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Accurate estimates of the velocity and acceleration of a
platform are often needed in high dynamic positioning,
airborne gravimetry, and geophysics. In turn, differen-
tiation of GPS signals is a crucial process for obtaining
these estimates. It is important in the measurement do-
main where, for example, the phase measurements are
used along with their instantaneous derivative (Doppler)
to estimate position and velocity. It is also important in
postprocessing, where acceleration is usually estimated
by differentiating estimates of position and velocity.
Various methods of differentiating a signal can have very
different effects on the resulting derivative, and their
suitability varies from situation to situation. These com-
ments set the stage for the investigations in this article.
The objective is twofold: (1) to carry out a comprehensive
study of possible differentiation methods, characterizing
each in the frequency domain; and (2) to use real data to
demonstrate each of these methods in both the measure-
ment and position domains, in conditions of variable,
high, or unknown dynamics. Examples are given using
real GPS data in both the measurement domain and in
the position and velocity domain. The appropriate dif-
ferentiator is used in several cases of varying dynamics to
derive a Doppler signal from carrier phase measure-
ments (rather than using the raw Doppler generated by
the receiver). In the static case, it is seen that the accuracy
of velocity estimates can be improved from 4.0 mm/s to
0.7 mm/s by using the correct filter. In conditions of me-
dium dynamics experienced in an airborne gravity sur-
vey, it is demonstrated that accelerations at the 2-4 mGal
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level (1 mGal = 0.00001 m/s®) can be obtained at the required
filtering periods. Finally, a precision motion table is used to
show that when using the correct filter, velocity estimates
under high dynamics can be improved by an order of mag-
nitude to 27.0 mm/s. © 1999 John Wiley & Sons, Inc.

INTRODUCTION

. he differentiation of discrete-time signals in

| GPS has been frequently studied for velocity
determination. In the measurement domain, investiga-
tions have been carried out to derive a Doppler by dif-
ferentiating the carrier phase measurements rather
than using the Doppler generated by the receiver. This
approach has been considered advantageous because
the resulting Doppler is less noisy than the raw Doppler.
Several methods of differentiation have been investi-
gated for this purpose. Fenton and Townsend (1994)
demonstrated the use of parabolic functions. Both Can-
non et al. (1997) and Hebert (1997) approached this task
using simulated GPS data by applying low-order Taylor
series approximations of the derivative and by differen-
tiating cubic spline fits. A Kalman filter approach was also
proposed and applied by Hebert (1997). In each of these
cases, good solutions were observed in static and low dy-
namic cases, but errors increased with higher dynamics.
Several investigations have also been made into de-
termining acceleration by differentiating position and
velocity. Consider, for example, the following studies of
acceleration determination for airborne gravimetry:
Brozena et al. (1989), Wei et al. (1991), and Van Dieren-
donck et al. (1994). However, little work has been done
in considering different methods of differentiating these
signals, especially in cases that are not band limited.
To evaluate and compare different methods of dif-
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ferentiation, the concept of an ideal differentiator will
be described in Section 1. This will be used along with
the frequency responses of each method to characterize
their response to different vehicle dynamics. The use of
low-order Taylor series approximations of the derivative
will first be studied. Design of differentiating filters us-
ing the Fourier series method will then be treated. For
this approach, it will be shown that important errors in
the resulting responses can be reduced using a window
technique. The concepts of numerical and optimal de-
sign of differentiating filters will also be presented. It
will be shown that these types of filters are required
when differentiating signals for conditions of variable,
high, or unknown dynamics.

Additionally, because it is intuitively pleasing to es-
timate the derivative by fitting a curve to the signal and
differentiating it, least-squares polynomial fits will be
considered in detail. It is obvious that in addition to
differentiating the signal, such a fit offers a certain level
of smoothing that is a function of parameters such as
polynomial order and the length of the window in
which the fit is made. The problem of fitting curves to
the data will be reformulated so that the least-squares
adjustment becomes a simple time domain convolu-
tion. Using this knowledge, the behavior of best-fit poly-
nomials for differentiation is characterized as a function
of both polynomial order and window length, and their
ranges of applicability are quantified in terms of effec-
tive frequency range.

To bridge the gap between theory and application,
the practical implementation of each of these differen-
tiators will be discussed in Section 2. It will be shown
that each method can be applied to real GPS data using
a discrete time convolution. In other words, they can all
be considered as nonrecursive or finite impulse re-
sponse (FIR) filters. Issues of phase response and filter
order will also be discussed.

Several examples using real GPS data will then be
given in Section 3 to demonstrate the effectiveness and
limitations of these filters for determining vehicle veloc-
ity and acceleration under different dynamic condi-
tions. First, differentiation of signals in the measure-
ment domain will be treated. A preprocessor has been
developed that derives a Doppler by differentiating car-
rier phase measurements using any of the above-
mentioned differentiators. Several methods will then be
applied to three cases of increasing dynamics, namely, a
static baseline, an airborne gravimetry survey, and data
collected on a precision motion table. In the latter two
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cases, verification of results is accomplished using an
independent reference, i.e., the known gravity field and
a precise reference trajectory, respectively. Differentia-
tion of signals in the position and velocity domains will
then be considered in Section 4. The precise motion
table will be used to determine the accuracy with which
velocity can be determined from position, and the air-
borne gravity case will again be used to determine the
accuracy of acceleration estimates derived from veloc-
ity. Finally, some conclusions and recommendations for
future research will be presented.

1. PROBLEM STATEMENT AND ANALYSIS

In this section, the problem of estimating the derivative
of a discrete time signal will be treated in detail. Various
methods of differentiation will be analyzed, leading to
discussions about their suitability in different situa-
tions. The concept of an ideal digital differentiator is
described and will be used to characterize the behavior
of each differentiator in the frequency domain, or as a
function of different vehicle dynamics. After this, the
discussion proceeds by analyzing each of the proposed
methods of differentiation in the frequency domain.
The methods investigated are the low-order Taylor se-
ries approximations, designs based on the Fourier series
and window techniques, numerical designs, optimal de-
signs, and finally the differentiation of polynomial and
spline fits. The results of these analyses will be used in
Section 2 to develop effective methods of deriving
Doppler and estimating velocity and acceleration from
position and velocity estimates, respectively.

1.1. The ideal differentiator

To differentiate a discrete time signal, what is needed is
a discrete time system that, when applied to input
samples of a bandlimited continuous time signal, pro-
duces a sample of its derivative. Although it is impos-
sible to design such a system exactly, consider what it
might look like. The ideal digital differentiator can be
written in the following form (from Antoniou, 1993, p.
303):

Wy

H(e’7T) = jo for 0 < |o| < 5

ey

where o is the frequency, o, is the sampling frequency,
and T is the corresponding sampling period. The mag-
nitude of the frequency response of this system is
shown as the dotted line in Figure 1. Our goal in deriv-
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FIGURE 1. Magnitude response of the ideal dif-
ferentiator and two low-order Taylor series ap-
proximations.

ing Doppler measurements, for example, can therefore
be seen as approximating this idealization and applying
it to the phase measurements. It will be used later to
assess the quality of each of the differentiators pro-
posed.

1.2. Design and implementation of
differentiators

In GPS systems, the application of digital filters is re-
stricted by several important practical considerations.
As will be seen, many of these considerations are dealt
with by using FIR filters. This is mainly done because of
the ease of filter implementation. Practically, an FIR dif-
ferentiator can be applied to a discrete data set x(#)
using a convolution as follows:

N-1

X' = 2 h(k)x(t— k) )
k=0

where x'(#) is the derivative of the input signal x(#) at
time t, and 7 is the impulse response with order (N — 1)
corresponding to the differentiator H. Theoretically, the
relationship between the impulse response # and the
ideal digital differentiator in Eq. (1) is given by

wg/2 . .
" He™ e dw ©)

—ws/2

1
h(nD =

Practically then, the design of a digital differentiator
becomes the problem of designing an impulse response

h that can be applied to a data set using Eq. (2) and that
has a frequency response as close as possible to that in
Eq. (1).

A second consideration is the high dependence of
the output of the system on the temporal characteristics
of the signals. If filters are designed to have a symmetric
impulse response, a FIR filter has linear phase, meaning
that only a constant time delay will be caused and easily
corrected for, especially in postmission applications. A
third consideration is the order of the filter, which is
related to the length of the window in which a filter is
applied. If a filter has to be reset because of unavoidable
events, then errors caused by edge effects have to be
dealt with. These errors will affect less data if the filter
order is small. Cycle slips in GPS are a good example of

such unavoidable events.

1.3. Low-order Taylor series approximations
Low-order Taylor series approximations obtained from
the definition of the derivative of a continuous function

are given as follows:

lim Xx(t+388 — x(p
(0= 5 @

By using Taylor’s Theorem, it can easily be shown (as
in Cheney and Kincaid, 1994, pp. 151-153) that the first-
order central difference approximation to this deriva-
tive is given by

x(t+d1) — x(t- d%)
28t

x'(H= (5)

In this way, the derivative of x at time ¢ is estimated
using data at two epochs (times ¢+ 8¢ and ¢ — 3#). This
is the first-order central difference approximation.
Higher order central differences that use more data ep-
ochs to either side of time ¢ can also be developed along
these lines. The third-order central difference, for in-
stance, is of the form

x(t+ 38 — x(t—31) x(t+ 281) — x(t— 281)

x(=45 6057 - 6057
X(1+ 351) — x(£— 350)
* 6057 )
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The first- and third-order differentiators given above
have the following impulse responses:

1 T
:5[1 0 -1]" and )

1
— — — — —_— T
h_60 [1 9450 -459 -1] (8)

and have amplitude responses as shown in Figure 1,
assuming a sampling frequency o, of 1 Hz.

In examining Figure 1, a first observation is that the
Taylor series are clearly good approximations of the
ideal differentiator at low frequencies. The first-order
approximation begins to deviate considerably from
ideal at about 0.05 Hz and the third-order at about 0.15
Hz. This has several implications. First, if the signal be-
ing differentiated is primarily a very low-frequency sig-
nal, then either of these approximations may suffice.
Second, if this is the case and there exists mainly noise
in the upper part of the spectrum, then these differen-
tiators will also serve to suppress that noise. Obviously,
the applicability of these differentiators depends on the
signal to be differentiated. Caution must be exercised if
the signal of interest has medium- to high-frequency
components because this type of differentiator will re-
sult in spectral distortion at mid to high frequencies,
and ultimately in a derivative of poorer quality.

Investigations where low-order Taylor series ap-
proximations have been used in the GPS measurement
domain include both Cannon et al. (1997) and Hebert
(1997). Results verify the observations made above. The
approximations worked well for static and low dynamic
data sets but gave poor results for higher dynamics.

By increasing the order of the Taylor series approxi-
mation being used, better approximates of the ideal dif-
ferentiator can be obtained, especially at low frequen-
cies. This will be examined further in the discussion of
numerical designs in Section 1.6.

1.4. Fourjer Series design of differentiators

Equation 3 relates the impulse response % and the fre-
quency response H of a differentiator and can be ex-
ploited to estimate the impulse response from the ideal
response given in Eq. (1). Excellent discussions of this
method are given in Antoniou, 1993 (p. 280) and Orfani-
dis (1996). This can be done in MATLAB™ using the
IFFT function and by truncating and delaying the re-
sulting impulse response. For a filter length of 25, this
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yields the differentiator shown in Figure 2. In the upper
graph, the amplitude response of the filter and the ideal
response are shown. In the lower graph, the error in the
amplitude response is shown.

The oscillatory deviations of the filter from the ideal
case in Figure 2 are commonly referred to as Gibbs’
oscillations. These are caused by the discontinuity in
H(&*") at w=w,/2 and can be reduced by using the win-
dow technique (Antoniou, 1993, p. 282). Essentially, this
technique replaces the abrupt truncation of the impulse
response by a gradual tapering that is defined by a win-
dow function. There are many window functions avail-
able. For example, the Blackman function is given by
the following equation from Antoniou, 1993 (p. 290):

w(nl) =
12+ 05 2nn 0.08 4ﬂn'nf N-1
[ —
0.42 +0. cosN_1+ . cosN_1 or n| = >

0 otherwise

9

and illustrated in Figure 3a. Figure 3b and 3c show the
impulse response & corresponding to the filter shown in
Figure 2, before and after application of the Blackman
window function with a cutoff frequency of o, = 0.4 Hz.
Clearly, the window function reduces the magnitude of
the impulse response to either side of the center of the
filter.

Figure 4 shows the corresponding effect on the am-
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FIGURE 2. R 25th-order differentiator de-
sioned using the Fourier sepies.
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FIGURE 3. (a) Impuise response of the 25th-
order Fourier series differentiator. (b) Blackman
window. (c) Windowed impulse response.

plitude response of the filter. As in Figure 2, the upper
graph shows the amplitude response of the filter and
the ideal response, and the lower graph shows the error.
The advantage of the window function is made clear by
the reduction in the magnitude of Gibbs’ oscillations. In
examining Figures 2 and 4, it is clear that a window
function can improve the amplitude response by sev-
eral orders of magnitude. By using only symmetric win-
dow functions, the symmetry and therefore the linear
phase properties of the filter are preserved. Examples of
other window functions are given in Antoniou (1993,
pp. 282-295) and Orfanidis (1996). Examples where win-
dow functions have been used in the design of filters for
GPS-related research include Hammada (1996) and
Skaloud and Schwarz (1998). In both cases, they were
used for the design of low-pass filters.

On inspection of the magnitude response in Figure
4, it is clear that a differentiator that has been designed
by using the Fourier series method will offer a good
approximation of the ideal differentiator when a win-
dow function is used. It is also clear that such a filter has
a wider range of applications than the low-order Taylor
series approximations seen in Section 1.3 because it of-
fers a better response over the whole frequency band.
This has several implications. If the signal being differ-
entiated has components at frequencies across the
spectrum, then the output of the system will be a better
approximation of the derivative. If noise only exists
across a part of the spectrum, then the system will tend

to amplify the noise. This is especially true if the signal
of interest contains only low-frequency information.

By using larger filter orders, errors in the filter re-
sponse can be decreased and the bandwidth of the filter
can be increased. This is often undesirable, however, for
instance, if the data are subject to unavoidable breaks
such as cycle slips. A compromise must be reached be-
tween approximation error and tolerable filter order.
This will depend on the application and will vary from
situation to situation.

1.5. Optimai designs

Although no discrete-time system can be designed to
perfectly match the ideal differentiator, FIR filters can
be designed that very closely approximate it for all fre-
quencies. In optimal design, the impulse response of
the filter is obtained by minimizing the error in its am-
plitude response (with respect to the desired response)
using optimization methods. In this article, we will use
the Remez Exchange Algorithm as outlined in Antoniou,
1993 (pp. 578-586). Consider Figure 5, which shows the
amplitude response of a 25th order differentiator de-
signed using the Remez Exchange Algorithm provided
in software accompanying Antoniou, 1993. The filter
was designed so that it has a transition band between
0.4 and 0.5 Hz, ensuring no signal content above the
Nyquist frequency, o,/2 = 0.5 Hz, and therefore no ali-
asing of the signal.
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FIGURE 4. Reduction of Gibbs' phenomenon us-
ing window functions.
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FIGURE 5. Amplitude response of the Remez
25th-order differentiator.

Clearly, this filter offers a better approximation to
the ideal case over the whole frequency band than any
presented previously. In turn, this provides a good so-
lution for conditions of unknown or high dynamics.

1.6. Numerical designs

As mentioned in Section 1.3, better approximations of
the ideal differentiator can be obtained from Taylor Se-
ries by using a higher order expansion. This is a subset
of the filter design problem commonly referred to as
numerical design. Consider a filter design based con-
ceptually on a central difference formula derived from a
25th order Taylor series expansion of the derivative. Fig-
ure 6 shows the amplitude response of this filter and its
deviation from ideal. The figure clearly demonstrates
that a higher order Taylor series approximation better
represents the ideal case over a wider bandwidth.

It is interesting to note that although the amplitude
response of this filter over the whole spectrum is not as
good as the one designed using an optimal approach, it
is very good in the low-frequency band. As we will see in
Sections 3 and 4, this makes it especially well suited for
cases where the signal is primarily low-frequency in na-
ture (like static surveys and airborne gravity).

1.7. Curve fitting for differentiation

An intuitive approach to estimating the derivative of a
noisy discrete-time signal is by fitting a curve to it and
then differentiating the curve fit. For purposes of illus-
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tration, consider using a least-squares approach to de-
termine a polynomial that best fits the data and that can
then be differentiated. As well as providing an estimate
of the derivative, this will offer a certain level of smooth-
ing that, depending on the situation, may or may not be
desirable. The amount of smoothing will be a function
of the order of the polynomial and the length of the
sliding window in which the data are being fit. Other
base functions such as splines may also be used for the
curve fit.

Let the discrete-time signal at time instant £, be
given by f, and let the sliding window of length (W+1) be
centered around time f; and index it such that the index
i varies from —W/2 to W/2. Within this window, the
best fit polynomial of order M therefore has the form

P(i)=ay+ ayi+ a, ... + api™ (10)
and its first derivative is given by

apP(i)
7<t-:czl+2612i+...+M6¢Mi1‘/"1 (11)

The polynomial coefficients in the above equations
can be solved for using the standard unweighted least-
squares solution equation

a=(ATA)ATF (12)
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FIGURE 6. The amplitude response of a 25th-
order numerical differentiating filter.



where a=[a, a4, ... a,]” and the i row of A and f are
given by

dag da, """ day, |,

B [ dp dp dP]
" il ww (13)

£;= [fin] 2’2

Performing this type of adjustment for every data
point is computationally very burdensome. This can be
remedied by making two major simplifications. First,
because the term (ATA) “*AT in Eq. (12) is independent
of the signal f; it only needs to be calculated once. Sec-
ond, by setting i = 0, the expression for the value of the
derivative in Eq. (11) at the center point of the window
(t=ty) is given by

dP(0)
T T4 (14)

Thus, only one coefficient is needed for each deriva-
tive to be calculated. This means that for the first de-
rivative, only the second row of the term (ATA) *AT is
needed. The solution for the value of the function re-
duces to a convolution. If the second row of the above
matrix is given by h, then the first derivative of the func-
tion is given by

df, dr@) &
‘d—fz—gt—= > My (15)

=—Wr2

This approach to fitting polynomials to a data set us-
ing least squares is referred to as Savitzky-Golay
smoothing [see, e.g., Press et al., 1992 (p. 650-655)].

These curve-fitting filters will have symmetric im-
pulse responses and will therefore have linear phase
response causing only a constant time delay. When for-
mulated as in Eq. (15), least-squares fitting of polyno-
mials to a discrete time signal can be seen as applying
an FIR filter. The least-squares adjustment becomes a
filter design. This approach allows one to quantify the
amount of smoothing that a best-fitting polynomial of-
fers as a function of both the order of the polynomial M
and the size of the sliding window (W+1).

It is important to realize how this type of filtering
differs from optimal FIR filtering (as seen in Section
1.5). Although both might use a least-squares fit, they
are fundamentally different. A filter designed using a
curve-fit approach uses least squares to fit a curve to the

data being operated on. It will have a corresponding
frequency response. On the other hand, optimal design
techniques use a least-squares fit to specify the desired
frequency response.

Figure 7 shows the amplitude response of five poly-
nomial fits. They are a set of 5th-order polynomials
(M=5) designed with window lengths W= 101, 49, 25, 15,
and 7. Also shown for comparison is the amplitude re-
sponse of the ideal differentiator. Notice first that each
offers a reasonably good approximation of the ideal
case at low frequencies. The frequency range over
which they do a good job of approximating the ideal
differentiator is clearly a function of the length of the
window. Intuitively this makes sense: If the sliding win-
dow is short, then higher-frequency information will be
identified, whereas if it is large, only the low-frequency
information will be preserved.

A frequency domain analysis allows one to quantify
the amount of differentiation and smoothing being
done by a polynomial fit. For example, imagine using a
polynomial with M=5 and W=15 to differentiate a signal.
Figure 7 shows that a good estimate of the derivative
will be obtained for information up to approximately
0.08 Hz. Above that frequency, the information content
will be attenuated. The first zero of this filter is at 0.19
Hz, and there are four more rises in the response as
frequency increases. This characteristic can be useful or
disastrous, depending on the signal being differenti-
ated. This filter should only be applied if one is inter-
ested in the derivative of the information below 0.08 Hz.
If there is any information content above 0.08 Hz that
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FIGURE 7. Amplifude responses of 5th-order
pelynomial fits as a function of filter lengih W.
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cannot be considered noise, then the output of the filter
will give a very poor and perhaps unacceptable esti-
mate.

The behavior of a polynomial fit is also a function of
the order of the polynomial. Figure 8 shows a plot of the
maximum undistorted frequency (MUF) as a function of
window length for polynomial orders M =2, 3, 5, 10, and
20. (MUF is defined as the frequency above which the
filter no longer approximates an ideal differentiator
with more than 0.5% of the maximum frequency con-
tent of the signal.) This figure can be used to determine
the range of parameters that are suitable for a given
application. Obviously, a polynomial fit can only be
used to estimate the derivative in cases where the sig-
nals are band-limited and low frequency in nature. The
range of applicability is a function of the parameters M
and W as given by Figure 8.

Because the curve fitting problem has been treated
by using polynomial fitting as an example, some com-
ments about other fits might be in order. Whether the
curve being fit is a polynomial, parabola, or cubic
spline, its frequency response will be similar in nature
to those in Figure 7; it will be suitable for band-limited,
low-frequency signals, and it will only approximate the
ideal differentiator up to a certain frequency. In turn,
this means that they can be used only for low dynamic
or static conditions. This has been confirmed in the
following investigations. Fenton and Townsend (1994)
used a parabolic fit within the receiver to estimate the
derivative. They found that velocity results were im-
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FIGURE 8. Maximum undistoried freguency as
a function of window length for polynomial orders
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proved in static cases. Both Cannon et al. (1997) and
Hebert (1997) approached this task in post mission us-
ing simulated GPS data by differentiating cubic spline
fits. In each of these cases, good solutions were ob-
served in static and low dynamic cases, but errors in-
creased with higher dynamics.

1.8. Comments on other differentiation
technigues

By restricting this discussion to the use of FIR filters,
several other approaches have been ignored. For ex-
ample, a Kalman filter smoother was studied in Hebert
(1997). It is well known that a Kalman filter smoother
will result in a smooth, band-limited solution. This re-
sult was confirmed in Hebert (1997). Because this ap-
proach has been shown to offer little or no improve-
ment over the low-order Taylor series approximations,
it will not be treated in this article.

2. METHODOLOGY

All of the differentiators treated in this article are FIR
filters with linear phase. This means that they can be
applied to any GPS data set using the discrete time con-
volution given by Eq. (2). Two software packages have
been developed at the University of Calgary for this pur-
pose: One is a preprocessor for differentiation in the
measurement domain, and one is a postprocessor for
differentiation in the position and velocity domains.

For the measurement domain investigations that
are carried out in Section 3, the preprocessor called
DER_DOP (DERived DOPpler) was written to apply any
impulse response to the phase measurements accord-
ing to Eq. (2). It derives a Doppler by differentiating the
carrier phase data. A phase velocity trend method was
used to detect cycle slips using the raw Doppler observ-
able, and the filter was reset if gaps in the data or cycle
slips were detected. In cases when the filter was reset, a
central difference approximation was used to estimate
the Doppler. This corresponds to a period that is half of
the order of the filter each time the filter is reset. Each
satellite is treated independently, meaning that a slip on
one will not reset the filter for other satellites.

The data were then processed using an L1 float so-
lution in the software package KINGSPAD (Kinematic
Geodetic System for Position and Attitude Determina-
tion) developed at the University of Calgary.

For the position and velocity domain investigations
that are carried out in Section 4, the postprocessor
called GPSACC was used. It also applies any impulse



response according to Eq. (2). Any gaps in the time-
tagged position and velocity solutions are filled in using
a linear interpolation before filtering.

In the numerical studies, curve fits and Fourier se-
ries techniques are not used. As discussed previously,
their range of applicability is severely limited.

3. MEASUREMENT DOMAIN ANALYSES (DERIVED
DOPPLER)

To analyze the performance of the different methods of
differentiation in the measurement domain, three test
data sets are analyzed: first, a static data set on a 6-m
baseline; second, four flight lines from an airborne gra-
vimetry test conducted by the University of Calgary are
examined; finally, the results of a test on an Anorad
precision motion table are presented. All three data sets
were collected using a 1-Hz GPS sampling frequency.

3.1. No dynamic case: static data analysis
For the static case, data were collected on a baseline of
approximately 6 m with an Ashtech Z-XII and a Trimble
4000SSE receiver. Approximately 40 minutes of data
were collected for the analysis. After a static initializa-
tion period of 100 s, the rest of the data were processed
in kinematic mode. The errors in velocity obtained by
deriving a Doppler using the 1st- and 3rd-order Taylor
series approximations and 49th-order differentiators
designed using numerical and optimal approaches are
displayed in Table 1. Also shown are the results ob-
tained if the receiver-generated raw Doppler is used.
Table 1 shows that each method of phase differen-
tiation provides significantly better results than the raw
Doppler in both root-mean-square (RMS) and mean
values for all three direction components. The best RMS
improvement is realized using the first-order Taylor se-

GPS velocity errors for static data

BMS (mm/s) Wean (mm/s)
Doppler type I E ] i E ]

Raw 400 3.11 7.04 020 -132 1.75
1st order 0.65 0.48 1.00 0.20 -0.05 0.18
3rd order 093 070 154 021 -0.07 0.17

Numerical (49) 1.24 096 2.16 0.20 -0.05 0.17
Optimal (49) 1.33 1.04 232 020 -0.05 0.18
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FIGURE 9. Spectrum of residuals for first-
order and Remez (dotted fline) differentiators,
North direction, static data.

ries approximation, followed by the third-order and the
numerical filters. The optimal differentiator gives the
poorest results, but this is expected. Because the data
set is static, there is no velocity information in the fre-
quency bands where the Taylor series approximations
begin to deviate from the ideal differentiator. Therefore,
instead of causing differentiation errors in this band,
the two approximations actually behave similarly to
low-pass filters and dampen some of the higher fre-
quency noise. However, because the numerical and op-
timal differentiators are still close to ideal in the higher
band, they tend to amplify the noise. This effect is
shown in Figure 9, where the frequency spectrum of the
residuals for the first-order and optimal differentiators
for the north direction are displayed.

It is also important to notice that the numerical
differentiator offers a better solution than the optimal
differentiator for static cases. This can be explained by
looking at Figures 5 and 6. The error in the response of
the numerical filter at very low frequencies is on the
order of 1 X 1078, whereas it is on the order of 1 x10~°
for the optimal filter.

3.2. Low dynamic case: airborne gravimetry
iesting

Airborne gravimetry is an emerging technology that
provides a powerful tool for both geodesy and geophysi-
cal exploration. Using airborne techniques, detailed lo-
cal and regional gravity field information can be col-
lected in a rapid and cost-effective manner. In addition,
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areas that are inaccessible to terrestrial gravity survey
methods can now be surveyed with relative ease. It is an
important case study because it is a low-frequency dy-
namic test and provides an excellent example of an ap-
plication where accurate estimates of platform accelera-
tion are required.

3.2.1. The importance of GPS in airborne gravity

The principle of airborne gravity is the differencing of
measurements from two subsystems—one that con-
tains the effect of the gravity field, and one that does
not. The prototype system developed at the University
of Calgary consists of a strapdown inertial navigation
system (INS), differential GPS (DGPS) combination (see
Wei & Schwarz, 1998). The accelerometers of the INS
measure specific force, which is the combined accelera-
tion caused by aircraft motion and the reaction force
from the gravity field of the earth. DGPS provides highly
accurate position and velocity information, which when
differentiated provide a measure of aircraft accelera-
tion. Therefore, by differencing the output of the two
systems, an estimate of the gravity field of the earth,
contaminated by measurement noise, is obtained. The
accuracy of the determined gravity field information is
directly related to the errors in the DGPS-derived accel-
erations. Therefore, a study of airborne gravity results
provides a means of comparing derived Doppler veloc-
ity results. The dominant errors in DGPS acceleration
are short-term errors caused mainly by measurement
noise. Figure 10 shows a typical error spectrum for GPS-
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FIGURE 10. Influence of GPS acceleration er-
rors on minimum resolvable gravity wavelength.
(Schwarz and Li, 1996).
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determined accelerations using actual flight data (1
mGal = 0.00001 m/s®). The figure assumes a flight ve-
locity of 80 m/s and a flight height of 2.5 km.

3.2.2. Airborne data analysis

To analyze the improvement in airborne gravity results
when the acceleration is estimated from derived Dopp-
ler GPS velocity, four flight lines of approximately
1000-s duration from an airborne gravity test are ana-
lyzed. The test took place in September 1996 over the
Rocky Mountains in Alberta, Canada. Trimble 4000SSI
receivers were used for both the master and remote
stations. More details of this test can be found in Glen-
nie and Schwarz (1998). The onboard strapdown INS/
DGPS combination is used to derive gravity distur-
bances. The estimated gravity disturbances are then
compared with reference gravity disturbances upward
continued from ground gravity measurements. The ac-
curacy of the upward continued reference is approxi-
mately 1.5-2.0 mGal (Schwarz and Glennie, 1997). The
accuracy of the determined gravity disturbances is then
a function of GPS and INS errors. Because the INS errors
are dominant at lower frequencies (or higher averaging
time, e.g., above 60 s), the accuracy of the determined
disturbances are mainly a function of GPS noise. Tables
2-5 give the errors in gravity disturbance estimation for
different GPS Doppler acceleration determinations and
for different filtering periods. The optimal and numeri-
cal differentiators are each 49th-order filters. The 30-,
60-, and 90-s filtering times are typical periods used in
airborne gravity.

An analysis of the results in the above four tables
shows that the first-order filter now performs worse
than the raw Doppler observations. The reason for the
change in performance when compared with the static

st 2 [

Flight line 1 gravity disturbance estimation
errors (RMS in mGal)

Doppler type 158 30 s 60 s 80 s

Raw 69.6 18.7 6.8 4.0
1st order 170.1 27.0 4.5 3.5
3rd order 54.5 15.0 4.0 3.4
Numerical (49) 54.5 15.0 4.0 3.4
Optimal (49) 54.6 15.0 4.1 3.4




Fiight line 2 gravity disturbance estimation
errors (RMS in mGal)

Doppler type i6 s 30 s 80s 80 s
Raw 53.0 15.0 4.3 3.7
1st order 133.7 18.6 4.3 3.5
3rd order 36.1 9.4 4.1 3.5
Numerical (49) 36.1 9.4 41 3.5
Optimal (49) 36.1 9.4 4.1 3.5

st 5

Flight line 4 gravity disturhance estimation
errors (RMS in mGal)

Doppler type 158 30s 60 s a0 s
Raw 53.0 13.2 4.5 2.5
1st order 128.1 16.5 3.4 2.3
3rd order 38.6 9.5 3.4 2.3
Numerical (49) 38.6 9.5 3.4 23
Optimal (49) 38.6 9.5 34 2.3

results is because of the introduction of vehicle dynam-
ics into the data set. A spectrum of the up-velocity for
the airborne test, given in Figure 11, clearly shows that
there is velocity information up to approximately 0.2
Hz. The remaining spectrum above 0.2 Hz is due mostly
to measurement noise. Recall Figure 1 that shows the
amplitude response of the first- and third-order differ-
entiators. The first-order response deviates significantly
from ideal in the band from 0.02 to 0.2 Hz. This devia-
tion is in a band where vehicle velocity is present and
explains why poor results were obtained from the first-
order differentiator. The third-order differentiator, how-
ever, is still very close to ideal up to 0.2 Hz, and there-
fore shows good results that are identical to the numeri-
cal and optimal results.

8.3. High dynamic case: motion tabie data
analysis

As a final method of comparison of differentiation tech-
niques in the measurement domain, a data set collected
on an Anorad precision motion table was analyzed. An

TABLE 4

Flight line 3 gravity disturbance estimation
errors (RMS in mGal)

Doppler type 158 30 s 60 s 90 s
Raw 52.6 13.5 4.0 2.4
1st order 146.9 19.2 3.2 1.8
3rd order 38.2 9.9 2.8 1.8
Numerical (49) 38.1 9.9 2.8 1.8
Optimal (49) 38.2 9.9 2.8 1.8

Ashtech Z-XII antenna was placed on the motion table
and followed a prescribed sinusoidal trajectory. A sec-
ond Ashtech Z-XII was used and approximately 20 min
of data were collected in differential mode. The Anorad
table allows the user to specify a trajectory along one
axis and provides a position and velocity reference for
the motion at the submillimeter (millimeters per sec-
ond) level. The table therefore allowed the generation of
a high dynamic data set with a very accurate reference.
A spectrum of the reference velocities given by the table
for the test is shown in Figure 12 to give an idea of the
test dynamics. The results of the analysis are given in
Table 6. The optimal and numerical differentiators are
again 49th-order filters.

The results presented in Table 6 show that for this
high dynamic data set, the optimal and numerical dif-
ferentiators perform significantly better than the two
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FIGURE 11. Spectrum of up velocity for aip-
borne gravity data.
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FIGURE 12. Spectrum of reference velocities
for Anorad table test.

Taylor series approximations. This is obviously because
of the presence of the higher frequency velocity infor-
mation at 0.15-0.25 Hz and in the band around 0.4 Hz.
In these bands, the Taylor series approximations devi-
ate significantly from the ideal differentiator, and there-
fore do a poor job of estimating the higher dynamic
velocities. Because the optimal and numerical differen-
tiators have near ideal responses up to 0.4 Hz, they have
no problem properly differentiating the higher fre-
quency dynamics. Figure 13 gives a plot of the differ-
ence in the residuals between the third-order approxi-
mation and the optimal differentiator. The plot clearly
shows that the errors in the third-order derivative grow
with frequency.

The optimal differentiator outperforms the numeri-
cal one in this case because it is by nature designed to
have a better response over the whole spectrum. This

 TABLE 6

GPS velocity errors for Anorad test in the
measurement domain

Deppier type RS (mm/s) Mean (mm/s)
Raw 261.9 -2.5
1st order 237.1 -1.2
3rd order 48.9 -0.5
Numerical (49) 27.3 -0.5
Optimal (49) 27.0 -0.5
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FIGURE 13. Spectrum of the difierence be-
tween the third-order and Remez solutions.

might not be the case if the motion had more low-
frequency content.

4. POSITION AND VELOGITY DOMAIN ANALYSES

To analyze the performance of the different methods of
differentiation in the position and velocity domains,
two tests were conducted. In both, the output of the
GPS engine KINGSPAD was used as input to the post-
processor GPS Acceleration (GPSACC). In the first case,
the low dynamic airborne gravity case was studied. In
the second, the higher dynamic case study provided by
the precision motion table results was used again.

4.1. Low dynamic case: airborne gravimetry
testing
In this case, the position of the aircraft was determined
using KINGSPAD and then differentiated twice using
each filter to obtain acceleration. The same flight lines
that were used in Section 3.2 are again used. The same
independent upward continued reference is also used
for the evaluation. The results are shown in Tables 7-10.
The best results were again found to be at a filtering
period of 90 s and agree with those obtained by differ-
entiating in the measurement domain. It is important to
notice that as the frequency band becomes larger (i.e.,
at filtering periods of 15, 30, and 60 s), the acceleration
results achieved by differentiation in the position do-
main were better than those achieved by differentiation
in the measurement domain. This can be seen by com-
paring Tables 2-5 with Tables 7-10. This may become



TABLE 7.

Flight fine 1 gravity disturbance estimation
errors (RMS in mGal)

Differentiation 15 s 30 s 60 s 90 s
1st order 298.8 43.3 5.0 3.6
3rd order 47.4 14.8 3.9 3.5
Numerical (25) 47.3 14.8 3.9 3.5
Optimal (25) 471 14.9 4.0 3.5

Flight line 2 gravity disturbance estimation
errors (RMS in mGal)

Differentiation 16 s 30 s 60 s 80 s
1st order 251.8 30.7 4.2 3.3
3rd order 27.0 7.6 37 3.3
Numerical (25) 27.0 7.6 3.7 3.3
Optimal (25) 27.0 7.5 3.7 3.3

errors (RMS in mGal)

Fiight line 3 gravity disturbance estimation

Differentiation 165 8 30 s 60 s 80 s
1st order 283.5 41.5 3.6 1.9
3rd order 33.0 8.9 2.6 1.9
Numerical (25) 33.0 8.9 2.6 1.9
Optimal (25) 33.1 9.0 2.6 1.9

TABLE 10

errors (RMS in mGal)

Flight line 4 gravity disturbance estimation

Differentiation 15 s 30 s 60 s 80 s
1st order 258.2 29.1 3.6 2.4
3rd order 33.3 9.2 3.3 2.4
Numerical (25) 33.3 9.2 3.3 2.4
Optimal (25) 33.0 9.1 3.3 2.4

increasingly important as the resolution of airborne
gravity systems is increased.

Numerical and optimal filters with 49th-order were
also tried and found to offer no improvement over the
25th-order filters.

4.2. High dynamic case: motion table data
analysis

In this case, the position of the antenna on the motion
table was determined using KINGSPAD and then differ-
entiated using a number of filters to obtain velocity.
This was then compared with the truth offered by the
table.

Several observations can be made from Table 11.
The first one is that the Taylor series approximations
offer considerably worse solutions than the numerical
and optimal filters. Looking at their filter responses
(Figure 1) and the spectrum of the motion of the table
(Figure 12), this is obviously because they are far from
ideal in the part of the spectrum corresponding to the
motion of the table. Second, notice that the 49th-order
numerical and optimal filters offer better solutions than
the 25th-order ones. Finally, notice that in all cases, the
optimal filter offers a better solution than the numerical
filter. Higher order optimal filters were tried and did not
improve the solution.

It is also important to notice that the level of accu-
racy achieved in Section 3.3 with measurement domain
techniques is greater than that achieved with these po-
sition domain techniques. This is because when the dy-
namics are high, input to the GPS engine must be as
accurate as possible. This is only true if differentiation is
done in the measurement domain.

CONCLUSIONS AND RECOMMENDATIONS FOR
FUTURE WORK

A number of filters of varying complexity were studied.
They were characterized in the frequency domain to
allow an assessment of their applicability in different
dynamic scenarios. Low-order Taylor series and curve
fits were shown to be useful only in cases of very low
dynamics, and dangerous otherwise. Both offer distor-
tion above some band of applicability. Although there
are situations where these types of filters might be use-
ful, extreme care is advised if they are going to be used
in general cases. For cases where the dynamics are very
low, however, it was shown that differentiators designed
using the numerical approach offer the best response.
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GPS velocity errors for Anorad test in the
position domain

Difterentiation BMS (mm/s) Wean (rim/s)
1st order 240.7 0.6
3rd order 48.4 0.6
Numerical (25) 341 0.6
Optimal (25) 31.1 0.6
Numerical (49) 31.6 0.6
Optima (49) 31.0 0.5

Differentiators designed using the Fourier series offer
good approximations to the ideal case if a window func-
tion is used. They offer a better response than Taylor
series designs and polynomial fits over the whole fre-
quency band. Their use, however, is limited by the need
to keep the error in the response low for high orders.
The response of filters designed using an optimal ap-
proach was shown to offer the same range of applica-
bility as the Fourier designs, but better responses for the
same order.

To compare methods of computing a derived
Doppler for GPS velocity and acceleration determina-
tion, three data sets with varying degrees of dynamics
were analyzed. Based on this analysis, the following
conclusions can be drawn.

¢ Deriving Doppler from the raw phase measurements
provides accurate estimates of vehicle velocity, as
long as the differentiator applied is close to ideal in
the frequency band where the vehicle velocity is pre-
sent.

e The optimal differentiator provides the best results for
high dynamics because it most closely approximates
the ideal differentiator throughout the frequency
band of interest.

¢ The Taylor series approximations provide reasonable
results only for cases of low-frequency motion. This is
due to their deviation from an ideal differentiator in
the middle of the frequency band. Caution should be
exercised when trying to apply these differentiation
techniques.

To compare the results by differentiation in the mea-

surement domain with those in the position domain,
the low and higher frequency cases were repeated.
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Based on this analysis, the following conclusions can be
drawn.

* In the low dynamic case of airborne gravity, differen-
tiation in the position domain appears to give better
results than in the measurement domain.

* For the high dynamic case of the precision motion
table, differentiation in the measurement domain
gives better results than in the position domain.

Future work in estimating accurate velocity and ac-
celeration from GPS measurements might include:

Designing a lowpass differentiating filter after a care-
ful analysis of the spectral content of the vehicle ve-
locity signal. For example, for the airborne gravity
flight, the signal above 0.2 Hz is mostly measurement
noise. Therefore, an optimal differentiator might be
designed with a cutoff frequency of 0.2 Hz instead of
0.4 Hz.

* Applying a noise reduction technique such as Kalman
filtering/smoothing or spline fitting to remove noise
after the phase measurements have been differenti-
ated.

Combining multiple master-remote station combina-

tions as in (Bruton, 1998) or (Raquet and Lachapelle,
1997).

o Evaluating the appropriateness and possible advan-
tages of using infinite impulse response differentiat-
ing filters. &
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