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Abstract. Small Hsps (sHsps) encompass a widespread
but diverse class of proteins. These low molecular mass
proteins (15–42 kDa) form dynamic oligomeric
structures ranging from 9 to 50 subunits. sHsps display
chaperone function in vitro, and in addition they have
been suggested to be involved in the inhibition of apopto-
sis, organisation of the cytoskeleton and establishing the
refractive properties of the eye lens in the case of 
a-crystallin. How these different functions can be ex-
plained by a common mechanism is unclear at present.
However, as most of the observed phenomena involve
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nonnative protein, the repeatedly reported chaperone
properties of sHsps seem to be of key importance for un-
derstanding their function. In contrast to other chaperone
families, sHsps bind several nonnative proteins per
oligomeric complex, thus representing the most efficient
chaperone family in terms of the quantity of substrate
binding. In some cases, the release of substrate proteins
from the sHsp complex is achieved in cooperation with
Hsp70 in an ATP-dependent reaction, suggesting that the
role of sHsps in the network of chaperones is to create a
reservoir of nonnative refoldable protein.

Key words. sHsp; a-crystallin; protein aggregation; protein folding; protein structure; chaperone.

Introduction

Small heat shock proteins (sHsps) represent a widespread
family of stress proteins (table 1). They are grouped to-
gether based on their low monomeric molecular masses
(≈15–40 kDa) and stretches of sequence homology
mostly in the COOH-terminal part of the proteins (a-
crystallin-domain; [1, 2]; fig. 1). In comparison with
other Hsp families, the overall homology among sHsps is
rather low. The number of sHsps in different species
varies significantly, with up to 30 sHsps in plants, where
sHsps appear in the cytosol and in all organelles [3]. Also,
the abundance of sHsps varies considerably, depending
on the cell types and organisms studied. In addition, ex-
pression depends on growth conditions, developmental
state, differentiation and the oncogenic status of the cell.
Under stress conditions sHsps may comprise more than
1% of the cellular protein [4]. Overexpression of eucary-
otic as well as procaryotic sHsps has been shown to
convey thermoresistance to the organisms, which leads to
prolonged survival during and after exposure to normally
lethal temperatures [5–7]. Another common feature of
sHsps is their high oligomeric, globular structure [8–11].
The number of subunits and the degree of flexibility in

the complex varies in different species. While Hsp16.5
from Methanoccocus janashii forms a stable hollow shell
of 16 subunits [8], the a-crystallin complex and sHsp
from Bradyrhizobium janponicum are more flexible and
exchange subunits [9, 12].
Furthermore, like other chaperones, sHsps contribute 
to the balance between cell survival and cell death by
preventing protein aggregation during heat shock. They
display chaperone function in vitro, suppressing the
aggregation of a large set of substrate proteins [8,
13–18]. Nevertheless, many sHsps at least in pro- 
and lower eukaryotes are dispensable for cell viability
and growth under physiological or stress conditions 
[19, 20].

In vivo properties of sHsps

Under physiological conditions, the abundance of sHsps
varies according to cell type and organism studied [21]. In
addition, the expression of sHsps depends on development,
growth cycle, differentiation and the oncogenic status of
the cell [21–28]. A well-characterised example of devel-
opmental induction is the accumulation of sHsps during



seed maturation [3, 29]. Under physiological conditions
the levels of sHsps in different cell types range from
nonexistent to about 1% in the case of human Hsp20 in
striated muscle, heart and diaphragm cells [4, 30]. Studies
on the expression of sHsps under heat shock and other
stress conditions have shown that this group of Hsps is
among the most strongly induced heat shock proteins
[26–33]. In addition to the quantity, the number of sHsps
also varies significantly in different species, with up to 30
sHsps in plants, where sHsp appear in the cytosol as well
as in all organelles in multiple isoforms [3] (table 1).
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The overexpression of sHsps has been reported to convey
thermoresistance in a number of organisms and cell types
[6, 7, 34–37]. In cyanobacteria, the photosynthetic appa-
ratus is protected against heat shock by the constitutive
expression of sHsps [7]. Interestingly, a Synechocystis sp.
mutant deleted for its single sHsp gene, Hsp16.6, showed
a defect in membrane stabilisation during heat stress, in-
dicating the importance of sHsps at high temperatures in
this organism [38]. In contrast, the yeast homologue
Hsp26 does not seem to have a demonstrable function in
thermoprotection or during development [19, 20]. The
deletion of the sHsps in Escherichia coli is not lethal, nor
does it show a phenotype [39]. Only in conjunction with
a mutation in the major Hsp70 protein DnaK a defect was
detected [38].
Understanding of the precise cellular role of sHsps is still
lacking. Some procaryotic sHsps were found to be tightly
associated with intracellularly aggregated endogenous
proteins [40] and with inclusion bodies which are formed
during high-level protein expression. In E. coli, the two
endogenous sHsps were therefore termed inclusion body
proteins (IbpA and IbpB) [41]. Taken together, these re-
sults suggest a biological function of sHsps in intracellu-
lar protein aggregation. sHsps have repeatedly been re-
ported to act as promiscuous molecular chaperones. On
the other hand, there is evidence that sHsps can specifi-
cally interact with certain components of the cytoskeleton
such as actin [42–44] or intermediate filaments [45]. It

Table 1. Representative members of the sHsp family.

Protein Organisms Structure Chaperone Comments
activity

Archaea Hsp16.5 M. jannaschii 24mer + [8]

Prokaryotes IbpA/IbpB E.coli oligomer + found in ‘inclusion bodies’ [41]
Hsp16.3 M. tuberculosis 9mer + surface antigene, ‘trimer of trimers’ [15]

Eukaryotes

Yeast Hsp26 S. cerevisiae 24mer + temperature regulated [10, 19, 20]
Hsp42 S. cerevisiae oligomer n.d. [106]

Invertebrates Hsp27/26/ 22/23 D. melanogaster n.b. n.d. constitutively expressed, hormone      
induced, developmentally regulated [35]

Hsp16-2 Caenorhabditis 4mer – [107]
elegans

Vertebrates aA-/aB- all vertebrates 32mer + eye lens protein, phosphorylated [9]
crystallin
Hsp25/27 mammal 16-32mer/ + thermoprotection, phosphorylated  

oligomer [16]
p20 (Hsp20) mammal oligomer n.d. Hsp27 homologue [86]

HspB2/HspB3 mammal oligomer n.d. muscle [30]

Plant Hsp22 Glycine max n.b. n.d. ER, endo membrane protein [108] 
Hsp18.1 P. sativum oligomer + cytosolic, class I [14, 72]
Hsp22 P. sativum n.b. n.d. mitochondrial [109]
Hsp21 A. thaliana oligomer n.d. chloroplasts [3, 110, 111]
Hsp16.9 wheat 12mer n.d. temperature-dependent structural 

changes [11]

Figure 1. Comparison of schematic domain structure of different
sHsps. (A) General domain structure. (B) Comparison of different
sHsps. Blue, variable regions; pointed, homologue regions; black:
Phe-Pro rich region; numbers, according to amino acid composi-
tion.



could well be that the general chaperone properties lead-
ing to the stabilisation of thermolabile intracellular pro-
teins under stress conditions and the specific interaction
with the cytoskeleton, possibly preserving cell shape and
integrity, are two related properties contributing to pro-
tection against stress.

sHsps in the context of diseases

An increasing number of diseases have been described
where mutations and modifications of sHsps exert their
pathological effect by altering protein folding or assem-
bly. Increased expression of sHsps and especially aB-
crystallin has been observed in several neurodegenerative
disorders, such as Alzheimer’s disease [46, 47], Alexan-
der disease [48, 49] or Creutzfeld-Jakob syndrome [50,
51]. A common feature of all these neurodegenerative
disorders is the deposition of improperly folded protein in
fibers, inclusion bodies or plaques in the nervous system
[52]. sHsps are typically found in association with these
insoluble protein aggregates, including intermediate fila-
ments and ubiquitin [53]. Also, increased expression of
both a-crystallin and Hsp27 was observed in the context
of these diseases. Interestingly, in scrapie-infected mouse
neuroblastoma cells, induction of Hsp27 and Hsp72 by
metabolic stress is blocked, but Hsp73 and Hsp90 ex-
pression is enhanced [54]. This observation could indi-
cate that Hsp27, together with Hsp72, is specifically in-
volved in the pathogenesis of the prion disease.
Elevated expression may thus be considered not only as a
strategy for survival during unfavorable times but also as
a potential mechanism of defense against diseases, which

makes sHsps an interesting target for novel therapeutic
approaches [55, 56]. Preliminary experiments have al-
ready shown the feasibility of gene therapy for high-level
expression of sHsps [57].
In summary, the function of altered sHsp expression in
the course of several seemingly unrelated diseases is still
enigmatic. A common feature of many of the described
disorders is the accumulation of misfolded protein 
[52, 58].

Structure of sHsps

All sHsps investigated so far share a conserved region of
~90-residue ‘a-crystallin domain’ in the C-terminal part
of the protein. This region is flanked by a N-terminal hy-
drophobic region, quite divergent in sequence and length
and a short C-terminal extension [33, 59] (fig. 1).
One of the most striking features of sHsps is their organ-
isation in large oligomeric structures, comprising 9 –~50
subunits. For three members the structure of these com-
plexes has been solved (fig. 2), revealing hollow,
globule-like structures with outside diameters of 120 and 
190 Å. While the quaternary structure of Hsp16.5 from
Methanococcus jannaschii is well defined [8], the
oligomers formed by a-crystallin and Hsp27 show more
structural variability and the ability to acquire and re-
lease subunits [9]. Interestingly, wheat Hsp16.9 assem-
bles into a dodecameric double disk (fig. 2). Each disk is
organised as a trimer of dimers. Comparing all structures
of sHsps solved so far, they support the idea that the
dimer is the smallest exchangeable unit. This minimal
dimeric building block seems to be conserved and may
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Figure 2. Comparision of the three-dimensional structure of sHsps. (A) Cryoelectron microscopy structure of a-crystallin [9]. The outer
diameter of the 32mer is 18 nm (black = 15 nm). (B) Crystal structure of Hsp16.5 from M. jannaschii [8]. 24mer with an outer diameter of
12 nm. (C) Crystal structure of wheat Hsp16.9 [11]. Dodecamer, arranged as two disks, 9.5 nm wide and 5.5 nm high.



represent the functional unit concerning chaperone prop-
erties (see below) [10, 11]. Furthermore, the fold of this
dimeric building block resembles the fold of human p23
a co-chaperone of Hsp90 [11]. Therefore, further investi-
gations on a putative sHsp-Hsp90 cooperation might be
very interesting.
The wheat Hsp16.9 structure shows that four hydropho-
bic sites become exposed on disassembly of the oligomer
into dimers, a C-terminal binding groove and an N-ter-
minal interaction site [11]. Another general property of
the different structures is localisation of the N-terminal
regions of the sHsps in the interior of the oligomeric
structures. In the Hsp16.5 and the a-crystallin oligomer,
these unordered regions sequester inside the sphere, and
in the case of Hsp16.9 they are buried in the interior of the
oligomeric structure. Thus, the N-terminal, disordered,
hydrophobic part of the proteins might represent the sub-
strate binding site of the sHsps (see below) [11].

sHsps as molecular chaperones

A wide diversity of factors lead to enhanced expression
of sHsps and Hsps in general [60]. Many of these agents
and factors are known to affect the proper conformation
and therefore the function of proteins in general, leading
to the accumulation of nonnative protein in cells [61–
64]. Interestingly, sHsps which are sometimes termed ju-
nior chaperones [65] comprise the most effective chaper-
one family concerning the efficiency of substrate binding
per oligomeric complex [65] (see below).
One of the first indications of sHsps being implicated in
chaperoning protein folding was the finding that an am-
monium sulfate fraction, enriched in plant sHsps, could
prevent soluble proteins from thermal denaturation in
vitro [66]. Several sHsps and a-crystallin have subse-
quently been shown to be able to suppress aggregation of
thermally denaturing protein such as b- and g-crystallin
in the case of a-crystallin and model enzyme substrates
[10, 67, 68].  Interaction with heat-inactivated citrate syn-
thase (CS) was shown for Hsp27, Hsp25, a-crystallin, cy-
tosolic sHsps from pea, yeast Hsp26 and Hsp16.3 from
Mycobacterium tuberculosis [9, 10, 13–15].
The underlying mechanism of the interaction of sHsps
with nonnative proteins is still enigmatic. Most of the
sHsps studied form very stable complexes with unfolded
polypeptides [10, 13, 69–71]. The stoichiometry of the
complexes between sHsps and nonnative protein seems to
be dependent on the substrate investigated [72]. However,
several reports suggest a maximum binding capacity of
one denatured protein molecule per subunit or dimer of
the sHsp oligomers [10, 72–74]. In the case of Hsp26,
formation of the complex is a highly cooperative process
[10]. Another interesting feature of sHsps is their wide
substrate range. sHsps can support the folding of ther-

mally and chemically denatured proteins, ranging from at
least 4 to 100 kDa [13–15, 68, 70, 71]. For example, at
physiological temperatures, a-crystallin interacts with
the reduced and aggregation-prone B chains of insulin,
and with melittin, a peptide from bee venom which
adopts an unordered conformation [74]. Interestingly,
sHsps also bind structured folding intermediates which
are prone to aggregation [16, 69, 75, 76].
The mechanism of substrate binding is thought to be
based on a change in the hydrophobicity profiles of sev-
eral sHsps under stress conditions. a-crystallin and
Hsp26 bind increasing amounts of the hydrophobic dyes
8-anilino-1-naphtalene sulfonate (ANS) [10, 76, 77] and
bis-ANS [78] at temperatures above 30°C, suggesting
that a-crystallin undergoes a temperature-dependent
structural change that increases surface hydrophobicity.
In agreement, wheat Hsp 16.9 exposes two hydrophobic
sites, during temperature-dependent disassembly of the
oligomer into dimers [11].
However, data on the two possible binding sites of plant
sHsps and site-directed mutagenesis seem to contradict
the hypothesis that hydrophobic interactions are exclu-
sively involved in substrate binding [72, 79]. The putative
binding site identified by cross-linking [72, 80] contains
several highly conserved aliphatic residues with interven-
ing charged amino acids. This alternating polar-non-polar
sequence suggests that efficient binding of denatured
protein is mediated by hydrophobic residues interacting
with exposed nonpolar amino acids of the substrate,
while charged amino acids might serve to optimally space
the residues [72]. In this context, Smulders et al. (1995)
could show that the D69S mutant of aA-crystallin shows
decreased chaperone activity, indicating that the charged
Asp69 might be involved in protein binding [81]. Fur-
thermore, mutations at position R116 in aA-crystallin
and R120 in aB-crystallin proved to be responsible for
genetic disorders [82, 83]. These mutations affected the
residue, equivalent to arginine 107 in the a-crystallin do-
main of M. jannaschii Hsp16.5.

Regulation of functional properties

Chaperones are often regulated by cofactors or ATP. In the
case of sHsps, it is still debated whether ATP binding and
hydrolysis are involved in functional regulation or whether
other mechanisms are sufficient, whereas in the case of
aB-crystallin ATP binding leads to structural rearrange-
ments and exposure of hydrophobic surfaces [84, 85]. In
contrast to these findings, the chaperone activity of sHsps
in vitro was so far found to be independent of ATP binding
and hydrolysis, and an intrinsic mode of regulation was
shown for yeast Hsp26 and wheat Hsp16.9 [10, 11]. Under
physiological conditions, high oligomeric complexes exist
which are supposed to be an inactive storage form (fig. 3).
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Elevated temperatures lead to the dissociation of these
complexes into dimers. In the case of Hsp26, the dimer
specifically recognizes and binds nonnative polypeptide
chains, resulting in the cooperative formation of large,
well-defined Hsp26-substrate complexes [10].
It is tempting to speculate that the heat-induced dissocia-
tion and activation of Hsp26 and Hsp16.9 represents an
early and simple mechanism which developed into a
more sophisticated system of functional regulation dur-
ing the evolution of higher eukaryotes. Instead of a direct
temperature-sensing system, additional signals could
now be integrated into the activation process of the re-
spective sHsp. Phosphorylation is a widespread modifi-
cation of mammalian sHsps, which seems to have func-
tional consequences. Like heat in the case of Hsp26, the
phosphorylation of sHsps seems to be associated with
changes in the oligomeric structure of sHsp complexes.
Depending on the cell-type, the extracellular stimulus
and the time after stimulation, phosphorylation of Hsp27
correlates with either dissociation or further increase in
size of oligomers [86–89]. The phosphorylated, dissoci-
ated form of Hsp27 shows no chaperone activity [90], and
thermoprotection is decreased [91]. Interestingly, larger
oligomeric complexes of Hsp 25 were observed upon
heat treatment and, for a nonphosphorylatable mutant of
Hsp25, after tumor necrosis factor a treatment [92]. In
addition, Hsp25 showed chaperone activity as a hexade-
camer and as a large mega-Dalton complex [93]. The
mammalian sHsp-related protein Hsp20 dissociates when
phosphorylated. This may mediate cellular signaling
processes that lead to vasorelaxation [94]. Furthermore,
phosphorylation of sHsps seems to alter the interaction
with actin [95–97].

From the data above, one may speculate that phosphory-
lation is necessary but not sufficient for dissociation of
mammalian sHsp oligomers. At present, only a few mem-
bers of the diverse family of sHsps have been investigated
in detail. It could well be that in addition to dissociation
and phosphorylation, other factors could contribute to
regulation of the oligomeric size of sHsps and thus mod-
ulate function via structural changes. 

sHsps in the context of the cellular chaperone 
network

Taken together, sHsps seem to be potent and efficient
chaperones in that they are able to selectively bind non-
native proteins in large quantities per oligomeric sHsp
complex. However, in general no release of bound sub-
strate had been observed. For a-crystallin, it was sug-
gested that irreversible binding of other lens crystallins,
which might occur in the aging lens, prevents aggrega-
tion and light scattering [81, 98–100]. Along these lines,
Lee et al. suggested that in the case of plant sHsps,
bound substrate was held in a soluble form for subse-
quent degradation [14]. In the living cell it seems detri-
mental to entertain a chaperone system which traps non-
native proteins without allowing reactivation once a
stress period is over. A first hint that sHsp·substrate
complexes were not dead-end, but productive intermedi-
ates was the discovery that mitochondrial citrate syn-
thase (CS) could be dissociated and reactivated from
Hsp25·CS complexes by oxaloacetate (OAA), a stabilis-
ing ligand of CS [16]. Thus, Hsp25 is able to bind to ther-
mally inactivated proteins and trap them in a soluble and
folding-competent state until permissive folding condi-
tions are restored. While the above-mentioned experi-
ments used the ligand OAA, in the cell a physiological
release factor would be required.
A clue for the contribution of different chaperones to this
reaction came from in vivo experiments. It was demon-
strated that the overexpression of Hsp70 led to a deceler-
ation of the inactivation of marker proteins in transfected
cells [101, 102], whereas in the presence of Hsp27, the in-
activation of the marker protein was not influenced, and
both the substrate and the chaperone were found to be in-
solubilized. However, when these cells were transferred
to permissive conditions, both proteins became soluble
again, and the cells recovered much faster than in the ab-
sence of Hsp27. This is reminiscent of the finding that
procaryotic sHsps are found specifically associated with
inclusion bodies and intracellular aggregates of overex-
pressed proteins [42].
In agreement with these findings, it was shown in vitro
that the chaperone Hsp70 allowed reactivation of the
sHsp-bound substrate in the presence of ATP [16, 72]. In
addition, for Hsp18.1 from pea, the ATP-dependent re-
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Figure 3. Model of the chaperone function of Hsp26. Under phys-
iological conditions Hsp26 exists in an inactive oligomeric storage
form. Upon heat shock (DT) unfolding of native protein (N) leads
to the formation of nonnative, aggregation-prone intermediates (I).
Hsp26 dissociates into smaller complexes which are able to bind
nonnative proteins (I), thus preventing their aggregation. Well-de-
fined Hsp26 · nonnative protein complexes assemble subsequently
from the dissociated species. After release of the substrate protein,
Hsp26 reassociates to the inactive storage form under physiological
conditions.



lease and refolding of bound luciferase by different
Hsp70 and Hsp40 was demonstrated [72, 103]. Evidence
for the release of substrate proteins bound to sHsp were
also shown for E. coli IbpB. Here, bound malate dehy-
drogenase and lactate dehydrogenase were specifically
transferred to the DnaK-DnaJ-GrpE system and subse-
quently reactivated [104]. Sequencing of the genome of
the thermophilic eubacterium Thermotoga maritima re-
vealed another piece of evidence for the cooperation of
sHsps with Hsp70. Here the genes for Hsp70 and a 17.0-
kDa sHsp were found in one operon [105].
Based on these data, a model that allows sHsps to inte-
grate in the cellular chaperone machinery was proposed
(fig. 4). Under stress conditions Hsp25 binds nonnative
proteins, prevents their irreversible aggregation and com-
plexes them in a refoldable state. Upon restoration of
physiological temperatures, the nonnative protein will ei-
ther dissociate from the complex spontaneously, or ATP-
dependent chaperones such as Hsp70 will complete the
refolding. Whether other factors such as Hsp70 co-chap-
erones or additional Hsp families are involved in this
process remains to be seen. Another open question is
whether the proposed model (fig. 4) can be generalised
for all organisms.

Conclusions

With good reason, sHsps have been called ‘the forgotten
chaperones’, since, although they had been implicated in
a number of fundamental cellular processes in addition to
the heat shock response, their function remained enig-
matic. Recent experiments using in vitro protein-folding
assays made it possible to define functional properties of
sHsps under stress conditions. These results showed that
sHsps belong to the class of molecular chaperones. The

current evidence suggests that a specific function of sHsps
is to effectively trap aggregation-prone folding intermedi-
ates and maintain them in a refoldable conformation. At
the moment, structural information of sHsps is rather
poor. Thus, the underlying conformational features re-
sponsible for the stable binding of nonnative proteins re-
main unknown. In the eye lens, binding of a-crystallin to
other crystallins seems to be sufficient to protect the lens
efficiently from irreversible aggregation processes which
could cause turbidity. However, in the cytosol and poten-
tially in organelles, cooperation with other ATP-depen-
dent chaperone systems seems to be required to achieve
productive folding, even under permissive conditions.
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