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The concepts of triangle orthocenters in Minkowski planes

Gunter Weiss

Abstract. Let (A2, C) be a Minkowski plane with a centrally symmetric, strictly convex C1-curve C as the unit
circle. Then C induces in (A2, C) a left-orthogonality structure ‘�’ by setting tangents of C (and their parallels)
left-orthogonal to the corresponding radii (and their paralles). If a line g is left-orthogonal to another one h, then
h is right-orthogonal to g, (h � g). Based on those concepts of orthogonality in (A2, C) left- and right-altitudes
of a triangle are defined and one can discuss the existence of left- or right-orthocentric triangles. In general
Minkowski planes these concepts of orthocenters are independent of a third type of a triangle-orthocenter, which
is based on a circle-geometric definition due to Asplund and Grünbaum, c.f. [1].

Further results are the following: In every plane (A2, C) there exist triplets of directions ḡi such that the triangles
T having sides gi parallel to ḡi are left-orthocentric. A plane (A2, C) is euclidean, iff each triangle T is left-
orthocentric. Constructing the altitudes of an altitude-triangle of a non (left- or right-)-orthocentric triangle T starts
iteration processes with attractors (resp. repulsors) which can be called ‘limit orthocenters’ to the given triangle T .

Mathematics Subject Classification (2000): 51Fxx, 51M04, 52A10.
Key words: Minkowski plane, left and right-orthogonality, orthocenter of a triangle.

Introduction and basic tools

a) While in the elementary euclidean plane every triangle has concurrent altitudes, this
need not be true in other two-dimensional manifolds with respect to a given orthogonality
structure. Nontrivial examples of such manifolds are for example Minkowski planes. The
metric in such a real affine plane is based on a centric symmetric convex curve C as the unit
circle of that Minkowski plane (A2, C). Generalising euclidean orthogonality to such a
plane there seem to be several possibilities to define a ‘normal direction’ to a given line g:
We may start with the perpendicular bisector to a segment of g, which, in general, is curved
(or even a domain) in (A2, C). Segments in g differing in length lead to similar bisector
curves b. Thus it would not make sense to use bisector curves b by themselves as ‘normals’
of g. Obviously, any two bisector curves b1, b2 intersect g in points M1, M2 such that their
tangents t1, t2 in Mi are parallel. So we may use the direction of t1 as the ‘left-normal’
direction to g. As t1 automatically touches a ‘Minkowski circle’, (which is centered in a point
of g), we will define ‘left-orthogonality’ in (A2, C) as follows (see e.g. [10]): The tangent h

of C is left-orthogonal to the corresponding radius of C. Based on this orthogonality concept
we will study triangle altitudes. In general the altitudes of a triangle in (A2, C) will not be
concurrent, such that the triangle is not orthocentric. So there arise the following questions:

145



146 Gunter Weiss (Dresden) J. Geom.

To a given arbitrary Minkowski plane find (all) triangles with concurrent
altitudes.

Characterize Minkowski planes in which every triangle has concurrent
altitudes.

If an arbitrary triangle in a Minkowski plane possesses a triangle of altitudes,
one may construct the altitudes of that triangle again. When is this iterative
process of constructing altitude-triangles of altitude-triangles convergent?

In the following we will consider Minkowski planes (A2, C) with a centrally symmetric,
strictly convex and smooth curve C as the unit circle in the (real) affine plane A2. Then
the parallels h to a tangent h of C are called left-orthogonal1 to the parallels g to the
corresponding radius ḡ, (h � g), c.f [10, p. 77], and the set of directions {g} is bijective
to the set of corresponding left-normals {h}. If h � g, then we call g right orthogonal to
h, (g � h). From strict convexity of C follows uniqueness of the right-orthogonal direction
‖g to each direction ‖h; smoothness of C causes uniqueness of the l-orthogonal direction
‖h to each direction ‖g.

If (and only if) C is a Radon curve, (c.f. [9], [6]), then the l-orthogonality structure of
(A2, C) is symmetric. If (and only if) C is an ellipse, the Minkowski plane (A2, C) is
a euclidean plane and orthogonal lines are parallel to pairs of conjugate diameters of C,
(c.f. e.g. [8]).

b) The problem of characterizing Minkowski planes, where all triangles are orthocentric, can
be solved mainly by geometric reasoning using well-known theorems of planar projective
geometry. We will present these ‘tools’ in the following; (for references see e.g. [3],
[5], [8]):

By adding an ideal line u to the (given) real affine plane A2 this plane becomes the ‘projective
extended affine plane’ P2 := A2 ∪ u, (A2 ∩ u = ∅), which is a real projective plane.

A linear bijection π , (i.e. a projectivity), in the point set of a real projective line g ∈ P2 is
an ‘involutoric projectivity’ (shortly called an ‘involution’), (π2 = idg), if there exists one
pair of mutually assigned points.

If π is an involutoric projectivity on g, then every pair of corresponding points P, P ′ := P π

is interchangable. Therewith an involution π is well defined already by two permissible pairs
(A, A′ = Aπ), (B, B ′ = Bπ).

1We will further on abbreviate the prefixes ‘left-’ resp ‘right-’ by ‘l-’ resp. ‘r-’.
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Each pair of corresponding points (A, A′) devides g into two projectively connected
segments. The involutoric projectivity π is called an elliptic involution, if there exist two
‘separating pairs’ (A, A′), (B, B ′); that means that each segment of g with respect to
(A, A′) contains one of the points B, B ′. There are only separating pairs in an elliptic
involution and no pair (F, F ′) with F = F ′.

If the pairs of corresponding points do not separate each other, π is called a hyperbolic
involution and there exist two fixed points Fi = F ′

i .

c) We continue the listing of projective geometric facts with the following ‘quadrangle
properties’2:

(QP1): Let Q ⊂ P2 be a complete quadrangle consisting of four points Pi ∈ P2

in general position and their three pairs of connecting lines PiPj , PkPl , (i 
=
j 
= k 
= l). Every line g, which contains none of the points Pi , intersects
the three pairs of sides of Q in pairs of an involutoric projectivity3 δ; (c.f.
Figure 1).
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Another quadrangle property, which is somehow reverse to (QP1), is

(QP2): Let δ be an involutoric projectivity on a line g and let {P1, P2, P3} be
a triangle with Pi /∈ g. Then {P1, P2, P3} can be completed by a uniquely
determined fourth point P4 to a quadrangle Q such that Q induces the given
involution δ in g.

2The following theorems are valid in projective planes over any commutative field K with char K 
= 2. With
respect to the real geometry of Minkowski planes we restrict ourselves to real projective planes.

3The points Pi ∈ Q can be interpreted as the fundamental points of a pencil PQ of conics. Within this pencil
the three pairs of sides of Q represent the singular curves of 2nd order. Let g be a line and δ the involutoric
projectivity in g induced by Q according to (QP1); then corresponding points X, Xδ ∈ g belong to a conic of
PQ. Thus δ is induced by the pencil PQ of the conics through {P1, . . . , P4} and is called “ Desargues involution”
in g with respect to PQ. If δ is hyperbolic, there are two conics in PQ touching g in the fixed points of δ, c.f. [3].
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REMARK. Putting g = u the ideal line of the projectively extended affine plane P2 one
deduces from (QP1) immediately that the ideal points 1, 2, 3 of the sides of a triangle
{P1, P2, P3} and those 1′, 2′, 3′ of vertex transversals through a fourth point P4 fit into one
involutoric projectivity δ in u, c.f. [7] and Figure 2.

From (QP2) it follows that, to a given triangle {P1, P2, P3} and an involution δ in the (ideal)
line u, the vertex transversals Pi ∨ i′, (i := PjPk ∩ u, i′ := iδ, i, j, k ∈ {1, 2, 3}) are
concurrent with a fourth pointP4. Obviously each triplet {Pi, Pj , Pk}of {P1, . . . , P4}, via δ,
leads to the remaining fourth point Pl . This is, in the sense of Giering [7], the projective
geometric explanation for the fact that, (in euclidean planes), a (general) triangle and its
orthocenter represent four points, each being the orthocenter of the remaining three.

d) Let P2 := A2 ∪ u be a projective extended affine plane with a given elliptic involutoric
projectivity δ in u. With respect to δ as the ‘absolute involution’, A2 becomes a euclidean
plane. Orthogonal lines have δ-conjugate ideal points. Ellipses, whereby all pairs of con-
jugate diameters have δ-conjugate ideal points, are ‘circles’. Transforming A2 by a certain
affinity α will show such an ellipse C as an ordinary circle and (A2, u, δ′ := α−1δα) becomes
the usual projective extended, elementary geometric plane. So it is possible to visualize an
ellipse by an ordinary circle without loss of generality.

Minkowski planes containing only orthocentric triangles

We will show that if (and only if) every triangle of a Minkowski plane is l-orthocentric,
then this plane must be euclidean:

THEOREM 1. Assuming that (A2, C) is a Minkowski plane with a strictly convex, centrally
symmetric smooth gauge curve C and that every triangle in (A2, C) has concurrent l-altitudes
implies (A2, C) to be a euclidean plane with an ellipse C as unit circle.

Proof. a) As a first step we prove that there exist triangles T ⊂ (A2, C) such that they
together with their l-orthocenter L form a quadrangle in A2.

Because of strict convexity of C, a triangle T cannot have parallel l-altitudes, as there is a
bijection of diameter directions of C and corresponding l-orthogonal directions. Thus the
assumed l-orthocenter L neither can be an ideal point nor a point on the sides of T different
from a vertex.

Furthermore, it cannot be true for all triangles T that the l-orthocenter L, (which we assumed
to exist), coincides with a vertex. Triangles possessing that property, are called l-right
triangles.
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Let T = (P1, P2, P3) be l-right with l-orthocenter L = P3 and let us choose a point
P̄3 ∈ P1P3 as vertex of a new triangle T̄ := (P1, P2, P̄3), only excluding P1, P3 and the
intersection Q2 of P1P3 with the l-normal to P1P2 through P2; c.f. Figure 3. Therewith
follows that the l-altitudes a1 � P2P3 and ā1 � P2P̄3, (ā1 
= P1P2), of T resp. T̄ must
differ, while a2 still equals ā2. So the l-orthocenter L̄ of T̄ will neither coincide with a
vertex of T̄ nor with any other point of a side of T̄ , which proves the existence of non l-right
triangles.

b) Let T = (P1, P2, P3) be a non l-right triangle with l-orthocenter L. Then, by (QP1),
the quadrangle (P1, P2, P3, L) induces a non-degenerated, involutoric projectivity δ in the
ideal line u of the projective extension P2 of (A2, C). As δ is already determined by two
pairs of corresponding ideal points i := PjPk ∩ u and i′ = PiL =: iδ, (i, j, k = 1, 2, 3),
every l-orthocentric triangle T̄ = (P̄1, P̄2, P̄3) with two sides parallel to sides of T must
lead to the same Desargues involution δ in u, c.f. Figure 4.

Thus δ is defined as well by the pairs (2, 2′), (3, 3′) as by (2, 2′), (1̄, 1̄′). Let now T̃ be
another arbitrarily given (l-orthocentric) triangle; then, by (QP1) and by replacing each
side of triangle T one by one with sides parallel to the sides of T̃ , it follows that every non
l-right triangle T̃ , together with its l-orthocenter L̃ necessarily induces the same Desargues
involution δ in u as T ∪ {L} does. Obviously, if T̃ is l-right, its l-altitudes and sides will
suit to δ, too.

c) From b) follows that the l-orthogonality structure � in (A2, C), defined by C, is symmetric
and it induces in u a regular involution δ, which is either elliptic or hyperbolic. Therewith
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C is a Radon curve, (c.f. [9], [6]), which in addition integrates the vector field of l-normal
vectors along the diameters of C. Let D(δ) be a coordinate matrix of δ, then C solves the
differential equation

ẋ = D(δ) · x.

The solutions of that differential equation are homothetic ellipses in a first case or homothetic
(conjugate) hyperbolas in a second one, c.f. Figure 5. The latter case contradicts to the
restriction that C is convex.
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With respect to δ as the absolute involution in u the plane (A2, C) is a euclidean plane with
the unit circle C. As in euclidean planes orthogonality is symmetric and every triangle is
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orthocentric, we conclude that euclidean planes are the only Minkowski planes, where all
triangles are l-orthocentric. �

Orthocentric triangles in general Minkowski planes

Let (A2, C) be a non-euclidean Minkowski plane, then (c.f. [10, p. 79]) C possesses at
least one pair of mutually left and right-orthogonal radii x1, x2. By applying a certain affine
transformation we can visualize {O, A1 := x1, A2 := x2} as cartesian basis, such that C
touches a (euclidean) circle Ce at ±xi , c.f. Figure 6.
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Because of C 
= Ce there must exist a point y ∈ C such that its euclidean norm is less or
greater than 1. Applying the mean value theorem to that ‘quarter arc’ of C containing y,
it follows that there must exist a point E := x3 ∈ C with extremal euclidean norm. So E

and the tangent vector g3 in E suit into the orthogonality structure of the euclidean plane
(A2, Ce), too. Using the same argument for another arc of C containing neither y nor −y
will lead to (at least) a fourth euclidean orthogonal pair (x4, g4).

Now we have to distinguish two cases:

a) x4 equals the Minkowski unit vector g3 or −g3.
Then any triangle with sides parallel to three of the four directions xi is a (euclidean)
right triangle and thus l-orthocentric in a trivial manner.
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b) x4 is not equal to the Minkowski unit vector g3 or −g3.
Then, besides l-right triangles with sides parallel to x1, x2, x3 or x1, x2, x4, there exist
l-orthocentric non-right triangles with sides parallel to x1, x3, x4 resp. x2, x3, x4.

In the following we will show that in the ‘neighbourhood’ of each of the above mentioned
l-orthocentric triangles there is a dense set of l-orthocentric triangles:

Let us choose two points B1 := y1, B2 := y2 ∈ C within an ε-neighbourhood of A1 resp.
A2 such that the unit vectors yi and their l-orthogonal unit vectors gi form two different pairs
(y1, g1), (y2, g2) of a well defined involution π(y1, y2) =: π12, c.f. Figure 7. Obviously
π12 is always elliptic: From strict convexity of C it follows that the pairs (y1, g1), (y2, g2)

must separate each other. Using π12 as involution of conjugate diameters of a pencil of
homothetic ellipses one can find two homothetic ellipses C1, C2 concentric with C and
touching C in the points Bi . Thereby C will exceed the ringlike domain between C1 and
C2, if we choose Bi suitably ‘close’ to Ai . So there exists at least one ‘extremal’ ellipse
homothetic to C1, which touches C in an extremal point E 
= B1, B2 (c.f. Figure 7). As the
pair of l-orthogonal directions (OE, gE) suits into π12, too, any triangle with sides parallel
to OB1, OB2, OE is l-orthocentric.
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Obviously it will not happen for all possibly chosen points Bi that OE �� OBi, (i = 1 or
2 and with �� meaning ‘� or �’): As Bi can be chosen within ε-neighbourhoods of Ai not
containing E and because of OA1 �� OA2 it follows that OE not�� OBi, (i = 1 or 2).
Therewith we have proved the following
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THEOREM 2. In any (non-euclidean) Minkowski plane with strictly convex smooth gauge
circle C there exists a (dense) set of triplets of directions so that each triangle with sides
parallel to such a triplet of directions is non-trivially l-orthocentric.

Series of altitude triangles to a given triangle

Let T be a triangle which is not l-orthocentric. Then its l- resp. r-altitudes form a triangle
T ′. Let T ′′ be the triangle of l- resp. r-altitudes of T ′, and so on. So the question arises
whether these iteration processes converge to limit orthocenters or not.

We may consider the series of purely l-altitude triangles or of purely r-altitude trian-
gles as well as the series of mutually l- and r-altitudes, starting either with l-altitudes
or with r-altitudes. In the following we will refer to (eventually existing) limit ortho-
centers as Oll, Orr , Olr and Orl . Figure 8 shows a triangle T with four limit orthocenters4.
Oll, Orr , Olr , Orl and its ‘beer mat point’ B.

B

Orl

Oll Olr

Or

Figure 8

Obviously mutual application of l- and r-orthogonality leads to two sets of perspective
similar altitude triangles. Thus Olr and Orl do exist in the projective extended Minkowski
plane; they are the common centers of similarities (resp. translations), c.f. Figure 9, and
they may occur as attractors as well as repulsors. In the following we will discuss the
existence of the remaining limit orthocenters Oll, Orr .

As a first step we ask for the limit of the direction of consecutive l- (r-) -orthogonals to an
arbitrarily given direction OB1. To avoid tedious formulations we will identify opposite

4The result is based on numerical treatment; the gauge circle C consists of a sequel of quarters of euclidean
circles and ellipses. As T is inscribed to C such that one side is a diameter of C, it follows that the ‘beer mat point’
B, (i.e. Asplund-Grünbaum’s triangle orthocenter, c.f. [1]), coincides with the opposite vertex to that side. So
in the sense of [1] T might be called Thales-triangle, as Figure 8 shows a generalized version of the elementary
geometric theorem of Thales.
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points of C and to ensure continuity in changes of directions we now have to assume that C
is a C1-curve. Then the following proposition holds:

PROPOSITION 1. Let the gauge curve C of a Minkowski plane be a centrally
symmetric, strictly convex C1-curve, and let {Bi} be a series of points of C,
starting with an arbitrarily given point B1 and with Bn+1 such that OBn+1 �
(�)OBn, (n = 1, 2, ...). Then

lim
n→∞(Bn, Bn+1) = (A, Ā) with OA �� OĀ.

The pair (OA, OĀ) represents conjugate semidiameters of C.

As C possesses at least one pair of conjugate semidiameters, c.f. [10, p.79], Proposition 1
is obvious.

REMARK 1. Recieving (A, Ā) as the attractor pair of a limit process based on l-orthogonality
implies that (A, Ā) is repulsive with respect to r-orthogonality, c.f. Figure 10.

REMARK 2. Let C be a Radon curve, (c.f. [10, p.127] and [9]), what is equivalent to coin-
ciding l- and r-orthogonality relations. In other words, to any point B1 the above mentioned
iteration process delivers (B1, B2) as fixed pair. If C is a Radon curve different from an
ellipse, there exist triangles T , which are not orthocentric. The four limit orthocenters of
T coincide, but they are different from the beer mat point B of T .
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REMARK 3. Let C be a C1 gauge curve free from corresponding pairs of Radon-arcs, so
there exists no continuous set of directions with coinciding l- and r-orthogonal directions.
Then, by Proposition 1, it is possible to construct all pairs of ‘conjugate semidiameters’
(OAi, OĀi) of C, (i ∈ I ⊂ IN).

Let T be a triangle with sides parallel to OBj , (j = 1, 2, 3) and let us consider the sequel
of consecutive left-altitude triangles. If the limit pairs (OAj , OĀj ) to the three directions
OBj are different, then there will occur a limit orthocenter Oll , c.f. Figure 11. If all three
directions lead to the same limit pair (OA, OĀ), T and its l-altitude triangle T ′ tend to
triplets of parallel or coinciding lines, and so a limit orthocenter Oll of T will not exist,
c.f. Figure 11.
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Final remark and acknowledgement

Theorem 1 gives one of many characterizations of euclidean planes (among Minkowski
planes). It turns out that a proof of this theorem using facts from classical projective geometry
can be carried out purely ‘synthetically’. It seems promising to use projective geometric
tools also to study higher dimensional analogues of Theorem 1.

The author wants to express sincere thanks to K. Nestler (Dresden) for stimulating and
fruitful comments.
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