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Convex analysis for topology optimization of compliant
mechanisms

G.K. Lau, H. Du and M.K. Lim

Abstract This paper analyses the convexity of the prob-
lem formulations for topological optimization of compli-
ant mechanisms. In this context, a ground structure is
assumed to consist of membranes with variable thick-
ness or trusses with variable cross-sectional area. It is
proven that the objective function of maximum mechan-
ical or geometrical advantage may not be convex even
though the constraints for the problem formulations give
rise to a convex set. The constraints include volumetric
constraint and a bound on input displacement. The non-
convex objective functions are shown analytically with
two examples using truss elements. Also, it is illustrated
numerically with an example using bilinear quadrilat-
eral elements. It is concluded that nonconvex objective
functions also attribute to difficulties in arriving at the
globally optimal topology of compliant mechanisms, in
addition to the number of design variables and con-
straints. As the problem is more complicated, the solution
of the problem requires robust and reliable optimization
techniques.

Key words convex analysis, topology optimization,
compliant mechanism, maximum flexibility, nonconvex
property

1
Introduction

Systematic synthesis methods for compliant mechan-
isms has been developed using topology optimization.
The idea of automating design by using topology op-
timization consists of determining the shape and con-
nectivity of compliant mechanisms using raster rep-
resentation. Instead of predetermining the number of
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links and the location of flexural joints as type synthe-
sis does, topology optimization automatically suggests
raster-like or bit-wise images of feasible design for pla-
nar compliant mechanisms provided the design domain,
boundary conditions and functional specifications are
prescribed. To realize such a design methodology, for-
mal techniques of structural optimization are adopted
but the design goals are modified specifically to suit the
functional requirement of compliant mechanisms. The
design problem can be posed as a problem of material
distribution such that the objective function is extrem-
ized while constraints are satisfied. The optimal shape
or topology is represented by distribution of point-wise
solid belonging to the domain Ωs over the reference de-
sign domain Ω, which is discretized into a finite num-
ber of N elements. A solid element is characterized by
the constant elasticity tensor E0ijk while a void element
does not exhibit rigidity. Mathematically, the problem
is thus to determine the optimal Eijk�(x) which varies
over the design domain Ω (Bendsøe 1989) and takes the
form

Eijk�(x) = χ(x)E0ijk� , (1)

where χ(x) is an indicator function that defines the distri-
bution of material

χ(x) =

{
1 if x ∈Ωs ,

0 if x ∈Ω \Ωs .
(2)

To obtain a useful and feasible design based on a raster-
like topological image, the objective function must be
properly formulated. It is generally known that the ma-
jor function of compliant mechanisms is to transfer work
from input port to output port. Hence, most objective
functions are formulated in terms of input and output
displacements. Researchers in Michigan and Pennsyl-
vania (Ananthasuresh et al. 1994; Frecker et al. 1997,
1999; Nishiwaki et al. 1998; Saxena and Ananthasuresh
1998) used the notion of mutual potential energy (MPE),
which is equivalent to output displacement, and strain en-
ergy (SE). They formulated multicriteria in the form of
weighted sum of MPE and SE, the ratio of MPE to SE,
and the power ratio of MPE to SE. Researchers in Den-
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mark (Sigmund 1997; Larsen et al. 1997) adopted differ-
ent, kinematic approaches. They formulated the problem
with maximum mechanical advantage, and minimum er-
rors in obtaining prescribed geometrical and mechanical
advantages.

Despite the success in obtaining some feasible designs,
the solution of the compliant mechanism problem is gen-
erally more difficult than that of the minimum compli-
ance problem for structures. In early work on topology
optimization of compliant mechanisms, Ananthasuresh
(1994) used optimal criteria to find optimal topologies.
But the results obtained appear rather stiff and unlike
flexible mechanisms. When multicriteria of higher com-
plexity are involved, Frecker et al. (1997), Nishiwaki et al.
(1998) found that it is difficult to develop an updating
scheme and thus resorted to sequential linear program-
ming. Later, Saxena and Ananthasuresh (1998) pursued
an updating scheme that combines a resizing scheme and
line-search at each iteration to ensure arrival at the min-
imum objective function. On the other hand, Sigmund
(1997, 1998) successfully used sequential linear program-
ming and the method of moving asymptotes to solve com-
pliant mechanism problems for linear static and coupled-
field response. In view of the higher complexity of the
compliant mechanism problem, the solution of the prob-
lem generally requires robust and reliable optimization
techniques.

Besides the number of constraints and design vari-
ables, the difficulty in synthesizing compliant mechan-
isms is mostly attributed to the nonlinear objective func-
tion. Saxena and Ananthasuresh (1998) demonstrated
the nonconvexity and nonuniqueness of multicriteria
using the examples of a beam and a compliant inverter.
Using multicriteria as the objective function and the
ground structure of a truss, Frecker et al. (1999) noted
that even though MPE and SE are individually con-
vex, the ratio of MPE to SE is not necessarily convex.
However, the convexity for the problem formulations of
maximum mechanical or geometrical advantages (Sig-
mund 1997; Lau et al. 1999) has yet to be analysed.
Hence, this paper attempts to address their convexity
and provide additional insight into the compliant mech-
anism problem. The nature of the problem formulation
is expected to account for the difficulty in obtaining
a solution.

2
Problem formulation for compliant mechanism
design

To solve for the topology of compliant mechanisms using
mathematical programming for continuous variables, the
discrete design set in (2) is relaxed with a continuous de-
sign set of variable thickness, t(x) ∈ (0, 1]. In numerical
implementation, the continuous design domain Ω is dis-
cretized into N finite elements. It is assumed that the
continuum is made of a plane-stress membrane, whose

material matrix C is given by

C=
E

1−ν2



1 ν 0

ν 1 0

0 0 1−ν
2


 , (3)

in which E is Young’s modulus of the material used, ν is
Poisson’s ratio.

Hence, total volume can be written as

V (t) =

∫
Ω

t(x) dΩ =
N∑
i=1

ti dΩi , (4)

where t(x) is a thickness function varying over the design
domain Ω and is approximated by a vector t whose com-
ponent ti is constant over an element domain dΩi.

On the other hand, the stiffness matrix K(t) can be
written as

K(t) =
N∑
i=1

tiKi , (5)

in which Ki denotes a constant element stiffness matrix
on global level and per unit thickness.

Similarly, if the continuum is assumed to be a discrete
truss, (4) and (5) are still valid. But ti denotes the cross-
sectional area of the truss and the material matrix C is
a constant given by

C=E . (6)

Based on (3)–(6) and according to Lau et al. (1999), one
can state the problem formulations as below, in which the
mechanical advantage (MA) and geometrical advantages
(GA) are posed as objective functions, respectively,

max
t

MA(t) ,

subject to

uin(t)< u∗in ,
V (t)

V0
< V ∗ ,

K(t)u(t) = F , 0< tmin ≤ ti ≤ tmax , (7)

and

max
t

GA(t) ,

subject to

V (t)

V0
< V ∗ , K(t)u(t) = F ,

0< tmin ≤ ti ≤ tmax . (8)

In the first formulation (7), MA denotes mechanical
advantage of a resultant topology. If a spring model, as
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shown in Fig. 1, is used to describe the interaction be-
tween a compliant mechanism and a workpiece, the out-
put force is given by the force induced in the deflected
spring. Hence, we have

MA=
ksuout

f1
, (9)

in which ks is the spring constant for the workpiece, uout
is the output displacement, and f1 is input force.

Fig. 1 Spring model

Stress and fatigue are of great concern in the design
of compliant mechanisms. Stresses are induced whenever
members are deflected and may cause premature failure
of the mechanism. In addition, kinematic constraints also
restrict flexural pivots from going through full rotation.
Consequently, this leads to a bound on the input dis-
placement in (7). The constraint serves to restrain the
movement of input port and complement the objective
function of MA, which does not restrain the input dis-
placement.

Together with volume and side constraints, the con-
straint on input displacement is posed in a typical manner
for constrained maximization. But equilibrium equations
are solved separately using finite element analysis and are
not dealt with directly in the optimization problem.

In the second formulation (8), GA denotes geometrical
advantage of a resultant topology, and it is given by the
ratio of output displacement to input displacement, i.e.

GA =
uout

uin
. (10)

When the objective function GA is maximized, the in-
put displacement, uin, which appears in the denominator
of GA, is effectively minimized. Thus, without any addi-
tional input displacement constraint as in (7), the con-
cerns on stress are still taken into account when using GA
as the objective function.

3
Convex analysis for compliant mechanism problems

The convexity of the optimization problems (7) and (8)
for compliant mechanism is closely related to minimum

compliance problem. The objective functions of (7) and
(8) are different from minimum compliance. But, the in-
put displacement constraint in (7) is equivalent to a sym-
metric displacement constraint, which has been proven by
Svanberg (1984) to be convex. This section attempts to
study the convexity of constraints and subsequently that
of the objective functions for (7) and (8). Before proceed-
ing to study the convexity of constraints and objective
functions, basic definitions for the optimum point, the
positive definite matrix and convexity are reviewed. For
more details on the fundamentals, readers are referred to
books on nonlinear programming (Bertsekas 1995).

Definition 1. A symmetric n×n matrix A is called
positive definite if xTAx > 0 for all x ∈ Ren, x �= 0. It
is called non-negative definite or positive semidefinite if
xTAx≥ 0 for all x ∈ Ren. Generally, the notion of posi-
tive and negative definiteness applies exclusively to sym-
metric matrices.

Definition 2. A set C in Ren is said to be convex if

µX+(1−µ)Y ∈ C , (11)

for every X,Y ∈ C and for every real number µ such that
0< µ< 1.

Let V be a vector space of finite or infinite subscripts.

Lemma 1. Let Cv, v ∈ V , be a collection of convex sets
in Ren. Then the intersection set

C =
⋂

Cv = {X ∈ Re
n|X ∈Cv for all v ∈ V } (12)

is convex. If C is empty, then it is by definition convex.

Definition 3. A real-value function ϕ, defined on a con-
vex set C, is said to be convex over C if

ϕ[µX+(1−µ)Y]≤ µϕ(X)+ (1−µ)ϕ(Y) , (13)

for everyX,Y ∈ C and for every µ such that 0< µ< 1.

Lemma 2. A linear function is convex by definition of
convexity.

For twice continuously differentiable functions there is
an alternative characterization of convexity.

Lemma 3. Assume that the function ϕ has continu-
ous second partial derivatives on a convex set C in Ren.
Then ϕ is convex over C if and only if the Hessian matrix
∇2ϕ(X) of ϕ is positive semi-definite throughout C, i.e. if
and only if

hT∇2ϕ(X)h =
∑∑ ∂2ϕ

∂Xi∂Xj
hihj ≥ 0 , (14)

for allX ∈ C and for every vector h ∈ Ren.
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Definition 4. To simplify the optimization problems (7)
and (8) for compliant mechanism design, we assume that
single input and single output are dealt with. The direc-
tions of input and output motions are limited to orthogonal
direction as the major degree of freedom used in the two-
dimensional design domain. Hence, the design domain is
only subject to a load vector p, which is a vector having
a nonzero element in row i,

p= f1ei . (15)

On the other hand, the displacement vector for (8) and (9)
can be solved by

u=K−1p , (16)

whereK is a stiffness matrix, which is symmetric positive
definite and linearly varying with respect to design vari-
able, ti, which is either the thickness of the membrane or
the cross-sectional area. By Lemma 2, the inverse matrix
ofK, i.e. K−1, is also positive definite.

Let q be a unit vector that specifies the degree of free-
dom for output displacement such that

q= ej . (17)

Using (15)–(17), the input and output displacements can
be expressed as

uin = e
T
i u=

pTu

‖p‖
=
pTK−1p

‖p‖
, (18)

uout = e
T
j u= q

Tu= qTK−1p . (19)

Proposition 1. The intersection of volume constraint
and input displacement constraint gives rise to a convex
feasible set.

Proof. As the volume constraint, i.e.

V (t)

V0
< V ∗ , (20)

is a linear function of thickness ti, it is convex following
from Lemma 3.

Similar to the symmetric displacement constraint
(Svanberg 1984), the input displacement constraint can
be proven convex. For completeness, the proof is repeated
here.

From (7), the input displacement constraint is

uin ≤ u∗ . (21)

Taking the derivative ofKK−1 = I with respect to ti,
we have

∂K−1

∂ti
=−K−1

∂K−1

∂ti
K−1 . (22)

Differentiating input displacement in (18) with respect to
ti and substituting (22), we have

∂uin

∂ti
=−pTK−1

∂K

∂ti
K−1

p

‖p‖
. (23)

Differentiating (23) with respect to tj , we have

∂2uin

∂ti∂tj
=

1

‖p‖

[
pTK−1

∂K

∂tj
K−1

∂K

∂ti
K−1p+

pTK−1
∂K

∂ti
K−1

∂K

∂tj
K−1p

]
. (24)

One can prove the convexity of the input displacement
constraint by checking the positive definiteness of the
Hessian matrix of uin as follows. Let h ∈Re

n,

hT∇2uinh=
∑
i

∑
j

∂2uin

∂ti∂tj
hihj =

1

‖p‖

[
pTK−1hj

∂K

∂tj
K−1hi

∂K

∂ti
K−1p+

pTK−1hi
∂K

∂ti
K−1hj

∂K

∂tj
K−1p

]
. (25)

With H=
∑
i hi(∂K/∂ti), which is symmetric, (25) can

be reduced to the following:

hT∇2uinh=
2

‖p‖
pTK−1HK−1HK−1p=

2

f1
(HK−1p)TK−1(HK−1p)T ≥ 0 , (26)

becauseK−1 is positive definite. Since hT∇2uinh≥ 0 for
every h ∈ Ren and t ∈ C, it follows from Lemma 3 that
(21) is convex. Since both constraints (20) and (21) are
convex, it follows from Lemma 1 that the intersection of
two convex sets gives rise to a convex set.

Proposition 2. The objective function of maximumme-
chanical advantage in (7) may not be convex.

Proposition 3. The objective function of maximum ge-
ometrical advantage in (8) may not be convex.

By presenting examples of nonconvex objective func-
tions, propositions 2 and 3 can be proven. The first ex-
ample deals with two-member trusses while the second
example deals with six-member trusses.
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3.1
Example 1

This example uses a simple ground structure, having two
degrees of freedom and consisting of two-member trusses,
whose areas A1 and A2 are to be determined so that me-
chanical or geometrical advantages at output port are
maximized for the given input force P . Employing the
spring model, an additional spring of stiffness ks is to
be attached between output port and ground. Hence, the
structure has two trusses of variable area and a spring of
fixed stiffness as shown in Fig. 2.

Fig. 2 Ground structure for example 1

After simple operations, the input and output dis-
placements are derived as below,

uin =
k1+k2+ks

k1(k2+ks)
P , (27)

uout =
P

k2+ks
, (28)

where k1 =A1E/�, k2 =A2E/�.
Hence,

MA=
ksuout

P
=

ks

k2+ks
, (29)

GA=
uout

uin
=

k1

k1+k2+ks
. (30)

Performing partial differentiation, the Hessian of MA
and GA is derived as

∇2MA=


 0 0

0 2ks
(k2+ks)

3


 , (31)

∇2GA=

[
−2(k2+ks) k1−k2−ks

k1−k2−ks 2k1

]
. (32)

To solve (7) as a minimization problem, the objective
function is set to be ϕ1 =−MA. Let h= (h1, h2)

T ∈Ren,
the quadratic form on the Hessian of objective function
ϕ1 is found to be negative as

hT (∇2ϕ1)h=−h
T (∇2MA)h=−

2ksh
2
2

(k2+ks)3
< 0 , (33)

where ks and k2 are positive. This example shows that
ϕ1 is concave but not convex. Thus, Proposition 2 is
proven.

Similarly, (8) can be solved as a minimization problem
using an objective function ϕ2 = −GA. The quadratic
form of the Hessian of objective function ϕ2 is

hT (∇2ϕ2)h=−h
T (∇2GA)h=

2(k2+ks)h
2
1−2(k1−k2−ks)h1h2−2k1h

2
2

(k1+k2+ks)3
. (34)

At h= (1, 0)T ,

hT (∇2ϕ2)h=
2(k2+ks)h

2
1

(k1+k2+ks)3
> 0 .

Fig. 3 Contour plot for ϕ1

Fig. 4 Contour plot for ϕ2
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But at h= (0, 1)T ,

hT (∇2ϕ2)h=−
2k1h

2
2

(k1+k2+ks)3
< 0 .

Since ∇2ϕ2 is not positive for every h ∈ Re
n, Lemma 3 is

not satisfied. Thus, ϕ2 is proven nonconvex and Proposi-
tion 3 is proven.

Let us restrict the design variables such that k1, k2 ∈
(0, 1], and set P = 1, ks = 0.1. Contours of ϕ1 and ϕ2
are plotted in Figs. 3 and 4. For maximum MA, optimum
point is on the axis of k1, i.e. (k1, 0). For maximum GA,
optimum point is at right-lower corner, i.e. (1, 0). Hence,
at optimum point we see that the ground structure degen-
erates to a truss connecting input and output ports.

3.2
Example 2

Since the example of Sect. 3.1 is too simple to depict
any practical mechanism, another example is used to il-
lustrate the nonconvexity of the objective functions for
(7) and (8). This example consists of a ground structure
of six-member trusses. Five of the trusses have a length
of � while one of them has a length of

√
3�. The areas

of the ground structure are defined by two variables,
namely, A1 and A2. The ground structure has three de-
grees of freedom but only input and output displace-
ments are of concern. The location and the direction of
input and output displacements are shown in Fig. 5. As
the spring model is employed, an additional spring is at-
tached at the output port. Consequently, we have six
trusses of variable cross-sectional area and a spring of
fixed stiffness.

Fig. 5 Ground structure for example 2

Performing structural analysis for the discrete struc-
ture, the input and output displacements are derived an-
alytically as below,

uin = P
a1k1+a2k2+a3

b1k1+ b2k2+ b3k
2
1+ b4k1k2+ b5k

2
2

, (35)

uout =−P
c1k1+ c2k2

b1k1+ b2k2+ b3k
2
1+ b4k1k2+ b5k

2
2

, (36)

where k1 = A1E/�, k2 = A2E/�, ai, bj , cn are real con-
stants simplified from finite element analysis for i ∈
{1, 2, 3}, j ∈ {1, 2, 3, 4, 5}, n ∈ {1, 2} and are given as
follows:

a1 = 8.415×10−1, a2 = 6.830×10−1, a3 = 1.683×10−1 ,

b1 = 1.262×10−1, b2 = 1.804×10−2, b3 = 3.156×10−1 ,

b4 = 3.860×10−1 , b5 = 3.608×10−2 ,

c1 = −7.288×10−1 , c2 = −2.500×10−1 .

Hence,

MA=
ksuout

P
=

−
ks(c1k1+ c2k2)

b1k1+ b2k2+ b3k
2
1+ b4k1k2+ b5k

2
2

, (37)

GA=
uout

uin
=−

c1k1+ c2k2

a1k1+a2k2+a3
. (38)

To check the convexity of the objective functions
ϕ1 and ϕ2, mathematical manipulations similar to ex-
ample 1 can be performed. In this example, it is ob-
served that both the input and output displacements,
uin and uout, have linear numerators but quadratic de-
nominators with respect to design variables k1 and k2.
Hence, the objective function ϕ1, which is proportional
to uout, is also a function having a linear numerator
and a quadratic denominator with respect to the design
variables. However, it is noted that the objective func-
tion ϕ2 is a ratio of two linear functions of k1 and k2.
Hessian matrices of ϕ1 and ϕ2 for this example can be de-
rived easily but they do not appear as neat as those in
example 1. They can be shown to be nonconvex by sub-
stituting numerical values into their respective quadratic
forms. Assume P = 1, ks = 0.1, and the Hessian ma-
trices of ϕ1 and ϕ2 at k1 = 0.01 and k2 = 0.01 are as
follows:

∇ϕ1 = 104×

[
−1.5296 0.6319

0.6319 0.2353

]
, (39)

∇ϕ2 =

[
34.1651 19.2000

19.2000 8.6601

]
. (40)
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At h= (1, 0)T ,

hT (∇2ϕ1)h=−1.5296×104< 0 .

But at h= (0, 1)T ,

hT (∇2ϕ2)h= 2.3531×103> 0 .

Hence, it follows from Lemma 3 that ϕ1 is nonconvex.
Similarly, ϕ2 can be shown to be nonconvex because at

h= (1, 0)T ,

hT (∇2ϕ1)h= 34.1651> 0 ,

but at h= (0.5,−1)T ,

hT (∇2ϕ1)h=−1.9986< 0 .

Fig. 6 Contour plot for ϕ1 for Example 2

Fig. 7 Contour plot for ϕ2 for Example 2

To confirm the nonconvexity, visual inspection based
on contour plot and line plot can be very useful in two-
dimensional problems. Let us restrict the design variables
such that k1, k2 ∈ (0, 1]. The contour of ϕ1 and ϕ2 are
plotted in Figs. 6 and 7. Having a sectional view on ϕ1 as
shown in Fig. 8, it is noticed that the curveϕ1 at k1 = 0.01
is nonconvex. On the other hand, the similarity between
the contour plot of ϕ2 in this example and that in ex-
ample 1 reveals that here ϕ2 is also nonconvex.

Fig. 8 Curve for ϕ1 at k1 = 0.01 for Example 2

For maximum mechanical advantage, or minimum
ϕ1, it is noticed that the optimum point is located near
the point (0, 0.1). The optimum topology for maximum
mechanical advantage is achieved by having a slender
member defined by area A2 as shown in Fig. 9. For

Fig. 9 Optimum topology for maximumMA
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maximum geometrical advantage, or minimum ϕ2, the
optimum point is located at the right-lower corner, i.e.
(1,0). Hence, the optimum topology for maximum geo-
metrical advantage as shown in Fig. 10 are trusses con-
nected in triangular shape, which can better restrain
the input movement than optimum topology for max-
imum mechanical advantage. From the two examples
above, it is concluded that propositions 2 and 3 are
justified.

Fig. 10 Optimum topology for maximum GA

4
Effects of starting point

It has been proven that (7) and (8) are subject to convex
constraints and may have nonconvex objective functions.
For multivariate problems, the nonconvexity of (7) and
(8) can hardly be shown analytically as in previous exam-
ples. However, if a unique solution can be obtained from
a different starting point using numerical search tech-
niques, the convexity of the problemmay be assured. This
is because if the problem is convex, a global optimum so-
lution exists and can often be reached by mathematical
programming regardless of the starting point. However, if
the problem were nonconvex, multimodal solutions may
be possible. Thus mathematical programming may not
lead to a unique solution.

Table 1 Optimum results obtained from different starting points

Starting point Optimum Optimum
ϕ1 =−MA ϕ2 =−GA

uniformly distributed −1.91583×10−2 −6.86853×10−1

randomly distributed −1.87648×10−2 −7.09277×10−1

Fig. 11 Design domain for example 3

4.1
Example 3

Based on the reasoning above, (7) and (8) can be shown
to be nonconvex by using the example of a displacement
inverter with eight hundred design variables. As shown in
Fig. 11, the design domain for the displacement inverter
consists of eight hundred bilinear quadrilateral elements,
which are assumed to be two-dimensional and in plane
stress. The thickness, ti, of each element is treated as
a design variable. Given a horizontal input force at the
left-bottom corner, the mechanical and geometrical ad-
vantages of the output port at the right-bottom corner
are to be maximized separately for (7) and (8).

It is assumed that the design domain consists of a ma-
terial of a Young’s modulus of 200× 103 N/mm2, and
a Poisson’s ratio of 0.3. For the workpiece, a spring con-
stant is assigned at a value of 100 N/mm. The boundary is
fixed at the upper left corner while it is constrained in the
y-direction at the lower bound. At the input port, a force
of 100 N is imposed horizontally leftwards.

The solutions of both problem formulations are ob-
tained using the method of moving asymptotes (Svanberg
1987), which is a method of sequential convex program-
ming. Despite starting from two different sets of initial
thickness, the solutions converge within thirty iterations.
For the first set, the initial thickness is assumed to be uni-
formly distributed at a value of 0.3. For the second set, the
initial thickness is assumed to be randomly distributed at
values ranging between 0 and 1. As shown in Table 1, is
observed that different initial points may lead to different
optimum solutions.

The topologies for maximum mechanical advantage
and their convergence histories are shown in Fig. 12. The
topologies of the mechanism are shown as density con-
tour plots. It is observed that uniformly-started optimum
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Fig. 12 (a) Topology for minimum ϕ1 (uniformly started); (b) topology for minimum ϕ1 (randomly started); (c) convergence
history for minimum ϕ1 (uniformly started); (d) convergence history for minimum ϕ1 (randomly started)

topology has a longer and straighter frontal link than the
randomly-started optimum topology has. Also, the for-
mer has a thinner connection between the top link and the
wall. As the input displacement constraint is not violated,
it is not plotted in the convergence history in Fig. 12. On
the other hand, for maximum geometrical advantage, the
optimum topologies and their convergence histories are
shown in Fig. 13. It is observed that a randomly-started
optimum topology has a thicker and straighter rear link
than the uniformly-started optimum topology. Also, it is
noted that the former has a smaller patch of intermedi-
ate density than the latter. As a result of lesser interme-
diate density, most materials are concentrated and thus
they result in thicker top and rear links in the randomly-
started optimum topology.

In both problems of maximum mechanical and geo-
metrical advantages, it is observed that the major com-
ponents of the optimum topologies are configured in simi-
lar connectivity although different starting points are as-
sumed. The similarity between the topologies is especially
obvious for the formulation of maximum geometrical ad-
vantage. They have the same number of major links and
nearly the same location of flexural joints, which appear
in the form of single-point connection between two solid

elements. However, the similarity may be dependent on
the problem and objective function used. For the formu-
lation of maximum mechanical advantage, different mi-
nor components are found in the uniformly-started and
the randomly-started optimum topologies. As shown in
Figs. 12a and b, the latter has a residual link located be-
tween the frontal and the rear links but the former does
not.

Despite similar connectivity among the major links,
different sizes and shapes are generally observed among
the optimum topologies, whose design variables are
started uniformly or randomly. Hence, from the perspec-
tive of optimization, it is concluded that the starting
point does influence the optimum topologies, and the op-
timization problems do not have unique solutions. Again,
this example shows that (7) and (8) are nonconvex.

5
Conclusions

Based on the assumption that stiffness is linearly depen-
dent on design variables, it is proven that problem formu-
lations for maximum mechanical or geometrical advan-
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Fig. 13 (a) Topology for minimum ϕ2 (uniformly started); (b) topology for minimum ϕ2 (randomly started); (c) convergence
history for minimum ϕ2 (uniformly started); (d) convergence history for minimum ϕ2 (randomly started)

tage may have nonconvex objective functions although
they are subject to convex constraints. The nonconvex-
ity of the problem formulation for compliant mechan-
isms is illustrated with three examples, using both the
ground structure of a truss and a plane-stress membrane.
If one adopts a more complex design parametrization that
results in nonlinear stiffness with respect to the design
variables, the problem of compliant mechanism design
is expected to be complicated. In addition to the large
number of design variables, the nonconvex formulation of
the compliant mechanism problem may directly attribute
to the higher difficulty in obtaining a feasible solution.
Hence, the solution of the problem requires robust and
reliable optimization techniques.

In topology optimization of compliant mechanisms,
hundreds and thousands of design variables are required
to represent fine topological geometry using the raster-
like image of density. Hence, the topological problem
can only be successfully solved if efficient, large-scale,
nonconvex mathematical programming is used. Although
nonconvex programming, or the stochastic optimization
algorithm have been studied intensively by applied math-
ematicians, efficient and reliable large-scale nonconvex
algorithms have yet to become available. Hence, it is rec-

ommended to resort to efficient convex approximation,
which can handle large numbers of design variables. If
the global optimum solution is desired, the optimization
problem can be started from distinct initial points and
the best result will be chosen.
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