
Digital Object Identifier (DOI) 10.1007/s004400000104
Probab. Theory Relat. Fields 119, 99–161 (2001)

Anton Bovier · Michael Eckhoff · Véronique Gayrard · Markus Klein
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Abstract. We study a class of Markov chains that describe reversible stochastic dynamics of
a large class of disordered mean field models at low temperatures. Our main purpose is to give
a precise relation between the metastable time scales in the problem to the properties of the
rate functions of the corresponding Gibbs measures. We derive the analog of the Wentzell-
Freidlin theory in this case, showing that any transition can be decomposed, with probability
exponentially close to one, into a deterministic sequence of “admissible transitions”. For
these admissible transitions we give upper and lower bounds on the expected transition
times that differ only by a constant factor. The distributions of the rescaled transition times
are shown to converge to the exponential distribution. We exemplify our results in the context
of the random field Curie-Weiss model.

1. Introduction

1.1. General introduction

This paper is devoted to developing a systematic approach to obtain sharp esti-
mates on the long time behaviour of certain classes of Markov chains. Our main
motivation for this investigation arose from the study of the dynamics of mean field
spin systems, where by dynamics we understand of course stochastic dynamics of
Glauber type. More specifically, we are interested in the dynamics of disordered
spin systems, and most particularly the so called Hopfield model [Ho,BG1], al-
though in the present paper we only illustrate our results in a much simpler setting,
that of the random field Curie-Weiss (RFCWM) model (see e.g. [K1]). Our chief
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objective is to be able to control in a precise manner the effect of the randomness
on so-called metastable phenomena. While our methods and results are rather more
general, this motivation has to a considerable extent influenced specific assump-
tions we are making, and we would like to ask the reader to keep this fact in mind
when following us through the paper. For the purposes of this paper, we will always
consider reversible Markov chains. From the point of view of many applications,
this is rather natural, but we must of course admit that this is at present a serious
limitation that we do, however, hope to overcome in subsequent work.

On a heuristic level, metastable phenomena in mean field models and in sto-
chastic dynamics in general are well understood. The main idea is to consider the
dynamics induced on the order parameters by the Glauber dynamics on the spin
space, i.e. the macroscopic variables that characterize the model. A first issue that
arises here, and that we will discuss at length below, is that this induced dynamics is
in general not Markovian. However, one may always define a new Markovian dy-
namics that “mimics” the old one and that is reversible with respect to the measures
induced on order parameters by the Gibbs measures. This dynamics on the order
parameters is essentially a random walk in a landscape given by the “rate function”
associated to the distribution of the order parameters. The accepted picture of the
resulting motion is that this walk will spend most of its time in the “most profound
valleys” of the rate function and stay in a given valley for an exponentially long time
of order exp(N�F) where �F is the difference between the minimal value of the
rate function in the valley and its value at the lowest “saddle point” over which the
process may exit the valley. An excellent survey on this type of processes is given
in van Kampen’s textbook [vK], although most of the results presented there, and in
particular all those related to the long time behaviour, concern the one-dimension-
al case. Rather surprisingly, one finds very few papers in the literature that really
treat this problem with any degree of mathematical rigour. One exception is the
classical paper by Cassandro, Galves, Olivieri, and Vares [CGOV] (see also [Va]
for a broader review on metastability) who consider (amongst others) the case of
the Curie-Weiss model in which there is only a single order parameter and thus the
resulting dynamics is that of a one-dimensional random walk. More recently, im-
portant progress has been made in a paper by Mathieu and Picco [MP] that treated a
particular case of the random field Curie-Weiss model, leading to a two-dimension-
al double well problem. However, there is an abundant literature on two types of
related problems. One of these concerns Markov chains with finite state space and
exponentially small transition probabilities. They are treated in the work of Freidlin
and Wentzell (but see below for a discussion) and have since then been investigated
intensely (for a small selection of recent references see [Sc,OS1,OS2,CC,GT]. In
the context of stochastic dynamics of spin systems, they occur if finite systems are
considered in the limit of zero temperature.1 A second class of problems, that is
rather close to the situation we are considering, and that can be obtained from it

1 Let us mention, however, that there has been considerable work done on the dynamics
of spin systems on infinite lattices; see in particular the recent paper by Schonmann and
Shlosman [SS] on the metastable behaviour in the two-dimensional Ising model in infinite
volume, and references therein.
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formally by passing to the limit of continuous space and time, is that of “small
random perturbations of dynamical systems” i.e. a stochastic differential equation
of the form

dxε(t) = b(xε(t))dt + √
εa(xε(t))dW(t) (1.1)

where xε(t) ∈ �d , and W(t) is a d-dimensional Wiener process, and in the case
of a reversible dynamics the drift term b(xε(t), ε) is given by b(x, ε) = ∇Fε(x),
Fε(x) being the rate function.

The basic reference on the problem (1.1) is the seminal book by Wentzell and
Freidlin [FW] which discusses this problem (as well as a number of related ones) in
great detail. Many further references can be found in the second edition of this book.
One of the important aspects of this work is that it devises a scheme that allows
to control the long-time dynamics of the problem through an associated Markov
chain with finite state space and exponentially small transition probabilities. The
basic input here are large deviation estimates on the short time behaviour of the
associated processes. This treatment has inspired a lot of consecutive works which
it is impossible to summarize to any degree of completeness. An important point
to keep in mind is that the work of Wentzell and Freidlin in as far as it gives a com-
plete description of the long-time behaviour of the process gives only results for
the exponential asymptotics of the quantities considered; that is, the quantities that
can be computed, like transition probabilities, transition times, etc., are controlled
only up to multiplicative errors of the order exp

(
o(1)ε−1

)
. For many practical

applications, and in particular also for the applications in disordered systems we
have in mind, such a precision is insufficient since one is interested in effects on a
refined scale that would be masked completely by the errors.

Not surprisingly, great efforts have been made to obtain sharper estimates than
those of [WF] subsequently, using both probabilistic [Ki1-4,Az] and analytic [FJ]
techniques, to name only a few references. However, when studying these results,
one finds that all of them concern purely local phenomena, i.e. they concentrate
on the computation of exit times and exit probabilities from neighborhoods of crit-
ical points that are carefully stipulated not to contain any other critical point of
the drift field. In particular, none of these results concern the situation when the
process passes from one stable fixpoint to another through the neighborhood of an
unstable critical point (saddle point). It has to be stressed that (contrary to popular
believe) this is not just a minor detail, but a) the correct computation of transition
times (and spectra!!) requires to take the effects of saddle point into account and
b) doing this leads to considerable technical difficulties that cannot be solved by
simple extensions of the same methods. The reason for these difficulties are most
easily understood from the analytic point of view. The computation of all the rele-
vant quantities leads to the solution of certain partial differential (or, in the discrete
case, difference) equations. The classical methods used to obtain the results in terms
of asymptotic expansions in the parameter ε are so-called semi-classical or WKB
methods. These methods work in their standard form precisely under the conditions
mentioned above. The problem of a transition through a saddle point corresponds
to a much more difficult situation where straightforward WKB expansions fail. In
the analogous quantum-mechanical problem, such a situation corresponds to what
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is called “tunneling through a non-resonant well” which has been treated in a rea-
sonably general setting only in the third paper of a series of papers on tunneling
problems by Helffer and Sjösstrand [HS] using most sophisticated and complicated
tools from micro-local analysis. To our knowledge, these methods have never been
applied to the corresponding probabilistic problems.2 One should also mention that
the methods of [HS] apply only in the self-adjoint (= reversible) case and require a
considerable amount of regularity assumptions, as well as additional geometric hy-
potheses for the potentials. Their extension to the discrete setting we have in mind,
while probably possible, would and will require substantial additional efforts.

It is for this reason that in the present paper we develop an altogether new ap-
proach to the problem that will give results that are almost, but not quite, as sharp
as could be hoped for from an extension of microlocal techniques, but that have the
advantage of being much easier to obtain and that will have a much wider range of
applicability.

1.2. The general set-up

We will now describe the general class of Markov chains we will consider. The
conditions we will impose are motivated by the application to the dynamics of
disordered mean field models we have in mind. This relation will be explained in
Section 7 and a specific example will be discussed. Section 7 can be read now, if
desired; on the other hand, the bulk of the paper can also be read without reference
to this motivation. We should also mention that the class of chains we introduce
here can be naturally interpreted without this context as a discretized version of
diffusion processes in a potential, as have been considered e.g. in [vK,Ku,KMST].

We consider canonical Markov chains on a state space�N where�N is the inter-
section of some lattice3 (of spacing O(1/N)) in �d with some connected � ⊂ �d

which is either open or the closure of an open set. To avoid some irrelevant issues,
we will assume that � is either �d or a bounded and convex subset of �d . �N
is assumed to have spacing of order 1/N , i.e. the cardinality of the state space
is of order Nd . Moreover, we identify �N with a graph with finite (d-dependent)
coordination number respecting the Euclidean structure in the sense that a vertex
x ∈ �N is connected only to vertices at Euclidean distances less than c/N from x.
The main example the reader should have in mind is �N = �d/N ∩�, with edges
only between nearest neighbors. We denote the set of edges of �N by E(�N).

Let �N be a probability measure on (�N,B(�N)). We will set, for x ∈ �N ,

FN(x) ≡ − 1

N
ln �N(x) (1.2)

We will assume the following properties of FN(x).

2 Even in the much simpler one-dimensional case, full asymptotic expansions have been
obtained only on the heuristic level [KMST]. They are rigorously justified in [EK] in a
specific case.

3 The requirement that �N is a lattice is made for convenience and can be weakened
considerably, if desired. What is needed are some homogeneity and rather minimal isotropy
assumptions.



Metastability in stochastic dynamics of disordered mean-field models 103

1.2.1. Assumptions4

R1 F ≡ limN↑∞ FN exists and is a smooth function � → �; the convergence is
uniform in compact subsets of int�.

R2 FN can be represented as FN = FN,0 + 1
N
FN,1 where FN,0 is twice Lipshitz,

i.e. |FN,0(x)−FN,0(y)| ≤ C‖x− y‖ and, denoting by k any generator of the
lattice, we have

N |FN,0(x)−FN,0(x+k/N)−(FN,0(y)−FN,0(y+k/N)| ≤ C‖x−y‖ (1.3)

with C uniform on compact subsets of the interior of �. FN,1 is only required
to be Lipshitz, i.e. |FN,1(x)− FN,1(y)| ≤ C‖x − y‖.

For the purposes of the present paper we will make a number of assumptions
concerning the functions FN which we will consider as “generic”. An important
assumption concerns the structure of the set of minima of the functions FN . We
will assume that the set MN ⊂ �N , of local minima of FN is finite and of constant
cardinality for all N large enough, and that the sets MN converge, as N tends to
infinity, to the set M of local minima of the function F .5

Another set of points that will be important is the set, EN , of “essential” saddle
points (i.e. the lowest saddle points one has to cross to go from one minimum to
another). Formally, we define the essential saddle, z∗(x, y), between two minima
x, y ∈ MN as

z∗(y, x) ≡ arg inf
γ :γ (0)=y,γ (1)=x

(
sup

t∈[0,1]

[
FN(γ (t))

])
(1.4)

where the infimum is over all paths γ : [0, 1] → �N going from y to x 6 with
jumps along the edges of �N only.7

A point z is called an essential saddle point if there exist minima x, y ∈ MN

such that z∗(x, y) = z. The set of all essential saddle point will be denoted by EN .
Our assumptions on the N dependence of the set MN apply in the same way to
EN .

4 The assumptions made here are sufficient, but far from necessary, to allow the methods
we explain here to work. We prefer in this paper to work in a concrete class of examples
rather than to formulate abstract conditions. In a forthcoming publication [BEGK] we will
deal with related questions in a more abstract setting.

5 It is possible to generalize the notion of the set of local minima considerably. In partic-
ular, in the presence of very many local minima, one may under suitable conditions reduce
the set MN to a subset representing particularly profound “valleys”. We will elaborate on
this point in [BEGK].

6 Note that here we think of a path as a discontinuous (càdlàg) function that stay at a site
in �N for some time interval δt and then jumps to a neighboring site along an edge of �N .
This parametrization will however be of no importance and allows just some convenient
notation.

7 We will extend the definition (1.4) also to general points x, y ∈ �N . In that case it may
happen that z∗(x, y) is not a saddle point, but one of the endpoints x or y itself.
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G1 We will assume that there exists α > 0 such that minx �=y∈MN∪EN
|FN(x) −

FN(y)| = KN ≥ Nα−1.
G2 We assume that at each minimum the eigenvalues of the Hessian of F are

strictly positive and at each essential saddle there is one strictly negative ei-
genvalue while all others are strictly positive.

G3 All minima and saddles are well in the interior of �, i.e. there exists a δ > 0
such that for any x ∈ MN ∪ EN , dist(x,�c) > δ.

Remark. We make the rather strong assumptions above in order to be able to
formulate very general theorems that do not depend on specific properties of the
model. The basic methods can also be applied in different situations, with ensuing
modifications of the results.

We recall that in our main applications, �N will be random measures, but we
will forget this fact for the time being and think of �N as some particular realization.

We can now construct a Markov chain XN(t) with state space given by the set
of vertices of �N and time parameter set either � or �+. For this we first define for
any x, y such that (x, y) ∈ E(�N) transition rates

pN(x, y) ≡
√

�N(y)

�N(x)
fN(x, y) (1.5)

for some non-negative, symmetric function fN . We will assume that fN does not
introduce too much anisotropy. This can be expressed by demanding that

R3 There exists c > 0 such that if (x, y) ∈ E(�N), and dist(x,�c) > δ/2,
(where δ is the same as in assumption G3) pN(x, y) ≥ c.

Moreover, for applications of large deviation results we need stronger regularity
properties analogous to R2.

R4 ln fN(x, y) as a function of any of its arguments is uniformly Lipshitz on
compact subsets of the interior of �.

For the case of discrete time, i.e. t ∈ �, we then define the transition matrix

PN(x, y) ≡
{
pN(x, y), if (x, y) ∈ E(�N)

1 −∑
z∈�N :(x,z)∈E(�N) pN(x, z), if x = y

0, else
(1.6)

choosing f such that supx∈�N
∑

z∈�N :(x,z)∈E(�N) pN(x, y) ≤ 1.
Similarly, in the continuous time case, we can use the rates to define the

generator

AN(x, y) ≡
{
pN(x, y), if (x, y) ∈ E(�N)

−∑
z∈�N :(x,z)∈E(�N) pN(x, y), if x = y

0, else
(1.7)

It is clear that the continuous time process can be studied by passing to the em-
bedded discrete time process where time becomes the number of jumps. We will
therefore only consider discrete time chains in this paper.
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Our basic approach to the analysis of these Markov chains is to observe the pro-
cess when it is visiting the positions of the minima of the functionFN , i.e. the points
of the set MN , and to record the elapsed time. The ideology behind this is that we
suspect the process to show the following typical behaviour: starting at any given
point, it will rather quickly (i.e. in some time of order Nk) visit a nearby minimum,
and then visit this same minimum at similar time intervals an exponentially large
number of times without visiting any other minimum between successive returns.
Then, at some random moment it will go, quickly again, to some other minimum
which will then be visited regularly a large number of times, and so on. Moreover,
between successive visits of a minimum the process will typically not only avoid
visits at other minima, but will actually stay very close to the given minimum. Thus,
recording the visits at the minima will be sufficient information on the behaviour
of the process. These expectations will be shown to be justified (see in particular
Section 6). Incidentally, we mention that the “quick” processes of transitions can
be analysed in detail using large deviation methods [WF1-4]. In [BG2] a large de-
viation principle is proven for a class of Markov chains including those considered
here that shows that the “paths” of such quick processes concentrate asymptotical-
ly near the classical trajectories of some (relativistic) Hamiltonian system. More
precisely, the transitions between minima can be identified as instanton solutions
of the corresponding Hamiltonian system.

Let us mention that the strategy to record visits at single points is specific to the
discrete state space. In the diffusion setting, visits at single points do not happen
with positive probability. Indeed, the crucial fact we use is that in the discrete case
it is excessively difficult for the process to stay for a time of order eNaN within
a valley V (x) without visiting x which in the continuum is not the case. For this
reason Freidlin and Wentzell record visits not at single points but at certain neigh-
borhoods of minima and critical points which has the disadvantage that such visits
do not exactly allow a splitting of the process and this introduces some error terms
in estimates which in our setting can easily be avoided. This is the main advantage
we draw from working in a discrete space. We do, however, expect that our methods
can be applied to continuous processes by using suitable discretizations, but this is
left to further research.

The informal discussion above will be made precise in the sequel. Let us first
introduce some notation. We will use the symbol � for the law of our Markov chain,
omitting the explicit mention of the index N , and denote by Xt the coordinate vari-
ables. For y ∈ �N and I ⊂ �N , we will write τ

y
I for the first time the process

conditioned to starting at y hits the set I , i.e. we write

�[τyI = t] ≡ �[Xt ∈ I,∀0<s<tXs �∈ I |X0 = y] (1.8)

for t > 0. In the case I = {y}, we will insist that τyy is the time of the first visit to
y after t = 0, i.e. �[τyy = 0] = 0. This notation may look unusual at first sight,
but we are convinced that the reader will come to appreciate its convenience.

In the remainder of this subsection we state some elementary facts from the
theory of Markov chains that will be used repeatedly in the paper and that we there-
fore choose to restate for the benefit of the non-expert. No proofs will be given.
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Readers familiar with Markov processes should only glance through this part to get
acquainted with our notation.

One of the most useful basic identities which follows directly from the strong
Markov property and the fact that τyx is a stopping time is the following:

Lemma 1.1. Let x, y, z be arbitrary points in �N . Then

�
[
τ
y
x = t

] = �
[
τ
y
x = t, τ

y
x < τ

y
z

]
+

∑
0<s<t

�
[
τ
y
z = s, τ

y
z < τ

y
x

]
�
[
τ zx = t − s

]
(1.9)

A simple consequence is the following basic renewal equation.

Lemma 1.2. Let x, y ∈ �N . Then

�
[
τ
y
x = t

] =
∞∑
n=0

∑
t1,...tn+1∑

i ti=t

n∏
i=1

�
[
τ
y
y = ti , τ

y
y <τ

y
x

]
�
[
τ
y
x = tn+1, τ

y
x <τ

y
y

]
(1.10)

The fundamental importance in the decomposition of Lemma (1.2) lies in the
fact that objects like the last factor in (1.10) are “reversible”, i.e. they can be
compared to their time-reversed counterpart. To formulate a general principle, let
us define the time-reversed chain corresponding to a transition from y to x via
Xr
t ≡ Xτ

y
x −t . For an event A that is measurable with respect to the sigma algebra

F
(
Xs, 0 ≤ s ≤ τ

y
x

)
we then define the time reversed event Ar as the event that

takes place for the chain Xt if and only if the event A takes place for the chain Xr
t .

This allows us to formulate the next lemma:

Lemma 1.3. Let x, y ∈ �N , and let A be any event measurable with respect to
the sigma algebra F

(
Xs, 0 ≤ s ≤ τ

y
x

)
. Let Ar denote the time reversion of the

event A. Then

�N(y)�
[
A, τ

y
x < τ

y
y

] = �N(x)�
[
Ar , τ xy < τxx

]
(1.11)

For example, we have

�N(y)�
[
τ
y
x = t, τ

y
x < τ

y
y

] = �N(x)�
[
τxy = t, τ xy < τxx

]
(1.12)

Of course the power of Lemma (1.3) comes to bear when x and y are such that the
ratio between �N(x) and �N(y) is very large or very small.

Formulas like (1.10) invite the use of Laplace transforms. We define the corre-
sponding Laplace transforms

G
y
x,I (u) ≡

∑
t≥0

eut�
[
τ
y
x = t, τ

y
x ≤ τ

y
I

] ≡ �
[
euτ

y
x I{τyx ≤τyI }

]
, u ∈ � (1.13)

(We want to include the possibility that I contains x and/or y for later convenience).
As we will see it is important to understand what the domains of these functions
are. Since the Laplace transforms defined in (1.13) are Laplace transforms of the
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distributions of positive random variables, all these functions exist and are analytic
at least for all u ∈ � with Re(u) ≤ 0. Moreover, if Gy

x,I (u0) is finite for some

u0 ∈ �+, then it is analytic in the half-space Re(u) ≤ u0.8 As we will see later,
each of the functions introduced in (1.13) will actually exist and be finite for some
u0 > 0 (depending on N ).

Note that in particular

G
y
x,I (0) = �

[
τ
y
x ≤ τ

y
I

]
(1.14)

and
d

du
G
y
x,I (u = 0) ≡ Ġ

y
x,I (0) = �

[
τ
y
x I{τyx ≤τyI }

]
(1.15)

The expected time of reaching x from y conditioned on the event not to visit I in
the meantime is expressed in terms of these functions as

Ġ
y
x,I (0)

G
y
x,I (0)

= �
[
τ
y
x |τyx ≤ τ

y
I

]
(1.16)

An important consequence of Lemma (1.3) is

Lemma 1.4. Assume that I is any subset of �N containing x and y. Then

�N(y)G
y
x,I (u) = �N(x)G

x
y,I (u) (1.17)

Lemma (1.4) implies in particular that the Laplace transforms of the conditional
times are invariant under reversal, i.e.

G
y
x,I (u)

G
y
x,I (0)

=
Gx
y,I (u)

Gx
y,I (0)

(1.18)

and in particular

�
[
τ
y
x |τyx ≤ τ

y
I

] = �
[
τxy |τxy ≤ τxI

]
(1.19)

(1.18) expresses the well-known but remarkable fact that in a reversible process the
conditional times to reach a point x from y without return to y are equal to those
to reach y from x without return to x.

A special rôle will be played by the Laplace transforms for which the exclusion
sets are all the minima. We will denote these by g

y
x (u) ≡ G

y

x,MN
(u). Indeed, we

think of the events {τyx ≤ τ
y

MN
}, for x, y ∈ MN , as elementary transitions and

decompose any process going from one minimum to another into such elementary
transitions.

A crucial rôle will be played by the following renewal equation:

8 It is, however, possible to identify the Laplace transform with globally defined mero-
morphic functions; these are canonically obtained as unique solutions of certain boundary
value problems and their singularities are determined by the singularities of the relevant
self-adjoint operator in a finite-dimensional space. See Sect. 3.
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Lemma 1.5. Let I ⊂ �N . Then for all y �∈ I ∪ x,

G
y
x,I (u) =

G
y
x,{I∪y}(u)

1 −G
y
y,{I∪x}(u)

(1.20)

holds for all u for which the left-hand side exists.

Lemma 1.5 will be one of our crucial tools. In particular, since it relates func-
tions with exclusion sets I to functions with larger exclusion sets, it suggests control
over the Laplace transforms via induction over the size of the exclusion sets.

Lemma 1.5 has two important consequences that are obtained by setting u = 0
in (1.20) and by taking the derivative of (1.20) with respect to u and evaluating the
result at u = 0:

Corollary 1.6. Let I ⊂ �N . Then for all y �∈ I ∪ x,

�
[
τ
y
x < τ

y
I

] =
�
[
τ
y
x < τ

y
I∪y

]
�
[
τ
y
I∪x < τ

y
y

] (1.21)

and

�
[
τxy |τxy < τxI

]
= �

[
τxy |τxy < τxI∪x

]
+

�
[
τxx |τxx < τxI∪y

]
�
[
τxI∪y < τxx

] �
[
τxx < τxI∪y

]
(1.22)

1.3. Outline of the general strategy

As indicated above, an important tool in our analysis will be the use of induction
over the size of exclusion sets by the help of Lemmata 1.1 and 1.5. One of the basic
inputs for this will be a priori estimates on the quantities gxy (u). These will be based
on the representation of these functions as solutions of certain Dirichlet problems
associated to the operator (1 − euPN) with Dirichlet boundary conditions in sets
containing MN .

The crucial point here is to have Dirichlet boundary conditions at all the minima
of FN and at y. Without these boundary conditions, the stochastic matrix P is sym-
metric in the space 12(�N,�N) and has a maximal eigenvalue 1 with corresponding
(right) eigenvector 1; since this eigenvector does not satisfy the Dirichlet boundary
conditions at the minima, the spectrum of the Dirichlet operator lies strictly below
1, so that for sufficiently small values of u, 1 − euP is invertible. It is essential
to know by how much the Dirichlet conditions push the spectrum down. It turns
out that Dirichlet boundary conditions at all the minima push the spectrum by an
amount of at least CN−d−1 below one, and this will allow us not only to construct
the solution but to get very good control on its behaviour. If, on the other hand, not
all the minima had received Dirichlet conditions, we must expect that the spectrum
is only pushed down by an exponentially small amount, and we will have to devise
different techniques to deal with these quantities.
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As a matter of fact, while the spectral properties discussed above follow from
our estimates, we will not use these to derive them. The point is that what we really
need are pointwise estimates on our functions, rather than 12 estimates, and we will
actually use more probabilistic techniques to prove 1∞ estimates as key inputs. The
main result, proven in Section 3, will be the following theorem:

Theorem 1.7. There exists a constant c > 0 such that for all x ∈ �N , y ∈ MN

the functions gxy (u) are analytic in the half-plane Re(u) < cN−d−3/2. Moreover,
for such u, for any non-negative integer k there exists a constant Ck such that∣∣∣∣ dkduk

gxy (u)

∣∣∣∣ ≤ CkN
k(d+3/2)+d/2eN [FN(x)−FN(z

∗(x,y))] (1.23)

where z∗(y, x) is defined in (1.4).

These estimates are not overly sharp, and there are no corresponding lower
bounds. Therefore, our strategy will be to use these estimates only to control sub-
leading expressions and to use different methods to control the leading quantities
which will be seen to be certain expected return times and the transition probabili-

ties �
[
τxy < τxx

]
. The latter quantities will be estimated in Section 2 where we will

prove the following theorem:

Theorem 1.8. With the notation of Theorem 1.7 there exist finite positive constants
c, C such that if x �= y ∈ MN , then

�
[
τ
y
x < τ

y
y

] ≤ cN
d−2

2 e−N [FN(z∗(y,x))−FN(y)] (1.24)

and
�
[
τ
y
x < τ

y
y

] ≥ CN
d−2

2 e−N [FN(z∗(y,x))−FN(y)] (1.25)

As will be seen in the proofs, the values of the constants c, C can be estimated
rather well, but of course their values depend on the specific situation. This rather
central result is based on a judicious use of well-known monotonicity properties
of the probabilities considered that follow from a variational representation that is
at the heart of the so called electric resistor network representation of reversible
Markov chains. In this context the basic ingredient of the proof of Theorem 1.7
is known as Rayleigh’s short-cut method. See the monograph by Doyle and Snell
[DS] for an exposition of the relation between reversible Markov chains and elec-
tric resistor networks. We will comment on this analogy (that may provide helpful
intuition) in the course of the proof without actually formally using it.

Equipped with these inputs we will, in Section 4, proceed to the analysis of
general transition processes. We will introduce a natural tree structure on the set
of minima and show that any transition between two minima can be uniquely de-
composed into a sequence of so-called “admissible transitions” in such a way that
with probability rapidly tending to one (as N ↑ ∞), the process will consist of this
precise sequence of transitions. This will require large deviation estimates in path
space that are special cases of more general results that have recently been proven
in [BG2].
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In Section 5 we will investigate the transition times of admissible transitions.
In the first sub-section we will prove sharp bounds on the expected times of such
admissible transitions with upper and lower bounds differing only be a constant.
This will be based on more general upper bounds on expected times of general
types of transitions that will be proven by induction. In the second sub-section we
show that the rescaled transition times converge (along subsequences) to exponen-
tially distributed random variables. This result again is based on an inductive proof
establishing control on the rather complicated analytic structure of the Laplace
transforms of a general class of transition times. In Section 6 we use these results
to derive some consequences: We show that during an admissible transition, at any
given time, the process is close to the starting point with probability close to 1, that
it converges exponentially to equilibrium, etc. Section 7 motivates the connection
between our Markov chains and Glauber dynamics of disordered mean field mod-
els, and in Section 8 we discuss a specific example, the random field Curie-Weiss
model.

Notation. We have made an effort to use a notation that is at the same time concise
and unambiguous. This has required some compromise and it may be useful to
outline our policy here. First, all objects associated with our Markov chains depend
on N . We make this evident in some cases by a subscript N . However, we have
omitted this subscript in other cases, in particular when there is already a number
of other indices that are more important (as in Gx

y(u)), or in ever recurring objects
like � and �, and which sometimes will have to be distinguished from the laws of
modified Markov chains by other subscript. Constants c, C, k etc. will always be
understood to depend on the details of the Markov chain, but to be independent of
N for N large. There will appear constants KN > 0 that will depend on N in a way
depending on the details of the chain, but such that for some α > 0, N1−αKN ↑ ∞
(this can be seen as a requirement on the chain). Specific letters are reserved for a
particular meaning only locally in the text.

2. Precise estimates on transition probabilities

In this section we prove Theorem 1.8. A key ingredient is the following variational
representation of the probabilities

G
y
x(0) ≡ �

[
τ
y
x < τ

y
y

]
, x, y ∈ MN (2.1)

that can be found in Ligget’s book ([Li], p. 99, Theorem 6.1)9

Theorem 2.1. Let Hy
x denote the space of functions

H
y
x ≡ {h : �N → [0, 1] : h(y) = 0, h(x) = 1} (2.2)

9 Let us note that this representation is also the basis of the electric network analogy as
can be found e.g. in [DS]. The quantities �N(y)�

[
τ yx < τyy

]
play in fact the rôle of effective

conductances of the electric network between points x and y. In fact this entire chapter
could be easily reformulated in this language; however, we prefer to remain with the more
probabilistic terminology and only comment on the electric analogies in footnotes.
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and define the Dirichlet form

3N(h) ≡
∑

x′,x′′∈�N
�N(x

′)pN(x′, x′′)[h(x′)− h(x′′)]2 (2.3)

Then

�
[
τ
y
x < τ

y
y

] = 1

2�N(y)
inf

h∈Hy
x

3N(h) (2.4)

Proof. See Ligget [Li], Chapter II.6. Note that the set R in Liggett’s book (page
98) will be �N\{x}, and our Hy

x would be H�N\{x} in his notation. ��
Proof of Theorem 1.8. The proof of the upper bound (1.24) is very easy. We will
just construct a suitable trial-function h ∈ Hx

y and bound the infimum in (2.4) by
the value of the Dirichlet form 3N at this function.

To this end we construct a ‘hyper-surface’10 SN ⊂ �N separating x and y such
that

i)) z∗(y, x) ∈ SN .
ii)) ∀ z ∈ SN , FN(z) ≥ FN(z

∗(y, x)).

SN splits �N into two components �x and �y which contain x and y, respec-
tively. Let χ ∈ C∞

0 ([0,∞), [0, 1]) with χ(s) = 1 for s ∈ [0, 1) and χ(s) = 0 for
s > 2. Then put

hN(x
′) =

{
χ(N1/2 dist(x′, SN)), for x′ ∈ �x
1, for x′ ∈ �y

(2.5)

Clearly, hN is constant outside a layer LN of width N−1/2 around SN . Since the
transition matrix pN(x

′, x′′) vanishes for |x′ − x′′| ≥ CN−1, for some constant
C < ∞ and since by construction

|hN(x′)− hN(x
′′)| ≤ cN1/2|x′ − x′′| (2.6)

we obtain

�
[
τxy < τxx

]
≤ 1

2�N(y)
3N(hN)

≤ const.N−1
∑

x′,x′′∈LN

�N(x
′)

�N(x)
pN(x

′, x′′)

≤ C

N

�N(z
∗(x, y))

�N(x)

∑
x′∈LN

�N(x
′)

�N(z∗(x, y))
(2.7)

Since FN is assumed to have a quadratic saddle point at z∗(x, y), using a standard
Gaussian approximation the final sum is readily seen to be O(Nd/2) which gives
the upper bound (1.24).

10 We actually require no analytic properties for the set SN and the term hyper-surface
should not be taken very seriously.
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The main task of this section will be to establish the corresponding lower bound
(1.25). The main idea of the proof of the lower bound is to reduce the problem to
a sum of essentially one-dimensional ones which can be solved explicitly. The key
observation is the following monotonicity property of the transition probabilities.11

Lemma 2.2. Let � ⊂ �N be a subgraph of �N and let �̃� denote the law of the
Markov chain with transition rates

p̃�(x
′, x′′)=

{
pN(x

′, x′′), if x′ �= x′′, and (x′, x′′)∈E(�)
1 −∑

y′:(x′,y′)∈E(�) pN(x
′, y′), if x′ = x′′

0, else
(2.8)

Assume that y, x ∈ �. Then

�
[
τ
y
x < τ

y
y

] ≥ �̃�

[
τ
y
x < τ

y
y

]
(2.9)

Proof. To prove Lemma 2.2 from here, just note that for any h ∈ H
y
x

3N(h) ≥
∑

(x′,x′′)∈�
�N(x

′)pN(x′, x′′)[h(x′)− h(x′′)]2

= �N(�)
∑

(x′,x′′)∈�
�̃�(x

′)p̃�(x′, x′′)[h(x′)− h(x′′)]2 (2.10)

where �̃�(x) ≡ �N(x)/�N(�). This implies immediately that

inf
h∈Hy

x

3N(h) ≥ �N(�) inf
h∈Hy

x

3�(h) = �N(�) inf
h∈Hy

x(�)

3�(h) (2.11)

where H
y
x(�) ≡ {h : � → [0, 1] : h(y) = 0, h(x) = 1}. Thus, using Theorem

2.1 for the process P̃�, we see that

�
[
τ
y
x < τ

y
y

] = 1

2�N(y)
inf

h∈Hy
x

3N(h) ≥ 1

2�̃�(y)
inf

h∈Hy
x(�)

3�(h)

= �̃�

[
τ
y
x < τ

y
y

]
(2.12)

which proves the lemma. ��
To make use of this lemma, we will choose � in a special way12. Note that

the simplest choice would be to choose � as one single path connecting y and x

over the saddle point z∗(y, x) in an optimal way. However, such a choice would
produce a bound of the form CN−1/2 exp (−NFN(z

∗(y, x))− FN(y)) which dif-

fers from the upper bound by a factor N
d−1

2 . It seems clear that in order to improve
this bound we must choose � in such a way that it still provides “many” paths

11 Lemma 2.2 is most easily understood in the electrical network interpretation: the effec-
tive conductance can only be decreased by removal of elementary conductors. In this context
the Lemma below is well-known as Rayleigh’s monotonicity law.

12 The idea of simplifying the network by removing links is of course old and known in
the electrical language as Rayleigh’s short-cut method. See e.g. [DS] for many examples. It
is remarkable how well this method works for our purposes.
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connecting y and x. To do this we proceed as follows. Let E be any number
s.t. FN(z∗(y, x)) > E > max (FN(y), FN(x)) (e.g. choose E = FN(z

∗(y, x)) −
1
2 (FN(z

∗(y, x))− max (FN(y), FN(x))). Denote by Dy , Dx the connected
components of the level set {x′ ∈ �N : FN(x

′) ≤ E} that contain the points
y, resp. x.

Note that of course we cannot, due to the discrete nature of the set �N , achieve
that the function FN is constant on the actual discrete boundary of the sets Dy , Dx .
The discrete boundary ∂D of any set D ⊂ �N , will be defined as

∂D ≡ {x ∈ D|∃y ∈ �N\D , s.t. (x, y) ∈ E(�N)} (2.13)

We have, however, that

sup
x′∈∂Dy,x′′∈∂Dx

|FN(x′)− FN(x
′′)| ≤ CN−1 (2.14)

Next we choose a family of paths γz : [0, 1] → �N , indexed by z ∈ B ⊂ SN

with the following properties:

i) γz(0) ∈ ∂Dy , γz(1) ∈ ∂Dx

ii) For z �= z′, γz and γz′ are disjoint, i.e. they do not have common sites or
common edges.

iii) FN restricted to γz attains its maximum at z.

Of course we will choose the set B ⊂ SN to be a small relative neighborhood
in SN of the saddle z∗(y, x). In fact it will turn out to be enough to take B a disc of
diameterCN−1/2 so that its cardinality is bounded by |B| ≤ Cd/2N(d−1)/2/�((d+
1)/2).

For such a collection, we will set

� ≡ Dx ∪Dy ∪
⋃
z∈B

V (γz) (2.15)

where V (γz) denotes the graph composed of the vertices that γz visits and the edges
along which it jumps; the unions are to be understood in the sense of the union of
the corresponding subgraphs of �N (Fig. 1).

Lemma 2.3. With � defined above we have

�̃�

[
τ
y
x < τ

y
y

] ≥
(

1 − CdNd/2

�((d + 1)/2)
e−N [FN(z∗(y,x))−E]

)
×
∑
z∈B

�N(γz(1))

�N(y)
�̃γz

[
τ
γz(1)
γz(0)

< τ
γz(1)
γz(1)

]
(2.16)

Remark. Note that the only condition on d (in relation to N ) for the validity of
Theorem 1.8 comes from the demand that the term in the first bracket in (2.16) be
positive. One verifies easily that this is true whenever d ≤ αN , with α sufficiently
small depending on the properties of F .
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Fig. 1. Schematic representation of the graph D.

Proof. All paths on � contributing to the event
{
τ
y
x < τ

y
y

}
must now pass along

one of the paths γz. Using the strong Markov property, we split the paths at the first
arrival point in Dx which gives the equality

�̃�

[
τ
y
x < τ

y
y

] =
∑
z∈B

�̃�

[
τ
y

γz(1)
≤ τ

y
Dx∪y

]
�̃�

[
τ
γz(1)
x < τ

γz(1)
y

]
(2.17)

By reversibility,

�̃�

[
τ
y

γz(1)
≤ τ

y
Dx∪y

]
= �N(γz(1))

�N(y)
�̃�

[
τ
γz(1)
y ≤ τ

γz(1)
Dx

]
= �N(γz(1))

�N(y)
�̃�

[
τ
γz(1)
γz(0)

≤ τ
γz(1)
Dx

]
×�̃�

[
τ
γz(0)
y ≤ τ

γz(0)
Dx

]
(2.18)

where in the last line we used that the path going from γz(1) to y without further
visits to Dx must follow γz. Note further that we have the equality

�̃�

[
τ
γz(1)
γz(0)

≤ τ
γz(1)
Dx

]
= �̃γz

[
τ
γz(1)
γz(0)

≤ τ
γz(1)
γz(1)

]
(2.19)

where the right hand side is a purely one-dimensional object. We will now show that

the probabilities �̃�

[
τ
γz(1)
x < τ

γz(1)
y

]
and �̃�

[
τ
γz(0)
y ≤ τ

γz(0)
Dx

]
are exponentially

close to 1. To see this, write



Metastability in stochastic dynamics of disordered mean-field models 115

1 − �̃�

[
τ
γz(1)
x < τ

γz(1)
y

]
= �̃�

[
τ
γz(1)
y < τ

γz(1)
x

]
=

�̃�

[
τ
γz(1)
y < τ

γz(1)
x∪γz(1)

]
1 − �̃�

[
τ
γz(1)
γz(1)

< τ
γz(1)
x∪y

] (2.20)

where the second equality follows from Corollary 1.6. Now by reversibility, the
numerator in (2.20) satisfies the bound

�̃�

[
τ
γz(1)
y < τ

γz(1)
x∪γz(1)

]
≤

∑
x′∈B

�̃�

[
τ
γz(1)
x′ < τ

γz(1)
x∪γz(1)

]
≤ |B|��(z

∗(y, x))
��(γz(1))

= |B|�N(z
∗(y, x))

�N(γz(1))
(2.21)

On the other hand,

1 − �̃�

[
τ
γz(1)
γz(1)

< τ
γz(1)
x∪y

]
= �̃�

[
τ
γz(1)
x∪y < τ

γz(1)
γz(1)

]
≥ �̃�

[
τ
γz(1)
x < τ

γz(1)
γz(1)

]
≥ �̃γ

[
τ
γz(1)
x < τ

γz(1)
γz(1)

]
(2.22)

where γ is a one dimensional path going from γz(1) to x. We will show later that

�̃γ

[
τ
γz(1)
x < τ

γz(1)
γz(1)

]
≥ CN−1/2 (2.23)

Thus we get that

�̃�

[
τ
γz(1)
x < τ

γz(1)
y

]
≥ 1 − CdNd/2

�((d + 1)/2)
e−N [FN(z∗(y,x))−E] (2.24)

By the same procedure, we get also that

�̃�

[
τ
γz(0)
y ≤ τ

γz(0)
Dx

]
≥ 1 − CdNd/2

�((d + 1)/2)
e−N [FN(z∗(y,x))−E] (2.25)

Putting all these estimates together, we arrive at the affirmation of the lemma. ��

We are left to prove the lower bounds for the purely one-dimensional problems
whose treatment is explained for instance in [vK]. In fact, we will show that

Proposition 2.4. Let γz be a one dimensional path such that FN attains its maxi-
mum on γz at z. Then there is a constant 0 < C < ∞ such that

�̃γz

[
τ
γz(1)
γz(0)

< τ
γz(1)
γz(1)

]
≥ CN−1/2e−N [FN(z)−FN(γz(1))] (2.26)
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Proof. Let K ≡ |γz| denote the number of edges in the path γz. Let us fix the nota-
tion ω0, ω1, . . . , ωK , for the ordered sites of the path γz, with γz(1) = ω0, γz(0) =
ω|γz|.

For any site ωn we introduce the probabilities to jump to the right, resp. the left

p(n) = pN(ωn, ωn+1), q(n) = pN(ωn, ωn−1) (2.27)

The following lemma is a well-known fact13:

Lemma 2.5. With the notation introduced above,

�̃γz

[
τ
γz(1)
γz(0)

< τ
γz(1)
γz(1)

]
=
[

K∑
n=1

�N(ω0)

�N(ωn)

1

q(n)

]−1

(2.28)

We are left to estimate the sum �N(ω0)
∑K

k=1
1

q(k)�N(ωk)
uniformly in K . Since

q(k) ≥ c > 0 for all 1 ≤ k ≤ K , for an upper bound on this sum it is enough to
consider

�N(ω0)

K∑
k=1

1

�N(ωk)
= �N(ω0)

�N(z)

K∑
k=1

e−N [FN(z)−FN(ωk)] (2.29)

Now in the neighborhood of z, we can certainly bound

FN(z)− FN(ωk) ≥ c

(
k

N

)2

(2.30)

while elsewhere FN(z)−FN(ωk) > ε > 0 (of course nothing changes if the paths
have to pass over finitely many saddle points of equal height), and from this it
follows immediately by elementary estimates that uniformly in K

K∑
k=1

e−N [FN(z)−FN(ωk)] ≤ CN1/2 (2.31)

which in turn concludes the proof of Proposition 2.4.14 ��
Combining Proposition 2.4 with Lemma 2.3, we get that

�̃�

[
τ
y
x < τ

y
y

] ≥
(

1 − CdNd/2

�((d + 1)/2)
e−N [FN(z∗(y,x))−E]

)
×
∑
z∈B

�N(γz(1))

�N(y)

�N(z)

�N(γz(1))
CN−1/2

= e−N [FN(z∗(y,x))−FN(y)]
(

1 − CdNd/2

�((d + 1)/2)
e−N [FN(z∗(y,x))−E]

)
×CN−1/2

∑
z∈B

e−N [FN(z)−FN(z
∗(y,x))] (2.32)

13 In the electrical language, it states that the resistance of a chain of resistors is the sum
of the resistances [DS].

14 Of course we could easily be more precise and identify the constant in (2.31) to leading
order with the second derivative of F(z) in the direction of γ (see e.g. [vK,KMST,EK]).
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By our assumptions FN(z)−FN(z
∗(y, x)) restricted to the surface SN is bounded

from above by a quadratic function in a small neighborhood of z∗(y, x) and so, if
B is chosen to be such a neighborhood, the lower bound claimed in Theorem 1.8
follows immediately by a standard Gaussian approximation of the last sum. ��

3. Laplace transforms of transition times in the elementary situation

In this section we shall prove Theorem 1.7, which is our basic estimate for the
Laplace transforms of elementary transition times. We shall need the sharp esti-
mates on the transition probabilities which we obtained in the previous section
based on Lemma 2.2. Combined with reversibility they lead to an estimate on the
hitting time τxMN

. This is the basic analytic result needed to estimate the Laplace
transforms, using their usual representation as solutions of an appropriate boundary
value problem. Let us recall the notation

Gx
y,<(u) = �

[
euτ

x
y I{τxy ≤τx<}

]
, gxy (u) = Gx

y,MN
(u)

In this section < will always denote a proper nonempty subset of �N that contains
MN . Moreover, we will assume that y is not in the interior of <, i.e. it is not
impossible that y is reached before <\y from x, since otherwise Gx

y,<(u) = 0
trivially.

To prove Theorem 1.7, it is enough to show that

gxy (u) ≤ C0N
d/2eN [FN(z∗(x,y))−FN(x)] (3.1)

for real and positive u ≤ cN−d−3/2. Note that z∗(x, y) is defined in (1.4) in such a
way that z∗(x, y) equals to x if y can be reached from x without passing a point at
which FN is larger than FN(x). Analyticity then follows since gxy (u) is a Laplace
transform of the distribution of a positive random variable, and the estimates for
k ≥ 1 follow using Cauchy’s inequality.

In the sequel we will fix y ∈ < and MN ⊂ < ⊂ �N . It will be useful to define
the function

vu(x) =
{
Gx
y,<(u) for x /∈ <

1 for x = y

0 for x ∈ <\y.
(3.2)

As explained in the introduction, vu(x) is analytic near u = 0 (so far without any
control in N on the region of analyticity).

Similarly, we define the function

w0(x) =
{

�[τxMN
] for x /∈ MN

0 for x ∈ MN
(3.3)

Observe that as a consequence of Lemma 1.1 of the introduction we get (for any
x, y ∈ �N,< ⊂ �N ) that

Gx
y,<(u) = euPN(x, y)+ eu

∑
z/∈<

PN(x, z)G
z
y,<(u). (3.4)
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Using this identity one readily deduces that vu is the unique solution of the
boundary value problem15

(1 − euPN)vu(x) = 0 (x /∈ <), vu(y) = 1, vu(x) = 0 (x ∈ <\y).
(3.5)

and, in the same way, wu is the unique solution of

(1 − PN)w0(x) = 1 (x /∈ MN), w0(x) = 0 (x ∈ MN). (3.6)

We shall use these auxiliary functions to prove the crucial

Lemma 3.1. There is a constant C ∈ � such that for all N large enough

TN := max
y∈�N

�[τyMN
] ≤ CNd+1 (3.7)

Proof. In view of the Kolmogorov forward equations it suffices to consider the
case y /∈ MN . We set < = MN ∪ y, where y /∈ MN . Then v0(x) defined in (3.2)
solves the Dirichlet problem

(1 − PN)v0(x) = 0 (x /∈ <)

v0(y) = 1, v0(x) = 0 (x ∈ MN)
(3.8)

Moreover, (3.4) with u = 0 and x = y reads (since Gy
y,<(0) = �[τyy ≤ τ

y
<])

1 − �
[
τ
y
< < τ

y
y

] =
∑
z∈�N

pN(y, z)v0(z) (3.9)

which can be written as

(1 − PN)v0(y) = �[τyMN
< τ

y
y ] (3.10)

We shall use v0(x) as a fundamental solution for 1 − PN and, using the symmetry
of PN in 12(�N,�N), we get

�N(y)�[τyMN
< τ

y
y ]�[τyMN

] = 〈(1 − PN)v0, w0〉�

= 〈v0, (1 − PN)w0〉�

= �N(y)+
∑
x /∈<

�N(x)�[τxy < τxMN
], (3.11)

where in the last step we have used equation (3.6) and the fact that y /∈ MN. This
gives the crucial formula for the expected hitting time in terms of the invariant
measure �N and transition probabilities, namely

�[τyMN
] =

∑
x /∈<

�N(x)

�N(y)

�[τxy < τxMN
]

�[τyMN
< τ

y
y ]

+ 1

�[τyMN
< τ

y
y ]
. (3.12)

15 More precisely, one shows that for all u∈ � for which vu (as defined in (3.2)) ex-
ists, it coincides with the unique solution of (3.5). Moreover, since Gx

y,<(u) is the Laplace
transform of the distribution of a positive random variable, it exists for all u such that
limu′↑Re(u) Gx

y,<(u
′) < ∞. But this implies immediately that vu coincides with the solution

of (3.5) considered as a meromorphic function of u for all u to the left of the first pole of
this function. This justifies to identify vu with the solution of (3.5) in the sequel.
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We remark that in this sum only those values of x with �N(x) ≥ �N(y) can give a
large contribution. To estimate the probabilities in equation (3.6) we choose, given
the starting point y /∈ MN , an appropriate minimum z ∈ MN near y such that
there is a path γ : y → z (of moderate cardinality) so that FN attains its maximum
on γ at y (note that such a z exists trivially always). Then the variational principle
in equation (2.12) (with γ as the subgraph �) gives

�[τyMN
< τ

y
y ] ≥ �[τyz < τ

y
y ] ≥ �̃γ [τyz < τ

y
y ], (3.13)

where the first inequality is a trivial consequence of z ∈ MN. But then Proposition
2.4 can be applied to get the lower bound

�[τyMN
< τ

y
y ] ≥ CN−1/2 (3.14)

for some constant C.
To estimate the other probability in (3.12) we use Corollary 1.6 to write, for

x �∈ <,

�[τxy < τxMN
] =

�[τxy < τxMN∪x]

�[τx< < τxx ]
(3.15)

Since MN ⊂ <, we obtain from (3.14) that for x �∈ <,

�[τx< < τxx ] ≥ �[τxMN
< τxx ] ≥ CN−1/2 (3.16)

Reversibility then gives the upper bound

�[τxy < τxMN∪x] = �N(y)

�N(x)
�[τyx < τ

y

MN∪y] ≤ min

(
1,

�N(y)

�N(x)

)
. (3.17)

Thus, inserting (3.16) and (3.17) into (3.15) we obtain from the representation
(3.12) that

�[τyMN
] ≤ CN(1 +

∑
x /∈<

1) ≤ CNd+1. (3.18)

for some constant C. This proves the lemma. ��
Next we need an estimate on the Laplace transform Gx

y,<(u). This will be ob-
tained from an integral representation of our auxiliary function vu(x), choosing u

smaller than the estimate on the inverse of the maximal expected time TN obtained
in Lemma 3.1. More precisely, we shall prove

Lemma 3.2. Assume that MN ⊂ < ⊂ �N. Then there is a constant c > 0 such
that for all u ≤ cN−d−1 and all x, y ∈ �N ,

Gx
y,<(u) ≤ 2 (3.19)

Furthermore, there are constants b, c > 0 such that for all u ≤ cN−d−3/2 and
y ∈ �N\MN ,

1 −G
y
y,<(u) ≥ bN−1/2 (3.20)



120 A. Bovier et al.

Proof. As mentioned in the beginning of this chapter we can assume without loss
of generality that y ∈ ∂<. Then it follows from equation (3.5) that the function
wu(x) := vu(x)− v0(x) solves the Dirichlet problem

(1 − PN)wu(x)= (1 − PN)vu(x) = (1 − e−u)vu(x), (x /∈ <)

wu(x)= 0 (x ∈ <)
(3.21)

The relation between resolvent and semi-group gives the following representation
for x /∈ <

wu(x) = �

τx<−1∑
t=0

f (Xt )

 , f (x) := (1 − e−u)vu(x) (3.22)

that in turn yields the integral equation

vu(x) = �[τxy = τx<] + (1 − e−u)�

τx<−1∑
t=0

vu(Xt )

 . (3.23)

for the function vu. We can now use our a priori bounds from Lemma 3.1 on the
expectation of the stopping time τx< to extract an upper bound for the sup-norm of
this function. Namely, setting M(u) := supx /∈< vu(x) we obtain the estimate16

M(u) ≤ 1 + |1 − e−u| max
x∈�N

�[τx<]M(u) ≤ 1 + 1

3
M(u), (3.24)

where we have used that |u| < cN−d−1 with c sufficiently small. This gives for
x �∈ <,

Gx
y,<(u) ≤ 3/2 (3.25)

The estimate of the Laplace transform Gx
y,<(u) is trivial for negative u or for

x ∈ <\∂<. In the case x ∈ ∂<, (3.19) follows from (3.4), using (3.25).
To prove the estimate (3.20) on the Laplace transform G

y
y,< of the recurrence

time to the boundary point y ∈ ∂<, (in particular y ∈ <\MN under our assump-
tions), observe that for any δ > 0, there exists c > such that for |u| < cN−d−3/2,
using Lemma 3.2 to estimate �[τx<] ≤ �[τxMN

] from above, it follows that

�

τx<−1∑
t=0

(1 − e−u)

 ≤ δN−1/2 (3.26)

Inserting this estimate and the a priori bound (3.19) into (3.23) together with the
a priori bound gives that

Gx
y,<(u) ≤ �[τxy = τx<] + 2δN−1/2, (3.27)

16 Recall thatM(u) is a meromorphic function with poles only on the real axis. In particular
M(u) is finite except at isolated points.
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Inserting (3.27) into (3.4), which represents Gy
y,<(u) via Gx

y,<(u) for x /∈ <,

it follows that modulo δN−1/2 one has, for |u| < cN−d−3/2,

1 −G
y
y,<(u) ≥ 1 − euPN(y, y)− eu

∑
x /∈<

pN(y, x)�[τxy = τx<]

= 1 − �[τy< = τ
y
y ]

= �[τy< < τ
y
y ]. (3.28)

Since MN ⊂ < and y ∈ <\MN one obtains from (3.16) that

1 −G
y
y,<(u) ≥ �[τyMN

< τ
y
y ] − 2δN−1/2 ≥ bN−1/2 (3.29)

for some b > 0, choosing δ sufficiently small in equation (3.26). This proves
Lemma 3.2. ��

We are now ready to give the

Proof of Theorem 1.7. Note that when FN(x) = FN(z
∗(x, y)), Lemma 3.2 al-

ready provides the desired (actually a sharper) estimate. It remains to consider the
case z∗(x, y) �= x.

Here we can, as in the proof of Theorem 1.8 in Section 2, construct a discrete
separating hyper-surface SN containing the minimal saddle z∗(x, y) and separat-
ing y and x. Since the process starting at x must hit SN before hitting y, path
splitting at SN gives

gxy (u) =
∑
z∈SN

Gx
z,A(u)g

z
y(u), A = MN ∪ SN. (3.30)

We treat the cases x ∈ MN and x /∈ MN separately. In the latter case we need
an additional renewal argument, while in the former all loops are suppressed since
the process is killed upon arrival at x ∈ MN. For x /∈ MN the renewal equation
(1.20) reads

Gx
z,A(u) = (1 −Gx

x,A(u))
−1Gx

z,A∪x(u) (3.31)

By Lemma 3.2 and reversibility we have

Gx
z,A∪x(u) = �N(z)

�N(x)
Gz
x,A(u) ≤ 2

�N(z)

�N(x)
, (3.32)

using Lemma 3.2. Combining (3.32) and (3.20) of Lemma 3.2 we get from the
renewal equation (3.31)

Gx
z,A(u) ≤ CN1/2 �N(z)

�N(x)
, (z ∈ SN, u ≤ cN−d−3/2) (3.33)

for c > 0 sufficiently small.
If x ∈ MN, we directly apply the reversibility argument to Gx

z,A(u) (without

renewal) and obtain a sharper estimate, i.e. (3.33) with N1/2 deleted on the right
hand side.
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Inserting (3.33) into (3.30) and using (3.19) to estimate the Laplace transform
gzy(u) = Gz

y,MN
(u) we finally get, for u ≤ cN−d−3/2,

gxy (u) ≤ CN1/2�N(x)
−1

∑
z∈SN

�N(z)

= O(Nd/2)e−N(FN(z
∗(x,y))−FN(x)), (3.34)

where the last equality is obtained by a standard Gaussian approximation as (2.32).
All estimates on the derivatives k ≥ 1 now follow from Cauchy’s inequality and
the obvious extension of our estimates to complex values of u. This completes the
proof of Theorem 1.7. ��

4. Valleys, trees, and graphs

In this chapter we provide the setup for the inductive treatment of the global prob-
lem. Our purpose here is not to reinvent the cycle decomposition of Freidlin and
Wentzell [WF], but rather to show that with the sharp estimates on the transition
probabilities obtained in Section 2, we can also resolve the fine ‘finite N ’ effects
on the behaviour of the process. To keep the description as simple as possible, we
make use of the assumption made in the introduction that FN is “generic” in the
sense that no accidental symmetries or other “unusual” structures occur. For the
case of a random system, this appears natural.

4.1. The valley structure and its tree-representation

We recall from Section 1 the definition (1.4) of essential saddle points. Under our
general assumptions (G1), any essential saddle has the property that the connected
(according to the graph structure on �N ) component of the level set �z ≡ {x ∈
�N : FN(x) ≤ FN(z)} that contains z falls into two disconnected components
when z is removed from it.

These two components are called “valleys” and denoted by V ±(z), with the
understanding that

inf
x∈V+(z)

FN(x) < inf
x∈V−(z)

FN(x) (4.1)

holds. We denote by EN the set of all essential saddle points.
With any valley we associated two characteristics: its “height”,

h(V i(z)) ≡ FN(z) (4.2)

and its “depth”
d(V i(z)) ≡ FN(z)− inf

x∈V i(z)
FN(x) (4.3)

The essential topological structure of the landscape FN is encoded in a tree
structure that we now define on the set MN ∪EN . To construct this, we define, for
any essential saddle z ∈ EN , the two points

z±z =
{

arg maxzi∈EN∩V±(z) FN(zi), if EN ∩ V ±(z) �= ∅
MN ∩ V ±(z), else

(4.4)
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(note that necessarily the setMN∩V ±(z) consists of a single point ifEN∩V ±(z) =
∅). Now draw a link from any essential saddle to the two points z±z . This produc-
es a connected tree, TN , with vertex set EN ∪ MN having the property that all
the vertices with coordination number 1 (endpoints) correspond to local minima,
while all other vertices are essential saddle points. An alternative equivalent way
to construct this tree is by starting from below: Form each local minimum, draw a
link to the lowest essential saddle connecting it to other minima. Then from each
saddle point that was reached before, draw a line to the lowest saddle above it that
connects it to further minima. Continue until exhaustion. We see that under our
assumption of non-degeneracy, both procedures give a unique answer. (But note
that in a random system the answer can depend on the value of N !)

The tree TN induces a natural hierarchical distance between two points in
EN ∪ MN , given by the length of the shortest path on TN needed to join them.
We will also call the “level” of a vertex its distance to the root, z0.

The properties of the long-time behaviour of the process will be mainly read-
off from the structure of the tree TN and the values of FN on the vertices of TN .
However, this information will not be quite sufficient. In fact, we will see that the in-
formation encoded in the tree contains all information on the time-scales of “exits”
from valleys; what is still missing is how the process descends into a neighboring
valley after such an exit. It turns out that all we need to know in addition is which
minimum the process visits first after crossing a saddle point. This point deserves
some discussion. First, we note that the techniques we have employed so far in this
paper are insufficient to answer such a question. Second, it is clear that without
further assumptions, there will not be a deterministic answer to this question; that
is, in general it is possible that the process has the option to visit various minima
first with certain probabilities. If this situation occurs, one should compute these
probabilities; this appears, however, an exceedingly difficult task that is beyond
the scope of the present paper. We will therefore restrict our attention to the situ-
ation where FN is such that there is always one minimum that is visited first with
overwhelming probability. To analyse this problem, we need to discuss an issue
that we have so far avoided, that of sample path large deviations for the (relatively)
short time behaviour of our processes. A detailed treatment of this problem is given
in [BG2] and, as this issues concerns the present paper only marginally, we will
refer the interested reader to that paper and keep the discussion here to a minimum.
What we will need here is that for “short” times, i.e. for times t = TN , T < ∞,
the process starting at any point x0 at time 0 will remain (arbitrarily) close (on the
macroscopic scale) to certain deterministic trajectories x(t, x0) with probability
exponentially close to one17. These trajectories are solutions of certain differential
equations involving the function F . In the continuum approximation they are just
the gradient flow of F , i.e. d

dt
x(t) = −∇F(x(t)), x(0) = x0, and while the

equations are more complicated in the discrete case they are essentially of similar
nature. In particular, all critical points are always fixpoints. We will assume that the
probability to reach a δ-neighborhood of the boundary of � in finite time T will

17 Convergence of this type of processes to deterministic trajectories was first proved on
the level of the law of large numbers by Kurtz [Ku].
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be exponentially small for all fixed T . We will assume further that at each essential
saddle the deterministic paths starting in a neighborhood of z lead into uniquely
specified minima within the two valleys connected through z. As we will see, these
paths will determine the behaviour of the process.

We will incorporate these information in our graphical representation by dec-
orating the tree by adding two yellow arrows pointing from each essential saddle
to the minima in each of the branches of the tree emanating from it into which the
deterministic paths lead. (These branches are essentially obtained by following the
gradient flow from the saddle into the next minimum on both sides.) We denote the
tree decorated with the yellow arrows by T̃N .

4.2. Construction of the transition process

We are in principle interested in questions like “how long does the process take to
get from one minimum to another?”. This question is more subtle than one might
think. A related question, that should precede the previous one, is actually “how
does the process get from one minimum to another one?”, and we will first make
this question precise and provide an answer.

Let us consider the event F(x, y) ≡ {τyx < ∞} with x, y ∈ MN . Of course
this event has probability one. We now describe an algorithm that will allow to
decompose this event, up to a set of exponentially small measure, into a sequence
of “elementary” transitions of the form

F(xi, zi, xi+1) ≡
{
τxixi+1

≤ τ
xi
Tc

zi ,xi
∩MN

}
(4.5)

where xi, xi+1 ∈ MN , zi is the first common ancestor of xi and xi+1 in the tree
TN , and Tzi ,xi is the branch of TN emanating from zi that contains xi , and
Tc

zi ,xi
≡ TN\Tzi ,xi . We will write Tz for the union of all branches emanating

from z. The motivation for this definition is contained in the following

Proposition 4.1. Let x, y ∈ Tz,y ∩ MN , and ȳ ∈ Tc
z,x ∩ MN . Then there is a

constant C < ∞ such that

�
[
τxȳ < τxy

]
≤ inf

z′∈Tz,y\z
Ce−N [FN(z)−FN(z

′)] (4.6)

Remark. Note that by construction we have FN(z) − FN(z
′) > 0 for all lower

saddles in the branch Tz,y . Thus the proposition asserts that with enormous prob-
ability, the process starting from any minimum in a given valley visits all other
minima in that same valley before visiting any minimum outside of this valley. As
a matter of fact, the same also holds for general points. Thus what the proposition
says is that up to the first exit from a valley, the process restricted to this valley
behaves like an ergodic one.

Proof. We use Corollary 1.6 with I consisting of a single point. This gives

�
[
τxȳ < τxy

]
=

�
[
τxȳ < τxx∪ȳ

]
�
[
τxy∪ȳ < τxx

] ≤
�
[
τxȳ < τxx

]
�
[
τxy < τxx

] (4.7)
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Using the upper and lower bounds from Theorem 1.8 for the numerator and de-
nominator, resp., we get

�
[
τxȳ < τxy

]
≤ Ce−N [FN(z)−FN(z

′)] (4.8)

where z′ is the lowest saddle connecting x and y. (4.8) yields the proposition. ��
Proposition 4.1 implies in particular that the process will visit the lowest mini-

mum in a given valley before exiting from it, with enormous probability. This holds
true on any level of the hierarchy of valleys. These visits at the lowest minima thus
serve as a convenient breakpoint to organize any transition into elementary steps
that start at a lowest minimum of a given valley and exit just into the next hierarchy.
This leads to the following definition.

Definition 4.2. A transition F(x, z, y) is called admissible, if

i)) x is the deepest minimum in the branch Tz,x , i.e. FN(x) = infx′∈Tz,x
FN(x).

ii)) z and y are connected by a yellow arrow in T̃N .

A transition is called metastable, if it is admissible and if the lowest minimum
in the branch Tz,y is lower than FN(x).

Remark. We already understand why an admissible transition should start at deep-
est minimum: if it would not, we would know that the process would first go there,
and we could decompose it into a first transition to this lowest minimum, and then
an admissible transition to y. What we do not see yet, is where the condition on
the endpoint (the yellow arrow) comes from. The point here is that upon exiting
the branch Tz,x , the process has to arrive somewhere in the other branch emanat-
ing from z. We will show later that with exponentially large probability this is the
first minimum which the deterministic path starting from z leads to. Metastable
transition are also known as “exits from a cycle” in the language of [WF].

Proposition 4.3. If F(x, z, y) is an admissible transition, then there exists KN >

0, satisfying N1−αKN ↑ ∞ such that

� [F(x, z, y)] ≥ 1 − e−NKN (4.9)

Remark. To proof this proposition, we will use the large deviation estimates that
require the stronger regularity assumptions R2, R4, as well as the structural as-
sumptions discussed in the beginning of this section. These are to some extent
technical and clearly not necessary. Alternatively, one can replace these by the as-
sumption that Proposition 4.3 holds, i.e. for any z ∈ E and x ∈ Tz,x there is a
unique y ∈ Tc

z,x ∪ MN such that (4.9) holds.

Proof. The proof is based on the fact that the process will, with probability one,
hit the set Tc

z,x eventually. Thus, if we show that given x and z, for all ỹ ∈ Tc
z,x

with ỹ �= y, �
[
τx
ỹ
< τxTc

z,x\ỹ
]

is exponentially small, the proposition follows. To

simplify the notation, let us set I = Tc
z,x ∩ MN . Note that the case ỹ �∈ Tz is
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already covered by Proposition 4.1, so we assume that ỹ ∈ Tz. Using Corollary
1.6

�
[
τxỹ < τxI\ỹ

]
=

�
[
τx
ỹ
< τx

I\ỹ∪x
]

�
[
τxI < τxx

] (4.10)

By reversibility,

�
[
τxỹ < τxI\ỹ∪x

]
= eN [FN(x)−FN(ỹ)]�

[
τ
ỹ
x < τ

ỹ
I

]
(4.11)

Now construct the separating hyper-surface SN passing through z as in the proof
of Theorem 1.8. Then

�
[
τ
ỹ
x < τ

ỹ
I

]
=

∑
z′∈SN

�
[
τ
ỹ

z′ ≤ τ
ỹ

I∪SN

]
�
[
τ z

′
x < τz

′
I

]
(4.12)

Putting all things together, and using reversibility once more, we see that

�
[
τxỹ < τxI\ỹ

]
= 1

�[τxI < τxx ]

∑
z′∈SN

e−N [FN(z′)−FN(x)]

×�
[
τ z

′
ỹ

≤ τ z
′

I∪SN

]
�
[
τ z

′
x < τz

′
I

]
(4.13)

Using that �[τxI < τxx ] ≥ �[τx
y′ < τxx ] for any y′ ∈ I , together with the lower

bound of Theorem 1.8 and the trivial bound �
[
τ z

′
x < τz

′
I

]
≤ 1, we see that

�
[
τxỹ < τxI\ỹ

]
≤ C−1N−(d−2)/2

∑
z′∈SN

e−N [FN(z′)−FN(z)]�
[
τ z

′
ỹ

≤ τ z
′

I∪SN

]
≤ C−1N−(d−2)/2

∑
z′∈SN

FN (z′)−FN (z)≤KN

e−N [FN(z′)−FN(z)]

×�
[
τ z

′
ỹ

≤ τ z
′

I∪SN

]
+Nd/2+1e−NKN (4.14)

Under our assumptions the condition FN(z′)−FN(z) ≤ KN implies that |z′ −z| ≤
C′√KN , i.e. all depends on the term �

[
τ z

′
ỹ

≤ τ z
′

I∪SN

]
for z′ very close to the saddle

point z. Now, heuristically, we must expect that with large probability the process
will first arrive at the minimum that is reached from z′ by following the ‘gradient’
of FN .

Let us now show that this is the case. Let us first remark that using the same
arguments as in the proof of Proposition 4.1, it is clear that the probability that the
process will hit the set where FN(x′) > FN(z

∗(x, ỹ))+ δ′, δ′ > 0, before reaching
ỹ is of order exp(−δ′N) so that this possibility is negligible. Denote the comple-
ment of this set by Lδ′ . Now consider the ball Dδ of radius δ centered at z, where δ
should be large enough such that the intersection of Lδ′ with SN is well contained
in the interior of Dδ . The set Lδ′ ∩Dδ is then separated by SN into two parts, and
we call Cδ the part that is on the side of I . According to the previous discussion, if
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the process is to reach I , it has to pass through the surface < ≡ ∂Cδ ∩∂Dδ . Finally,
let Rδ denote the ball of radius δ centered at y. Note first that

�
[
τ z

′
ỹ
< τ z

′
I∪SN∪Lc

δ′

]
≤ �

[
τ z

′
ỹ
< τ z

′
I∪SN∪Lc

δ′
, τ z

′
ỹ
< τ z

′
Rδ

]
+ �

[
τ z

′
ỹ
< τ z

′
I∪SN∪Lc

δ′
, τ z

′
ỹ
> τ z

′
Rδ

]
≤ �

[
τ z

′
ỹ
< τ z

′
Rδ∪SN∪Lc

δ′

]
+

∑
x′′∈Rδ

�
[
τx

′′
ỹ < τx

′′
y

]
(4.15)

The second term is exponentially small by standard reversibility arguments. It re-
mains to control the first.

�
[
τ z

′
ỹ
< τ z

′
Rδ∪SN∪Lc

δ′

]
=

∑
x′∈<

�
[
τ z

′
x′ ≤ τ z

′
<

]
�
[
τx

′
ỹ < τx

′
Rδ

]
≤ |<| sup

x′∈<
�
[
τx

′
ỹ < τx

′
Rδ

]
(4.16)

Now under the assumptions on F , for all x′ ∈ <, the deterministic paths x(t, x′)
reach Rδ in finite time T (i.e. in a microscopic time TN ) without getting close to
ỹ. Therefore, for some ρ > 0

�
[
τx

′
ỹ < τx

′
Rδ

]
≤ �

[
sup

t∈[0,NT ]
|Xt − x(t, x′)| > ρ

∣∣X0 = x′
]

(4.17)

But the large deviation theorem of [BG2] implies that there exists ε ≡ ε(ρ, T ) > 0,
such that

lim sup
N↑∞

1

N
ln �

[
sup

t∈[0,NT ]
|Xt − x(t, x′)| > ρ

∣∣X0 = x′
]

≤ −ε(ρ, T ) (4.18)

so that, e.g., for all large enough N ,

�

[
sup

t∈[0,NT ]
|Xt − x(t, x′)| > ρ

∣∣X0 = x′
]

≤ e−Nε(ρ,T )/2 (4.19)

It then suffices to observe that∑
y′∈I

�
[
τxy′ < τxI\y′

]
= �

[
τxI < ∞] = 1 (4.20)

and so, since �
[
τx
ỹ
< τx

I\ỹ
]

≤ exp(−NKN), for all ỹ �= y, �
[
τxy < τxI\y

]
>

1 − exp(−NKN). ��
Note that the above argument also shows that if F(x, z, y) is admissible, and

y′ ∈ I , then

�
[
τxy′ ≤ τxI∪x

]
≤ �

[
τxy ≤ τxI∪x

]
e−NKN (4.21)
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Theorem 4.4. Let x, y ∈ MN . Then there is a unique sequence of admissible
transitions F(xi, zi, xi+1), i = 1, . . . , k, such that18

{τxy < ∞} ⊃ {τxy =
k∑

i=1

τxixi+1
< ∞} ∩

k⋂
i=1

F(xi, zi, xi+1) (4.22)

and such that the sequence is free of cycles, i.e. the points xi, i = 1, . . . , k + 1 are
all distinct. Moreover, there is a strictly positive constant KN , such that

�

[
{τxy =

k∑
i=1

τxixi+1
< ∞} ∩

k⋂
i=1

F(xi, zi, xi+1)

]
≥ 1 − e−NKN (4.23)

Proof. There is a simple algorithm that allows to construct the sequence of ad-
missible transitions. Let z be the first common ancestor of x and y in TN . First
we notice that we will ‘never’ (that is to say with exponentially small probability)
visit a minimum that is not contained in the two branches emanating from z before
visiting all of Tz. Given this restriction, starting from x, we make the maximal
admissible transition, i.e. one traverses the highest possible saddle for which the
starting point is a lowest minimum of its branch. This leads to some point x2, from
which we continue as before, with the restriction that the first common ancestor of
x2 and y now determines the maximal allowed transition. This process is continued
until an admissible transition reaches y. It is clear that this algorithm determines
a sequence of admissible transitions. We have to show that this is the only one
containing no loops.

Note first that the condition that no transition leaves the branches of the young-
est common ancestor follows since Proposition 4.3 ensures that the target point is
reached before exit from this valley with probability close to one. It is easy to see
that we should always choose the maximal admissible transition. Suppose we start
in some point that is the deepest minimum in some valley that does not contain
the target point, and we perform an admissible transition that does not exit from
this valley. Then we must return to this point at least once more before reaching
the target which means that our sequence of admissible transitions contains a loop.
Therefore, at each step the choice of the next admissible transition is uniquely
determined.

Finally, from Proposition 4.3 the estimate (4.23) follows immediately. ��
Remark. We see that the same type of reasoning would also allow us to deal with
degenerate situations where e.g. integral curves of the gradient bifurcate and tran-
sitions to several points y may have non-vanishing probabilities. The picture of
the deterministic sequence of admissible transitions should then be replaced by a
(cycle free) random process of admissible transitions. The precise computation of
the corresponding probabilities would however require more refined estimates than
those presented here (except if this can be done by using exact symmetries).

18 We hope the notation used here is self-explanatory: E.g. {τ xy < ∞} stands for∪t<∞{X0 =
x,X1 �= y, . . . , Xt−1 �= y,Xt = y}.
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Remark. Theorem 4.4 asserts that for fixed large N a transition occurs along an
essentially deterministic sequence of admissible transitions. When dealing with the
dynamics of system with quenched disorder, this deterministic (with respect to the
Markov chain) sequence will however depend on the realization of the quenched
disorder, and on the volume N . In a typical situation, this will give rise to a man-
ifestation of dynamical “chaotic size dependence” (in the spirit of Newman and
Stein (see e.g. [NS] for an overview).

In the sequel we will always be interested in computing the times (expected
or distribution) of transitions conditioned on the canonical chain of admissible
transitions constructed in Theorem 4.4. We mention that in general, these do not
coincide with the unconditional transition times. Namely, in general, there can oc-
cur unlikely excursions (into deeper valleys) that take extremely long times so that
they dominate e.g. the expected transition times. Physically, this is clearly not the
most interesting quantity.

5. Transition times of admissible transitions

From the discussion above it is clear that the most basic quantities we need to con-
trol to describe the long time behaviour of our processes are the times associated
with an admissible transition. Note that an admissible transition F(x, z, y) can
also be considered as a first exit from the valley associated with the saddle z and
the minimum x. We proceed in three steps, considering first the expectations of
these times, then the Laplace transforms, and finally the probability distributions
themselves.

5.1. Expected times of admissible transitions

A first main result is the following theorem.

Theorem 5.1. Let F(x, z, y) be an admissible transition, and assume that x is
a generic quadratic minimum. Then there exist finite positive constants c, C such
that, for N large enough,

cNeN [FN(z)−FN(x)] ≤ �
[
τxy |F(x, z, y)

]
≤ CNeN [FN(z)−FN(x)] (5.1)

Remark. The result is easy to understand heuristically on the basis of represen-
tation (1.22). By the definition of an admissible transition, the denominator in the
second term is essentially equal to �[τxy < τxx ] and can be estimated by Theorem
1.8. The probability multiplying this term is virtually one, and it is not very hard to
see that by the ergodic theorem, the conditional expected return time in the numer-
ator is equal to �N(D)/�N(x), D being the valley containing x. The reader will
check that this gives the behaviour claimed in the theorem. The main work we will
have to do is thus to show that the contribution of the first term in (1.22) does not
alter this result.

Before proving the theorem, we will prove some more crude but more general
estimates. For this we introduce some notation. Let I ⊂ MN . We define

dI (x, y) ≡ inf
x′∈I∪y

[
FN(z

∗(x, x′))− FN(x)
]

(5.2)
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to be the effective depth of a valley associated with the minimum x with exclusion
at the set I . Recall that z∗(x, y) denotes the lowest saddle connecting x and y, as
defined in (1.4). Note that Theorem 1.8 implies that

CN(d−2)/2e−NdI (x,y) ≤ �
[
τxI∪y ≤ τxx

]
≤ c(|I | + 1)N(d−2)/2e−NdI (x,y) (5.3)

With these notations we will show the following

Lemma 5.2. Let I ⊂ MN , and �
[
τxy ≤ τxI

]
> 0 (this can of course only fail in a

one-dimensional situation). There exist C < ∞ such that for any x, y ∈ MN , we
have that for all N large enough,

�
[
τxy |τxy ≤ τxI

]
≤ CNd+3 + CNd+3

× sup
x′∈MN\{I∪y}

(
�
[
τxx′ < τxy |τxy ≤ τxI

]
eNdI (x

′,y)
)

(5.4)

If the set MN\{I ∪ y} is empty, we use the convention that the sup takes the value
one.

Remark. Note that

�
[
τxx′ < τxy |τxy < τxI

]
=

�
[
τx
x′ < τxy < τxI

]
�
[
τxy < τxI

] =
�
[
τx
x′ < τxy∪I

]
�
[
τx

′
y < τx

′
I

]
�
[
τxy < τxI

]
≤

�
[
τx
x′ < τxy

]
�
[
τxy < τxI

] (5.5)

and thus, using the same arguments as in the proof of Proposition 4.1, whenever

�
[
τxy < τxI

]
is close to one, we have the more explicit bound

�
[
τxx′ < τxy |τxy < τxI

]
≤ C min

(
e−N [FN(z∗(x,x′))−FN(z

∗(x,y))], 1
)

(5.6)

This will be important in the application of this lemma to the proof of Theorem 5.1.

Proof. The starting point of the proof of Lemma 5.2 is the observation that it holds
for I = MN . We formulate this as a distinct lemma.

Lemma 5.3. Assume that �
[
τxy ≤ τxMN

]
> 0. Then there exists a constantC < ∞

such that for all x, y ∈ MN , and all N large enough,

�
[
τxy |τxy ≤ τxMN

]
≤ CNd+3 (5.7)

Proof. The first important observation is then that �
[
τxy ≤ τxMN

]
cannot be too

small, i.e.
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Lemma 5.4. For any x, y ∈ MN , there exists L < ∞, such that for all N large
enough

�
[
τxy ≤ τxMN

]
≥ e−NL (5.8)

Proof. Clearly

�
[
τxy ≤ τxMN

]
≥ �

[
X[TN ] = y,∀ 0 < t < [NT ], Xt �∈ MN |X0 = x

]
(5.9)

So all we have to show is that the finite-time probability in (5.9) is larger than
exp(−LN) for some constant L < ∞. But this is obvious by just fixing a trajecto-
ry consisting of [NT ] steps and leading from x to y without visiting the set MN

on the way (making sure that T is chosen large enough to allow such a trajectory)
and observing that the probability that the process is doing just this is at least cTN ,
with c is the constant from assumption (R3). ��

Next we will use the fact that in Lemma 3.2 we have shown that gxy (u) ≤ 2 for

u < N−d−1. Now for all T < ∞,

�
[
τxy I{τxy ≤τxMN

}
]

≤ T�
[
τxy ≤ τxMN

]
+

∞∑
i=T

�
[
τxy I{i≤τxy ≤i+1}I{τxy ≤τxMN

}
]

≤ T�
[
τxy ≤ τxMN

]
+

∞∑
i=T

(i + 1) inf
v≥0

e−vi�
[
evτ

x
y I{τxy ≤τxMN

}
]

≤ T�
[
τxy ≤ τxMN

]
+

∞∑
i=T

(i + 1)2e−cN−(d+1)i

≤ T�
[
τxy ≤ τxMN

]
+ Ce−cN−(d+1)T Nd+1(T +Nd+1) (5.10)

Now choose T = Nd+3. Then

�
[
τxy |τxy ≤ τxMN

]
≤ Nd+3 + CN2d+4 exp(−cN2 + LN) (5.11)

which for N large enough is bounded by CNd+3 for some constant C, as desired.
��

This gives us a starting point to prove the lemma by downward induction over
the size of the set I . Actually, the structure of the induction is a bit more compli-
cated. We have to distinguish the cases when the starting point x is contained in
the exclusion set I and when it is not. We will then proceed in two steps:

(i) Show that if (5.4) holds for all J ⊂ MN with cardinality |J | = k and all
x, y ∈ MN , and if (5.4) holds for all J of cardinality |J | = k − 1 for all
y ∈ MN and x �∈ J ∪ y, then (5.4) holds for all I with cardinality |I | = k− 1
and all x, y ∈ MN .

(ii) Show that if (5.4) holds for all J with cardinality |J | = k and all x, y ∈ MN ,
then (5.4) holds for all J of cardinality |J | = k − 1 for all y ∈ MN and
x �∈ J ∪ y.
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If we can establish both steps, we can conclude that since (5.4) holds for I =
MN and all x, y ∈ MN , it holds for all I ⊂ MN .

We now prove both assertions. Note that C will denote in the course of the
proof a generic finite numerical constant. We will not keep track of the changes of
its value in the course of the induction. We will set κ = d + 3.

Step (i). We need only to consider sets J of cardinality k − 1 with x ∈ J ∪ y. We
can assume without loss that y /∈ J .

�
[
τxy I{τxy <τxJ }

]
= �

[
τxy I{τxy ≤τxMN

}
]
+

∑
x′∈MN\J\{x,y}

�
[
(τ xx′ + τx

′
y )I{τx

x′≤τxMN
}I{τx′y <τx

′
J }
]

= �
[
τxy I{τxy ≤τxMN

}
]
+

∑
x′∈MN\J\{x,y}

(
�
[
τxx′I{τx

x′≤τxMN
}
]

�
[
τx

′
y < τx

′
J

]

+�
[
τxx′ ≤ τxMN

]
�
[
τx

′
y I{τx′y <τx

′
J }
])

(5.12)

Dividing by �
[
τxy < τxJ

]
, we get from (5.12) that

�
[
τxy |τxy < τxJ

]
≤ �

[
τxy |τxy ≤ τxMN

]
+

∑
x′∈MN\J\{x,y}

(
�
[
τx
x′ |τxx′ ≤ τxMN

]
�
[
τx
x′ < τxx

] �
[
τx
x′ ≤ τxMN

]
�
[
τx

′
y < τx

′
J

]
�
[
τxy < τxJ

]
+�

[
τx

′
y |τx′

y < τx
′

J

] �
[
τx

′
y < τx

′
J

]
�
[
τx
x′ < τxMN

]
�
[
τxy < τxJ

] )
(5.13)

The first summand in the last line in (5.13) produces exactly the first term in (5.4).
For the second, observe that

�
[
τx
x′ ≤ τxMN

]
�
[
τx

′
y < τx

′
J

]
�
[
τxy < τxJ

] ≤
�
[
τx
x′ ≤ τxJ∪y

]
�
[
τx

′
y < τx

′
J

]
�
[
τxy < τxJ

]
= �

[
τxy < τxy |τxy < τxJ

]
(5.14)

which makes the entire term smaller than CNκ . For the last term we may use the
induction hypothesis for the conditional expectation time appearing in it to get

�
[
τx

′
y |τx′

y < τx
′

J

] �
[
τx

′
y < τx

′
J

]
�
[
τx
x′ < τxMN

]
�
[
τxy < τxJ

]
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≤ CNκ + CNκ sup
x′′∈MN\{J∪y}

�
[
τx

′
x′′ < τx

′
y < τx

′
J

]
�
[
τx
x′ < τxMN

]
�
[
τxy < τxJ

] eNdJ (x
′′,y)

= CNκ + CNκ sup
x′′∈MN\{J∪y}

�
[
τx
x′′ < τxy < τxJ

]
�
[
τxy < τxJ

] eNdJ (x
′′,y)

×
�
[
τx

′
x′′ < τx

′
y < τx

′
J

]
P
[
τx
x′ < τxMN

]
�
[
τx
x′′ < τxy < τxJ

] (5.15)

But the last factor satisfies

�
[
τx

′
x′′ < τx

′
y < τx

′
J

]
�
[
τx
x′ < τxMN

]
�
[
τx
x′′ < τxy < τxJ

] ≤
�
[
τx

′
x′′ < τx

′
y < τx

′
J

]
P
[
τx
x′ < τx

J∪y∪x′′
]

�
[
τx
x′′ < τxy < τxJ

]
≤

�
[
τx
x′ < τx

x′′ < τxy < τxJ

]
�
[
τx
x′′ < τxy < τxJ

] ≤ 1 (5.16)

Thus (5.15) actually gives a term of the desired form. This proves the first inductive
step.

To complete the proof we need to turn to

Step (ii). Here we must consider J such that x �∈ J ∪ y.
We will first consider the sub-case when x is such that

dJ (x, y) = sup
x′∈MN\{J∪y}

dJ (x
′, y) (5.17)

Note that in this situation

sup
x′∈MN\{J∪y}

�
[
τxx′ < τxy |τxy < τxJ

]
eNdJ (x

′,y) ≥
�
[
τxx < τxy < τxJ

]
�
[
τxy < τxJ

] eNdJ (x,y)

= �
[
τxx < τxy∪J

]
eNdJ (x,y) (5.18)

But

�
[
τxx < τxy∪J

]
= 1 − �

[
τxJ∪y < τxx

]
≥ 1 − CN(d−2)/2e−NdJ (x,y) (5.19)

so that in this case it will be enough to prove that

�
[
τxy |τxy < τxJ

]
≤ CNκeNdJ (x,y) (5.20)
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Recall from Corollary 1.6 that

�
[
τxy |τxy < τxJ

]
= �

[
τxy |τxy < τxJ∪x

]
+

�
[
τxx |τxx < τxJ∪y

]
�
[
τxJ∪y < τxx

] �
[
τxx < τxJ∪y

]
(5.21)

By the induction hypothesis, the first term in (5.21) satisfies the bound

�
[
τxy |τxy < τxJ∪x

]
≤ CNκ sup

x′∈MN\{J∪y∪x}
�
[
τxx′ < τxy |τxy < τxJ∪x

]
eNdJ∪x(x′,y)

≤ CNκeNdJ (x,y) (5.22)

as desired (note thatdJ∪x(x′, y) ≤ dJ (x
′, y)by definition anddJ (x′, y) ≤ dJ (x, y)

by assumption (5.17)). For the second term, we use again the induction hypothesis
to get that

�
[
τxx |τxx < τxJ∪y

]
�
[
τxJ∪y < τxx

] �
[
τxx < τxJ∪y

]

≤ CNκ sup
x′∈MN\{J∪y∪x}

�
[
τx
x′ < τxx < τxJ∪y

]
�
[
τxJ∪y < τxx

] eNdJ∪y(x′,x) + CNκ

�
[
τxJ∪y < τxx

]
≤ C−1N−(d−2)/2eNdJ (x,y)CNκ sup

x′∈MN\{J∪y∪x}

(
�
[
τxx′ < τxx

]
eNdJ∪y(x′,x)

)

+ CNκ

�
[
τxJ∪y < τxx

]
≤ C−1ceNdJ (x,y)CNκ sup

x′∈MN\{J∪y∪x}

(
e−N(FN(z∗(x,x′))−FN(x))eNdJ∪y(x′,x)

)
+N−(d−2)/2c−1CNκeNdJ (x,y) (5.23)

It remains to show that

e−N(FN(z∗(x,x′))−FN(x))eNdJ∪y(x′,x)

= e−N(FN(z∗(x,x′))−FN(x))e
infx′′∈J∪y∪x N(FN (z∗(x′′,x′))−F(x′)) (5.24)

is bounded by one. We consider two cases:

(i) Assume that

inf
x′′∈J∪y∪x

FN(z
∗(x′′, x′))− F(x′) = FN(z

∗(x, x′))− FN(x
′) (5.25)
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Define z∗(x,A) by FN(z
∗(x,A)) = infx′∈A FN(z∗(x, x′)). Then in this case,

x is ‘closer’ to x′ then to J ∪ y, so that

z∗(x, J ∪ y) = z∗(x′, J ∪ y) (5.26)

Thus by assumption (5.17)

inf
x′′∈J∪y

FN(z
∗(x′′, x′))− F(x′) = FN(z

∗(x, J ∪ y))− FN(x
′)

< FN(z
∗(x, J ∪ y))− F(x) (5.27)

This implies that FN(x) < FN(x
′), and since

e−N(FN(z∗(x,x′))−FN(x))e
infx′′∈J∪y∪x N(FN (z∗(x′′,x′))−F(x′))

≤ e−N(FN(x′)−FN(x)) (5.28)

the sup is bounded by 1 as desired.
(ii) We are left with the case

inf
x′′∈J∪y∪x

FN(z
∗(x′′, x′))− F(x′) < FN(z

∗(x, x′))− FN(x
′) (5.29)

Here x′ is closer to J ∪ y than to x, and so

z∗(x, J ∪ y) = z∗(x, x′) (5.30)

But then, again by (5.17)

FN(z
∗(x, x′))− FN(x) = FN(z

∗(x, J ∪ y))− FN(x)

≥ inf
x′′∈J∪y∪x

FN(z
∗(x′, x′′))− FN(x

′) (5.31)

which has the desired implication. This covers the case when (5.17) holds.
Let us now turn to the case when (5.17) does not hold. Let x∗ ∈ MN be such
that

dJ (x
∗, y) = sup

x′∈MN\{J∪y}
dJ (x

′, y) (5.32)

By assumption x∗ �= x. We can write

�
[
τxy |τxy < τxJ

]
=

�
[
τxy I{τxy <τxJ }I{τx

x∗>τ
x
y }
]

�
[
τxy < τxJ

] +
�
[
τxy I{τxy <τxJ }I{τx

x∗<τ
x
y }
]

�
[
τxy < τxJ

]
≡ (I )+ (II ) (5.33)

Now

(I ) = �
[
τxy |τxy < τxJ∪x∗

] �
[
τxy < τxJ∪x∗

]
�
[
τxy < τxJ

] (5.34)



136 A. Bovier et al.

and using the induction hypothesis,

(I ) ≤ CNκ + CNκ sup
x′∈MN\{J∪y∪x∗}

�
[
τx
x′ < τxy < τxJ∪x∗

]
�
[
τxy < τxJ

] eNdJ∪x∗ (x′,y)

≤ CNκ + CNκ sup
x′∈MN\{J∪y}

�
[
τx
x′ < τxy < τxJ

]
�
[
τxy < τxJ

] eNdJ (x
′,y) (5.35)

as desired. On the other hand,

(II ) =
�
[
τxx∗I{τx

x∗<τ
x
J∪y }

]
�
[
τxy < τxJ

] �
[
τx

∗
y < τx

∗
J

]
+

�
[
τx

∗
y I{τx∗y <τx

∗
J }

]
�
[
τxy < τxJ

] �
[
τxx∗ < τxJ∪y

]
≡ (IIa)+ (IIb) (5.36)

To treat (IIa) we can use the induction hypothesis to get

(IIa) = �
[
τxx∗ |τxx∗ < τxJ∪y

]
�
[
τxx∗ < τxy |τxy < τxJ

]
≤ CNκ + CNκ sup

x′∈MN\{J∪x∗∪y}

�
[
τx
x′ < τxx∗ < τxJ∪y

]
�
[
τxy < τxJ

] �
[
τx

∗
y < τx

∗
J

]
×eNdJ∪y(x′,x∗)

= CNκ + CNκ sup
x′∈MN\{J∪x∗∪y}

�
[
τx
x′ < τxx∗ < τxy < τxJ

]
�
[
τxy < τxJ

] eNdJ∪y(x′,x∗)

≤ CNκ + CNκ sup
x′∈MN\{J∪x∗∪y}

�
[
τx
x′ < τxy < τxJ

]
�
[
τxy < τxJ

] eNdJ (x
′,y) (5.37)

since dJ∪y(x′, x∗) = infx′′∈J∪y∪x∗ [FN(z∗(x′, x′′)) − FN(x
′)] ≤ dJ (x

′, y), and
finally

(IIb) = �
[
τx

∗
y |τx∗

y < τx
∗

J

] �
[
τxx∗ < τxJ∪y

]
�
[
τx

∗
y < τx

∗
J

]
�
[
τxy < τxJ

]
= �

[
τx

∗
y |τx∗

y < τx
∗

J

]
�
[
τxx∗ < τxy |τxy < τxJ

]
≤ CNκ�

[
τxx∗ < τxy |τxy < τxJ

]
eNdJ (x

∗,y) (5.38)

where the last line is obtained by using that the conditional expectation in the one-
but-last line is of the form considered just before. Putting all together we see that
the lemma is proven. ��
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Proof of Theorem 5.1. Lemma 5.2 can now be used to prove the theorem. For
this, let F(x, z, y) be an admissible transition and fix I = Tc

z,x\y ∩ MN .

We have already seen in (5.19) that �
[
τxx < τxI∪y

]
differs from 1 only by an

exponentially small term. Moreover, using (4.21), we see that in the case of an
admissible transition,

�
[
τxy < τxx

]
≤ �

[
τxI∪y < τxx

]
≤ �

[
τxy < τxx

]
+
∑
y′∈I

�
[
τxy′ < τxx∪I

]
≤ �

[
τxy < τxx

]
(1 + |I |e−NKN ) (5.39)

Therefore (5.21) implies in this case that

�
[
τxy |τxy < τxI

]
=

�
[
τxx |τxx < τxI∪y

]
�
[
τxy < τxx

] (
1 + O(e−NKN )

)
+�

[
τxy |τxy < τxI∪x

]
(5.40)

Now we have already precise bounds on the denominator of the first term (see
Section 2), and using the upper bound from Lemma 5.2 (taking into account that
we are now in the situation of the remark following that lemma!) we see that, under
the assumptions of the theorem, the second term is by a factor Nκ exp(−KNN)

smaller than the first. It remains to estimate precisely the numerator in the first term.
The essential idea here is to use the ergodic theorem. It may be useful to explain
this first in a simpler situation where there is only a single minimum present and
consider the quantity gyy (u). Let D ⊂ �N be the local valley associated to y, that is
the connected component of the level set of the saddle point that connects y to the
rest of the world. The basic idea is to show that the expected recurrence time at y
(without visits at other points of MN ) is up to exponentially small errors equal to
the same time of another Markov chain X̃D(t) with state space D with transition
rates p̃D(x, z) defined as in (2.8) and whose invariant measure, �̃D , is easily seen
to be just �N conditioned on D, i.e. �̃D(x) ≡ �N(x)/�N(D) for any x ∈ D.
Then, by the ergodic theorem, we have that

�̃Dτ
y
y = 1

�̃D(y)
= �N(D)

�N(y)
(5.41)

This quantity can be estimated very precisely via sharp large deviation estimates.
It will typically exhibit a behaviour of the form CNd/2.

To arrive at this comparison, we simply divide the paths in our process into
those reaching the boundary of D and those who don’t, i.e. we write

g
y
y (u) = �

[
euτ

y
y I{τyy ≤τyMN

}I{τy∂D<τyy }

]
+ �

[
euτ

y
y I{τy∂D>τyy }

]
(5.42)
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Let us denote by D+ and D− the two sets obtained by adding and removing, re-
spectively, one layer of points to, resp. from, D. Note that on the event {τy∂D > τ

y
y }

the processes X(t) and X̃D+(t) have the same law until time τyy , so that

�
[
euτ

y
y I{τy∂D>τyy }

]
= �̃D+

[
euτ

y
y I{τy∂D>τyy }

]
≤ �̃D+

[
euτ

y
y

]
(5.43)

We will show that this is the dominant term in (5.42), the first summand on the
right being exponentially small. Indeed

�

[
euτ

y
y I{τyy ≤τyMN

}I{τy∂D<τyy }

]
=

∑
z∈∂D

�
[
eu(τ

y
z +τ zy )I{τyz ≤τyy∪∂D}I{τ zy≤τ zMN

}
]

(5.44)

=
∑
z∈∂D

�
[
euτ

y
z I{τyz ≤τyy∪∂D}

]
�
[
euτ

z
y I{τ zy≤τ zMN

}
]

Using Theorem 1.7, for small enough u, the first factor is bounded by
const.Nκe−N [FN(z)−FN(y)], while the second is bounded by const.Nκ . This gives
the desired upper bound

g
y
y (u) ≤ �̃D+

[
euτ

y
y

]
+ CNκe−N [FN(z∗)−FN(y)] (5.45)

where z∗ denotes the lowest saddle point in ∂D. To get the corresponding lower
bound, just note that

�̃D+
[
euτ

y
y I{τy∂D>τyy }

]
= �̃D+

[
euτ

y
y

]
− �̃D+

[
euτ

y
y I{τy∂D≤τyy }

]
(5.46)

But the last term in (5.46) can be treated precisely as in (5.44), so that we arrive at

g
y
y (u) ≥ �̃D+

[
euτ

y
y

]
− CNκe−N [FN(z∗)−FN(y)] (5.47)

Differentiating and using reversibility and the upper bounds from Theorem 1.7, as
well as the obvious lower bound

g
y
y (0) = 1 − �

[
τ
y

MN
< τ

y
y

]
≥ 1 −

∑
x∈MN\y

g
y
x (0)

≥ 1 − |MN |Nd−1e−N [FN(z∗)−FN(y)] (5.48)

gives in the same way that

ġ
y
y (0)

g
y
y (0)

= �N(D
+)

�N(y)
+ O(Nκ)e−N [FN(z∗)−FN(y)] (5.49)

The same ideas can now be carried over to the estimation of the return time in
an admissible situation, using the estimates from Lemma 5.2.
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Proposition 5.5. LetF(x, z, y) be an admissible transition. LetD denote the level
set of the saddle z. Then for KN > 0 satisfying N1−αKN ↑ ∞, for some α > 0,

�
[
τxx |τxx < τxI∪y

]
= �N(D

+)
�N(x)

+ O
(
e−NKN

)
(5.50)

where I = Tc
z,x\y ∩ MN .

Proof. Basically, the proof goes as outlined above. With D defined as the level set
of the saddle z, we can decompose

�
[
τxx I{τxx <τxI∪y }

]
= �

[
τxx I{τxx <τxI∪y }I{τxx <τx∂D}

]
+ �

[
τxx I{τxx <τxI∪y }I{τxx >τx∂D}

]
(5.51)

The first summand gives precisely

�
[
τxx I{τxx <τxI∪y }I{τxx <τx∂D}

]
= �

[
τxx I{τxx <τx∂D}

]
(5.52)

so that from this term alone we would get the same estimate as in (5.49). We have
to show that the second term does not give a relevant contribution. Note that as in
(5.44) we can split paths at the first visits to ∂D. This gives

�
[
τxx I{τxx <τxI∪y }I{τxx >τx∂D}

]
=

∑
z′∈∂D

�
[
τxz′I{τxz′≤τx∂D}I{τx

z′<τ
x
x }
]

�
[
τ z

′
x < τz

′
I∪y

]
+�

[
τxz′ ≤ τx∂D, τ

x
z′ < τxx

]
�

[
τ z

′
x I{τ z′x <τz

′
I∪y }

]
(5.53)

Now �
[
τx
z′ ≤ τx∂D, τ

x
z′ < τxx

]
is bounded by e−N [FN(z)−FN(x)], and by reversibility

�
[
τx
z′I{τxz′≤τx∂D}I{τx

z′<τ
x
x }
]

≤ e−N [FN(z)−FN(x)]�
[
τ z

′
x I{τ z′x <τz

′
∂D}

]
, so all we have to

show is that the two quantities �
[
τ z

′
x I{τ z′x <τz

′
∂D}

]
and �

[
τ z

′
x I{τ z′x <τz

′
I∪y }

]
(which are

more or less the same) are not too large. But this follows from our previous bounds
by splitting the process going from z′ to x at its first visit to a point in Tz,x ∩MN ,
e.g.

�

[
τ z

′
x I{τ z′x <τz

′
I∪y }

]
= �

[
τ z

′
x I{τ z′x ≤τ z′MN

}

]
+

∑
x′∈MN\I

(
�

[
τ z

′
x′ I{τ z′

x′ ≤τ
z′
MN

}

]
�
[
τx

′
x < τx

′
I∪y

]

+�
[
τ z

′
x′ ≤ τ z

′
MN

]
�

[
τx

′
x I{τx′x <τx

′
I∪y }

])
(5.54)

Lemma 5.2 and Theorem 1.7 can now be used on the expectations in (5.54), and
this implies the desired result. ��
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Now if (as we assume) x is a quadratic minimum of FN , �N(D
+)

�N(x)
= CNd/2,

and using this together with Theorem 1.8 we get the estimates of Theorem 5.1.
��

Remark. The reader will have observed that we could also prove lower bounds
for more general transitions, complementing Lemma 5.2. But the point is that these
would depend in a complicated way on the global specifics of the function FN ,
contrary to the situation of admissible transitions for which we get the very simple
estimates of Theorem 5.1. The beauty of the construction lies in some sense in the
fact that the general “worst case” upper bounds of Lemma 5.2 suffice to obtain the
precise estimates of the theorem.

5.2. Laplace transforms of transition times of admissible transitions

Theorem 5.1 gives precise estimates on the expected transition times for an ele-
mentary transition. We will now show that as expected, the distribution of these
transition times is asymptotically exponential. This will be done by controlling the
Laplace transforms for small arguments.

Theorem 5.6. Let F(x, z, y) be an admissible transition. Set τ̄ xy ≡
�
[
τxy |F(x, z, y)

]
. Then

�
[
evτ

x
y /τ̄

x
y |F(x, z, y)

]
= 1

1 − v
+ e−NKN f (v) (5.55)

where for any δ > 0, for N large enough, f is bounded and analytic in the domain
|Re(v)| < 1 − δ

Proof. The main ingredient of the proof lies in controlling the analytic structure
of the Laplace transforms. The procedure will be similar to that in the proof of
Lemma 5.2, that is we consider the entire family of functions Gx

y,I (u) and establish
the corresponding domains by induction, starting with the case I = MN where
the analytic estimates of Theorem 1.7 hold. It will be convenient to use functions
where the argument u has been properly rescaled. The naive expectation might be
that the Laplace transform will exist for values of u up to the inverse of the corre-
sponding expected transition time. However, this is not so. The point is that Laplace
transforms are much more sensitive to “deep valleys” than the expected times for
which such valleys contribute less if they are unlikely to be visited. However the
Laplace transform will only partly benefit from this, but simply explode at a value
corresponding to the deepest valley that is at all allowed to be visited.

We introduce some more notation for convenience. Set

tI (x, y) ≡ eNdI (x,y) (5.56)

and
TI (y) ≡ sup

x∈MN\{I∪y}
tI (x, y) (5.57)
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With the notation of Section 1, we define

Ĝx
y,I (v) ≡

Gx
y,I (v/TI (y))

�
[
τxy ≤ τxI

] (5.58)

The following key lemma gives us control over how this happens. It is the analogue
of Lemma 5.2.

Lemma 5.7. Let I ⊂ MN , and let x, y ∈ MN . Then Ĝx
y,I (v) can be represented

in the form

Ĝx
y,I (v) = a0

x,y,I (v/TI (y))

+
∑

x′∈MN\{I∪y}
�
[
τxx′ < τxy |τxy ≤ τxI

]
ax

′
x,y,I

(
v
tI (x

′, y)
TI (y)

)
(5.59)

where a0
x,y,I and ax

′
x,y,I , for any x′ ∈ MN\{I ∪ y} are complex functions that have

the properties (for a finite constant C, and κ = d + 3):

(i) They are bounded by CNκ and analytic in the domain |Re(u)| < CN−κ ,
(ii) They are real and positive for real v.

Proof. An important corollary of analyticity are corresponding bounds on the deriv-
atives. Namely, by a standard application of the Cauchy integral formula it follows
that for any function a which is bounded and analytic in the domain |Re(v)| <
CN−κ , for |Re(v)| < C

2 N
−κ we have,∣∣∣∣ dndvn

a(v)

∣∣∣∣ ≤ n!C
2nNnκ

Cn
sup

v:Re(v)<CN−κ

a(v) (5.60)

This will be used repeatedly in the sequel.
The first step in the proof is to show that (5.59) holds if I = MN . The proof

of this fact is completely analogous to that of Lemma 5.3 and we will skip the
details. Let us just mention that we will get the boundedness of Ĝx

y,MN
(v) in a

domain Re(u) < cN−d−3 (while analyticity was established in the larger domain
Re(u) < cN−d−1 in Section 3). This provides the starting point for our induction
like in Lemma 5.2. Again we assume that the lemma holds for all I of cardinality
greater than or equal to 1, and we consider sets J ⊂ MN of cardinality 1 − 1. As
before, we first show that the case x ∈ J reduces easily to the case x �∈ J . Without
loss of generality we assume y /∈ J . Namely, in the former case,

Ĝx
y,J (v) = gxy (v/TJ (y))

�
[
τxy < τxJ

]
+

∑
x′∈MN\{J∪y}

gx
x′(v/TJ (y))�

[
τx

′
y < τx

′
J

]
�
[
τxy < τxJ

] Ĝx′
y,J (v) (5.61)
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Inserting the induction hypothesis for the Ĝx′
y,J (v), we get

Ĝx
y,J (v) = gxy (v/TJ (y))

�
[
τxy < τxJ

]
+

∑
x′′∈MN\{J∪y}

gx
x′(v/TJ (y))�

[
τx

′
y < τx

′
J

]
�
[
τx
x′ ≤ τxMN

]
gx
x′(0)�

[
τxy < τxJ

] a0
x′,y,J (v/TJ (y))

+
∑

x′∈MN\{J∪y}

∑
x′′∈MN\{J∪y}

gx
x′(v/TJ (y))

gx
x′(0)

�
[
τx
x′ ≤ τxMN

]
�
[
τx

′
y < τx

′
J

]
�
[
τxy < τxJ

]
×�

[
τx

′
x′′ < τx

′
y |τx′

y < τx
′

J

]
ax

′′
x′,y,J

(
v
tJ (x

′′, y)
TJ (y)

)
(5.62)

Remember that in the proof of Lemma 5.2 ((5.15)–(5.16)) we have established that

�
[
τx
x′ ≤ τxMN

]
�
[
τx

′
y < τx

′
J

]
�
[
τxy < τxJ

] �
[
τx

′
x′′ < τx

′
y |τx′

y < τx
′

J

]
≤ �

[
τxx′′ < τxy |τxy < τxJ

]
(5.63)

which, since the analytic properties of ax
′′

x′,y,J and ax
′′

x,y,J are the same, shows that
(5.62) provides the claimed representation.

The more subtle part of the proof concerns the case x �∈ J . We proceed again
as in the proof of Lemma 5.2 and consider first the case when TJ (y) = dJ (x, y).
Note again that in this case, the representation in the lemma reduces to

Ĝx
y,J (v) = axx,y,J (v) (5.64)

since all the other terms in the sum (5.59) are smaller and more regular.
We use of course that

Gx
y,J (u) =

Gx
y,J∪x(u)

1 −Gx
x,J∪y(u)

(5.65)

which implies

Ĝx
y,J (v) =

�
[
τxy < τxJ∪x |τxy < τxJ

]
Ĝx
y,J∪x

(
v
TJ∪x(y)
TJ (y)

)
1 − �

[
τxx < τxJ∪y

]
Ĝx
x,J∪y

(
v
TJ∪y(x)
TJ (y)

)
=

Ĝx
y,J∪x

(
v
TJ∪x(y)
TJ (y)

)
1 − �

[
τxx <τ

x
J∪y

]
�
[
τxx >τ

x
J∪y

]v TJ∪y(x)
TJ (y)

∫ 1
0 dθĜ′x

x,J∪y
(
θv

TJ∪y(x)
TJ (y)

) (5.66)
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The numerator again poses no problem since it permits to obtain the desired
representation by the inductive hypothesis. Potential danger comes from the de-
nominator. But using the induction hypothesis, we see that (similar to (5.22))

TJ∪y(x)
TJ (y)

Ĝ′x
x,J∪y

(
θv

TJ∪y(x)
TJ (y)

)
= TJ∪y(x)

TJ (y)

[ ∑
x′∈MN\{J∪x∪y}

�
[
τxx′ < τxx

]
× a′x′

x,x,J∪y

(
θv

tJ∪y(x′, x)
TJ (y)

)
tJ∪y(x′, x)
TJ∪y(x)

+ a0
x,x,J∪y

(
θv

TJ (y)

)
1

TJ∪y(x)

]

=
∑

x′∈MN\{J∪x∪y}
�
[
τxx′ < τxx

] tJ∪y(x′, x)
TJ (y)

a′x′
x,x,J∪y

(
θv

tJ∪y(x′, x)
TJ (y)

)

+ a0
x,x,J∪y

(
θv

TJ (y)

)
1

TJ (y)
(5.67)

All we need is to bound the modulus of this expression from above for v real. This
gives ∣∣∣∣TJ∪y(x)

TJ (y)
Ĝ′x

x,J∪y

(
θv

TJ∪y(x)
TJ (y)

)∣∣∣∣
≤

∑
x′∈MN\{J∪x∪y}

�
[
τxx′ < τxx

] tJ∪y(x′, x)
TJ (y)

CNκ + cNκ

TJ (y)
(5.68)

In the second part of the proof of Lemma 5.2 (5.23) we have shown that

�
[
τxx′ < τxx

]
tJ∪y(x′, x) ≤ CN(d−2)/2 (5.69)

Thus we deduce from (5.68) that∣∣∣∣TJ∪y(x)
TJ (y)

Ĝ′x
x,J∪y

(
θv

TJ∪y(x)
TJ (y)

)∣∣∣∣ ≤ CNκ

TJ (y)
(5.70)

We see thus that the numerator in (5.66) will not vanish for v < C−1N−κ . Thus
Ĝx
y,J (v) is bounded and analytic in the strip |Re(v)| < C−1N−κ .

In the general case, we proceed as in the proof of Lemma 5.2 and decompose all
paths into those avoiding the deepest minimum x∗ and those visiting it. A simple
computation yields then

Ĝx
y,J (v) = Ĝx

y,J∪x∗

(
v
TJ∪x∗(y)

TJ (y)

) �
[
τxy < τxJ∪x∗

]
�
[
τxy < τxJ

]
+�

[
τxx∗ < τxy |τxy < τxJ

]
Ĝx
x∗,J∪y

(
v
TJ∪y(x∗)
TJ (y)

)
Ĝx∗
y,J (v) (5.71)
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Clearly the first term is by the inductive assumption at least as good as desired, and
since we have just shown that the last factor in the second term is bounded and ana-

lytic in |Re(v)| < CN−κ , using the inductive assumption for Ĝx
x∗,J∪y

(
v
TJ∪y(x∗)
TJ (y)

)
,

one sees easily that the desired representation holds. This concludes the proof of
the lemma. ��

We are now ready to prove Theorem 5.6. For this we have to improve the previ-
ous analysis in the case where x is the deepest minimum in the allowed set MN\I .
In that case TI (y) is strictly larger than any of the terms tI∪x(x′, y) and tI∪y(x′, x)
and it will pay to use Taylor expansions to second order. Also, we will be more
precise in the rescaling of the variables u and define

G̃x
y,I (v) ≡ Ĝx

y,I (vTI (y)/T̄ ) (5.72)

with

T̄ ≡
�
[
τxx I{τxx <τxy∪I }

]
�
[
τxI∪y < τxx

] (5.73)

Note that we use T̄ instead of τ̄ xy in the proof because this will simplify the following
formulas. But recall from the proof of Theorem 5.1 that∣∣∣∣∣∣

�
[
τxy |τxy < τxI

]
T̄

− 1

∣∣∣∣∣∣ ≤ e−NKN (5.74)

Thus in the final results they can be interchanged without harm. Then

G̃x
y,I (v) =

�
[
τxy < τxI∪x |τxy < τxI

]
Ĝx
y,I∪x

(
v
TI∪x(y)

T̄

)
1 − �

[
τxx < τxI∪y

]
Ĝx
x,I∪y

(
v
TI∪y(x)

T̄

) (5.75)

Using the analyticity properties established in the preceding lemma, we now
proceed to a more careful computation, using second order Taylor expansions. This
yields

G̃x
y,I (v) =

�[τ xy < τxI∪x |τ xy < τxI ]
(

1 + v

T̄
�[τ xy |τ xy < τxI∪x] + (vTI∪x (y))2

2T̄ 2 Ĝ′′x
y,I∪x

(
θ̃v TI∪x (y)

T̄

))
�[τ xy∪I < τxx ] − v

T̄
�[τ xx I{τxx <τxI∪y }] − (vTI∪y (x))2

2T̄ 2 �[τ xx < τxI∪y]Ĝ′′x
x,I∪y

(
θ̃v

TI∪y (x)
T̄

)
(5.76)

for some 0 ≤ θ̃ ≤ 1. We use Corollary 1.6 to get

G̃x
y,I (v) =

1 + v

T̄
�
[
τxy |τxy < τxI∪x

]
+ (vTI∪x(y))2

2T̄ 2 Ĝ′′x
y,I∪x

(
θ̃v

TI∪x(y)
T̄

)
1 − v

T̄

�[τxx 1τxx <τ
x
I∪y ]

�
[
τxy∪I<τxx

] − (vTI∪y(x))2�[τxx <τ
x
I∪y ]

2T̄ 2�[τxI∪y<τxx ]
Ĝ′′x

x,I∪y
(
θ̃v

TI∪y(x)
T̄

)
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=
1 + v

T̄
�
[
τxy |τxy < τxI∪x

]
+ (vTI∪x(y))2

2T̄ 2 Ĝ′′x
y,I∪x

(
θ̃v

TI∪x(y)
T̄

)
1 − v − (vTI∪y(x))2

2T̄ �
[
τxx |τxx <τxI∪y

]Ĝ′′x
x,I∪y

(
θ̃v

TI∪y(x)
T̄

) (5.77)

The term we must be most concerned with is the second order term in the de-
nominator. Here we must use the full analyticity properties proven in Lemma 5.7.
This gives, after computations analogous to those leading to (5.68) and using the
obvious lower bound on T̄

∣∣∣∣∣∣ (vTI∪y(x))2

2T̄ �
[
τxx |τxx < τxI∪y

]Ĝ′′x
x,I∪y

(
θ̃v

TI∪y(x)
T̄

)∣∣∣∣∣∣ ≤ C2N2k |v|2

2�
[
τxx |τxx < τxI∪y

]2

×
∑

x′∈MN\{J∪y∪x}
e−N [FN(z∗(x′,x))−FN(x)+FN(z

∗(x,y))−FN(x)]
(
tI∪y(x′, x)

)2

(5.78)

Now according to our hypothesis that x is the lowest minimum in I , it follows
that
tI∪y(x′, x) ≤ eN [FN(z∗(x,x′))−FN(x)] so that (5.78) is finally bounded by

C2N2kC′N−d |v|2
2

|I | sup
x′∈MN\{I∪y∪x}

e−N [FN(z∗(x,y)−FN(z
∗(x′,x))]

= C2N2kC′N−d |v|2
2

|I |e−Nδ (5.79)

where δ is strictly positive.
All the other terms in (5.77) except the leading ones are even smaller. Note

moreover that both TI∪y(x) and TI∪x(y) are exponentially small compared to T̄ ,
so that all these error terms as functions of v are analytic if |Re(v)| < 1. This
allows to write G̃x

y,I (v) in the form

G̃x
y,I (v) = 1

1 − v
+ e−NKN/2 e1(v)

1 − v
+ e2(v)

(1 − v)(1 − v − e−NKN/2e3(v))
(5.80)

where all ei are analytic and uniformly (in N ) bounded in the domain |Re(v)| < 1.
This concludes the proof of the theorem. ��

5.3. The distribution of transition times

From Theorem 5.6 one obtains of course some information on the distribution
function.

Corollary 5.8. Under the same assumptions as in Theorem 5.6, we have:

(i) For any δ > 0, for sufficiently large N ,

�
[
τxy > tT̄ |F(x, z, y)

]
≤ e−(1−δ)t /δ (5.81)
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(ii) Assume that Ni is a sequence of volumes tending to infinity such that for all
i, F(x, z, y) is an admissible transition. Then, for any t ≥ 0,

lim
i↑∞

�Ni

[
τxy > tτ̄Ni

|F(x, z, y)
]

= e−t (5.82)

Proof. (i) is an immediate consequence of the the Laplace transform is bounded
for real positive v with v < 1 and the exponential Chebyshev inequality. (ii) is a
standard consequence of the fact that the Laplace transform converges pointwise
for any purely imaginary v to that of the exponential distribution, and is analytic in
a neighborhood of zero. ��

With a little more work we can also complement the upper bound (5.81) by a
lower bound on the distribution of the survival time in a valley.

Proposition 5.9. LetF(x, z, y)be an admissible transition, and set I=MN\Tz,x .
Let h(N) be any sequence tending to zero as N tends to infinity. Then, for some
κ < ∞, for any 0 < αt < 1 we have that

�
[
τxI > t

] ≥
{
e−t/(T̄ (1−αt ))α2

t (1 − h(N)) if t > h(N) CNd/2

Nκ+TI (x)

1 − o(1) if t ≤ h(N) CNd/2

Nκ+TI (x)

(5.83)

Proof. The proof of this lower bound consists essentially in guessing the strategy
the process will follow in order to realize the event in question which will be to
return a specific number of times to x without visiting the set I . For, obviously,

�
[
τxI > t

] ≥
∑

s1,...,sn≥1
s1+...+sn>t

�
[∀ni=1Xsi = x,∀s≤s1+...+snXs �∈ I

]

=
∑

s1,...,sn≥1
s1+...+sn>t

n∏
i=1

�
[
τxx = si ≤ τxI

]

= (
�
[
τxx ≤ τxI

])n ∑
s1,...,sn≥1
s1+...+sn>t

n∏
i=1

�
[
τxx = si |τxx ≤ τxI

]
(5.84)

We introduce the family of independent, identically distributed variables Yi tak-
ing values in the positive integers such that for � [Yi = s] = �

[
τxx = s|τxx ≤ τxI

]
.

Then (5.84) can be written as

�
[
τxI > t

] ≥ (
�
[
τxx ≤ τxI

])n
�

[
n∑

i=1

Yi > t

]
(5.85)

We have good control on the first factor in (5.85). We need a lower bound on the
second probability. The simplest way to proceed is to use the inequality, going
back to Paley and Zygmund, that asserts that for any random variable X with finite
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expectation, and any α > 0, �[X > (1 − α)�X] ≥ α2 (�X)2

�X2 . We will use this with
X = ∑

i Yi . Thus

�

[
n∑

i=1

Yi > t

]
= �

[
n∑

i=1

Yi >
t

n�Y1
n�Y1

]

≥
(

1 − t

n�Y1

)2
n2(�Y1)

2

n(n− 1)(�Y1)2 + n�Y 2
1

=
(

1 − t

n�Y1

)2 1

1 + 1
n

(
�Y 2

1
(�Y1)

2 − 1

) (5.86)

Now using Lemma 5.7 one verifies easily that

�Y 2
1 ≤ CNκ + TI (x)e

−NKN (5.87)

So that (5.86) gives

�

[
n∑

i=1

Yi > t

]
≥
(

1 − t

n�Y1

)2 1

1 + 1
n

(
CNκ + TI (x)e−NKN

) (5.88)

Thus the second factor is essentially equal to one if n & max(Nκ, TI ). We now
choose n as the integer part of n(t) where

n(t) = min

(
t

�Y1(1 − αt )
,

1

h(N)(CNκ + TI )

)
(5.89)

This yields

�
[
τxI > t

] ≥ (
1 − �

[
τxI ≤ τxx

])n(t)
α2
t

1

1 + 1
n(t)

(
CNκ + TI (x)e−NKN

)
≥ e

−t
�[τx

I
≤τxx ]

�Y1(1−αt )
−tO

(
�[τxI ≤τxx ]2

)
α2
t (1 − h(N)) (5.90)

if t is such that the n(t) is given by the second term in the minimum in (5.89).
This yields the first case in (5.88). If t is smaller than that, one sees easily that
n(t)�[τxI ≤ τxx ] tends to zero uniformly in t , as N ↑ ∞ (in fact exponentially
fast!) This implies the second case. ��

6. Miscellaneous consequences for the processes

In this section we collect some soft consequences of the preceding analysis. We
begin by substantiating the claim made in Section 1 that the process spends most of
the time in the immediate vicinity of the minima. We formulate this in the following
form.
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Proposition 6.1. There exists finite positive constantsC, k such that for any ρ > 0,
x ∈ MN and t > 0,

�
[
|Xt − x| > ρ

∣∣τxMN\x > t,X0 = x
]

≤ CNk inf
ρ′<ρ

sup
y∈�N :ρ′≤|x−y|≤3ρ′/2

e−N [FN(y)−FN(x)] (6.1)

Proof. We start to decompose the event {τxMN\x > t} as follows:

{τxMN\x > t} =
⋃

0<s<t

{τxMN\x > s} ∩ {Xs = x,∀s<s′<tXs′ �∈ MN } (6.2)

Then

�
[
|Xt − x| > ρ

∣∣τxMN\x > t,X0 = x
]

=
∑

0<s<t

�
[
τxMN\x > s,Xs = x

]
�
[
τxMN\x > t

] �
[
|Xt−s − x| > ρ, τxMN

> t − s|X0 = x
]

≤
∑

0<s<t

�
[
τxMN\x > s,Xs = x

]
�
[
τxMN\x > s,Xs = x

]
�
[
τxMN\x > t − s

]
×�

[
|Xt−s − x| > ρ, τxMN

> t − s|X0 = x
]

≤ inf
ρ′<ρ

∑
y:ρ′≤|x−y|≤3ρ′/2

∑
0<s<t

�
[
τxy < τxMN

, τ xMN
> t − s

]
�
[
τxMN\x > t − s

]
≤ inf

ρ′<ρ

∑
y:ρ′≤|x−y|≤3ρ′/2

∑
0<s<t

min
(

�
[
τxy < τxMN

]
,�

[
τxMN

> t − s
])

�
[
τxMN\x > t − s

] (6.3)

Now
�
[
τxy < τxMN

]
≤ e−N [FN(y)−FN(x)] (6.4)

while

�
[
τxMN

> t − s
]

=
∑

y∈MN

�
[
τxy > t − s|τxy < τxMN\y

]
�
[
τxy < τxMN\y

]
(6.5)

Note that by Theorem 1.7 and the exponential Markov inequality, for some κ < ∞

�
[
τxy > t − s|τxy < τxMN\y

]
≤ CNκe−(t−s)cN−κ

(6.6)

while the factors �
[
τxy < τxMN\y

]
are exponentially small except if y = x. The

denominator is bounded below by Proposition 5.9. Since it decays with t − s at an
exponentially smaller rate than the numerator (see (6.6)), and is close to one for
times up to the order exp(NC) (for some C), it is completely irrelevant.
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Thus we see that the second term in the minimum takes over for t − s >

Nκ+1[FN(y) − FN(x)], a number small compared to the inverse of the first term
in the minimum. Thus using that, for a, b ' 1,

∞∑
t=0

min
(
e−at , b

) ≤ b| ln b|
a

+ b

1 − e−a
≈ b

a
(| ln b| + 1) (6.7)

the result follows immediately. ��
Based on this result, we will now show that during an admissible transition the

process also stays mostly close to its starting point, i.e. the lowest minimum of the
valley concerned. The following proposition makes this precise.

Proposition 6.2. Let F(x, z, x′) be an admissible transition. Then there exists fi-
nite positive constants C, k and KN s.t. limN1−αKN ↑ ∞, for some α > 0, such
that for any t and ρ > 0,

�
[
|Xt − x| > ρ

∣∣τxTc
z,x

> t,X0 = x
]

≤ CNκ inf
ρ′<ρ

sup
y∈�N :ρ′≤|x−y|≤3ρ′/2

e−N [FN(y)−FN(x)] + Ce−NKN (6.8)

Proof. The proof of this proposition is in principle similar to that of Proposition
6.1. We begin by applying the same decomposition as before to get

�
[
|Xt − x| > ρ

∣∣τxTc
z,x

> t,X0 = x
]

=
∑

0<s<t

�
[
τxTc

z,x
> s,Xs = x

]
�
[
τxTc

z,x
> t

] �
[
|Xt−s − x| > ρ, τxTc

z,x∪x > t − s|X0 = x
]

inf
ρ′<ρ

≤
∑

y:ρ′≤|x−y|≤3ρ′/2

∑
0<s<t

�
[
τxy < τxTc

z,x∪x, τ
x
Tc

z,x∪x > t − s
]

�
[
τxTc

z,x
> t − s

]
≤ inf

ρ′<ρ

∑
y:ρ′≤|x−y|≤3ρ′/2

∑
0<s<t

min
(

�
[
τxy < τxTc

z,x∪x
]
,�

[
τxTc

z,x∪x > t − s
])

�
[
τxTc

z,x
> t − s

]
(6.9)

As in the proof of Proposition 6.1, the denominator is bounded by Proposition 5.9
and is seen to be insignificant. We concentrate on the estimates of the numerator.
Again we have the obvious bound

�
[
τxy < τxTc

z,x∪x
]

≤ e−N [FN(y)−FN(x)] (6.10)

but to deal with the second probability in the minimum will be a little more com-
plicated. Note first that as in (6.5) we can write

�
[
τxTc

z,x∪x > t − s
]

= �
[
τxx > t − s|τxx < τxTc

z,x

]
�
[
τxx < τxTc

z,x

]
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+
∑

y∈Tc
z,x

�
[
τxy > t − s|τxy < τxTc

z,x∪x\y
]

�
[
τxy < τxTc

z,x∪x\y
]

(6.11)

Now the terms in the second sum are all harmless, since by the estimates of Lemma
5.7 and the geometry of our setting, using the exponential Chebyshev inequality as
if Corollary 5.8, for any δ > 0,

�
[
τxy > t − s|τxy < τxTc

z,x∪x\y
]

�
[
τxy < τxTc

z,x∪x\y
]

≤ e
−(t−s)(1−δ)/TTc

z,x∪x(y)e−N [FN(z)−FN(x)] (6.12)

with TTc
z,x∪x(y) much smaller than eN [FN(z)−FN(x)]. The remaining term is poten-

tially dangerous. To deal with this efficiently, we need to classify the trajectories
according to the deepest minimum they have visited before returning to x. In the
present situation the relevant effective depth of a minimum y ∈ Tz,x is (recall
(5.2))

d(y) ≡ dTc
z,x
(y, x) = FN(z

∗(y, x))− FN(y) (6.13)

We will enumerate the minima in Tz,x according to increasing depth by x =
y0, . . . , yk (we assume for simplicity that no degeneracies occur). We set L(y) ≡
{y′ ∈ Tz,x : d(y′) ≥ d(y)}. Then the family of disjoint events {τxx ≥ τxyi } ∩ {τxx <

τxL(yi+1)
} can serve as a partition of unity, i.e. we have that

�
[
τxx > t − s|τxx < τxTc

z,x

]
=

k∑
i=0

�
[
τxx > t − s, τ xx ≥ τxyi , τ

x
x < τxL(yi+1)

|τxx < τxTc
z,x

]
≤

k∑
i=0

min
(

�
[
τxx ≥ τxyi |τxx < τxTc

z,x

]
,

�
[
τxx > t − s, τ xx < τxL(yi+1)

|τxx < τxTc
z,x

])
≤

k∑
i=0

min
(

�
[
τxx ≥ τxyi |τxx < τxTc

z,x

]
,

�
[
τxx > t − s|τxx < τxL(yi+1)

, τ xx < τxTc
z,x

])
(6.14)

Now again

�
[
τxx > t − s|τxx < τxL(yi+1)

, τ xx < τxTc
z,x

]
≤ e−(t−s)e−Nd(yi ) (6.15)

while
�
[
τxx ≥ τxyi |τxx < τxTc

z,x

]
≤ e−N [FN(z∗(yi ,x))−FN(x)] (6.16)

which is much smaller than e−Nd(yi ) (except in the case i = 0 where we are back
in the situation of Proposition 6.1). Combining all these estimates and using again
(6.7) yields the claim of the proposition. ��
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Remark. Note that Proposition 6.2 again exhibits the special rôle played by ad-
missible transitions. It justifies the idea that the behaviour of the process during
an admissible transition can be described, on the time scale of the expected tran-
sition time19, as waiting in the immediate vicinity of the starting minimum for an
exponential time until jumping quasi-instantaneously to the destination point. This
idea can also be expressed by passing to a measure valued description (as was done
in [CGOV]) which will exhibit that the empirical measure of the process on any
time scale small compared to the expected transition time but long compared to the
next-smallest transition time within the admissible transition, is close to the Dirac
mass at the minimum; since this, in turn, is asymptotically the invariant measure of
the process conditioned to stay in the valley associated to the admissible transition,
it can thus justly be seen as a metastable state associated with this time scale. The
corresponding measure-valued process is than close to a jump process on the Dirac
measures centered at these points. These results can be derived easily from the
preceding Propositions, and we will not go into the details.

Let us also mention that from the preceding results and Corollary 5.8 (ii) one
can easily extract statements concerning “exponential convergence to equilibrium”.
E.g., one has the following.

Corollary 6.3. Let Nk ↑ ∞ be a subsequence such that for all k the topological
structure of the tree from Section 5 is the same and such that along the subsequence,
FNk

is generic. Let m0 denote the lowest minimum of FNk
. Let f ∈ C(�,�) be any

continuous function on the state space. Consider the process starting in some point
x ∈ �N . Then there is a unique minimum m(x) of FNk

, converging to a minimum

m(x) of F , such that, setting τ̄ x(k) ≡ �
[
τ
mNk

(x)
m0

]
lim
k↑∞

�f (Xt/τ̄ x (k)) = e−t f (m(x))+ (1 − e−t )f (m0) (6.17)

(where on the right hand side m(x),m0 denote the corresponding minima of the
limiting function F ). The point m(x) is the lowest minimum of the deepest valley
visited by the process in the canonical decomposition of the transition x,m0 given
in Theorem 4.4.

We leave the proof of the corollary to the reader. In a way such statements
that involve convergence on a single time-scale are rather poor reflections of the
complex structure of the behaviour of the process that is encoded in the description
given in Section 4.

Relation to spectral theory. Contrary to much of the work on the dynamics of
spin systems we have not used the notion of “spectral gap” in this paper, and in
fact this notion has only been mentioned on a heuristic level. But of course these
approaches are closely related and our results could be re-interpreted in terms of
spectral theory. In a forthcoming publication [BEGK] we will indeed show a very
precise relation between the transition time studied here and the low-lying spectrum
of the operators 1 − PN .

19 A finer resolution will of course exhibit rare and rapid excursions to other minima during
the time of the admissible transition, and we have all the tools to investigate these interior
cycles.
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7. An application to disordered mean field models

7.1. Generalities

Our main motivation is to study the properties of stochastic dynamics for a class of
random mean field models (see [BG1] for a more extensive discussion). These are
models where the Hamiltonian is a function of so called random order parameters

mN,M [ω](σ ) ≡ 1

N
ξM,N [ω]σ ∈ �M (7.1)

Here σ ∈ SN , where S is the single spin space, e.g. S ≡ {−1,+1}, and ξM,N is
a random M ×N matrix.

The random Hamiltonian of such a model is then

HN,M [ω](σ ) ≡ −NEM

(
mN,M [ω](σ )

)
(7.2)

Typical dynamics studied for such models are Glauber dynamics, i.e. (random)
Markov chains σ(t), defined on the configuration space SN that are reversible
with respect to the (random) Gibbs measures

µβ,N(σ )[ω] ≡ e−βHN [ω](σ )∏N
i=1 q(σi)

Zβ,N [ω]
(7.3)

and in which the transition rates are non-zero only if the final configuration can be
obtained from the initial one by changing the value of one spin only. To simplify
notation we will henceforth drop the reference to the random parameter ω.

As always the final goal will be to understand the macroscopic dynamics, i.e.
the behaviour of mN(σ(t)) as a function of time. It would be very convenient in
this situation if mN(σ(t)) were itself a Markov chain with state space �d . Such a
Markov chain would be reversible with respect to the measure induced by the Gibbs
measure on �d through the map 1

N
ξT , and this measure has nice large deviation

properties. Unfortunately, mN(σ(t)) is almost never a Markov chain. A notable
exception is the (non-random) Curie-Weiss model (see the next section). There are
special situations in which it is possible to introduce a larger number of macro-
scopic order parameters in such a way that the corresponding induced process will
be Markovian; in general this will not be possible. However, there is a canonical
construction of a new Markov process on �d that can be expected to be a good
approximation to the induced process.

Let rN(σ, σ ′) be transition rates of a Glauber dynamics reversible with re-

spect to the measure µβ,N , i.e. for σ �= σ ′, rN(σ, σ ′) =
√

µN(σ
′)

µN (σ)
gN(σ, σ

′) where

gN(σ, σ
′) = gN(σ

′, σ ). We denote by RN the law of this Markov chain and by
σ(t) the coordinate variables. Define the induced measure

�β,N = µβ,N ◦m−1
N,d (7.4)
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and the new transition rates for a Markov chain with state space the�N = mN,d(S
N)

(we drop the indices of mN,d in the sequel) by

pN(x, y) ≡ 1

�β,N (x)

∑
σ :m(σ)=x

∑
σ ′:m(σ ′)=y

µβN (σ )rN(σ, σ
′) (7.5)

The following result is a simple adaptation of classical results of Burke and Rosen-
blatt [BR] from 1958:

Theorem 7.1. Let �N be the law of the Markov chain x(t) with state space �N
and transitions rates pN(x, y) given by (7.5). Then Qβ,N is the unique reversible
invariant measure for the chain x(t). Then, the image process m(σ(t)) is Marko-
vian and has law �N if for all σ, σ ′′ such that m(σ) = m(σ ′′), it holds that∑

σ ′:m(σ ′)=m′ r(σ, σ ′) = ∑
σ ′:m(σ ′)=m′ r(σ ′′, σ ′). If the initial measure π0 is such

that for all σ , π0(σ ) > 0, then this condition is also necessary.

Remark. We certainly expect that in many situations the Markov chain x(t) under
the law �N has essentially the same long-time behaviour than the non-Markovian
image process m(σ(t)). However, we have no general results and there are clearly
situations imaginable in which this would not be true. In the the following example
we will apply our general results to a specific model where this issue in particular
can be studied nicely.

7.2. The random field Curie–Weiss model

There are basically two classical models whose Glauber dynamics can be analyzed
completely with our methods: The Hopfield model with finitely many patterns, and
the random field Curie–Weiss model with discrete random field. Since the latter
is much simpler to present, we chose to give a full account of it as a pedagogical
example.

Here S = {−1, 1}, q is the uniform distribution on this set. Its Hamiltonian is

HN [ω](σ ) ≡ −N

(
M1

N(σ)
)2

2
−

N∑
i=1

θi[ω]σi (7.6)

where

MN(σ) ≡ 1

N

N∑
i=1

σi (7.7)

is called the magnetization. Here θi , i ∈ � are i.i.d. random variables. The dynam-
ics of this model has been studied before: dai Pra and den Hollander studied the
short-time dynamics using large deviation results and obtained the analog of the
McKeane-Vlasov equations [dPdH]. Matthieu and Picco, in their important paper
[MP] considered convergence to equilibrium in a particularly simple case where
the random field takes only the two values ±ε, and with further conditions on the
parameters β and h that guarantee the existence of only two local minima. Note that
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even in this case, the spectral approach they used gave only the leading exponential
asymptotics for transition times.

We take up this simple model in the more general situation where the random
field is allowed to take values in an arbitrary finite set. The main idea here is that in
this case we are, as we will see, in the position to construct an image of the Glauber
dynamic in a finite dimensional space that is Markovian, while it will be possible
to compare this to the Markovian dynamics defined on the single parameter MN in
the manner described in the previous section.

We consider the Hamiltonian (7.6) where θi take values in the set

H ≡ {h1, . . . , hK−1, hK} (7.8)

Each realization of the random field {θ [ω]}i∈� induces a random partition of the
set � ≡ {1, . . . , N} into subsets

�k[ω] ≡ {i ∈ � : θi[ω] = hk} (7.9)

We may introduce k order parameters

mk[ω](σ ) ≡ 1

N

∑
i∈�k[ω]

σi (7.10)

We denote bym[ω] theK-dimensional vector (m1[ω], . . . , mK [ω]). Note that these
take values in the set

�N [ω] ≡ ×K
k=1

{
−ρN,k[ω],−ρN,k[ω] + 2

N
, . . . , ρN,k[ω] − 2

N
, ρN,k[ω]

}
(7.11)

where

ρN,k[ω] ≡ |�k[ω]|
N

(7.12)

Note that the random variables ρN,k concentrate exponentially (in N ) around their
mean values �hρN,k = Pr[θi = hk] ≡ pk . Obviouslym1[ω](σ ) = ∑K

k=1 mk[ω](σ )
and m2[ω](σ ) = ∑k

1=1 hkmk(σ ), so that the Hamiltonian can be written as a func-
tion of the variables m[ω](σ ), via

HN [ω](σ ) = −NE(m[ω](σ )) (7.13)

where E : �K → � is the deterministic function

E(x) ≡ 1

2

(
K∑
k=1

xk

)2

+
K∑
k=1

hkxk (7.14)

The point is now that the image of the Glauber dynamics under the family of func-
tions m1 is again Markovian. This follows easily by verifying the criterion given in
Theorem 7.1.

On the other hand, it is easy to compute the equilibrium distribution of the
variables m[ω]. Obviously,
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µβ,N [ω](m[ω](σ ) = x)

≡ �β,N [ω](x) = 1

ZN [ω]
eβNE(x)

K∏
k=1

2−NρN,k[ω]
(

NρN,k[ω]

N(ρN,k[ω] + xk)/2

)
(7.15)

where ZN [ω] is the normalizing partition function. Stirling’s formula yields the
well know asymptotic expansion for the binomial coefficients

2−NρN,k[ω]
(

NρN,k[ω]

N(ρN,k[ω] + xk)/2

)
= e−NρN,k[ω][I (xk/ρN,k[ω])+JN (xk,ρN,k[ω])]

(7.16)
where

I (x) ≡ 1 + x

2
ln(1 + x)+ 1 − x

2
ln(1 − x) (7.17)

is the usual Cramèr entropy and

JN(x, ρ) = − 1

ρN
ln

(
1 − (x/ρ)2

4
+ 2x/ρ

1 − (x/ρ)2

)
+O

(
1

(ρN)2

)
+ 1

N
C(ρN)

(7.18)
with C(ρN) a constant independent of xk (and thus irrelevant) that satisfies
C(ρN) = O (ln(ρN)). Thus

FN [ω](x) ≡ − 1

βN
ln �β,N [ω](x) = F0,N [ω](x)+ F1,N [ω](x)+ CN (7.19)

with

F0,N (x) = −E(x)+ 1

β

K∑
k=1

ρN,kI (xk/ρN,k) (7.20)

CN = β−1 ∑K
k=1 ρN,kC(ρN,kN) is constant and of order lnN/N , and F1,N of or-

der 1/N , uniformly on compact subsets of � ≡ ×K
k=1(−pk, pk). Moreover, FN(x)

converges almost surely to the deterministic function

F0(x) = −E(x)+ 1

β

K∑
k=1

pkI (xk/pk) (7.21)

uniformly on compact subsets of �. The dominant contribution to the finite
volume corrections thus comes from the fluctuation part of the function F0,N ,
F0,N (x)−F0(x). One easily verifies that all conditions imposed on the functionsFN
in Section 1 are verified in this example.
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7.3. The landscape given by F . The deterministic picture

To see how the landscape of the function FN looks like, we begin by studying the
deterministic limiting function F0. Let us first look at the critical points. They are
solutions of the equation ∇F0(x) = 0, which reads explicitly

0 = ∂

∂xk
F0(x) = −

K∑
1=0

x1 − hkxk + 1

β
pkI

′(xk/pk), k = 1, . . . , K (7.22)

or equivalently

xk = pk tanh(β(m+ hk)), k = 1, . . . , K

m =
K∑
k=1

xk (7.23)

These equations have a particularly pleasant structure. Their solutions are generated
by solutions of the transcendental equation

m =
K∑
k=1

pk tanh(β(m+ hk)) = �h tanh β(m+ h) (7.24)

Thus if m(1), . . . , m(r) are the solutions of (7.24), then the full set of solutions of
the equations (7.22) is given by the vectors x(1), . . . , x(r) defined by

x
(1)
k ≡ pk tanh β(m(1) + hk) (7.25)

Next we analyze the structure of the critical points. Using that I ′′(x) = 1
1−x2 , we

see that
∂2

∂xk∂xk′
F0(x) = −1 + δk,k′

βpk
(
1 − x2

k /p
2
k

) (7.26)

Thus at a critical point x(1),

∂2

∂xk∂xk′
F0

(
x(1)

)
= −1 + δk,k′λk(m

(1)) (7.27)

where

λk(m) ≡ 1

βpk(1 − tanh2(β(m+ hk)))
(7.28)

Lemma 7.2. The Hessian of F0 at (x(1)) has at most one negative eigenvalue. A
negative eigenvalue exists if and only if

β�h

(
1 − tanh2(β(x(1) + h))

)
> 1 (7.29)
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Proof. Consider any matrix of the form Akk′ = −1 + δk,k′λk with λk ≥ 0. To see
this, let {ζ1, . . . , ζL} denote the set of distinct values that are taken by λ1, . . . , λK .
Put k1 = {k : λk = ζ1} and denote by |κ1| the cardinalities of these sets. Now the
eigenvalue equations read

−
(

K∑
k=1

uk

)
+ (λk − γ )uk = 0 (7.30)

Let ζ1 be such that |κ1| > 1, if such a ζ1 exists. Then we will construct |κ1| − 1
orthogonal solutions to (7.30) with eigenvalue γ = ζ1. Namely, we set uk = 0
for all k �∈ κ1. The remaining components must satisfy

∑
k∈κ1 uk = 0. But ob-

viously, this equation has |κ1| − 1 orthonormal solutions. Doing this for every ζ1,
we construct altogether K − L eigenvectors corresponding to the eigenvalues ζ1.
Note that for all these solutions,

∑
k uk = 0. We are left with finding the remaining

L eigenfunctions. Now take γ �∈ {ζ1, . . . , ζL}. Then (7.30) can be rewritten as

uk =
∑K

k=1 uk

λk − γ
(7.31)

Summing equation (7.31) over k, we get

K∑
k=1

uk =
K∑
k=1

uk

K∑
k=1

1

λk − γ
(7.32)

Since we have already exhausted the solutions with
∑K

k=1 uk = 0, we get for the
remaining ones the condition

1 =
K∑
k=1

1

λk − γ
=

L∑
1=1

|κ1|
ζk − γ

(7.33)

Inspecting the right-hand side of (7.33) one sees immediately that this equation has
precisely L solutions γi that satisfy

γ1 < ζ1 < γ2 < ζ2 < γ3 < . . . < γL < ζL (7.34)

of which at most γ1 can be negative. Moreover, a negative solution γ implies that

1 =
L∑
1=1

|κ1|
λk − γ

<

L∑
1=1

|κ1|
λk

=
K∑
k=1

1

λk
(7.35)

which upon inserting the specific form of λκ yields (7.29). On the other hand, if∑K
k=1

1
λk

> 1, then by monotonicity there exists a negative solution to (7.33). This
proves the lemma. ��

The following general features are now easily verified due to the fact that the
analysis of the critical points is reduced to equations of one single variable. The
following facts hold:
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(i) For any distribution of the field, there exists βc such that: If β < βc, there
exists a single critical point and F0 is strictly convex. If β > βc, there exist
at least 3 critical points, the first and the last of which (according to the value
of m) are local minima, and each minimum is followed by a saddle with one
negative eigenvalue, and vice versa, with possibly intermediate saddles with
one zero eigenvalue interspersed.

(ii) Assume β > βc. Then each pair of consecutive critical points of F0 can be
joined by a unique integral curve of the the vector field ∇F0(x).

The exact picture of the landscape depends of course on the particular distribu-
tion of the magnetic field chosen. In particular, the exact number of critical points,
and in particular of minima, depends on the distribution (and on the temperature).
The reader is invited to use e.g. mathematica and produce diverse pictures for her
favorite choices. We see that a major effect of the disorder enters into the form of
the deterministic function F0(x). Only a secondary rôle is played by the remnant
disorder whose effect will be most notable in symmetric situations where it can
break symmetries present on the level of F0.

7.4. Fluctuations

In the present simple situation it turns out that the fluctuations of the function F0,N
can also be controlled in a precise way. We will show the following result.

Proposition 7.3. Let gk, k = 1, . . . , K be a family of independent Gaussian
random variables with mean zero and variance pk(1 − pk). Then the function√
N [FN(x) − F0(x)] converges in distribution, uniformly on compact subsets of

� to the random function

1

β

K∑
k=1

gk

(
xk

p2
k

I ′(xk/pk)− I (xk/pk)

)
(7.36)

Proof. Since
√
N [FN −F0,N ] converges to zero uniformly, it is enough to consider

F0,N (x)− F0(x) = 1

β

∑
k

(
ρN,kI (xk/ρN,k)− pkI (xk/pk)

)
= 1

β

∑
k

(
(ρN,k − pk)I (xk/pk)+ pk(I (xk/ρN,k)− I (xk/pk))

+(ρN,k − pk)(I (xk/ρN,k)− I (xk/pk))
)

(7.37)

Now in the interior of � we may develop

I (xk/ρN,k)− I (xk/pk) = (ρN,k − pk)
1

p2
k

I ′(xk/pk)+O((ρN,k − pk)
2) (7.38)

Now the ρN,k are actually sums of independent Bernoulli random variables with
mean pk , namely ρN,k = 1

N

∑N
i=1 δhk,θi . Thus, by the exponential Chebyshev

inequality,
Pr
[|ρN,k − pk| > ε

] ≤ 2 exp
(−NIpk (ε)

)
(7.39)
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where Ip(ε) ≥ 0 is a strictly convex function that takes its minimum value 0 at
ε = 0. Thus with probability tending to one rapidly, we have that e.g. (ρN,k−pk)

2 ≤
N−3/4 which allows us to neglect all second order remainders. Finally, by the cen-
tral limit theorem the family of random variables

√
N(ρN,k − pk) converges to a

family of independent Gaussian random variables with variances pk(1 −pk). This
yields the proposition. ��

7.5. Relation to a one-dimensional problem

We note that the structure of the landscape in this case is quasi one-dimension-
al. This is no coincidence. In fact, it is governed by the rate function of the total
magnetization, − 1

βN
µβ,N(m

1(σ ) = m) which to leading order is computed, using
standard techniques, as

G0,N (m) = −m2

2
+ sup

t∈�

(
mt − 1

β

K∑
k=1

ρN,k ln cosh β(hk + t)

)
(7.40)

The most important facts for us are collected in the following lemma.

Lemma 7.4. The functions G0,N and F0,N are related in the following ways.

(i) For any m ∈ [−1, 1],

G0,N (m) = inf
x∈�K :

∑
k xk=m

F0,N (x) (7.41)

(ii) If x∗ is a critical point of F0,N , then m∗ ≡ ∑
k x

∗
k is a critical point of G0,N .

(iii) If m∗ is a critical point of G0,N , then x∗(m∗), with components x∗
k (m) ≡

ρN,k tanh β(m∗ + hk) is a critical point of F0,N .
(iv) At any critical point m∗, G0,N (m

∗) = F0,N (x
∗(m∗)).

The prove of this lemma is based on elementary analysis and will be left to the
reader.

The point we want to make here is that while the dynamics induced by the
Glauber dynamics on the total magnetization is not Markovian, if we define a
Markov chain m(t) that is reversible with respect to the distribution of the magne-
tization in the spirit of Section 7 and compare its behaviour to that of the Markov
chain m(t) = m(σ(t)), the preceding result assures that their long-time dynamics
are identical since all that matters are the precise values of the respective free-
energies at its critical points, and these coincide according to the preceding lem-
ma (up to terms of order 1/N , and the asymptotics given in (7.17), (7.18), up to
(K-dependent) constants). In other words, the two dynamics, when observed on
the set of minima of their respective free energies, are identical on the level of our
precision.
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oppements asymptotiques”, Bull. Sc. Math., 109, 253–308 (1985)

[BEGK] Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: “Metastability and low lying
spectra in reversible Markov chains”, WIAS-preprint 601 (2000)

[BG1] Bovier, A., Gayrard, V.: “Hopfield models as generalized random mean field mod-
els”, in “Mathematical aspects of spin glasses and neural networks”, A. Bovier
and P. Picco (eds.), Progress in Probability 41, (Birkhäuser, Boston 1998)
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