k) of different cell populations that reside in this compartment. The dynamic
behavior of each population is then governed by the pollutant concentration inside
the compartment (by a toxic or a mutagenic effect) and by the population numbers
of the other cell types. The final output of this module consists of approximations to
functionspi,k(x, ·) : [0,+∞[−→ IR (k = 1, . . . , n, i = 1, . . . , r(k), x ∈ Ω), rep-
resenting the time-dependent number of cells of typei in compartmentk residing
at pointx, and calculated as a solution to system of ordinary differential equations.

6 Optimization

6.1 The effect function

The discussion in the last sections and the model derivation in Section 1 have
shown that we are able to calculate not only the pollutant concentration in certain
compartments, which can be anything from ecotrophic levels down to organs in
individuals, but that we can also calculate the effect of a pollutant on certain cell
populations in terms of toxicity and carcinogenicity. The minimization ofall the
quantified effects simultaneously is evidently a multicriteria problem for which
the knowledge of some approximation of the efficient set would be of great use.
However, the high computational demands to compute such an approximation as
well as methodological difficulties force us at the present moment to globalize all
the different effects by way of a utility function. The choice of such a utility is
nontrivial, and it does not seem to be clear what effect a corresponding choice has
on the solutions of the resulting single-criterion optimization problem. We prefer
at the present moment to globalize all the different effects by way of a weighting
function.

LetG ⊂ IR2 be the ground surface of the modeled region,n ≥ 1 the number of
compartments per point inG andmk(x, t) be the pollutant mass in compartmentk
(k = 1, . . . , n) atx ∈ G and timet ≥ 0. Furthermore, letr(k) ≥ 0 be the number
of cell populations in compartmentk andpi,k(x, t) be the number of cells of typei
in compartmentk (i = 1, . . . , r(k)) at the pointx ∈ G and timet ≥ 0. Define
N :=

∑n
k=1 r(k). The modeler has then to specifyn + N real-valued weights

ω̂k, ωi,k (k = 1, . . . , n, i = 1, . . . , r(k)) (one for each compartment and one for
each cell population). Letλ = (y1, y2, w, h)� ∈ IR4 be the vector of decision
variables. The vector(y1, y2) ∈ G represents the location of the pollutant emitter,
while w ≥ 0 is the width of the ”smokestack” andh ≥ 0 is it’s height. With the
weights given as above, define the function

W (x, t, λ) :=
n∑

k=1


ω̂kmk(x, t) +

r(k)∑
i=1

ωi,kpi,k(x, t)


 ,

which measures the agglomerated effect of the decisionλ at the pointx ∈ G at
time t ≥ 0. Here, the dependence ofmk andpi,k onλ has been skipped, as it has
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been done above. The agglomeration of effects over a time interval[0, T ], T > 0,
can be done in many different ways. The method employed inOLAF is the time
integral over the effect

e(x, λ) :=
∫ T

0
W (x, t, λ) dt.

Note that this approach allows for hormetic values, i. e.e(x, λ) < 0 for some points
x ∈ G and decisionsλ ∈ IR4. In such a case, the pollutant effect has actually lead
to a reaction of the cell population of an individual residing atx which can be
interpreted as an increase in health [2,3].

6.2 The objective function

Let e(x, λ) be an arbitrary agglomeration function for the pollutant effects on
individuals residing atx ∈ G. If the cytodynamic model is used, this effect quan-
tification measures the overall effect of the pollutant under consideration on a small
number of individuals only. From the viewpoint of a health care decision maker,
it is therefore important to calculate the pollutant effect on the whole population.
Fortunately, this poses no problem. Suppose that we have given a population den-
sity functionp : G −→ IR, p(x) ≥ 0 for all x ∈ G. The objective function to be
minimized is then given by

f(λ) :=
∫

G

p(x)e(x, λ) dx. (1)

Obviously, to evaluatef wedonot only need to evaluatee(·, λ)at several points,
but we also need a numerical integration routine. Since in the present version of
OLAF the pollutant concentration and the health effect function is computed on a
fixed Cartesian grid of sizeN ×M with grid pointsxi ∈ G, the integral in (1) can
be replaced by the weighted sum over all grid points considered, where the weights
are1/NM .

6.3 The gradient of the objective function

An efficient optimization algorithm needs local information of higher order about
the objective function. While there does not seem to be a simple way to compute
∂f/∂w and∂f/∂h, the gradient with respect to the locational decision variables
y1, y2 (which are arguably the most important ones) can be approximated in the
following way. Under suitable differentiability assumptions and integrability of
e(·, λ), we have that

∂f(λ)
∂y1

=
∂

∂y1

∫
G

p(x)e(x, λ) dx =
∫

G

p(x)
∂

∂y1
e(x, λ) dx. (2)

Furthermore, a simple geometric argument shows that it is reasonable to make the
assumption

e((x1, x2)�, (y1 + δ, y2, w, h)�) = e((x1 − δ, x2)�, (y1, y2, w, h)�) + o(|δ|)
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for δ → 0. As a consequence, fore(·, λ) ∈ C1(int(G)) we get

∂

∂y1
e((x1, x2)�, (y1, y2, w, h)�)

= lim
δ→0

1
2δ

(
e((x1, x2)�, (y1 + δ, y2, w, h)�) − e((x1, x2)�, (y1 − δ, y2, w, h)�)

)

= lim
δ→0

1
2δ

(
e((x1 − δ, x2)�, (y1, y2, w, h)�) − e((x1 + δ, x2)�, (y1, y2, w, h)�)

+o(|δ|))
= − ∂

∂x1
e((x1, x2)�, (y1, y2, w, h)�).

This is the approach chosen inOLAF. The differentials∂e/∂x1 are approximated
by finite differences of third order, where the discretization size is exactly the grid
size of the computational grid inx1-direction. In this way, the approximations to
e(·, λ) on the grid discretizingG are used to calculate the differential ofe(·, λ),
and no further simulation run of the dispersion model or the cytodynamic model
is necessary. Under analogous assumptions, the same reasoning holds for∂f/∂y2.
Additional objective function evaluations due to time-intensive numerical differ-
entiation routines can therefore be avoided.

We may go even one step further. Using (2) and partial integration, we see that

∂f(λ)
∂y1

= −
∫

∂G

p(z)e(z, λ)ν1(z) dz +
∫

G

e(x, λ)
∂

∂x1
p(x) dy

holds wheneverG has a smooth boundary and the functionp(·)e(·, λ) has compact
support. Here,ν(z) is the outer normal ofG at a boundary pointz ∈ ∂G. By
choosingG large enough (or choosing a population distributionp with compact
support small enough), we can make sure that the boundary integral gets arbitrary
small, and we can approximate the differential off with respect toy1 by

∂f(λ)
∂y1

≈
∫

G

e(x, λ)
∂

∂x1
p(x) dy. (3)

Since∂p(x)/∂x1 is independent ofλ, it can be computed or approximated in what-
everwaynecessarybeforeanyoptimization takesplace.Approximating∂f(λ)/∂y1
then involves only the evaluation of the integral in (3), which can be done in the
same way as and in conjunction with the evaluation off atλ.

Unfortunately, none of these schemes works for the derivatives with respect to
stack heighth and stack diameterw. As a consequence, numerical differentiation
with central differences is used to approximate the derivative off with respect toh
andw. Another possibility would be to use automatic differentiation to compute
these derivatives. Unfortunately, preliminary numerical experience [17, Chapter 1]
suggests that this approach is computationally very expensive for parameterized air
dispersion models. No effort has been made to use automatic differentiation within
OLAF.
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6.4 The optimization algorithm

At the present moment, an SQP-method [23] is used to solve the location problem at
hand. The optimization routine considers the locational parameters of the polluting
facility as parameters to be optimized and minimizes the functionf as defined
above. Usually, constraints on the decision vectorλ ∈ IR4 are natural results of
the modeling process. They include representations of engineering restrictions on
stack height resp. diameter as well as locational constraints representing coastlines,
jurisdictional boundaries, etc. As a consequence, almost all optimization problems
to be solved are constrained ones. We can, however, assume that all constraints are
written in standard formg1(λ) ≤ 0 org2(λ) = 0 with functionsg1 : IR4 −→ IRn1 ,
g2 : IR4 −→ IRn2 , n1, n2 ≥ 1. Moreover, both functions can be assumed to be
continuously differentiable. This is usually considered as a strong assumption in
locational analysis, especially if onewants tomodel regions forbidden forplacement
of the smokestack. However, recent research [9] has shown that a corresponding
problem formulation is not necessarily more complicated than other locational
models, provided that the proper modeling tools are used.

7 A numerical study

The software packageOLAF was used for a numerical case study concerning the
location of an air polluting facility in the region of central Europe. A complete
description of the study can be found in the technical report [8].

”Central Europe” is a rather vague term. We mean here a region roughly en-
compassing the Benelux countries (Belgium, The Netherlands, and Luxembourg),
the western part of Germany, southeastern Britain, and northeastern France. More
precisely, the region used in this case study is a spherical rectangle with the Green-
wich meridian (0◦ longitude) as it’s western bound and8◦E longitude as it’s eastern
boundary, while the latitude coordinate runs from47◦N to 53◦N. In Figure 3 the
region under consideration is depicted (the map has been produced withGMT
(GenericMappingTools), see [28]). In total, ca. 58 million people live in the
region which the case study considers.

7.1 Data

The origin of the population data is described in [25]. Figure 4 show the resulting
discrete distribution function interpolated by bicubic splines. Land use data stems
from [19], where the surface of the earth is divided into 44 different land ecosystem
complexes. Meteorological data has been obtained from theFASTEX archive [11].
The data consists of, among others, all the information necessary for the prepro-
cessor and covers a time period from January 6, 1997, to February 28, 1997. While
this time period is shorter than actually necessary, we feel confident that we can at
least demonstrate the feasibility of the approach taken by solving an optimization
problem as realistic as possible. More details with respect to the meteorological
data can be found in [8].
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Fig. 3.The modeled region

In this case study, a hypothetical pollutant is used whose gas-phase charac-
teristics are those of SO2, a chemical often used in benchmarking atmospheric
dispersion models [27, Tables 6-1,6-2]. However, for the chemokinetic submodel,
it was assumed that the pollutant behaves similar to perchlorethylene (PERC), a
typical and widely used carcinogen [10].

7.2 Modeling Issues

7.2.1 Meteorologics. With the data available, we decided to use a computational
grid of size80 × 60. Given the sparsity and the resolution of the population data,
land use data, and meteorological data available, this seemed to be a comfortable
compromise between computational accuracy and data accuracy. All settings in the
air dispersion model used are standard ones as recommended in [6].

7.2.2 Chemokinetics.The chemokinetic model in use is an extension of the one
found in [10] (cmp. Figure 5, p. 130). Note that the lung compartment has been
split up into lung air and lung blood, since the main uptake route of a pollutant into
the body should be modeled as detailed as possible. The only metabolism in this
model takes place in the liver compartment, see [10].
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Fig. 4.Population distribution on the computational grid as seen from the north east. The
highest peak represents Paris, the small peak just in front of Paris is Brussels. the ”hills” near
the closer corner are the cities in the Rhine-Ruhr area. On the right side, greater London area
is just cut off

7.2.3 Cytodynamics. The cytodynamic model follows the one outlined in [3] and
is depicted in Figure 6. This model is used only for the cell population in the liver
compartment. In the model, stem cells (S) may give rise to premalignant cells (P),
who, in turn, can mutate to malignant cells. But due to toxic effects, stem cells may
also die or lose their ability to divide. In this case they are placed in a pool of ’dead’
cells (D). Furthermore, cells from a reservoir (R) can replace stem cells, but also
mutate into premalignant cells of a different type (Q).

7.2.4 The effect function.Given that a complete cytodynamic model is at our
disposal and that in this study ecological consequences are, hypothetically, of no
concern, we used weightŝωk = 0 for all compartmentsk, and chooseω1,9 =
ω2,9 = ω3,9 = ω4,9 = 0, as well asω5,9 = 108 andω6,9 = 1. As a consequence,
we value the carcinogenic effects as much more important than the cytotoxic effects
(the integral over time of the number of dead cells, cell type no. 6). All other effects,
especially the number of premalignant cells, are neglected.

7.2.5 Constraints. OLAF uses grid units for the locational decision variables
(y1, y2) and meter as the physical dimension of the stack height resp. diameter. It
is therefore comparatively simple to add constraints to the optimization process.
The following constraints with respect to the decision variables(y1, y2, w, h) have
been added:
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1. Locational constraints:
(a) The facility has to lie inside a circle with center at4◦W longitude and50◦N

latitude and radius 180.738km (20 grid units). This translates readily into
the convex quadratic constraint
(y1 − 40)2 + (y2 − 30)2 − 400 ≤ 0.

(b) For hypothetical political reasons, the facility is not allowed to lie within a
circleof radius100kmaroundParisandwithin circlesof radius60kmaround
Brussels and Reims. With a grid spacing of9.0869km, these constraints can
be expressed as concave quadratic constraints:
(60/9.0869)2 − (y1 − 45.33)2 − (y2 − 39)2 ≤ 0
for Brussels,
(100/9.0869)2 − (y1 − 24)2 − (y2 − 17.33)2 ≤ 0
for Paris, and
(60/9.0869)2 − (y1 − 40.33)2 − (y2 − 23)2 ≤ 0
for Reims (cmp. Figure 8).

2. Engineering constraints:
(a) The stack height has to be between20m and90m, i. e.

20 ≤ h ≤ 90.
(b) The stack diameter at the top has to be between2m and7m, i. e.

2 ≤ w ≤ 7.
Note that these simple box constraints for the physical characteristics of the
stackare rather unrealistic.More realistic constraints have to includeanonlinear
coupling betweenh andw.

7.3 Results

The code was developed in Fortran 77 and tested on an Intel Pentium 330MHz with
128MB main memory, 512KB cache and Linux operating system (Kernel 2.0.35).

Preparing the input files by some filter and interpolation routines took 13 min-
utes on the Intel platform. After that, theMESOPAC preprocessor needed 30 min-
utes user time to process the data described above. Starting from the point

λ(0) :=
(
y
(0)
1 , y

(0)
2 , w(0), h(0)

)�
= (40, 30, 4, 80)�

with an objective function value of70.193, the code needed 23 iterations and ca.
260 hours to calculate the local minimum

λ∗ = (58.291, 22.018, 4.000, 79.687)�

with objective function value29.018. (All values are given with an accuracy of
ca. 1%.) Figure 7 shows the effect functione(·, λ(0)) overlayed over a map of the
region considered, while Figure 8 shows the changes the locational decision vari-
ables underwent during the optimization process. Note that this picture is partially
incomplete, since the whole decision space is four-dimensional. As it can be seen,
the code seems to encounter some convergence problems close to the local mini-
mum found. This might be attributed to the inevitable noise in the objective function
or to inevitable errors in the gradient approximation scheme used.
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Fig. 7.The effect functione(·, λ(0)) for the starting configuration

Brussels

Paris

Reims

Fig. 8. Iterations in the locational domain. Line searches and iterations in the stack decision
variables are not depicted
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Fig. 9.The effect functione(·, λ∗) for the final configuration

Figure 9 shows the effect functione(·, λ∗) for the final pointλ∗ overlayed over
a map of the region.

Note that the stack height and width remain virtually unchanged. This might
indicate that thepollution load is insensitive to small scale changesof thesevariables
on the data used. On the other hand, the local optimum found lies on the boundary of
the feasible regionwith respect to the locational variables, far away from the starting
point, and especially farther away from the main population centers (Paris and the
larger cities of the Netherlands) than(y(0)

1 , y
(0)
2 ). The meteorological conditions

simulated over the time period of interest seem to indicate a pollutant transport
from (y(0)

1 , y
(0)
2 ) in the direction of these population centers, while these effects

seem to be much smaller when the pollutant is emitted fromλ∗. Note also that
the total effect is much more evenly distributed fromλ∗, when compared with the
distribution emitted fromλ(0).

More details with respect to the performance of the code can be found in the
project report [8].

8 Conclusions

Thedeveloped prototype codeOLAF is capable of solving complex, highly realistic
air pollution facility location problems. The code is able to follow the trace of the
pollutant under consideration over different ecotrophic levels and into different
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individual organs of a modeled individual. There, detailed cytodynamic effects are
simulated in order to evaluate the health effect of the pollutant on humans or other
beings. A numerical study has shown that highly realistic models of pollutant fate
and effect can be used together with realistic atmospheric dispersion models and in
conjunction with an optimization process as a decision aiding tool. As it had to be
expected, the computational workload to find optimal locations is far from trivial,
and at the present moment the code can probably not be used in an interactive mode,
except for extremely simple problems.

While we have shown that the overall strategy for estimating and minimizing
ecological effects and health effects is feasible, several open questions remain. For
example, at the present moment the code is able to compute local minima only.
Global minima, are, of course, of high interest to the decision maker. It remains
to be seen if highly efficient global optimization techniques can be applied to the
pollution model developed or if it will be necessary to resort to stochastic tech-
niques of inherently low efficiency. Moreover, several modeling issues, especially
with respect to the agglomeration function, remain open. A robust, realistic and
computationally effective formulation for the multicriteria problem at hand still
needs to be found. Other atmospheric dispersion models which include nonlinear
chemistry of the pollution should be tested, too, as it is the case with other numer-
ical integration techniques for the ordinary differential equations occurring in the
model. Another possibility would be to investigate the effect of time-dependent
emission rates, a particular interesting subject since these emission rates might be
considered as decision variables, albeit heavily constrained ones. Moreover, further
work is necessary with respect to the evaluation of synergistic effects caused by
several pollutants instead of only one. This, together with other open questions, is
a subject of further research.
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