Machine Vision and Applications (2001) 13: 95-107 Machine Vision and

Applications
© Springer-Verlag 2001

A model-driven approach for real-time road recognition

Romuald Aufrere, Roland Chapuis, Frédéric Chausse

LASMEA, UMR 6602 du CNRS, Universit Blaise Pascal, 63177 Adbie Cedex, France; e-maflaufrere,chapuis,chaugs®@lasmea.univ-bpclermont.fr,
Tel.: +33-4-73407256, Fax: +33-4-73407262

Received: 18 November 2000 / Accepted: 7 May 2001

Abstract. This article describes a method designed to detectontext, because of the discontinuous marking and the traf-
and track road edges starting from images provided by an orfic present. The approaches taken in the recognition of road
board monocular monochromic camera. Its implementatioredges fall into two categories: the image approach and four-
on specific hardware is also presented in the framework oflimensional (4-D) approach. The first approach exploits a
the VELAC project. The method is based on four modules:road model in the image grouping together with detected
(1) detection of the road edges in the image by a modelindices according to an image model of the road edges.
driven algorithm, which uses a statistical model of the lane = Some approaches are based on a rectilinear model of the
sides which manages the occlusions or imperfections of theoad edges (Chen 1997; Tarel et al. 1999). Other methods,
road marking — this model is initialized by an off-line train- such as the minimalist approach of Herman et al. (1997),
ing step; (2) localization of the vehicle in the lane in which model the edges as simple parabolas. The classification is
it is travelling; (3) tracking to define a new search space ofmade according to a distance criterion using the model de-
road edges for the next image; and (4) management of thduced from the previous image. Kreucher and Lakshmanan
lane numbers to determine the lane in which the vehicle i41999) used a hyperbola which was updated using indices re-
travelling. The algorithm is implemented in order to vali- sulting from a discrete-cosine-transform frequency analysis.
date the method in a real-time context. Results obtained o Bayesian classification was associated with this frequency
marked and unmarked road images show the robustness amahalysis. The hyperbolic model of the road edges used the
precision of the method. same parameters for both sides of the road. This forced co-
herence was not explicitly used to drive the detection. Wang
Key words. Lane recognition — Driving assistance — On- et al. (1998) used splines to model the road edges. Pomerleau
board systems — Real-time computer vision — Model-driven(1995) developed the so-called RALPH system based on the
image analysis minimization of curve parameters using a projection of a
bird’s-eye view of the road. Broggi (1995) exploited a simi-
lar representation associated with a morphological approach
in the so-called MOB-LAB demonstrator. Other recent work
has used more complex models, such as Guichard and Tarel
1 Introduction (1999) who calculated the indices according to the longest
coherent curve in the image. In this image-based approach
Many studies have looked into the development of systems- except in the rectilinear cas— a search of the coher-
able to assist a driver in his or her driving activity. This has ence between the road edges in the image is not carried out.
included several major projects, included “RALPH” (Pomer- This represents a considerable drawback of this kind of ap-
leau 1995), “MOB-LAB” (Broggi 1995) and “VAMORS” proach, since utilizing the coherence makes it possible to
(Dickmanns and Mysliwetz 1992). The work presented heredetect partially occluded road edges by taking into account
focuses on the recognition of road edges, since this aspetite knowledge available about the other side. However, it is
represents a major component of such projects. not easy to characterize the coherence of the two curves, so
this is often performed as a separate process.
The 4-D approach takes into account the kinematic
1.1 Approaches to road detection knowledge of the vehicle and its evolution on the road. The
coherence of the road edges in the image is thus ensured.

Most of the approaches used to recognize marked or unThe principle is to model the road in 3-D space, as well as

marked roads are based on the detecting the road edges ﬁhe vehicle and its kinematic evolution. The measurements

the image. Image segmentation is difficult in a motorwaytaken from the image are used to update the road model pa-
rameters and the vehicle state (localization parameters of the
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vehicle in its lane). This approach benefits from the realism Image
of the models used, which can be complex (Dickmanns an
Mysliwetz 1992). It predicts in a precise way the position
of the primitives for the next image according to a predic-
tion/updating principle. This prediction reduces instabilities |

due to the updating of a non-linear high-order model, but it Localizafi
does present several drawbacks. | Localization step

First, an initialization step is necessary. This stage is ref Hmne managem(%nt
stricting in the case of road sides tracking losses because -
the re-initialization time can be significant and the initial Tracking step
conditions may not be reached. Secondly, the 4-D approach
is more noise sensitive than an image-based approach dlf:?g' 1. Organization chart of the algorithm

to the approximations associated with the small angles in-
volved, camera calibration errors and vehicle vibrations.

Taking these drawbacks into account, we chose to develop agides. Starting from the data resulting from the recognition
image-based approach driven by the following constraints: step, the localization stage calculates the lateral position and

orientation of the vehicle in its lane. The tracking module is
Hjen applied in order to limit the search space of the road
tation of the road, irrespective of its type. eg?heslln the next tlmage. T_he Iﬁ.SthS:ﬁp |dir)t||f|gs :he nllﬁmber
3. The algorithm must be robust to occlusions, marking?_h. € a_nle (f(_)n rr:jo OrWS‘yS)_ Inw ch e'lvi icle IS trave mg.f

quality and weather conditions, and must take into ac- Is article first describes in more detall the various steps o
our method. Our experimental vehicle and its dedicated ar-

count the coherence of the road edges. hitecture are then oresented. and some tvoical experimental
4. It must be efficient in terms of computational time (at chitecture are then presented, and Some typical experimenta
results are given.

least 5 images/s on a low-cost architecture).
5. It must be able to collaborate with other modules (e.g.
obstacle detection and GPS localization).

Recognition step

1. It must work on marked and unmarked roads.
2. The road model used must provide an accurate represe

2 Recognition step
The image-based approach implies the use of a pattern o
recognition technique. The traditional approaches applica2-1 Principle

ble in our case can be decomposed into two categories. Th‘Fh' thod is based . ition dri b
first one is a search in the transformation space. An ex- IS method 1S based on recursive recognition driven by a

ample is the Hough transform (Maitre 1985; Breuel 1991).prObabiIiStiC model of th? rogd edges in the image.(.ALEEr
This technique is well-adapted overall to problems where the’t al. 20003)'. The_: organization chart of the recognition step
dimension of the parameters vector is low 6). However, 'S Presented in Fig. 2.

this approach depends on standardization of the lanes, which

makes it unsuitable in our case. We have instead chosen 9, \ . ¢ road edges

work in a high-order space in order to accurately represent”
the roadway — this high-order model does not depend on any 5 1 Model definition

lane standardization.

The second category involves working in the correspon4ye ysed several criteria when deciding upon the type of
dence space. In this case, each detection is associated Wifodel to use for the road edges: (1) high order, so that the
each primitive that forms the object to be recognized. Thegne edges are modelled accurately; (2) a simple and linear
combinatory reduction is generally performed by pruningpdating step, to limit the processing time and to improve
the branches of the search tree as rapidly as possible (Grimne stability; and (3) weak abstraction in order to clearly
son 1990). This method must use various heuristics that arnderstand each recognition step. Taking these criteria into
aimed at gathering the features that are consistent with thgccount, our statistical model is composed ofithage pa-
model. Our recognition approach is based on this principle;ameters # = 10 in our case)n can be chosen according
This approach does not require detecting all the features ify the application (e.g. motorways, main roads or country
the entire image as is the case in accumulation methods. (oads). This model is represented by a vec¥; and its

covariance matrixCx,:

1.2 Our approach uqL o2 .
Our approach detects and tracks the road edges in the image. u;“_ g2 )
Itis composed of four modules (see Fig. 1): road recognition, ~Xd = U1R Cx, = o Lf"'L o2
vehicle localization, tracking and lane-number management. R
The recognition step accurately determines the position UnR S o az'
of the road edges in the image. The search is performed Unk
in the correspondences space. Indeed, the dimension of thehere (1., ...,u, ) and (g, ..., u,r) represent the hori-

search space (20 in our case) prevents almost all other agontal image coordinates of the left and right road edges, re-
proaches. This step is based on a statistical model of the largpectively, for different image rows; (i € [1,n]).
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Training phas% roadway;y, vehicle steering angle), a camera parameter (
camera inclination angle) and the road geometry (ateral
Xg:Cxy curvature of the roadl,, road width):

Definition of th (uiL, uir)" = g(vi, 70, Ci, ¥, L, )
best interest

zone The model is defined by:

v; — By« L E,z
i iR=E, | —— +=)| - 57——F7F7-—=C — 1
Detection step ViR ( Fozo (»To 2) 20— Eyo) ! 1/)) (1)

v; — Eya L FE,zo
L= By (S (- Z) - 20— ) (2
vit “( Eozo (x" 2> 20— Bya) " w) @

whereE, = f/d., E, = f/d,, f is the focal distance of the
cameragd, andd, are the width and height of a pixel in the
image, andk is the height of the camera.

The average vectaX ; and its covariance matri€y,
are calculated from (1) and (2X 4 is obtained starting from
average values of the essential parametegsy(, C, o, L)
established from initial knowledge of the vehicle, the road
and the camera, and of various ordinatesn the image.
Variations in these parameters according to the required dis-
persion interval (according to the foreseeable disparity of

Updating

Localization step these parameters on the roadway under consideration), will
Fig. 2. Organization chart of the recognition step led to a set of 'realistic r'oads .configu'rations in the image.
From these various configurations, it is easy to extract the
real road sides covariance matrixCx, by using the Jacobias, of function
. T g: T
! 1 VAN pai Cx, =J,CpJ,

v2
left road side right road side Where
confiden - confidence 0,2
interval interval o 2

v; )
C,= Ja
0 ai
Un 0‘%
/ \\' with o,,,...,0r representing the authorized variations
Ungy U1 U1, Un, around the localization parameters. This step is simple and

sufficient to initialize the recognition process. Nevertheless,

the approach can be easily extended to a much more com-

plex model (e.g. taking into account rolling or a vertical

curve). Moreover X ; andCx, could be learned on-line in

(u1L, ..., un) and @R, - - . ,u,r) correspond to the image order to adapt the recognition in an optimal way to the cur-

columns (see Fig. 3). Matri€x, defines the possible vari- rentroad. Figure 4 shows the results of the training step. For

ations ofu;. and u; in the image. The initial value of each edge of the lane, a confidence interval centredgn

the model X 4, Cx,) is obtained during an off-line training is represented (white lines) whose width (of one standard

phase. This phase ensures that only realistic road configuraleviation) is deduced from th@y, matrix. v; ordinates are

tions are searched for in the image. also presented (black lines), which represent the height of
the search zones in the recognition procedure. These heights
are fixed experimentally.

2.2.2 Model training The next phase of our recognition process is investigating
the road edges in the image usidj, and Cx,. In this

The goal of this procedure is to provide an initial value procedure, the model vectdX,; and its covariance matrix

of the model X 4,Cx,), in order to limit the search zone Cx, for an analysis deptlp will be denoted X ;(p) and

of road edges in the image. This is a preliminary calcula-Cx,(p).

tion and is not entered into the recognition process. In this

step, we use a model of the road vehicle unit developed in

Chapuis (1991), but other geometrical models could also b@.3 Research procedure

used. This model represents a relationship betweenor-

dinates of road edges in the image andrdinates, vehicle Our goal is to find the optimal value o, representing the

localization parameters:{, lateral position of vehicle on the road edges in the image. After the training phase, the zone

Fig. 3. Model and road-edge confidence intervals resulting from the training
phase
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least-squares method. This detection will be made in a quasi-
optimal way for the following reasons:

1. The search zone is limited in size (to improve the com-
putational time and the signal-on-noise ratio).

2. A confidence interval on the segment slope is deduced
from theCx, matrix. This limits the search time and the
possibility of false detections.

Vio

i nterval codence for right edge This detector in essence tries to find a segment consis-
tent with the current model. This technique is much more
accurate than a classical whole-image segmentation. If no
segment is detected in the interest zone, the detection is at-
tempted in a new area defined by the next smallest variance
of the covariance matrix, and so on. If no segment is detected
in all of the 18— p zones to be tested at thdteration depth,

the algorithm leaves this branch, returns to depth1 and
re-iterates the process on this new branch.

At each analysis deptlp the detection provides two
points (intersections between the detected segment and the
horizontal border of the search zone) which correspond to
a measuremeny(p) = (T;(p), Us+1(p))" updating the model
(Xalp —1),Cx,(p — 1)) for the current depth.

Fig. 4. Model resulting from the training step

Fig. 5. The initial model and the first zone of interest

of greatest interest is located in the image. In this zone, a )
segment is detected for an analysis depth0. The proce-  2-3-3 Updating
dure is iterative: the model is updated, a new optimal zon
is located and the algorithm works now at a depthl. The
algorithm considers that the road edges have been found
the image if a certain criterion is reached. A refining stage
improves the search result.

eI'his phase consists of calculating a new vec®j(p) and
A new covariance matri€x ,(p) from the observationy(p)
and preceding statX ;(p — 1) andCx,(p — 1) in the fol-
lowing way:

{ Xa(p) = Xalp — 1) +Kaly — z(p — 1)]
Cx,(0) =Cx,(p—1)—KqHaCx,(p — 1)

whereK ; = Cx,(p — DHT [HiCx,(p — DHT +R] ', z =
The zone of greatest interest is a horizontal part of the confi(ui,uiﬂ)T, H, is such thatz = H,;X, andR is the
dence interval deduced fro@x,. This intervall is defined  cgovariance matrix of the detection errav, (such that
u;ir]g the smallest vgrian(za of Cx,, for one standard de- y = (U, i) = = +w,) a priori fixed at 5 pixels (here
viation, by the equation R = 52I, wherel is the 2x 2 identity matrix). This update
is in fact achieved by a degenerated Kalman filter for which
no state-vector evolution is needed. For the next itergtjon

The interest zone is then defined by a trapezoid of nodedhis update defines a new search space with a smaller size.
P1—Py (see Fig.5)Pi(u; — 04, v;), Pa(ui + 04, v;), Pa(uisy —
Oi+1, Vi+1) AN Py(ui41 + 0441, v;41), Wherew; is the ordinate
of the image row corresponding to the horizontal ordinate
Uj-

Figure 5 shows an image with the initial model (we in
fact represent the confidence intervals deduced 1&am(0)
for both right and left sides of the lane) resulting from the
training phase as well as the zone of greatest interest. He
this zone is located on the left edge. For an iteration depttk9 _ {
p, the number of zones to be tested is (22 — p); (18— p

2.3.1 Interest zones

I'=[ui—oiu+oi]

2.3.4 Algorithm evolution

The search process (choice of the interest zone, detection
and update) is recursively re-iterated at each new iteration
and stops when a criteriof) is reached. The road is then
l%ssumed to be found. This criterion is defined as follows:

N, N,
PL:A—L>1O%ANDPR:A—R>1O%

zones in our case). N +N
AND P, = =" "R 5 2505 ©)
24,
2.3.2 Detection where N and Ng are the number of detected points on the

left and right sides, respectively, antl, (about 300 pixels)
This phase consists of detecting the road edges in the interestpresents the height of the analysis zong € v;). This
zone defined previously. For each row inside the interestriterion means that it is necessary to detect at least 10% of
zone, the points of maximum horizontal gradient are locatedeach road edge and 25% of the lane sides to consider the
These points are fitted to a straight line segment by a mediarad as found. The thresholds have been fixed according to
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initial image 2n zones to be tested with the left-hand side (Fig. b3), finds a detection in the first
interest zone and tries the next ones in which it cannot find
anything (Fig. a4). Then it goes back and restarts the search
—(2n2) classified zones process with another initial zone (Fig.b4) until a solution
by variance order is found (Fig.c6). It can be seen that in the case of back-
tracking, the algorithm does not use any detection result that
comes from a wrong attempt.

p=0 X4(0), Cx4(0)

Zones with —
detection

m Updating
X4 (0), Cx4 (0) -> X (1), Cxa(L) o _
(2n-3) zones to be tested 3 Localization and tracking steps
The road-edges detection module described above is able to
recognize the road in an image; our goal is now to com-
Undat pute the vehicle location in its lane using the result of the
pdating . — N
X4 (1), Cxg (1) -> X4(2), Cxa(2) recognition procesX 4(k) (Aufrére et al. 2000b).

(2n-7)zones to be tested

3.1 Localization

The image approach we used in the recognition step is
not based on 3-D constraints of the road/vehicle unit,
but the localization stage does require such modelling.
Fig. 6. Algorithm evolution on an image. The outcome of the following Our localization procedure uses an approach. C,losely de-
steps are presented:training phaseb the first interest zoneg the next ~ Pendent on our detection method and the training model
interest zonesd the final result (see Sect.2.2.2). We define a more general veXor=
(X4, X )", which contains vectaX ; and also the state vec-
tor X; = (xo,%,C},«, L)" containing the parameters used
experimental considerations in order to provide, in all thefor the algorithm initialization. The initial value o (0)
cases, a correct result when it is reached. and its covariance matri x (0) are easily obtained using
Figure 6 presents an example of the algorithm evolutionan identical training phase (Sect. 2.2.2).
on an image. The search zone of the road edges in the image, As in the training stage, a much more complex model
resulting from the training phase, is shown in Fig.6a. Fig-can also be used here. The recognition process provides, for
ure 6b shows the first interest zone deduced fi©®,(0)  an imagek, an observation vectaX ,(k) and its covariance
and the detection n_1ade therein. Thanks to this detection,, atrix axd(k)- The update of vectoX and its covariance
X 4(0) andCy,(0) will be updated. Figure 6c demonstrates iy ', for an imagek, is carried out starting from this

the significant reduction of the search interval at the 1 observation and the initial modeKk(0). C'~ (0)) in the fol-
analysis depth, where the first, second and third zones d%wing way: (©.6x0)

fined by Cx,(1) do not provide any detection. In this case -

a detection could be carried out in the next best zone, and X (k) = X(0) +K[X 4(k) — HX (0)]

thus X 4(1) andCx,(1) can be updated. The process is re- | Cx (k) = Cx(0) — KHCx(0)

peated until the criterior) is reached, which may occur . ]

without a complete analysis of the confidence interval. InWhere K = Cx(OHT [HCx(OH™ +Cx,(®)] ~, H is such that
order to optimize the precision of the algorithm, the processfd(k) = HX(k) + w, /Xd is the vector resulting from the
restarts in the non-tested zones of the same branch. The fioad detection process afy,, = E[ww'] is the covariance
nal result (Fig. 6d) of this step corresponds to the vear  matrix of /Xd.

resulting from the greatest probabilif} (see Eq. 3). Actu- From X (), we have now an estimate vectF, (k) for
ally, this process finds the first branch of the search tree thaﬂfnagek. This vectorX (k) characterizes the positiar and
matches criterior@). It is not supposed to be the best solu- grientationy) of the vehicle in its lane, the camera inclination
tion. However, we tested the process on the whole searchgje and several parameters of the roadway (wititand
tree looking exhaustively for the best solution, and in eachaiera| curvaturer)). Moreover, starting from the tracking
case the solution found corresponded to the best on@. If hhase it is possible to estimate the vehicle position in the

is not reached, the algorithm considers that the road is nofext image in order to refine the initialization model for the
found in the image but that the best solution has still beernyaq recognition in the next image.

obtained. Thereafter, the best estimationXf; (resulting

from the recognition step) for imadeis denoted by/X\d(k).

One major advantage of our algorithm is its ability to use 3.2 Tracking
a backtracking search, as illustrated in the example shown in
Fig. 7. Starting with the right-hand side of the lane (Fig. b1), In this module, our goal is to provide a smaller confidence
the algorithm detects the wrong white line. It continues theinterval than the one provided by the initial training stage
model update/detection sequence until all the interest zoneim when the recognition module looks for road edges. The
in the right-hand side have been processed. Then it begingroblem consists of calculating (k + 1) andCx(k + 1)

final result
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Fig. 7. lllustration of the backtracking capabil-
ity of the algorithm. The value gp is given in
each panel.

from knowledge of imagé — X (k) andCx (k) — and from 1Ay000

the displacement of the car between two successive images. 01000

To achieve this we evolve vectdX (k) = (zo, ¥, a, C}, L)T M=10 0 100

deduced fromX (k) for imagek + 1 by taking into account 0 0010

the evolution errors: 0 0001
X(k+1)=MX (k) +w, with Ay being the displacement between two images, and
Cx,(k+1)=MCx,(k)MT+Q Q = E[w;w]] represents the errors in the evolution matrix

(experimental values).
Thereafter, to define the optimized initial image area in
whereM is the evolution matrix the next image, the modek{, Cx) resulting from the train-
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Fig. 9. Search zone of the lateral lines
Fig. 8. Initial search zoneh{ack lines for the left edge andvhite lines for
the right edge)a without tracking,b with tracking

ing stage is updated usiny; andCx, as previously com-
puted:

{ X(k+1) = X(0)+K,[X,;(k+1)— X,;(0)]
Cx(k+1) = Cx(0) - K:H;Cx(0)

whereK, = Cx(O)H] [H,Cx(O)H] +Cx, (k+1)] " andH,
is such thatX; = H;X.
Thanks to this update, the vectar,;(k+1) and its covari- -
ance matrixCx,, (k+1), included inX (k¥ +1) andCx (k+1), Fig. 10. The VELAC vehicle
define a new confidence interval for the next image. Fig-
ure 8a shows the initial search zone of the lines in the im-
age resulting from the training phase, and Fig. 8b presentkane in which the vehicle is travelling. The latter is updated
the search zone after a tracking step — the area of the seardly taking into account the lateral position of the vehicle,
space is greatly reduced and so the computation time of thas estimated in the previous step. Thereafter, if one or two
recognition step is lower. This method integrates in a tidylateral lines are considered to be found, the recognition step
way the 4-D approach mentioned in Sect. 1.1. is started — in the next image — on two or three lanes (3
To manage changing of the lane, we update the modebr 4n image parameters). The table of probabilities on the
(X, Cx) by defining the new search zone with a modified presence of the lateral lines are re-initialized every 80 im-
value zp according to the configuration given: ages in order to take into account any configuration change
) of the motorway (e.g. a change from 3 lanes to 2 lanes).
{ if xo(k) > L = xo(k+1)=x9(k) — L

it zo(k) <0 = wo(k+1) =xo(k) + L

5 Implementation

4 L ane management In order to validate the approach in a real-time context, the
algorithm has been implemented on an architecture dedi-
In order to complete the driving assistance system on motoreated to vision applications, including an experimental ve-
ways (consisting of multiple lanes), the algorithm manageshicle (VELAC). A specific architecture was required, and is
the number of lanes on the road and the lane number injescribed in more detail in Marmoiton (2000). Our vehicle is
which the vehicle is travelling. To achieve this; param-  completely autonomous from sensors to computer. Figure 10
eters are added to vectdX; in order to detect not only shows the VELAC vehicle and its various components.
the lane sides but also the two lateral lines beside the cir- In VELAC the main power supply is provided by an al-
culation lane. This new model (withrdimage parameters) ternator coupled to two 12-V batteries and a 24-t0-220V in-
is obtained by the training phase presented in Sect.2.2.2serter. Our application uses a simple monochromic camera.
From the result of the recognition step, realized on one lan€rhis camera is installed beside the interior rear-view mirror.
(1 lane = 2, parameters), an updating of the complete modelOther sensors (e.g. radar, GPS and gyrometer) and actuators
(4n parameters) limits the search space of lateral lines omwill be embedded in our vehicle in order to achieve vari-
the same image. Figure 9 shows the search space of lateralis applications (e.g. adaptative cruise control, and steering
lines after a first recognition step on one lane. and accelerator controls). The computer consists of a vir-
Thereafter, the recognition process is restarted in theual machine environment (VME)-type architecture which
2n — 2 zones corresponding to the lateral lines<(1 for the  includes: a vision machine, a high-level module and a con-
left lateral white line plus» — 1 for the right lateral white  troller area network (CAN) bus interface. The vision ma-
line). A lateral line is considered to be found if the associatedchine is based on a multiple-instruction multiple-data module
probability (%LUL or %ij) is greater than 10%, wherg,| and  with distributed memory. It includes four DEC-Alpha-type
Nry represent the number of detected points on the left angbrocessors connected to 32 MB of random-access memory.
right lateral white lines, respectively. The detection of a line Each one of these processors is connected to a communi-
updates one array of probability defining the presence of theations processor (a T9000 transputer) to ensure rapid data
lateral lanes and another defining the identification of theexchange. The high-level module receives information from



102 R. Aufere et al.: A model-driven approach for real-time road recognition

Xo(m)

3.5

Tine T

3 L 4

Table 1. Parameter values of the model used in the training stagméan; © S0 zEosto— At sEo—stT—7So—sto—ssa Mage
o, standard deviation) number
Fig. 12. Results of therg evolution parameter

a
Fig. 11. Images that provided the weakest probability

a®)  ¢(°) G(m™Y)  L(m) xo(m)
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o 05 & 0.005 05 175

Tine T

2L

the vision module and sensors. This module can thus calcu-,
late the commands for the actuators and inform the operator |
via a human—-machine interface. The CAN bus interface op-
erates the communication between the VME architecture,
actuators and sensors. Our algorithm has been ported to run
on a single DEC Alpha processor, and other processors can image
be used for other perception modules. TOO 200 300 900 590 800 YOO S99 999 humber

Fig. 13. Results of the) evolution parameter

6 Results

road is not considered as found because crite€ois not
The method has been tested on several kinds of road (markedached (due to insufficient information). Nevertheless, the
and unmarked), using images comprising 84180 or 512  results show the best model provided by the algorithm.
512 piXG|S. The model vector for the recognition step is In a sequence of 1000 images’ the a|gorithm considers
composed of 20 image parameters and corresponds to 1fat the road is found (i.e. criteriafj is reached) in 95% of
analysis zones in the image (9 for each of the left and rightcases. In the other cases, it still provides a very acceptable
edges). The camera used had a focal distahee1l2mm  result. Indeed, the image that provided the weakest criterion
and was placed at a heigh§ = 1.5m. The values used t0 s shown in Fig.11. The total probabilit; is 6%, but the
calculate the initial model in the training stage (Sect. 2.2.2)result seems nevertheless very satisfactory.
are listed in Table 1. The proportion of images (5%) where the algorithm con-
siders the road as not found is important because criterion
@ was fixed in order to provide, in all the cases, a correct
6.1 Results on a workstation result (see Eg. 3). Figures 12 and 13 present the evolution
of parameterseg and ¢ over a sequence of 1000 images,
This section presents the results obtained on a workstatioequivalent to travelling 6 km when taking 5 images/s. The
and when using the implementation on the dedicated arvariations in parametet, are due to bends in the road and
chitecture. Figure 14 presents recognition results in variousane changes. The variationsgn(—2° < ¢ < 2°) also cor-
cases on a motorway. In each row, the first and third im-respond to these situations, but the values of this parameter
ages represent the road original image and the second arade much more disturbed because of the rapid variations in
fourth present the final result of the detection algorithm.this angle.
Figures 15 and 16 present results obtained on urban and Figure 17 presents results relating to our lane-number
unmarked roads, respectively. The representation is similamanagement module. These results represent the lane num-
to that in Fig. 14. The low-level detector detects the maxi-ber of the road as well as the number of the lane in which
mum and minimum horizontal gradients (knowing that in athe vehicle is travelling. In Fig. 17b4, the algorithm detects
given image, the sign of the gradient is constant for eachthree lanes, and Figs.17a2 and 17b2 represent cases with
edge). Here the results are quite satisfactory despite shaacclusions. The computation time of the detection algorithm
ows (Figs. 14b2, 15a4 and 16c4), occlusions (Fig. 14d4 andwithout the tracking step) varies from 70 ms to 200ms on
14e2) and lane changing (Fig. 14b4). Thanks to the coheran HP J282 workstation (18—1000 iterations). In the track-
ence between the road edges, the algorithm copes with thiag phase — with a small search zone — the computational
presence of motorway exits (Fig. 14a4, 14c2 and 14c4). Fotime decreases, varying from 40 ms to 120 ms (18-500 iter-
the results in Figs. 142, 14f4, 15b2, 15e4, 15f2 and 15f4 theations). The computation time of the algorithm is dependent
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f
Fig. 14. Algorithm results on a motorway

on the number of iterations, and especially on the quality ofcomputation time of the method is not deterministic and the

the first segment detection. on-board application is required to process approximately 5
images/s. These two factors are antagonistic, and it is nec-
essary to minimize the total calculation time.

6.2 Results on our vision machine A statistical study of the temporal behaviour of the algo-
rithm has been performed. The tested sequence corresponds

The code is sequential and has been implemented on a single travelling a distance of 12 km on a motorway with several

T9000/DEC Alpha calculation module as described abovesharp bends and road-edge occlusions, under lane-changing

The advantage of our algorithm is the low quantity of imageand poor lighting conditions. Among the 3000 images tested,

data needed for road detection: for each iteration only ondhe algorithm succeeds in finding the road (i.e. critexipis

small zone of interest in the image has to be transferred. Théeached) in 2834 cases. The process is iterated 18-53 times
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f
Fig. 15. Algorithm results on urban roads

per image, which corresponds to a computation time of 60— The minimum and maximum times required for the algo-
238 ms. The higher figure is rare, so that the processing rateathm to find the road are given in Table 2. The computation
of 5 frames/s is usually obtained. times for each step of the algorithm are also given. The time
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d
Fig. 16. Algorithm results on unmarked roads

1

lanes nurber: 2

vehicle |ame: |
a

fanes number: 2
b vehicle lane: 2

Fig. 17. Lane-number management results

required to transfer data from the T9000 to the DEC Alphain the 166 other cases when the algorithm could not found

varies with the amount of transferred data, which dependshe road.

on the size of the interest zone needed by the algorithm. The algorithm provides its best solution in less than 150
The histogram in Fig. 18 shows the distribution of the to- iterations (480 ms), which means that continuing to detect

tal computational time in the 2834 cases when the algorithnthe road after approximately 150 iterations is not useful. It

found the road. Figure 19 shows the distribution of the totalis therefore legitimate to consider that the computation time

number of iterations required to obtain the optimal solutiondoes not exceed 500 ms. This seems rather too high, but
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Table 2. Minimum and maximum calculation times for the different stages images

of the algorithm number _
140l ]

Algorithm stage Min Max oo

Transfer from T9000 to DEC Alpha 28ms  149ms I |

Low level 4ms  47ms T 1

Median least squares 16ms 25ms sor 1

Updating 1ms 2ms 60 - ]

Localization 1ms ims ao | 1

Tracking 4ms 4ms 20l i

Total number of iterations 18 53 o e e terat

50 100 T50 o Iterations

Total time 60ms 238ms number
) Fig. 19. Distribution of the total number of iterations required to obtain the
:E?ngbe:r best solution when the algorithm considers the road as not found

This parameter will provide the obstacle-detection module
with information on the image zone where it is necessary

so0 | | to seek an obstacle, but this would mean that the recog-
ac0 | | nition module will not seek road edges when an obstacle
00 | 1 is present. Finally, the whole process will be implemented
200 | 1 in our experimental vehicle in order to validate a complete
100 ¢ 1 driver-assistance system.

O, 86 56 TG0 150 140 166 156 566 556 346 Zeolimes(ms)

Fig. 18. Distribution of the total calculation times during the tested sequence
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