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Abstract. The linear stability of inviscid compressible shear layers is studied. When the layer develops at
the vicinity of a wall, the two parallel flows can have a velocity of the same sign or of opposite signs. This
situation is examined in order to obtain first hints on the stability of separated flows in the compressible
regime. The shear layer is described by a hyperbolic tangent profile for the velocity component and the
Crocco relation for the temperature profile. Gravity effects and the superficial tension are neglected. By
examining the temporal growth rate at the saddle point in the wave-number space, the flow is characterized
as being either absolutely unstable or convectively unstable. This study principally shows the effect of the
wall on the convective–absolute transition in compressible shear flow. Results are presented, showing the
amount of the backflow necessary to have this type of transition for a range of primary flow Mach numbers
M1 up to 3.0. The boundary of the convective–absolute transition is defined as a function of the velocity
ratio, the temperature ratio and the Mach number. Unstable solutions are calculated for both streamwise
and oblique disturbances in the shear layer.

1. Introduction

An understanding of the stability of compressible shear layers is of fundamental interest and is also import-
ant for pratical problems found in hypersonic propulsion, as the mixing in scramjets. In particular, the shear
layer can be regarded as a simple model of the injection device of fuel into an air system. The prediction
and the control of such a flow necessitates knowing their characteristics and in particular the nature of the
instability waves (convective or absolute), which can develop in a shear layer. Linear stability analysis has
been used extensively in examining free or confined compressible shear layers. Pioneering work on stabil-
ity theory of compressible shear flows, both free and wall bounded, is due to Lee and Lin (1946) and Dunn
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and Lin (1955), who first showed the importance of three-dimensional disturbances for the stability of these
flows. Lessen et al. (1965, 1966) Blumen et al. (1975), Tam and Morris (1980), Jackson and Grosch (1989,
1990a,b, 1991a,b) and others have demonstrated that the Kelvin–Helmholtz instability, which was the main
instability of the shear layers, became less and less amplified as the convective Mach number increased.
Jackson and Grosch (1989) have shown that when the Mach number increased, the subsonic modes are trans-
formed into supersonic modes which are subsonic at one boundary and supersonic at the other. Jackson and
Grosch (1989) have shown that there was an infinite set of discrete modes, of which the first is a vortical
mode and all the others are acoustic modes. They have also shown that three-dimensional disturbances have
the same general characteristics as two-dimensional disturbances. On the other hand, a decrease in the tem-
perature ratio S = T2/T1, where the upstream quantities are denoted by the subscript 1 and the downstream
ones by the subscript 2, results in an increase for the growth rate of the unstable waves at any Mach number.
Finally, Jackson and Grosch (1991a) have shown that the characteristic features of the solutions to the sta-
bility problem for the compressible shear layer are qualitatively similar for a large range of thermodynamic
models. Nevertheless, in all these studies, the shear layers were assumed to be free and unconfined. In the
case of supersonic shear layers inside a rectangular channel, such as those in a ramjet combustor, see Tam
and Hu (1989), Mack (1989), Greenough et al. (1989), Zhuang et al. (1989), Jackson and Grosch (1990a)
and Gathmann et al. (1993), the situation is quite different. The unsteady motion of the shear layer is invari-
ably coupled to the acoustic modes of the rectangular channel through reflections of the acoustic waves by
the channel walls. Tam and Hu (1989) have found that two-dimensional supersonic shear layers inside a rect-
angular channel may undergo supersonic instabilities. These supersonic instability waves are generated by
Mach wave systems formed by reflections from the channel walls. They exist only when the convective Mach
numbers of the flow on both sides of the shear layer are supersonic.

Nevertheless, in all of these studies, the type of instability is classified from either its spatial or tempo-
ral growth, depending on whether the frequency is real and the wave number complex or vice versa. These
classifications are quite arbitrary unless one examines carefully the propagative character (i.e., the group
velocity) of the instability waves. The work of Huerre and Monkewitz (1985) addressed this point and em-
phasized the important distinction between absolute and convective instability in the context of shear flow.
A flow is said to be absolutely unstable if the response to an impulse in space and time is unbounded ev-
erywhere in space for large value of the time. A flow is said to be convectively unstable if the response
decays to zero in the reference frame for large time. Huerre and Monkewitz (1985) have pointed out that
an occurrence of a saddle point in the number wave space may be related to a transition from convective
to absolute instability. If such a transition occurs, the spatial stability theory is no longer appropriate and
temporal calculations are now required. Huerre and Monkewitz (1985) have shown that the incompressible
shear layer is convectively unstable for R = U2/U1 > 0. In fact, they have shown that the shear layer be-
came absolutely unstable only if the low-speed stream had an ambient speed, say U2, which was less than
−0.136U1, where U1 is the speed of the high-speed stream. That is, there must be a sufficiently large coun-
terflow before the incompressible shear layer becomes absolutely unstable and a temporal stability theory
becomes relevant. The distinction between absolutely or convectively unstable flows, which derives from
consideration of the impulse response of the flow, is clearly dependent upon the frame of reference. How-
ever, in all laboratory contexts the reference frame is fixed and no ambiguity exists. Furthermore, these
concepts become particularly significant in nonparallel flows where the propagative character of the in-
stability may change locally as the flow develops in the streamwise direction and, consequently, another
intrinsic length scale (the streamwise length scale over which the flow is absolutely unstable) should be in-
troduced, which can have an important dynamical role in determining the response of the flow. In some
particular conditions, this can lead to a strong frequency selection mechanism and force a long-range spa-
tial order to the flow. The convective–absolute classification of an instability is also an important issue in
regard to flow control. Localized forcing of a flow in order to influence its space–time development will
be effective, perhaps, only if the flow is convectively unstable. In an absolutely unstable flow the forcing
will be rapidly overwhelmed by the in situ growing instability. For this reason, it is useful to define the
parameter ranges wherein a flow is either absolutely or convectively unstable. Nevertheless, the convective–
absolute transition in the shear layer in a three-dimensional compressible fluid has not been studied as
extensively as in an incompressible fluid. Independently, Pavithran and Redekopp (1989) and Jackson and
Grosch (1990b) have studied the transition from convective to absolute instability in a compressible, sub-
sonic two-dimensional, free shear layer. They found that as the Mach number increased in the subsonic
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regime, so did the amount of backflow necessary to go from convective to absolute instability. They also
found that when the slow stream was cooled with respect to the high-speed stream at a fixed Mach num-
ber, the amount of backflow necessary to go from convective to absolute instability decreased. However,
their studies are limited to the subsonic regime and for two-dimensional waves. To our knowledge, there
are no studies dealing with the convective–absolute transition of a free shear layer in the supersonic regime.
Only Peroomian and Kelly (1994) have studied the convective–absolute transition in a compressible su-
personic flow, but in confined shear layers with constant mean temperature, density and pressure and for
two-dimensional waves. They found that in the subsonic case, M1 < 1, only one α+ mode exists, and cal-
culation of the transition boundary is straightforward. However, in the supersonic case multiple modes exist,
and extreme care must be taken in the evaluation of the saddle point. This is due to the fact that when multi-
ple modes exist in a system, coalescence can occur between two α+ modes as well as α+ and α− modes. For
1 < M1 < 1.32, initially the subsonic/subsonic mode becomes absolutely unstable. However, if the back-
flow parameter is sufficiently increased, the subsonic/supersonic modes becomes the primary pinched mode,
i.e., pinching for this mode occurs at a lower positive value of ω0i . At M1 = 1.32, this change occurs at
ω0i = 0 and for 1.32 < M1 < 1.35 this change in the pinching of the modes occurs for a negative value of
ω0i . For Mach numbers greater than 1.35, the primary mode is the subsonic/supersonic mode, and remains
so up to the point near M1 � 1.9, where the mode becomes a supersonic/supersonic mode. Nevertheless,
in their analysis, the three-dimensional and the temperature effects have not been taken into acount in the
convective–absolute transition.

In this paper we examine the inviscid convective–absolute transition of a two- and three dimensional
compressible free and confined shear layer with particular attention to the wall effect on this convective–
absolute transition. In Section 2 we give general assumptions, the mathematical form of the perturbation
and the mean flow. In Section 3 we formulate the stability problem and the boundary conditions and some
general theoretical results are recalled. In Section 4 the numerical method used is briefly presented. Sec-
tion 5 contains a presentation of our numerical results, in particular, the convective–absolute transition from
a supersonic confined or not confined, isothermal or not isothermal, shear layer disturbed by oblique fluctu-
ations is analyzed. To our knowledge, these cases were not studied in the literature. Conclusions are given in
Section 6.

2. General Assumptions, Mathematical Form of the Perturbation and Mean Flow

The general equations of motion for the instantaneous flow are the Euler equations, the energy equation,
written for the total energy, and the equation of state for a perfect gas. The boundary condition imposed in the
present problem expresses that there is no variation of fluctuations far from the shear layer and that viscosity
is not considered on the walls ±yw (where yw is the wall distance).

The present stability theory is based on the classical small perturbations technique where the instanta-
neous flow is the superposition of the known mean flow and unknown fluctuations. All the physical quantities
q (velocity, pressure, . . . ) are decomposed into a mean value and a fluctuating one:

q(x, y, z, t) = q̄(y)+qf (x, y, z, t) , (1)

where the mean flow is supposed to be parallel, i.e., it only depends on the y direction.
We consider a two-dimensional compressible shear layer, with zero pressure gradient, which separates

two streams of different speeds and temperatures. We assume that the mean flow is governed by the com-
pressible boundary layer equations. The x-axis is taken along the direction of the flow, the y-axis normal to
the flow. Let U, V , 0 be the velocity components in the x−, y−, z-directions, respectively, let ρ be the density
and let T be the temperature of this mean flow. All variables are nondimensionalized using upstream values
at y → ∞ or y = +yw.

The structure of the mean flow clearly depends on the variation of the viscosity coefficient µ and the
Prandtl number Pr with the temperature and pressure. In general, both µ and Pr are very weakly dependent
on pressure and can be taken to be independent of pressure. The Prandtl number is somewhat dependent
on the temperature but in this study it will be assumed to be constant. Finally, the dependence of viscosity
on temperature is quite important and can be related to different thermodynamic models, see Jackson and
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Figure 1. Sketch of different characteristics of the mean flow: (a) velocity profile, (b) temperature profile.

Grosch (1991a). However, as indicated in the Introduction, the various thermodynamic models give qualita-
tively similar results for a spatial stability analysis. As pressure is constant and the state equation is written
in canonical for ρT = 1. When the viscosity is supposed to be proportional to the temperature, that is we use
the Chapman viscosity law, µ(T) = CT and that Pr = 1, the solution of the mean flow equations has a sim-
ilarity solution given by Lock (1951). However, as discussed in Jackson and Grosch (1991a), the qualitative
stability characteristics are independent of the detailed shape of the mean profile. For this reason we use the
Crocco relation, with the boundary conditions

U → 1, T → 1 as η → +ηw, U → R, T → S as η → −ηw, ηw → ∞
for the free shear layer . (2)

The temperature and velocity profiles are thus written as

T (η) = S
1−U

1− R
+ U − R

1− R
+ 1

2
(γ −1)M

2
1(U − R)(1−U) (3)

and

U(η) = 1

2
[1+ R + (1− R) tanh(η)] , (4)

where U is a good approximation of the Lock profile, γ is the ratio of specific heats and M1 is the Mach num-
ber defined as the ratio of the speed of the upper stream to the speed of sound. R and S are respectively the
ratio of streamwise velocity and of temperature between the lower flow and the upper flow. The parameter
range of interest for the velocity ratio is −1 < R < 1 and S > 0 for the temperature ratio. When −1 < R < 0,
the low-speed stream is opposed to the high-speed stream and when R > 0 the two streams are coflowing.
If S is less than 1, the lower stream is colder than the upper stream and if S is greater than Figure 1, the
lower flow is warmer. Figure 1 shows the corresponding velocity and temperature profiles. The shear layer
thickness is defined as δw = (1− R)/max(dU/dη). In this case, δw is equal to 2.

3. Stability Problem and General Theoretical Results

3.1. Linearized Euler Equations

The basic flow is perturbed by introducing wave disturbances for the velocity, pressure, temperature and
density with amplitudes which are functions of y only. According to the homogeneous form of the bound-
ary conditions, as well as the y-dependence of the mean flow (parallel assumption), the perturbation can
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be described as a normal mode with respect to the x, z, t variables. Any perturbation (pressure, velocity,
temperature, ...) can be written in the normal mode form

Z f (x, η, z, t) = Z̃(η) ei(αx+βz−ωt) , (5)

where Z̃ = (
p̃, ũ, ṽ, w̃, T̃

)t
is the function amplitude vector of the fluctuation, k = (α, β)t is a wave-number

vector, with α and β the wave-numbers in the downstream (x) and cross-stream (z) directions, respectively,
and ω is the circular frequency. In the general stability context, β is real, ω and α are a priori complex and
their real parts are the magnitude of the frequency and the wave number, respectively, while their imaginary
parts indicate whether the disturbance is amplified, neutral or damped depending on whether ωi and −αi
are negative, zero or positive. The decomposition (1) with the perturbation form (5) is introduced into in-
stantaneous governing equations. The resulting equations are then simplified by taking into account, firstly,
that the mean quantities satisfy the equations and, secondly, that the fluctuating quantities are assumed to be
small, so that the equations can be linearized with respect to the disturbance. Finally, the linearized Euler
equations lead to the well-known compressible Rayleigh equation written for the pressure. It is convenient
to transform this equation into a form analogous to that for two-dimensional perturbations. Furthermore, we
define α̂2 = α2 +β2 so that α = α̂cos(θ) and β = α̂ sin(θ), with θ the angle of propagation of the disturbance
wave with respect to the flow direction (θ ∈ [0, π/2]). Furthermore, we define M̂ by α̂M̂ = αM. Applying
this transformation to the compressible Rayleigh equation yields{

d2

dη2 − 2

U − c

dU

dη

d

dη
− α̂2T

[
T − M̂2 (U −c

)2]}
p̃(η) = 0 . (6)

Here c is the complex phase wave velocity c = ω/α. Equation (6) is solved with the following boundary
conditions:

lim
η→±ηw

d p̃

dη
= 0, ηw → ∞ for free shear layer . (7)

For a given control parameter (R, S) and cross-stream wave-number β, (6) with the boundary condition (7)
forms a linear eigenvalue problem for the parallel shear flow since a nonzero solution p̃ exists if and only if
the complex set (α , ω) fulfills a relation D(α, ω;β, R, S) = 0.

The purpose here is to define the propagative character of the unstable disturbances, i.e., to know if the
basic flow is absolutely or convectively unstable, it is thus necessary to solve (6) and (7) along with the
condition of zero group velocity

D(α0, ω0;β, R, S) = 0 and
∂D

∂α
(α0, ω0;β, R, S) = 0 (8)

and, in particular, the identification of these values (α0, ω0) corresponding to zeros of ∂ω/∂α. The value ω0
is, therefore, a square-root branch point of the function α(ω) and the point α0 in the complex α-plane corres-
ponds to a saddle point formed by the intersection of upstream spatial branch α+(ω) and downstream spatial
branch α−(ω). The nature of the instability is determined by the location of the branch point in the complex
ω-plane. The instability is of absolute type if the branch point is in the upper half-plane (ωi > 0) and is of
convective type if it is in lower half-plane (ωi < 0). Hence, the transition occurs for parameters values (i.e.,
R, S, M) for which the branch point lies on the real ω-axis. This is essentially the Briggs–Bers criterion, see
also Huerre and Monkewitz (1985).

3.2. Physical Nature of the Instability Modes

In order to know the physical nature of the mode solutions of our stability problem for the free shear layer,
it is interesting to study the solution of (6) when the basic flow becomes independent of η, i.e., constant,
typically when η → ∞. When η → ∞, (6) becomes{

d2

dη2 − α̂2T
[
T − M̂2 (U −c

)2]}
p̃(η) = 0 , (9)
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Figure 2. Classification of the modes in the Mach-number–phase-speed (M, c±) plane.

with T and U verifing the boundary conditions (2). The boundary conditions for p̃ are obtained by consider-
ing the limiting form of (6) as η → ±∞. The solutions of (9) are of the form

lim
η→+∞ p̃(η) ∝ e−Ω+η if c > c+ and lim

η→+∞ p̃(η) ∝ e−iη
√

−Ω2+ if c < c+,

with Ω2+ = α̂2
[
1− M̂2 (1−c)2

]
,

(10a)

lim
η→−∞ p̃(η) ∝ e+Ω−η if c < c− and lim

η→+∞ p̃(η) ∝ e−iη
√

−Ω2− if c > c−,

with Ω2− = α̂S
[

S − M̂2 (R −c)2
]

.

(10b)

We define c± as the phase speed for which Ω2± vanishes. Thus,

c+ = 1− 1

M̂
, c− = R +

√
S

M̂
. (11)

Note that c+ is the phase speed of a sonic disturbance in the high-speed side flow and c− is the phase speed
of a sonic disturbance in the low-speed side flow. At M̂ = M̂∗ = (1+√

S)/(1− R), c± are equal. The na-
ture of the disturbance and the appropriate boundary conditions can now be illustrated by Figure 2, where
we plot c± versus M for typical values of R and S. This figure is a synthesis of different works of Jack-
son and Grosch (1989, 1990a, 1991a,b). These curves divide the (cr, M)-plane into four regions where cr
is the real part of c. If a disturbance exists with M and cr in region 1 , then Ω2+ and Ω2− are both posi-
tive, and the disturbance is subsonic at both boundaries. In region 3, Ω2+ and Ω2− are both negative and
hence the disturbance is supersonic at both boundaries. In region 2, Ω2+ is positive and Ω2− is negative, and
the disturbance is subsonic at +∞ and supersonic at −∞. Finally, in region 4, Ω2+ is negative and Ω2−
is positive so the disturbance is supersonic at +∞ and subsonic at −∞. This classification in the context
of the convective–absolute transition gives a determination of the physical nature of the obtained modes.
If the perturbation wave is subsonic at both ±∞ (region 1), one can choose the appropriate sign for Ω±
and have decaying solutions. We therefore have an eigenvalue problem. If the perturbation wave is super-
sonic at either or both boundaries, then the asymptotic solutions are purely oscillatory. These solutions are
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of two types. It is clear that the oscillatory solutions are either incoming or outgoing waves. If one assumes
that only outgoing waves are permitted, the problem of finding solutions in regions 2, 3 or 4 is again an
eigenvalue problem wherein one chooses, as the boundary condition, the solution to (6) which yields out-
going waves in the far field. These characteristics have a fundamental importance in the confined shear layer
case.

4. Numerical Resolutions

As clearly highlighted by Malik et al. (1985) and Malik (1990), the spectral collocation method based on
Chebyshev polynomials provides an accurate and powerful tool when numerically solving the eigenvalue
problem. The implementation of a spectral algorithm based upon collocation is almost as straightforward as
the finite-difference scheme once the derivative matrices are set up. The use of collocation also simplifies
the treatment of boundary conditions and coordinate transformations. In recent years, multidomain spec-
tral methods have become fashionable for fluid mechanics problems. The method is described here for two
domains. The physical domain −ηw ≤ η ≤ ηw is divided into two domains −ηw ≤ η ≤ ηi and ηi ≤ η ≤ ηw
which may be denoted as domain I and domain II, respectively. In this paper ηi is the altitude of the gener-
alized inflection point d(T

−2
dU/dη)/dη|ηi = 0. Note that this expression differs from that given by Lee and

Lin (1946) by a factor T
−1

because they wrote this expression in terms of y and we have chosen, like Jackson
and Grosch (1989), to write it in terms of η. The stability equation (6) now may be written in the two domains
as

D2
I p̃I + AI DI p̃I + BI p̃I = 0 and D2

II p̃II + AII DII p̃II + BII p̃II = 0, with DI = DII ≡ d

dη
,

and with the boundary conditions DI p̃I = 0 as η → −ηw and DII p̃II = 0 as η → +ηw. In addition, we need
interface conditions at η = ηi. These are provided by requiring the derivability of p̃ at η = ηi, i.e., DI p̃I(ηi) =
DII p̃II(ηi). The physical domains −ηw ≤ η ≤ ηi and ηi ≤ η ≤ +ηw are now transformed to the computational
domains. We use Nth-order Chebyshev polynomials TN defined in the interval −1 ≤ ξ i

j ≤ 1, i = Ior II, where
the collocation points ξ i

j are the extrema of Tn and are given by

ξ i
j = cos

π j

Ni
, j = 0 , . . . , Ni , i = I or II . (12)

The Chebyshev collocation method is applied separately to the two domains with collocation points. In order
to apply the spectral collocation method, an interpolant polynomial is constructed for the dependent variables
in terms of their values at the collocation points. Thus an Nth-order polynomial may be written as

p̃i
(
ξ i)=

Ni∑
k=0

ai
k(ξ

i) p̃i(ξk), i = I or II , (13)

where the interpolant ai
k(ξ

i) for the Chebyshev scheme is given by

ai
k(ξ

i) =
(

1− ξ2
k

ξ i − ξk

)
T

′
N (ξ i)

N2ck
(−1)k+1, where c0 = cN = 2, ck = 1, for k ∈ {1, . . . , N −1},

and i = I or II .

The first derivative of p̃i(ξ
i) may be written as

d p̃i

dξ i

∣∣∣
j
=

Ni∑
k=0

Ei
jk p̃i,k, i = I or II , (14)



150 J.-Ch. Robinet, J.-P. Dussauge, and G. Casalis

where Ei
jk are the elements of the derivative matrix given by

Ei
jk = cj

ck

(−1)k+ j

ξ i
j − ξ i

k

, j �= k, Ei
jj = − ξ i

j

2
(

1− ξ i
j
2
) , Ei

00 = 2N2
i +1

6
= −Ei

Ni Ni
, i = I or II .

The scaling factor for the transformation between physical and computational domains is given as Si
j =

∂ξ i/∂η |j , j = 0, . . . , Ni , then the first derivative matrix F in the physical domain may be written as

Fi
jk = Si

j E
i
jk , (15)

and the second derivative matrix Gi
jk is simply Gi

jk = Fi
jm Fi

mk. Now the stability equation (6) may be written
at the collocation points ξ i

j as

Ni∑
k=0

Gi
jk p̃i,k + Ai

j

Ni∑
k=0

Fi
jk p̃i,k + Bi

j p̃i,k = 0, i = I or II . (16)

Finally, (16) with the boundary conditions Di p̃i(±yw) = 0 may be represented as(
C3α

3 +C2α
2 +C1α+C0

)
φ = 0, with φ = ( p̃0, . . . , p̃N )t where N = N1 + N2. (17)

Equation (17) represents the discretized eigenvalue problem. The Chebyshev interval −1 ≤ ξ ≤ 1 is trans-
formed to the computational domain −ηw ≤ η ≤ ηw by use of the mapping

ηI = −ηw

2
(ξI +1) , ηII = ηw

2
(1− ξII)

for the confined shear layer and for the free shear layer (ηw → ∞) the mapping

η(I,II) = a
ξ(I,II) +1

b− ξ(I,II)
, with a = ηaηw

(ηw −2ηa)
and b = 1+ 2a

ηw
,

is used. In our case ηa � δw, where δw is the shear layer thickness. A standard eigenvalue subroutine may
now be used to compute the N +1 eigenvalues. Two methods were used to solve (17): a local method
based on a shooting method with a classical Newton–Raphson algorithm and a global method, where the
discretized operator spectrum is computed, see Bridges and Morris (1984). In the results presented below,
the number of points in each domain is respectively N1 = 100 and N2 = 200 for the free shear layer and
N1 = 100 and N2 = 100 for the confined shear layer.

To determine the convective–absolute transition, the saddle point for the present system is found by three
different numerical techniques. The first method involves the calculation of the branches α+(ω) and α−(ω)

corresponding to x > 0 and x < 0, respectively, for different ω until pinching is observed. The second is
a Taylor series fit near the saddle point, which is a square-root branch point in the complex wave-number
plane. The third is a direct numerical method using Newton–Raphson’s technique for solving ∂ω/∂α = 0.
However, this last method is highly dependent on the initial guess provided for the saddle point location,
and once the solution converges, it cannot be said without a priori knowledge whether the converged solu-
tion is the location of a coalescence of two α+ modes or of an α+ mode and an α− mode. In this study the
first method is systematically used with the second method. Occasionally, the third method is employed as
a check of our results.

5. Results

In this section the case of convective–absolute transition in free and confined shear layers is studied. Results
are presented, and in particular the amount of backflow necessary to have this type of transition for a range
of primary flow Mach numbers M1 up to 3.0. The boundary of the convective–absolute (CA) transition is
defined as a function of the velocitity ratio R, the temperature ratio S, the Mach number M1 and the angle of
the obliquity of the disturbance θ with respect to the flow direction.
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5.1. Free Shear Layer

5.1.1. Two-Dimensional Instability Wave and Isothermal Flow

Three sets of results have been obtained, which are presented here. First, the variation of the velocity ratio
and stability parameters with Mach number M1 under the requirement that the square-root branch point
of α(ω) lies on the real ω-axis (CA transition) for isothermal (S = 1) flow is shown. Second and third,
the variation of these same parameters with temperature ratio S or the angle of the propagation of the dis-
turbance wave θ, respectively, for a prescribed Mach number M1, requiring again that the branch point
is located on the real ω-axis, is also shown. The pertinent stability parameters in each case are the real
branch point frequency ω0r and the real and the imaginary parts of the wave number (α0r , α0i ) of the cor-
responding saddle point in the α-plane. Figure 3 gives the parametric variation of the critical branch point
location separating the domains of absolute and convective instabilities in the (R, M1)-plane for the isother-
mal shear layer. The intercept value of R at M1 = 0 coincides with the value −0.136 computed by Huerre
and Monkewitz (1985). Figure 3(a) shows that the shear flow remains convectively unstable with increasing
backflow on the low-speed side as the Mach number increases. This trend remains true for M1 ≤ 1.448. In
fact, for this Mach number range, the phase speed of the instability wave is subsonic (zone 1 in Figure 2).
Our results differ from those of Pavithran and Redekopp (1989) by at most 10% because their tempera-
ture profile is not given by the Crocco relation. Instead, their temperature equation is equivalent to that
obtained from (3) by dropping the Mach squared term. Jackson and Grosch (1990b) have obtained simi-
lar results, who, unlike Pavithran and Redekopp (1989), did not neglect the Mach number square term in
the temperature profile. However, in their analysis, the CA transition is limited to the subsonic isother-

Figure 3. The CA transition boundary (a) and variation of the branch point parameters with high-speed side Mach number M1: (b)
circular frequency ω0; (c) wave-number α0r ; (d) the spatial growth rate α0i for two-dimensional disturbance (θ = 0◦) and isothermal
shear layer (S = 1).
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Figure 4. Eigenfunctions (pressure amplitude) for different Mach numbers, M1 = 0.8, 1.5, 2.0 2.5, for S = 1, θ = 0◦ and with
±ηw = 300.

mal shear layer with a two-dimensional disturbance (θ = 0◦). Our results are within 2% of their results.
To our knowledge, study of the CA transition for a supersonic shear layer was not carried out. When the
Mach number is greater than 1.448, the phase speed of the instability wave becomes supersonic at +∞
and subsonic at −∞ (zone 4 in Figure 2), the evolution of the CA transition boundary changes in this
regime. When the phase speed of the instability wave becomes supersonic, the boundary of the CA transi-
tion continues to increase until M1 � 1.5 (−R � 0.33) and it stabilizes around R = −0.3 when M1 > 2.1.
The variation of the branch point parameters with the Mach number is given in Figure 3b–d. The trends
are monotonic with the Mach number, except for the real part of the wave number. The decrease of α0i , as
M1 tends to unity, may be associated with the stabilization of the continuation of the Kelvin–Helmholtz in-
stability in incompressible flow and the decreasing bandwidth of unstable wave numbers αr for this mode.
The branch point frequency decreases substantially for Mach numbers above 0.3, where compressibility
effects become significant. For these branch point parameters, the modification of the instability wave na-
ture can be seen from a slope change in their evolutions with respect to Mach number. When the Mach
number increases, the absolute frequency ω0 (Figure 3(b) and the absolute spatial growth rate α0i (Fig-
ure 3(d)) tend towards zero. For a high Mach number (M1 ≥ 3) the CA transition loses its significance
because the absolute spatial growth rate is close to zero. However, it should be remembered that addi-
tional modes of instabiliy are present for M1 greater than unity. Indeed, the works of Jackson and Grosch
(1989) and Mack (1989) have shown, for a purely spatial instability, that there are supersonic modes. How-
ever, for M̄1 ≤ 3 these modes are not dominant in the CA transition for a free shear layer (no pinching
has been observed). Figure 4 shows typical pressure eigenfunction instability waves for several Mach num-
bers. As the Mach number increases, the decrease of the pressure fluctuation on the low-speed side is
increasingly weak. This characteristics is representative of the supersonic phase speed of the instability
wave.

5.1.2. Three-Dimensional Instability Wave and Isothermal Flow

For a three-dimensional instability wave, when the Mach number is less than 1, the amount of backflow
necessary for transition from convective to absolute instability increases with the angle of the disturbance.
When M1 > 1, the opposite trend is found. A three-dimensional wave is more favorable to the CA tran-
sition. Figure 5(a) shows this evolution for three Mach numbers. For M1 = 0.8, the phase speed of the
instability wave is always subsonic for any angle θ. For M1 = 1.5 and for M1 = 2.0, the instability wave
is always supersonic, when θ < 20.8◦ (for M1 = 1.5) and θ < 43.1◦ (for M1 = 2.0); the speed wave is
in zone 4, otherwise the speed wave is in zone 3. The variation of the branch point parameters with the
angle of the perturbation θ is monotonic, the evolution of these parameters depends on the Mach num-
ber M1. If M1 < 1, then ω0 and α0r decrease and α0i increases; and if M1 > 1 the opposite trends are
found.
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Figure 5. The CA transition boundary (a) and variation of the branch point parameters versus θ: (b) circular frequency ω0; (c) wave-
number α0r ; (d) the spatial growth rate α0i for different Mach numbers, M1 = 0.8 (•), 1.5 (◦), 2.0 (�), and for an isothermal shear
layer (S = 1).

5.1.3. Two-Dimensional Instability Wave and Nonisothermal Flow

The influence of the temperature ratio S on the CA transition boundary is shown in Figure 6. It is
clear that the temperature ratio has a larger influence than the Mach number on the transition velocity
ratio over the entire range. It is observed that cooling the low-speed side can causes a convectively un-
stable shear layer at a fixed velocity ratio to become absolutely unstable. When S < 1, only a small
amount of backflow is required on the low-speed side (U2 = −0.0745U1, for a subsonic compressible
flow (M1 = 0.8)). These results are consistent with the calculations presented by Pavithran and Redekopp
(1989). The transition velocity ratio for M1 = 0.8 was calculated for S = 0.1 and S = 10, we have ob-
tained R = −0.0745 and R = −0.745, respectively. These values are within about 1% of those reported
by Pavithran and Redekopp (1989) (R = −0.074 and R = −0.74, when they used the temperature pro-
file obtained by Crocco’s relation). The variation of the branch point parameters with the temperature
ratio for a subsonic Mach number (M1 = 0 and 0.8) are close to those obtained by Pavithran and Re-
dekopp (1989) and Jackson and Grosch (1989). These evolutions are presented in Figure 6(b)–(d). In
a supersonic regime the evolution of the branch point parameters can be qualitatively different. When
the temperature ratio changes, the nature of the instability also changes. For example, if M1 = 2 and
if S < 0.4, then the phase speed of the instability wave is supersonic/supersonic (in zone 3). On the
other hand, if 0.4 ≤ S ≤ 3.225 the phase speed is subsonic/supersonic but pertaining to zone 4. Fi-
nally, if S > 3.225 the phase speed is always subsonic/supersonic (in zone 4) but with M1 < M

∗
.

In this last case, the evolution of the absolute wave number (α0r and α0i ) is qualitatively different
(see Figure 6(c)–(d)).
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Figure 6. The CA transition boundary (a) and variation of the branch point parameters versus S = T 2/T1: (b) circular frequency
ω0; (c) wave-number α0r ; (d) the spatial growth rate α0i for different Mach numbers, M1 = 0 (•), 0.8 (◦), 2.0 (�), and for a two-
dimensional perturbation (θ = 0◦).

5.2. Confined Shear Layer

5.2.1. Two-Dimensional Instability Wave and Isothermal Flow

In this section the local two- and three-dimensional stability characteristics of a confined compressible shear
layer are studied. The mean flow is defined as in the previous section, the mean velocity profile is modeled as
a finite length shear layer with a hyperbolic tangent velocity profile (4) and the mean temperature profile is
given by Crocco’s relation (3). The walls are localized, in a first step, at η = ±ηw with ηw = 10. At this dis-
tance, the mean flow is uniform. These boundary conditions are identical to those chosen by Peroomian and
Kelly (1994). However, in their case the mean temperature, density and pressure have been chosen constant
and the instability wave sought was two-dimensional.

Figure 7(a) shows the backflow necessary for transition between convective and absolute instability for
different values of the Mach number M1. The subsonic portion of Figure 7(a) qualitatively agrees (about
2%) with the work of Pavithran and Redekopp (1989) and of Jackson and Grosch (1989). The amount of
backflow necessary for transition from convective to absolute instability increases as the Mach number in-
creases. In the subsonic case the wall effect does not influence the CA transition. However, the branch point
parameters (ω0, α0) are affected. For a confined subsonic shear layer, the absolute frequency is close to that
obtained for a free shear layer, but this is not the case for the absolute wave number. In the confined case
the absolute wavelength is almost twice larger, and the absolute growth rate is 1.6 weaker than in the case
of the free shear layer (see Figure 3). For the subsonic case, M1 < 1.0, only one α+ mode exists, but in the
supersonic case multiple modes exist, and extreme care must be taken in the evaluation of the saddle point.
This is due to the fact that when multiple modes exist in the system, coalescence can occur between two α+
branches as well as an α+ and an α− branch. In Figure 7(a), once the mean flow becomes supersonic, the
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Figure 7. The CA transition boundary (a) and variation of the branch point parameters with upper-layer Mach number M1: (b) cir-
cular frequency ω0; (c) wave-number α0r ; (d) the spatial growth rate α0i for two-dimensional disturbance (θ = 0◦) and isothermal
shear layer (S = 1). •, mode 1; �, mode 2.

characteristics of the transition boundary change. The absolutely unstable mode for the subsonic Mach num-
bers remains the dominant mode when 1.0 < M1 < 1.32 (dominant in the sense that it becomes absolutely
unstable for the smallest −R value). The associated phase speed with this mode is subsonic/subsonic (called
mode 1). However, another mode exists but it is not dominant for this Mach number range, this mode is
subsonic/supersonic. Indeed, if one increases the backflow parameter sufficiently, the subsonic/supersonic
mode (called mode 2) becomes the primary mode, i.e., pinching for this mode occurs at a lower positive
value of ω0i . At M1 = 1.32, where the cusp in the curve is located (see Figure 7), this change occurs at
ω0i = 0. For 1.32 < M1 < 1.345, this change in the pinching of the modes occurs for a negative ω0i . Fig-
ure 8 shows the evolution of the imaginary part of the absolute frequency ω0i for different Mach numbers.
In the case M1 = 1.25, the first mode becomes absolutely unstable when −R > 0.22 and it becomes again
unstable convectively when −R > 0.47. For this Mach number, the second mode becomes absolutely un-
stable for −R > 0.42. For M1 = 1.32, the transition from convective to absolute (CA), for mode 1, occurs
when −R = 0.26 and the reverse transition, from absolute to convective (AC), occurs when −R = 0.35. For
the second mode, the CA transition occurs when −R = 0.356. In fact, for 1.32 < M1 < 1.345, a small re-
gion exists between 0.35 < −R < 0.356 where the two modes are convectively unstable. This corresponds
to the region in Figure 7(a), where the boundary has turned back on itself near the cusp. Beyond this Mach
number, M1 = 1.345, mode 1 is not absolutely unstable, only mode 2 becomes absolutely unstable. Fig-
ure 8 shows this characteristic for M1 = 1.4. For Mach numbers greater than 1.345, the primary mode is
the subsonic/supersonic mode, and remains so up to the point near M1 � 1.95, where the mode becomes
a supersonic/supersonic mode. This mode selection, which is dependent on R, was already observed by Pe-
roomian and Kelly (1994), but they had not taken into account the mean temperature profile, which is clearly
nonconstant for these Mach number ranges. However, our results are close to those obtained by Peroo-
mian and Kelly (1994) (within between 1% and 5%). For the temperature profile given by Crocco’s relation,
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Figure 8. Imaginary part of saddle point frequency versus the backflow parameter R for different Mach numbers: M1 = 1.25,
•, mode 1, ◦, mode 2; M1 = 1.32, �, mode 1, �, mode 2; M1 = 1.4, �, mode 1, �, mode 2.

Figure 9. Eigenfunctions (pressure amplitude) for the modes 1 and 2, for M1 = 1.31, S = 1, θ = 0◦ and with ±ηw = 10.

the CA transition occurs for a lower value of the backflow than in the case where the temperature profile
is constant.

Physically, in the linear stability context, this shows that in the region between 1.32 < M1 < 1.345, as
the backflow parameter increased, the flow becomes absolutely unstable. If the backflow is further increased,
the mode becomes convectively unstable once again, and a further increase in backflow will make a dif-
ferent mode absolutely unstable. This is due to the fact that multiple modes exist when M1 > 1. When the
backflow parameter is increased for a fixed M1, the shear is increased and the spatial growth rate for the
subsonic/subsonic mode decreases; the spatial growth rate for the subsonic/supersonic increases, this even-
tually causes the subsonic/supersonic mode to become the primary pinched mode. However, further increase
in the backflow causes a jump in the branch point parameters. Indeed, this occurs for the same R, S, M1 and
ω0i but for a different ω0r , α0r and α0i .

Table 1 shows the wall influence on the CA transition for mode 2. When |ηw | increases, the back-
flow required to achieve the CA transition decreases but the absolute spatial growth rate also decreases
until becoming neutral, at this distance, |ηw |� 24, the CA transition does not exist. For a supersonic shear



Wall Effect on the Convective–Absolute Boundary for the Compressible Shear Layer 157

Table 1. Wall effects on the CA transition for mode 2: M1 = 1.32, S = 1 and θ = 0.

|ηw | R ω0 α0

07 −0.387 0.1660 0.208–0.093i
08 −0.380 0.1450 0.184–0.076i
09 −0.372 0.1288 0.168–0.064i
10 −0.356 0.1135 0.146–0.059i
11 −0.353 0.1043 0.135–0.044i
12 −0.350 0.0953 0.126–0.034i
14 −0.348 0.0807 0.108–0.023i
17 −0.346 0.0757 0.088–0.015i
20 −0.340 0.0551 0.072–0.0089i
>24, the CA transition does not exist.

layer, the existence of a wall plays a determining role in the characterization of instabilities. Figure 9
shows typical eigenfunction (pressure) distributions of subsonic/supersonic instability waves (mode 2) and
subsonic/subsonic instability waves (mode 1).

5.2.2. Three-Dimensional Instability Wave and Isothermal Flow

For a three-dimensional instability wave, when the Mach number is subsonic, the CA transition first oc-
curs for a two-dimensional wave, this characteristic is identical to that obtained for the free subsonic
shear flow, but the evolution of the branch point parameters are not the same. The main difference be-
tween the subsonic confined case and the subsonic free case lies in the spatial growth rate −α0i . In the
free shear flow, when M1 < 1, the evolution of −α0i is decreasing with increasing θ, while in the con-
fined shear flow the spatial growth rate increases. This characteristic is thus directly related to the wall
effect. These facts occur for all M1 < 1. Indeed, when the walls are moved away, the evolution of the
absolute spatial growth rate versus θ tends to the solution obtained when there is no wall. Again in this
case, when |ηw |� 20, the wall effects on the CA transition are not decisive. When the mean flow is su-
personic, multiple modes exist Tam and Hu (1989), Mack (1989). In the last section we have shown,
in the case of a two-dimensional disturbance, for M1 > 1.32, that the CA transition was not realized
by the pinching from subsonic/subsonic modes but by the pinching between two subsonic/supersonic
modes. It is always the case for the three-dimensional instability wave, the two modes in CA transi-
tion, according to whether mode 1 or mode 2 is dominating, always exist. However, this change of mode
depends on the angle θ and more exactly on the physical nature of the instability waves. The results pre-
sented in Figure 10(a) show that CA transition occurs initially for a two-dimensional wave. This result
is in agreement with those presented by Tam and Hu (1989), for a purely spatial instability. According
to Tam and Hu (1989), these spatial supersonic instability waves are generated by a Mach wave sys-
tem formed by reflections from the channel walls. These modes only exist when the convective Mach
numbers of the flow on both sides of the shear layer are supersonic. Figure 10 shows the evolution
of the characteristics of the CA transition according to the disturbance angle θ for four different Mach
numbers.

5.2.3. Two-Dimensional Instability Wave and Nonisothermal Flow

The influence of the temperature ratio (S) on the CA transition boundary is shown in Figure 11. Again in this
case, it is clear that the temperature ratio has a large influence on CA transition. As for the free shear flow,
it is observed that the cooling of the low-speed side can cause a convectively unstable shear layer at a fixed
velocity ratio to become absolutely unstable. This effect seems to be true for a large Mach number range (0 <

M1 < 3.0). However, there exists a significant difference in the influence of S on the CA transition for a free
shear layer and for a confined shear layer. This can be found in the evolution of α0 when the instability wave
has, at least, its phase speed supersonic in one of the shear layer sides. Figures 6(c),(d) and 11(c),(d) show
these differences.
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Figure 10. The CA transition boundary (a) and variation of the branch point parameters versus θ: (b) circular frequency ω0; (c) wave-
number α0r ; (d) the spatial growth rate α0i for different Mach numbers, M1 = 0.8 (•), 1.2 (◦), 2.0 (�) 2.5 (�), and for an isothermal
shear layer (S = 1).

5.3. Some Wall Effects

Figure 12 shows the wall effects on the CA instability transition boundaries for an incompressible isother-
mal shear layer and for a two-dimensional instability wave. The instability is of absolute type whenever −R
exceeds the value along the curves shown in this figure. When the plane wall is placed on the low-speed
side, there is an initial departure from the free shear layer transition value near −ηw � 15. The curve soon
rises to progressively higher values of −R as the wall is moved closer to the shear layer. When the wall
is placed on the high-speed side, there is an initial departure from the free shear layer transition value to
the higher values of −R around +ηw � 10. However, when the wall is moved still closer to the shear layer
(+ηw � 5), the CA transition boundary strongly decreases. When the two walls move, the effect on the CA
transition boundary is roughly an average effect of the influence of the two walls separately. This behav-
ior is qualitatively identical for all subsonic Mach numbers (M̄1 < 1) and for all subsonic two-dimensional
instability waves. In all cases, for an incompressible shear layer, the wall effect on the CA transition be-
comes important when the wall (lower and/or upper) is very close to the shear layer (the wall distance
is close to the shear layer thickness). In fact, when the distance between the walls and the shear layer is
close to the shear layer thickness, the strictly parallel assumption of flow is not checked, the nonparallel
effects are not negligible and the results obtained with the parallel assumption are thus to be taken with
caution.

In the supersonic regime the behavior is more complex due to the existence of multiple modes strongly
influenced by the wall. This was explored by making computations which differ slightly from the incom-
pressible case presented above: the high and low walls were placed symmetrically, and the calculations were
performed for various distances between them. In this part we are interested in the link between CA tran-
sition observed in the free shear layer (Section 5.1) and CA transition observed in the confined shear layer
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Figure 11. The CA transition boundary (a) and variation of the branch point parameters versus S = T2/T 1: (b) circular frequency ω0;
(c) wave-number α0r ; (d) the spatial growth rate α0i for different Mach numbers, M1 = 0 (•), 0.8 (◦), 2.0 (�), and for two-dimensional
perturbation (θ = 0◦).

Figure 12. Wall effects on the CA transition for M1 = 0, S = 1 and θ = 0: −ηw moves (•); +ηw moves (◦); both walls move (�).

(Section 5.2.1) and more particularly to know if CA transition continuously evolves with η or if there are dif-
ferent modes which operate in the two considered configurations. Figure 13 shows the variation of the branch
point parameters versus the similarity variable | ηw | for different modes, for one Mach number, M1 = 1.31,
with θ = 0◦ and S = 1.
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Figure 13. The CA transition boundary (a) and variation of the branch point parameters versus similarity variable ηw: (b) circular
frequency ω0; (c) wave-number α0r ; (d) the spatial growth rate α0i for M1 = 1.31 for two-dimensional perturbation (θ = 0◦) and
isothermal shear layer S = 1. Mode 1 (•), mode 2 (◦), mode F (�) and mode I (�).

Modes 1 and 2 are those described in Section 5.2.1. For this Mach number value, the CA transition from
mode 2 becomes dominant compared with that of mode 1. It is important to recall that mode 1 is no longer
absolutely unstable when M1 > 1.32 (see Figure 8). For these two modes, their absolute spatial amplification
rates −α0i and their absolute frequencies ω0 strongly decrease when the wall distance increases. For | ηw |
> 24, CA transition for mode 2 does not exist. As for mode 1, although −R decreases when | ηw | increases,
its influence is almost negligible, −α0i < 10−3, when | ηw | > 100.

The mode represented in Figure 13 (here called mode “F”) characterizes the CA transition for a free shear
layer (see Section 5.1). This evolution is very different from those of modes 1 and 2. For | ηw | > 30, the
variations of the branch parameters and the CA transition boundary are very weak. For 26 ≤ | ηw | ≤ 100,
another mode exists (called mode “I”), whose evolution is given in Figure 13. For | ηw | � 26, with the pre-
cision of calculation, a pinching between three modes (one α+ mode and two α− modes) is observed. In
fact, for | ηw | > 26, the “F” mode corresponds to a pinching between the α+ and α− modes and the “I”
mode corresponds to a pinching between the same α+ mode but another α− mode. In these cases the pinch-
ing “F” and “I” occur for different branch parameters, but when | ηw |� 26, the pinching “F” and “I” occur
for the same branch parameters (same R, ω0, α0). Figure 14 shows the pinching between one α+ branch
and two α− branches, when | ηw |= 26. When | ηw | < 26, the pinching “I” does not characterize the CA
transition because it is a pinching between two α− modes, while between 15 ≤ | ηw | ≤ 27 the pinching “F”
always characterizes the CA transition but in this zone the variation of the branch point parameters is high.
For | ηw |≤ 15, the pinching “F” ceases to represent CA transition, because the pinching occurs for two α−
modes. Indeed, to determine if the pinching will occur between the α+ mode and the α− mode, it is necessary
to recognize if the modes propagate in the positive or negative x-directions, i.e., to know if the generalized
spatial branches are α+(ω) or α−(ω). The criterion to distinguish α+ and α− modes has been established by
Briggs (1964). According to Briggs, in spatial instability modes of frequency ω0, the calculation of the roots
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Figure 14. Locus of spatial branches as Im(ω0) = 0, when ηw = 26, S = 1 and θ = 0◦ for R = −0.321 (——) and R = −0.322
(· · · · · · ).

Figure 15. Evolution of some eigenvalues around the pinching mode “F” (•) when Re(ω) = ω0 and Im(ω) from 0 to +∞. For
R = RCA, S = 1, θ = 0◦ and for different values of ηw.

or poles of the dispersion relation D should start by setting the real part of ω equal to ω0 and the imaginary
part of ω to a large positive value. Zeros or poles of D lying in the upper half-α-plane represent modes prop-
agating in the positive x-direction (i.e., an α+ mode), while those in the lower half-α-plane represent waves
propagating in the negative x-direction (i.e., α− mode). Figure 15 shows the evolution of some eigenvalues
around the pinching mode “F” for the large positive value of ωi .

6. Conclusions

A detailed analysis of the CA nature of the instability of two-dimensional supersonic shear layers has been
made. When the Mach number M1 < 1, for a given velocity ratio, the shear layer becomes more convectively
unstable as the Mach number increases. This trend persists, for a fixed Mach number, as the low-speed side
is heated relative to the high-speed side. On the other land, cooling the low-speed side extends the domain of
absolute instability. In fact, for a sufficiently small temperature ratio (namely, S < 0.1), the shear layer may
become absolutely unstable, even when the streams are very weak counterflowing. In the subsonic regime
the most unstable instability wave is two-dimensional and the boundary between convective and absolute in-
stability is thus determined by the pinching between two two-dimensional subsonic/subsonic modes. The
effect of the parallel walls and the distance between them on the instability characteristics of the shear flow
were investigated. The distance between such walls does not affect qualitatively the characteristics of the CA
transition.
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However, when the Mach number is supersonic, the effects of the walls are very important in CA tran-
sition. When the distance is decreased the reflections of the compression/expansion waves caused by the
walls provide a feedback mechanism between the growing shear layer structure and the wave system. More-
over, when M1 > 1, multiple modes exist and the coalescence can occur between two α+ modes as well as
between α+ and α− modes.

When the walls are far enough (δw � ηw), the boundary of the CA transition is determined by the pinch-
ing of the extension of the modes in the subsonic regime. According to Mach number M1, the angle of
propagation of the disturbance θ and the temperature ratio S, this pinching mode is subsonic/subsonic,
subsonic/supersonic or supersonic/supersonic. In all these cases the characteristics of the branch point pa-
rameters (ω0, α0) are quite different. When the walls are close to the shear layer, the transition curve for M1
between 0 and 1.0 and between 1.345 and 3.0 is defined by a single curve. However, for M1 between 1.0
and 1.345, multiple transition curves exist, due to the fact that multiple modes exist when M1 is greater than
unity. In this region the mode that becomes absolutely unstable depends on the magnitude of the backflow.
When 1 < M1 < 3, for a confined shear flow, the CA transition with three-dimensional instability waves oc-
curs for the amount of backflow greater than with two-dimensional instability waves. For a free shear layer
the opposite trend is found. For a nonisothermal (free or confined) shear flow, the conclusions are identical
with those presented for M1 < 1, the only evolution of the branch point parameters being highly dependent
on ηw.

These results have particular relevance to the issue of the control of shear layers since injected dis-
turbances can modify the streamwise evolution of a convectively unstable flow. Moreover, this analysis is
a preliminary study for the characterization of CA transition in separated supersonic boundary layers. As
a separated boundary layer behaves like a shear layer with a counterflow and with a wall on the low-speed
side, knowledge of the CA transition in such shear layers is a useful guide to evaluate the CA transition in
separated boundary layers. Indeed, we have shown that for a supersonic shear layer to develop an absolute
instability, it is necessary either to cool the lower side of the shear layer or that −R > 0.3. In a realistic su-
personic separated boundary layer, the intensity of the backflow does not exceed 15% of the external flow.
It seems reasonable to think that the instabilities developing in a separated supersonic boundary layer are
linearly convectively unstable. Finally, this analysis can undoubtedly apply in the industrial case of a wall
cooled by a cold cooling film, for example, for the hot nozzle flow.
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