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On Similarity Measures for Multimedia Database
Applications
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Abstract. A multimedia database query consists of a set of fuzzy and boolean (or crisp)
predicates, constants, variables, and conjunction, disjunction, and negation operators. The
fuzzy predicates are evaluated based on different media criteria, such as color, shape,
layout, keyword. Since media-based evaluation yields similarity values, results to such a
query is defined as an ordered set. Since many multimedia applications require partial
matches, query results also include tuples which do not satisfy all predicates. Hence, any
fuzzy semantics which extends the boolean semantics of conjunction in a straight forward
manner may not be desirable for multimedia databases. In this paper, we focus on the
problem of ‘given a multimedia query which consists of multiple fuzzy and crisp predicates,
how to provide the user with a meaningful overall ranking.’ More specifically, we study the
problem of merging similarity values in queries with multiple fuzzy predicates. We describe
the essential multimedia retrieval semantics, compare these with the known approaches,
and propose a semantics which captures the retrieval requirements in multimedia databases.

Keywords: Fuzzy logic; Image matching; Multimedia databases; Partial match; Scoring
functions

1. Introduction

Multimedia data includes image and video data which are complex in terms of
visual and semantic contents. Depending on the application, multimedia objects
are modeled and indexed using their (1) visual properties (or a set of relevant
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visual features), (2) semantic properties, and/or (3) the spatial/temporal relation-
ships of sub-objects. Consequently, retrieval in multimedia databases is inherently
fuzzy. This fuzziness can be explained in various ways:

• similarity of media features, such as correlation between color (red vs. orange)
or shape (circle vs. ellipse) features;

• imperfections in the feature extraction algorithms, such as the high error rate in
motion estimation due to the multitude of factors involved, including camera
and object speed, and camera effects;

• imperfections in the query formulation methods, such as the Query by Example
(QBE) method where the user provides an example but is not aware of which
features will be used for retrieval;

• partial match requirements, where objects in the database fail to satisfy all
requirements in the query; and

• imperfections in the available index structures, such as low precision or recall
rates due to the imperfections in clustering algorithms.

In Section 2, we discuss these reasons in greater details. In many multimedia
applications, more than one of these reasons coexist and, consequently, the
system must take each of them into consideration. This requires quantification of
different sources of fuzziness and merging into a single combined value for user’s
reference. The following example describes this requirement.

Example 1.1. A query for retrieving images containing Fuji Mountain and a lake in
the foreground can be specified with an SQL3-like query statement on an object-
based multimedia database system (Li et al, 1997; Li and Candan, 1998; Li et
al, 1998) as follows:

select image P, object object1, object object2
where P contains object1

and P contains object2
and object1.semantical property s like ‘mountain’
and object1.image property image match ‘Fuji mountain.gif’
and object2.semantical property is ‘lake’
and object2.image property image match ‘lake image sample.gif’
and object1.position is above object2.position

The above query contains two crisp query predicates: contains and is.1 It also
contains a set of fuzzy query predicates:

• s like (i.e. semantically similar) which evaluates the degree of semantic similarity
between two terms. Helps resolving correlations between semantic features,
imperfections in the semantics extraction algorithms, in the index structures,
and in the user queries;

• image match (i.e. visually like) which evaluates the visual similarity between
two images. This helps resolving correlations between visual features and
imperfections in the index structures; and

• is above (a spatial condition which compares the spatial position between two
objects). Helps resolving correlations between spatial features, imperfections
in the spatial information extraction algorithms, imperfections in the index
structures, and imperfections in the user queries.

1 The keyword, where, used in the query does not correspond to a predicate.
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Fig. 1. Query image and candidates of partial matches.

This query returns a set of 3-tuples of the form 〈P , object1, object2〉 that satisfy
all crisp conditions and that has a combined fuzzy score above a given threshold.
Figure 1(Query) shows the conceptual representation of the above query. Fig-
ures 1(a), (b), (c), and (d) show examples of candidate images that may match
this query. The numbers next to the objects in these candidate images denote
the similarity values for the object level matching. As explained earlier, in this
example, the comparisons on spatial relationships are also fuzzy to account for
the correlations between spatial features.

The candidate image in Fig. 1(a) satisfies object matching conditions but its
layout does not match user specification. Figures 1(b) and (d) satisfy the image
layout condition but objects do not perfectly match the specification. Figure 1(c)
has structural and object matching with low scores. Note that in Fig. 1(a), the
spatial predicate, and in Figure 1(c), the image similarity predicate for lake
completely fail (i.e., the match is 0.0).

As shown in the above example, most types of fuzziness can be captured using
fuzzy predicates. The partial match requirements, on the other hand, have to be
handled by the query-processing algorithm at the time of merging fuzzy results.
The need for partial matches was observed in Fagin and Wimmers (1997), which
proposes a weighting-based technique to deal with subgoals with low matches.
(Fagin and Wimmers, 1997; Fagin and Maarek, 1998; Sung, 1998) discuss various
ways to handle user-defined weights in multimedia queries. In this approach, if
one of the features is not important, that feature is given a relatively low weight
so that its effect on the outcome is minimized. Thus, the weighting technique
can be used to eliminate such unwanted features. This assumption, however,
assumes prior knowledge about the feature distribution of the data as well as
user expertise.

Example 1.2. Let us assume that a user wants to find all images in the database
that are similar to image Iexample. Let us also assume that the database uses
three features, color, shape, and edgedistribution, to compare images, and that
the database contains three images, I1, I2, and I3. Finally let us assume that the
following table gives the matching degrees of the images in the database for each
feature:

Image Shape Color Edge

I1 0.0 0.9 0.8
I2 0.8 0.0 0.9
I3 0.9 0.8 0.0

According to this table, it is clear that if the user does not specify a priority
among the three features, the system should treat all three candidates equally.
On the other hand, since for each of the three features there is a different image
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which fails it completely, even if we have prior knowledge regarding the feature
distribution of the data, we can not use feature weighting to eliminate low scoring
features.

In this paper, we focus on the problem of ‘given a query which consists of multiple
fuzzy and crisp predicates, how to provide a meaningful final ranking to the users.’
We propose an alternative scoring approach which captures the multimedia
semantics well and does not face the above problem while handling partial
matches. Although it is not based on weighting, the proposed approach can be
used along with weighting strategies, if weighting is requested by the user.

The paper is structured as follows: In Section 2, we provide an overview of
the multimedia retrieval semantics. We show the similarities between multimedia
queries and fuzzy logic statements. Then, in Section 3, we provide an overview of
the popular fuzzy logic semantics and discuss why they are not suitable for mul-
timedia retrieval. In Section 4, we propose a fuzzy logic semantics which captures
the essential requirements of the multimedia retrieval problem. In Section 5, we
compare the statistical properties of the popular fuzzy logic semantics and the
proposed semantics and in Section 7 we provide our conclusions.

2. Multimedia Retrieval Semantics

In this section, we first provide an overview of the multimedia retrieval semantics;
i.e., we describe what we mean by retrieval of multimedia data. We then review
some of the approaches to deal with multimedia queries that involve multiple
fuzzy predicates.

2.1. Fuzziness in Multimedia Retrieval

We now give examples to underscore the reasons for fuzziness in the retrieval of
multimedia data. In addition, we define the different types of fuzziness that may
arise in multimedia applications.

Similarity of features. In similarity-based retrieval, there usually is a distance
function which is used to quantify similarity between two feature instances. For
example, in video retrieval, given two object motion vectors, v1 and v2, if the user
is interested in the orientation of the objects, similarity between these two vectors
can be calculated by using the cosine of the angle between v1 and v2.

Imperfections in the feature extraction. This imperfection is mostly due to the
resource limitations of the feature extraction algorithms. For instance, in the
case of object motion estimation in video sequences, such imperfections may be
due to the parameters unknown at the motion extraction time, such as camera
motion, or they may be due to low numeric precision of motion vectors due to
compression requirements. In either case, the system must quantify and use the
estimated error while retrieving objects.

Imperfections in the query formulation. Most query formulation tools, such as
query-by-example (QBE), do not have mechanisms to allow users to describe
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Fig. 2. Clustering error which results in imperfections in the index structures: the squares denote
the matching objects, circles denote the non-matching objects, and the dashed rectangle denotes the
cluster used by the index for efficient storage and retrieval.

their queries precisely.2 In most QBE systems, the features for retrieval and their
importance are estimated by the system. Even in systems where such information
can be provided by the user, users can not always express, unambiguously, what
they are looking for.

Partial matches. An object- and spatial information-based image retrieval query
may use two features – object shapes and spatial positions – to retrieve relevant
images. If, in the database, there are images which contain objects with the
required shapes and other images which contain the required spatial relationships,
but if there are no images which satisfy both requirements, the matches returned
by the database can not be exact. In other words, given a query, Q, in some cases,
users may be willing to accept (of course, with a lower satisfaction) that an object
does not satisfy Q (for example, if one of the predicates in a conjunctive query
evaluates to false) but another query Q′ ⊂ Q.

Imperfections in the index structures. Due to the existence of similarity (or dis-
tance) functions discussed earlier, indices used in multimedia retrieve feature
vectors based on their distances from a given input point. In order to increase the
speed of this process, automatic clustering or filtering techniques (Faloutsos, 1996)
are usually utilized. As shown in Fig. 2, these techniques may result in false dis-
missals, i.e., incorrectly omitted results, and false positives, i.e. incorrectly accepted
results. If a predicate is implemented using an index structure with a high ratio of
false dismissals or positives, then the system must quantify and use the estimated
error rate as confidence value for the retrieved objects.

It is possible to re-classify the above fuzziness into three categories: precision-
related, recall-related, and partiality-related fuzziness. Precision-related class cap-
tures fuzziness due to similarity of features, imperfections in the feature extraction
algorithms, imperfections in the query formulation methods, and the precision

2 QBE was originally developed for relational databases (Zloof, 1975). Here, we are referring to a
similar development in media databases, where instead of providing a explicit textual query, users
provide an example media object that describe the features of the object they are looking for implicitly
through the concept of similarity.
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rate of the utilized index structures. Recall- and partiality-related classes are self
explanatory.

Note that, in information retrieval, the precision/recall values are mainly used
in evaluating the effectiveness of a given retrieval operation or the effectiveness of
a given index structure. Here, we are using these terms more as statistics which can
be utilized to estimate the quality of query results. We have used this approach, in
the SEMCOG image retrieval system (Li et al, 1997; Li and Candan, 1998; Li et
al, 1998), to provide pre- and post-query feedback to users. Two examples given
below show why precision and recall are important in processing multimedia
queries.

Example 2.1 (Handling precision-related fuzziness). Let us assume that we are
given a query of the form

Q(X)← s like(man,X.semantic property)

∧image match(X.image property, ‘a.gif ’)

Let object I have semantic property =woman and image property = im.gif. Let
us assume that the semantic precision of s like(man, woman) is 0.8 and the image
matching precision image match (‘im.gif ’,‘a.gif ’) is 0.6. This means that the index
structure and semantic clusters used to implement the predicate s like guarantee
that 80% of the returned results are semantically similar to man. These semantic
similarities can be evaluated using various algorithms (Richardson et al, 1994;
Zhang et al, 1995). Similarly, the predicate image match guarantees that 60% of
the returned results are visually similar to ‘a.gif ’. Then, assuming that the two
predicates are not correlated, Q(I) should be 0.8 × 0.6 = 0.48: By replacing X
in s like(man,X) with woman, we maintain 80% precision; then, by replacing the
X in image match(X, ‘a.gif ’) with I , we maintain 60% of the remaining precision.
The final precision (or confidence) is 0.48.

Similarly, given a query execution plan and assuming that the predicates are
independent, the recall rate can also be found by multiplying the recall rates of
the predicates.

2.2. Dealing with Imperfections and Similarities

Traditional query languages are based on Boolean logic, where a predicate is
treated as a propositional function that returns one of the two values: true or
false. However, due to the stated imperfections, predicates related to visual or
semantic features do not correspond to propositional functions, but to functions
which return values between 0.0 and 1.0. Consequently, a query is of the form

Q(Y1, . . . , Yn)← Θ(p1(Y1, . . . , Yn), . . . , pm(Y1, . . . , Yn))

where pis are fuzzy or crisp predicates, Θ is a logic formula, and Yj are free
variables. The solution, on the other hand, is defined as an ordered set SQ of
n-tuples of the form 〈X1, X2, . . . , Xn〉, where (1) n is the number of variables in
query Q, (2) each Xi corresponds to a variable Yi in Q, and (3) each Xi satisfies
the type constraints of the corresponding predicates in Q. The order of the set S
denotes the relevance ranking of the solutions.

Note that fuzzy sets and the corresponding fuzzy predicates have scoring or
membership functions similar to those of the multimedia predicates. Consequently,
we will examine the use of fuzzy logic for multimedia retrieval.
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Table 1. Min and products semantics for fuzzy logical operators.

Min semantics Product semantics

µPi∧Pj (x) = min{µi(x), µj (x)} µPi∧Pj (x) =
µi(x)×µj (x)

max{µi(x),µj (x),α} α ∈ [0, 1]

µPi∨Pj (x) = max{µi(x), µj (x)} µPi∨Pj (x)

=
µi(x)+µj (x)−µi(x)×µj (x)−min{µi(x),µj (x),1−α}

max{1−µi(x),1−µj (x),α}
µ¬Pi (x) = 1− µi(x) µ¬Pi (x) = 1− µi(x)

3. Overview of Fuzzy Logic

In this section we first provide an overview of fuzzy logic and, then, we introduce
properties of different fuzzy logic operators. A fuzzy set, F , with domain D can be
defined using a membership function, µF : D → [0, 1]. A crisp (or conventional)
set, C , on the other hand, has a membership function of the form µC : D → {0, 1}.
When for an element d ∈ D, µC(d) = 1, we say that d is in C (d ∈ C), otherwise we
say that d is not in D (d /∈ C). Note that a crisp set is a special case of a fuzzy set.

A fuzzy predicate is defined as a predicate which corresponds to a fuzzy
set. Instead of returning true(1) or false(0) values for propositional functions (or
conventional predicates which correspond to crisp sets), fuzzy predicates return
the corresponding membership values.

3.1. Fuzzy Logic Operator Semantics and their Properties

There are a multitude of functions (Thole et al, 1979; Bandermer and Gottwald,
1995; Yen, 1999), each useful in a different application domain, proposed as
semantics for fuzzy logic operators (∧,∨,¬). In this section, we describe the
popular scoring functions, discuss their properties, and show why these semantics
may not be suitable for multimedia retrieval.

Two of the most popular scoring functions are the min and products semantics
of fuzzy logical operators. We can state these two semantics in the form of a table
as follows: Given a set, P = {P1, . . . , Pm} of fuzzy sets and F = {µ1(x), . . . , µm(x)}
of corresponding membership functions, Table 1 shows the min and products
semantics.

Triangular-norms. These two semantics (along with some others) have the follow-
ing properties: Defined as such, binary conjunction and disjunction operators are
triangular-norms (t-norms) and triangular-conorms (t-conorms). Table 2 shows
the properties of t-norm and t-conorm functions. Intuitively, t-norm functions
reflect the properties of the crisp conjunction operation and t-conorm functions
reflect those of the crisp disjunction operation. Although the property of capturing
crisp semantics is desirable in many cases, for multimedia applications this is not
always true. For instance, the partial match requirements invalidate the boundary
conditions as shown in the following example.

Example 3.1. Consider the query and candidate images given in Example 1.1,
Fig. 1. If the boundary conditions given in Table 2 are preserved when merging
the scores, Figs 1(a) and (c) will be dropped from consideration as their final
score will be 0.0.
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Table 2. Properties of triangular-norm and triangular-conorm functions.

T-norm binary function N (for ∧) T-conorm binary function C (for ∨)

Boundary con-
ditions

N(0, 0) = 0, N(x, 1) = N(1, x) = x C(1, 1) = 1, C(x, 0) = C(0, x) = x

Commutativity N(x, y) = N(y, x) C(x, y) = C(y, x)

Monotonicity x 6 x′, y 6 y′ → N(x, y) 6 N(x′, y′) x 6 x′, y 6 y′ → C(x, y) 6 C(x′, y′)

Associativity N(x,N(y, z)) 6 N(N(x, y), z) C(x, C(y, z)) 6 C(C(x, y), z)

In addition, monotonicity is too weak a condition for multimedia applications.
An increase in the score of a single query criterion should increase the combined
score; whereas the monotonicity condition dictates such a combined increase
only if the scores for all of the query criteria increases simultaneously. A stronger
condition (N(x, y) increases even if only x or only y increases) is called strictly
increasing property.3 Clearly, min(x, y) is not strictly increasing.

Example 3.2. If we consider the query and candidate images given in Fig. 1, it
is clear that the candidate image shown in Fig. 1(d) is a better match than a
candidate image shown in Fig. 1(b). However, monotonicity does not differentiate
between these two images.

Logical equivalence. In general, two desirable properties for fuzzy conjunction
and disjunction operators is distributivity and idempotency. These enable preser-
vation of the query semantics after query rewrite operations used for optimization
purposes. The min semantics is known (Yager, 1982; Dubois and Prade, 1984; Fa-
gin, 1998) to be the only semantics for conjunction and disjunction that preserves
logical equivalence (in the absence of negation) and is monotone at the same time.
This property of the min semantics makes it the preferred fuzzy semantics for
most cases. Furthermore, in addition to satisfying the properties of being t-norm
and t-conorm, the min semantics also has the property of being idempotent.

Archimedean property. The product semantics (Thole et al, 1979), however, satis-
fies idempotency only if α = 0. On the other hand, when α = 1, it has the property
of being strictly increasing (when x or y is different from 1) and Archimedean
(N(x, x) < x and C(x, x) > x foe x < 1.0). The Archimedean property is weaker
than the idempotency, yet it provides an upper bound on the combined score,
allowing for optimizations.

One advantage of Archimedean functions is that they provide a natural way
to implement emphasis (which is essential in implementing emphasis adjectives,
such as very): replication of subgoals. Note that the use of replication to put
emphasis is nothing more than a syntactic operation, which does not require the
whole predicate to be reevaluated.

Example 3.3. Using an Archimedean conjunction function, one can ask for images
that are very similar to “a.gif” as follows:

Q(X) ← (X.image property image match ‘a.gif ’)

and (X.image property image match ‘a.gif ’)

3 This is not the same definition of strictness used in Fagin (1998).
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Table 3. Arithmetic average semantics for fuzzy logical operators.

µPi∧...∧Pj (x) µ¬Pi (x) µPi∨...∨Pj (x)

µi(x)+...+µj (x)

|{Pi,...,Pj }| 1− µi(x)
|{Pi,...,Pj }|−µi(x)+...+µj (x)

|{Pi,...,Pj }|

Note that the two predicates in the above query are the same. If the conjunction
is Archimedean, images must have a higher visual match with ‘a.gif’ to achieve a
given score (min(x, y) is not Archimedean).

An alternative to the replication of subgoals would be to assign appropriate
weights to the predicates. The advantage of replication to weighting is that
replication enables the emphasis to adapt dynamically as the query is modified.
To achieve the same affect with weighting, one has to modify the weights when
a query is modified. The advantage of weighting, however, is that it can be
arbitrarily set by the user, whereas the emphasis achieved by replication is not
arbitrary. Furthermore, replication makes certain query rewrite optimizations
impossible while making other optimizations, such as runtime caching of non-
variant function rewrite necessary. We have investigated performance of intelligent
caching and query rewrite operations in Adali et al (1996).

n-ary operators. In information retrieval research (which also shows the character-
istics of multimedia applications) other fuzzy semantics, including the arithmetic
mean (Aslandogan et al, 1995), are suggested. The arithmetic mean semantics
(Table 3) provides an n-ary scoring function (|{Pi, . . . , Pj}| = n). Note that the
binary version of arithmetic mean does not satisfy the requirements of being a
t-norm: it does not satisfy boundary conditions and it is not associative. Hence,
it does not subsume crisp semantics. On the other hand, it is idempotent and
strictly increasing.

Arithmetic average semantics emulate the behavior of the dot-product-based
similarity calculation popular, in information retrieval: effectively, each predicate
is treated like an independent dimension in an n-dimensional space (where n is
the number of predicates), and the merged score is defined as the dot-product
distance between the complete truth, 〈1, 1, . . . , 1〉, and the given values of the
predicates, 〈µ1(x), . . . , µn(x)〉. Note that, although this approach is shown to be
suitable for many information retrieval applications, as we will show in the next
section, it does not capture the semantics of multimedia retrieval applications
introduced in Section 2.

3.2. Summary

Owing to the discussed limitations of

• subsumption of crisp semantics; and

• being non-strict increasing

the min semantics is not suitable for multimedia applications. The fact that min
semantics is not Archimedean may also reduce its benefits in certain applications.
As discussed in Example 1.1, according to the min semantics, the score of the
candidate images given in Figs 1(a) and (c) would be 0.0 although they partially



Similarity Measures for Multimedia Database Applications 39

Table 4. The product semantics for multimedia retrieval.

µPi∧Pj (x) µ¬Pi (x) µPi∨Pj (x)

µi(x)× µj (x) 1− µi(x) µi(x) + µj (x)− µi(x)× µj (x)

match the query. Furthermore, scores of the images in Fig. 1(b) and (d) would
both be 0.5, although Fig. 1(d) intuitively has a higher score.

In the next section, we explain why it should not be the choice for multimedia
applications either.

4. Fuzzy Logic Operator Semantics for Multimedia Retrieval

The most important parameters for multimedia retrieval are the precision and re-
call rate of the indexes or the predicates used and the confidence value associated
with results (Section 2.1). We have seen that these two parameters are of multi-
plicative nature. We have also seen that the non-strictness of the min semantics
makes it non-suitable for many applications. Consequently, if we need to choose
between the min and product semantics, the product semantics is more suitable
for multimedia retrieval. In this section, we look at the product semantics as a
candidate for multimedia applications, we use the requirements of multimedia
applications as discussed in earlier sections to evaluate product semantics, and we
discuss how to improve it whenever it does not provide required functionalities.

4.1. Product Semantics for Multimedia Retrieval

Given a set, P = {P1, . . . , Pm} of fuzzy sets and F = {µ1(x), . . . , µm(x)} of corre-
sponding scoring functions, the product semantics of fuzzy binary logical opera-
tors in multimedia retrieval are given in Table 4.

Since this semantics corresponds to the product semantics given in Table 1 (α
set to 1), it does not provide idempotency4. Furthermore, this semantics does not
have distributivity, which means that the following equalities hold:

• [µ(P1∧P2)∨(P1∧P3)(x)] = [µP1∧(P2∨P3)(x)]; and

• [µ(P1∨P2)∧(P1∨P3)(x)] = [µP1∨(P2∧P3)(x)].

These equations are generally desirable, because they enable a query optimizer
to rewrite queries in a way to minimize the execution cost. Unfortunately, this
is not always possible for product semantics. Below, we show that distributivity
does not hold:

Conjunction does not distribute over disjunction. We can calculate the values of
the two sides of the equation as follows:

µ(P1∧P2)∨(P1∧P3)(x) = 1− (1− (µP1
× µP2

))× (1− (µP1
× µP3

))

= (µP1
× µP2

) + (µP1
× µP3

)

−(µP1
× µP2

)× (µP1
× µP3

)

µP1∧(P2∨P3)(x) = µP1
× (

1− (
(1− µP2

)× (1− µP3
)
))

4 The score for P1(x) ∧ P1(x) calculated as such is (µ1(x))2, not µ1(x) as required by idempotency.
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Table 5. The modified product semantics for multimedia retrieval.

µPi∧Pj (x) µ¬Pi (x) µPi∨Pj (x)

(µi(x)× µj (x))
1
2 1− µi(x) 1− ((1− µi(x))× (1− µj (x))

1
2 )

Note that these two terms do not necessarily evaluate to the same value. In fact,
the ratio of difference of these two terms, can be calculated as

[µ(P1∧P2)∨(P1∧P3)(x)]− [µP1∧(P2∨P3)(x)]

µP1∧(P2∨P3)(x)
=

1− µP1
(x)

1
µP2

(x)
+ 1

µP3(x)
− 1

Consequently, the conjunction would distribute on disjunction only in some
special cases (when µP1

(x) = 0 or when the error ratio is 0); i.e., µP1∧(P2∨P3)(x) ∼=
µ(P1∧P2)∨(P1∧P3)(x) if

µP1
(x) ∼= 0, µP1

(x) ∼= 1, µP2
(x) ∼= 0, orµP3

(x) ∼= 1

Note that, even though distributivity does not hold in general, we can still
distribute conjunction over disjunction when approximate results are accepted.
Furthermore, after using distributivity to optimize a query, the distance ratio
given above can be used for correcting the error caused by the rewrite operation.

Disjunction does not distribute over conjunction. Similarly, we can see that dis-
junction also does not distribute on conjunction:

µ(P1∨P2)∧(P1∨P3)(x) = (1− ((1− µP1
)× (1− µP2

)))

×(1− ((1− µP1
)× (1− µP3

)))

µP1∨(P2∧P3)(x) = 1− ((1− µP1
)× (1− (µP2

× µP3
)))

The ratio of difference of these two terms, then, can be calculated as

[µ(P1∨P2)∧(P1∨P3)(x)]− [µP1∨(P2∧P3)(x)]

µP1∨(P2∧P3)(x)

=
−µP1

(x)× (1− µP1
(x))× (1− µP2

(x))× (1− µP3
(x))

1− ((1− µP1
)× (1− (µP2

× µP3
)))

Consequently, disjunction distributed on conjunction (µP1∨(P2∧P3)(x) ∼=
µ(P1∨P2)∧(P1∨P3)(x)) when

µP1
(x) ∼= 0, µP1

(x) ∼= 1, µP2
(x) ∼= 1, or µP3

(x) ∼= 1

On the other hand, this semantics obeys De Morgan’s laws and the disjunction
and conjunction operators are strictly increasing and Archimedean.

4.2. Achieving Idempotency

If idempotency is required by the application, we can give up the Archimedean
property, and modify the operator semantics as shown in Table 5. The resulting
semantics preserves the order of the product semantics. Furthermore, it satisfies
idempotency, De Morgan’s laws, and they are strictly increasing.

Note that although the order of the results that the product semantics and the
modified product semantics provide are the same, the modified product semantics
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Table 6. The modified n-ary product semantics for multimedia retrieval.

µPi1∧...∧Pin (x) µ¬Pi (x) µPi1∨...∨Pin (x)

(µi1(x)× . . .× µin(x))
1
n 1− µi1(x) 1− ((1− µi1(x))× . . .× (1− µin(x)))

1
n

(or the geometric averaging) have certain desirable statistical and semantical
properties. Idempotency is one of these. The statistical properties of geometric
averaging will be discussed in the following sections.

One shortcoming of the modified product semantics, however, is that after the
modification conjunction and disjunction functions are not t-norm and t-conorm
any more: they still satisfy the

• boundary conditions (which are actually undesirable due to partial match
requirement);

• commutativity requirement; and

• monotone increasing requirement;

whereas, they do not have associativity (unless µ1(x) ∼= µ3(x)):

µP1(x)∧(P2(x)∧P3(x)) =

√
µ1(x)×√

µ2(x)× µ3(x)

µ(P1(x)∧(P2(x))∧P3(x) =

√√
µ1(x)× µ2(x)× µ3(x)

µP1(x)∧(P2(x)∧P3(x)) − µ(P1(x)∧P2(x))∧P3(x) = (µ1(x)× µ2(x)× µ3(x))
1
4

×(µ1(x)
1
4 − µ3(x)

1
4 ).

µP1(x)∧(P2(x)∧P3(x)) − µ(P1(x)∧P2(x))∧P3(x))

µP1(x)∧(P2(x)∧P3(x))
= 1− (

µ3(x)

µ1(x)
)

1
4 .

Note that, as it was the case in the original product semantics, the modified
product semantics is also not distributive.

4.3. n-ary Product Semantics

Neither the original nor the modified product semantics satisfy distributivity.
Therefore, the same query, written in different ways, can have different fuzzy
semantics. In order to prevent this, and in order to achieve uniform semantics for
multimedia queries, we need to define the uniform fuzzy semantics of a query, Q,
as follows.

Definition 4.1 (Uniform fuzzy semantics of a multimedia query). Let Q(Y1, . . . ,Yn)
be a query which consists of a set of fuzzy predicates, variables, constants, and
conjunction, disjunction, and negation operators. Let also Q∨(Y1, . . . , Yn) be the
disjunctive normal representation of Q. Then, the normal fuzzy semantics of
Q(Y1, . . . , Yn) is defined as the fuzzy semantics of Q∨(Y1, . . . , Yn).

Therefore, whichever way a query is formulated, we define its fuzzy semantics
using the fuzzy semantics of its disjunctive normal representation. This provides
a uniform definition of fuzziness. Note that, in general, µQ 6= µQ∨ . The former
semantics would be used when logical equivalence of queries is not expected. The
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latter, on the other hand, would be used when the logical equivalence is required.
Note that, as we mentioned earlier, independent of the way a query is rewritten, it
is possible to convert the final score into the score, µQ∨ , of the disjunctive normal
representation by using the ratio of differences described earlier.

Note also that, as shown in the following example, the proposed uniform
semantics allow implementation of emphasis adjectives, such as very.

Example 4.1. A query asking for objects which are semantically similar to man
and looks like ‘a.gif ’ can be formulated as

Q(X)← (X.semantic property s like man) and

(X.image property image match ‘a.gif ’)

whereas a query asking for objects which are semantically very similar to man
and looks like ‘a.gif ’ as

Q′(X)← (X.semantic property s like man) and

(X.semantic property s like man) and

(X.image property image match ‘a.gif ’)

The scoring function for Q(X) is µ
1
2

s like×µ
1
2

image match, whereas the scoring function

for Q′(X) is µ
2
3

s like × µ
1
3

image match.

The disadvantage of n-ary semantics, however, is that achieving uniformity, it
sacrifices the opportunities for query optimizations.

4.4. Accounting for Partial Matches

Both the min and the proposed geometric mean functions have weaknesses in
supporting partial matches. When one of the involved predicates return zero, then
both functions return 0 as the combined score. However, in multimedia retrieval,
partial matches are required (see Section 1). In such cases, having a few number
of terms with a score value of 0 in a conjunction should not eliminate the whole
conjunctive term from consideration.

As we mentioned earlier, one proposed (Fagin and Wimmers, 1997) way to
deal with the partial match requirement is to weigh different query criteria in such
a way that those criteria that are not important for the user are effectively omitted.
For instance, in the query given in Fig. 1(Query), if the user knows that spatial
information is not important, the user can choose to provide a lower weight to
spatial constraints. Consequently, using a weighting technique, the image given in
Fig. 1(a) can be maintained although the spatial condition is not satisfied. This
approach, however, presupposes that users can identify and weigh different query
criteria. This assumption may not be applicable to many situations, including
databases for naive users or retrieval by QBE (query by example). Furthermore,
it is always possible that for each feature or criterion in the query, there may be
a set of images in the database that fails it. In such a case, no weighting scheme
will be able to handle the partial match requirement for all images.

To account for partial matches, we need to modify the semantics of the n-ary
logical operators and eliminate the undesirable nullifying effect of 0. Note that a
similar modification can also be done for the min semantics.
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(c)

(a) (b)

Fig. 3. Geometric averaging with different truth cut-off points: (a) rtrue = 0.4 and β = 0.4, (b)
rtrue = 0.4 and β = 0.2, and (b) rtrue = 0.4 and β = 0.0 (after normalization). Horizontal axes
correspond to the values of the two input predicates and the vertical axis corresponds to the value of
the conjunct according to the respective function.

4.4.1. Supporting Partial Matches

Given a set, P = {P1, . . . , Pm} of fuzzy sets and F = {µ1(x), . . . , µm(x)} of cor-
responding scoring functions, the semantics of n-ary fuzzy conjunction operator
used in SEMCOG is as follows:

µ(Pi1∧...∧Pin)(t, rtrue, β) =
((
∏

µk(t)>rtrue
µk(t))× (

∏
µk(t)<rtrue

β))1/n − β

1− β

where

• n is the number of predicates in Q;

• rtrue is the truth cutoff point, i.e., it is the minimum valid score;

• β is an offset value greater than 0.0 and less than rtrue; it corresponds to the
fuzzy value of false and it prevents the combined score to be 0 when one of
the predicates has a 0 score; and

• µk(t) is the score of predicate Pk ∈ {Pi1, . . . , Pin} for n-tuple t.

The term (
∏

µk(t)>rtrue
µk(t))× (

∏
µk(t)<rtrue

β))1/n returns a value between β and 1.0.
Subtraction of β from it and the subsequent division to 1− β normalizes the
result to values between 0.0 and 1.0.

Figure 3 shows how the truth cut-off points, rtrue and β, and the normalization
can be utilized to achieve different behavior for the conjunction.
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Semantics Score Rank Score Rank Score Rank Score Rank

min 0.50 1–2 0.00 3–4 0.50 1–2 0.00 3–4
product 0.40 1 0.00 3–4 0.25 2 0.00 3–4
arithmetic average 0.76 1 0.65 3 0.66 2 0.43 4
geometric average 0.74 1 0.00 3–4 0.63 2 0.00 3–4
geometric average
with cut-off

0.56 1 0.55 2 0.38 3 0.24 4

geometric average
with weights

0.65 1 0.57 2 0.51 3 0.32 4

Fig. 4. Comparison of different scoring mechanisms.

4.4.2. Weighting in the Structural Match

An additional improvement could be made by allowing the conjunction to give
extra importance to the predicates which are above the truth cut-off value, rtrue.
To achieve this, one can modify the scoring function as follows:

µ(Pi1∧...∧Pin)(t, rtrue, α1, α2, β)

= α1 × ((
∏

µk(t)>rtrue
µk(t))× (

∏
µk(t)<rtrue

β))1/n − β

1− β

+ α2 ×
∑

µk(t)>rtrue
1

n

where α1 and α2 are values between 0.0 and 1.0 such that α1 + α2 = 1.0.
The following is an example where various semantics for logical operators are

compared. Among other things, this example clearly shows that any semantics
which capture the crisp semantics are not suitable for multimedia retrieval.

Example 4.2. In this example, we use the query which was presented in the
introduction section to compare scores corresponding to different approaches.

Figure 4 shows a set of candidate images and the associated scores computed
by different methods. Numbers next to the objects in the candidate images denote
the similarity values for the object level matching. The figure shows the score of
the candidate images as well as their relative ranks. The cut-off parameters used
in this example are rtrue = 0.4 and β = 0.4, and the structural weights are α1 = 0.8
and α2 = 0.2.

5. Comparison of the Statistical Properties of Fuzzy Logical
Operators

Figure 5 depicts three mechanisms to evaluate conjunction for multimedia re-
trieval. Figure 5(a) depicts the geometric averaging method, (b) depicts the arith-
metic averaging mechanism used by other researchers (Aslandogan et al, 1995),
and (c) the minimum function as described by Zadeh (1965) and Fagin (1996,
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Fig. 5. The effect of (a) geometric average, (b) arithmetic average, and (c) minimum function with
two predicates. Horizontal axes correspond to the values of the two input predicates and the vertical
axis correspond to the value of the conjunct according to the respective function.

Table 7. Average score of various scoring semantics.

Arithmetic average Min Geometric average

∫ 1
0

∫ 1
0

x+y
2 dydx∫ 1

0

∫ 1
0 dydx

= 1
2

∫ 1
0

∫ 1
0 min{x,y}dydx∫ 1
0

∫ 1
0 dydx

= 1
3

∫ 1
0

∫ 1
0

√
x×y dydx∫ 1

0

∫ 1
0 dydx

= 4
9

1998). In the previous section, we have compared semantics of these mechanisms.
In this section, we compare various statistical properties of these semantics and
evaluate their applicability to multimedia databases. These statistical properties
are especially important to judge the effectiveness of thresholds set for media
retrieval. Furthermore, they give an idea about how various database histograms
will look.

5.1. Average Score or Cardinality

The first statistical property that we consider is the average score, which intuitively
measures (assuming a uniform distribution of input scores) the average output
score. This value is especially important in setting up thresholds.

The average score, or the relative cardinality, of a fuzzy set with respect to
its discourse (or domain) is defined as the cardinality of the set divided by the
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Table 8. Score distribution (relative cardinality of a strong α-cut) of various scoring semantics.

Arithmetic average Min Geometric average

1− 8×α3

3 (α 6 0.5) 1− 3× α2 + 2× α3 1− α3 + 3× α3 × ln(α)
4
3 − 4× α2 + 8×α3

3 (α > 0.5)

cardinality of its discourse. We can define the relative cardinality of a fuzzy set S
with a scoring function µ(x), where x ranges between 0 and 1 as

∫ 1

0 µ(x)dx∫ 1

0
dx

Consequently, the average score of alternative conjunction semantics can be
computed as shown in Table 7. Note that, if analogously defined, the relative
cardinality of the crisp conjunction would be

µ(false∧false) + µ(false∧true) + µ(true∧false) + µ(true∧true)
|{(false ∧ false), (false ∧ true), (true ∧ false), (true ∧ true)}|

=
0 + 0 + 0 + 1

4
=

1

4

This means that min semantics (Fig. 5(c)) is closer to the crisp conjunction
semantics, yet it underestimates the geometric average (Fig. 5(a)). The arithmetic
mean (Fig. 5(b)), on the other hand, slightly overestimates the scores. This
indicates that the (min, crisp conjunction) and (geometric average, arithmetic
average) pairs behave similarly.

5.2. Score Distribution

The study of the score distribution of fuzzy algebraic operators is essential in
creating histograms that can be used in query optimization and processing. For
instance, in the next section, we will use histograms to find the set of approximate
results to a fuzzy query.

The strong α-cut of a fuzzy set is defined as the set of elements of the discourse
that have score values equal to or larger than α. The relative cardinality of a
strong α-cut (µx∧y > α) of a conjunction with respect to its overall cardinality
(µx∧y > 0) describes the concentration of scores above a threshold α.

Table 8 shows the score distribution of various scoring semantics. When α is
close to 1, the relative cardinality of the strong α-cut of the geometric average
behaves like 1 − α3. Consequently, both arithmetic average and min semantics
have a lower concentration ratio of scores above a given α compared to the
geometric average.

Figure 6 visually shows the score distribution of the geometric average and
the minimum functions for a conjunction of three predicates. According to this
figure, higher scores are confined to a smaller region in the min function. This
implies that, as intuitively expected, given a threshold, the min function is likely
to eliminate more candidates than the geometric average.
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Fig. 6. (a) Geometric averaging vs. (b) minimum with three predicates. Each axis corresponds to an
input predicate and the gray level represents the value of the combined score (the brighter the gray,
the higher the score).

5.3. Relative Importance of Query Criteria

An important advantage of the geometric average, against the arithmetic average
and the min functions, is that although it shows a linear behavior when the
similarity values of the predicates are close to each other:

(x = y)0.2in −→ dµ(x, y)

dxdy
=

1

2×√x× x
× (x + x)

=
1

2× x
× (2× x) = 1

it shows a non-linear behavior when one of the predicates has lower similarity
compared to the others:

(x << y) −→ dµ(x, y)

dx
=

√
y

2×√x = ∞ (x >> y) −→ dµ(x, y)

dx
= 0

Example 5.1. The first item below shows the linear increase in the score of the
geometric average when the input values are closer to each other. The second
item, on the other hand, shows that non-linearity of the increase when input
values are different:

(0.5× 0.5× 0.5)1/3 = 0.5, (0.6× 0.6× 0.6)1/3 = 0.6, and

(0.7× 0.7× 0.7)1/3 = 0.7

(1.0× 1.0× 0.5)1/3 = 0.79, (1.0× 1.0× 0.6)1/3 = 0.85, and

(1.0× 1.0× 0.7)1/3 = 0.88

It has been claimed that according to real-world and artificial nearest-neighbor
workloads, the highest-scoring predicates are interesting and the rest are not
interesting (Beyer et al, 1999). This implies that the min semantics which gives
the highest importance on the lowest-scoring predicate may not be suitable for
real workloads. The geometric average semantics, unlike the min semantics, on
the other hand, does not suffer from this behavior.
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(a)

(c)

(b)

(d)

(e)

(f)

Fig. 7. A SEMCOG query that contains multiple predicates to be merged.

Furthermore, the effect of an increase in the score of a subquery (due to a
modification/relaxation on the query by the user or the system) with a small score
value is larger than an equivalent increase in the score of a subquery with a large
score value. This implies that, although the subqueries with a high score have a
larger role in determining the final score, relaxing a non-satisfied subquery may
have a significant impact on improving the final score. This makes sense as an
increase in a low-scoring subquery increases the interestingness of the subquery
itself.

6. Implementation

The similarity evaluation concepts were implemented as part of the Semantic
and Cognition-based Image Retrieval (SEMCOG) system.The SEMCOG query
processor performs the following tasks: (1) query relaxation – it reformulates
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query statements containing semantic, such as is a or semantically like, predicates
by consulting a terminology manager; (2) query forwarding – it forwards query
statements containing image like or contains (visually) predicates to an image data
query processor to perform image matching while forwarding other non-image-
matching operation statements to a textual and spatial data query processor; and
(3) result integration – it merges results of image-matching query statements and
non-image-matching operation statements. This task includes computing overall
similarity values and eliminating images based on specified filtering constraints
(Fig. 7).

Note that the merge function used has an effect on the precision and recall of
the algorithm used for retrieval. There are four factors that affect precision and
recall: (1) user preferences, (2) application semantics, (3) the distance function
that compares objects in the database, and (4) the indices and algorithms used. In
SEMCOG, as described in earlier sections, the distance function is a combination
of a merge function and the individual fuzzy predicates (such as image like or
semantically like). Although user preferences are hard to formalize, we see that
the proposed merge function captures the application semantics well:

• The structural information (such as spatial predicates) is accounted for by the
scoring function.

• As discussed in the previous section, the geometric average captures the be-
havior of real-world workloads (the highest-scoring predicates are interesting
and the rest are not interesting (Beyer et al, 1999)) better than the other merge
functions.

Furthermore, the α and β parameters of the proposed merge function, allow merge
function to be fine-tuned to the actual application semantics or user preferences.

7. Conclusion

In this paper, we have presented the difference between the general fuzzy query
and multimedia query evaluation problems. More specifically, we have pointed
to the multimedia precision/recall semantics, partial match requirement, and
unavoidable necessity of fuzziness, but non-progressive predicates. We have, then,
shown that the popular fuzzy logic semantics do not fulfill the required multimedia
semantics and the partial match requirement. We have proposed an alternative
semantics that is capable of capturing the needs of multimedia queries and we
have discussed the properties of the proposed semantics.
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