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Abstract. Oxidative stress is a host defense mechanism
whose involvement in maintaining homeostasis and/or
inducing disease has been widely investigated over the
past decade. Various reactive oxygen species (ROS) have
been defined and the enzymes involved in generating
and/or eliminating them have been widely studied. In
this review we briefly discuss general mechanisms of ox-
idative stress and the oxidative stress response of the
host. We focus primarily on hydrogen peroxide and sum-
marize the systems involved in its formation and elimi-
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nation. We describe mechanisms whereby hydrogen per-
oxide and other ROS can modify protein conformation
and, thus, alter protein function, and describe a group of
transcription factors whose biological activity is modu-
lated by the redox state of cells. These basic aspects of
oxidative stress are followed by a discussion of mecha-
nisms whereby hydrogen peroxide and other ROS can
modulate some physiological and pathological pro-
cesses, with special emphasis on wound healing and
scarring of the liver.
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Introduction

In aerobic organisms, O2 is the final electron acceptor for
mitochondrial cytochrome oxidase in a complex chain of
events leading to the formation of high-energy phosphates
required for multiple cellular functions. During this
process, O2 undergoes a four-electron reduction to form
H2O. A side-product of mitochondrial oxidative phospho-
rylation is the accumulation of reactive oxygen species
(ROS), some of which, such as hydroxyl radicals (•OH),
are very unstable, highly reactive, induce membrane lipid
peroxidation, generate multiple reactive aldehydes and
cause cell death. Others, such as H2O2, are more stable,
less reactive and may act as second intracellular messen-
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gers (fig. 1). However, they can alter protein conformation
after oxidation of cysteine and methionine residues.
Moreover, in the presence of Fe2+ or Cu+, via the so-called
Fenton reaction, H2O2 is converted to •OH. However, al-
though the iron-dependent formation of •OH occurs in
vivo, the physiological significance of the copper-depen-
dent formation of •OH is still debated. The amount of ROS
formed is not negligible because of the high amount of O2

consumed by aerobic organisms. Indeed, approximately
2–4% of oxygen consumed in mitochondria is converted
to the superoxide ion by iron-sulfur proteins. Thus, to
maintain homeostasis, accumulation of excess ROS is pre-
vented by multiple enzymatic and non-enzymatic systems
that receive the generic name of ‘host antioxidant defense
systems.’When they fail, either because of excess produc-
tion of ROS and/or because of a relative or absolute de-
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crease in the capacity of the cells to eliminate them, the al-
teration in homeostasis results in oxidative stress. In many
instances, as occurs during wound healing and/or organ
scar formation, ROS are key elements of the healing re-
sponse leading to excess collagen accumulation. However,
while this is a desirable event during skin wound healing,
excess collagen deposition that occurs in parenchymatous
organs results in organ fibrosis, which in turn may lead to
organ failure. Thus, a better understanding of the molecu-
lar events whereby oxidative stress induces cell death, or-
gan scarring and/or accumulation of undegraded proteins
in cells could result in a more rational therapeutic ap-
proach to disease.
The role of oxidative stress in general and of H2O2 in par-
ticular in physiological and pathological conditions has
been established using different animal models and a
large variety of cultured cells. Thus, although we have
taken the simplistic approach of unifying molecular
events described in the literature, these may not be iden-
tical in all cell types and/or animal species. Strong evi-
dence supports the notion that distinct cell types within a
single animal species, as well as similar cell types derived
from different animal species, may express significant
differences in their response to oxidative stress. Accord-
ingly, to establish the physiological relevance of an ox-
idative stress event, a causal relationship needs to be es-
tablished. During the past few years, the field of oxidative

stress has expanded considerably and multiple reviews
implicating ROS in organ pathology have been published
[1–21]. To avoid an unnecessarily long list of older refer-
ences, when possible, the above-mentioned review arti-
cles will be cited.

Cellular sources and general properties of H2O2

H2O2 is a bacteriostatic agent widely used in dental and
medical practices and is a key element in the defense
mechanisms of inflammatory cells. Many cells produce it
and its presence can be detected in urine, blood and ex-
haled air. Consequently, measurements of H2O2 in body
fluids and/or exhaled air could be used to measure oxida-
tive stress status during physiological and pathological
conditions and/or to monitor the response to treatment
[22–26]. H2O2 is a small and relatively stable molecule
that diffuses readily and thus, like other small molecules,
such as Ca2+, diacylglycerol or cAMP, has the potential to
act as a second messenger and modulate gene expression. 
H2O2 is generated by two general mechanisms: (i) by en-
zymatic or chemical dismutation of superoxide ions and
(ii) by the action of certain oxidases via a two-electron re-
duction of oxygen. The superoxide ion is produced in
many subcellular compartments by multiple enzymatic
mechanisms, most of them belonging to the following

Figure 1. Schematic representation of the multiple actions of H2O2. H2O2 is involved in multiple physiological and pathological processes
via its capacity to regulate the expression of several protein kinases and phosphatases. Through these mechanisms and also via the oxida-
tion of sensitive amino acid residues in proteins, it regulates protein gene expression and affects protein half-life. This latter effect results
from the induced changes in protein conformation that trigger proteosomal degradation. These are by no means the only mechanisms
whereby H2O2 modifies gene expression, nor does the figure contain an exhaustive list of pathological conditions affected and/or induced
by this ROS. Nonetheless, it provides an overview of an interesting and important host defense mechanism that can result in cell damage,
cell death and/or scarring of tissues.



categories: oxidases, peroxidases, mono- and dioxyge-
nases as well as cytochrome P450s [4]. These include,
among others, xanthine oxidase [27], nitrous acid syn-
thase [28], NAD(P)H-dependent oxidoreductases [29],
cyclooxygenases and lipooxygenases [30] and aldehyde
oxidase [31]. The enzymes that generate H2O2 directly in-
clude the following peroxisomal oxidases: glycolate, D-
amino, ureate, L-a-hydroxyacid and fatty-acyl-CoA oxi-
dases. In addition, H2O2 is generated by monoamino oxi-
dase [32–35] and lysyl oxidase [36], enzymes localized
to the mitochondria and the extracellular space, respec-
tively.
Because of the different mechanisms involved in H2O2

formation as well as the implications in disease states, the
formation of ROS could be classified into two general
categories: those derived from mitochondrial oxygen
consumption and those that are mitochondrial indepen-
dent. The efficiency of oxygen consumption by the mito-
chondrial respiratory chain is highly dependent on its
coupling state and, thus, changes in O2 consumption can
result in alterations in H2O2 formation. Moreover, cellu-
lar injury leading to Ca2+ accumulation will accelerate the
electron transfer process and, thus, increase ROS forma-
tion. Similarly, chemicals that alter coupling of the respi-
ratory chain, such as antimycin, or those that change the
redox state of the cell, such as alcohol or its metabolite
acetaldehyde, could result in excess formation of ROS
[11, 37–39].

NADPH oxidase
Of all the systems involved in H2O2 formation, the best
characterized is that of the NADPH oxidase localized to
the plasma membranes of phagocytic and non-phagocytic
cells [40–46]. It is a multimeric complex made of several
subunits localized to the plasma membrane and cytosol.
The plasma membrane component of this enzymatic
complex is cytochrome b(559), a heterodimer made of
gp91phox and p22phox. The redox activity of the NADPH
oxidase complex is located in the gp91phox subunit. Acti-
vation of NADPH oxidase is associated with a rapid de-
polarization of membrane potential due to electron pas-
sage sing through the enzyme complex from intracellular
NADPH to extracellular molecular oxygen. Interestingly,
data from several laboratories suggest that this enzyme
may play a role in oxygen-sensing processes underlying
many biological processes including hypoxic pulmonary
vasoconstriction and smooth muscle cell proliferation
[9]. However, this complex is not functional unless there
is recruitment of the cytosolic proteins p40phox, p47phox and
p67phox, the extrinsic factor Rac2 and members of the Ras
superfamily of small GTP-binding proteins. Although the
existence of the complete NADPH oxidase complex has
not been demonstrated in non-phagocytic cells, some
components of the system are present [40–46].

Superoxide dismutases (EC 1.15.1.1)
Superoxide dismutase (SOD) catalyzes the conversion of
O2

– to H2O2 and O2. Of the three SODs described in eu-
karyotic cells, two are Cu/Zn and one Mn dependent. Of
the two Cu/Zn SODs, one is localized to the cytosol and
nucleus (SOD-1) and the other is an extracellular enzyme
(ECSOD or SOD-3). The Mn-dependent enzyme (SOD-
2) is localized to the inner mitochondrial membrane [30,
47–55].
SOD-1, a homotrimer of 32 kDa, is an important compo-
nent of the oxidative stress defense system. Although its
gene knockout is not lethal, the animals are more suscep-
tible to paraquat toxicity and are infertile [53]. Further-
more, mutations and/or alterations in the expression of
SOD-1 have been suggested to occur in disease states
such as familial amyotrophic lateral sclerosis and Down
syndrome [54, 55].
SOD-2 is a 22-kDa protein whose function is to remove
O2

– generated in mitochondria and prevent damage [30].
The key role of this enzyme in preventing cell injury is
manifested in knockout mice in which newborns die
shortly after birth in metabolic acidosis. These mice also
have severe cardiomyopathy and lipid accumulation in
liver and skeletal muscle [52].
SOD-3 is a tetrameric glycoprotein with an apparent mol-
ecular weight of 135,000. It is localized to the extracellu-
lar space and has binding affinity for heparan and he-
paran sulfate proteoglycans and type I collagen [49]. It is
produced by a large variety of cells, including fibroblasts
and glial cells [48]. Its function in vivo may be to main-
tain the vasodilatory action of nitric oxide (NO) by in-
hibiting the accumulation of O2

–. This species, upon reac-
tion with NO, generates peroxynitrite radicals. Indeed,
SOD-3 activity is decreased in coronary arteries of pa-
tients with atherosclerosis [50]. In the lung, SOD-3 pro-
tects against oxygen toxicity that can induce cell death
[51].

Other oxidases
Lysyl oxidase, the enzyme involved in formation of alde-
hyde precursors of cross-links in collagen and elastin [36,
56–58] is an oxidase that generates H2O2. This enzyme
binds to collagen and elastin in the extracellular space
and is responsible for the oxidation of e-amino groups of
specific lysyl and hydroxylysyl residues to yield aldehy-
des necessary for intra- and inter-chain cross-linking [36,
56–58]. A co-product of this enzymatic reaction is the
formation of H2O2. In addition to its enzymatic activity,
lysyl oxidase induces chemotaxis of vascular smooth
muscle cells, an action prevented by b-aminopropioni-
trile. Oxidation of lysyl and hydroxylysyl residues in col-
lagen and elastin is associated with an increased produc-
tion and accumulation of H2O2 resulting in enhanced
stress fiber formation and focal adhesion assembly [34].

1874 M. Rojkind et al. H2O2 in health and disease



Because H2O2 is a mediator of the fibrogenic actions of
acetaldehyde and transforming growth factor (TGF)-b1
[59, 60], generation of cross-linking precursors could 
further fibrogenesis by generating additional ROS. Thus,
some antifibrogenic actions of b-aminopropionitrile 
and penicillamine could be attributed to their capacity 
to inhibit the enzyme and decrease H2O2 formation
[61–63]. The enzymatic activity of monoamino oxidases
involved in metabolizing multiple amines is also blocked
by b-aminopropionitrile. Tyramine degradation by mono-
amino oxidases (MAOs) in adipocytes generates H2O2

and cAMP and these effects are blocked by pargy-
line [34]. Furthermore, in kidney cells transfected with
MAO-B, tyramine oxidation induced tyrosine phospho-
rylation of Shc, ERK and increased DNA synthesis. Sim-
ilarly, these effects are blocked by pargyline and N-
acetyl-cysteine [35]. Thus, the reduction in collagen pro-
duction by these agents is likely due in part to their
capacity to inhibit several oxidases that generate H2O2

[58, 63].

Antioxidant defense systems involved in detoxifi-
cation of H2O2

There are multiple enzymatic and non-enzymatic sys-
tems involved in the elimination of H2O2. These systems
can be divided into three main groups [for a review, see
ref. 64]: antioxidant enzymes, which include catalase
and glutathione peroxidase (GPX); chain-breaking an-
tioxidants, such as tocopherols and ascorbate, and transi-
tion metal-binding proteins, such as transferin and fer-
ritin. Antioxidant enzymes catalyze the breakdown of
ROS, in the intracellular environment. On the other hand,
chain-breaking antioxidants are powerful electron
donors and react preferentially with free radicals before
important target molecules are damaged. Lastly, transi-
tion metal-binding proteins prevent the interaction of
transition metals, such as iron and copper, with H2O2 and
superoxide, thus inhibiting formation of highly reactive
hydroxyl radicals.

Antioxidant enzymes

Catalase
Catalase (EC 1.11.1.6) is a tetrameric heme-containing en-
zymatic complex of 240 kDa containing identical subunits
of 60 kDa. This enzyme reacts very efficiently with H2O2

to form H2O and molecular oxygen and with H+ donors
(methanol, ethanol, formic acid, phenols) with peroxidase
activity. It is localized mainly in peroxisomes; however,
amounts in other subcellular compartments remain unclear
because peroxisomes are easily ruptured during cell ma-
nipulation procedures [53, 64, 65]. Although catalase is not

essential for survival, it plays an important role in the ac-
quisition of tolerance to oxidative stress [66].

Glutathione peroxidases
GPXs (EC 1.11.1.19) catalyze the oxidation of glu-
tathione at the expense of H2O2 or other hydroxyperox-
ides. GPX shares the substrate H2O2 with catalase; how-
ever, unlike the latter, it can also react effectively with
lipid and other organic hydroxyperoxides. Thus, these en-
zymes play an important role in protecting cells against
lipid peroxidation. Most GPXs require selenium at the ac-
tive site and are considered to be one of the most essen-
tial antioxidant defense mechanisms in mammals [53, 64,
65]. So far, five GPX isoenzymes have been described
and although their expression is ubiquitous, levels of each
isoenzyme vary from tissue to tissue [for a review, see ref.
67]. Most GPXs are localized mainly to the cytosol and
mitochondria, suggesting that these enzymes are the main
scavengers of H2O2 in these subcellular compartments.
An important consideration is that activity of these en-
zymes is dependent on the availability of reduced glu-
tathione, which in turn depends on the activity of glu-
tathione reductase and g-glutamyl cysteine synthase, the
rate-limiting enzyme for reduced glutathione (GSH) syn-
thesis [68]. Consistent with these observations, glu-
tathione reductase has a similar distribution to that of
GPX [69].

Chain-breaking antioxidants
Below, we will summarize some of the properties and ac-
tions of several chain-breaking antioxidants, including
vitamins E and C, carotenoids, flavonoids, thioredoxins
and reduced glutathione. Although their properties will
be described separately, we would like to emphasize that
in vivo, very complex interactions between antioxidants
occur, so that predicting their function in a particular set-
ting is difficult. For example, under certain circum-
stances, antioxidants may exert paradoxical effects and
contribute to oxidative damage, e.g., high concentrations
of vitamin C plus iron can lead to increased oxidative
damage [70, 71]. Similarly, tocopherols in the absence of
aqueous-phase antioxidants can promote low-density
lipoprotein oxidation [72].

Vitamin E
Vitamin E belongs to a family of naturally occurring
lipid-soluble compounds with different antioxidant prop-
erties of which a-tocopherol is the most abundant in 
the human body. It is a physiological membrane-bound
chain-breaking antioxidant that protects cell membrane
lipids from oxidant damage by free radicals. The resulting
tocopheroxyl radical is relatively stable, since the excess
charge associated with the extra electron gets dispersed
across the chromanol ring. This resonance-stabilized rad-
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ical can be subsequently oxidized to form tocopherol
quinone, or react with another a-tocopheroxyl radical to
form stable dimers. Alternatively, a-tocopherol can be re-
generated by reaction with other antioxidants, such as
ascorbate or GSH [64].

Carotenoids
Carotenoids are a group of approximately 600 lipid-solu-
ble antioxidants structurally related to vitamin A. In hu-
man plasma and tissues, a wide range of carotenoids have
been identified including cyclic (e.g., b-carotene, a-
carotene) and acyclic carotenes (e.g., lycopene, phytoene)
together with a number of xanthophylls (e.g., zeaxanthin,
lutein and b-cryptoxanthin), all derived from dietary
sources. These compounds have multiple antioxidant ac-
tivities, including the ability to scavenge singlet oxygen,
an excited state of a partially reduced form of O2, and the
hydroperoxyl radical, which can attack fatty acids, perox-
idizing them directly. Thus, carotenoids play a key role in
preventing lipid peroxidation. Singlet oxygen-scavenging
activity of carotenoids can occur in two ways: (i) by a
physical transfer of the excitation energy from singlet oxy-
gen to the carotenoid with subsequent dissipation of this
energy as heat, without a concomitant loss of the
carotenoid molecule and (ii) by a chemical reaction be-
tween singlet oxygen and carotenoids that results in the ir-
reversible destruction of the antioxidant molecule. How-
ever, with regard to chemical mechanisms whereby
carotenoids scavenge hydroperoxyl radicals, these are still
not well understood. They combine with hydroperoxy rad-
icals to form a large resonance-stabilized radical, a reac-
tion that may take place in different sites of the molecule.
On the other hand, there is also evidence to suggest that
quenching of hydroperoxyl radicals by carotenoids can
lead to the release of carotene epoxides, or other com-
pounds including apocarotenals, apocarotenones and car-
bonyl chain cleavage products. As expected, the ability of
carotenoids to scavenge hydroperoxyl radicals and inhibit
lipid peroxidation is dependent on the length of their con-
jugated double-bond structure [64, 73, 74].

Flavonoids
Flavonoids are a large family of low molecular-weight
polyphenolic compounds found in vascular plants. They
have multiple biological activities including antioxidant,
antiinflammatory, antiviral and anticarcinogenic activi-
ties [for a comprehensive review, see ref. 75]. Due to their
chemical nature, they are powerful chain-breaking an-
tioxidants that can act as potent metal chelators and free
radical scavengers. Kandaswami and Middleton [76]
have reviewed the free radical-scavenging and antioxi-
dant activity of plant flavonoids. ROS that can be scav-
enged or whose formation can be inhibited by flavonoids
include superoxide anion, H2O2, singlet O2 and perhy-
droxy, hydroxyl, alkoxyl and peroxyl radicals.
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Vitamin C
Vitamin C (ascorbate) is a potent water-soluble antioxi-
dant that is essential for many enzymatic activities (e.g.,
prolyl- and lysyl-hydroxylases) and also acts as a free
radical scavenger. This compound scavenges hydroxyl
and peroxyl radicals, O2

– and nitrogen dioxide, as well as
hypochlorous acid, ozone, singlet oxygen, nitrosating
species, nitroxide and peroxynitrite. In addition, it can re-
generate other small-molecule antioxidants, such as a-to-
copherol, glutathione, ureate and b-carotene from their
respective radical species. During its antioxidant action,
ascorbate undergoes a two-electron reduction, first to the
semidehydroascorbyl radical and subsequently to dehy-
droascorbate. The semidehydroascorbyl radical is rela-
tively stable since the excess electron charge disperses
over three oxygen atoms. In contrast, dehydroascorbate is
relatively unstable and hydrolyzes rapidly to diketogu-
lonic acid, which is subsequently degraded into oxalic
acid. On the other hand, dehydroascorbate can also be re-
duced back to ascorbate by enzyme-dependent and -inde-
pendent pathways involving the selenoenzyme thioredox-
inreductase or GSH respectively [64, 70, 71, 77].

Thioredoxins and GSH
Two key antioxidant players involved in intracellular re-
dox regulation are GSH and thioredoxins [64, 78].
Thioredoxins are a family of small proteins (approxi-
mately 12 kDa) that undergo NADPH-dependent reduc-
tion by thioredoxin reductase and in turn reduce oxidized
cysteine groups on proteins. Due to this dithiol to disul-
fide exchange activity, these proteins act as hydrogen
donors and determine the oxidation state of protein thiols.
Thioredoxins have a characteristic conserved catalytic
site containing two cysteine residues, which can be oxi-
dized reversibly to form disulfide bridges. Two main
thioredoxins have been described, thioredoxin-1 and
thioredoxin-2. Thioredoxin-1 has many biological actions
including the supply of reducing equivalents to thiore-
doxin peroxidases and ribonucleotide reductase, the reg-
ulation of transcription factor activity, and the regulation
of enzyme activity by heterodimer formation. Interest-
ingly, thioredoxin-1 stimulates cell growth and inhibits
apoptosis [79].
GSH (L-g-glutamylcysteinylglycine), a cysteine-contain-
ing tripeptide, is the principal thiol responsible for main-
taining intracellular redox status and protecting cells
against oxidative/nitrosative stresses. It is found at rela-
tively high concentrations (1–10 mM) in virtually all
mammalian cells, mainly in the cytoplasm. Close to 15%
of cytosolic GSH is translocated to the mitochondria
through a specific mitochondrial carrier. This tripeptide
has several functions, including providing a storage and
transport form of cysteine, conjugation with xenobiotics
and electrophilic intermediates, maintenance of sulf-
hydryl groups and transfer of reducing equivalents. This



latter function is critical for protecting cells against ROS
toxicity, particularly hydrogen peroxide. GSH is an es-
sential factor for the activity of glutathione peroxidase,
but can also scavenge ROS directly. GSH is oxidized non-
enzymatically by H2O2 or enzymatically by glutathione
peroxidase, and this is reduced back to GSH by the
flavoenzyme glutathione reductase and NADPH [64,
80–82].

Transition metal-binding proteins
Metalloproteins, such as ceruloplasmin, metallothionein,
ferritin, transferrin and lactoferrin are well known for
their critical role in metal homeostasis and function as
storage reservoirs and/or chaperones for essential trace
metals, such as copper and iron. Evidence indicates that
these proteins are induced during the acute-phase re-
sponse and under oxidative stress conditions. These pro-
teins ameliorate the deleterious effects of ROS, by se-
questering the redox-active metals iron and copper, thus
minimizing their capacity to catalyze ROS production via
the Fenton reaction [64]. In addition, ceruloplasmin can
catalyze oxidation of the ferrous ions to the less reactive
ferric state (ferroxidase activity), thus functioning as an
important plasma antioxidant when redox-active iron is
involved in molecular damage [83, 84]. Moreover, this
protein was recently demonstrated to catalytically remove
H2O2 and lipid hydroperoxides at physiologically relevant
concentrations of GSH [85]. Thus, this glutathione per-
oxidase-like activity of ceruloplasmin, together with its
ferroxidase activity could play an important role in pro-
tecting cells against oxidative stress. On the other hand,
there is also evidence suggesting that under certain cir-
cumstances, ceruloplasmin enhances oxidative stress
[86]. H2O2 can release Cu+ from ceruloplasmin in a time-
dependent manner and this is accompanied by formation
of HO– radicals and fragmentation of the protein [87, 88].

Rofe of H2O2 in physiological processes

Formation of ROS is only one part of the equation lead-
ing to oxidative stress damage. Many enzymatic and non-
enzymatic mechanisms are involved in the elimination
and/or neutralization of ROS. Thus, a perfect balance of
systems involved in H2O2 production and elimination is
necessary to maintain homeostasis. This is illustrated by
the fact that small amounts of SOD can protect against ra-
diation injury. However, when SOD is overexpressed,
production of H2O2 or OH radicals can surpass the ca-
pacity of the cell to eliminate them, thus inducing oxida-
tive stress [89]. The role of the delicate balance involved
in maintaining H2O2 levels is further illustrated in the kid-
ney. Oxygen consumption varies greatly in the three re-
gions of the kidney (cortex>medulla>papilla), and as ex-

pected, this gradient correlates with the amount of H2O2

formed. However, because levels of SOD and catalase
correlate with actual levels of H2O2 formed, the steady-
state concentration of this ROS is the same in the three
zones of the kidney. Nonetheless, the papilla is more re-
sistant to reperfusion/ischemia damage than the cortex
and medulla, perhaps due to the higher levels of glu-
tathione peroxidase and a-tocopherol in this region
[90–92].

H2O2 as a second messenger and modulator 
of gene expression
H2O2 is involved in signal transduction pathways and thus
alters the activity of multiple protein kinases and phos-
phatases. It modifies the activity of enzymes and tran-
scription factors oxidizing free SH groups in cysteine
residues to form disulfide bridges and also by oxidizing
methionine residues to sulfoxides and sulfones. More-
over, H2O2 induces formation of NO and this ROS in turn
modifies protein conformation via nitrosylation of spe-
cific tyrosine and cysteine residues [93–95]. Because
NO enhances oxygen consumption in mitochondria and
this in turn is coupled to the rate of H2O2 formation, NO
further enhances formation of this ROS [96]. On the other
hand, NO reacts with O2

– to form peroxynitrate, a highly
reactive species. In addition to its effect on proteins, H2O2

induces DNA damage and can alter binding of transcrip-
tion factors to cis-regulatory elements in gene promoters.
Accordingly, through a complex set of molecular events,
H2O2 activates and/or represses gene expression (see be-
low) [97–99].

Regulation of gene expression by ROS-induced 
alterations in protein conformation
Because proteins contain reactive SH groups, they are
susceptible to chemical modification by H2O2 or any
other ROS [97]. Although disulfide exchange occurs at
alkaline pH values, reactive SH groups can be readily ox-
idized to form disulfide cross-links with other SH groups
of the same protein or they can form mixed disulfides
with the SH group of glutathione. Some of these chemi-
cal modifications of proteins, although important in pre-
venting further damage by ROS, could result in confor-
mational changes of the protein leading to its accumula-
tion in cells and or its rapid degradation by the
proteasome. Indeed, studies performed with ribonuclease
A revealed that exposure to H2O2 induces conformational
rearrangements of the protein and modifications of some
amino acid side chains leading to degradation by the pro-
teasome [98]. Similarly, actin function is impaired by ox-
idative stress. H2O2 oxidizes Cys374 of monomeric actin,
followed by the oxidation of several methionine residues
to methionine sulfoxides. Because these changes occur in

CMLS, Cell. Mol. Life Sci. Vol. 59, 2002 Review Article 1877



domains required for polymerization and binding of spe-
cific proteins, oxidative stress can induce important
changes in actin organization, polymerization and distri-
bution. Thus, many actin-dependent activities could be
altered as well [99].

Redox regulation of transcription factors
Many environmental stimuli including several cytokines
and growth factors, ultraviolet radiation and chemical
agents can generate high levels of ROS which can poten-
tially perturb the normal redox balance and shift cells into
a state of oxidative stress. This response in turn triggers
numerous signaling pathways aimed at restoring cellular
homeostasis and is accompanied by significant alter-
ations in the pattern of gene expression. Although the
molecular events leading to changes in gene expression
are not well understood, many of them are mediated
through functional alterations in the activity of transcrip-
tion factors. Indeed, a large number of redox-responsive
transcription factors have been identified [for reviews see
refs 100–104]. ROS can enhance or repress their biolog-
ical activity either directly, through modifications by ox-
idation on sulfur-containing residues (i.e., cysteine and
methionine), or via other signals, such as alterations in
their state of phosphorylation/dephosphorylation. Indeed,
ROS induce the activation of several signaling pathways
including the ERK, JNK, p38 MAPK and PI3K/Akt cas-
cades, and this effect is cell specific [105–106]. The sen-
sitivity of a given transcription factor to changes in redox
state is variable and will depend on its conformation and
cysteine/methionine content. Most transcription factors
contain strategic cysteine/methionine residues which
play important roles in their ability to bind and/or recog-
nize DNA, interact with other transcription factors and/or
transactivate (or repress) gene expression [for reviews see
refs 100–104]. Below, we will briefly describe some rep-
resentative transcription factors whose biological activity
is modulated by oxidative stress.

Activator protein-1
Activator protein-1 (AP-1) is a member of a family of se-
quence-specific transcription factors that play important
roles in regulating cell proliferation, differentiation,
apoptosis, inflammation and stress response [for reviews,
see refs 102, 107]. This family of proteins controls the ex-
pression of many genes that play key roles during the
wound-healing response, including several matrix metal-
loproteinases [108, 109], type I collagen [110] and TGF-
b1 [111]. AP-1 is a dimeric factor composed of either
homo- or heterodimers between members of the c-Fos (c-
Fos, FosB, Fra-1 and Fra-2) and c-Jun (c-Jun, c-JunB and
c-JunD) families. These subunits contain a basic leucine
zipper (bZIP) domain that plays an important role in
dimerization (leucine zipper) and DNA binding (basic re-

gion), as well as a transcriptional activation domain lo-
cated at the amino terminus [107]. Different AP-1 dimers
regulate different cellular responses, although the mech-
anisms controlling their assembly, targeting and func-
tional specificity remain unclear. The activity of AP-1 in-
creases rapidly in cells exposed to a variety of extracellu-
lar signals that alter the cellular redox status, such as
mitogens, H2O2 and ultraviolet light, through transcrip-
tional, post-transcriptional and/or post-translational
mechanisms [103, 112]. Redox regulation of AP-1 trans-
activation potential can be exerted via two major mecha-
nisms, including changes in AP-1 phosphorylation and
reversible oxidation and reduction of Fos/Jun proteins.
AP-1 remains inactive until c-Jun is phosphorylated on
specific serine residues localized in its activation domain.
Work from several laboratories has demonstrated that
phosphorylation of c-jun can be controlled by redox acti-
vation of ERK/JNK, members of the MAPK family [103,
107, 112]. On the other hand, the activity of AP-1 can be
regulated by reversible oxidation of a conserved cysteine
residue in the DNA-binding domain of c-Fos and c-Jun.
Thus, chemical reduction of either of these transcription
factors has been demonstrated to strongly increase their
DNA-binding activity [103, 112]. Likewise, naturally oc-
curring cysteine to serine mutations on both of them sig-
nificantly enhance their activity [113]. Interestingly, the
DNA-binding activity of AP-1 can be facilitated by Ref-
1 (also known as APE), a redox factor that in co-operation
with thioredoxin regulates the redox status of critical cys-
teine residues of c-Fos (Cys154), and c-Jun (Cys272)
[114]. Ref-1 is a ubiquitously expressed multifunctional
protein that plays a key role in protecting cells from the
toxic effects of oxidative stress, mainly through its ability
to repair DNA damage and regulate gene transcription.
While the former activity is mediated through its proper-
ties as a class II hydrolytic apurinic/apyrimidinic endonu-
clease, the latter are exerted by reversibly altering the re-
dox state of specific cysteine residues located in the
DNA-binding domain of several transcription factors in-
cluding AP-1, nuclear factor-kB (NF-kB) and Egr-1
[115]. The mechanisms whereby Ref-1 exerts its actions
have been recently reviewed [116].

Nuclear factor kkB
NF-kB is a family of transcription factors involved in key
reactions of inflammatory, acute-phase, wound-healing
and immune responses. This family comprises at least
five well-characterized proteins referred to as p50, p52,
p65 (RelA), c-Rel and RelB that can form various homo-
and heterodimeric combinations with different transcrip-
tional activities. All these proteins have a common N-ter-
minal region of approximately 300 amino acids termed
the Rel homology domain, which contains sequences
critical for DNA binding, protein dimerization and intra-
cellular localization. The subunit components of NF-kB

1878 M. Rojkind et al. H2O2 in health and disease



are maintained in the cytoplasmic compartment bound to
the inhibitory protein I-kB. Upon induction by a variety
of agents including ROS, cytokines and mitogens, I-kB
becomes phosphorylated and rapidly degraded by the
proteasome in a redox status-dependent manner and re-
leased from NF-kB. This dissociation masks nuclear lo-
calization signals in the NF-kB molecule, which in turn
leads to its translocation into the cell nucleus. After its nu-
clear transport, NF-kB interacts with specific promoter
regions of target genes leading to changes in the expres-
sion of a wide variety of genes encoding inflammatory
mediators, cell adhesion molecules, regulators of the cell
cycle and apoptosis and extracellular matrix components
[100, 103, 104, 112, 117–119].
The physiological role of ROS in activation of NF-kB is
controversial [for reviews see refs 120–122]. Several re-
ports in the literature have clearly demonstrated that treat-
ment of various cell types/lines with hydrogen peroxide
stimulates NF-kB DNA-binding activity. Conversely,
treatment with antioxidants, such as N-acetyl-cysteine
and dithiocarbamates, blocks NF-kB activation [123–
126]. Additional evidence for the role of hydrogen perox-
ide as a mediator of NF-kB activation was obtained using
cell lines that overexpress either catalase or SOD. In the
former, treatment with hydrogen peroxide failed to in-
crease NF-kB activation, whereas in the latter, a signifi-
cant increase in NF-kB DNA-binding activity after treat-
ment with this ROS was observed [126–129]. At the
present time, the molecular basis for hydrogen peroxide-
mediated NF-kB activation is largely unknown, although
data in the literature appear to indicate that I-kB phos-
phorylation and degradation may be one of the steps tar-
geted [122]. However, we would emphasize that evidence
from several laboratories has clearly established that
these effects are cell type specific and that many antioxi-
dants may inhibit NF-kB activation and subsequent gene
expression by non-antioxidant actions [121]. Moreover,
emerging evidence clearly suggests that the mechanisms
whereby NF-kB becomes activated are very complex and
involve many steps other than its release from the in-
hibitor I-kB. For example, in addition to degradation of I-
kB, phosphorylation of NF-kB subunits has been shown
to be critical for the transcriptional activation/repression
of many NF-kB-regulated genes [122]. Thus, H2O2 con-
ceivably modulates one or several of the kinases/phos-
phatases responsible for NF-kB phosphorylation. Identi-
fication of these critical enzymes, as well as the sites of
phosphorylation/dephosphorylation may help to answer
this issue.

Sp1
Sp1 is a ubiquitous transcription factor that binds to GC-
rich DNA sequences. This protein is involved in the reg-
ulation of many genes, including those encoding type I
collagen [100, 130–135]. The Sp1 protein contains three

zinc finger motifs of the Cys2His2 type that are essential
for DNA-binding activity. This feature provides a struc-
tural basis for redox regulation of Sp1. Indeed, its DNA-
binding activity is impaired in vitro by hydrogen peroxide
and thiol-modifying reagents [136]. Moreover, low levels
of GSH within the cell decrease Sp1 DNA-binding activ-
ity [137]. Likewise, in vivo studies have revealed that ox-
idative stress alters the transactivation potential of Sp1
[138]. Interestingly, the chronic shift in the intracellular
redox status to more oxidant conditions observed during
aging is associated with decreased Sp1 DNA-binding ac-
tivity [138, 139]. Because Sp1-binding sites are present
in the promoter regions of many genes, redox regulation
of this transcription factor has a broad influence on gene
expression and consequently on cell phenotype.

Nuclear factor-1
Nuclear factor-1 (NF-1) proteins are a family of ubiqui-
tous transcription factors encoded by four different
genes: NF1-A, NF-1B, NF-1C/CTF and NF-1X. All
members of this family share a highly conserved DNA-
binding domain that recognizes a palindromic TTGG-
CN5GCCAA consensus sequence. NF-1 isoforms form
homo- and heterodimers that regulate a wide variety of
gene promoters [101, 140]. Redox regulation of NF-1 is
complex and affects both its DNA-binding and transacti-
vating functions. With regard to the former, the NF-1
DNA-binding domain contains three cysteines, whose in
vitro oxidation impairs its DNA-binding activity [141].
Moreover, NF-1 DNA-binding activity decreases in glu-
tathione-depleted cells, or in those treated with hydrogen
peroxide [142]. The transactivating domain of NF-1 has
recently been demonstrated. The transactivating domain
of NF-1 is susceptible to modulation by changes in redox
potential. This effect is exerted through oxidation of
Cys427, located at the N-terminal part of the NF-1 trans-
activating domain [143].

c-Myb
The c-Myb gene encodes a helix-turn-helix transcription
factor that regulates proliferation, differentiation and
transformation of several cell types including hematopoi-
etic and hepatic stellate cells [144–147]. This protein
binds to the PyAACT/GG consensus DNA sequence
through three homeo domain-like regions and activates
the transcription of target genes [144–147]. Work from
several laboratories has clearly established that the bind-
ing and transcriptional activities of c-Myb can be regu-
lated by changes in the redox status. In vitro studies have
revealed that the DNA-binding activity of c-Myb can be
enhanced by addition of the reducing agent dithiothreitol.
Conversely, oxidation by diamide or alkylation with N-
ethylmaleimide inactivates c-Myb. These effects appear
to be mediated through Cys130 in the DNA-binding do-
main of c-MybN [148]. On the other hand, others have es-
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tablished that oxidation of Cys43, also located in the
DNA-binding region, abolishes c-Myb DNA binding
[149]. These results suggest that Cys43 and/or Cys130 of
the c-Myb protein can function as molecular sensors of
the cells redox state, thereby regulating gene expression.

H2O2 and energy metabolism
H2O2 inhibits glycolysis via a transient inactivation of
glyceraldehyde-3-phosphate dehydrogenase, which un-
dergoes ADP ribosylation. This inhibition protects the
cells from apoptosis. When ADP ribosylation is blocked
by the administration of 3-aminobenzamide, apoptosis
occurs [150]. Low levels of H2O2 (<50 mM) also inhibit
the Krebs cycle enzyme, aconitase. Nonetheless, because
glutamate can fuel the cycle, generation of NADH is nor-
mal and the respiratory chain generates ATP. At higher
concentrations of H2O2, a-ketoglutarate dehydrogenase is
inhibited and, thus, the entrance of glutamate to the cycle
is prevented and NADH formation is inhibited [151].
This inhibitory effect could result in a lower accumula-
tion of H2O2 because NADH fuels the respiratory chain in
mitochondria. However, an important side-reaction of
this regulatory process is the inhibition of ATP formation,
which could result in cell death [151].

Role of H2O2 in pathological processes

The data summarized above clearly indicate that H2O2 is
a mediator of multiple physiological events. Therefore,
because pathological events are the result of disturbances
in the molecular mechanisms that maintain cell and organ
homeostasis, H2O2 is also a key mediator of multiple
pathological processes. However, we must emphasize
that although excess formation of H2O2 has been docu-
mented in many pathological situations, further work is
needed to establish whether this ROS is the primary cause
of the disease or whether its production occurs secondary
to injurious or inflammatory events. Below, we will at-
tempt to summarize some pathological conditions in
which H2O2 is suggested to play a role as a mediator of
disease processes. Particular emphasis will be given to
scar formation and liver fibrosis, since these areas are of
main interest to us.

Inflammation, immune responses and collagen 
deposition
Organ fibrosis and wound healing are generally associ-
ated with inflammation, neovascularization and migra-
tion of inflammatory and mesenchymal cells to the in-
jured sites resulting in excess collagen deposition. The
cell type responsible for excess collagen deposition is de-
rived from fibroblasts that have been activated by multi-

ple factors produced during inflammation [152–156]. As
discussed previously, inflammatory cells produce H2O2

via their plasma membrane NADPH oxidase. Therefore,
this ROS could be responsible for several events occur-
ring during inflammation and excess deposition of colla-
gen, including the following.
1) Chemotactic migration of various cell types, including
macrophages and vascular smooth muscle cells [36, 157]. 
2) Development of an autocrine loop whereby H2O2 in-
duces expression of TGF-b1 in fibroblasts and this cy-
tokine in turn enhances accumulation of H2O2 [59, 158].
In this regard, there is recent evidence to suggest that in
some cells (mouse proximal tubular cells), antioxidant
therapy could have an opposite effect and thus induce
TGF-b1 [159].
3) Excess deposition of collagen by myofibroblasts. H2O2

is one of the mediators involved in acetaldehyde- and
TGF-b1-mediated up-regulation of the col1a1 gene [59,
60].
4) Induction of mutagenesis. Inflammatory cells can gen-
erate transhalogenation reactions at the sites of inflam-
mation by inducing bromination (and chlorination) of
nucleotides in the presence of H2O2, myeloperoxidase
and Br– (Cl–). These brominated (chlorinated) nu-
cleotides are mutagenic and cytotoxic at sites of inflam-
mation [160–162].
5) Facilitation of cell adhesion. Recent studies have re-
vealed that H2O2 enhances human eosinophil adhesion to
human umbilical cord endothelial vein cells and induces
the expression of b2 integrin, CD 11b and CD18 [163].
The expression of these cell surface receptors is a key
event in healing responses that favors the attachment of
inflammatory cells to vascular endothelial cells and ex-
tracellular matrix components that contain arginine-
glycine-asparartic acid (RGD) sequences. Indeed, com-
peting for binding of inflammatory cells to extracellular
matrix with stable derivatives of the RGD sequence can
prevent inflammation and scarring occurring after injury
[164].
6) Alterations in immune responses. H2O2 is immunosup-
pressive by inhibiting phosphorylation of p38MAPK and
JNK induced by lipopolysaccharide in mouse splenic
lymphocytes [165].
7) Induction of cytokines and growth factors. H2O2 in-
duces the expression of cytokines including the acute-
phase cytokine interleukin (IL)-6 [166], TGF-b [59, 60,
167] and connective tissue growth factor [168]. Likewise,
several cytokines and growth factors exert their biologi-
cal activities by mechanisms involving H2O2 [169, 170].
Therefore, autocrine and paracrine loops are established
in which one reactive oxygen intermediate induces the
formation of other ROS [171]. However, depending on
the cell type, the same ROS may exert opposite effects.
While H2O2 induced by TGF-b1 inhibits proliferation of
epithelial cells [172], as a second messenger induced by
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platelet-derived growth factor (PDGF)-BB, it plays a role
in cell proliferation [169] (see fig. 2). In other instances,
such as occurs during tumor necrosis factor (TNF)-a-in-
duced apoptosis, H2O2 is an important mediator of cell
death [173].

Liver fibrosis
Oxidative stress in general and H2O2 in particular play
key roles in the development of liver cirrhosis in humans
and animals [2, 10, 11] (see fig. 3). In addition to previ-
ous studies suggesting that antioxidant therapy could
ameliorate the disease, cell culture studies have also
shown that antioxidants can prevent collagen gene ex-
pression by cultured fibroblasts and hepatic stellate cells.
In alcohol-fed rats, evidence for an oxidative stress re-
sponse by the liver has been demonstrated prior to the de-
velopment of fibrosis. In choline-deficient rats in which
a high incidence of liver fibrosis and hepatocarcinomas
have been described, there is evidence to suggest mito-
chondrial malfunction manifested by impaired respira-
tory function with a 70% decrease in NADH-dependent
oxygen consumption and excess production of H2O2

[174].
There are several mechanisms whereby ethanol induces
an oxidative stress response in the liver.
1) Ethanol metabolism by the liver results in changes in
NAD/NADH ratios that alter the redox state of the cells
[175]. Through this process there is activation of several

transcription factors acting as redox sensors that trigger
an oxidative stress response. Moreover, changes in redox
are accompanied by an increase in the ratio of
lactate/pyruvate. Because pyruvate has strong antioxidant
properties and prevents lymphocyte death induced by
H2O2 [176], as well as H2O2-induced damage in mesothe-
lial cells [177], this could be an additional mechanism
whereby ethanol enhances oxidative stress. In this regard,
pyruvate has been shown to protect cultured hepatocytes
from ethanol-induced damage [178].
2) Acetaldehyde, the metabolite of ethanol generated by
alcohol dehydrogenase, the main enzyme involved in its
metabolism, induces accumulation of H2O2 by an as yet
unknown mechanism. This ROS is involved in activation
of both type I collagen genes by cultured hepatic stellate
cells [60] (see fig. 3). Moreover, H2O2 induces the ex-
pression of TGF-b1 thus creating a fibrogenic autocrine
loop [158] (see fig. 4).
3) In the presence of Fe2+ or Cu+, H2O2 is converted to
•OH radicals and this in turn induces lipoperoxidation
with formation of multiple aldehydes including malonyl-
dialdehyde and 4-hydroxynonenal. These aldehydes, sim-
ilar to acetaldehyde, stimulate formation of H2O2 and in-
duce the expression of collagen genes by cultured fibrob-
lasts and hepatic stellate cells [179–181].
4) CYP2E1, the microsomal ethanol-oxidizing system in-
volved in ethanol metabolism, produces acetaldehyde
and generates O2

–, H2O2 and 1-hydroxyethyl radicals [182,
183]. The latter could trigger lipid peroxidation and

Figure 2. Possible mechanisms whereby PDGF-BB induces expression of H2O2, an important mediator of PDGF-BB-dependent fibro-
blast proliferation. Upon binding of the growth factor to its receptor, there are multiple events resulting in phosphorylation of several ty-
rosine residues and recruitment of protein kinases. Of these, PI3kinase has been suggested to activate NADPH oxidase by a mechanism
that requires Rac-1.
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accumulation of fibrogenic aldehydes. Nonetheless, the
role of CYP2E1 in inducing liver injury is still controver-
sial and needs to be further investigated. CYP2E1 is
mainly induced in chronic alcoholics and, thus, this
mechanism of ROS generation could be insignificant in
early alcoholics but could play a key role with increased
alcohol consumption and/or with the induction of this en-
zymatic system by other chemicals. A similar extent of
liver injury has been reported in CYP2E1 –/– as com-
pared with CYP2E1 +/+ mice chronically fed ethanol
[184].
5) Ethanol and its metabolite acetaldehyde produce hepa-
tocyte injury that triggers an inflammatory response of
the host. This involves the activation of Kupffer cells and
the attraction of inflammatory cells to injured sites. These
inflammatory cells generate ROS via the NADPH oxi-
dase and produce TGF-b1, the fibrogenic cytokine
known to use H2O2 as a second messenger in many of its
biological activities [59, 172, 185–187].
6) Although early fibrogenic actions of acetaldehyde on
cultured hepatic stellate cells are not mediated by TGF-
b1 [60], there is strong evidence to suggest that some of
its late events are mediated and/or enhanced by this cy-
tokine. Because TGF-b1 induces accumulation of H2O2

by inhibiting the expression of enzymes involved in its
catabolism, this additional mechanism of ROS formation
is an important contributor to the state of oxidative stress
induced by ethanol [188, 189].
7) Ethanol converts xanthine dehydrogenase to xanthine
oxidase, an H2O2-forming system by a mechanism de-
pendent on the oxidation of SH groups [190–192].

Figure 3. Possible mechanisms whereby liver injury results in activation of hepatic stellate cells (HSC) and excess collagen deposition.
Liver injury results in the formation of lipoperoxides. The reactive aldehydes formed generate H2O2 and, thus, contribute to oxidative stress.
On the other hand, liver injury results in chemotactic migration of inflammatory cells and activation of Kupffer cells. These in turn will
produce H2O2 and further contribute to the oxidative stress response of the cell. The cytokines and growth factors produced by inflamma-
tory cells, as well as the H2O2 released by them, will activate HSCs and these in turn will migrate to the injured site, proliferate and pro-
duce fibrous scar tissue. Because HSCs also produce cytokines and growth factors, an autocrine loop is established whereby these factors
sustain HSC activation.

Figure 4. Autocrine loop involved in acetaldehyde-mediated up-
regulation of the type I collagen genes. An early acetaldehyde event
is to induce accumulation of H2O2. This ROS induces the expression
of the col1a1 gene by a mechanism dependent on the nuclear
translocation and DNA binding of members of the C/EBPb family
of transcription factors. This event is TGF-b1 independent. On the
other hand, H2O2 is known to induce the expression of TGF-b1 in
cultured HSCs and, therefore, production of this cytokine could fur-
ther up-regulate type I collagen gene expression at late points after
acetaldehyde administration. Because TGF-b1 also induces the ex-
pression of the col1a1 gene by an H2O2-dependent mechanism, an
autocrine loop is established. This could be a possible mechanism
of perpetuation of liver fibrogenesis upon discontinuation of the
fibrogenic stimulus.



8) Chronic liver injury leads to increased iron stores
which in the presence of H2O2 generated during ethanol
metabolism contribute further to liver damage [10].
9) Chronic ethanol consumption induces a hypermeta-
bolic state with a significant increase in oxygen con-
sumption. Because H2O2 is generated as a side-product of
the mitochondrial respiratory chain, increased O2 con-
sumption could result in excess formation of H2O2. This
toxicity could be significantly enhanced by a decrease in
mitochondrial glutathione levels induced by ethanol [2,
193, 194].
10) Although the molecular mechanisms whereby
ethanol induces perivenular damage are yet to be fully es-
tablished, two important pathogenic mechanisms have
been suggested. CYP2E1 levels are higher in perivenular
hepatocytes, thus increasing formation of 1-hydroxyethyl
radicals. Perivenular hepatocytes are less oxygenated and,
thus, may be more susceptible to oxidative damage
secondary to reperfusion occurring by hemodynamic
changes. GSH levels in perivenular hepatocytes are lower
and, therefore, their antioxidant defense systems may be
weaker [195, 196].
11) TGF-b1 is the main fibrogenic cytokine and its ex-
pression correlates with the degree of hepatic fibrosis in
humans and animal models of this disease [197–199].
Our studies have established that at least some fibrogenic
actions of TGF-b1 are mediated by accumulation of H2O2

[59]. In cultured hepatic stellate cells, the accumulation
of this ROS results in activation and nuclear translocation
of members of the c/EBP family of transcription factors
and these, in turn, bind to the –370 to –341 region of the
a1(I) collagen promoter inducing the transcription of the
col1a1 gene. This effect is mimicked by the addition of
H2O2 to cultured cells and is abrogated by the addition of
catalase [59]. Altogether, these findings indicate that ir-
respective of whether TGF-b1 is the main fibrogenic cy-
tokine in liver fibrosis or acetaldehyde is the contributing
factor, both systems induce an oxidative stress response
with accumulation of H2O2.

Wound contraction
Wound contraction is an important event in all healing re-
sponses, irrespective of whether scar formation occurs in
the skin during wound healing or in a coronary vessel
during atherosclerosis. Myofibroblasts are the cells re-
sponsible for contracting the wound [200–208] and play
a key role in contractures such as that observed in
Dupuytre’s syndrome [209]. In chronically injured tis-
sues, as occurs after liver damage leading to cirrhosis,
myofibroblasts are also present and are responsible for
the contraction of the scar that produces the nodular ap-
pearance of the cirrhotic liver [204, 208]. Moreover, this
contraction together with that of hepatitic stellate cells
that modulate portal blood flow, is responsible in part for

an increase in portal blood pressure, an important com-
plication of liver scarring [210, 211]. Myofibroblasts
contain myosin and actin [200, 202, 203, 210–212] and
contract in culture in response to various agonists and
TGF-b1 [213–225]. The molecular mechanisms whereby
this process is triggered remain to be elucidated. How-
ever, in other cell types, mainly vascular endothelial cells,
researchers have clearly established, using endothelium-
denuded rat aortic rings, that their contraction is mediated
by H2O2. This contraction is blocked by catalase and
suramine, the inhibitor of purinergic receptors [216], but
not by SOD or dimethylsulfoxide/mannitol, an inhibitor
of OH radicals. Contraction of rat vascular smooth mus-
cle cells by angiotensin II was shown to be H2O2 medi-
ated, and the angiotensin-induced phosphorylation of
light-chain myosin was preventable by catalase. This ef-
fect was specific because catalase had no effect on the an-
giotensin-dependent formation of inositol 1,4,5-trisphos-
phate [217].

Aging
Oxidative stress in general and H2O2 in particular play an
important role in aging. However, the direct role of H2O2

in its pathophysiology remains to be firmly established.
The implication of H2O2 as a causative agent of aging is
derived in part from multiple studies with cultured cells
in which many changes occurring as the cells age in cul-
ture can be mimicked and/or accelerated by ROS. When
human diploid fibroblasts are exposed to subtoxic doses
of H2O2, within 3 days, cells express biochemical and
morphologic changes that mimic the aging process, as
characterized by an increase in stress fibers and alter-
ations in the distribution of paxillin and vinculin. These
proteins, instead of being localized to the edge of the
cells, become randomly distributed. These changes in
morphology that resemble aging have been suggested to
be TGF-b mediated, Rb dependent and require de novo
protein synthesis [218].
Studies performed with human endothelial cells revealed
that H2O2 induces changes in cytoskeletal organization
and formation of membrane blebs. This latter effect of
H2O2 may be mediated via tyrosine phosphorylation of
cortactin, the actin-associated protein induced by Src
[219]. Human umbilical vein endothelial cells treated
with H2O2 undergo the following changes: F-actin re-
arrangement, filamin translocation from the membrane to
the cytosol, intercellular gap formation, a rapid decrease
in cAMP and a Ca2+ dependent increase in PIP2. The
H2O2-dependent changes in the cytoskeleton are pre-
vented by inhibitors of phospholipase C, phosphoinosi-
tide turnover or by binding PIP2 with a synthetic peptide
[220]. Filamin translocation and actin reorganization are
associated with a decrease in filamin phosphorylation
and are prevented by activation of the PKA pathway. This
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phosphorylation occurs at the C-terminal domain of fil-
amin, a known cAMP-dependent phosphorylation site
[221].
As indicated previously, oxidation of cysteine and me-
thionine residues in proteins by H2O2 results in confor-
mational changes with concomitant alterations in their
biological activity. In general, many of these proteins 
are eliminated by phosphorylation, ubiquitinylation and
degradation by the proteasome. However, in aged MRC-
5 fibroblasts, there is a significant decrease in proteoso-
mal activity that results in accumulation of oxidized pro-
teins [222]. This mechanism, mainly the inefficient elim-
ination of altered proteins by proteosomal degradation,
could play a key role in neurological diseases occurring
in elderly individuals, in which abnormal proteins accu-
mulate and alter cellular function.

Other pathological processes
One of the most common lesions involving oxidative
stress is excess sun exposure resulting in UVB damage of
skin and development of cancerous lesions. Thus, Uvb-
induced DNA damage is perhaps the alteration that has
been most widely investigated regarding the accumula-
tion of ROS, their role in disease and the effect of antiox-
idants in protecting against oxidative stress. Indeed, the
concept of oxidative injury was derived, in part, from
studies in this field. Various aspects of ROS and UVB-in-
duced DNA damage have been reviewed recently [223]
and we will therefore not discuss this topic. However,
H2O2 is an important mediator of UVB skin damage and
this ROS induces the expression of VEGF in ker-
atinocytes [224] and play a role in phosphorylation of
EGFR, an event prevented by over-expression of catalase
and mediated by p44/42 MAP kinase [225].
ROS are also involved in hypertension, atherosclerosis
and cardiovascular disease [226–228]. LOX 1, the en-
dothelial cell receptor that binds oxidized low-density
lipoproteins, important mediators of atherosclerotic le-
sions, is redox sensitive [229]. Moreover, this receptor is
up-regulated by H2O2 and homocysteine and down-regu-
lated by the antioxidant N-acetyl-cysteine [229]. There is
a significant correlation between H2O2 and renin plasma
levels, thus suggesting a possible genetic predisposition
to develop increased blood levels of H2O2 and its asso-
ciation with atherosclerosis and hypertension [230].
Another disease in which ROS have been implicated is
Parkinson’s. This is based on evidence suggesting that
several parameters involved in modulating ROS in neu-
rons and/or astrocytes are altered. Part of the information
concerning oxidative stress and Parkinson’s disease has
been summarized in several publications [231–235].
First, brain GSH levels decrease and levels of Fe2+, a
metal enhancing the conversion of H2O2 to OH–, are ele-
vated in these patients. Second, lipid peroxidation in-

creases and there is mitochondrial complex I impairment
and a decrease in a-ketoglutarate-positive cells in af-
fected areas of the brain. Depletion of GSH in cultured
astrocytes results in increased accumulation of NO, H2O2

and glutamate. Thus, formation of peroxynitrite could in-
duce neuronal damage. However, a gene named Parkin,
associated with Parkinson’s disease, has been cloned. The
gene is a ubiquitin protein ligase (E3) for which CDC rel-
1, a synaptic vesicle-associated protein serves as a sub-
strate [236]. Thus, alterations in the mechanisms involved
in degradation of proteins, whose conformation was al-
tered by oxidative stress, by the ubiquitin system could
also play a role in Parkinson’s disease.
H2O2 may also play a role in cystic fibrosis and in the de-
velopment of cataracts. In the former, levels of H2O2 in
exhaled air are increased but decrease after treatment
with antibiotics [237]. In the latter, H2O2 may be respon-
sible for inducing the secretion of matrix metallopro-
teinases by lens cells and these in turn will be responsible
for lens capsule opacification and cataract formation
[238].
In addition to the conditions in which oxidative stress
plays a role in pathophysiology of the disease, there are
other instances in which a lack of production of reactive
oxygen intermediates could cause the disease. In this re-
gard, in patients with glucose-6-phosphate dehydroge-
nase (G6PD) deficiency, production of superoxide, H2O2

and NO is impaired. Moreover, they do not respond to
lipopolysaccharide and phorbol myristate acetate with in-
creased production of ROS. However, G6PD-deficient
granulocytes have normal levels of inducible NO syn-
thase. In granulocytes from normal controls, formation of
NO is increased significantly compared to unstimulated
levels. Therefore, neutrophil dysfunction and increased
susceptibility to infection in patients with severe G6PD
deficiency could be due to a blunted oxidative stress re-
sponse of granulocytes to endotoxin [239].

Concluding remarks

A decrease in the generation and/or the effects of ROS
could be beneficial in a variety of experimental models of
disease including liver fibrosis, systemic sclerosis, car-
diovascular disease, cancer and diabetes. Numerous an-
tioxidants have been used including e.g., vitamin E, vita-
min C and S-adenosyl-methionine, with variable degrees
of success [240–249]. Moreover, several antioxidant
therapies are currently undergoing clinical trials to deter-
mine their benefit in a number of diseases. During the
past few years, our understanding of the role of oxidative
stress in disease and of the mechanisms whereby ROS in-
duce cell damage have allowed the development of more
rational approaches to antioxidant therapy while, at the
same time, exposing the limitations of some of them. An
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inherent requirement for an effective antioxidant therapy
is that such therapy is effective against the radicals being
generated and that sufficient quantities of the antioxi-
dants used reach all sites of radical generation in time to
limit tissue injury. Moreover, there is also a need to find
methods to deliver antioxidants to specific cell types or to
subcellular organelles in which excess ROS are being
produced. Unfortunately, so far, few, if any, of the cur-
rently known individual antioxidants can adequately meet
these goals. Combination therapy or the development of
novel compounds with higher specificity and/or en-
hanced biological activity may prove useful. A new
lipophylic triphenylphosphonium cationic derivative of
ubiquinone has been developed that can be selectively
targeted to mitochondria of cultured cells where it pre-
vents H2O2-induced oxidative damage, lipid peroxidation
and apoptosis. This ubiquinone derivative is recycled be-
cause it is reduced to ubiquinol by the respiratory chain
and further oxidized after detoxification. This effect is
specific, because this antioxidant has no effect on stau-
rosporine- or TNF-a-induced apoptosis [250, 251].
During the past few years, significant progress has been
made identifying oxidative stress damage as a major con-
tributor of disease. Our challenge for the years to come
will be to develop and test the efficacy of novel agents
with the ability to prevent and/or block the deleterious ef-
fects of ROS. Those that survive the test of time will be
incorporated into our therapeutic arsenal. All others will
be eliminated and/or substituted for new ones with the
promise to become ‘magic bullets’ in the treatment of ox-
idative damage-related diseases. The quest is just begin-
ning.
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