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Abstract. Westudy aclassof Markov chainsthat describe reversible stochastic dynamics of
alargeclassof disordered mean field modelsat |ow temperatures. Our main purposeisto give
a precise relation between the metastabl e time scales in the problem to the properties of the
rate functions of the corresponding Gibbs measures. We derive the analog of the Wentzell-
Freidlintheory in this case, showing that any transition can be decomposed, with probability
exponentially close to one, into a deterministic sequence of “admissible transitions’. For
these admissible transitions we give upper and lower bounds on the expected transition
timesthat differ only by a constant factor. The distributions of the rescaled transition times
areshown to convergeto the exponential distribution. We exemplify our resultsin the context
of the random field Curie-Weiss model.

1. Introduction
1.1. General introduction

This paper is devoted to developing a systematic approach to obtain sharp esti-
mates on the long time behaviour of certain classes of Markov chains. Our main
motivation for thisinvestigation arose from the study of the dynamicsof meanfield
spin systems, where by dynamics we understand of course stochastic dynamics of
Glauber type. More specifically, we are interested in the dynamics of disordered
spin systems, and most particularly the so called Hopfield model [Ho,BG1], al-
though in the present paper we only illustrate our resultsin amuch simpler setting,
that of the random field Curie-Weiss (RFCWM) model (see e.g. [K1]). Our chief
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objective is to be able to control in a precise manner the effect of the randomness
on so-called metastable phenomena. While our methods and results are rather more
general, this motivation has to a considerable extent influenced specific assump-
tions we are making, and we would like to ask the reader to keep this fact in mind
when following usthrough the paper. For the purposes of this paper, wewill always
consider reversible Markov chains. From the point of view of many applications,
thisis rather natural, but we must of course admit that thisis at present a serious
limitation that we do, however, hope to overcome in subsequent work.

On a heuristic level, metastable phenomena in mean field models and in sto-
chastic dynamics in general are well understood. The main ideais to consider the
dynamics induced on the order parameters by the Glauber dynamics on the spin
space, i.e. the macroscopic variables that characterize the model. A first issue that
ariseshere, and that we will discuss at length below, isthat thisinduced dynamicsis
in general not Markovian. However, one may always define a new Markovian dy-
namicsthat “mimics’ the old one and that is reversible with respect to the measures
induced on order parameters by the Gibbs measures. This dynamics on the order
parametersis essentially arandom walk in alandscape given by the “rate function”
associated to the distribution of the order parameters. The accepted picture of the
resulting motion isthat thiswalk will spend most of itstime in the “most profound
valleys’ of theratefunction and stay in agiven valley for an exponentialy long time
of order exp(N AF) where A F isthe difference between the minimal value of the
rate function in the valley and its value at the lowest “saddle point” over which the
process may exit the valley. An excellent survey on thistype of processesis given
invan Kampen'stextbook [vK], although most of the results presented there, and in
particular all those related to the long time behaviour, concern the one-dimension-
al case. Rather surprisingly, one finds very few papers in the literature that really
treat this problem with any degree of mathematical rigour. One exception is the
classical paper by Cassandro, Galves, Olivieri, and Vares [CGOV] (see also [Va]
for a broader review on metastability) who consider (amongst others) the case of
the Curie-Weiss model in which thereisonly asingle order parameter and thusthe
resulting dynamics is that of a one-dimensional random walk. More recently, im-
portant progress has been madein apaper by Mathieu and Picco [MP] that treated a
particular case of therandom field Curie-Weiss model, leading to atwo-dimension-
al double well problem. However, there is an abundant literature on two types of
related problems. One of these concerns Markov chains with finite state space and
exponentialy small transition probabilities. They aretreated in thework of Freidlin
and Wentzell (but see bel ow for adiscussion) and have since then been investigated
intensely (for a small selection of recent references see [Sc,0S1,0S2,CC,GT]. In
the context of stochastic dynamics of spin systems, they occur if finite systems are
considered in the limit of zero temperature. A second class of problems, that is
rather close to the situation we are considering, and that can be obtained from it

1 Let us mention, however, that there has been considerable work done on the dynamics
of spin systems on infinite lattices, see in particular the recent paper by Schonmann and
Shlosman [SS] on the metastable behaviour in the two-dimensional 1sing model in infinite
volume, and references therein.
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formally by passing to the limit of continuous space and time, is that of “small
random perturbations of dynamical systems’ i.e. a stochastic differential equation
of theform

dx€(t) = b(x*(1))dt + Jea(x (1))dW (1) (1.0)

where x€ (1) € R?, and W (z) is ad-dimensional Wiener process, and in the case
of areversible dynamics the drift term b(x€(¢), €) isgiven by b(x, €) = VF:(x),
Fe(x) being the rate function.

The basic reference on the problem (1.1) is the semina book by Wentzell and
Freidlin [FW] which discussesthis problem (aswell asanumber of related ones) in
great detail. Many further references can befound in the second edition of thisbook.
One of the important aspects of this work is that it devises a scheme that alows
to control the long-time dynamics of the problem through an associated Markov
chain with finite state space and exponentialy small transition probabilities. The
basic input here are large deviation estimates on the short time behaviour of the
associated processes. Thistreatment hasinspired alot of consecutive works which
it isimpossible to summarize to any degree of completeness. An important point
to keep in mind isthat the work of Wentzell and Freidlinin asfar asit givesacom-
plete description of the long-time behaviour of the process gives only results for
the exponential asymptotics of the quantities considered; that is, the quantities that
can be computed, like transition probabilities, transition times, etc., are controlled
only up to multiplicative errors of the order exp (o(l)e_l). For many practical
applications, and in particular also for the applications in disordered systems we
have in mind, such a precision isinsufficient since one is interested in effectson a
refined scale that would be masked completely by the errors.

Not surprisingly, great efforts have been made to obtain sharper estimates than
those of [WF] subsequently, using both probabilistic [Kil1-4,Az] and analytic [F]]
techniques, to name only afew references. However, when studying these results,
one finds that all of them concern purely local phenomena, i.e. they concentrate
on the computation of exit times and exit probabilities from neighborhoods of crit-
ical points that are carefully stipulated not to contain any other critical point of
the drift field. In particular, none of these results concern the situation when the
process passes from one stabl e fixpoint to another through the neighborhood of an
unstable critical point (saddle point). It has to be stressed that (contrary to popular
believe) thisis not just aminor detail, but @) the correct computation of transition
times (and spectra!!) reguires to take the effects of saddle point into account and
b) doing this leads to considerable technical difficulties that cannot be solved by
simple extensions of the same methods. The reason for these difficulties are most
easily understood from the analytic point of view. The computation of all therele-
vant quantitiesleads to the solution of certain partia differentia (or, in the discrete
case, difference) equations. The classical methods used to obtaintheresultsinterms
of asymptotic expansions in the parameter ¢ are so-called semi-classical or WKB
methods. These methodswork in their standard form precisely under the conditions
mentioned above. The problem of atransition through a saddle point corresponds
to amuch more difficult situation where straightforward WKB expansionsfail. In
the analogous quantum-mechanical problem, such a situation corresponds to what
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is caled “tunneling through a non-resonant well” which has been treated in area-
sonably general setting only in the third paper of a series of papers on tunneling
problems by Helffer and Sjosstrand [HS] using most sophisticated and complicated
toolsfrom micro-local analysis. To our knowledge, these methods have never been
applied to the corresponding probabilistic problems.? One should also mention that
the methods of [HS] apply only in the self-adjoint (= reversible) case and require a
considerable amount of regularity assumptions, aswell as additional geometric hy-
potheses for the potentials. Their extension to the discrete setting we havein mind,
while probably possible, would and will require substantial additional efforts.

It isfor this reason that in the present paper we develop an atogether new ap-
proach to the problem that will give results that are almost, but not quite, as sharp
as could be hoped for from an extension of microlocal techniques, but that have the
advantage of being much easier to obtain and that will have a much wider range of
applicability.

1.2. Thegeneral set-up

We will now describe the general class of Markov chains we will consider. The
conditions we will impose are motivated by the application to the dynamics of
disordered mean field models we have in mind. This relation will be explained in
Section 7 and a specific example will be discussed. Section 7 can be read now, if
desired; on the other hand, the bulk of the paper can also be read without reference
to this motivation. We should also mention that the class of chains we introduce
here can be naturally interpreted without this context as a discretized version of
diffusion processesin a potential, as have been considered e.g. in [vK,Ku,KMST].

We consider canonical Markov chainson astate spaceI" y whereI™y istheinter-
section of some lattice® (of spacing O (1/N)) in R¢ with some connected A ¢ R?
which is either open or the closure of an open set. To avoid someirrelevant issues,
we will assume that A is either R? or a bounded and convex subset of RY. I'y
is assumed to have spacing of order 1/N, i.e. the cardinality of the state space
is of order N?. Moreover, we identify Iy with a graph with finite (d-dependent)
coordination number respecting the Euclidean structure in the sense that a vertex
x € T'y isconnected only to vertices at Euclidean distanceslessthan ¢/N from x.
The main example the reader should havein mindisT'y = Z¢/N N A, with edges
only between nearest neighbors. We denote the set of edgesof I'y by E(T'y).

Let Qu be aprobability measureon (I'y, Z(T'y)). We will set, for x € 'y,

1
Fy(x) = =~ InQy () (1.2)

We will assume the following properties of Fy (x).

2 Even in the much simpler one-dimensional case, full asymptotic expansions have been
obtained only on the heuristic level [KMST]. They are rigoroudly justified in [EK] in a
specific case.

3 The requirement that T'y is a lattice is made for convenience and can be weakened
considerahly, if desired. What is needed are some homogeneity and rather minimal isotropy
assumptions.
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1.2.1. Assumptions*

R1 F = limy4 Fy existsand isasmooth function A — R; the convergenceis
uniform in compact subsets of intA.

R2 Fy canberepresentedas Fy = Fy,0+ %FN,l where Fy o istwice Lipshitz,
i.e.|Fy o(x)— Fno(y)| < Clx — y| and, denoting by k any generator of the
lattice, we have

NIFn,0(x)—Fyox+k/N)=(Fno0(y)—Fno(y+k/N)| = Cllx—yl (1.3)

with C uniform on compact subsets of theinterior of A. F 1 isonly required
to be Lipshitz, i.e. |Fy 1(x) — Fy.1(y)| < Cllx — ]l

For the purposes of the present paper we will make a number of assumptions
concerning the functions Fy which we will consider as “generic”. An important
assumption concerns the structure of the set of minima of the functions Fy. We
will assumethat theset .# C I'y, of local minimaof Fy isfinite and of constant
cardinality for al N large enough, and that the sets .4y converge, as N tends to
infinity, to the set .# of local minima of the function F.>

Another set of pointsthat will beimportant isthe set, &y, of “essential” saddle
points (i.e. the lowest saddle points one has to cross to go from one minimum to
another). Formally, we define the essential saddle, z*(x, y), between two minima
X,y €My as

Z*(y, x) = ag sup [FN(y(t))]) (1.4

inf
rv@=y,y D=x \¢[0,1]

where the infimum is over al paths y : [0,1] — 'y going from y to x © with
jumps along the edges of Ty only.”

A point z is called an essential saddle point if there exist minimax, y € .4y
suchthat z*(x, y) = z. The set of all essential saddle point will be denoted by &y .
Our assumptions on the N dependence of the set .4y apply in the same way to
EN.

4 The assumptions made here are sufficient, but far from necessary, to allow the methods
we explain here to work. We prefer in this paper to work in a concrete class of examples
rather than to formulate abstract conditions. In a forthcoming publication [BEGK] we will
deal with related questionsin a more abstract setting.

5 It is possible to generalize the notion of the set of local minima considerably. In partic-
ular, in the presence of very many local minima, one may under suitable conditions reduce
the set .# y to a subset representing particularly profound “valleys’. We will elaborate on
this point in [BEGK].

6 Note that here we think of a path as a discontinuous (cadlag) function that stay at a site
in Iy for some time interval §¢ and then jumps to a neighboring site along an edge of T'y .
This parametrization will however be of no importance and allows just some convenient
notation.

7 We will extend the definition (1.4) also to general pointsx, y € T'y. Inthat caseit may
happen that z*(x, y) is not a saddle point, but one of the endpoints x or y itself.
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G1 We will assume that there exists o > 0 such that min, e 7yuey | Fy(x) —
Fy()| =Ky = N*7 L.

G2 We assume that at each minimum the eigenvalues of the Hessian of F are
strictly positive and at each essential saddle there is one strictly negative ei-
genvalue while all others are strictly positive.

G3 All minimaand saddles are well in the interior of A, i.e. thereexistsas > 0
such that forany x € 4y U &y, dist(x, A¢) > 8.

Remark. We make the rather strong assumptions above in order to be able to
formulate very general theorems that do not depend on specific properties of the
model. The basic methods can also be applied in different situations, with ensuing
modifications of the results.

We recall that in our main applications, Qy will be random measures, but we
will forget thisfact for thetimebeing and think of Q  assome particular realization.

We can now construct a Markov chain X y (¢) with state space given by the set
of vertices of "y and time parameter set either N or R.,.. For thiswefirst define for
any x, y such that (x, y) € E(I'y) transition rates

Qn ()
Qn(x)

PN(X:)’)E fN(x:y) (15)

for some non-negative, symmetric function f. We will assume that f does not
introduce too much anisotropy. This can be expressed by demanding that

R3 There exists ¢ > 0 such that if (x,y) € E(T'y), and dist(x, A°) > §/2,
(where § isthe same asin assumption G3) py (x, y) > c.

Moreover, for applications of large deviation resultswe need stronger regul arity
properties analogous to R2.

R4 In fy(x, y) as afunction of any of its arguments is uniformly Lipshitz on
compact subsets of the interior of A.

For the case of discretetime, i.e. r € N, we then define the transition matrix

pu(x, ), if (x,y) € E(Tw)
Py(x,y)=431- ZzeFN:(x,z)eE(rN) py(x,2), if x=y (1.6)
else

choosing f suchthat SUpcry > cry:x.yeEry) PN ¥) < 1.
Similarly, in the continuous time case, we can use the rates to define the
generator

PN (X, y), it (x,y) € E('n)
An(x,y) =4 — ZZEFN:(_X,Z)EE(FN) pn(x,y), if x=y (1.7)
else

’

It is clear that the continuous time process can be studied by passing to the em-
bedded discrete time process where time becomes the number of jumps. We will
therefore only consider discrete time chainsin this paper.
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Our basic approach to the analysis of these Markov chainsisto observethe pro-
cesswhenitisvisiting the positions of the minimaof thefunction Fy, i.e. the points
of the set ./ y, and to record the elapsed time. The ideology behind thisisthat we
suspect the process to show the following typical behaviour: starting at any given
point, it will rather quickly (i.e. in sometime of order N*) visit anearby minimum,
and then visit this same minimum at similar time intervals an exponentialy large
number of times without visiting any other minimum between successive returns.
Then, at some random moment it will go, quickly again, to some other minimum
which will then be visited regularly alarge number of times, and so on. Moreover,
between successive visits of a minimum the process will typically not only avoid
visitsat other minima, but will actually stay very closeto the given minimum. Thus,
recording the visits at the minima will be sufficient information on the behaviour
of the process. These expectations will be shown to be justified (see in particular
Section 6). Incidentally, we mention that the “quick” processes of transitions can
be analysed in detail using large deviation methods [WF1-4]. In[BG2] alarge de-
viation principleis proven for a class of Markov chainsincluding those considered
here that shows that the “ paths’ of such quick processes concentrate asymptotical-
ly near the classical trajectories of some (relativistic) Hamiltonian system. More
precisely, the transitions between minima can be identified as instanton solutions
of the corresponding Hamiltonian system.

L et us mention that the strategy to record visits at single pointsis specific to the
discrete state space. In the diffusion setting, visits at single points do not happen
with positive probability. Indeed, the crucia fact we useisthat in the discrete case
it is excessively difficult for the process to stay for atime of order ¢V~ within
avalley V(x) without visiting x which in the continuum is not the case. For this
reason Freidlin and Wentzell record visits not at single points but at certain neigh-
borhoods of minimaand critical points which has the disadvantage that such visits
do not exactly allow asplitting of the process and thisintroduces some error terms
in estimates which in our setting can easily be avoided. Thisisthe main advantage
wedraw from working in adiscrete space. We do, however, expect that our methods
can be applied to continuous processes by using suitable discretizations, but thisis
left to further research.

The informal discussion above will be made precise in the sequel. Let usfirst
introduce some notation. Wewill usethe symbol [P for thelaw of our Markov chain,
omitting the explicit mention of theindex N, and denote by X, the coordinate vari-
ables. For y € 'y and I C Ty, we will write rly for the first time the process
conditioned to starting at y hitsthe set 7, i.e. we write

P[le = t] = |]3)[Xt €1, Vo5« X ¢ I Xo = y] (18)

fort > 0.Inthecase I = {y}, wewill insist that 7; isthetime of thefirst visit to
y after + = 0,i.e. P[ty = 0] = 0. This notation may look unusual at first sight,
but we are convinced that the reader will come to appreciate its convenience.

In the remainder of this subsection we state some elementary facts from the
theory of Markov chainsthat will be used repeatedly in the paper and that we there-
fore choose to restate for the benefit of the non-expert. No proofs will be given.
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Readers familiar with Markov processes should only glance through this part to get
acquainted with our notation.

One of the most useful basic identities which follows directly from the strong
Markov property and the fact that 7 is a stopping time s the following:

Lemmal.l. Letx,y,z bearbitrary pointsin I'y. Then
P[r;}v = t] = P[txy =11 < rz}]
+ Z Pl =s.¢ <t |P[ti=1—5] (2.9
O<s<t

A simple consequence is the following basic renewal equation.

Lemmal2. Letx,y e I'y.Then

Z Z 1_[ [P’ ry =1, T <rx] P [rxy = ty+t1, rxy<r;] (2.10)
=0 - ln+1z
Yiti=

The fundamental importance in the decomposition of Lemma (1.2) liesin the
fact that objects like the last factor in (1.10) are “reversible”, i.e. they can be
compared to their time-reversed counterpart. To formulate a general principle, let
us defi ne the time-reversed chain corresponding to a transition from y to x via
X[ = ,- For an event o/ that is measurable with respect to the sigma algebra
(X . 0 < s <17 ) wethen define the time reversed event .«/" as the event that

takes place for the chain X; if and only if the event .o/ takes place for the chain X .
This alows usto formulate the next lemma:

Lemmal3. Letx,y € I'y, and let .o/ be any event measurable with respect to
the sigma algebra 7 (X,,0 < s < 7). Let /" denote the time reversion of the
event /. Then

QAvP [&/ 7] < rv] Q)P [;zir, r)’f < r;‘] (2.1
For example, we have
QyvP [rx =11 < r}] @N(x)[FD[ F =1, r;.‘ < r;‘] (1.12)

Of course the power of Lemma (1.3) comesto bear when x and y are such that the
ratio between Qu (x) and Qp (y) isvery large or very small.

Formulas like (1.10) invite the use of Laplace transforms. We define the corre-
sponding Laplace transforms

G =Y Pl =17 =] =E[e"" I ]| weC (@13

t>0

(Wewant toincludethe possibility that I containsx and/or y for later convenience).
Aswe will seeit isimportant to understand what the domains of these functions
are. Since the Laplace transforms defined in (1.13) are Laplace transforms of the
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distributions of positive random variables, al these functions exist and are analytic
at least for al u € C with Re(u) < 0. Moreover, if G)yc’,(uo) is finite for some
ug € Ry, then it is analytic in the half-space Re(u) < uo.2 Aswe will see |ater,
each of the functionsintroduced in (1.13) will actually exist and be finite for some
uo > 0 (depending on N).

Note that in particular

G, 0 =Pt <7}] (1.14)
and

d ) . ,
G w=0=6),0) =E (20 (1.15)

The expected time of reaching x from y conditioned on the event not to visit 7 in
the meantime is expressed in terms of these functions as

Gy ;0 :

;; =E[d|d <17] (1.16)

Gy 1(0)

An important consequence of Lemma (1.3) is

Lemma 1.4. Assumethat I isany subset of I'y containing x and y. Then
@N(y)G)y(J(u) = Qn()Gy ;) (1.17)

Lemma(1.4) impliesin particul ar that the L aplace transforms of the conditional
times are invariant under reversal, i.e.

Gl w Gy,
G;’I(O) G;,I(O)

(1.18)

and in particular
E[zdlz <7)]=E [r;flr;f < rf] (1.19)

(1.18) expressesthe well-known but remarkabl e fact that in areversible processthe
conditional times to reach a point x from y without return to y are equal to those
to reach y from x without return to x.

A special rolewill be played by the Laplace transforms for which the exclusion
sets are al the minima. We will denote these by g3 (1) = GS‘;,./Z/N(”)- Indeed, we
think of the events {t; < r}%}, for x,y € .4y, as elementary transitions and
decompose any process going from one minimum to another into such elementary
transitions.

A crucial role will be played by the following renewal equation:

8 It is, however, possible to identify the Laplace transform with globally defined mero-
morphic functions; these are canonically obtained as unique solutions of certain boundary
value problems and their singularities are determined by the singularities of the relevant
self-adjoint operator in afinite-dimensional space. See Sect. 3.
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Lemmalh. Let/ Cc T'y. Thenforall y & I U x,

G;y(,{wy}(”)
1-— G;{,Ux}(u)

holdsfor all u for which the left-hand side exists.

G () = (1.20)

Lemma 1.5 will be one of our crucial tools. In particular, since it relates func-
tionswith exclusion sets I tofunctionswith larger exclusion sets, it suggests control
over the Laplace transforms viainduction over the size of the exclusion sets.

Lemma 1.5 has two important consequences that are obtained by settingu = 0
in (1.20) and by taking the derivative of (1.20) with respect to u and evaluating the
resultat u = O:

Corollary 1.6. Let I c 'y. Thenfor all y ¢ I U x,

P [r} < I}Uy]

Pl <t)]=—F 1 121
S T -2
and
[E[t)’,‘h; < t}‘] =E [r;,‘lt;‘ < Tfux]
[l <, ]
P [ < 7, | (1.22)

P [rfuy < ‘c;‘]
1.3. Outline of the general strategy

As indicated above, an important tool in our analysis will be the use of induction
over the size of exclusion sets by the help of Lemmata 1.1 and 1.5. One of the basic
inputsfor thiswill beapriori estimates on the quantities gf, (u). Thesewill be based
on the representation of these functions as solutions of certain Dirichlet problems
associated to the operator (1 — ¢* Py) with Dirichlet boundary conditions in sets
containing ./ y .

Thecrucial point hereisto have Dirichlet boundary conditionsat all theminima
of Fy andat y. Without these boundary conditions, the stochastic matrix P issym-
metricinthespace¢>(I"y, Qu) and hasamaximal eigenvalue 1 with corresponding
(right) eigenvector 1; sincethis eigenvector does not satisfy the Dirichlet boundary
conditions at the minima, the spectrum of the Dirichlet operator lies strictly below
1, so that for sufficiently small values of u, 1 — ¢" P isinvertible. It is essential
to know by how much the Dirichlet conditions push the spectrum down. It turns
out that Dirichlet boundary conditions at all the minima push the spectrum by an
amount of at least C N ~¢~1 below one, and thiswill allow us not only to construct
the solution but to get very good control on its behaviour. If, on the other hand, not
all the minima had received Dirichlet conditions, we must expect that the spectrum
isonly pushed down by an exponentially small amount, and we will have to devise
different techniques to deal with these quantities.
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As amatter of fact, while the spectral properties discussed above follow from
our estimates, we will not use these to derive them. The point isthat what wereally
need are pointwi se estimates on our functions, rather than £, estimates, and we will
actually use more probabilistic techniquesto prove £, estimates askey inputs. The
main result, proven in Section 3, will be the following theorem:

Theorem 1.7. There exists a constant ¢ > Osuchthat for all x € 'y, y € 4y
the functions g () are analytic in the half-plane Re(u) < cN~—*~3/2. Moreover,
for such u, for any non-negative integer k there exists a constant C such that

k

mg;(u)

where z*(y, x) isdefined in (1.4).

< Cka(d+3/2)+d/2gN[FN(X)—FN(z*(x,y))] (1.23)

These estimates are not overly sharp, and there are no corresponding lower
bounds. Therefore, our strategy will be to use these estimates only to control sub-
leading expressions and to use different methods to control the leading quantities
which will be seen to be certain expected return times and the transition probabili-

tiesP [r;f < r;g]. Thelatter quantitieswill be estimated in Section 2 where we will
prove the following theorem:

Theorem 1.8. With the notation of Theorem 1.7 there exist finite positive constants
¢, C suchthatif x # y € .4y, then

P [1:; < ":»y] = CN‘%Ze*N[FN(Z*(%X))*FN(y)] (1.24)

and
Ple) < 1)] = CN'F e NFNE 0 =Fy )] (1.25)

Aswill be seen in the proofs, the values of the constants ¢, C can be estimated
rather well, but of course their values depend on the specific situation. This rather
central result is based on ajudicious use of well-known monotonicity properties
of the probabilities considered that follow from a variational representation that is
a the heart of the so called electric resistor network representation of reversible
Markov chains. In this context the basic ingredient of the proof of Theorem 1.7
is known as Rayleigh’s short-cut method. See the monograph by Doyle and Snell
[DS] for an exposition of the relation between reversible Markov chains and elec-
tric resistor networks. We will comment on this analogy (that may provide helpful
intuition) in the course of the proof without actually formally using it.

Equipped with these inputs we will, in Section 4, proceed to the analysis of
general transition processes. We will introduce a natural tree structure on the set
of minima and show that any transition between two minima can be uniquely de-
composed into a sequence of so-called “admissible transitions” in such away that
with probability rapidly tending to one (as N 1 o), the process will consist of this
precise sequence of transitions. Thiswill require large deviation estimates in path
space that are specia cases of more general results that have recently been proven
in[BG2].
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In Section 5 we will investigate the transition times of admissible transitions.
In the first sub-section we will prove sharp bounds on the expected times of such
admissible transitions with upper and lower bounds differing only be a constant.
This will be based on more genera upper bounds on expected times of general
types of transitions that will be proven by induction. In the second sub-section we
show that the rescaled transition times converge (along subsequences) to exponen-
tidly distributed random variables. Thisresult again is based on an inductive proof
establishing control on the rather complicated analytic structure of the Laplace
transforms of a general class of transition times. In Section 6 we use these results
to derive some consequences. We show that during an admissible transition, at any
given time, the processis close to the starting point with probability closeto 1, that
it converges exponentialy to equilibrium, etc. Section 7 motivates the connection
between our Markov chains and Glauber dynamics of disordered mean field mod-
els, and in Section 8 we discuss a specific example, the random field Curie-Weiss
model.

Notation. We have made an effort to use anotation that is at the same time concise
and unambiguous. This has required some compromise and it may be useful to
outline our policy here. First, all objects associated with our Markov chains depend
on N. We make this evident in some cases by a subscript N. However, we have
omitted this subscript in other cases, in particular when there is already a number
of other indices that are more important (asin Gy («)), or in ever recurring objects
like P and [, and which sometimes will have to be distinguished from the laws of
modified Markov chains by other subscript. Constants ¢, C, k etc. will always be
understood to depend on the details of the Markov chain, but to be independent of
N for N large. Therewill appear constants K y > 0O that will depend on N inaway
depending on the details of the chain, but such that for somea > 0, N1=¢Ky 1 oo
(this can be seen as a requirement on the chain). Specific letters are reserved for a
particular meaning only locally in the text.

2. Precise estimates on transition probabilities

In this section we prove Theorem 1.8. A key ingredient isthe following variational
representation of the probabilities

G)yC(O)EIP[txy<1:}¥], X,y €MnN (2.1
that can be found in Ligget’s book ([Li], p. 99, Theorem 6.1)°
Theorem 2.1. Let # denote the space of functions

AL ={h:Ty—[0,1]: h(y) =0, h(x) = 1} (22)

9 Let us note that this representation is also the basis of the electric network analogy as
canbefound e.g.in[DS]. The quantitiesQy (y)P [t} < r;'] play infact therole of effective
conductances of the electric network between points x and y. In fact this entire chapter
could be easily reformulated in this language; however, we prefer to remain with the more
probabilistic terminology and only comment on the el ectric analogies in footnotes.
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and define the Dirichlet form

oy = Y QnE)pn xR = h(x")]? (23)
x',x"el’'y
Then 1
P [r} < rvy] = inf ®y(h) (2.9

20N (Y) hery

Proof. See Ligget [Li], Chapter 11.6. Note that the set R in Liggett’s book (page
98) will be I'y\ {x}, and our »# would be Hr\(x} in his notation. O

Proof of Theorem 1.8. The proof of the upper bound (1.24) is very easy. We will
just construct a sitable trial-function 7 € 7 and bound the infimum in (2.4) by
the value of the Dirichlet form ® y at thisfunction.

Tothisend we construct a* hyper-surface’ 1° %y  I'y separating x and y such
that

i) (v, x) € In.
ii)) Yze SN, FN(x) = Fy(z*(y, x)).

& n plitsT'y into two components I'y and I'y, which contain x and y, respec-
tively. Let x € 65° ([0, 00), [0, 1]) with x (s) = 1fors € [0,1) and x (s) = Ofor
s > 2. Then put

x (NY2dist(x’, Sy)), forx’ €Ty

1, forx" el (2.5)

hy(x') = {
Clearly, hy isconstant outside alayer #y of width N~1/2 around % . Since the
transition matrix py (x’, x”) vanishes for |x’ — x”| > CN~1, for some constant
C < oo and since by construction

by (x') = hy (")) < eNY2)x" — x| (26)
we obtain
P [r; < r;‘] = 2anv ) @y (hn)
< const.N_lx/’xgyN %1;((2/)) pn(x', x")
S me D meey @

Since Fy isassumed to have a quadratic saddle point at z*(x, y), using a standard
Gaussian approximation the final sum is readily seen to be O (N9/?) which gives
the upper bound (1.24).

10 We actually require no analytic properties for the set %y and the term hyper-surface
should not be taken very seriously.
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Themaintask of thissection will beto establish the corresponding lower bound
(1.25). The main idea of the proof of the lower bound is to reduce the problem to
asum of essentially one-dimensional ones which can be solved explicitly. The key
observation isthefollowing monotonicity property of thetransition probabilities.*t

Lemma2.2. Let A C 'y beasubgraph of I'y and let P A denote the law of the
Markov chain with transition rates

- pn (', x7), ifx" # x”, and (x', x")€E(A)
pA(x » X )= 1_2)7’:(X’,}")€E(A) pN(-x/v y/)v |f)C/ :-x//
0, else
(2.8)

Assumethat y, x € A. Then
P [rﬁ < r;] > P [txy < T;] (2.9
Proof. To prove Lemma 2.2 from here, just note that for any h € #

oy = Y Qn()pa (G — h(x")]?
x',x"eA
=Qv(A) Y QaG)HPaW. xh() —h(")]?  (210)
x/,x"eA

where Qa (x) = Qu (x)/Qy (A). Thisimpliesimmediately that
inf Dy(h) = Qn(A) Iinf ®A(h) =Qpn(A) inf  DPah) (2.11)
ey he#y

hes#?, heAs, e (A)

where #3(A) = {h: A —[0,1] : h(y) =0, h(x) = 1}. Thus, using Theorem
2.1 for the process Px, we see that

Pl <] = ! inf ®y(h) > — inf  ®ah)
2QN(Y) hew? 204 (Y) e ()
= Pa [rg < l'y] (2.12)
which proves the lemma. O

To make use of this lemma, we will choose A in a special way!?. Note that
the simplest choice would be to choose A as one single path connecting y and x
over the saddle point z*(y, x) in an optimal way. However, such a choice would
produce a bound of the form CN~Y2 exp (—N Fy(z*(y, x)) — Fx(y)) which dif-

fersfrom the upper bound by afactor N “Z* . It seems clear that in order to improve
this bound we must choose A in such a way that it still provides “many” paths

1 Lemma 2.2 ismost easily understood in the electrical network interpretation: the effec-
tive conductance can only be decreased by removal of elementary conductors. Inthis context
the Lemma below is well-known as Rayleigh’s monotonicity |aw.

2 The idea of simplifying the network by removing links is of course old and known in
the electrical language as Rayleigh’s short-cut method. See e.g. [DS] for many examples. It
is remarkable how well this method works for our purposes.
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connecting y and x. To do this we proceed as follows. Let E be any number
st. Fy(z*(y,x)) > E > max (Fy(y), Fy(x)) (e.g.choose E = Fy(z*(y, x)) —
3 (Fn(z*(y, x)) — max (Fy(y), Fy(x))). Denote by Dy, D, the connected
components of the level set {x’ € T'y : Fy(x’) < E} that contain the points
y, resp. x.

Note that of course we cannot, due to the discrete nature of the set I'y, achieve
that the function F is constant on the actual discrete boundary of thesets D, D,.
The discrete boundary 8 D of any set D C 'y, will be defined as

0D ={x e D|3y e 'y\D,st.(x,y) € E(T'y)} (2.13)
We have, however, that

sup  |Fy(x') — Fy(x")| <CN7? (2.14)
x'€dDy,x"€d Dy

Next we choose afamily of pathsy, : [0,1] — 'y, indexedby z € B C ¥y
with the following properties:

1) ¥2(0) € 9Dy, y-(1) € 9D«
ii) For z # 7/, y, and y, are digoint, i.e. they do not have common sites or
common edges.
iii) Fy restricted to y, attainsits maximum at z.

Of course we will choosetheset B ¢ &y to be asmall relative neighborhood
in ¥y of thesaddle z*(y, x). Infact it will turn out to be enough to take B adisc of
diameter CN~1/2 sothat itscardinality isbounded by | B| < C4/°N@=D/2/ 1 ((d+
1)/2).

For such a collection, we will set

A=D,UDyU| V() (2.15)

zeB

where V (y;) denotesthe graph composed of the verticesthat y, visitsand the edges
along which it jumps; the unions are to be understood in the sense of the union of
the corresponding subgraphs of I'y (Fig. 1).

Lemma 2.3. With A defined above we have

~ ) Cde/Z B . B
Palti <7] = (1— D2 N[Fy(2*(y.x)) E])
AW x [ v _ _ym
2 ~ano) Tr [0 < ] (2.16)

zeB

Remark. Note that the only condition on d (in relation to N) for the validity of
Theorem 1.8 comes from the demand that the term in the first bracket in (2.16) be
positive. One verifies easily that thisistrue whenever d < a N, with o sufficiently
small depending on the properties of F.



114 A. Bovier et al.

Fig. 1. Schematic representation of the graph D.

Proof. All paths on A contributing to the event {77’ < 7; } must now pass along
one of the paths y,. Using the strong Markov property, we split the paths at thefirst
arrival point in D, which gives the equality

ﬁ rx < ry ZIPA [ @) = ‘L'D Uy] Pa [tf(l) VZ(l)] (2.17)

Z€B
By reversibility,
~ Qn (. (D) ~ vz (1) ) @
P [shw = h] =gy Po [ = 5]
Ovy:D)~ T . _ _y.)
= NWE (e
Qv (y) A[ry(o) er]
xBa [ = ] (2.18)

where in the last line we used that the path going from y, (1) to y without further
visitsto D, must follow y,. Note further that we have the equality

1 1 ~ (1 (1
PA [ VL(( )) < _C]gz( )] — H:D)/z [T}Z((O)) < T;/Z((]_)):I (219)

wheretheright hand sideisapurely one-dimensional object. Wewill now show that
the probabilities P o [ v 128 (1)] and Pu [ -0 oy (0)] are exponentially
closeto 1. To seethis, write
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1_ [|3> [ v _ T)’/(l)il _ ﬁA[ 7:(D _L,}/z(l)il

[ 7:(D 72D
Pa [T)’ < Tny (1)]

- 7D _ 7O
1-Pa [ryz(l) < Txuy ]

(2.20)

where the second equality follows from Corollary 1.6. Now by reversibility, the
numerator in (2.20) satisfies the bound

[ Vz(l) ) @ 7:(1) 7:(1)
Pa [’y TxUy, <1>] > Pa [ / ny<1)]

x'€B

- |B|@A(z*(y,X)) _ IBl@N(z*(y,X)) (221)
- Qa(y(D) Qn (y; (1) '

On the other hand,

™ 72(D) 72(D)
1—DPa I:‘L'yz(l) < IxU) ]

S r:(D) r=(D)
Pa [ Ty < Ty <1>]
™ 7:(D) 7:(D)
Pa [ <7t (1)]

By [ < e8] (2.22)

v

v

where y isaone dimensional path going from y, (1) to x. We will show later that

B, [0 <] = on 2 (2.23)
Thus we get that
d a7d/2
B, [ @ _ m] s O NEE G- (2.24)
Y - r'(d+1)/2

By the same procedure, we get also that

- Cde/Z ;
P v2(0) < vz(0) >1— —N[Fn(z*(y,x))—E] 2.5
A [’y D, ] =TT W+ D2¢ (229

Putting all these estimates together, we arrive at the affirmation of thelemma. 0O

We are | eft to prove the lower bounds for the purely one-dimensional problems
whose treatment is explained for instance in [vK]. In fact, we will show that

Proposition 2.4. Let y, be aone dimensional path such that Fy attains its maxi-
mum on y, at z. Thenthereisaconstant 0 < C < oo such that

B, [Tyy (<01)> < ,V~(<11)>] > CN Y2~ NIFy@—Fy(y:(D)] (2.26)
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Proof. Let K = |y, | denote the number of edgesin the path y,. Let usfix the nota-
tionwg, w1, ..., wg, for the ordered sites of the path ., with ¥, (1) = wo, y,(0) =
w‘)/z [

For any site w,, we introduce the probabilitiesto jump to the right, resp. the left

p(n) = pn (@, 0n11),  q(n) = py(wn, wp—1) (2.27)
The following lemmais a well-known fact!3:
Lemma 2.5. With the notation introduced above,

-1

@ @ & Qy(wy) 1

[ Yz Yz _

Py, [fyZ(O) < ryz(l)] = |:Z mm} (2.28)
n=1

We are left to estimate the sum Qy (wo) Y f_; Wl(wk) uniformly in K. Since
q(k) > ¢ > 0fordl 1<k < K, for an upper bound on this sum it is enough to
consider

K

K
1 Qp (wo) —N[Fy(2)—Fn ()]
o _ » N (@)~ Fy (e 2.29
N(wo)];@N(wk) Qn(2) k:1e 229

Now in the neighborhood of z, we can certainly bound

2
Fn(z) — Fn(wr) > ¢ <§> (2.30)

while elsewhere Fy (z) — Fn (w) > € > 0 (of course nothing changesif the paths
have to pass over finitely many saddle points of equal height), and from this it
followsimmediately by elementary estimates that uniformly in K

K
Z e NIEN@—Fy @] < ¢ N1/2 (2.31)
k=1

which in turn concludes the proof of Proposition 2.4.14 O

Combining Proposition 2.4 with Lemma 2.3, we get that

~ , CcInNd/? .

y y _ —N[Fn(z"(y,x))—E]

Palm <m]= (1 L+ D/2)° )
Z Qn(rz(D) Qn(2) CN-12

Qn () Qn(y:(D)

zeB
dard/2
— o~ NN (3. x)—Fn ()] <1 — &E_N[FN(Z*(%X))_EQ
r'd+1/2
< CN-1/2 Z e~ NIFN@—Fn (¥ (y.1))] (2.32)

zeB

13 In the electrical language, it states that the resistance of a chain of resistors is the sum
of the resistances [DS].

14 Of course we could easily be more precise and identify the constant in (2.31) to leading
order with the second derivative of F(z) inthedirection of y (seeeg. [VK,KMST,EK]).
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By our assumptions Fy (z) — Fn (z*(y, x)) restricted to the surface ¥y isbounded
from above by a quadratic function in a small neighborhood of z*(y, x) and so, if
B is chosen to be such a neighborhood, the lower bound claimed in Theorem 1.8
followsimmediately by a standard Gaussian approximation of the last sum. ]

3. Laplacetransformsof transition timesin the elementary situation

In this section we shall prove Theorem 1.7, which is our basic estimate for the
Laplace transforms of elementary transition times. We shall need the sharp esti-
mates on the transition probabilities which we obtained in the previous section
based on Lemma 2.2. Combined with reversibility they lead to an estimate on the
hitting time tjf//N . Thisis the basic analytic result needed to estimate the Laplace
transforms, using their usual representation as solutions of an appropriate boundary
value problem. Let usrecall the notation

G;Z(u) =F [eur;ﬂ{f))gff;:'}] , gf(u) = G;//N ()

In this section X will always denote a proper nonempty subset of ' that contains
A . Moreover, we will assume that y is not in the interior of X, i.e. it is not
impossible that y is reached before £\ y from x, since otherwise G)y"z(u) =0
trivially.

To prove Theorem 1.7, it is enough to show that

gic(u) < CONd/ZeN[FN(Z*(X»y))—FN(X)] (3.1)

for real and positiveu < ¢N~?=%/2, Notethat z*(x, y) isdefined in (1.4) in such a
way that z*(x, y) equalsto x if y can be reached from x without passing a point at
which Fy islarger than Fy (x). Analyticity then follows since gy (u) is aLaplace
transform of the distribution of a positive random variable, and the estimates for
k > 1follow using Cauchy’sineguality.

Inthe sequel wewill fix y € ¥ and .#y C X C I'y. It will be useful to define
the function

1 for x=y (3.2
0 for x e X\y.

As explained in the introduction, v, (x) isanaytic near u = 0 (so far without any
control in N on the region of analyticity).
Similarly, we define the function

{G)y"z(u) for x¢ X
v (x) =

B[zl for x¢.iy

wolx) = { 0 for xe. Uy (3.3)

Observe that as a consequence of Lemma 1.1 of the introduction we get (for any
x,yel'n, 2 C FN) that

Gy 5(u) =e"Py(x,y) +€" Y Py(x, )G 5 (). (34)
7¢%
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Using this identity one readily deduces that v, is the unique solution of the
boundary value problem!®

(1—e"Py)vu(x) =0 (x ¢X), =1 v =0 (xeX\y.

(35
and, in the same way, w,, isthe unique solution of
(1-Py)wo(x) =1 (x ¢ MN), wo(x) =0 (x € AN). (3.6)
We shall use these auxiliary functions to prove the crucial
Lemma 3.1. Thereisa constant C € R such that for all N large enough
R y d+1
Ty = yn;% [E[ty,,//N] <CN (3.7

Proof. In view of the Kolmogorov forward equations it suffices to consider the
caey ¢ My.Weset X = 4y Uy, wherey ¢ .4 . Then vg(x) defined in (3.2)
solves the Dirichlet problem

(1-Pyvox) =0 (x ¢ %)
vo(y) =1, vox) =0 (x € Ay) (3.8)

Moreover, (3.4) withu = 0and x = y reads (since G, 5 (0) = P[zy < 3])

1-P[rg <5]= ) pn(y, Do) (39

zelly
which can be written as
(1 - Py)vo(y) =P, < 75] (3.10)
We shall use vg(x) as afundamental solution for 1 — Py and, using the symmetry
of Py in€2(I'y, Qy), we get
Qv(MP[ryy, < E),, 1 = (1~ Py)vo, wo)a
= (vo, (1 — Py)wo)q

=Qv(») + ) AvP[ry <ty,] (311
x¢%

where in the last step we have used equation (3.6) and thefact that y ¢ .# . This
gives the crucial formula for the expected hitting time in terms of the invariant
measure Q and transition probabilities, namely

PR
N A Pz, <wl Pl <l

(3.12)

15 More precisely, one shows that for al ue C for which v, (as defined in (3.2)) ex-
ists, it coincides with the unique solution of (3.5). Moreover, since G 5 (1) is the Laplace
transform of the distribution of a positive random variable, it exists for al u such that
liMmy 4 gy G, 5 (') < o0o. But thisimpliesimmediately that v, coincides with the solution
of (3.5) considered as a meromorphic function of u for all u to the left of the first pole of
this function. Thisjustifiesto identify v, with the solution of (3.5) in the sequel.
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We remark that in this sum only those values of x with Qy (x) > Qun(y) cangivea
large contribution. To estimate the probabilitiesin equation (3.6) we choose, given
the starting point y ¢ .4, an appropriate minimum z € .4y near y such that
thereisapath y : y — z (of moderate cardinality) so that Fy attainsits maximum
ony at y (notethat such az existstrivially always). Then the variational principle
in equation (2.12) (with y asthe subgraph A) gives

Plr},, <51 =Pl <] = P, [r) < 7)1, (3.13)

wherethefirst inequality isatrivial consequence of z € .# . But then Proposition
2.4 can be applied to get the lower bound

Plt), <t]=CN? (3.14)

for some constant C.
To estimate the other probability in (3.12) we use Corollary 1.6 to write, for

x g,

|]3>[1:;v < rj‘//NUx]

Plry <yl = P < o] (3.15)
Since .4y C X, we obtain from (3.14) that for x ¢ %,
Plrs < 7] = Plt),, <%l = CN~Y2 (3.16)
Reversibility then gives the upper bound
X X _ QN(y) y y . QN(y)
Plry <t/ wud = On (o) Plzy < T{//ZNUy] <min{1, v ) (3.17)

Thus, inserting (3.16) and (3.17) into (3.15) we obtain from the representation
(3.12) that

E[r’, ] < CN(1+ ) 1) < CN*L (3.18)
x¢X
for some constant C. This provesthe lemma ]

Next we need an estimate on the Laplace transform G~ 5 W). Thiswill be ob-
tained from an integral representation of our auxiliary function v, (x), choosing u
smaller than the estimate on the inverse of the maximal expected time T obtained
in Lemma 3.1. More precisely, we shall prove

Lemma3.2. Assumethat .#y C ¥ C I'y. Thenthereisa constant ¢ > 0 such
thatfor all u < cN—4~landall x,y € Ty,

Glx) <2 (3.19)

Furthermore, there are constants », ¢ > 0 such that for all u < ¢N~4=3/2 and
y e UN\AM N,
1-G) g = bN"? (3.20)
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Proof. Asmentioned in the beginning of this chapter we can assume without |oss
of generality that y € dX. Then it follows from eguation (3.5) that the function
wy (x) := v, (x) — vo(x) solvesthe Dirichlet problem

(1= Pywu(x)=1 = Ppvu(x) = L —e Duu(x), (x¢X)

(3.21)
w,(x)=0 (xeX)

The relation between resolvent and semi-group gives the following representation
forx ¢ &

T5—1
wy(x) =E |:Z f(Xr):| o S =0 = e ux) (322)

t=0

that in turn yields the integral equation

-1
v, (x) = P[t;,‘ =15]+ 1 —-eE |:Z vu(Xt):| . (3.23)

t=0

for the function v,,. We can now use our a priori bounds from Lemma 3.1 on the
expectation of the stopping time 3, to extract an upper bound for the sup-norm of
this function. Namely, setting M (u) := sup, .5, v, (x) we obtain the estimate'®

1
M@u) <1+|1—e"| m:rax Elcs]M ) <1+ §M(u), (3.24)
xXeln

where we have used that [u| < ¢N~4~1 with ¢ sufficiently small. This gives for
x €,
G5 (u) < 3/2 (3.25)

The estimate of the Laplace transform G)y“ 5. (u) is trivial for negative u or for
x € Z\oX.Inthecasex € 9%, (3.19) follows from (3.4), using (3.25).

To prove the estimate (3.20) on the Laplace transform G? .y of therecurrence
time to the boundary point y € 9%, (in particular y € £\.# x under our assump-
tions), observe that for any § > 0, there exists ¢ > such that for [u| < ¢N—473/2,
using Lemma 3.2 to estimate E[ 7] < E[77, ] from above, it follows that

rg—l
E { doa- e_“)i| <§NY? (3.26)

t=0

Inserting this estimate and the a priori bound (3.19) into (3.23) together with the
apriori bound gives that

Gy xw) < P[r} = 13] + 25N ~2, (3.27)

16 Recall that M (1) isameromorphic functionwith polesonly onthereal axis. In particular
M (u) isfinite except at isolated points.
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Inserting (3.27) into (3.4), which represents G“yv’z(u) via G;E(u) forx ¢ X,
it follows that modulo 8 N ~1/2 one has, for |u| < ¢cN~4=3/2,

1-G) ) = 1—e"Py(y,y) =" Y pn(y 0P[r} =15]
x¢x
=1-Plry =13]
= P[rg < r}y] (3.28

Since ./ y C ¥ and y € T\.# y one obtains from (3.16) that

1-G) sy = Plt),, <] -28N 2= pN Y2 (3.29)
for some b > 0, choosing § sufficiently small in equation (3.26). This proves
Lemma 3.2. O

We are now ready to give the

Proof of Theorem 1.7. Note that when Fy (x) = Fy(z*(x, y)), Lemma 3.2 al-
ready provides the desired (actually a sharper) estimate. It remains to consider the
casez*(x, y) # x.

Here we can, as in the proof of Theorem 1.8 in Section 2, construct a discrete
separating hyper-surface & y containing the minimal saddle z*(x, y) and separat-
ing y and x. Since the process starting at x must hit &y before hitting y, path
splitting at & i gives

g =Y Gilowgiw), Q=.yUSLy. (3.30)

ZELN

We treat the cases x € .4y and x ¢ ./ y separately. In the latter case we need
an additional renewal argument, whilein the former all loops are suppressed since
the process is killed upon arrival at x € .# . For x ¢ ./ n the renewal equation
(1.20) reads

Gl o) =(1- Gf,Q(“))_le,squ (u) (3.30)
By Lemma 3.2 and reversibility we have
Qn(2) Qn(2)
z = G; 2 : 3.32
coul) = g e =2, (332

using Lemma 3.2. Combining (3.32) and (3.20) of Lemma 3.2 we get from the
renewal equation (3.31)

Nl/z Qn(2)

. (zePN,u<cN 132 3.33
v ) ( N ) (3.33)

Glq) <C
for ¢ > O sufficiently small.
If x € .4y, wedirectly apply the reversibility argument to G7 ¢, () (without
renewal) and obtain a sharper estimate, i.e. (3.33) with N1/2 deleted on the right
hand side.
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Inserting (3.33) into (3.30) and using (3.19) to estimate the L aplace transform
giw) =G, (u) wefinally get, for u < cN—4-3/2,

g ) < CNY?Qy)™ Y Q)
€SN

= O(N¥/2)e=NUENG @) =Fy(x) (3.34)

wherethelast equality is obtained by a standard Gaussian approximation as (2.32).
All estimates on the derivatives k > 1 now follow from Cauchy’s inequality and
the obvious extension of our estimates to complex values of «. This completes the
proof of Theorem 1.7. |

4. Valleys, trees, and graphs

In this chapter we provide the setup for the inductive treatment of the global prob-
lem. Our purpose here is not to reinvent the cycle decomposition of Freidlin and
Wentzell [WF], but rather to show that with the sharp estimates on the transition
probabilities obtained in Section 2, we can aso resolve the fine ‘finite N’ effects
on the behaviour of the process. To keep the description as simple as possible, we
make use of the assumption made in the introduction that Fy is “generic” in the
sense that no accidental symmetries or other “unusual” structures occur. For the
case of arandom system, this appears natural .

4.1. Thevalley structure and its tree-representation

We recall from Section 1 the definition (1.4) of essential saddle points. Under our
general assumptions (G1), any essential saddle has the property that the connected
(according to the graph structure on I"y) component of the level set A, = {x €
I'y : Fy(x) < Fy(z)} that contains z fals into two disconnected components
when z isremoved fromiit.

These two components are called “valleys’ and denoted by V*(z), with the
understanding that

inf Fy(x) <
xeV+t(z) X

holds. We denote by &y the set of al essentia saddle points.
With any valley we associated two characteristics: its “height”,

inf - Fy(x) 4.1)
V=(2)

€

h(V'(2)) = Fy(2) (4.2
and its “ depth” '
d(Vl(Z)) = FN(Z) — |‘rlf( )FN()C) (43)

The essential topological structure of the landscape Fy is encoded in a tree
structure that we now defineonthe set .4 v U & . To construct this, we define, for
any essential saddle z € &', the two points

Z

o+ = fagmax, co v Fy @), if v NVEER) # 6 (4.4)
My N VEQ), else -
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(notethat necessarily theset.# y NV *(z) consistsof asinglepointif £yNV*E(z) =
?). Now draw alink from any essential saddle to the two points zi This produc-
es a connected tree, 7 y, with vertex set &5 U .# y having the property that all
the vertices with coordination number 1 (endpoints) correspond to local minima,
while all other vertices are essential saddle points. An alternative equivalent way
to construct thistreeis by starting from below: Form each local minimum, draw a
link to the lowest essential saddle connecting it to other minima. Then from each
saddle point that was reached before, draw aline to the lowest saddle above it that
connects it to further minima. Continue until exhaustion. We see that under our
assumption of non-degeneracy, both procedures give a unique answer. (But note
that in arandom system the answer can depend on the value of N!)

The tree .7 induces a natural hierarchical distance between two points in
&N U . N, given by the length of the shortest path on .7y needed to join them.
We will also call the “level” of avertex its distance to the root, zo.

The properties of the long-time behaviour of the process will be mainly read-
off from the structure of the tree 7 y and the values of F onthe verticesof .7 y.
However, thisinformation will not be quite sufficient. Infact, wewill seethat thein-
formation encoded in the tree contains all information on the time-scal es of “exits”
from valleys; what is still missing is how the process descends into a neighboring
valley after such an exit. It turns out that all we need to know in addition is which
minimum the process visits first after crossing a saddle point. This point deserves
some discussion. First, we note that the techniques we have employed so far in this
paper are insufficient to answer such a question. Second, it is clear that without
further assumptions, there will not be a deterministic answer to this question; that
is, in general it is possible that the process has the option to visit various minima
first with certain probabilities. If this situation occurs, one should compute these
probabilities; this appears, however, an exceedingly difficult task that is beyond
the scope of the present paper. We will therefore restrict our attention to the situ-
ation where Fy is such that there is aways one minimum that is visited first with
overwhelming probability. To analyse this problem, we need to discuss an issue
that we have so far avoided, that of sample path large deviations for the (relatively)
short time behaviour of our processes. A detailed treatment of thisproblemisgiven
in [BG2] and, as this issues concerns the present paper only marginally, we will
refer the interested reader to that paper and keep the discussion here to aminimum.
What we will need hereisthat for “short” times, i.e. fortimest = TN, T < oo,
the process starting at any point xg at time O will remain (arbitrarily) close (on the
macroscopic scale) to certain deterministic trajectories x (¢, xp) with probability
exponentially closeto onel’. These trgjectories are solutions of certain differential
equations involving the function F'. In the continuum approximation they are just
the gradient flow of F, i.e. %x(z) = —VF(x(@)), x(0) = xg, and while the
equations are more complicated in the discrete case they are essentialy of similar
nature. In particular, all critical points are alwaysfixpoints. Wewill assumethat the
probability to reach a §-neighborhood of the boundary of A in finite time 7' will

17" Convergence of this type of processes to deterministic trajectories was first proved on
thelevel of the law of large numbers by Kurtz [Ku].
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be exponentially small for al fixed 7. We will assume further that at each essential
saddle the deterministic paths starting in a neighborhood of z lead into uniquely
specified minimawithin the two valleys connected through z. Aswe will see, these
paths will determine the behaviour of the process.

We will incorporate these information in our graphical representation by dec-
orating the tree by adding two yellow arrows pointing from each essential saddle
to the minimain each of the branches of the tree emanating from it into which the
deterministic pathslead. (These branches are essentially obtained by following the
gradient flow from the saddle into the next minimum on both sides.) We denote the
tree decorated with the yellow arrows by 7 .

4.2. Construction of the transition process

We arein principle interested in questions like “how long does the process take to
get from one minimum to another?’. This question is more subtle than one might
think. A related question, that should precede the previous one, is actually “how
does the process get from one minimum to another one?’, and we will first make
this question precise and provide an answer.

Let us consider the event # (x, y) = {7 < oo} withx, y € .# . Of course
this event has probability one. We now describe an algorithm that will allow to
decompose this event, up to a set of exponentially small measure, into a sequence
of “elementary” transitions of the form

T i Xi
F(Xiy Zis Xi+1) = {T;C,-’Jrl = Tgig. X.mv”//N} (4.5)
<1t

where x;, x;j11 € Ay, z; isthefirst common ancestor of x; and x; 1 in the tree
I N, and 7, ,, is the branch of 7 y emanating from z; that contains x;, and
T o = T N\T z.x- Wewill write 7, for the union of all branches emanating
from z. The motivation for this definition is contained in the following

Proposition4.1. Letx,y € 7,y N.dn,andy € ¢ N ./ y. Thenthereisa
constant C < oo such that

P[z’fc <1

2 }]S inf  CeNN@—Fx ()] (4.6)

7eT y\z

Remark. Note that by construction we have Fy(z) — Fy(z') > 0 for all lower
saddlesin the branch 7, ,. Thus the proposition asserts that with enormous prob-
ability, the process starting from any minimum in a given valley visits all other
minimain that same valley before visiting any minimum outside of thisvalley. As
amatter of fact, the same also holds for genera points. Thus what the proposition
says is that up to the first exit from a valley, the process restricted to this valley
behaves like an ergodic one.

Proof. We use Corollary 1.6 with I consisting of asingle point. This gives

. [t{ o P [rg < T;uy] - P [r; < r;f]

’ y] P[T;uy < rjj] B P[r;? < t;c]

4.7
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Using the upper and lower bounds from Theorem 1.8 for the numerator and de-
nominator, resp., we get

P [T; < r;,‘] < Ce~NIFN@—FN (] (4.8)

where 7" isthe lowest saddle connecting x and y. (4.8) yields the proposition. O

Proposition 4.1 impliesin particular that the process will visit the lowest mini-
mum in agiven valley before exiting fromit, with enormous probability. Thisholds
true on any level of the hierarchy of valleys. These visits at the lowest minimathus
serve as a convenient breakpoint to organize any transition into elementary steps
that start at alowest minimum of agiven valley and exit just into the next hierarchy.
This leads to the following definition.

Definition 4.2. Atransition 7 (x, z, y) iscalled admissible, if

i)) x isthe deepest minimuminthebranch 7, ., i.e. Fy(x) =infycs  Fn(x).
ii)) z and y are connected by a yellow arrowin .7 .

Atransition is called metastable, if it is admissible and if the lowest minimum
inthe branch 7, , islower than Fy (x).

Remark. Wealready understand why an admissibletransition should start at deep-
est minimum: if it would not, we would know that the process would first go there,
and we could decompose it into afirst transition to this lowest minimum, and then
an admissible transition to y. What we do not see yet, is where the condition on
the endpoaint (the yellow arrow) comes from. The point here is that upon exiting
the branch .7, ,, the process has to arrive somewhere in the other branch emanat-
ing from z. We will show later that with exponentially large probability thisisthe
first minimum which the deterministic path starting from z leads to. Metastable
transition are also known as “exits from acycle” in the language of [WF].

Proposition 4.3. If # (x, z, y) isan admissible transition, then there exists Ky >
0, satisfying N1=“Ky 1 oo such that

PL7(x,z, )] = 1—e NN (4.9)

Remark. To proof this proposition, we will use the large deviation estimates that
require the stronger regularity assumptions R2, R4, as well as the structural as-
sumptions discussed in the beginning of this section. These are to some extent
technical and clearly not necessary. Alternatively, one can replace these by the as-
sumption that Proposition 4.3 holds, i.e. for any z € & and x € 7 ., thereisa
unique y € ¢ . U.#4 y such that (4.9) holds.

Proof. The proof is based on the fact that the process will, with probability one,

hit the set 77¢ | eventually. Thus, if we show that given x and z, foral j € ¢ |
withy £ y, P [rf < Ty \y] is exponentialy small, the proposition follows. To

simplify the notation, let usset I = 7¢ N .4 y. Notethat thecase y ¢ 7. is
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already covered by Proposition 4.1, so we assume that y € 7 ,. Using Corollary
16

P I:Tg < T;C\ﬁUX]
Pl <] =S (4.10)
i P [tl < 7:x]
By reversibility,
P [r;‘ - Tf\yu)c] — MNFNO-Fy@lp [Txy < f;] (4.11)

Now construct the separating hyper-surface . y passing through z asin the proof
of Theorem 1.8. Then

P [1:}~ < r&] = Z P [r;, < rnyN] P [rj/ < IIZ/] (4.12)
77eSN

Putting all things together, and using reversibility once more, we see that

1 /
X X _ —N[Fn()—Fn(x)]
P I:Ty < 'L’I\y:l = —[P’[tf ~ Z e N N
Z’GL(/N
x P [ryf/ < rIZ(JPg;N] P [r)f/ < ‘L'IZ/] (4.13)

Using that P[z; < 7] > I]J’[r;, < ] for any y’' € I, together with the lower

bound of Theorem 1.8 and the trivial bound P [rj’ < le/] < 1, we see that

pler < of] < WU Y o MEO-RCIp [ < of ]
ZIGVN
< - 1y-d-2)/2 Z e~ NIFNG)—FN(2)]

JesN
FNy@)—Fn(@)=<Ky

xP (e < tf,, |+ NUEHNEY (4.14)

Under our assumptionsthe condition F (z') — Fy(z) < Ky impliesthat |7/ —z| <
C'\/Ky,i.e.dl dependsontheterm P [r}z < rf@_,,N] for z’ very closetothesaddle

point z. Now, heuristically, we must expect that with large probability the process
will first arrive at the minimum that is reached from 7’ by following the ‘ gradient’
of Fy.

Let us now show that this is the case. Let us first remark that using the same
arguments as in the proof of Proposition 4.1, it is clear that the probability that the
processwill hit the set where Fy (x') > Fy(z*(x, )) +8’, 8" > 0, beforereaching
y is of order exp(—3’N) so that this possibility is negligible. Denote the comple-
ment of thisset by L. Now consider theball D;s of radius é centered at z, where §
should be large enough such that the intersection of Ly with % iswell contained
intheinterior of Ds. Theset Ly N Ds isthen separated by .y into two parts, and
we call Cs the part that is on the side of 7. According to the previous discussion, if
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theprocessistoreach I, it hasto passthrough the surface ¥ = 9Cs N d Ds. Finaly,
let Rs denote the ball of radius § centered at y. Note first that

7 7
P [Ty = HugyuL,

’ ! ! ’ ! ’ ’ !

<p[d <12 ¢ 7 gz ¢S g

=P I:Ty < Tugyurs 5 = TRy +Pl7 < Trugyors, &5 = TRy
/ / " "
Z Z X X

=P [Ty < TRanfNULg,] + Z P [Ti <Ty ] (4.15)

x"€Rs

The second term is exponentially small by standard reversibility arguments. It re-
mains to control the first.

/ ! ’ / ’ ’
z z z z x x
z = E < p
P I:ry < TRgU,VNULg,] P I:‘L’x, < TE:I P I:Ty < TR(;]
x'ex

< IS sup P [r;f’ < r;g;] (4.16)

x'ex

Now under the assumptions on F, for al x’ € X, the deterministic paths x(z, x”)
reach R; infinitetime T (i.e. in amicroscopic time T N) without getting close to
y. Therefore, for somep > 0

P [z;" < z,’gs] <P| sp [X;—x(t,x)] > p|Xo=x' (4.17)
te[O,NT]

But thelarge deviation theorem of [BG2] impliesthat thereexistse = e(p, T) > 0,
such that

. 1
limsup—InP| sup |X; —x(t,x)|>p|Xo=x"| < —€(p.T) (4.18)
Ntoo 1€[0,NT]

so that, e.g., for al large enough N,
P| sup |X;—x(t,x)] > p|Xo=u"| < e N 1)/2 (4.19)
te[O,NT]

It then suffices to observe that

Z P [r;, < rf\y,] =P[tf <oo] =1 (4.20)

y'el

and so, since P [Tf < Tf\y] < eXp(—NKy), fordl y # y, P [r; < r;‘\y] >
1-—exp(—NKy). O

Note that the above argument also shows that if 7 (x, z, y) is admissible, and
y’' € I, then

Pl < tin] <P [ = o] (4.21)
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Theorem 4.4. Let x,y € .#y. Then there is a unique sequence of admissible

transitions # (xi, zi, xi4+1), i = 1, ..., k, such that1®
k k
{ry <00} D {ry =) ¥ < oo} N[ )F (xi,zi. xig1) (4.22)
i=1 i=1
and such that the sequence isfree of cycles, i.e. thepointsx;,i =1,...,k+ lare

all distinct. Moreover, there isa strictly positive constant K y, such that

k k
P [{5{6 =Y i, <oo}n( )7 (i, xi+1)} >1— e NKv (4.23)
i=1 i=1

Proof. There is a simple algorithm that alows to construct the sequence of ad-
missible transitions. Let z be the first common ancestor of x and y in 7 . First
we notice that we will ‘never’ (that isto say with exponentially small probability)
visit aminimum that is not contained in the two branches emanating from z before
visiting all of 7. Given this restriction, starting from x, we make the maximal
admissible transition, i.e. one traverses the highest possible saddle for which the
starting point isalowest minimum of its branch. Thisleadsto some point xo, from
which we continue as before, with the restriction that the first common ancestor of
x2 and y now determinesthe maximal allowed transition. Thisprocessis continued
until an admissible transition reaches y. It is clear that this algorithm determines
a sequence of admissible transitions. We have to show that this is the only one
containing no loops.

Note first that the condition that no transition |eaves the branches of the young-
est common ancestor follows since Proposition 4.3 ensures that the target point is
reached before exit from this valley with probability close to one. It is easy to see
that we should always choose the maximal admissible transition. Suppose we start
in some point that is the deepest minimum in some valley that does not contain
the target point, and we perform an admissible transition that does not exit from
this valley. Then we must return to this point at least once more before reaching
the target which means that our sequence of admissible transitions contains aloop.
Therefore, at each step the choice of the next admissible transition is uniquely
determined.

Finally, from Proposition 4.3 the estimate (4.23) follows immediately. |

Remark. We see that the same type of reasoning would also allow usto deal with
degenerate situations where e.g. integral curves of the gradient bifurcate and tran-
sitions to severa points y may have non-vanishing probabilities. The picture of
the deterministic sequence of admissible transitions should then be replaced by a
(cycle free) random process of admissible transitions. The precise computation of
the corresponding probabilities would however require morerefined estimates than
those presented here (except if this can be done by using exact symmetries).

18 Wehopethenotation used hereisself-explanatory: E.g. {z} < oo} standsfor U, .o{Xo =
X, X1 # Yy, .., Xi—1 # ¥, X =y}
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Remark. Theorem 4.4 asserts that for fixed large N atransition occurs along an
essentially deterministic sequence of admissibletransitions. When dealing with the
dynamics of system with quenched disorder, this deterministic (with respect to the
Markov chain) sequence will however depend on the realization of the quenched
disorder, and on the volume N. In atypical situation, this will give rise to a man-
ifestation of dynamical “chaotic size dependence” (in the spirit of Newman and
Stein (seee.q. [NS] for an overview).

In the sequel we will aways be interested in computing the times (expected
or distribution) of transitions conditioned on the canonical chain of admissible
transitions constructed in Theorem 4.4. We mention that in general, these do not
coincide with the unconditional transition times. Namely, in general, there can oc-
cur unlikely excursions (into deeper valleys) that take extremely long times so that
they dominate e.g. the expected transition times. Physically, thisis clearly not the
most interesting quantity.

5. Transition times of admissible transitions

From the discussion aboveit is clear that the most basic quantities we need to con-
trol to describe the long time behaviour of our processes are the times associated
with an admissible transition. Note that an admissible transition & (x, z, y) can
also be considered as a first exit from the valley associated with the saddle z and
the minimum x. We proceed in three steps, considering first the expectations of
these times, then the Laplace transforms, and finally the probability distributions
themselves.

5.1. Expected times of admissible transitions

A first main result is the following theorem.

Theorem 5.1. Let # (x, z, y) be an admissible transition, and assume that x is
a generic quadratic minimum. Then there exist finite positive constants ¢, C such
that, for N large enough,

eNeNFV@—Fy®] < [r;|.97(x, . y)] < CNeNIFV@—Fy ()] (5.1)

Remark. The result is easy to understand heuristically on the basis of represen-
tation (1.22). By the definition of an admissible transition, the denominator in the
second term is essentially equal to Py < 7;] and can be estimated by Theorem
1.8. The probability multiplying thisterm isvirtually one, and it is not very hard to
see that by the ergodic theorem, the conditional expected return timein the numer-
ator isequal to Qy (D)/Qpn (x), D being the valley containing x. The reader will
check that this gives the behaviour claimed in the theorem. The main work we will
have to do is thus to show that the contribution of the first term in (1.22) does not
alter this result.

Before proving the theorem, we will prove some more crude but more general
estimates. For this we introduce some notation. Let I C .# . We define

di(x,y) = Xlef}fm [Fn(z*(x, x) = Fy ()] (52
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to be the effective depth of avalley associated with the minimum x with exclusion
at the set 1. Recall that z*(x, y) denotes the lowest saddle connecting x and y, as
defined in (1.4). Note that Theorem 1.8 implies that

CNU22 N < plof < o] < e(] + DNUDReNIED  (53)
= y = =
With these notations we will show the following

Lemmab.2. Let] C .#y,and P [r;‘ < r}“] > 0 (thiscan of course only fail ina

one-dimensional situation). There exist C < oo such that for any x, y € .4y, we
have that for all N large enough,

E[rl = o] < onviR 4 on?

X sup ([P’ [r;‘/ <ty < r}‘] eNd’(x/’y)> (5.4)
x'el N\{TUy}

Iftheset .# y\{I U y} isempty, we use the convention that the sup takes the value
one.

Remark. Notethat

[P’-rx <1t <tx] P[r" <1 ]P[rx/ <r"/]
/ y 1 / UI y 1

P[tx/<r;f|1:;‘<r;‘]= L = a )

! [P’[r{f < tf] P [rg < rf]

X X
P _rx, < ry]

IA

(5.5)

X X
P T3 <TI]

and thus, using the same arguments as in the proof of Proposition 4.1, whenever

P [r; <17 ] is close to one, we have the more explicit bound

P [tx, <ty < ‘c}‘] < Cmin (eiN[FN(Z*(x‘x/))fFN(Z*(x’y))] 1) (5.6)
X y — ) .
Thiswill beimportant in the application of thislemmato the proof of Theorem 5.1.

Proof. The starting point of the proof of Lemmab5.2 isthe observation that it holds
for I = .4 . Weformulate this as adistinct lemma.

Lemmab5.3. Assumethat P [r;‘ < rj‘ﬂN] > 0. Thenthereexistsaconstant C < oo
such that for all x, y € .4y, and all N large enough,

Eloyley = o, | = oNe 5.7)

Proof. The first important observation is then that P [r;,‘ < rj;/N] cannot be too
small, i.e.
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Lemma5.4. For any x, y € .4y, thereexists L < oo, such that for all N large
enough

P [tj‘ < Tfflw] > ¢~ NL (5.8)
Proof. Clearly

P I:T; < t);/N] > [P’[X[TN] =y,VO0<t<[NT], X, & MNn|Xo= x] (5.9
So all we have to show is that the finite-time probability in (5.9) is larger than
exp(—LN) for some constant L < oo. But thisis obvious by just fixing a trgjecto-
ry consisting of [NT7] steps and leading from x to y without visiting the set .# y
on the way (making sure that T is chosen large enough to allow such atrgjectory)
and observing that the probability that the processis doing just thisisat least ¢7V,
with ¢ isthe constant from assumption (R3). O

Next we will use the fact that in Lemma 3.2 we have shown that gy () < 2for
u < N41 Nowforal T < oo,

50
E [T;C”{rgsr;;m}] <TP [f; < T:CZZN] + Z E [t;fﬂ{ig;ng}U{T 5;-?,/1\]}]
Z:OT
< TP[e =7, |+ >+ Dint e [ =, ]
t;T
= TP < v, [+ 2+ p2e
i=T
= TP[z) = 7y, |+ CemV TN T 4 N (5.10)

Now choose T = N4*3, Then

E [r; o < z_j;{N] < N3 4 CNZ 4 exp(—eN? + LN) (5.11)

which for N large enough is bounded by C N¢*3 for some constant C, as desired.
O

This gives us a starting point to prove the lemma by downward induction over
the size of the set 7. Actualy, the structure of the induction is a bit more compli-
cated. We have to distinguish the cases when the starting point x is contained in
the exclusion set 7 and when it is not. We will then proceed in two steps:

(i) Show that if (5.4) holds for al J C .y with cardindity |J| = k and al
x,y € My, and if (5.4) holds for al J of cardinality |J| = k — 1 for all
y e HAyandx & JUy,then (5.4) holdsfor al I with cardindlity |/| =k —1
andal x,y € M.

(i) Show that if (5.4) holdsfor all J with cardindity |J| = kanddl x, y € 4y,
then (5.4) holds for al J of cardindity |J| = k — 1foradl y € .4y and
xgJUy.



132 A. Bovier et al.

If we can establish both steps, we can conclude that since (5.4) holdsfor I =
My andadl x,y e . My,itholdsforal I C #y.

We now prove both assertions. Note that C will denote in the course of the
proof ageneric finite numerical constant. We will not keep track of the changes of
its value in the course of the induction. We will set x = d + 3.

Step (i). We need only to consider sets J of cardinality k — 1 withx € J U y. We
can assume without lossthat y ¢ J.

E [t;”{r;,‘<rj}]

=[ I:T;,Cl]{r;fsrjll[v}] + Z E I:(T;C/ + T))YC )H{‘E;/ST‘%N}H{ti’f/<tj/}:|
x' € y\J\{x,y} '

SEETTR T o CERen I EE)
x'ed N\I\{x.y)

+P [rf/ < rx/,N] E [r;,‘ l]{r;’«j’}]) (5.12)
Dividing by P [r;‘ < rj], we get from (5.12) that

E [t;‘|r; < rj] <E [r;‘h;‘ < Tf/lzv]
5 ([E [z <o, e le = o, P [w <o ]
+ X
x'el N\I\{x,y} P [TX/ < T))CC] P I:'L';C < 'L';jl
+E [rx/lrx/ < rx/] Y [t;c <5 ] g [I;C, - T()/C///N] (5.13)
Y ! P [r" < r}“] .
)7

Thefirst summand in thelast line in (5.13) produces exactly thefirst termin (5.4).
For the second, observe that

x x x' x! X X x' x'
[FD[TX, Ste///;v][p[fy <rj] B P[Tx/ STJU),]P[ry <'CJ]
X X - X X
P[ry <rj] P[ry <rj]

P [r; < r;|t;f < ‘L';:I (5.14)

which makes the entire term smaller than C N*. For the last term we may use the
induction hypothesis for the conditional expectation time appearing in it to get

E I:'[X' x' tx'] P I:T;C = T}C :| P I:T;C/ = T')/C/ZN:I
P [r;‘ < t}“]
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x' x! x! X X
P [rx,, <ty <715 ] P [tx, < re///N]

< CNK + CNK sup eNdJ(X”sy)
x"el y\{JUy} P [r{f < r}“]
P [r"/, <7 < r}‘]
= CN*+CN*  sp - Nt
x" e N\{JUy} P [t)x < ‘E;]
P [r",,, < < rj/] P [tx, <1, ]
< T > : N (5.15)

X X X
P[rx,, <7ty < 'CJ]

But the last factor satisfies

! ’ ’ ’ / ’
P [r;“,, < r;‘ <71y ] P [r;‘, < rjf/ZN] P I:‘L';C,, < r;‘ <71y ] P [r;‘, < T;U},Ux,,:l
<

P [t;‘,, <7< r}‘] P [r;‘,, <1¥ < r}‘]

y y

P [r", <15 <1l < r}‘]
S <1 (516

=
X X X
Ipl:fx// <'L'y <TJ]

Thus (5.15) actually givesaterm of the desired form. This provesthefirst inductive
step.
To compl ete the proof we need to turn to

Step (ii). Herewemust consider J suchthat x ¢ J U y.
We will first consider the sub-case when x is such that

dj(x,y)= sup  d;(x',y) (5.17)
x'edl N\{JUy}

Note that in this situation

) P [r;‘ <7 < t}‘]
sup P I:‘L';C/ <ty < f;] Ndr (') 5 oNds(x.y)

x'e.d N\ Uy) P [t;‘ < t“}]

=P [rf < ‘L';CU]] N xY) (518)
But
P I:‘L';C < t;w] =1-P [t}‘uy < t)f] >1— CNU=2/2,=Ndsxy)  (519)
so that in this case it will be enough to prove that

E [r;clr; < rj] < CN¥eNditx.y) (5.20)
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Recall from Corollary 1.6 that
[E[r;‘|r;“ < r}‘] =F [r;clr;.‘ < ‘L';Ux]
E [rjﬂt;‘ < tfuy]
P [tfuy < t;‘]

By the induction hypothesis, the first termin (5.21) satisfies the bound

+ P I:‘L';C < t}‘uy] (5.21)

E [T;h"; < T.)/CUx:I < CN* sup P I:‘E;:, <1ty < f}fo] eNdsux(x'.y)
x'e M N\{JUyUx}
< CN¥Ndsx.y) (5.22)

asdesired (notethatd;u, (x, y) < dy(x’, y) bydefinitionandd; (x’, y) < d;(x, y)
by assumption (5.17)). For the second term, we use again the induction hypothesis
to get that

X X X
E [rx |ty < rjuy]

X X
P [tjuy < ‘L'X:I

X X
P I:‘L'x < TJUy]

I]J’[tx, <1’ <1y ]
=< CN¥ sup X X JUy eNdJUy(x/sx) n CN*

x'edy\{JUyuxt P [t}‘uy < tjf] P [tjuy < tjf]

< C—lN—(d—Z)/ZeNa'j(x,y)CNK sup P ['L’;C/ < 'L’;C] eNdJUy(x/,x)
x' e N\{JUyUx}

CN*
P [r}‘uy < r;f]

ST MYEICNT  ap (e N ) Ny
x'el N\{JUyUx}

+N_(d_2)/2c_lCNKeNdj(x’y) (523)

_|_

It remainsto show that
e~ N(Fy G (x.x)=Fy (X)) ;Nd Uy (x'.x)
— e*N(FN (Z*(xvx/))*FN(x))einfx”eju)vu.x N(Fy@@*(x",x")—F(x")) (524)
is bounded by one. We consider two cases:

(i) Assume that

inf  FyE (", x") = F(X') = Fn(z"(x, x")) — Fy(x) (5.25)
x"eJUyUx
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Define z*(x, A) by Fy(z*(x, A)) = inf yca Fy(z*(x, x")). Then in this case,
x is‘closer’ tox’ thento J U y, so that

O, JUy) =z, JUy) (5.26)
Thus by assumption (5.17)

inf FN(Z @&, X)) - F(x') = FyE* (x, JUy)) — Fy(x)

x"eJU

< Fy(Z"(x, JUy)) — F(x) (5.27)
Thisimpliesthat Fy(x) < Fy(x"), and since

o= N (PN @ (x) = Fy (0) i e uyun N (F (@ 67 20) = F (&)

< o~ N(FN@)=Fyn () (5.28)

the sup is bounded by 1 as desired.
(i) We are left with the case

inf  FyE*&x”, x)) = F(xX') < Fn(z"(x, x")) — Fy(x) (5.29)
x"eJUyUx

Here x’ iscloser to J U y thanto x, and so
Z*(x, JUy) =725(x, x) (5.30)
But then, again by (5.17)

Fn(z"(x,x")) — Fy(x) = Fy(z"(x, J U y)) — Fy(x)
> inf  FnE*(&, x") — Fy(x") (5.31)

x"eJUyUx

which has the desired implication. This covers the case when (5.17) holds.
Let us now turn to the case when (5.17) does not hold. Let x* € .4y be such
that
dy(x*,y) = sup dy(x,y) (5.32)
X' e y\{JUY)

By assumption x* # x. We can write

E |:.L,X|Tx < ‘E;] _ E [T U{‘["<‘[ }U{r >rX}] E I:T;f”{r;<rj‘}|]{r;*<r)’f}i|
y 1%y [Fb[r;<tj] P[r§<r}“]
D+ U0 (5.33)

Now
[FD[‘L' < rJUx ]

P I:‘L'x < rj] (534

(D) =E[z1e} < T | 7"
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and using the induction hypothesis,

X X X
P [rx, < Ty < Ty

(I) < CN* +CN* sup :IeNd]Ux*(x,ay)

x' e y\{JUyUx*} P I:‘E;,‘ < ‘E;]

P [r;‘, <71 < t;] ,
<CN“+4+CN“  sup NIy (5.35)
x' e N\{JUy} P I:'L’}“,r < T‘)]c]

as desired. On the other hand,

[E I:Tx*[l{fx* <t¥ }] * * [E I:T))/C*[l x* x* ]
(In = B i :U} P [t;‘ <1y ] + L SEA <rx] } P [rf* < rj‘uy]
P[t;<rj] P[r;f<tj]
= (Ila)+ (11D) (5.36)

To treat (118) we can use the induction hypothesis to get

_ X X X X X X X
(Ila) =E [rx*lrx* < rJUy] P [rx* <7tlty < rj]

X X X
Ip I:Tx/ < T)C* < TJUy] X* x*
P [ry <71 ]

< CN* + CN* sup

X' € N \{JUx*Uy} P [t; < T}C]

NIy (' 2%)

P [r;‘, <Th < r}i‘ < rj]
= CN* + CN*¥ sup eNdiuy (X' .x™)
X el N\ JUx*Uy) P [r;f < r}‘]
[P’[r;“, <7t <r}“] )
< CN* + CN* sup , N (537)

x' €l y\{JUx*Uy} P I:‘L'))f < ‘L'}C]

since djuy (x', x*) = inf yre juyups [Fy (2*(x', ")) — Fn(x)] < dj(x', y), and
finally

* * * U:D I:t)/cr* < T.)]CUy] U:D I:.C
(I1b) = [E[r; <1 ]
T

_ x*_x* x* X XX
_[E[ry |ry <15 ]P[tx* <ry|1:y <T

~
| I—

< CN“P [r;‘* <ty < tj‘] Ny (5.38)
wherethelast lineis obtained by using that the conditional expectation in the one-
but-last line is of the form considered just before. Putting all together we see that
the lemmais proven. ]
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Proof of Theorem 5.1. Lemma 5.2 can now be used to prove the theorem. For
this, let 7 (x, z, y) bean admissibletransitionand fix I = 775 \y N ./ y.

We have already seen in (5.19) that P [f; < f;fuy] differs from 1 only by an

exponentialy small term. Moreover, using (4.21), we see that in the case of an
admissible transition,

P[t;‘ < t;‘] < P[rfuy < rf] < PI:I; < t;‘] + ZPI:T;/ < f)fw]
y'el

<p [f; < r;] (L4 [1]e=NEvy (5.39)
Therefore (5.21) impliesin this case that
E [t)ﬂr;‘ < rfuy]
P [r;‘ < rj;]

+E [t;‘h; < t}‘UX] (5.40)

E [r;f|r;‘ < rf] = (1 n @(e—NKN))

Now we have aready precise bounds on the denominator of the first term (see
Section 2), and using the upper bound from Lemma 5.2 (taking into account that
we are now in the situation of the remark following that lemmal) we see that, under
the assumptions of the theorem, the second term is by a factor N exp(— Ky N)
smaller than thefirst. It remainsto estimate precisely the numerator in thefirst term.
The essentia idea here is to use the ergodic theorem. It may be useful to explain
thisfirst in a simpler situation where there is only a single minimum present and
consider the quantity g§ (u).Let D C T'y bethelocal valley associated to y, that is
the connected component of the level set of the saddle point that connects y to the
rest of the world. The basic ideaisto show that the expected recurrence time at y
(without visits at other points of .# y) is up to exponentialy small errors equal to
the same time of another Markov chain X p(t) with state space D with transition
rates pp(x, z) defined asin (2.8) and whose invariant measure, Qp, is easily seen
to be just Qu conditioned on D, i.e. Qp(x) = QN (x)/Qn(D) forany x € D.
Then, by the ergodic theorem, we have that

1 QnD)
Qp(y) Qn(

Ept) = (5.41)

This quantity can be estimated very precisely via sharp large deviation estimates.
It will typically exhibit abehaviour of the form C N¥/2,

To arrive at this comparison, we simply divide the paths in our process into
those reaching the boundary of D and those who don't, i.e. we write

y 1 Ly
gy (u)==E |:eu7) U{fj\')ff:;l,v}U{TE§VD<75".}j| +F I:euf_ ”{T§D>T>}*Y}j| (542)



138 A. Bovier et al.

Let us denote by DT and D~ the two sets obtained by adding and removing, re-
spectively, onelayer of pointsto, resp. from, D. Notethat on theevent {r), > 77}
the processes X (r) and X p+ (¢) have the same law until time ryy , o that

E[e 0o | = For [0 o | <Bpe [¢9]  (543)

We will show that this is the dominant term in (5.42), the first summand on the
right being exponentially small. Indeed

y
E |:eufy U{r§'<t_ﬁv,/N}U{T§;D<f)¥}:|

= @y, o
= Z [E[e” . ﬂ{rzyffﬁuau}Hhﬁs;;,}\}}] (5.44)
zeaD

= Z E I:eurg_ H{szfffbap}il E [eur): ”{Tffffﬂ]\,}]

zedD

Using Theorem 1.7, for smal enough u, the first factor is bounded by
const.N¥e~NUENQ—Fy] while the second is bounded by const.N¥. This gives
the desired upper bound

g = Ep- [ ]+ CNFe M= 0 (5.45)

where z* denotes the lowest saddle point in d D. To get the corresponding lower
bound, just note that

~ y ~ y ~ y
Ep+ I:eur)- H{ng>T§;}i| =Ep+ I:eul'y] —Ep+ I:e‘”y H{Tévbff)x}] (5.46)
But the last term in (5.46) can be treated precisely asin (5.44), so that we arrive at
gl >Epe [e”;] _ CN¥e NINE)=Fy )] (5.47)

Differentiating and using reversibility and the upper bounds from Theorem 1.7, as
well as the obvious lower bound

g)y;(O) =1- P[rf/}i}v < ‘L'e):l >1- Z 22 (0)

xe€MN\Y

>1— |%N|Nd_le_N[FN(Z*)_FN(y)] (5.48)
givesin the same way that

§0 _ ay(Ddh

= + (Q(NK)e—N[FN(Z*)—FN(y)] 5.49
J0 OO (549

The same ideas can now be carried over to the estimation of the return timein
an admissible situation, using the estimates from Lemma5.2.
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Proposition 5.5. Let # (x, z, y) beanadmissibletransition. Let D denotethelevel
set of the saddle z. Then for Ky > 0 satisfying N1=*Ky 4 oo, for somea > 0,

E [rjﬂr;‘ < rfuy] = % + 0O (e_NKN> (5.50)

where l = 7 \yN.y.

Proof. Basically, the proof goes as outlined above. With D defined asthe level set
of the saddle z, we can decompose

E [T;?H{Tj<rj‘u),}] [E[ ﬂ{r <rlu)}”{r;‘<raD ] + [E[ H{T <rIU)}”{r >T5 ] (5.51)

The first summand gives precisely

E I:T;C[I{t;<rfuy}ﬂ{r§<rdn ] = [E[ U{r"<1:aD}:| (5-52)

so that from this term alone we would get the same estimate as in (5.49). We have
to show that the second term does not give arelevant contribution. Note that asin
(5.44) we can split paths at thefirst visitsto 9 D. This gives

E [T-XXH{T§<T;(U))}I]{T§>T§D}] = Z E [T;ﬂ{rjfrgl)}ﬂ{r;<ff}] P [tj < I;Uy]
7’€dD

+P [rzx, < Typ. Ty < t;‘] E |:rzlﬂ g } (5.53)

X <1yl

Now P [r;, <t T < IX] isbounded by e=NF¥@—=Fv @] and by reversibility

[E[rz",ﬂ{rjfrgl)}ﬂ{qug}] < e NUNG)- FN(X)][E[rj I]{TX/QBD}] so al we have to
show is that the two quantities E [rz/ﬂ / ] and E rZ [ (which are
Xy <Ta[)} {zs IU\}

more or lessthe same) are not too large. But thisfollows from our previous bounds
by splitting the process going from 7’ to x at itsfirst visittoapointin 7, . N.# n,

e.g.
Z/
E |:'L'x H{T,§/<ffg),}i|
= [E|: Tl <T/;N}} + )

x’ x’
([E |:rx I]{T <2 ///N}] P [rx < rluy]
x'edy\I

+p [ <7, | [fj; n {ré’«f&y}D (5.54)

Lemma 5.2 and Theorem 1.7 can now be used on the expectations in (5.54), and
thisimplies the desired result. O
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Now if (as we assume) x is a quadratic minimum of Fy, % = CN9/?,
and using this together with Theorem 1.8 we get the estimates oé Theorem 5.1.
O

Remark. The reader will have observed that we could also prove lower bounds
for more general transitions, complementing Lemma5.2. But the point isthat these
would depend in a complicated way on the global specifics of the function Fy,
contrary to the situation of admissible transitions for which we get the very simple
estimates of Theorem 5.1. The beauty of the construction liesin some sensein the
fact that the general “worst case” upper bounds of Lemma 5.2 suffice to obtain the
precise estimates of the theorem.

5.2. Laplace transforms of transition times of admissible transitions

Theorem 5.1 gives precise estimates on the expected transition times for an ele-
mentary transition. We will now show that as expected, the distribution of these
transition timesis asymptotically exponential. Thiswill be done by controlling the
Laplace transforms for small arguments.

Theorem 56. Let Z(x,z,y) be an admissible transition. Set f;‘ =
F |17 (x. 2 )| Then

1

E[e /517 (02 )] = 7 + e VY f) (5.55)
1—v

wherefor any § > 0, for N large enough, f isbounded and analytic in the domain

|[Re(v)| <1—6

Proof. The main ingredient of the proof lies in controlling the analytic structure
of the Laplace transforms. The procedure will be similar to that in the proof of
Lemmab5.2, that iswe consider the entire family of functions G* W) and establish
the corresponding domains by induction, starting with the case I = .# 5 where
the analytic estimates of Theorem 1.7 hold. It will be convenient to use functions
where the argument u has been properly rescaled. The naive expectation might be
that the Laplace transform will exist for values of u up to the inverse of the corre-
sponding expected transition time. However, thisisnot so. The point isthat Laplace
transforms are much more sensitive to “deep valleys’ than the expected times for
which such valleys contribute less if they are unlikely to be visited. However the
Laplace transform will only partly benefit from this, but simply explode at avalue
corresponding to the deepest valley that is at all allowed to be visited.
We introduce some more notation for convenience. Set

t(x,y) = eNUey) (5.56)

and

Ti(y)= sup  t;(x,y) (5.57)
xe M N\{1Uy}
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With the notation of Section 1, we define
Gy W/Ti(y)
P [r;( < r}‘]

Thefollowing key lemmagives us control over how thishappens. It isthe analogue
of Lemmab.2.

Gy, () = (5.58)

Lemma5.7. Let/ C ./y,andletx, y € .#y. Then (A})y“’,(v) can be represented
in theform

5’}‘,,,(1;) = a,?,y,,(v/T, ()

, tr(x',
+ ) um[f;;, <l < ‘L’f]a;y’, (v 1 ”) (5.59)

X'eMN\{TUy) Ti(y)

where a? . anda vy foranyx’ € .4 y\{IU y} are complex functionsthat have
the properues (for afinite constant C, and k = d + 3):

(i) They are bounded by C N* and analytic in the domain |Re(u)] < CN7*,
(ii) They arereal and positive for real v.

Proof. Animportant corollary of analyticity are corresponding boundsonthederiv-
atives. Namely, by a standard application of the Cauchy integral formulait follows
that for any function a which is bounded and analytic in the domain |Re(v)| <
CN~*, for |[Re(v)| < $N~* wehave,

7l nK
<nlC

sup a(v) (5.60)
v:Re(v)<CN—¥

n

dn
dv" a(v)

Thiswill be used repeatedly in the sequel.

The first step in the proof is to show that (5.59) holds if I = .# . The proof
of this fact is completely analogous to that of Lemma 5.3 and we will skip the
details. Let us just mention that we will get the boundedness of @;_rﬂN(v) ina
domain Re(u) < ¢N—¢~2 (while analyticity was established in the larger domain
Re(u) < cN~?~1in Section 3). This provides the starting point for our induction
likein Lemma5.2. Again we assume that the lemma holds for al 7 of cardinality
greater than or equal to £, and we consider sets J C .# y of cardinality £ — 1. As
before, we first show that the case x € J reduces easily tothecase x ¢ J. Without
loss of generality weassume y ¢ J. Namely, in the former case,

& /Ty (y))
P [r;‘ < rj‘]

o

x' el y\{JUy) P [r; < rj]

6; ;) =

gL/ TP [ <77 |

G ,(v)  (561)
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Inserting the induction hypothesis for the 5’; ;(v), we get
grw/Ts(y)
P [r;‘ < r}‘]

.y Semor [ <o P [e <7y, ]

Gy, ) =

ad 0/ Ts ()

x" e y\{JUy} gy OP |:‘L'§f < r}‘]
Py LoD Pl <oy, [P <]
/ e g | g;/ (O) [p) I:-L—X < .L-X]
x'e M N\{JUy} x" el N\{J Uy} Y 7
/ ’ / ’ ” t //7
xP [tf/, < r;f |t; <713 ] ai’,y,] <vj;j—(y)y)> (5.62)

Remember that in the proof of Lemma5.2 ((5.15)—5.16)) we have established that

X X x' x'
Ip I:TX/ E T,,/Z/N] I]:D I:Ty < T] ] X xx x!
P[‘L’x,, <7ty < rj]
P [rx < rx]
y J

3
<P [tf,, <ty < r}“] (5.63)

which, since the analytic properties of a;
(5.62) provides the claimed representati on

The more subtle part of the proof concerns the case x ¢ J. We proceed again
as in the proof of Lemma 5.2 and consider first the case when 7 (y) = dy (x, y).
Note again that in this case, the representation in the lemma reduces to

+y. adal,  arethe same, shows thet

G ) =al, ;v (5.64)

since al the other terms in the sum (5.59) are smaller and more regular.
We use of course that

y JUx (u)

_ 5.65
1= G700 (69

G’y‘J(u)

which implies

Tyux(y)
P [r;‘ < ‘L';UX|T; < 1’]] G)}C) JUx ( ﬁ(y) )
Tyuy(x)
1—-P [tjj < T}Cuy] Gy Uy ( /() )
o ( Tm(y))
JU T(y
_ V. X J(}) (566)

P[T;<T.JICU}] T]U) (x) ’X T]Uy(x)
S P A Jy 4687 4, (0075557

Gy, () =
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The numerator again poses no problem since it permits to obtain the desired
representation by the inductive hypothesis. Potential danger comes from the de-
nominator. But using the induction hypothesis, we see that (similar to (5.22))

TJUy(x) ( TJUy(x)>
G Qy——=
7o) =\

_ TJUy(x) x x
o) [ 2, Plu<x]

x'e M N\{JUxUy}

oy <9thUy(X/,X)> tyuy(x’, x) L0 ( Ov ) 1
xx IOy T/ (y) Tr0y(x) 2N T () ) Troy(x)

troy(x', x) tiuy(x', x)
= 2 Pl =nl T e (T
x' e N\{JUxUy} 7 ™

Ov 1
+ —_— 5.6
sy (Tm)) Ty (567

All we need isto bound the modulus of this expression from above for v real. This
gives

TlUy(x)a/x ( UTJUy(x)>
Ty(y) W T;(y)

1oy (X, x) cN
< Z P[T§/<T;]T—()))CNK+T(}))
x'e M N\{JUxUy} J 4

K

(5.68)

In the second part of the proof of Lemma 5.2 (5.23) we have shown that
Pt} < o] tyuy', x) < CN@-2/2 (5.69)
Thus we deduce from (5.68) that

TlUy(x) ~/x ( UTJU)r(x))‘ < CN*
Ty(y) W () )|~ Tr()

We see thus that the numerator in (5.66) will not vanish for v < C ~“IN=¢. Thus
G" ,(v) isbounded and analytic in the strip [Re(v)| < CIN 7.

I nthegeneral case, we proceed asin the proof of Lemmab.2 and decomposeall
paths into those avoiding the deepest minimum x* and those visiting it. A simple
computation yields then

(5.70)

Tt Ple <]
T
1) P [r; < r}‘]

=~ Tyuy(x™)
X XX X X Y
+P [rx* <7ty < rJ] X*,JUy (v—

T;(y)

X _ Ax
GyJ(v) = GyJUx* (v

) Gy, () (571
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Clearly thefirst term is by the inductive assumption at |east as good as desired, and
sincewe have just shown that the last factor in the second term is bounded and ana-

Iyticin|Re(v)| < CN~*, using theinductive assumption for @jwuy (vT’TUJ)—((yx)))
one sees easily that the desired representation holds. This concludes the proof of

the lemma. O

We are now ready to prove Theorem 5.6. For thiswe have to improve the previ-
ous analysisin the case where x isthe degpest minimum inthe allowed set .#Z y\ 1.
Inthat case T; (y) isstrictly larger than any of theterms#;u, (x', y) and t;u, (x', x)
and it will pay to use Taylor expansions to second order. Also, we will be more
precise in the rescaling of the variables u and define

51‘,1@) = 5}‘,1(vT1 »/T) (5.72)

with
I A
7= Lt Tl (5.73)
P [rfuy < rjf]

Notethat weuse T instead of 7y intheproof becausethiswill simplify thefollowing
formulas. But recall from the proof of Theorem 5.1 that

E [t;flr)’,‘ < r;‘]
— - 1| < e NKy (5.74)

Thusin the final results they can be interchanged without harm. Then

x X x x| Ax Tiux(y)
P [ry < IIUX|ry < 'L’I] nyIUx <v—T

A Tiuy(x)
1-P [rjc‘ < rfuy] Gy 10y (UT)

Using the analyticity properties established in the preceding lemma, we now
proceed to amore careful computation, using second order Taylor expansions. This
yields

Gy, () =

(5.75)

x x x x v X)X x Ty )2 Grx 0y Trux®)
[P’[ry < Tl < 5] <l+ f[E[Ty Iy < Tjud + T (GU T ))

~x _
Cru®) = P[z* Xl — LE[rx ], TP prox < o G vl
[ryUI < rx] - T [rx (i <T}(U),)] T2z [rx < .CIU)'] x,1Uy V——
(5.76)
for some 0 < § < 1. We use Corollary 1.6 to get
v T ()2 A 5y T1ux ()
. 1+ 7E[r;|r; < r;‘Ux] + ClgON G | <0v%>
v P L L Vi v 10 G (5 T,UM)
T |]:l>|:-[;'u1<r;c:| 212P[r),, <7}] x,IUy T
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2 A~ ~
1+ %[E [t;,‘|r;f < t}‘Ux] + —(UT’;%E})) G”;,IUX (QU—TIU;—;()))

1 —v— — (UTIU)'(X))Z ’G\//i N (év TIUZ(X)>
2T[E[r§\r;<rfuy] AUy T

) (5.77)

The term we must be most concerned with is the second order term in the de-
nominator. Here we must use the full analyticity properties proven in Lemma5.7.
This gives, after computations analogous to those leading to (5.68) and using the
obvious lower bound on T

Ty (0))? e 202 ]2
- - G"Y 10y fo—— )| = C°N 5
2TE [tjﬂr;‘ < r,Uy] 2F [rjﬂr;c‘ < tfuy]
% 3 e NIFNE = FN 0O+ @ @)= Fv @] (1) (o x))?
x' e N\{JUyUx}

(5.79)

Now according to our hypothesisthat x isthe lowest minimumin 1, it follows
that
t1uy(x', x) < eNINGED=Fy (] o that (5.78) is finally bounded by

2
C2N%c'N—d [v] 1] sup e~ NIFN (@ (6. )= Fy (27 (x,x))]
x'el N\{IUyUx}
2
v
= C?N%*c'N %me—’” (5.79)

where § is strictly positive.

All the other terms in (5.77) except the leading ones are even smaller. Note
moreover that both 77y, (x) and T7u, (y) are exponentially small compared to T,
so that all these error terms as functions of v are analytic if |Re(v)] < 1. This
alowsto write 5;),(1)) intheform

G () = -VEy/2410) €2(v) 5.80
ya W) =g Fe TR g v p—— )
whereal ¢; areanalytic and uniformly (in N) bounded inthe domain |Re(v)| < 1.
This concludes the proof of the theorem. ]

5.3. Thedistribution of transition times

From Theorem 5.6 one obtains of course some information on the distribution
function.
Coroallary 5.8. Under the same assumptions asin Theorem 5.6, we have:

(i) For anyé > O, for sufficiently large N,

p [f; > 1T\ 7 (x, 2, y)] < Dt (5.81)
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(ii) Assume that N; is a sequence of volumes tending to infinity such that for all
F (x, z, y) isan admissible transition. Then, for any ¢ > 0,

lim ey, [r > 17, | F (3, 2, y)] = (5.82)

Proof. (i) is an immediate consequence of the the Laplace transform is bounded
for real positive v with v < 1 and the exponential Chebyshev inequality. (ii) isa
standard consequence of the fact that the Laplace transform converges pointwise
for any purely imaginary v to that of the exponential distribution, and isanalyticin
aneighborhood of zero. ]

With alittle more work we can also complement the upper bound (5.81) by a
lower bound on the distribution of the survival timein avalley.

Proposition 5.9. Let # (x, z, y) beanadmissibletransition,andset I=.# N\ 7 .
Let A(N) be any sequence tending to zero as N tends to infinity. Then, for some
Kk < 0o, forany 0 < a; < 1 we have that

4t N(T(1— d/2
Ber o 1] = e~ !/TA=)g2(1 — h(N)) if t > h(N) Nkfw) (5.89
X .

= dj2
1—o0(1) if 1 < h(N) NEQ’TI(X)

Proof. The proof of this lower bound consists essentially in guessing the strategy
the process will follow in order to realize the event in question which will be to
return a specific number of timesto x without visiting the set 7. For, obviously,

Pl >t] = Y P[V_iXy =% Yezyro 16, Xs €1]

S 5eees sp>1

$1+...+sn>t
= E l_[ |]:D =5 < ‘L’f]

=1l =1

v1+ Asn>t
_ R X X
=(P[rf =77)) E HIP’ =silty <17] (5.84)

wsn=l j=1
31+ Fsn>t

We introduce the family of independent, identically distributed variables Y; tak-
ing valuesin the positive integers such that for P[Y; = s] = P [z} = s|tf < 77].
Then (5.84) can be written as

P [rf > t] > (P [1:; < rf])” P |:Xn: Y > t:| (5.85)

i=1

We have good control on the first factor in (5.85). We need a lower bound on the
second probability. The simplest way to proceed is to use the inequality, going
back to Paley and Zygmund, that asserts that for any random variable X with finite
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expectation, and any o > 0, P[X > (1 — )EX] = a2EX) Wewill usethiswith
X =) ,Y.Thus

n n
t
P |:Z Y > t:| =P |:Z Y > n[EY1:|
e} nkY:

i=1 1

2 2 2
2<1_ ¢ ) n2(EYy) 2
ntY1/) n(n — 1)(EY1)? + nEY]

1+ (EY1)?

2
t 1
= <1 - ) (5.86)
nkYy 1 EY? 1
=4 —
Now using Lemma 5.7 one verifies easily that

EYZ < CN* + Ty(x)e VKW (5.87)

So that (5.86) gives

! r\? 1
P Yi>t|>(1- 5.88
[; i ] = ( n[EY1> 14+ r_ll (CN" + Ty (x)e=NKv) (5.88)

Thus the second factor is essentialy equal to oneif n > max(N*, T7). We now
choose n astheinteger part of n(r) where

n(t) = min < L ! ) (5.89)
EYi(l—ap)’ h(N)(CN* + 1))

Thisyields
P> 1] = (1-P[rf <7])" 2 L
- - 1+ 2 (CN* + Ty(x)eNK)

X
n(t)

a? (1 —h(N)) (5.90)

P[rffr}?]

- eit EY(=ap)

—t0(Plef <t1?)

if z is such that the n(z) is given by the second term in the minimum in (5.89).
This yields the first case in (5.88). If ¢ is smaller than that, one sees easily that
n()P[r; < z;] tends to zero uniformly in¢, as N 4 oo (in fact exponentially
fast!) Thisimplies the second case. |

6. Miscellaneous consequences for the processes

In this section we collect some soft consequences of the preceding analysis. We
begin by substantiating the claim madein Section 1 that the process spends most of
thetimeintheimmediate vicinity of the minima. Weformulatethisinthefollowing
form.
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Proposition 6.1. Thereexistsfinite positive constantsC, k suchthat for any p > 0,
xe€Myandt >0,
P [|X, — x| > p|tj;[N\X >t,Xo= x]

< CN inf sup e~ NIFN()—Frn ()] (6.2)
P'<P yely:p'<|x—y|<3p'/2

Proof. We start to decompose the event {Tj//w\x > t} asfollows:

e >t = U . >IN {Xs =x. Yooy Xo € My} (62)

O<s<t

Then

P [le — x| > p|r"}iN\x >t Xo= x]

P I:Tf/l;v\x >s, Xy = x] N

= [P’[|X,_S—x| > P Ty >t—s|Xo:x]

O<s<t P I:T‘)/C//N\x > t]
P [rf‘%N\x >s, X, = x]

O<s<: P [rj‘”N\x >s5, X; = x] P [tj‘///N\x >t — s]

xP||X—s — x| > p,tjf//N >t —s|Xo :x]

X X X
. P I:‘L'y < Ty Tuy > t— s]
S D YD

P ez 205e P [ffzzN\x =1 _S]
min(lp[t’f <1 ],[P’[t)f >t—s]>
< i/nf y MN M N (63)
PPy pr<in—yl<3p/20<s <t P [szm\x 1= S]
Now
RS py— .
while
Pleg = 1=s]= 3 Pl = r—sir <y, P[5 <7, 69)
yed Ny

Note that by Theorem 1.7 and the exponential Markov inequality, for somekx < oo

P [r;‘ >t — s|t;“ < T:V/ZN\}’] < CN¥e =8)eN™* 66)
while the factors P [r;‘ < rj;lN\y] are exponentially small except if y = x. The
denominator is bounded below by Proposition 5.9. Since it decayswitht — s at an

exponentially smaller rate than the numerator (see (6.6)), and is close to one for
times up to the order exp(N C) (for some C), it is completely irrelevant.
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Thus we see that the second term in the minimum takes over for t — s >
N<tFyn(y) — Fy(x)], anumber small compared to the inverse of the first term
in the minimum. Thus using that, for a, b <« 1,

o0
. b|Inb b b
me(e“”,b) < [In?| + ~ =(|Inb| +1) (6.7)
a 1—e a
t=0
the result follows immediately. O

Based on this result, we will now show that during an admissible transition the
process also stays mostly close to its starting point, i.e. the lowest minimum of the
valley concerned. The following proposition makes this precise.

Proposition 6.2. Let # (x, z, x’) be an admissible transition. Then there exists fi-
nite positive constants C, k and Ky st. lim NI2gy 1 o0, for some« > 0, such
that for any r and p > O,

[P’[lXt—x|>p

< CN¥ inf sup e NEND=Fy@] 4 co~NKN  (6.8)
P'<P yeTy:p' <lx—y|<3p'/2

Ty >1,Xo= x]

Proof. The proof of this proposition isin principle similar to that of Proposition
6.1. We begin by applying the same decomposition as before to get

P[|X,—x|>p

r}g,x >t, Xg= x]

P[r{‘ﬁg >, X =x]
= o P [|Xl_s — x| >p, Ty >1—s|Xo= x]

O<s<t P I:T;-(_?X > t:l
X X X
. P [ry < tfiyux’ Tﬂ_gXUx >1— s]
inf < Z :
’
PPy <lv—y|=3p//20<s<t P [ﬂﬁ > 1= S]
1 X X X

. min (IP I:‘L'y < Ty YUX] ,P [tﬂ"SXUx >t — s])
< inf Z =

’

p=r yip'<|lx—y|<3p’/20<s<t P I:‘L';—L . >1— S]

(6.9

Asin the proof of Proposition 6.1, the denominator is bounded by Proposition 5.9
and is seen to be insignificant. We concentrate on the estimates of the numerator.
Again we have the obvious bound

P [‘E; < T;'QXUX] < e NIENOD)—Fy ()] (6.10)

but to deal with the second probability in the minimum will be a little more com-
plicated. Notefirst that asin (6.5) we can write

P [r}c.xe >1— s] =P [r;‘ >t —s|ty < I}CX] P [r;‘ < T;”‘JX]



150 A. Bovier et al.

+ Z P [r;‘ >t —s|ty < T;’s'ru)c\y] P [r;‘ < Ty YUx\y] (6.11)
et §

Now thetermsin the second sum are al harmless, since by the estimates of Lemma

5.7 and the geometry of our setting, using the exponential Chebyshev inequality as

if Corollary 5.8, for any § > 0,

Pltly >t —s|td <15 Plt} <1}
v Ty < T7e uny [P [Ty < T uny

< e—(l—S)(l—fs)/ng.xU,\-()’)e—N[FN(z)—FN(x)] (6.12)

with Tz Uy (y) much smaller than eV ¥ @—Fv (9] The remaining term is poten-
tially dangerous. To deal with this efficiently, we need to classify the trajectories
according to the deepest minimum they have visited before returning to x. In the
present situation the relevant effective depth of a minimum y € 7, , is (recal

(5.2)

d(y) =dge (y,x) = Fy(*(y, x)) = Fn(y) (6.13)
We will enumerate the minima in 7, , according to increasing depth by x =
Yo, - - ., Yk (we assume for simplicity that no degeneracies occur). We set L(y) =
{y' € 7. :d(y) = d(y)}. Thenthefamily of digoint events {zy > 7}, } N {zy <
rz(ml)} can serve as a partition of unity, i.e. we have that
P [r;‘ >t —s|ty < ri}ﬁ\]
k
= Z[P’ [t;‘ >1=8 T 2T T < Tr Ty < T;”éx]
i=0
k
<Y min ([D [rjj =R LIRS r,é}g,x] ,
i=0
P [r;f >t—s5,1T < rz(yi+1)|r;f < r}(YD
k
<Y min (IP’ [r;f > 1) < rjrg_x] :
i=0 '
P I:‘(;C >t =Sty < Ty T < T{;—g_x]) (6.14)
Now again
(r—s)e=NAGD
P [rf >t —slty < ri(yiﬂ), i < T-)’/LE,X] < ¢~ (=9)e (6.15)
while
P I:r;‘ > ‘[)xl |-5;C < T'i}?.xil < e~ NIFN @ i, x) = Fi (x)] (6.16)

which is much smaller than e V40 (except in the case i = 0 where we are back
in the situation of Proposition 6.1). Combining all these estimates and using again
(6.7) yields the claim of the proposition. O
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Remark. Note that Proposition 6.2 again exhibits the special role played by ad-
missible transitions. It justifies the idea that the behaviour of the process during
an admissible transition can be described, on the time scale of the expected tran-
sition time'®, as waiting in the immediate vicinity of the starting minimum for an
exponentia time until jumping quasi-instantaneously to the destination point. This
idea can also be expressed by passing to ameasure valued description (aswas done
in [CGOV]) which will exhibit that the empirical measure of the process on any
time scale small compared to the expected transition time but long compared to the
next-smallest transition time within the admissible transition, is close to the Dirac
mass at the minimum; sincethis, inturn, isasymptotically the invariant measure of
the process conditioned to stay in the valley associated to the admissible transition,
it can thus justly be seen as a metastable state associated with thistime scale. The
corresponding measure-valued processisthan closeto ajump process on the Dirac
measures centered at these points. These results can be derived easily from the
preceding Propositions, and we will not go into the details.

Let us also mention that from the preceding results and Corollary 5.8 (ii) one
can easily extract statements concerning “ exponential convergenceto equilibrium”.
E.g., one has the following.

Corollary 6.3. Let Ny 1 oo be a subsequence such that for all £ the topological
structure of the tree from Section 5 isthe same and such that along the subsegquence,
Fy, isgeneric. Let mg denotethelowest minimumof Fy, . Let f € C(A, R) beany
continuous function on the state space. Consider the process starting in some point
x € T'y. Then thereis a unique minimumm (x) of Fy,, converging to a minimum

m(x) of F, such that, setting 7* (k) = E [T’Zlowk <x>]
]!'TTO Ef (Xijze) = e " f(m(x)) + (1 —e™") f(mo) 6.17)

(where on the right hand side m(x), mo denote the corresponding minima of the
limiting function F). The point m(x) is the lowest minimum of the deepest valley
visited by the process in the canonical decomposition of the transition x, mq given
in Theorem 4.4.

We leave the proof of the corollary to the reader. In a way such statements
that involve convergence on a single time-scale are rather poor reflections of the
complex structure of the behaviour of the processthat is encoded in the description
given in Section 4.

Relation to spectral theory. Contrary to much of the work on the dynamics of
spin systems we have not used the notion of “spectral gap” in this paper, and in
fact this notion has only been mentioned on a heuristic level. But of course these
approaches are closely related and our results could be re-interpreted in terms of
spectral theory. In aforthcoming publication [BEGK] we will indeed show avery
preciserelation between the transition time studied here and the low-lying spectrum
of the operators 1 — Py.

19 A finer resolutionwill of course exhibit rare and rapid excursions to other minimaduring
the time of the admissible transition, and we have all the tools to investigate these interior
cycles.
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7. An application to disordered mean field models
7.1. Generalities

Our main motivation isto study the properties of stochastic dynamicsfor aclass of
random mean field models (see [BG1] for amore extensive discussion). These are
models where the Hamiltonian is afunction of so called random order parameters

1
my.mle](0) = Zéunlo]o € RM (7.1)

Hereo € N, where & isthe single spin space, e.9. & = {—1, +1}, and &y y iS
arandom M x N matrix.
The random Hamiltonian of such amodel isthen

Hy mlwl(0) = =NEy (my m[w](0)) (7.2)

Typical dynamics studied for such models are Glauber dynamics, i.e. (random)
Markov chains o (¢), defined on the configuration space &’V that are reversible
with respect to the (random) Gibbs measures

e~ PHN[w](0) I‘L{V:lq(ai)

Zo o] (7.3)

up,n(0)[w] =

and in which the transition rates are non-zero only if thefinal configuration can be
obtained from the initial one by changing the value of one spin only. To simplify
notation we will henceforth drop the reference to the random parameter .

As aways the final goal will be to understand the macroscopic dynamics, i.e.
the behaviour of my (o (¢)) as a function of time. It would be very convenient in
this situation if m (o (1)) were itself a Markov chain with state space R?. Such a
Markov chainwould be reversible with respect to the measureinduced by the Gibbs
measure on R through the map %ST, and this measure has nice large deviation
properties. Unfortunately, my (o (¢)) is aimost never a Markov chain. A notable
exception isthe (non-random) Curie-Weiss model (see the next section). There are
special situations in which it is possible to introduce a larger number of macro-
scopic order parameters in such away that the corresponding induced process will
be Markovian; in general this will not be possible. However, there is a canonical
construction of a new Markov process on R? that can be expected to be a good
approximation to the induced process.

Let ry (o, o) be transition rates of a Glauber dynamics reversible with re-

spect to the measure 114y, i.€. for o # o, ry (0, 0') = ’;’X]((Z/))glv(a, o') where

gn(o,0') = gn(o’, o). We denote by %y the law of this Markov chain and by
o (t) the coordinate variables. Define the induced measure

@ﬁ,N = /JL’B’N (o) m&:’l‘d (74)
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andthenew transitionratesfor aMarkov chainwith statespacethel'y = my 4 (M)
(we drop the indices of m y_4 in the sequel) by

Z Z upy (0)rn(o, ") (7.5)

o:m(o)=x o' :m(c’)=y

PN(X,y) = a5, N(x)

Thefollowing result isasimple adaptation of classical results of Burke and Rosen-
blatt [BR] from 1958:

Theorem 7.1. Let Py be the law of the Markov chain x(¢) with state space I'y
and transitions rates py (x, y) given by (7.5). Then 25 y isthe unique reversible
invariant measure for the chain x(¢). Then, the image process m (o (t)) is Marko-
vian and has law Py if for all o, ¢” such that m(oc) = m(c”), it holds that
> ormeny=m 70 0") = 31 ory=m T(@”, "), If the initial measure g is such
that for all o, mp(c) > 0, then this condition is also necessary.

Remark. We certainly expect that in many situations the Markov chain x (¢) under
the law Py has essentially the same long-time behaviour than the non-Markovian
image process m (o (t)). However, we have no general results and there are clearly
situationsimaginablein which thiswould not betrue. In the the following example
we will apply our general results to a specific model where thisissue in particular
can be studied nicely.

7.2. Therandom field Curie-\\eiss model

There are basically two classical models whose Glauber dynamics can be analyzed
completely with our methods: The Hopfield model with finitely many patterns, and
the random field Curie-Weiss model with discrete random field. Since the latter
is much simpler to present, we chose to give a full account of it as a pedagogical
example.

Here & = {—1, 1}, g isthe uniform distribution on this set. Its Hamiltonian is

1
HN[w](o)E—N(MN( ) ZQ[a)]al (7.6)

where
1N
My (o) = v Z;Ui (7.7)

is called the magnetization. Here6;, i € N arei.i.d. random variables. The dynam-
ics of this model has been studied before: dai Pra and den Hollander studied the
short-time dynamics using large deviation results and obtained the analog of the
McKeane-Vlasov equations [dPdH]. Matthieu and Picco, in their important paper
[MP] considered convergence to equilibrium in a particularly simple case where
the random field takes only the two values +¢, and with further conditions on the
parameters 8 and i that guarantee the existence of only two local minima. Notethat
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even in this case, the spectral approach they used gave only the leading exponential
asymptotics for transition times.

We take up this simple model in the more general situation where the random
field isallowed to take valuesin an arbitrary finite set. Themain ideahereisthat in
thiscasewe are, aswewill see, in the position to construct an image of the Glauber
dynamic in afinite dimensional space that is Markovian, while it will be possible
to compare this to the Markovian dynamics defined on the single parameter My in
the manner described in the previous section.

We consider the Hamiltonian (7.6) where 6; take valuesin the set

H =1{hy,...,hg_1,hg} (7.8)

Each redlization of the random field {6[w]};cny induces a random partition of the
set A =1{1,..., N}into subsets

Ar[w]l = {i € A : 0i[w] = hi} (7.9)

We may introduce k order parameters

1

mi[w] (o) = a Z o; (7.10)

ieAi[w]
Wedenote by m[w] the K -dimensional vector (m1[w], . .., mg[w]). Notethat these

take valuesin the set
Iylo] = X1£(=1 E_PN,k[w]v —pN ko] + % ooy PN k0] — % /)N,k[w]}

(7.1

vhere |Ak[w]]

w

prile] = = (7.12)

Note that the random variables p x concentrate exponentially (in N) around their
meanvalueskEy, py x = Pr[6; = hi] = pi. Obviously m'[w] (o) = Y f_; mi[w] (o)
and m?[w] (o) = Z’lf:l himy (o), so that the Hamiltonian can be written asafunc-
tion of the variables m[w] (o), via

Hy[w](0) = —NE(m[w](0)) (7.13)

where E : R — R isthe deterministic function

A 2k
Ex) = > (Z xk> + thxk (7.14)
k=1 k=1

The point is now that the image of the Glauber dynamics under the family of func-
tionsm, isagain Markovian. Thisfollows easily by verifying the criterion givenin
Theorem 7.1.

On the other hand, it is easy to compute the equilibrium distribution of the
variables m[w]. Obvioudly,
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wp Nl@]mlw] (o) = x)
= Qg n[o](x) = L e ﬁ ZNPN,k[w]< Npon k[@] )
| Znle] o N(on ko] + x0)/2
(7.15)

where Zy[w] is the normalizing partition function. Stirling’s formula yields the
well know asymptotic expansion for the binomial coefficients

2NPN,k[w]( Npw i[@] ) — o~ Now kol G/ on kloD+JIn (k. on i [@D]
N(pn ko] + xk)/2
(7.16)

where

1 1-
Y A4 a)

I(x) = In(1—x) (7.27)

isthe usual Cramer entropy and

_ L 1=/ 2x/p 1 1
JN(x,,O)——p—Nln( 2 + 1—(x/p)2>+0<(pN)2>+NC(pN)
(7.18)

with C(pN) a constant independent of x; (and thus irrelevant) that satisfies
C(pN) = O (In(pN)). Thus

1
Fylw](x) = “EN INQg n[w](x) = Fon[w](x) + Fyn[w](x) + Cy  (7.19)
with

1 K
Fon() =—E() + 3 > Nl (x/on k) (7.20)
k=1

Cy=p"1 Z,le on kC(pn kN) isconstant and of order InN /N, and Fy y of or-
der 1/ N, uniformly on compact subsetsof I' = x,le(—pk, pr)- Moreover, Fy (x)
converges almost surely to the deterministic function

1 K
Fo(x) = —E() + 2 > il G/ i) (7.21)
k=1

uniformly on compact subsets of I'. The dominant contribution to the finite
volume corrections thus comes from the fluctuation part of the function Fo v,
Fo, v (x)— Fo(x). Oneeasily verifiesthat all conditionsimposed on thefunctions F
in Section 1 are verified in this example.
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7.3. Thelandscape given by F. The deterministic picture

To see how the landscape of the function Fy looks like, we begin by studying the
deterministic limiting function Fp. Let usfirst look at the critical points. They are
solutions of the equation V Fo(x) = 0, which reads explicitly

K
0 1
0= 5 Folx) = - D xe = hixi + Epﬂ’(xk/pk), k=1...K (122
£=0
or equivalently

xx = prtanh(B(m + hy)), k=1,....K
K

m= Zxk (7.23)
k=1

These equationshave aparticularly pleasant structure. Their solutionsaregenerated
by solutions of the transcendental equation

K
m= Z prtanh(B(m + hy)) = Ej, tanh B(m + h) (7.24)
k=1
Thusif m@, ..., m" arethe solutions of (7.24), then the full set of solutions of

the equations (7.22) is given by the vectors xD, ..., x) defined by
Y = pytanh Bm'® + hy) (7.25)

Next we analyze the structure of the critical points. Using that 1”7 (x) = ﬁz we
see that

2
Sk
Fox) = —14 — K& (7.26)
0Xk0xp Bprk (1 - x,g/p,f)
Thus at acritical point x©,
32
Fo(x©) = =14 8 pa(m® 7.27
T o(x ) + Sk kA (m™) (7.27)
where
1
A (m) = (7.28)

Bpi (1 — tanh?(B(m + hy)))

Lemma 7.2. The Hessian of Fp at (x(©)) has at most one negative eigenvalue. A
negative eigenvalue exists if and only if

BE, (1 — tanh?2(B(x© + h))) ~1 (7.29)
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Proof. Consider any matrix of theform Az = —1 4 8 A With A > 0. To see
this, let {¢1, ..., ¢, } denote the set of distinct valuesthat aretakenby Ag, ..., Ag.
Put ky = {k : Ay = ¢} and denote by |«,| the cardinalities of these sets. Now the
eigenvalue equations read

K
- (Z uk) (k= P =0 (7.30)

k=1

Let ¢, besuch that |«¢| > 1, if such a ¢, exists. Then we will construct |«g| — 1
orthogonal solutions to (7.30) with eigenvalue y = ¢,. Namely, we set uy = 0
for adl k ¢ «¢. The remaining components must satisfy Zkew ur = 0. But ob-
viously, this equation has |x;| — 1 orthonormal solutions. Doing this for every ¢,
we construct altogether K — L eigenvectors corresponding to the eigenvalues ¢;.
Notethat for all these solutions, ), ux = 0. Weareleft with finding the remaining

L eigenfunctions. Now takey & {¢1, ..., ¢}. Then (7.30) can be rewritten as
K
"y = Lic1Uk (7.31)
A=Y

Summing equation (7.31) over k, we get

K K K 1
Swe= uw )y (7.32)
k=1 k=1 k=1

Ak — Y

Since we have already exhausted the solutions with Z,le ur = 0, we get for the
remaining ones the condition

1_§: 1 _ZL: licel (7.33)
Pl S S Y 4

Inspecting the right-hand side of (7.33) one seesimmediately that this equation has
precisely L solutions y; that satisfy

yI<li<yp<f<ys<...<yL <L (7.34)
of which at most y1 can be negative. Moreover, a negative solution y implies that

K

L
1=ZA|"” <ZM=Z% (7.35)

A G R

which upon inserting the specific form of A, yields (7.29). On the other hand, if
Z,f:l % > 1, then by monotonicity there exists anegative solution to (7.33). This
proves the lemma. o

The following general features are now easily verified due to the fact that the
analysis of the critical points is reduced to equations of one single variable. The
following facts hold:
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(i) For any distribution of the field, there exists 8. such that: If 8 < B, there
exists a single critical point and Fy is strictly convex. If 8 > S, there exist
at least 3 critical points, the first and the last of which (according to the value
of m) are local minima, and each minimum is followed by a saddle with one
negative eigenvalue, and vice versa, with possibly intermediate saddles with
one zero eigenvalue interspersed.

(ii) Assume 8 > B.. Then each pair of consecutive critical points of Fy can be
joined by aunique integral curve of the the vector field V Fp(x).

The exact picture of the landscape depends of course on the particular distribu-
tion of the magnetic field chosen. In particular, the exact number of critical points,
and in particular of minima, depends on the distribution (and on the temperature).
The reader isinvited to use e.g. mathematica and produce diverse pictures for her
favorite choices. We see that a mgjor effect of the disorder enters into the form of
the deterministic function Fo(x). Only a secondary role is played by the remnant
disorder whose effect will be most notable in symmetric situations where it can
break symmetries present on the level of Fy.

7.4. Fluctuations

In the present simple situation it turns out that the fluctuations of the function Fo
can also be controlled in a precise way. We will show the following result.

Proposition 7.3. Let g,k = 1,..., K be a family of independent Gaussian
random variables with mean zero and variance px(1 — pi). Then the function
VN[Fy(x) — Fo(x)] converges in distribution, uniformly on compact subsets of
I" to the random function

1K
=D (x—gl/(xk/m) - I(Xk/pk)) (7.36)
B \n

Proof. Since/N[Fy — Fo,n] convergesto zero uniformly, it isenough to consider

1
Fon(x) — Fo(x) = B Z (on kI Xk /pN &) — pid (xi/ pr))
k

1
= 5 2 ((ows = PTG/ PO+ et 10 = 1 )
k

+(ow i = POU Gk /) = 1G5/ 1)) (7.37)

Now in theinterior of I' we may develop

1
I(xe/pn i) — 1/ pr) = (N .k — pk?l’(xk/pk) + O0((on .k — p)®) (7.38)
k

Now the py i are actually sums of independent Bernoulli random variables with
mean pi, namely pyx = ~ SN 1 8n.0- Thus, by the exponential Chebyshev
inequality,

Pr{lon, — Pkl > €] < 2exp(—=N1p (€)) (7.39)
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where I,(e) > 0 isastrictly convex function that takes its minimum value O at
e = 0. Thuswith probability tendingto onerapidly, wehavethat e.g. (on x — pi)? <
N~3/4 which allows us to neglect all second order remainders. Finally, by the cen-
tral limit theorem the family of random variables \/ﬁ(pN,k — pi) convergesto a
family of independent Gaussian random variables with variances pi (1 — py). This
yields the proposition. o

7.5. Relation to a one-dimensional problem

We note that the structure of the landscape in this case is quasi one-dimension-
al. Thisis no coincidence. In fact, it is governed by the rate function of the total
magnetization, —ﬁiN,Ll,ﬁ’N(ml(U) = m) which to leading order is computed, using
standard techniques, as

2

1 K
Gow(m) = =" +supmt — 23" py i Incosh By + 1) (7.40)
2 teR B k=1

The most important facts for us are collected in the following lemma.

Lemma 7.4. Thefunctions Go y and Fp n arerelated in the following ways.
(i) Foranym € [-1, 1],

Go,n(m) = inf Fo.n(x) (7.41)

xeRK:Y" xp=m

(if) Ifx* isacritical point of Fo v, thenm* = ), x; isacritical point of Go,y.

(i) If m* is a critical point of Go v, then x*(m*), with components x;(m) =
pn ktanh B(m™ + hy) isacritical point of Fo n.

(iv) Atany critical point m*, Go, n(m*) = Fo n(x*(m*)).

The prove of thislemmais based on elementary analysis and will be left to the
reader.

The point we want to make here is that while the dynamics induced by the
Glauber dynamics on the total magnetization is not Markovian, if we define a
Markov chain m(t) that is reversible with respect to the distribution of the magne-
tization in the spirit of Section 7 and compare its behaviour to that of the Markov
chain m(t) = m(o (¢)), the preceding result assures that their long-time dynamics
are identical since all that matters are the precise values of the respective free-
energies at its critical points, and these coincide according to the preceding lem-
ma (up to terms of order 1/N, and the asymptotics given in (7.17), (7.18), up to
(K -dependent) constants). In other words, the two dynamics, when observed on
the set of minima of their respective free energies, are identical on the level of our
precision.
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