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Abstract. We introduce a partitioning-based distributed document-clustering algorithm
using user access patterns from multi-server web sites. Our algorithm makes it possible
to exploit simultaneously adaptive document replication and persistent connections, two
techniques that are most effective in decreasing the response time that is observed by web
users. The algorithm first distributes the user access data evenly among the servers by using
a hash function. Then, each server generates a local clustering on its fair share of the user
sessions records by employing a traditional single-machine document-clustering algorithm.
Finally, those local clustering results are combined together by using a novel procedure that
generates maximal large itemsets of web documents. We present preliminary experimental
results and discuss alternative approaches to be pursued in the future.
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1. Introduction

The World Wide Web enables us to exchange various kinds of data including
text, images, and multimedia files. Unfortunately, the increasing demand for web
service cannot be matched by the increase in the server and network speed.
Therefore, many alternative solutions, such as resource replication (Rabinovich et
al., 1999; Vingralek et al., 1999) and persistent connection (Fielding et al., 1997),
have been developed to reduce the response time observed by web users. Resource
replication distributes the resources among multiple servers in order to increase
the service speed and reliability. Persistent connection aims at improving the
HTTP protocol by allowing a web browser to reuse an open connection for
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consecutive requests in order to reduce the connection overhead. The benefits
of a persistent connection can be materialized when a web browser submits
consecutive requests to the same server. Therefore, in order to take advantage
of both persistent connection and replication, the resources that are frequently
requested together by many users should be replicated together on servers. If the
documents are replicated individually without considering how frequently they
are requested together, a web browser may have to connect to many servers
during a user session and will experience significant delays due to the connection
overhead. For example, assume that there exist four resources D1, D2, D3 and
D4 that are replicated on two servers s1 and s2, located very close to each other.
Assume that two of those resources, denoted D1 and D2, are very frequently
requested together by many web users, i.e., users who request one of them are
very likely to request the other one. Similarly, assume that the remaining two
resources, denoted D3 and D4, are also frequently requested together by many
other Web users in the same region of the network. The servers s1 and s2 are
selected so that they are very close to both the clients who request the resources
D1 and D2 and to the clients who request the resources D3 and D4. Moreover,
assume that users who frequently request D1 and D2 are different from users who
frequently request D3 and D4. That means, a user is interested in either resources
D1 and D2, or resources D3 and D4. Finally, assume that neither of the two servers
s1 and s2 has enough store space to accept the new replicas of all four resources,
but each server has enough space to accept half of these resources. There are two
possible mechanisms to replicate the resources. The first possibility is to replicate
the resources together if they are frequently requested together by many users, i.e.,
D1 and D2 are replicated on one server and D3 and D4 are replicated on the other
server. In this case, the browsers used by the web users need to connect to only
one server or the other depending of which resource set their users are interested
in. The second possibility is to replicate the resources without considering how
frequently they are requested together. For example, resources D1 and D3 may be
replicated on one server and resources D2 and D4 may be replicated on the other
server. In this case, the browsers of all users in that region would have to connect
to both of the servers since the resources that are wanted by the individual
users would be distributed on both servers. Since most web resources are very
small in size, the connection time between a browser and a server contributes
significantly to the overall response time observed by the users. Therefore, The
first mechanism is preferred in order to reduce the connection cost. In this paper,
we present a partitioning-based distributed clustering algorithm that can be used
for identifying clusters of resources that are frequently requested together by users
in a multi-server system. These clusters can be used as the unit of replication in
order to take advantage of persistent connections and replication at the same
time.

2. Distributed Clustering Algorithm

Clustering algorithms (Jain and Dubes, 1988) have been used for generating
clusters of documents for many purposes. In general, the clustering algorithms
are divided into two categories: content based and usage based. Content-based
clustering compares the keywords and terms of documents in order to cluster
the documents with similar content. Usage-based clustering (Chundi and Dayal,
1997; Zaiane et al., 1998; Cooley et al., 1999) typically extracts access patterns
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from the log file, such as user transactions issued against the web resources. The
distributed clustering algorithm introduced in this paper falls into the usage-
based clustering category. We are interested in finding out the resources that are
frequently requested together by users, rather than identifying the resources that
have similar content. Our algorithm consists of three major steps: data collection,
local clustering, and combining.

2.1. Data Collection Step

The transactions of web users are termed user sessions. We define a user session
as a set of resources that are requested by a single user such that the duration
between two consecutive requests does not exceed a predefined threshold. There
is no standard definition of a web user session. One commonly used definition
is a sequence of consecutive requests initiated by the same user during a limited
amount of time. Our definition limits the inter-request interval instead of limiting
the length of a user session since the total lengths of user sessions may vary
significantly. A long break between two consecutive requests is a better indicator
of the end of a session compared to a fixed time interval. An alternative definition
of user session includes the requests to only certain types of resources as in
Webminer (Cooley et al., 1999). Document types are estimated based on the
average time users spend on those documents. Since the objective of Webminer is
to identify user interests based on their request patterns, only the pages that are
estimated to have meaningful content are included in the user session records.
We include in the session records all of the resources that are requested by users
since we are not concerned about the contents of the resources. Our objective is
to identify the clusters of resources such that the resources in each cluster are
frequently requested together in many user sessions.

When the resources of a web site are replicated on multiple servers, a web
browser may send requests to many servers during a user session depending
on which servers contain the resources that a particular user wants. Therefore,
each web server can observe a portion of a user session involving only the
resources that are requested from that server. In order to cluster resources
correctly based on usage, the portions of user session records from all servers
should be brought together to produce complete session records. There exist two
major challenges in collecting session records on a multi-server system. The first
one is the identification of individual user requests that belong to the same session.
The second one is the mechanism to bring the portions of sessions together.

Figure 1 shows an example web user who requests documents [D1 . . . D5]
from three different servers of a multi-server web site. Documents D1 and D2

are requested from server 0, D3 and D4 are requested from server 1, and D5 is
requested from server 2. Server 0 thinks that only the documents D1 and D2 are
requested by that particular user. Similarly, the other two servers do not have
a complete knowledge about the documents that are requested during the user
session. In fact, the user requested five documents from three different servers.
Each server has only partial knowledge of the documents that are requested
during the user session. None of those three servers is aware of the fact that the
user requested documents [D1 . . . D5] during a session. The partial session records
from those servers need to be brought together so that an accurate clustering
algorithm can be applied based on user access patterns. The access (or usage)-
based algorithms cluster the documents depending on how many user sessions
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documents
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Fig. 1. Example user session in which five documents are requested from three different servers at a
multi-server web site.

contain those documents together. The documents that are requested together in
many sessions are assumed to be relevant to each other. The purpose of the data
collection step is to collect complete user session records and distribute them
fairly among the servers of a multi-server web site.

In order to identify the requests that belong to the same session the servers
assign a session ID number to each user session, which is exchanged between
the servers and browsers via web cookies. A web cookie is a piece of data that
a server is allowed to write onto a browser’s local disk. Once a cookie is stored
on a browser’s local disk, the browser piggybacks that cookie onto the following
requests sent by the user to various servers. The individual requests that belong
to the same session are identified by including the session ID numbers in cookies.
The user session records are represented using a vector model in which each
element of a vector indicates whether a resource was requested during the user
session or not. As an example, a user session record {1,0,1,0} indicates that the
web resources corresponding to the elements in the first and third index positions
were requested during that user session. It is also possible to use the number of
requests to each document in the vector model rather than using an existential
model in which each vector can have a value of either ‘1’ or ‘0’. However, it is very
hard to determine the correct number of requests to a document by the same user
since most web browsers cache the documents and serve the consecutive requests
to the same document from their caches. That is the main reason why we used a
simple existential model (1 or 0) to represent the user session records.

The servers in the system are assigned unique ID numbers in the range
[0,P − 1], where P is the number of servers. The server that will collect the
complete session record for a particular user session record is determined by
applying a hash function on the session ID number:

serverID = hash(sessionID)

The hash function returns a value in the range [0,P − 1] that gives us the ID
number of the server that will collect the complete session record of the user
session. When a server receives a request, it can quickly determine on which server
the session record of that user session should be collected. If the collector of the
session record is a different server than itself, then the server forwards the request
information to the collector of that session. Servers periodically forward request
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information to each other in bulk in order to reduce the overhead of the request
forwarding process. This process does not cause any more web traffic than a
centralized approach in which all session records are collected at a dedicated
server. Moreover, the hash function distributes the session records evenly among
the servers, i.e., each server collects almost the same number of session records.

As an example, consider the user session shown in Fig. 1. The servers are
numbered in the range [0 . . . 2]. Assume that the hash function returns zero for
the session ID number. That means server 0 is supposed to collect the complete
session record for this session and use it in its local clustering step. Therefore,
servers 1 and 2 will tell server 0 about the requests they received for this user
session. This is done by periodically forwarding information about the requests
whose session records are not collected at the servers that receive those requests.
Every time a server receives a request, it applies the hash function on the session
ID number to find out which server should collect the complete session record.
If the hash function returns a different server’s number, then the session ID
number and the ID number of the requested document should be forwarded to
that server. Server 1 tells server 0 that documents D3 and D4 are requested during
the user session that is shown in Fig. 1. Similarly, server 2 tells server 0 that
document D5 is requested during that session. Thus, server 0 finds out that the
session record includes requests for five documents [D1..D5], not only D1 and D2.

2.2. Local Clustering Step

The local clustering step takes as input the portion of (complete) user session
records collected in the data collection step, and generates as output the set of
clusters on each server. For ease of discussion, we shall refer to each resource
as a document. For this step any well-known single-server document clustering
algorithm, such as K-Means (Forgy, 1965; MacQueen, 1967; Jain and Dubes,
1988; Frakes and Baeza-Yates, 1992), Single-Link (Hartigan, 1975; Gordon, 1981;
Jain and Dubes, 1988), Complete-link (Gordon, 1981; Jain and Dubes, 1988),
Leader Algorithm (Hartigan, 1975), an adaptive clustering algorithm (Yu et
al., 1985), etc., can be used in order to generate non-overlapping clusters of
documents. The co-occurrence frequency of documents in complete user session
records is used for determining the similarity of documents to each other in order
to cluster documents based on access patterns in those clustering algorithms. The
documents that frequently appear together in user session records are clustered
together. The result of the local clustering step is a list of clusters, where each
cluster is represented as a sorted list of document ID numbers. A document ID
number is an integer that uniquely identifies a document; the document ID is
obtained by mapping the URL into a 4-byte integer. Thus, the local clustering
result requires only 5 bytes for each document (4 bytes for the ID number and 1
byte delimiter character between ID numbers.

2.3. Combining Step

The combining step reconciles the differences among the sets of clusters generated
by the individual servers and generates the final clustering result by merging the
local cluster sets. This step can be performed on one server if the number of
servers in the system is not very large. Otherwise, it can be performed in two
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Combining Algorithm on Collectors:
1. Receive local cluster sets from other servers
2. Merge all cluster sets into one sorted list (L) of clusters
3. Count the duplicate clusters in list L
4. Generate maximal large itemsets
5. Eliminate subsumed clusters

Fig. 2. Main steps of the algorithm that combines sets of clusters.

Large Itemset Generation Step:
Initialize H as an empty hash table
For each Clusteri in list L do

Initialize S as an empty set
Insert (Clusteri : Counti) into H
For each Clusterj that succeeds Clusteri in list L do

Let C = intersection of Clusteri and Clusterj
If C contains more than one document then

If C is not in H then
Insert (C : Countj ) into H; Add C into S

Else If C is in S then increment (C : Countj ) in H
End-if

End-if
End-do

End-do
For each (Clusteri : Counti) pair in hash table H do

If (Counti > minimum support) then
Output Clusteri as a large itemset

Fig. 3. Algorithm for generating maximal large itemsets.

iterations where the local results of a number of servers are combined together on
multiple servers in the first iteration, and the final result is generated during the
second iteration on one server. The results are broadcast to all servers after that.
The operations in one iteration of the combining step are summarized in Fig.
2. The details of step 4, which generates the maximal large itemsets, are shown
in Fig. 3. Since we are interested in finding the documents that are requested
together, our algorithm ignores single-document clusters.

Each server assumes one of the two possible roles during the iterations of
the combining step: a collector role or a sender role. The roles are determined
according to the server ID numbers. If the combining step is performed in single
iteration, then the server with the ID number ‘0’ is the collector. If two iterations
are used, then the collectors can be predefined or randomly chosen in the first
iteration, and the server with the ID number ‘0’ is the collector in the second
iteration. A collector receives the local clustering results from a predetermined
number of senders and combines those local results into one set of document
clusters. A sender only sends its local clustering result to a collector and leaves the
rest of the combining work to the collector. During the local clustering step, both
collectors and senders generate their local clustering results. In the combining
step, the preselected collectors perform the combining operation.

Collectors follow the steps in Fig. 2 in order to combine the local clustering
results. A collector receives the local clustering results from the senders and adds
the received cluster sets to its local cluster set to generate one sorted list of
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Fig. 4. Example of combining step with three servers and seven documents.

clusters. The duplicate clusters received from different servers are eliminated and
the number of duplicates for each cluster is counted. Each cluster in the list is
replaced with a (cluster, count) tuple. The cluster field of a tuple contains the
document ID numbers of the documents in a cluster. The count field of a tuple
indicates the number of local clustering results that contain this cluster. The tuples
in the list are sorted in two orders: the major order is the increasing order of
number of documents in each cluster, and the minor order is the lexicographical
order of cluster contents (document ID numbers within each cluster). The sorted
list is shown in Fig. 5.

We explain the combining step through an example. Figure 4 shows an example
web site with P = 3 servers and D = 7 documents. The server ID numbers are in
the range [0,2], and the documents are represented by ID numbers that are in the
range [D0,D6]. The three cluster sets at the top are the local cluster sets produced
by the servers. The cluster set at the bottom is the final cluster set at the end of
the combining step. At the beginning of the combining step servers send their
local results to the collector. Server 1 sends to Server 0 a cluster set containing
two clusters: (D0,D1,D4) and (D2,D3,D5,D6). Server 2 sends to Server 0 a cluster set
with three clusters since one of its four clusters has only one document: (D0,D1),
(D2,D4) and (D5,D6).

We interpret the cluster list in Fig. 5 as a transaction list and generate maximal
large itemsets in order to generate our final clustering result. A large itemset is
a set of items that appear together in a collection of transaction records more
frequently than a predefined threshold, called minimum support. A maximal large
itemset is a large itemset which is not a subset of any other large itemset in the
generated result. Unlike the Apriori-based large itemset generation algorithms
(Agrawal and Srikant, 1994), we are not interested in generating all possible large
itemsets (clusters). We only need to generate the maximal large itemsets which are
not subsumed by other large itemsets. Another difference with the Apriori-based
approach is that our algorithm attempts to minimize CPU processing time, rather
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(D0,D1) 1

(D2,D4) 1

(D5,D6) 2

(D0,D1,D4) 1

(D0,D1,D3,D4) 1

(D2,D3,D5,D6) 1

Fig. 5. Sorted list of clusters collected at Server 0.

than disk access time, since the local clustering results do usually fit in memory
during the combining step.

Step 4 (large itemset generation) of the combining algorithm shown in Fig.
3 uses a hash table H to keep track of the itemset counts. The records in the
hash table are key–value pairs. The key of a hash table record is an itemset
(cluster), and the value of a hash table record is a count that indicates the
number of occurrences of the corresponding itemset in the merged list of local
clustering results. Inside the nested for loops of Fig. 3, each cluster in the list
is intersected with all of the succeeding clusters in the list while keeping the
counts of intersection results in the hash table. Each cluster in Fig. 5 and its
intersections with the succeeding clusters are itemsets whose occurrences need to
be counted. For example, in the first iteration of the outer for loop, first (D0,D1) is
inserted into the hash table H with the count of 1. Then, the inner for loop starts
intersecting (D0,D1) with the succeeding clusters in list L. The intersection with
(D0,D1,D4) yields (D0,D1), which causes the count of (D0,D1) in the hash table to
be incremented to 2. The same thing happens when (D0,D1) is intersected with
(D0,D1,D3,D4) and its count is incremented to 3.

The algorithm uses a set, called S, in order to keep track of the new itemsets
inserted into the hash table at each iteration of the outer loop. This is done in
order to avoid counting the occurrences of itemsets in the list multiple times. For
example, after the first iteration of the outer loop, the hash table will contain
(D0,D1):3. This means all three occurrences of (D0,D1) in list L are counted in
this iteration. If we get (D0,D1) as the intersection of a pair of clusters in a later
iteration of the outer loop, we do not want to count it since those occurrences
of (D0,D1) are already counted in the first iteration. In order to explain this
issue, assume that we replaced the cluster (D0,D1,D3,D4) in list L with the cluster
(D0,D1,D3). During the outer loop for cluster (D0,D1,D4), we would have obtained
(D0,D1) when we intersected it with cluster (D0,D1,D3). The if statement ‘If C is
in S’ would have failed and we would not have incremented the count of (D0,D1)
and preserved the correct count of 3.

Figure 6 shows the contents of the hash table H after the nested for loops
in Fig. 3 are executed. The last operation of step 4 in the combining algorithm
is to go through the itemsets in the hash table and extract the ones whose
counts are above the minimum support. The maximal large itemsets generated
by our combining step are (D0,D1), (D5,D6), and (D0,D1,D4), assuming a minimum
support of 2 (i.e., at least two servers agree on a cluster).



Distributed Web Log Mining Using Maximal Large Itemsets 397

(D0,D1) 3

(D2,D4) 1

(D5,D6) 3

(D0,D1,D4) 2

(D0,D1,D3,D4) 1

(D2,D3,D5,D6) 1

Fig. 6. Records in the hash table after the nested for loops in the combining algorithm.

Finally, in step 5 of the combining algorithm we eliminate the subsumed
itemsets in order to generate the maximal large itemsets. The subsumption elimi-
nation operation scans the final list of clusters in two nested loops. It compares
the clusters and eliminates those (large itemsets) that are subsets of other clusters
in the final result.

3. Experimental Evaluation

We have evaluated the performance of our distributed clustering algorithm
through both on-line and simulation experiments. The on-line experiments mea-
sured the accuracy of the clusters generated by our algorithm compared to the
clusters generated by a centralized approach. The simulation tests compared the
execution time of our algorithm with that of the centralized approach, and pro-
vided a detailed analysis of our algorithm’s execution time. On-line experiments
are also used for fine-tuning the parameters of the simulation experiments so
that the execution times measured in simulation experiments are accurate. The
fine-tuning was made by measuring the network, disk, memory and CPU times
in detail for different steps of the clustering algorithms for one, two and four
servers in on-line experiments and adjusting the simulation parameters to match
those measured times.

The accuracy of our algorithm was measured as follows. For every pair
of documents, we check whether they were placed in the same cluster in the
centralized and distributed clustering algorithms. If both algorithms agree that
those two documents should be in the same cluster (or agree that they should
be on separate clusters), that is a match between two clustering results. We
measure the accuracy as the percentage of matches between the two clustering
results, over all pairs of documents. As a simple example, assume that we have
only three documents: A, B, and C. There exists three possible two-document
combinations (i.e., pairs): AB, AC, and BC. If the centralized algorithm generates
a clustering result containing only the cluster ‘BC’, and the distributed algorithm
generates a result containing the cluster ‘ABC’, the accuracy would be 33%. The
two clustering algorithms agree only on the pair of documents, out of three pairs:
‘BC’, which indicates that documents B and C should be together.

We have performed the simulation experiments with 1–16 servers which receive
1–16 million requests per day. Let the problem size M indicate a test case in which
M servers receive M million requests per day. As the problem size increases in
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Fig. 7. Total execution times of the distributed and centralized algorithms for 1000 documents and
different problem sizes.

the test results represented in this section, the number of servers and requests
increase at the same rate. For example, a problem size of 4 represents the tests
with four servers that receive a total of 4 million requests per day. The traces
collected from NCSA’s web servers (Katz et al., 1994) are used for generating
realistic user request traffic. The request traffic showed a skewed distribution, as
observed by most web sites, i.e., a large percentage of requests involved a small
percentage of documents. Similarly, some clients were more active than others.

Figure 7 compares the execution times of the centralized and distributed
algorithms. The figure shows the execution times with respect to different problem
sizes. The number of frequently requested documents were fixed at 1000 in those
tests, because NCSA’s web servers have only that many frequently requested
documents in the collected traces. The total number of documents that appeared
in the traces was approximately 2500. The execution time for the centralized
algorithm increases linearly as the problem size increases. The execution time for
the distributed algorithm is almost constant as the problem size increases.

Figure 8 shows the execution time of only the distributed algorithm so that
we can analyze it more clearly. Except for a small increase between problem
sizes of 1 and 2, the execution time is almost constant. The problem size of 1
represents a single-machine web site. The increase between problem sizes of 1 and
2 is due to the fact that the single-machine experiment does not involve network
communication and combining step overheads.

Figure 9 shows disk I/O, local clustering, network transfer, and combining
times of distributed algorithm for the problem size of 16. The local clustering
operation consumes more than 99% of the total time. The figure shows how small
the overhead of network transmission and combining operation is compared to
the time taken by local clustering operation. That is the main reason why the
distributed algorithm scales up when the problem size is increased, as shown in
Fig. 8.
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Fig. 8. Total execution time of the distributed algorithm for 1000 documents and different problem
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Fig. 9. Comparison of disk I/O, local clustering, network transfer, and combining operation times of
the distributed algorithm for a problem size of 16 and 1000 documents.

The local clustering step of the distributed algorithm is much faster than the
centralized clustering approach because each server needs to process only 1/P of
the user session records, where P is the number of servers. Moreover, the network
communication and combining steps do not introduce a significant overhead in
the distributed algorithm.

Assume that D documents are replicated on P web servers of a web site and
there are a total of S user sessions per day accessing the documents on that site.
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The running time of a centralized clustering algorithm is O(D2 ∗ S) because all
S sessions have to be processed by the dedicated server. The running time of
the local clustering step of our algorithm is O(D2 ∗ S/P ) since each server needs
to process only S/P sessions. The combining step of our algorithm takes O(C2)
time, where C is the number of clusters containing more than one document. The
speedup of our algorithm is:

Speedup =
D2 ∗ S

D2 ∗ S
P

+ C2
=

D2 ∗ S ∗ P

D2 ∗ S + C2 ∗ P

It is usually very hard to define the number of clusters as a function of the
number of documents, because it changes depending on the clustering algorithm.
In a K-means algorithm, the number of clusters is given to the algorithm as
a parameter. In other algorithms, it is hard to predict the number of clusters
accurately. Our algorithm generates non-overlapping clusters of documents in the
local clustering step using a well-known algorithm such as K-Means, single-link,
or complete-link algorithms. Therefore, each document can participate at most
in one cluster. Moreover, most of the clusters generated from user transactions
are single-document clusters which are not used in the combining step of our
algorithm. Thus, the number of clusters can be defined as a linear function of
the number of documents: C = k ∗D, where C is the number of clusters, D is the
number of documents, and k is a constant in the range [0,1). The speedup of our
algorithm is calculated as Speedup = S∗P

S+P
. Since P � S , the speedup reduces to

S∗P
S

= P .

The maximal large itemset generation algorithm used in the combining step of
our algorithm is faster than Apriori. Apriori’s running time is usually measured
as O(C), where C is the number of clusters. However, this analysis only measures
the number of times the whole transaction database (in our case, the list of
clusters) is read from the disk. Since the list of clusters can fit into memory in
our combining step, we also consider the amount of work done at each iteration
of Apriori in our analysis. In the first iteration, Apriori counts the occurrences
of every document in the database, which results in O(D) counts. The second
iteration of Apriori requires that O(D2) counts are measured. Considering the
fact that C = k ∗ D and k < 1, the running time of only the second iteration of
Apriori is larger than the running time of our complete maximal large itemset
generation algorithm.

Although the distributed algorithm is very fast, its combining step sacrifices
accuracy for speed. It does not guarantee to find all maximal large itemsets. The
large itemset generation step shown in Fig. 3 counts the number of occurrences
for all clusters in Fig. 5 and their intersections with each other. If a subset of
items in an intersection of two clusters is a large itemset, but the intersection itself
is not, this is not recognized by our algorithm. The reason is that our algorithm
does not count the occurrences of all possible subsets of clusters. It only keeps
counts for clusters and their mutual intersections. Even though our tests with
the traces from NCSA’s web servers showed that the clustering result of the
distributed algorithm is approximately 90% accurate compared to the clustering
result of the centralized approach, we expect that the error rate might be higher
for another web site which has a much higher request traffic.
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4. Alternative Approaches and Future Directions

In this section, we summarize our observations during our study of a distributed
clustering algorithm, and compare alternative approaches.

Both the existing document clustering algorithms and large itemset generation
algorithms can be used for generating clusters of documents that are frequently
requested together in user sessions. We used a clustering algorithm in the local
clustering step of our distributed algorithm because the local clustering results
generated by such algorithms are very compact. The results of local clustering
step are represented as a list of document clusters, where each cluster is a sorted
list of document ID numbers. Since the generated clusters do not overlap with
each other, each document ID appears only once in a local clustering result. The
local clustering result for 10,000 documents occupies only 50,000 bytes of memory
(4 bytes for each document ID, and 1 byte for delimiter character). Therefore,
the submission of local clustering results to the collectors in the combining step
requires a small network transfer time. In most web sites, the number of popular
documents hardly exceeds 1000. Consequently, the main reason for choosing
a clustering algorithm over a large itemset generation algorithm in the local
clustering step is the size of the generated results.

A large itemset generation algorithm might be preferred in the local clustering
step to achieve better accuracy of the final results. Our current clustering algorithm
is a partitioning-based. It is easier to generate other types of clustering results,
such as hierarchical clusters, using the large itemset generation at the first step.
The large itemsets can easily be sorted in decreasing order of support. Then, the
list of large itemsets can be traversed in decreasing order of support in order to
generate a hierarchical clustering of the documents. The hierarchy can be built
from bottom to top as large itemsets with more documents and smaller support
are encountered in the list. A clustering algorithm in the local clustering step
generates only clusters of documents but does not provide any information on
how frequently the documents in each cluster appear together in user sessions.
A large itemset generation algorithm provides those counts. Therefore, the final
clustering result generated in the combining step is likely to be more accurate
when a large itemset generation algorithm is used in the local clustering step.
However, the amount of data that needs to be transferred in the combining step
is much larger in that case.

We used a novel maximal large itemset generation algorithm in the combining
step, because that algorithm combines the local results mush faster by taking
advantage of the fact that the number of user clusters is not very large. However,
usage of a large itemset generation algorithm in that step has a limitation. Such
algorithms cannot merge the clusters from the local results. For example, assume
that three local clustering results generated the clusters {A,B}, {A,C} and {B,C}.
A large itemset generation algorithm can generate a final result that contains
either one of those clusters or a subset of them. It is not capable of merging such
clusters to generate a cluster {A,B,C} in the final result. Therefore, a clustering
algorithm might be preferred in the combining step to merge such clusters.

The user session records collected from web user requests are categorical data
represented as vectors where each element is either one or zero, indicating whether
a particular document was requested during a session or not. It was recently shown
in Guha et al. (1999) that the existing document clustering algorithms cannot
cluster categorical data properly. All of the existing algorithms use a similarity or
distance metric for the data records and cluster the data records using that metric.
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However, the categorical data does not provide a wide enough range of data values
to generate an accurate clustering result. For example, all elements of user session
records are either one or zero, which does not provide much distinction between
the session records. ROCK (Guha et al., 1999) solves this problem by adding one
more step to a traditional clustering algorithm. It defines neighbors as two data
records whose similarity is larger than a predefined threshold. Then, it counts the
number of common neighbors for every pair of data records. The clusters gener-
ated from counts of common neighbors are shown to be more accurate than those
of the traditional algorithms. Consequently, a clustering algorithm used in the
local clustering or combining step of a distributed algorithm should consider the
counts of neighbors. Consideration of the neighbor counts increases the execution
time of the clustering algorithm, but is expected to generate better results.

Another alternative approach for clustering user sessions is introduced in
Mobasher et al. (1999) and Cooley et al. (1999) which generates a hypergraph
from the user request patterns, and uses a hypergraph partitioning algorithm to
cluster web users or documents. This approach uses a large itemset generation
algorithm to count the co-occurrences of documents in user sessions, and gen-
erates association rules between those itemsets to construct a hypergraph. An
association rule is in the format A → B where the existence of document A in a
transaction implies the existence of document B in the same transaction with a
high probability.

A distributed variation of principal component analysis, called collective
principal component analysis (CPCA), was used in Kargupta et al. (2000) in
order to extract the principal components during the pre-processing stage, and
speed up the clustering step, which is also carried on in a distributed manner. Our
algorithm does not reduce the search space. It applies a hash-based distribution
algorithm to fairly distribute the workload among the web servers. Kargupta et
al. (2000) concentrates on the clustering of data from distributed heterogeneous
databases. Our algorithm focuses more on how to minimize the communication
cost. Both algorithms include a centralized final step, where partial results from
multiple sites are combined together. CPCA can be used as the pre-processing step
in other clustering algorithms for feature extraction, and can speed up the actual
clustering step significantly. We plan to investigate the possibility of applying this
idea in the next version of our clustering algorithm.

We compared the performance of our distributed clustering algorithm with
that of a centralized algorithm in which all user session records are collected
at a dedicated server that generates the clusters of documents. An alternative
approach can make use of a sampling algorithm that can select a small sample
from the complete set of session records. It is preferred to generate the sample in
a distributed manner in order to reduce the network transmission cost of all user
session records to a dedicated server.

Further investigation of alternative approaches discussed here are left for
future work.

5. Conclusion

We have introduced a distributed clustering algorithm whose results can be used
by web servers in order to perform replication using clusters as the unit of
replication. This in turn in enables the use of persistent connections at the same
time. We plan to investigate further the performance gains obtained from the
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use of document clusters as replication units on a prototype system that we
have previously developed, called Web++ (Vingralek et al., 1999). We plan to
investigate the possibility of using a sampling algorithm that can select a subset
of the complete set of session records in a distributed manner. This could reduce
the amount of local processing time without significantly affecting the accuracy.

It is also possible to use a large itemset generation algorithm in the local
clustering step of our algorithm. The advantage of using a simple clustering
algorithm in the local clustering step was that the generated local clustering
results occupy very small space and do not cause much network transmission
overhead. However, a clustering algorithm does not provide any indication of
how closely the documents in a cluster are related to each other. If a large itemset
generation algorithm is used in the local clustering step, its result will also include
the supports of all generated large itemsets. Therefore, the combining step can be
done more accurately with the help of those support values. However, the results
of large itemset generation algorithm will occupy more space and cause longer
network transmission time. It is also possible to use a simple (single-machine)
clustering algorithm in the combining step instead of a large itemset generation
algorithm. We plan to compare those options in terms of execution time and
accuracy of the generated results in future work.
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