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Abstract. This paper proposes an efficient window-based semi-automatic feature extraction
technique which uses simulated annealing for minimizing the energy of an active contour
within a specified image region. The energy is computed based on a chamfer image, in
which pixel values are a function of distance to image edges. A user places a number
of control points close to the feature of interest. B-spline fitted to these points provides
an initial approximation of the contour. A window containing both the initial contour
and the feature of interest is considered. The contour with minimum energy inside the
window provides the final delineation. Comparison of the performance of the proposed
algorithm with traditional snake, a popular feature extraction technique based on energy
minimization, demonstrates the superiority of the SAFE technique.
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1. Introduction

Feature extraction (Barzohar and Copper, 1996; Merlet and Zerubia, 1996) from
remotely sensed imagery has been an area of active research in computer vision
and digital photogrammetry. The use of active contours, snakes, was introduced
in Kass et al. (1988), to identify region boundaries based on the concept of energy
minimization. An energy value associated with each contour was designed to be
small when the contour was near the object. The energy had both extrinsic and
intrinsic components. The extrinsic components were derived from underlying
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image characteristics (e.g, edge strength). Intrinsic components (e.g., elasticity)
imposed regularity of the curve shape. Given an initial state, equations of motion
were solved to find its final state. The main disadvantage of snakes is that the
evolution is dependent upon its initial state, i.e., the user delineation, as it tends
to gets stuck at a local energy minimum near its initial location in the search
space. Moreover it also suffers from the computational complexity of deterministic
dynamical systems with many degrees of freedom. Since the concept of energy
minimization embedded in the active contour model is analogous to the principles
of simulated annealing (SA) (Kirkpatrik et al., 1983), application of SA for feature
extraction seems appropriate.

Simulated annealing, a well-known optimization tool, mimics the principles
of the annealing procedure which is a physical process where a crystal is cooled
down from the liquid to the solid phase. If the cooling is done slowly enough,
the energy state of the crystal at the end will be very close to its minimum value.
Simulation of this physical cooling may be done with the Metropolis algorithm.
Simulated annealing has a wide range of applications in diverse areas like image
segmentation, pattern classification, edge detection etc.

In this article we propose such a simulated annealing-based Semi-Automatic
Feature Extraction technique called SAFE. It is called semi-automatic since the
user, as in the snake model, is required to provide an initial rough estimate of the
feature of interest. It is important to note that a given image may have several
structures resembling the feature of interest (e.g., lincar feature). It is therefore
essential to approximately specify the structure in which the user is interested.
Moreover, in order to restrict the search space of SA, we have incorporated
a windowing approach in the SAFE algorithm. The proposed method has two
phases. In the initial phase appropriate image-processing techniques are applied
and the energy image is computed. Subsequently the operator is required to
provide a number of control points which is a rough estimate of the feature of
interest. Finally, B-splines are used to fit the initial, user-delineated, points and
a window containing both the spline and the feature of interest is considered.
In the second phase of SAFE, SA is used to minimize the energy within the
window. The final curve with minimum energy thus delineates the feature. Since
SA is known to converge to the optimal solution, it will be able to overcome
the limitation of traditional implementation of snakes which often gets stuck at
suboptimal solutions.

2. Contour Estimation By Energy Minimization in the Snake
Model

2.1. Minimization of the Total Energy

Total energy of an active contour or snake, s, can be defined as the sum of extrinsic
and intrinsic energies, and may be expressed by a parametric representation,
v(s) = (x(s), ¥(s)), x(s) and y(s) being the coordinates of s, as

E = /31 E(v(s))ds = /s1 [Eq(v(s)) + Ep(v(s)) + Ec(v(s), vo(s))]ds (1)

So S0

Normally, the intrinsic or geometric energy E,, derived from the geometric
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constraints of the object model is based on the first derivative (vy) and the second
derivative (vy) of the function v(s). It is defined by E, = 2[vs(s)> 4+ B|vss(s)|?, where
y and f§ are constants that control the influence of the geometric energy against
the photometric energy. The extrinsic energy comprises photometric energy E,,
that constrains the contour to approach the feature of interest, and control energy
E_., which constrains the difference between the contour v(s) and the initial curve
vo(s). Ep, derived from the image, depends on the type of feature to be extracted.
For a narrow linear feature, it can be the square of intensity values (I(x,y)) of
the image, multiplied by a positive or negative constant (w) for lighter or darker
features respectively, ie., E, = w]l(x, y)|%. For a step edge, it can be calculated
as Ep. = —|81(x, y)|?, thus helping the contour to move towards the image points
with high gradient values while minimizing the energy.

In this article, the features in the image are defined by morphological tools for
narrow features and the Canny operator (Canny, 1986) for step functions. The
energy image is defined by a Chamfer image, derived from the feature image, in
which the pixel values relate to their closeness to any surrounding edge. Letting
E. = E, + E., equation (1) becomes

St

E= / D) 4 Blr(5) 4 Ew(0s(s)) = / F(s,v, 5, vy5)ds @)

So S0

The computation requires the minimization of this energy.

2.2. Approximation by a Cubic Spline

The contours used to model features are cubic B-splines (Trinder and Li, 1996).
The advantages associated with the splines are that they are smooth piecewise
polynomials which maintain continuity between neighboring sections or domains.
Moreover, they limit the influence of errors in the points used to locate the curve
of order n to n+ 1 domains of the curve. Knowledge of both a set of polynomial
functions, which determine the shape, and a given set of control points or a
control polygon, specified by a number of fixed locations along the curve, defines
the B-spline. The B-spline function adopted here is a third-order function, while
image details representing the feature determine the control polygon. The spline
is subject to internal forces, referred to as internal energy, brought about by
the inherent piecewise smoothness of the B-spline, while the external forces that
relate to the image information guide the SA-based process described in the next
section towards the feature.

Suppose the points delineated by the user are approximated by a cubic spline.
That is

x(s) = ZNi(s)Xi (3)
i=1

y(s) = Ni(s)Y; 4)
i=1

where X; and Y; are the parameters of the cubic spline in x and y directions in
the image respectively, and Nj(s) is the normalized cubic B-spline between knots
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s; and s;14. For equally spaced simple knots, with a spacing h,

$3

Ni(s)=@0<s—si<h
14354352 —3s°
= e h<s—s;<2h
4 — 652 + 35
:T2h<s—si<3h
1—3s+3s2 =3
=T3h<s—si<4h (5)

In the actual implementation, the user-delineated points are located at discrete
values so that the integration of the B-spline in equation (1) will be replaced with
a summation. Letting

N = [Ni(s)Na(s) ... Nu(s)] (6)
N; = [N{(s)N3(s)... Ny(s)] (7)
N = [N{(s)N3(s)... N;/(s)] (8)
X =[X1X>...X,]" )
Y =[VY,...7,]" (10)
E, = [f( T [f(x, )] (11)

the total energy can be written in matrix form as
E=yX"NINX + BXT"NINX +yYTNIN,Y
+BY TNGNY + [ (x )] [f(x. )] + Ee

To minimize this energy the conditions are

E_GE
oxX Yy
Hence
T T T T OE,
(VNS Ny +ﬁNssts)X +N [fx(x,)’)] [f(x,y)] + ﬁ =0
and
T T T T JE,
(VNS Nj +ﬁNSSNss)Y +N [fy(xry)] [f(x,y)] + oY =0

In a semi-automatic feature extraction scheme, the operator initially places a curve
near the image structure of interest. By this initial curve, the approximations
Xo and Yy of X and Y can be calculated. The goal is therefore to find the
corrections X and 0Y such that X = Xy +6X and Y = Yy + Y. Letting
B = yNI'N,; + BNIN and following appropriate substitutions, based on the
assumption that the initial curve is located on the feature, the final set of
equations becomes

(B + NT[f(x0, y0)] " [f x(x0, y0)IN + AI)S X
+NTf(x0, yo)] " [f (x0, y0)] =0 (12)
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T = Tiax
Initialize configuration (%) with energy &4 as in equation. (17).
while(T > Tiin)

begin
for i=1 to Nt do /* Nr is the number of iterations at temperature T*/
begin
Evolve configuration ¢’ with energy &4 from & by selecting
positions (i,j)
such that v; = 1 and v; = 0 randomly and exchange v; and v;.
If(gcf—gc <0) (€<—(€/
Else % « %' with probability exp(—<-%%)
endfor
T—TXxu
endwhile

Fig. 1. Basic steps in SA.

(B + NT[fy(x0, y0)] " [f y(x0, y0)IN + A1) Y
+NTfy(x0, y0)I " [f (x0, y0)] = 0 (13)

The contour dynamics in snake is based on solution of coupled differential
equations. In contrast, the proposed SA-based method, described below, requires
the calculation of simple energy differences.

3. Feature Extraction Using Simulated Annealing
3.1. Simulated Annealing

The SA algorithm starts from a random initial configuration at high temperature.
It then proceeds by generating new candidate states and accepting/rejecting them
according to a probability which is a function of the current temperature and
energy difference. The temperature is gradually decreased towards a minimum
value, while the system settles down to a stable low energy state. The basic steps
of SA which are also followed in SAFE are shown in Fig. 1.

3.2. SAFE Procedure
3.2.1. Basic Principle

The feature of interest % is first roughly delineated by providing control points
along the boundary. Subsequently B-splines are used to model the curve formed
from the control points. The advantages of the spline are that they are smooth
piecewise polynomial which maintain continuity between neighboring domains.
Let % represent the contour which the SAFE algorithm tries to fit around %.
& is initialized to the B-spline. A window ¥ is considered across . in such a
way that it includes &. One may note that even if the separation between &
and & increases, it is still possible to capture & by suitably increasing the size
of # . Therefore it is not necessary for the operator to provide a very accurate
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delineation of #. Considering the state of ¥~ as the current configuration, the SA
based feature extraction algorithm (SAFE) attempts to provide %, its estimate
of %, by minimizing the energy within %"

3.2.2. Configuration Representation

Let % consist of n points (pixels) and be represented by

P = {Xgys Xsyre e Xs, } (14)
Let the window #~ contain w points and be represented by
W= {X1,X25. .\ Xoy } (15)

Note that & lies within #". The configuration considered by the SAFE is
represented as

% = {v1,02,...,0,/v; is the value at x; and x; € #7} (16)
% is initialized as follows:
vi=1ifx; € %
—0ifx € (W — ) (17)

In other words, a configuration represents the state of a window at an instant
and initially it represents the window containing only the B-spline. Note that

Yo vi=n
3.2.3. Energy Computation

Each configuration in the search space is assigned an energy which is dependent
on the global characteristic of its corresponding window. The energy &¢ of
configuration % is defined as follows:

Ec=) vixe (18)
i=1

where e; denotes the energy at point x; in %",

The SAFE algorithm redistributes the n points in ¥ within %~ such that &4
is gradually minimized while keeping >, v; = n; thereby providing closer and
closer delineation of .

3.2.4. Location of Window

SAFE algorithm has been implemented using two types of windows. These are
the following.

Rectangular window. Let (Xuin, Vimin) and (Xmax, Ymax) be the minimum and
maximum in the two dimensions respectively of the B-spline drawn from the
initial user delineation. A rectangular window is generated with the following
coordinates: (xmimYmin)a (Xmaxaymin)a (xn1in=ynmx) and (xmaXaymax)- AlthOUgh this
implementation (see Fig. 4) is intuitively very simple, it has the associated
disadvantage that the size of the window may be very large depending on the
length and shape of the B-spline. As the area of the window increases, the
search space of SA also increases, thereby requiring more iterations to locate
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the feature appropriately. Moreover, with the increase in the size of the window,
the likelihood of including more than one feature in it increases. As a result,
the feature of interest may not be properly delineated. To overcome these prob-
lems we also implement SAFE using piecewise linecar window in the following way.

Piecewise linear window. Let (xq, y1),(x2,2),...(xs, yn) be the n user-delineated
points. For both the user-delineated points (x{,y;) and (x,,y,), generate two
points (x}, y!) and (x”;,y";) i = 1 and n at a distance d, specified by the user, from
the corresponding point and perpendicular to the line joining the points (xy, y1)
& (x2,y2) and (x,—1, yu—1) & (xn, yn) respectively (see Fig. 5). For each of the
remaining points (x;, y;), i = 2,...,(n— 1) generate two points (x},y!) and (x";,y";)
at a distance d from (x;,y;) and along the bisector of the angle between the
lines joining (x;_1, yi—1) to (x;, ¥;) and (x;, y;) to (xit1, yit1). Using these 2n points
(x},y}) and (x";,y";) i=1,...,n, (n — 1) sub-windows are generated such that the
ith sub-window (i = 1,...,n — 1) has the following coordinates: (x}, y}), (x";, "),
(X(i1)> Y(i+1)) and (X(ii1), V(iy1))- Note that d controls the size of the piecewise linear
sub-windows. Thus by suitably tuning the value of d, the size of the sub-windows
may be varied.

3.2.5. Move for Generating New State (') from Current State ()

From &, a pixel p; is picked up randomly for mutation. This pixel is replaced
by another pixel p; from ¥ which is not already in . The modified ¥ (%) is
then referred to as .%'(%"). Its energy is computed as §» = &, — e, + ¢,,. Thus
for computing the energy of the new state, two simple arithmetic operations are
sufficient instead of solving coupled differential equations as in traditional snake.
This is the key factor that makes the system very simple and fast.

3.2.6. SAFE Algorithm

The different steps used in the SAFE algorithm are as follows:

1. pre-processing (e.g., image stretching, contrast enhancement, noise reduction
etc.);

2. edge detection (by Canny operator, morphological tools etc.);

3. derivation of a chamfer image (Trinder and Li, 1996) in which the pixel values
relate to their closeness to any surrounding edge. For example, if an edge pixel
has the gray value strength G,, then for a non-edge pixel located x pixels away
from it, its gray value Gpnon—cdge (in the chamfer image) should become G, — x.
Since there are many pixels in an image, the recorded value G,pp—cqge is the
maximum value derived from all edge pixels;

4. acquisition of control points (initial curve) from the user that roughly delineates
the feature;

smoothing the initial curve using B-spline;
construction of a window (rectangle/piecewise linear) across the spline;
energy minimization in the window using SA;

=N W

fitting a curve through the pixels which minimizes the total energy in the
window. This curve provides the resultant delineation of the feature.
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Fig. 2. Noisy image of a circle.

4. Implementation and Results
4.1. Temperature scheduling of SA

In this article SAFE algorithm has been implemented with the following parame-
ters: temperature scheduling factor («) = 0.8, d = 15, T, = 100, T, = 0.00001
and number of iterations at each temperature = 1000. The traditional snake al-
gorithm was executed for both 50 and 100 iterations. Since the performance was
found to be the same for both values, we are demonstrating the results obtained
after 50 iterations only.

4.2. Results

In order to demonstrate the performance of SAFE we consider a synthetic image
of a circle shown in Fig. 2. Note that this image is similar to an image considered
in Ballerini (1999). As in Ballerini (1999), the intensity image is generated by
setting a pixel value to 255 if it belongs to a boundary, and 100 otherwise. We
smooth the boundary by convolving the image with a 3 x 3 window. A zero mean,
white Gaussian noise is added to the image. Several noise levels were considered,
the result reported here corresponding to standard deviation = 40. As can be
found from Fig. 3, SAFE is able to successfully detect the boundary.

Figures 4-9 demonstrate the performance of traditional snake and SAFE
respectively on both an aerial and a satellite image. The task is to extract the
boundary of the road and the river on the aerial and satellite image respectively.
These boundaries are characterized by step edges and therefore Canny edge
detector has been used in the pre-processing phase. The thin white curves in the
figures represent the B-spline drawn from the user-provided control points while
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Fig. 3. Circle as detected by SAFE in Fig. 2.

Table 1. Time taken by traditional snake and SAFE in milliseconds.

Image snake SAFE

Aerial 216.658  266.656

Satellite  246.356  269.990

the black ones represent the final solution. Figures 4 and 5 demonstrate the use of
rectangular and piecewise linear windows respectively for extracting the feature
of interest by the SAFE algorithm. Figures 6 and 7 demonstrate the comparative
performance of traditional snake and SAFE respectively, starting from the same
initial configuration for the aerial image. As can be seen from the figures, while
SAFE is able to provide a good estimate of the feature of interest (Fig. 7), the
traditional implementation of snake fails to do so (Fig. 6). In this connection,
it has been found in Trinder and Li (1996) that the pull-in range of traditional
snake is normally about 5 pixels i.e., if the user delineated points are more than 5
pixels away from the feature of interest, then the snake will not be able to extract
the feature. Similarly Figs 8 and 9 demonstrate the effectiveness of traditional
snake and SAFE respectively, starting from the same initial configuration for the
satellite image. Table 1 shows the CPU time taken by the two methods (snake
and SAFE) for obtaining the results shown in Figs 6 and 7 for the aerial image
and Figs 8 and 9 for the satellite image, when they are run on a DEC-Alpha
machine. The values shown are averaged over 100 runs of the algorithms. As seen
from the table, the time taken by the two methods is comparable although the
performance of SAFE is found, from the figures, to be better.

The performance variation, with regard to energy minimization, of the SAFE
algorithm with varying o and window sizes have been studied. As the value of «
increases (0 < o < 1), the cooling process becomes more gradual. As a result, the
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Fig. 4. Feature extraction using SAFE with rectangular window for aerial image.

Fig. 5. Feature extraction using SAFE with piecewise linear window for aerial image.

383
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Fig. 6. Feature extraction using snake for aerial image.

Fig. 7. Feature extraction using SAFE with piecewise linear window for aerial image.
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Fig. 9. Feature extraction using SAFE with piecewise linear window for satellite image.

SA-based algorithm stabilizes to lower energy values. This is evident from Fig. 10,
which demonstrates the variation of energy values with the number of generations
for o = 0.4,0.5,0.6,0.7 and 0.8. Regarding window size, it may be noted that as
it increases, the corresponding search space also increases. Therefore for fixed
o, Tmax> Tmin and number of iterations in each temperature, the performance of
the algorithm improves (i.e., the final energy value is less) as the window is made
smaller. This has been demonstrated in Table 2, where it is found that starting
from the same initial configuration, ie., same initial energy value, the SA-based
algorithm is able to attain a lower final energy value for a smaller window. Note
that the performance of SAFE may improve if it is allowed to run longer by
suitably altering the temperature schedule parameters.
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Fig. 10. Variation of energy values with temperature for different values of o (‘alpha’ in the figure).

Table 2. Performance variation of SAFE with window size. Energy of initial configuration is 1579.289,
Timax = 100, Ty = 0.00001 and o = 0.8.

Window size  Final energy value

40 759.128
35 749.614
30 743.222
25 719.196
20 696.812
15 680.495

5. Discussion and Conclusions

An efficient semi-automatic feature extraction technique called SAFE, which
exploits the searching capability of simulated annealing in the energy minimization
phase of the active contour model, is developed in this article. The significant
superiority of SAFE over the traditional snake is demonstrated on an aerial
and a satellite image. It is found that the execution time of the two methods
are comparable. Note that snake may get trapped at a local energy minimum
depending on the initial user delineation and repeated reinitializations are required
each time this happens. Moreover, it is found to provide a good solution only
when the initial user delineation is quite close to the feature of interest. SAFE
does not suffer from either of these limitations, the only requirement being that
the window size be large enough so as to include the feature of interest. This
results in a lower and simpler level of user interaction for SAFE (which is an
important step towards building a fully automatic system) as compared to the
snake model.

In Grzeszczuk and Levin (1997), simulated annecaling was also used for
contour detection. However, they have defined a non-parametric energy function
which is derived from statistical properties of previously segmented images,
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thereby incorporating prior experience. Note that such a priori knowledge may
not be available in all circumstances. Moreover, the moves used by them to
generate new states are computationally complex. Storvik (1994) also applied
simulated annealing to optimize a boundary modeled by a polygon whose vertices
coincide with pixel corners. Since the method had little control over the move size
distribution, a slow logarithmic annealing schedule was used which resulted in
extremely slow performance. In contrast to the above two attempts, the technique
developed in this article is computationally very simple. It requires no a priori
knowledge about the image. The move generator is also very simple. Since we
used geometric scheduling, instead of logarithmic scheduling, the time required
by SAFE to converge to the solution is quite fast.
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