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Abstract. This article describes a method designed to detect
and track road edges starting from images provided by an on-
board monocular monochromic camera. Its implementation
on specific hardware is also presented in the framework of
the VELAC project. The method is based on four modules:
(1) detection of the road edges in the image by a model-
driven algorithm, which uses a statistical model of the lane
sides which manages the occlusions or imperfections of the
road marking – this model is initialized by an off-line train-
ing step; (2) localization of the vehicle in the lane in which
it is travelling; (3) tracking to define a new search space of
road edges for the next image; and (4) management of the
lane numbers to determine the lane in which the vehicle is
travelling. The algorithm is implemented in order to vali-
date the method in a real-time context. Results obtained on
marked and unmarked road images show the robustness and
precision of the method.

Key words: Lane recognition – Driving assistance – On-
board systems – Real-time computer vision – Model-driven
image analysis

1 Introduction

Many studies have looked into the development of systems
able to assist a driver in his or her driving activity. This has
included several major projects, included “RALPH” (Pomer-
leau 1995), “MOB-LAB” (Broggi 1995) and “VAMORS”
(Dickmanns and Mysliwetz 1992). The work presented here
focuses on the recognition of road edges, since this aspect
represents a major component of such projects.

1.1 Approaches to road detection

Most of the approaches used to recognize marked or un-
marked roads are based on the detecting the road edges in
the image. Image segmentation is difficult in a motorway
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context, because of the discontinuous marking and the traf-
fic present. The approaches taken in the recognition of road
edges fall into two categories: the image approach and four-
dimensional (4-D) approach. The first approach exploits a
road model in the image grouping together with detected
indices according to an image model of the road edges.

Some approaches are based on a rectilinear model of the
road edges (Chen 1997; Tarel et al. 1999). Other methods,
such as the minimalist approach of Herman et al. (1997),
model the edges as simple parabolas. The classification is
made according to a distance criterion using the model de-
duced from the previous image. Kreucher and Lakshmanan
(1999) used a hyperbola which was updated using indices re-
sulting from a discrete-cosine-transform frequency analysis.
A Bayesian classification was associated with this frequency
analysis. The hyperbolic model of the road edges used the
same parameters for both sides of the road. This forced co-
herence was not explicitly used to drive the detection. Wang
et al. (1998) used splines to model the road edges. Pomerleau
(1995) developed the so-called RALPH system based on the
minimization of curve parameters using a projection of a
bird’s-eye view of the road. Broggi (1995) exploited a simi-
lar representation associated with a morphological approach
in the so-called MOB-LAB demonstrator. Other recent work
has used more complex models, such as Guichard and Tarel
(1999) who calculated the indices according to the longest
coherent curve in the image. In this image-based approach
– except in the rectilinear case – a search of the coher-
ence between the road edges in the image is not carried out.
This represents a considerable drawback of this kind of ap-
proach, since utilizing the coherence makes it possible to
detect partially occluded road edges by taking into account
the knowledge available about the other side. However, it is
not easy to characterize the coherence of the two curves, so
this is often performed as a separate process.

The 4-D approach takes into account the kinematic
knowledge of the vehicle and its evolution on the road. The
coherence of the road edges in the image is thus ensured.
The principle is to model the road in 3-D space, as well as
the vehicle and its kinematic evolution. The measurements
taken from the image are used to update the road model pa-
rameters and the vehicle state (localization parameters of the
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vehicle in its lane). This approach benefits from the realism
of the models used, which can be complex (Dickmanns and
Mysliwetz 1992). It predicts in a precise way the position
of the primitives for the next image according to a predic-
tion/updating principle. This prediction reduces instabilities
due to the updating of a non-linear high-order model, but it
does present several drawbacks.

First, an initialization step is necessary. This stage is re-
stricting in the case of road sides tracking losses because
the re-initialization time can be significant and the initial
conditions may not be reached. Secondly, the 4-D approach
is more noise sensitive than an image-based approach due
to the approximations associated with the small angles in-
volved, camera calibration errors and vehicle vibrations.
Taking these drawbacks into account, we chose to develop an
image-based approach driven by the following constraints:

1. It must work on marked and unmarked roads.
2. The road model used must provide an accurate represen-

tation of the road, irrespective of its type.
3. The algorithm must be robust to occlusions, marking

quality and weather conditions, and must take into ac-
count the coherence of the road edges.

4. It must be efficient in terms of computational time (at
least 5 images/s on a low-cost architecture).

5. It must be able to collaborate with other modules (e.g.
obstacle detection and GPS localization).

The image-based approach implies the use of a pattern
recognition technique. The traditional approaches applica-
ble in our case can be decomposed into two categories. The
first one is a search in the transformation space. An ex-
ample is the Hough transform (Maitre 1985; Breuel 1991).
This technique is well-adapted overall to problems where the
dimension of the parameters vector is low (≤ 6). However,
this approach depends on standardization of the lanes, which
makes it unsuitable in our case. We have instead chosen to
work in a high-order space in order to accurately represent
the roadway – this high-order model does not depend on any
lane standardization.

The second category involves working in the correspon-
dence space. In this case, each detection is associated with
each primitive that forms the object to be recognized. The
combinatory reduction is generally performed by pruning
the branches of the search tree as rapidly as possible (Grim-
son 1990). This method must use various heuristics that are
aimed at gathering the features that are consistent with the
model. Our recognition approach is based on this principle.
This approach does not require detecting all the features in
the entire image as is the case in accumulation methods.

1.2 Our approach

Our approach detects and tracks the road edges in the image.
It is composed of four modules (see Fig. 1): road recognition,
vehicle localization, tracking and lane-number management.

The recognition step accurately determines the position
of the road edges in the image. The search is performed
in the correspondences space. Indeed, the dimension of the
search space (20 in our case) prevents almost all other ap-
proaches. This step is based on a statistical model of the lane

Tracking step

   Lane management

Localization step

Recognition step

Image

Fig. 1. Organization chart of the algorithm

sides. Starting from the data resulting from the recognition
step, the localization stage calculates the lateral position and
orientation of the vehicle in its lane. The tracking module is
then applied in order to limit the search space of the road
edges in the next image. The last step identifies the number
of the lane (on motorways) in which the vehicle is travelling.
This article first describes in more detail the various steps of
our method. Our experimental vehicle and its dedicated ar-
chitecture are then presented, and some typical experimental
results are given.

2 Recognition step

2.1 Principle

This method is based on recursive recognition driven by a
probabilistic model of the road edges in the image (Aufrère
et al. 2000a). The organization chart of the recognition step
is presented in Fig. 2.

2.2 Model of road edges

2.2.1 Model definition

We used several criteria when deciding upon the type of
model to use for the road edges: (1) high order, so that the
lane edges are modelled accurately; (2) a simple and linear
updating step, to limit the processing time and to improve
the stability; and (3) weak abstraction in order to clearly
understand each recognition step. Taking these criteria into
account, our statistical model is composed of 2n image pa-
rameters (n = 10 in our case).n can be chosen according
to the application (e.g. motorways, main roads or country
roads). This model is represented by a vectorXd and its
covariance matrixCXd

:

Xd =




u1L
.
unL
u1R
.

unR


 ,CXd

=




σ2
u1L

. . . . .
. . . . . .
. . σ2

unL
. . .

. . . σ2
u1R

. .
. . . . . .
. . . . . σ2

unR




where (u1L, . . . , unL) and (u1R, . . . , unR) represent the hori-
zontal image coordinates of the left and right road edges, re-
spectively, for different image rowsvi (i ∈ [1, n]).
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Fig. 2. Organization chart of the recognition step

Fig. 3. Model and road-edge confidence intervals resulting from the training
phase

(u1L, . . . , unL) and (u1R, . . . , unR) correspond to the image
columns (see Fig. 3). MatrixCXd

defines the possible vari-
ations of uiL and uiL in the image. The initial value of
the model (Xd,CXd

) is obtained during an off-line training
phase. This phase ensures that only realistic road configura-
tions are searched for in the image.

2.2.2 Model training

The goal of this procedure is to provide an initial value
of the model (Xd,CXd

), in order to limit the search zone
of road edges in the image. This is a preliminary calcula-
tion and is not entered into the recognition process. In this
step, we use a model of the road vehicle unit developed in
Chapuis (1991), but other geometrical models could also be
used. This model represents a relationship betweenu coor-
dinates of road edges in the image andvi ordinates, vehicle
localization parameters (x0, lateral position of vehicle on the

roadway;ψ, vehicle steering angle), a camera parameter (α,
camera inclination angle) and the road geometry (Cl , lateral
curvature of the road;L, road width):

(uiL , uiR)T = g(vi, x0, Cl , ψ, L, α)

The model is defined by:

viR = Eu

(
vi − Evα

Evz0

(
x0 +

L

2

)
− Evz0

2(vi − Evα)
Cl − ψ

)
(1)

viL = Eu

(
vi − Evα

Evz0

(
x0 − L

2

)
− Evz0

2(vi − Evα)
Cl − ψ

)
(2)

whereEu = f/du, Ev = f/dv, f is the focal distance of the
camera,du anddv are the width and height of a pixel in the
image, andz0 is the height of the camera.

The average vectorXd and its covariance matrixCXd

are calculated from (1) and (2).Xd is obtained starting from
average values of the essential parameters (x0, ψ, Cl , α, L)
established from initial knowledge of the vehicle, the road
and the camera, and of various ordinatesvi in the image.
Variations in these parameters according to the required dis-
persion interval (according to the foreseeable disparity of
these parameters on the roadway under consideration), will
led to a set of realistic roads configurations in the image.
From these various configurations, it is easy to extract the
covariance matrixCXd

by using the JacobianJg of function
g:

CXd
= JgCpJg

T

where

Cp =



σ2
x0

σ2
ψ 0
σ2
Cl

0 σ2
α

σ2
L




with σx0, . . . , σL representing the authorized variations
around the localization parameters. This step is simple and
sufficient to initialize the recognition process. Nevertheless,
the approach can be easily extended to a much more com-
plex model (e.g. taking into account rolling or a vertical
curve). Moreover,Xd andCXd

could be learned on-line in
order to adapt the recognition in an optimal way to the cur-
rent road. Figure 4 shows the results of the training step. For
each edge of the lane, a confidence interval centred onXd

is represented (white lines) whose width (of one standard
deviation) is deduced from theCXd

matrix. vi ordinates are
also presented (black lines), which represent the height of
the search zones in the recognition procedure. These heights
are fixed experimentally.

The next phase of our recognition process is investigating
the road edges in the image usingXd and CXd

. In this
procedure, the model vectorXd and its covariance matrix
CXd

for an analysis depthp will be denotedXd(p) and
CXd

(p).

2.3 Research procedure

Our goal is to find the optimal value ofXd representing the
road edges in the image. After the training phase, the zone
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Fig. 5. The initial model and the first zone of interest

of greatest interest is located in the image. In this zone, a
segment is detected for an analysis depthp = 0. The proce-
dure is iterative: the model is updated, a new optimal zone
is located and the algorithm works now at a depthp+1. The
algorithm considers that the road edges have been found in
the image if a certain criterion is reached. A refining stage
improves the search result.

2.3.1 Interest zones

The zone of greatest interest is a horizontal part of the confi-
dence interval deduced fromCXd

. This intervalI is defined
using the smallest varianceσi of CXd

, for one standard de-
viation, by the equation

I = [ui − σi, ui + σi]

The interest zone is then defined by a trapezoid of nodes
P1–P4 (see Fig. 5):P1(ui −σi, vi), P2(ui +σi, vi), P3(ui+1 −
σi+1, vi+1) andP4(ui+1 + σi+1, vi+1), wherevi is the ordinate
of the image row corresponding to the horizontal ordinate
ui.

Figure 5 shows an image with the initial model (we in
fact represent the confidence intervals deduced fromCXd

(0)
for both right and left sides of the lane) resulting from the
training phase as well as the zone of greatest interest. Here
this zone is located on the left edge. For an iteration depth
p, the number of zones to be tested is (2n− 2− p); (18− p
zones in our case).

2.3.2 Detection

This phase consists of detecting the road edges in the interest
zone defined previously. For each row inside the interest
zone, the points of maximum horizontal gradient are located.
These points are fitted to a straight line segment by a median

least-squares method. This detection will be made in a quasi-
optimal way for the following reasons:

1. The search zone is limited in size (to improve the com-
putational time and the signal-on-noise ratio).

2. A confidence interval on the segment slope is deduced
from theCXd

matrix. This limits the search time and the
possibility of false detections.

This detector in essence tries to find a segment consis-
tent with the current model. This technique is much more
accurate than a classical whole-image segmentation. If no
segment is detected in the interest zone, the detection is at-
tempted in a new area defined by the next smallest variance
of the covariance matrix, and so on. If no segment is detected
in all of the 18−p zones to be tested at thep iteration depth,
the algorithm leaves this branch, returns to depthp− 1 and
re-iterates the process on this new branch.

At each analysis depthp the detection provides two
points (intersections between the detected segment and the
horizontal border of the search zone) which correspond to
a measurementy(p) = (ûi(p), ûi+1(p))T updating the model
(Xd(p− 1),CXd

(p− 1)) for the current depthp.

2.3.3 Updating

This phase consists of calculating a new vectorXd(p) and
a new covariance matrixCXd

(p) from the observationy(p)
and preceding stateXd(p − 1) andCXd

(p − 1) in the fol-
lowing way:{

Xd(p) = Xd(p− 1) + Kd[y − x(p− 1)]
CXd

(p) = CXd
(p− 1) − KdHdCXd

(p− 1)

whereKd = CXd
(p− 1)HT

d

[
HdCXd

(p− 1)HT
d + R

]−1
, x =

(ui, ui+1)T, Hd is such thatx = HdXd, and R is the
covariance matrix of the detection errorwd (such that
y = (ûi, ûi+1)T = x + wd) a priori fixed at 5 pixels (here
R = 52I, whereI is the 2× 2 identity matrix). This update
is in fact achieved by a degenerated Kalman filter for which
no state-vector evolution is needed. For the next iterationp,
this update defines a new search space with a smaller size.

2.3.4 Algorithm evolution

The search process (choice of the interest zone, detection
and update) is recursively re-iterated at each new iteration
and stops when a criterionQ is reached. The road is then
assumed to be found. This criterion is defined as follows:

Q =

{
PL =

NL

∆v
> 10% AND PR =

NR

∆v
> 10%

AND Pt =
NL +NR

2∆v
> 25%

}
(3)

whereNL andNR are the number of detected points on the
left and right sides, respectively, and∆v (about 300 pixels)
represents the height of the analysis zone (vn − v1). This
criterion means that it is necessary to detect at least 10% of
each road edge and 25% of the lane sides to consider the
road as found. The thresholds have been fixed according to
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Fig. 6. Algorithm evolution on an image. The outcome of the following
steps are presented:a training phase,b the first interest zone,c the next
interest zones,d the final result

experimental considerations in order to provide, in all the
cases, a correct result when it is reached.

Figure 6 presents an example of the algorithm evolution
on an image. The search zone of the road edges in the image,
resulting from the training phase, is shown in Fig. 6a. Fig-
ure 6b shows the first interest zone deduced fromCXd

(0)
and the detection made therein. Thanks to this detection,
Xd(0) andCXd

(0) will be updated. Figure 6c demonstrates
the significant reduction of the search interval at thep = 1
analysis depth, where the first, second and third zones de-
fined by CXd

(1) do not provide any detection. In this case
a detection could be carried out in the next best zone, and
thusXd(1) andCXd

(1) can be updated. The process is re-
peated until the criterionQ is reached, which may occur
without a complete analysis of the confidence interval. In
order to optimize the precision of the algorithm, the process
restarts in the non-tested zones of the same branch. The fi-
nal result (Fig. 6d) of this step corresponds to the vectorXd

resulting from the greatest probabilityPt (see Eq. 3). Actu-
ally, this process finds the first branch of the search tree that
matches criterionQ. It is not supposed to be the best solu-
tion. However, we tested the process on the whole search
tree looking exhaustively for the best solution, and in each
case the solution found corresponded to the best one. IfQ
is not reached, the algorithm considers that the road is not
found in the image but that the best solution has still been
obtained. Thereafter, the best estimation ofXd (resulting
from the recognition step) for imagek is denoted bŷXd(k).

One major advantage of our algorithm is its ability to use
a backtracking search, as illustrated in the example shown in
Fig. 7. Starting with the right-hand side of the lane (Fig. b1),
the algorithm detects the wrong white line. It continues the
model update/detection sequence until all the interest zones
in the right-hand side have been processed. Then it begins

with the left-hand side (Fig. b3), finds a detection in the first
interest zone and tries the next ones in which it cannot find
anything (Fig. a4). Then it goes back and restarts the search
process with another initial zone (Fig. b4) until a solution
is found (Fig. c6). It can be seen that in the case of back-
tracking, the algorithm does not use any detection result that
comes from a wrong attempt.

3 Localization and tracking steps

The road-edges detection module described above is able to
recognize the road in an image; our goal is now to com-
pute the vehicle location in its lane using the result of the
recognition procesŝXd(k) (Aufrère et al. 2000b).

3.1 Localization

The image approach we used in the recognition step is
not based on 3-D constraints of the road/vehicle unit,
but the localization stage does require such modelling.
Our localization procedure uses an approach closely de-
pendent on our detection method and the training model
(see Sect. 2.2.2). We define a more general vectorX =
(Xd,X l)T, which contains vectorXd and also the state vec-
tor X l = (x0, ψ, Cl , α, L)T containing the parameters used
for the algorithm initialization. The initial value ofX(0)
and its covariance matrixCX (0) are easily obtained using
an identical training phase (Sect. 2.2.2).

As in the training stage, a much more complex model
can also be used here. The recognition process provides, for
an imagek, an observation vector̂Xd(k) and its covariance
matrix ĈXd

(k). The update of vectorX and its covariance
matrix CX , for an imagek, is carried out starting from this
observation and the initial model (X(0), CX (0)) in the fol-
lowing way:{

X(k) = X(0) + K[X̂d(k) − HX(0)]
CX (k) = CX (0) − KHCX (0)

where K = CX (0)HT
[

HCX (0)HT + CXd
(k)

]−1, H is such that

X̂d(k) = HX(k) + w, X̂d is the vector resulting from the
road detection process andCXd

= E[wwT] is the covariance
matrix of X̂d.

From X(k), we have now an estimate vectorX l(k) for
imagek. This vectorX l(k) characterizes the positionx0 and
orientationψ of the vehicle in its lane, the camera inclination
angleα and several parameters of the roadway (widthL and
lateral curvatureCl ). Moreover, starting from the tracking
phase it is possible to estimate the vehicle position in the
next image in order to refine the initialization model for the
road recognition in the next image.

3.2 Tracking

In this module, our goal is to provide a smaller confidence
interval than the one provided by the initial training stage
in when the recognition module looks for road edges. The
problem consists of calculatingX(k + 1) and CX (k + 1)
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Fig. 7. Illustration of the backtracking capabil-
ity of the algorithm. The value ofp is given in
each panel.

from knowledge of imagek – X(k) andCX (k) – and from
the displacement of the car between two successive images.
To achieve this we evolve vectorX l(k) = (x0, ψ, α, Cl , L)T

deduced fromX(k) for imagek + 1 by taking into account
the evolution errors:

{
X l(k + 1) = MX l(k) + wt

CXl
(k + 1) = MCXl

(k)MT + Q

whereM is the evolution matrix

M =




1 ∆Y 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




with ∆Y being the displacement between two images, and
Q = E[wtw

T
t ] represents the errors in the evolution matrix

(experimental values).
Thereafter, to define the optimized initial image area in

the next image, the model (X, CX ) resulting from the train-
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a b

Fig. 8. Initial search zone (black lines for the left edge andwhite lines for
the right edge):a without tracking,b with tracking

ing stage is updated usingX l andCXl
as previously com-

puted:{
X(k + 1) = X(0) + Kt[X l(k + 1)− X l(0)]

CX (k + 1) = CX (0) − KtHtCX (0)

whereKt = CX (0)HT
t

[
HtCX (0)HT

t + CXl
(k + 1)

]−1
andHt

is such thatX l = HtX.
Thanks to this update, the vectorXd(k+1) and its covari-

ance matrixCXd
(k+1), included inX(k+1) andCX (k+1),

define a new confidence interval for the next image. Fig-
ure 8a shows the initial search zone of the lines in the im-
age resulting from the training phase, and Fig. 8b presents
the search zone after a tracking step – the area of the search
space is greatly reduced and so the computation time of the
recognition step is lower. This method integrates in a tidy
way the 4-D approach mentioned in Sect. 1.1.

To manage changing of the lane, we update the model
(X, CX ) by defining the new search zone with a modified
valuex0 according to the configuration given:{

if x0(k) > L ⇒ x0(k + 1) = x0(k) − L
if x0(k) < 0 ⇒ x0(k + 1) = x0(k) +L

4 Lane management

In order to complete the driving assistance system on motor-
ways (consisting of multiple lanes), the algorithm manages
the number of lanes on the road and the lane number in
which the vehicle is travelling. To achieve this, 2n param-
eters are added to vectorXd in order to detect not only
the lane sides but also the two lateral lines beside the cir-
culation lane. This new model (with 4n image parameters)
is obtained by the training phase presented in Sect. 2.2.2.
From the result of the recognition step, realized on one lane
(1 lane = 2n parameters), an updating of the complete model
(4n parameters) limits the search space of lateral lines on
the same image. Figure 9 shows the search space of lateral
lines after a first recognition step on one lane.

Thereafter, the recognition process is restarted in the
2n−2 zones corresponding to the lateral lines (n−1 for the
left lateral white line plusn − 1 for the right lateral white
line). A lateral line is considered to be found if the associated
probability (NLL

∆v
or NRL

∆v
) is greater than 10%, whereNLL and

NRL represent the number of detected points on the left and
right lateral white lines, respectively. The detection of a line
updates one array of probability defining the presence of the
lateral lanes and another defining the identification of the

Fig. 9. Search zone of the lateral lines

Fig. 10. The VELAC vehicle

lane in which the vehicle is travelling. The latter is updated
by taking into account the lateral position of the vehicle,
as estimated in the previous step. Thereafter, if one or two
lateral lines are considered to be found, the recognition step
is started – in the next image – on two or three lanes (3n
or 4n image parameters). The table of probabilities on the
presence of the lateral lines are re-initialized every 80 im-
ages in order to take into account any configuration change
of the motorway (e.g. a change from 3 lanes to 2 lanes).

5 Implementation

In order to validate the approach in a real-time context, the
algorithm has been implemented on an architecture dedi-
cated to vision applications, including an experimental ve-
hicle (VELAC). A specific architecture was required, and is
described in more detail in Marmoiton (2000). Our vehicle is
completely autonomous from sensors to computer. Figure 10
shows the VELAC vehicle and its various components.

In VELAC the main power supply is provided by an al-
ternator coupled to two 12-V batteries and a 24-to-220 V in-
verter. Our application uses a simple monochromic camera.
This camera is installed beside the interior rear-view mirror.
Other sensors (e.g. radar, GPS and gyrometer) and actuators
will be embedded in our vehicle in order to achieve vari-
ous applications (e.g. adaptative cruise control, and steering
and accelerator controls). The computer consists of a vir-
tual machine environment (VME)-type architecture which
includes: a vision machine, a high-level module and a con-
troller area network (CAN) bus interface. The vision ma-
chine is based on a multiple-instruction multiple-data module
with distributed memory. It includes four DEC-Alpha-type
processors connected to 32 MB of random-access memory.
Each one of these processors is connected to a communi-
cations processor (a T9000 transputer) to ensure rapid data
exchange. The high-level module receives information from
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Fig. 11. Images that provided the weakest probabilityPt

Table 1. Parameter values of the model used in the training stage (µ, mean;
σ, standard deviation)

α(◦) ψ(◦) Cl (m−1) L(m) x0(m)

µ 5 0 0 3.5 1.75

σ 0.5 6 0.005 0.5 1.75

the vision module and sensors. This module can thus calcu-
late the commands for the actuators and inform the operator
via a human–machine interface. The CAN bus interface op-
erates the communication between the VME architecture,
actuators and sensors. Our algorithm has been ported to run
on a single DEC Alpha processor, and other processors can
be used for other perception modules.

6 Results

The method has been tested on several kinds of road (marked
and unmarked), using images comprising 640×480 or 512×
512 pixels. The model vector for the recognition step is
composed of 20 image parameters and corresponds to 18
analysis zones in the image (9 for each of the left and right
edges). The camera used had a focal distancef = 12 mm
and was placed at a heightz0 = 1.5 m. The values used to
calculate the initial model in the training stage (Sect. 2.2.2)
are listed in Table 1.

6.1 Results on a workstation

This section presents the results obtained on a workstation
and when using the implementation on the dedicated ar-
chitecture. Figure 14 presents recognition results in various
cases on a motorway. In each row, the first and third im-
ages represent the road original image and the second and
fourth present the final result of the detection algorithm.
Figures 15 and 16 present results obtained on urban and
unmarked roads, respectively. The representation is similar
to that in Fig. 14. The low-level detector detects the maxi-
mum and minimum horizontal gradients (knowing that in a
given image, the sign of the gradient is constant for each
edge). Here the results are quite satisfactory despite shad-
ows (Figs. 14b2, 15a4 and 16c4), occlusions (Fig. 14d4 and
14e2) and lane changing (Fig. 14b4). Thanks to the coher-
ence between the road edges, the algorithm copes with the
presence of motorway exits (Fig. 14a4, 14c2 and 14c4). For
the results in Figs. 14f2, 14f4, 15b2, 15e4, 15f2 and 15f4 the
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road is not considered as found because criterionQ is not
reached (due to insufficient information). Nevertheless, the
results show the best model provided by the algorithm.

In a sequence of 1000 images, the algorithm considers
that the road is found (i.e. criterionQ is reached) in 95% of
cases. In the other cases, it still provides a very acceptable
result. Indeed, the image that provided the weakest criterion
is shown in Fig. 11. The total probabilityPt is 6%, but the
result seems nevertheless very satisfactory.

The proportion of images (5%) where the algorithm con-
siders the road as not found is important because criterion
Q was fixed in order to provide, in all the cases, a correct
result (see Eq. 3). Figures 12 and 13 present the evolution
of parametersx0 and ψ over a sequence of 1000 images,
equivalent to travelling 6 km when taking 5 images/s. The
variations in parameterx0 are due to bends in the road and
lane changes. The variations inψ (−2◦ < ψ < 2◦) also cor-
respond to these situations, but the values of this parameter
are much more disturbed because of the rapid variations in
this angle.

Figure 17 presents results relating to our lane-number
management module. These results represent the lane num-
ber of the road as well as the number of the lane in which
the vehicle is travelling. In Fig. 17b4, the algorithm detects
three lanes, and Figs. 17a2 and 17b2 represent cases with
occlusions. The computation time of the detection algorithm
(without the tracking step) varies from 70 ms to 200 ms on
an HP J282 workstation (18–1000 iterations). In the track-
ing phase – with a small search zone – the computational
time decreases, varying from 40 ms to 120 ms (18–500 iter-
ations). The computation time of the algorithm is dependent
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Fig. 14. Algorithm results on a motorway

on the number of iterations, and especially on the quality of
the first segment detection.

6.2 Results on our vision machine

The code is sequential and has been implemented on a single
T9000/DEC Alpha calculation module as described above.
The advantage of our algorithm is the low quantity of image
data needed for road detection: for each iteration only one
small zone of interest in the image has to be transferred. The

computation time of the method is not deterministic and the
on-board application is required to process approximately 5
images/s. These two factors are antagonistic, and it is nec-
essary to minimize the total calculation time.

A statistical study of the temporal behaviour of the algo-
rithm has been performed. The tested sequence corresponds
to travelling a distance of 12 km on a motorway with several
sharp bends and road-edge occlusions, under lane-changing
and poor lighting conditions. Among the 3000 images tested,
the algorithm succeeds in finding the road (i.e. criterionQ is
reached) in 2834 cases. The process is iterated 18–53 times
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Fig. 15. Algorithm results on urban roads

per image, which corresponds to a computation time of 60–
238 ms. The higher figure is rare, so that the processing rate
of 5 frames/s is usually obtained.

The minimum and maximum times required for the algo-
rithm to find the road are given in Table 2. The computation
times for each step of the algorithm are also given. The time
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Fig. 17. Lane-number management results

required to transfer data from the T9000 to the DEC Alpha
varies with the amount of transferred data, which depends
on the size of the interest zone needed by the algorithm.

The histogram in Fig. 18 shows the distribution of the to-
tal computational time in the 2834 cases when the algorithm
found the road. Figure 19 shows the distribution of the total
number of iterations required to obtain the optimal solution

in the 166 other cases when the algorithm could not found
the road.

The algorithm provides its best solution in less than 150
iterations (480 ms), which means that continuing to detect
the road after approximately 150 iterations is not useful. It
is therefore legitimate to consider that the computation time
does not exceed 500 ms. This seems rather too high, but
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Table 2. Minimum and maximum calculation times for the different stages
of the algorithm

Algorithm stage Min Max

Transfer from T9000 to DEC Alpha 28 ms 149 ms

Low level 4 ms 47 ms

Median least squares 16 ms 25 ms

Updating 1 ms 2 ms

Localization 1 ms 1 ms

Tracking 4 ms 4 ms

Total number of iterations 18 53

Total time 60 ms 238 ms
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Fig. 18. Distribution of the total calculation times during the tested sequence
where the algorithm succeeds in detecting the road

as illustrated in Fig. 19, it happens only a few times among
the 166 cases. The best-detected road model is obtained after
only 18 iterations for most (84%) of the images. According
to these results, we have limited the number of iterations for
a single image in the tracking phase to 150. This satisfies
the time constraint of 5 images/s.

7 Conclusions and future work

A new road-tracking technique has been described in this
article. The first module, which detects the road edges, uses
a model that characterizes the road edges in the image. This
model is updated in a recursive but optimal way after each
detection. The main advantages of this process, which uti-
lizes a powerful localized detection principle, are the preci-
sion (due to the high order of the model), the low sensitivity
to occlusions or marking imperfections, and the possibility
of applying it to marked and unmarked roads.

The second module computes both the vehicle location in
its lane and the road parameters. The third module provides
a confidence interval in which the first module will look for
road edges in the next image. Finally, the last module man-
ages the lane number. The implementation of the algorithm
on our experimental vehicle demonstrates the validity of the
approach suggested.

In the future we would like the algorithm to learn in real
time the initial model in order to adapt the recognition pro-
cess to any kind of road. Our method can be easily combined
with other modules (e.g. radar and GPS). We also plan to
incorporate an obstacle detector in order to determine the ve-
hicle representing the greatest danger in the image. Thanks
to the recognition method used, we can easily insert a new
parameter into our initial vector to achieve this modification.
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Fig. 19. Distribution of the total number of iterations required to obtain the
best solution when the algorithm considers the road as not found

This parameter will provide the obstacle-detection module
with information on the image zone where it is necessary
to seek an obstacle, but this would mean that the recog-
nition module will not seek road edges when an obstacle
is present. Finally, the whole process will be implemented
in our experimental vehicle in order to validate a complete
driver-assistance system.
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