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Convergence for a Liouville equation

Li Ma and Juncheng C. Wei

Abstract. In this paper, we study the asymptotic behavior of solutions of the Dirichlet problem
for the Liouville equation

−4 u = λ
K(x)eu∫
Ω K(x)eu

on a bounded smooth domain Ω in the plane as λ → 8mπ , where m = 1, 2, ... . The equation is
also called the Mean Field Equation in Statistical Mechanics. By a result of H.Brezis and F.Merle,
any solution sequence may have a finite number of bubbles. We give a necessary condition for
the location of the bubble points.
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1. Introduction

The Liouville equation appears in Differential Geometry and Physics. Its study
has a long history. One may see [5] and [11] for discussions about physical back-
ground. Motivated by the interesting work of H.Brezis and F.Merle [3], we study
the location of possible bubble points of a solution sequence when the Dirichlet
boundary condition is imposed.

Let Ω be a bounded smooth domain in the plane R2 . Given a positive Lip-
schitz function K on the closure of Ω , numerous authors have investigated the
existence of (multiple) solutions of the Dirichlet problem of the Liouville equation
on Ω ; namely, to find solutions u ∈ C2(Ω̄) satisfying

−4 u = λK(x)eu/
∫
Ω

K(x)eu, in Ω (1.1)
u = 0, on ∂Ω. (1.2)

Here 4 is the Laplacian on the plane R2 and λ > 0 . Note that if u is a solution
of (1.1-2), then by the maximum principle, we have u > 0 . Many previous results
deal with the case where K = 1 . In this case one has some good understanding
(see [5]). In particular, when Ω = B1(0) and λ < 8π , there is a unique solution
and as λ → 8π− , the behavior of solution set is analyzed in [19] and [23]; while
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λ ≥ 8π , it is known by using a Pohozaev-type identity that (1.1-2) admits no
solution at all (see [20]). However, S.S.Lin [14] (see also [5], [23] and [24] for
more) proved that if Ω is a suitable annulus, there are both radial and non-radial
solutions for any λ > 0 .

Recall that equations similar to (1.1) have been studied by many authors in the
80’s (see [1] for more references) in connection with Nirenberg’s problem. As in
the study of Nirenberg’s problem [15], there is at least one obstruction for solving
(1.1-2) (see Proposition 3 below). So the geometry of the domain is crucial for
the existence of solutions of (1.1-2). Some people were led to believe that for the
simply-connected domain, there is no solution at all for (1.1-2) with λ = 8π .
However, as pointed out in [5], there are regions, for example, the rectangles when
the ratio between the sides is large enough, for which the concentration does not
occur, so there is at least one solution for (1.1-2) with λ = 8π . The problem
(1.1-2) also has other interesting features, which are different from other nonlinear
problems like Nirenberg’s problem (see [15]) and the scalar curvature problem (see
[2]); in particular the blow-up analysis of H.Brezis and F.Merle [3]. In fact, for (1.1-
2) we do have multiple bubbles [12] and when K = 1 , S.Baraket and F.Pacard
[26] construct them by using the fixed point theorem. By contrast, we point
out that there is at most one bubble for a Palais-Smale sequence in Nirenberg’s
problem. Note that for problem (1.1-2) with λ large, the Palais-Smale sequence
is harder to analyze and it is still an open question. In what follows, we will write
|u|p = (

∫
Ω
|u|p)1/p for p ≥ 1 and let G be the Green function defined by

−4y G(x, y) = 8πδx, y ∈ Ω,

and G(x, y) = 0, y ∈ ∂Ω . We write R(x, y) the regular part of the Green function;
i.e., for x, y ∈ Ω ,

G(x, y) = −4log|x− y|+ R(x, y).

In the following theorem we give an explicit formula for the location of the
bubble points.

Theorem 1. Assume K is a smooth positive function on Ω̄ . Assume (un) is a
blow-up solution sequence of (1.1-2) with λ = λn where (λn) converges to 8Nπ .
Then there are finite points {xi}N

i=1 in the interior of Ω such that

un →
∑

i

G(., xi), in C2
loc(Ω̄ \ {xi}).

The set {xi} satisfies the relations

1
8π

5 logK(xi) +5Hi(xi) = 0,

where
Hi(x) = R(x, xi) +

∑
k 6=i

G(xk, x)
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and i = 1, ..., N . In particular, for N = 1 , we have
1
8π

5 logK(x1) +5H(x1) = 0.

Here H(x) = R(x, x1) .

The proof of this theorem is based on the moving plane method and the Po-
hozaev identities. The idea of using the Pohozaev identities in asymptotic analysis
has been known for many years and one may see [20] for related works cited there.
As a side-remark, we point out that following [10] and [28], Chen and Li ([7] and
[8]) used the moving plane method to obtain some beautiful apriori estimates for a
class of elliptic partial differential equations in 2-dimensional domains. We remark
that the special and important case when K = 1 was treated by K.Nagasaki and
T.Suzuki (see [23] and [19]) using another method, which may also be applied to
the case where K 6= constant (see [27]). It is clear that our result is also true if
Ω is replaced by a compact 2-dimensional Riemannian manifold (M, g) and the
equation is replaced by

−4M u = λ{ K(x)eu∫
M

K(x)eu
− 1}

on M . An interesting question may be to study the related result for the corre-
sponding Neumann problem.

2. Some Preparations

We will use the blow-up analysis result of H.Brezis and F.Merle [3] for solutions
of (1.1-2) with

V(x) =
λK(x)∫

Ω
K(x)eu

in their notation. We recall their Theorem 3 [3] and a result from Y.Y.Li and
I.Shafrir [13] in the following form:

Proposition 2. Assume the function Vn ∈ C1(Ω̄) satisfying

0 < a ≤ Vn(x) ≤ b < +∞
and

| 5Vn(x)| ≤ B, for x ∈ Ω̄.

Given a sequence {ξn} of regular solutions of

−4 ξn = Vn(x)eξn , on Ω,

with the condition
sup

∫
Ω

Vneξn < +∞.
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Then there is a subsequence of {ξn} , still denoted by {ξn} satisfying either (i)

{ξn} is bounded in L∞loc(Ω)

or (ii)
ξn(x) → −∞ uniformly on compact subsets of Ω

or
(iii) there is a finite non-empty set S = {ai} of Ω such that

ξn(x) → −∞ uniformly on compact subsets of Ω \ S

and for each ai there is a sequence (xn) with xn → ai and ξn(xn) → +∞ . In
addition, Vneξn converges in measure to

∑
i diδi with di = 8πmi where mi ≥ 1

is some integer.

We remark that the original statement of Theorem 3 in [3] is different from the
form above, but their argument can be modified to cover this case.

Now we recall some well-known facts including the Pohozaev identities.

Proposition 3. Assume ξ satisfies

−4 ξ = V(x)eξ, on D, (V)

where D is a domain in R2 . Then
1. Assume D is a closed bounded smooth domain. Then the Pohozaev identi-

ties assert that:∫
D

5V(x)eξdx =
∫

∂D

(∂νξ 5 ξ − 1
2
| 5 ξ|2ν + V(x)eξν)dσ,

and ∫
∂D

[(ν.5 ξ)(x.5 ξ)− (x, ν) |5ξ|2
2 ]dσ +

∫
∂D

(x, ν)V(x)eξdσ
=

∫
D
(2V + x.5V)eξ,

where ν is the unit outer normal on ∂D . We will call the last relation the original
Pohozaev identity.

2. All regular solutions of (V) with V = 8π and D = R2 can be written as

φa,µ(x) = log
µ2

(1 + πµ2|x− a|2)2
where a ∈ R2 and µ > 0 . Here we say that ξ is regular if ξ satisfies the
condition

∫
R2 eξ < +∞ .

The proof of the Pohozaev identities is standard and it is omitted here. As for
the proof of the second part of Proposition 3 above, one may see the work of Chen
and Li [8].

We now study the behavior of a sequence of solutions near the boundary of the
domain. Taking a sequence λn → 8mπ , we study the convergence of (un) , where
un := uλn

. Assume
Mn = un(zn) = maxΩ̄un
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Proposition 4. There is an uniform positive constant d1 such that

dist(zn, ∂Ω) ≥ d1

and un is unformly bounded in an uniform neighborhood of the boundary of the
domain.

This proposition actually can be derived from the works of Gidas, Ni, and
Nirenberg [10] and De Figueiredo, Lions, and Nussbaum [28] (see [8] and [7] for
related results). However, since it will play a very important role in the next
section, we give a proof of it.

To prove this result, we follow the argument of [28] (see also [23]) and we need
only to prove that there is an uniform constant d2 > 0 depending only on Ω and
| 5 (logVn)|L∞ such that for any x0 ∈ ∂Ω , one has dist(x0, zn) ≥ d2 . It is
clear from our assumption on Ω that ∂Ω has the uniform exterior ball property.
So there is an uniform constant r > 0 such that for every x0 ∈ ∂Ω , the ball
Br(x1)∩ Ω̄ = {x0} where x1 = x0 + rνx0 and νx0 is the unit outer normal vector
of ∂Ω at x0 . Let y = x− x1 .

Define
wn(y) = un(x1 + r2 y

|y|2 ).

Then we have

−4 wn(y) =
r4

|y|4 Vn(x1 + r2 y

|y|2 )ewn(y), in Ω′

(we will write the right side by V∗(y, wn) ) and

wn = 0, on ∂Ω′.

Here Ω′ is the image of the domain Ω under the conformal inversion x → y =
r2 x−x1
|x−x1|2 . It is easy to verify that for d > 0 small,

∂ν0V
∗(y, w) ≤ 0

for every y in a d -neighborhood of ∂Ω′ , where ν0 is the unit outer normal of
∂Ω′ at x0 . Then we can apply the argument of Theorem 2.1’ (see also p.223) in
[10] and conclude that there is an uniform constant d2 > 0 such that there is no
stationary point of wn (and un ) in the d2 -neighborhood of ∂Ω′ . Assume Mn →
+∞ (otherwise we are done) and zn → z . Then z satisfies dist(z, ∂Ω) ≥ d2 .
Therefore, we have the uniform apriori estimate in L∞(Ωd2/2) for (un) , where

Ωd1 = {x ∈ Ω̄; dist(z, ∂Ω) ≤ d1}.
¤

In the following section, we will prove our main result.
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3. Proof of Theorem 1

Take a sequence of λn → 8Nπ and the corresponding solution sequence ( un ).We
assume Mn → ∞ . We first note, by Proposition 1, that there exist N -points
{xi} and N -integers {mi} such that

Vneun →
∑

i

αiδxi

weakly in measure, where αi = 8πmi and

Vn = λnK/

∫
Ω

Keun .

Then, using Green’s formula, we find that

un(x) =
∑

i

αiG(x, xi) +
∫

Ω

∑
i

αi[G(x, y)−G(x, xi)]
K(y)eun(y)∫

Ω
Keun

dy + ◦(1).

Note, for any r > 0 , we have∑
i

αi[G(., y)−G(., xi)] → 0, in C2(Ω̄ \ UiBr(xi))

as y → xi . Using the convergence in measure, we obtain that

un(x) →
∑

i

αiG(x, xi) on C2
loc(Ω̄ \ {xi}).

For simplicity we write

Ḡ(x) =
∑

i

αiG(x, xi).

We now use the Pohozaev identities to ξ = un and V = Vn on the region
D = Br := Br(x1) . We get that∫

Br

[5logK(x)]Vn(x)eun =
∫

∂Br

[∂νun 5 un − 1
2
| 5 un|2ν + Vneunν].

Assume x1 = 0 and we write

Ḡ(x) = −4α1log|x|+ H(x)

where
H(x) =

∑
i6=1

αiG(x, xi) + α1R(x, 0).

Notice that for φ ∈ C1
0(Br) with φ = 1 on Br/2 , we have

∫
Br

[5logK(x)]Vneun

=
∫
Br

φ[5logK(x)]Vneun + ◦(1) → α1 5 logK(0).
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In the last step we used the measure convergent of Vneun . By the same argument
we have ∫

∂Br

Vneunν → 0.

On the other hand, we have∫
∂Br

[∂νun 5 un − 1
2 | 5 un|2ν]

→ ∫
∂Br

[∂νḠ5 Ḡ− 1
2 | 5 Ḡ|2ν].

Combining all these together we find

α1 5 logK(0) =
∫

∂Br

[∂νḠ5 Ḡ− 1
2
| 5 Ḡ|2ν].

In the following, we compute the integrals on the right side one by one. Without
loss of generality, we assume α1 = 8π . In fact, following the argument of Theorem
0.2 in Y.Y.Li [12] we can show by using the moving plane method that all αi =
8π . We remark that Y.Y.Li [12] treats the general case when the domain is a
compact Riemannian metric surface without boundary; however, his argument
can be applied to our case because of the facts that our problem is local in nature
and any Riemannian surface is locally conformal flat. To keep our presentation
simple, we will not repeat it here.

Note first that, on ∂Br ,

ν = x/r = 5r,

5Ḡ(x) = −45r
r +5H(x),

and
5νḠ(x) = 5rḠ = −4

r
+5rH(x).

Then,

| 5 Ḡ(x)|2 =
16
r2
− 8

r
5r H(x) + | 5H(x)|2,

5Ḡ5ν Ḡ =
16
r2
5 r − 4

r
(5rHν +5H) +

16
r2
5r H 5H,

and

5Ḡ5ν Ḡ− 1
2 | 5 Ḡ|2ν

= 8
r2 ν +5H 5r H − 4

r 5H − 1
2ν| 5H|2.

From these, we obtain that∫
∂Br

(5Ḡ5ν Ḡ− 1
2 | 5 Ḡ|2ν)

= −8π5H(x∗) + ◦(1),

where x∗ → 0 as r → 0 . Here we used the fact that∫
∂Br

ν = 0.
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Taking r → 0 we find
−8π5H(0) = 5logK(0),

which is the desired conclusion.
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