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Abstract Leaf shelters indirectly mediate interactions in
animal–plant communities by providing the occupants with
several kinds of benefits, as physical ecosystem engineering.
The occupants benefit from favorable microhabitat, reduc-
tion in antiherbivore defense, and protection from natural
enemies. The primary shelter maker has to spend energy
and time and producing silk, but shelter users have great
advantages without incurring costs. Shelter users consist of
a wide range of arthropod taxa and can be divided into two
groups: coexisting organisms that live with a primary shelter
maker in the same shelter, and secondary users, which in-
habit a leaf shelter after it is utilized by a shelter maker.
Leaf shelters mediate interactions between (1) primary
shelter makers and coexisting organisms or (2) primary
shelter makers and secondary users, (3) secondary users, (4)
shelter users and their natural enemies, and (5) primary
shelter makers, secondary users, and their host plants. Most
interactions between primary shelter makers and coexisting
organisms constitute a direct trophic linkage rather than
indirect ones. There are actually unidirectional beneficial
effects from a primary shelter maker to secondary shelter
users, whereas leaf shelters mediate competition and preda-
tion among shelter users. By providing a leaf shelter, a
shelter maker leads to increased diversity of interactions.
Leaf shelters modify the distribution of organisms on the
host plant and influence herbivory on the host plant. In
tritrophic interactions, leaf shelters act as cues for natural
enemies that search for a shelter user as prey. Furthermore,
by enhancing habitat heterogeneity, leaf shelters affect the
abundance and species richness of arthropods on host
plants.

Key words Diversity of interactions · Habitat heterogene-
ity · Shelter maker · Manipulation · Physical ecosystem
engineer · Secondary user

Introduction

Forest ecosystems provide habitat and food resources for
animals. Many herbivores alter microenvironments on a
host plant by favorably modifying plant parts such as leaves.
Through architectural modifications, some herbivores have
advantageous or disadvantageous impacts on plant survival,
growth, and reproduction, also impacting other arthropods
associated with the plant (Mopper et al. 1991). Here, such
advantageous impact on other species is called positive and
disadvantageous impact is called negative. This article re-
views indirect interactions mediated by leaf shelters, includ-
ing any types of transformation of leaves by herbivores,
such as leaf-folds, -galls, -rolls, -sandwiches, and -ties.

Shelter-mediated interactions constitute three categories
of indirect interactions among herbivores together with
food resource- and enemy-mediated interactions (Damman
1993). Shelter-mediated interactions involve the provision
of a shelter by one herbivore species to another (shelter
user), thereby altering the availability of plant physical
structures. In food resource-mediated interactions, feeding
by one herbivore species leads to changes in the quality of
the plant as food for other species. In enemy-mediated in-
teractions, herbivores interact indirectly by affecting the
population dynamics or foraging behavior of shared natural
enemies.

Making leaf shelters is common and widespread in her-
bivorous arthropods. Herbivores are exposed to mortality
agents including abiotic factors and bottom-up and top-
down effects (Gaston et al. 1991). Leaf shelters enable the
occupants to reduce these negative effects. It is important to
point out that not only shelter makers but also other organ-
isms frequently use leaf shelters. Here, an organism is called
a shelter user when it occupies a leaf shelter made by an-
other species.
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Shelter makers have a great positive influence on shelter
users. Shelter users have the advantages, without the cost
of making a shelter (Carroll and Kearby 1987; Lewis 1979;
Cappuccino 1993; Kudo 1994; Larsson et al. 1997). The
making of a leaf shelter needs much time and energy (Ford
1977; Ruggiero and Merchant 1986; Otto 1987; Berenbaum
et al. 1993). The time spent on the leaf surface increases
vulnerability to enemies (Marston et al. 1978; Bergelson
and Lawton 1988; Loader and Damman 1991; Loeffler
1996). Shelter-making behavior prevents a shelter maker
from foraging, resulting in slower growth and prolonged
developmental rates (Damman 1987; Ruehlmann et al.
1988; Hunter and Willmer 1989; Loeffler 1996).

Thus, shelter makers can be considered as “physical eco-
system engineers” that directly or indirectly control the
availability of resources to other organisms by causing
physical state changes in biotic or abiotic materials (Jones
et al. 1994). Jones et al. (1997) pointed out that physical
ecosystem engineers could play important roles as keystone
species in ecosystems. However, fewer studies have focused
on shelter-mediated interactions than on interactions based
on trophic linkages, such as food resource- and enemy-
mediated interactions (Cappuccino 1993; Damman
1993).

This article attempts to demonstrate the significance of
leaf shelters as resources on host plants. First, the benefits
for occupants of leaf shelters are emphasized. Second, evi-
dence for shelter utilization by other organisms (shelter
users) and for unidirectional beneficial interactions be-
tween shelter makers and users is shown. Then, I demon-
strate that leaf shelters act as a mediator of indirect
interactions in an animal–plant community, focusing on (1)
the modified distributions of herbivory, (2) tritrophic inter-
actions, and (3) abundance and species richness on host
plants.

Benefits for occupants of leaf shelters

Evading abiotic environmental factors

Abiotic factors, such as humidity, radiation, temperature,
and wind, directly affect reproductive capacity and longev-
ity of insects (Willmer 1982). Insects usually suffer high
mortality in young immature instars, and mortality is critical
to population dynamics (Cornell and Hawkins 1995). Desic-
cation is a major environmental hurdle for immature in-
sects, especially during molting (Willmer 1982). Relative
humidity inside shelters is significantly higher than that of
the leaf surface (Henson 1958a; Willmer 1980; Hunter and
Willmer 1989; Larsson et al. 1997). Because insect larvae
survive and grow better at high humidity than at low humid-
ity (Hunter and Willmer 1989; Larsson et al. 1997), shelters
provide a favorable microclimate for shelter occupants.

Radiation (including sunrays and radiant heat) affects
herbivores directly and indirectly by changing plant quality
(see next section). Radiation and wind are factors changing
air temperature (Porter and Gates 1969). The temperature

within various types of leaf shelters differs from ambient
temperature, and thus it might affect growth rates of the
larvae inside (Henson 1958b). Many factors determine tem-
perature in microhabitats: the shape of structure, air circu-
lation at its surface or inside, surfacevolume ratio, color, or
orientation to the sunrays (Henson 1958b).

Reduction in bottom-up effects

Sagers (1992) showed that leaf-rolls reduced physical
and chemical defenses on the host plants without altering
the nutritional status. In the neotropical shrub Psychtori
horizontalis, shading by rolled leaves decreased the tough-
ness of the expanding leaves by 31% and tannin concentra-
tion by 15% while having no effect on nitrogen and water
content; this is similar to the differences between shaded
plants and plants growing under high light levels. Sun leaves
are thicker, containing more fibers (Givnish 1988) and
higher levels of defense chemicals than shade leaves at both
inter- and intraindividual scales (Boardmen 1977; Mole
et al. 1988).

Concentrations of antiherbivore defense compounds
are reduced in leaf shelters compared to normal leaves
(Berenbaum 1978; Sandberg and Berenbaum 1989).
The presence of hypericin in Hypericum perforatum
(Guttiferae) reduces survivorship and prolongs the devel-
opment of tortricid larvae (Heliothis zea and Platynota
flavedana) that feed on leaves in the light. When wave-
lengths photoactivating the toxin hypericin are excluded by
filters, larval survival is enhanced. In the wild, Platynota
flavedana successfully survives on the plant by tying to-
gether leaves and feeding inside the ties. Thus, the larvae
are protected from phototoxic compounds by their mode of
feeding (Sandberg and Berenbaum 1989).

Reduction in top-down effects

Leaf shelters also protect the occupants from general preda-
tors, such as ants, birds, and spiders (Table 1). Fowler and
MacGarvin (1985) found that aphid-attending ants reduced
the density of free-living leaf-chewers (Lepidoptera) more
than the density of leaf-tiers (Lepidoptera) and nomadic
leafminers (Lepidoptera) on Betula pubescens. These re-
sults show that ants can change the guild structure of her-
bivorous insect communities.

Shelter users

Shelter users can be divided into coexisting organisms and
secondary users (Table 2). Coexisting organisms live with
a shelter maker in the same shelter. Most of them are con-
specifics of the shelter maker (caterpillars: Werner 1977;
Carroll and Kearby 1978; Carroll et al. 1979; Cappuccino
1993; aphids: Akimoto 1988; Fukui, unpublished) and
potential natural enemies of shelter makers (Cappuccino
1993; Dickson and Whitham 1996; Fukui, unpublished).
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Additionally when shelter makers are aphids, aphid-attend-
ing ants may often accompany them (Fukui, unpublished).

Secondary users inhabit a leaf shelter after it has been
utilized by a shelter maker. Some secondary users spend
most of their larval stages in leaf shelters (Table 2: caterpil-
lars, grasshopper, leaf beetles, and weevils), and others stay
temporarily in leaf shelters (Table 2: adult moths, earwigs,
spiders, stinkbugs, and insects during molting). Further-
more, secondary users of leaf shelters are divided into po-
tential shelter makers and free-living species that do not
construct their own shelters (Table 2).

Potential shelter makers are organisms that use a shelter
made by other species, even though they can make their
own shelters. Potential shelter makers may be conspecific or
heterospecific to the shelter makers. The first category in-
cludes late-generation caterpillars that use leaf shelters
made by the first generation of their own species (Carroll
and Kearby 1978; Carroll et al. 1979; Cappuccino 1993;
Cappuccino and Martin 1994). The second category is rep-
resented by caterpillars and spiders (see Table 2). Fully
expanded mature leaves are tougher than young leaves
(Feeny 1970; Schultz et al. 1982; Coley et al. 1985). Because
tougher leaves should obligate shelter makers to spend
more energy and time in making a shelter, the cost of mak-
ing a shelter may be higher for larvae late in the season than
for larvae early in the season. Thus, if larvae have a chance
to occupy a shelter without the cost of making it, larvae late
in the season would elect to use a existing leaf shelter
secondarily.

Free-living species of secondary users include a wide
range of taxa including Coleoptera, Dermaptera, Diptera,
Hemiptera, Homoptera, Hymenoptera, Lepidoptera, Or-
thoptera, spiders, and terrestrial isopods (Table 2). Some of
them are herbivorous (caterpillars, grasshopper, herbivo-
rous stinkbugs, leaf beetles, and weevils) and others are
predaceous (larvae of predaceous flower flies, earwigs,
lacewings, predaceous stinkbugs, spiders, and staphylinids).

Interactions between shelter makers and users

Most interactions between shelter makers and coexisting
organisms are direct trophic linkages rather than indirect
ones mediated by shelters. If shelters are made by the coop-
eration of several conspecific individuals, each individual
may benefit from reduced costs of making a shelter (arrows
A1 and A2 in Fig. 1). Some of them, however, might be
cheaters that do not cooperate in a shelter construction
(arrows A1 and A3 in Fig. 1). Akimoto (1981) demon-
strated that Eriosoma yangi parasiticum, which does not
make its own gall, is actually a parasite of galls made by
other Eriosoma species. Eriosoma yangi parasiticum are
sometimes observed to kill the gall-maker. Taking over
galls by a different species suggests that galls can be used
physiologically by a species allied to the shelter maker.
Conspecific individuals can more easily become shelter
parasites because their demands are in common with those
of the shelter maker.

The secondary users interact with a shelter maker via a
leaf shelter because they are temporally separated. There
are asymmetrical positive effects from a shelter maker to
secondary users (arrow B in Fig. 1). The neonate larvae
of the leaf beetle Galerucella lineola inhabit and grow up
in an artificially rolled shelter or a leaf-gall made by the
cecidomyiid Dasineura marginemtorquens to escape from
desiccation (Larsson et al. 1997). Leaf-rolls made by cater-
pillars reduced leaf toughness and provided food more eas-
ily consumed by grasshoppers (Lewis 1979). Kudo (1994)
reported that the nymphs and newly molted adults of the
acanthosomatid bug Elasmucha putoni are found more
often in leaf shelters than on leaves, suggesting that this
behavior might protect molting bugs from predators and
adverse weather conditions.

The indirect interaction among secondary users medi-
ated by leaf shelters deserves to be mentioned (arrows C in

Fig. 1. Interactions among organisms
mediated by leaf shelters. Note that the
interactions are not always positive.
Though shelter makers give positive
effects on the coexisting organisms A1,
other effects are sometime negative A2,
A3. There are asymmetrical positive
effects from shelter makers to secondary
users that include both predacious and
herbivorous organisms B. The interactions
among secondary users are competitive
C1 or predatory C2. The leaf shelters
could control herbivory on a host plant.
If the secondary user is herbivorous,
herbivory may increase D. If the
secondary user is predacious, herbivory
may decrease due to increased predation
pressure on the herbivore E
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Fig. 1). A leaf shelter sometimes contains more than one
species or several individuals (Werner 1977; Carroll and
Kearby 1978; Carroll et al. 1979; Cappuccino 1993). It is
unclear whether the interaction among them is mutually
beneficial. Cappuccino (1993) suggested that disadvantages
are involved in the cohabitation of leaf shelters. Changes in
leaf quality with the accumulation of damage and frass may
lead to a decline in the developmental rate of the shelter
occupants (arrow C1 in Fig. 1). A leaf shelter may mediate
predation because both herbivores and their predators are
secondary users of a leaf shelter on the same host plant (see
Table 2). There is evidence that some arthropod predators
(spiders, staphylinids, clerid larvae, and lacewings) and
parasitoids attack insect herbivores within leaf shelters
(arrow C2 in Fig. 1) (Carroll and Kearby 1978; McNeil et al.
1978; Danthanarayana 1983).

The modified distributions of herbivory

Distributions of some herbivores on a plant reflect their
microclimatic requirements and difference in the quality of
host tissues (Casey 1976; Willmer 1980; Hunter and Willmer
1989; Cappuccino 1993; Larsson et al. 1997). The distribu-
tion of the shelter-making caterpillar Omphalocera munroei
depends on the distribution of microhabitats suitable for
making leaf ties, regardless of nutritional levels (Damman
1987).

Several species of insects disperse to seek shelter sites
(Willmer 1980; Akimoto 1981; Hajek and Dahlsten 1986;
Damman 1987; Larsson et al. 1997). Neonate larvae of
Galerucella lineola move up along the shoot and initiate
feeding in rolled young leaves, which are naturally located
only at the top of Salix viminalis (Larsson et al. 1997). When
larvae found rolled artificial shelters close to their hatching
site, they accepted mature leaves for feeding and stopped
moving to the top of shoots. This is another example in

which the preference for habitats depends on leaf structure
rather than nutritional value.

The presence of a leaf shelter may promote oviposition
of occupant species (Cappuccino 1993). However, plant
quality in shelters may be responsible for the attraction to
females, instead of a female response to the shelter itself.
To test this hypothesis, Cappuccino (1993) constructed
artificial shelters randomly on a paper birch. Females of
Acrobasis betulella responded not to leaf quality but to the
presence of leaf shelters that protect their larvae from natu-
ral enemies. Thus, the distributions of leaf shelters affect
distributions of secondary users, resulting in the modified
distribution of the latter (Fig. 2).

Leaf shelters mediate feedback effects involving
shelter occupants and host plants. When a leaf shelter
protects herbivorous secondary users, shelters may in-
crease herbivory of plant tissue (arrows B and D in
Fig. 1). The presence of predaceous organisms some-
times controls herbivory on host plants (Atlegrim 1989;
Gastreich 1999; Ruhren and Handel 1999). In contrast,
when a leaf shelter protects predaceous secondary users,
shelters may decrease herbivory (arrows B and E in Fig. 1).
Thus, the leaf shelter might indirectly increase or decrease
total damage by herbivory on the host plants through in-
creased preference of shelter users (Fig. 2). Furthermore,
such feedback effects may enhance the heterogeneity of
herbivory within a plant owing to uneven distribution of
shelters.

Tritrophic level interaction

It is necessary to discern trophic interactions mediated by
leaf shelters. Induced chemical compounds and the struc-
tural damage by herbivory act as cues for natural enemies
searching for prey (Hassell 1968; Greenberg and Gradwohl
1980; Odell and Godwin 1984; Roland et al. 1986; Faeth

Fig. 2. Three pathways mediated by leaf shelters. Leaf shelters have effects on a) the modified distributions of herbivory, b) tri-trophic
interaction, and c) abundance and species richness on a host-plant
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1990). Thus, leaf shelters act as mediator of tritrophic
interactions.

Structures on the leaf surface also act as the mediator
of tritrophic interactions. Tufts of hairs and other minute
structures in the vein axils are called leaf domatia. A leaf
domatia is a kind of leaf shelter that is provided by the plant
for mites. Predaceous mites benefit from leaf domatia by
securing a safe place for oviposition and molting (Walter
and Dennis 1992; Walter 1996). Plants benefit from having
leaf domatia because predatory mites could inhabit them
before attack by plant parasites (herbivorous mites).

Do leaf shelters mediate tritrophic interactions among
host plants, shelter occupants, and their natural enemies?
Although leaf shelters protect caterpillars from birds, some
birds can learn that leaf-rolls contain larvae, thus using
them as cues for searching larvae. Birds that have learned
search for rolled leaves, open them, and feed on the oc-
cupants (Heinrich and Collins 1983; Greenberg 1987;
Murakami 1999). Therefore, the changed structure of the
plant by shelter makers mediates mutualistic interactions
between host plant and natural enemies (see Fig. 2). In
addition, attracting natural enemies might increase preda-
tion pressures on free-living herbivores, thus controlling
plant damage by herbivory.

Abundance and species richness on host plant

In general, greater habitat heterogeneity supports greater
species richness (Moran and Hamilton 1980; Lawton 1983;
Dennis et al. 1998; Bell et al. 1991). Leaf shelters provide
new physical architecture that increase habitat diversity
(heterogeneity) in the ecosystem. There is evidence that
leaf shelters have clearly positive effects on arthropod di-
versity (see Fig. 2) (Cappuccino and Martin 1994; Waltz and
Whitham 1997; Martinsen et al. 2000; Fukui, unpublished).
On mountain ash (Sorbus commixta), some species of wee-
vils (Orchestes sp.) were found within an aphid leaf-gall but
they were never found outside the gall (Fukui, unpub-
lished). Removal of galls of the aphid Pemphigus betae on
hybrid cottonwoods decreased richness and relative abun-
dance of species because the aphid galls provided shelters
for other species (Waltz and Whitham 1997). When shoots
of hybrid cottonwoods have leaf rolls made by larvae of
Anacampsis niveopulvella, the species richness and species
abundance of associated herbivores were four and seven
times, respectively, as high as those on adjacent shoots with-
out leaf rolls (Martinsen et al. 2000). On paper birch, re-
moval of early season shelter makers, Acrobasis betulella,
reduced the abundance of species appearing later in the
season, and this indirect effect remained in the following
year (Cappuccino and Martin 1994).

Conclusions

Leaf shelters increase the diversity of interactions in an
animal–plant community. A shelter maker usually produces

positive effects on secondary users. However, a leaf shelter
sometimes mediates negative indirect interactions. Shelter
users sometimes act as a shelter parasite when they coexist
in a shelter and there is no alternative shelter. Leaf shelters
sometimes promote the activities of predators when the leaf
shelter includes predaceous secondary users or when
natural enemies use the leaf shelter as a searching cue.
Furthermore, shelter makers influence the distribution of
herbivores and the degree of herbivory on a plant. Thus,
current evidence shows that leaf shelters act as an important
mediator of indirect interactions. More attention should be
paid to leaf shelters and shelter makers acting as physical
ecosystem engineers.

Recently, experiments have become part of the standard
protocol in field studies, including removal or additions of
some major natural factors artificially (Connell 1983; Shi et
al. 1985; Wootton 1994). Previous studies have indicated the
effectiveness of artificial leaf shelters to evaluate the effects
of leaf shelters as physical structure resources (Cappuccino
1993; Larsson et al. 1997). Manipulation could help us to
know the impact of the leaf shelters as physical structure
resources on animal–plant communities (Cappuccino and
Martin 1994; Dickson and Whitham 1996; Waltz and
Whitham 1997; Martinsen et al. 2000).
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