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Abstract. We present a spatial decision support system for the non-profit sector,
designed to assist planning in the area of home-delivered services such as meals on
wheels. Using data collected from existing programs, current and forecasted
demographic data, and a set of algorithmic tools, we provide a system for evaluating
current meals on wheels facilities, and for making incremental facility location
decisions that satisfy coverage and equity requirements.
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1 The home-delivered services problem

The public, through tax dollars, grant-making foundations, and corporate and private
donors, fund the non-profit sector in the United States. With its funding, this sector
provides valuable human services for underprivileged and needy segments of the
population — the abused, under educated, poor, homeless, addicted, elderly, and so
forth. While the provision of goods and services is guided in the private sector by
market mechanisms, and in government by the political process, the non-profit sector
does not benefit from an underlying, organizing mechanism. Instead, it must rely
directly on objective planning methods including clear statements of mission, design of
corresponding service delivery systems, and objective performance measures. Such
performance measures include efficiency, or the extent to which a fixed level of service is
provided using the minimum amount of resources, effectiveness, or the extent to which
client population needs are met, and equity, or the extent to which services provided
(which may not meet total client needs) are nevertheless delivered in a manner perceived
as fair. Society desires that all who need non-profit services have access to them.
Facility location planning for non-profit delivery systems is a critical, but difficult
problem depending on both the geographic distribution of target populations and the
typically small size and limited catchment areas of facilities. We find that there are
three distinct types of human services in regard to facility location planning: home
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delivered services (e.g., meals on wheels and home nursing), site delivered services
(e.g., literacy training and youth recreation), and residential programs (e.g., elderly
nursing homes and drug treatment programs). The most difficult of the three, and one
that this paper addresses, is home-delivered services. Site delivered services depend on
travel preferences and limitations of clients. Residential programs are less sensitive to
location, but should take into account travel of family members and care givers who
visit residents.

Our work on models for home delivered meals was motivated by a request from a
group of major grant-making foundations in Pittsburgh, Pennsylvania. Their job, in
part, was to evaluate proposals to fund expansions of existing service delivery
facilities or to build new ones. The foundations desired a means of evaluating the
merit (objective performance) of such proposals, and believed GIS to be an enabling
technology for a solution approach. Prior to the models presented in this paper, the
program officers of the foundations had no means to determine the gaps and overlaps
in coverage of target populations.

Several features of the non-profit, service-facility location problem make it ideal for
a spatial decision support system (see Alter 1980; Densham 1991 and Sect. 2 below):

1) Map interface: the natural user interface for the problem is a GIS map showing
kitchens, corresponding catchment areas, client stops, the street network, etc. with
tools to perform spatial operations — this is no doubt a spatial problem. Our spatial
DSS is based on ArcView GIS with map display and menu items for configuring and
locating new kitchens. A map of existing gaps provides a needs analysis for facility
planning that can be shared and is the key means for coordinating efforts of multiple
stakeholders.

2) Computational limitations: while comprehensive, optimal solutions are desir-
able, they appear to be computationally infeasible for this problem (see Sect. 2).
One approach to building a spatial DSS would be to start with an optimal solution
displayed and then allow the user to refine it using DSS tools and expertise. We
leave for future research the construction of comprehensive algorithms that provide
near-optimal solutions in a reasonable amount of time. In this paper we
focus instead on generating feasible but approximate solutions using an intuitive
interactive heuristic.

3) Semi-structured decision problem: there are some aspects of the decision problem
that are well structured and others best left to expert judgment — this is a key feature
of DSS. We provide algorithms and functionality to design high-performance new
kitchens incrementally. The user chooses a site and kitchen configuration based on
judgment and/or feedback from a previous trial kitchen within the immediate
environs. Our traveling salesman-based algorithm estimates a high-performing
catchment area for the kitchen. Within the context of filling service gaps, there are
a number of examples in which expert judgment is critical. These examples include
user knowledge of: (a) a church qualified for and amenable to home-delivered meals
service delivery; (b) a potential site that lacks a single piece of equipment to provide
needed meal capacity; (c) a new senior apartment complex to be built, greatly
increasing demand and (d) the desire of a nearby kitchen to serve clients nominally in
the current kitchen’s catchment area.

4) Incrementalism decision setting: The decision setting, like many in the public
sector, is incremental rather than comprehensive (e.g., see the classic, Lindbloom
1968). For example, many organizations independently establish and operate meals on
wheels kitchens in Allegheny County, Pennsylvania: county agencies, service arms of
religions organizations and independent non-profit organizations.
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5) Decoupled solution space: the decision problem of filling gaps in coverage of the
spatial distribution of the elderly population is by nature decoupled, requiring only
one or two new kitchens per gap — this makes the problem more amenable to using
judgment and a DSS.

In Allegheny County, Pennsylvania, there are 63 volunteer meals on wheels facilities
delivering daily hot meals to slightly over 4,000 home-bound elders. We estimate below
that a little over 80% of the demand is met by current facilities, with a net benefit, in
avoiding costs of residential nursing homes, to be in excess of $100 million annually.
The typical facility has four to six routes driven by volunteers with a dozen stops and
one or two clients per stop. Generally, meals on wheels uses existing facilities — church,
school, and senior center kitchens. The major fixed costs of a new facility are thus
organizational: gaining commitment from a facility, securing funding for operations,
recruiting and organizing networks of drivers, and designing routes. Federal subsidies
have the provision that recipients be home-bound persons aged 64 or older and that
delivered meals be at least 140 °F. With insulated carriers, the temperature require-
ment translates into a 45-min time limit for delivery of the last meal on a driver’s route.

Thus, the catchment area of a kitchen depends on its location, meal production
capacity, carrying capacity of delivery vehicles, 45 min time limitation for delivery,
number of drivers/routes per day, density of clients and street network, travel or
“turf” barriers, and efficiency of routing.

Section 2 of this paper presents an overview of the location and vehicle routing
literature, and suggests that exact algorithms for our problem, even if implementable,
are computationally impractical. Section 3 provides a GIS and traveling salesman-
based algorithm for estimating the optimal catchment area of a kitchen. Section 4
reviews our GIS-based methods of forecasting point locations of delivery stops.
Section 5 applies the methods of Sects. 3 and 4 to estimate service gaps and suggest
new kitchen locations, and Sect. 6 concludes the paper.

2 Location-routing models and spatial decision support systems in the literature

The general planning problem this paper addresses is the home-delivered meals
location-routing problem, referred to as HDM-LRP. In this problem, the goal is to
simultaneously choose “depot” (kitchen) locations and delivery routes. The depots
provide “products” (meals) to spatially dispersed customers via routes driven by
multiple vehicles, each of which leave a depot, visit multiple customer locations, and
then return to the depot when customer deliveries are finished.

This problem is a combination of two well-known planning problems: a location-
allocation problem, in which customers are assigned to potential depots and a multi-
depot vehicle routing problem (MDVRP), in which multiple vehicle routes are designed
originating from and returning to depots. Since the MDVRP is a generalization of the
single-depot vehicle routing problem, which has been shown to be NP-hard (Lenstra
and Rinnooy Kan 1981), the location routing problem is NP-hard as well. Thus,
optimal solutions are unlikely to be generated for problems of realistic size. Indeed,
Laporte, Norbert and Talliefer (1988) have solved LRPs to optimality for at most 80
nodes. As will be shown, a typical HDM-LRP contains on the order of thousands of
nodes. Thus, heuristic solutions are likely to be the only feasible method for solving
practical instances of the LRP.

Bodin and Golden (1981), Assad (1988), Laporte (1988) and Min et al. (1998) have
all presented comprehensive taxonomies of vehicle routing problems and in particular
the LRP. Relevant characteristics of HDM-LRP include:
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e Single stage — products originate at the depots rather than at a central plant;

e Deterministic — the nature of location/routing parameters such as customer demand
is known and fixed with certainty;

o Multiple facilities;

o Multiple vehicles;

e Uncapacitated vehicles — for delivery of relatively small meals, vehicle space is not
likely to be a constraining factor;

e Capacitated facilities — in practice, volunteer staffing at kitchens limits number of
meals and available to service clients;

e Route length limits — limits on the length of routes driven by delivery vehicles

e Primary facility layer — kitchens serve as origins and destinations of delivery routes
and not as transshipment points;

o Multiple-period planning horizon — a planning organization must account for
changing levels of demand as customer demographics shift over time;

e Unspecified time windows with no deadline — customers generally do not require
specific meal delivery times;

e Multiple objectives — vehicle operating costs; fixed facility location cost and equity/
fairness considerations;

e Real-world data — the subject of Gorr et al. (2000).

We examine some of these problem characteristics in more detail. A primary
motivation for this paper is that a shift occurred in locations of populations likely to
use HDM services, from the central city to suburbs, and from inner-ring suburbs to
outer-ring suburbs and rural areas. Many of the service gaps of meals on wheels occur
in the suburbs and rural areas. While Gorr et al. (2000) examine the cause of this shift
in more detail, it suffices to note that any scheme that designates certain kitchens and
catchment areas for the current period is likely to be outdated, especially in areas such
as Pittsburgh that have suffered “white flight” from urban to suburban communities
starting in the 1960’s, and long-term population losses. Because volunteers staff HDM
facilities, it is probably not reasonable to solve a planning model that prescribes one
configuration of kitchens in one period and another, quite different configuration in
another period. Laporte and Dejax (1989) have examined dynamic LRPs. However,
we will avoid the added data requirements and computational difficulty associated
with explicitly incorporating dynamic considerations by solving a single-period
planning model.

Another related modeling issue of interest is stochasticity of model data. We (Gorr
et al. 2000) have found that it is simply not possible to identify locations of all clients
currently receiving HDM services in our study area, Allegheny County, Pennsylvania.
Thus, we have had to design procedures to estimate and forecast customer demand.
Given known shifts over time in populations likely to need HDM services, it would be
correct to regard customer demands as stochastic. While LRPs under uncertainty
(Laporte et al. 1989) have been studied, the computational requirements are excessive
for an initial effort to solve HDM-LRP. Thus, we treat customer demand (and other
model parameters) as fixed and known with certainty.

Finally, objectives of HDM-LRP are of interest. Traditional LRPs (Perl and
Daskin 1985; Laporte et al. 1988) have minimized the sum of fixed facility location
costs, vehicle operating costs and vehicle routing costs, the latter usually proxied by
total distance traveled. However, in the context of HDM, it is often not clear what
fixed facility costs are or how they ought to be measured. This is due to the fact that
while HDM kitchens are often provided free of charge by churches, schools,
community centers and other organizations, there are large non-monetary costs such
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as those associated with recruiting volunteer drivers. Moreover, there are significant
equity considerations associated with HDM service planning, mainly ensuring that all
potential clients in a region have access to this valuable service. Giannikos (1998), List
and Mirchandani (1991) and ReVelle et al. (1991) have addressed equity consider-
ations in location-routing problems in the context of hazardous waste transport and
disposal, however these models have not explicitly incorporated the Hamiltonian tour
constraint that makes LRPs so difficult. Thus, we treat HDM-LRP as, fundamentally,
a multi-objective planning problem relying on expert judgment using a decision
support system. Moreover, the interactive solution method presented in this paper is
motivated, in part, by the fact that fixed facility costs cannot often be well defined.

Having defined in some detail the HDM-LRP model, we now address solution
techniques. As mentioned above, the difficulty of LRP in general precludes exact
techniques for realistically sized problems. However, researchers have developed a
number of heuristic methods for solving LRP. Min et al. (1998) categorize heuristic
solution techniques for LRP as:

Location-allocation-first, route-second
Route-first, location-allocation-second
Savings/insertion
Improvement/exchange

Others

Madsen (1983) provides examples of location-allocation first, route-second and route-
first, location-allocation second, both integrated with a savings heuristic. Or and
Pierskalla (1979) use an improvement/exchange heuristic to combine solutions to
location-allocation and vehicle routing problems solved, essentially, in parallel. Perl
and Daskin (1985) use a combination of three combinatorial optimization problems,
the Multi-Depot Vehicle Dispatch Problem, the Warehouse Location-Allocation
Problem and the Multi-Depot Routing Allocation Problem to generate solutions to
the original LRP. Renaud et al. (1996) use tabu search to solve LRP, though fixed
facility costs are ignored. The literature is inconclusive as to the relative efficacy of
these alternative approaches; to our knoswledge, no researchers have compared
worst-case performance for LRP heuristics (though Li and Simchi-Levi 1990 have
done so for multi-depot vehicle routing problems). It is likely that meta-heuristic
approaches such as tabu search, simulated annealing or genetic algorithms may be
very competitive with more traditional approaches.

In this paper, we use an interactive version of the location-allocation first, route-
second approach. This strategy is motivated by our inability to incorporate monetized
fixed facility costs into an explicit optimization model, the need to allow users to
apply equity considerations where necessary, and the incremental decision setting of
non-profit organizations.

We briefly address a number of implementation issues that have been addressed in
the vehicle routing literature. Assad (1988) and Bartholdi et al. (1983) have detailed
the key role of the dispatcher in implementing recommendations of computerized
(and in the case of Bartholdi et al. 1983, non-computerized) vehicle routing systems.
Often, preferences of the dispatcher transform an optimization-based DSS into a
“satisficing” DSS. Assad also emphasizes the role of benefits measurement in
generating acceptance of vehicle routing systems. In our case, since no comprehensive
planning method for HDM over a service area as large as a county has existed
previously, such benefits may be difficult to quantify.

We know of only two papers in the literature that directly address the meals on
wheels problem. Wong and Meyer (1993) applied network optimization models to the
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meals on wheels problem at the operational level. The value of this study is limited
due to the very small sample sizes used. They compared two routes used in practice,
an urban route and a rural route, with two optimal routes generated by a single depot
vehicle routing procedure. The optimal routes for the urban and rural were
marginally better, 1% and 9% shorter in travel distance respectively. They also solved
the p-median problem to find the ideal kitchen location for a single kitchen’s clients.
The ideal kitchen had a 4% savings in total travel distance to clients from the kitchen.
This savings is small and it is not clear that it would translate into savings in route
lengths. The paper of Bartholdi et al. (1983) applied the concept of a space-filling
curve to determine delivery routes. Both of these papers address only the routing
aspect of the overall location-routing problem.

This paper focuses not just on solving the location-routing problem for home-
delivered meals and implementing the solution in a decision support system, but as
well on taking advantage of the spatial, interactive and incremental nature of our
solution to HDM-LRP in order to design a spatial decision support system (SDSS).
We thus turn our attention to a survey of SDSS principles and SDSS applications
related to the location-routing problem. SDSS address semi-structured planning
problems by integrating expert knowledge and specialized solution algorithms in a
problem domain for which the input data have a spatial component or for which
the solution space has a spatial dimension (Armstrong and Densham 1990; Ayeni
1997). These systems can address a number of spatial data applications: transfor-
mation, synthesis and integration, updating, forecasting, impact analysis and
optimization (Birkin et al. 1996). SDSS has been a popular area for research
applications. Gould and Densham (1991) have surveyed a wide range of SDSS
developed, and a number public-sector, service delivery SDSS applications have
been documented since then (see e.g., Wong and Meyer 1993; Lolonis 1994; Begur
et al. 1997, and Xin 1999).

Strategic planning problems such as HDM-LRP represent a problem domain in
which a traditional normative modeling approach, generating “ideal” solutions
intended to be implemented at once, do not reflect actual planning practice. In this
particular planning domain, “what-if”’ questions and small changes to the status quo
are more likely to represent the real needs of managers (Densham and Rushton 1988).

The SDSS literature contains examples of models that are more highly structured
and operationally oriented than HDM-LRP, however. For example, Begur et al.
(1997) design daily visit schedules for nurses visiting homebound clients, while
Wiegel and Cao (1999) design daily visit schedules for appliance repair professionals.
Even in these cases, the spatial analytic strength of GIS is combined with practical
needs of schedulers to incorporate sensitivity and exploratory analyses of visit
schedules.

Wong and Meyer (1993) present a comprehensive, well-reasoned exposition of the
role of SDSS in home delivered meals service planning and delivery. Unfortunately,
the modeling and algorithmic deficiencies noted in their work above, and the very
incremental nature of their results (one urban and one suburban delivery route
generated and compared to the status quo) prevent their model from consideration as
a comprehensive SDSS solution to HDM-LRP.

To conclude, the “generic” LRP has yielded a variety of explicit mathematical
formulations that incorporate real-world considerations and solution techniques that
appear quite promising. Moreover, there are a number of real-world applications of
LRP and aspects of VRP implementation in general that are relevant for this study.
The combination of GIS and incremental, interactive algorithms embodied by spatial
decision support systems allows us to take advantage of the difficulties in modeling in
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closed form, and finding near-optimal solutions to HDM-LRP, to design a SDSS that
is more appropriate to decision maker needs than an algorithmic, “black box”
approach. Finally, the scale and scope of our proposed SDSS appears to exceed that
of another related application for HDM previously documented in the research
literature.

3 Algorithms for a DSS approach

Because our location problem is sufficiently large that a closed-form, or even
computable, optimal solution would be difficult to achieve, we concentrate on finding
accurate solutions to sub-problems, and bring these together in a way that is useful to
an actual decision maker.

The problem of organizing the supply of home-delivered services typically
includes constraints that are often waved away in global mathematical formula-
tions. In particular, there is usually some pre-existing infrastructure that cannot
simply be discarded; it needs to be augmented in a gradual move toward optimality.
Client locations change over time, so a solution must be robust against such
changes, or at least must anticipate them. Supplying services efficiently is crucially
dependent on existing street networks, so a solution concept must operate at this
micro-level.

Our initial objective is to identify, and then fill, existing gaps in service. A second
step is to identify service overlaps, and suggest alternative catchment areas to
eliminate them. Our strategy is therefore based on

1. Estimating client densities in a spatial environment,

2. Using data from a subset of current service providers to estimate existing catchment
areas,

3. Determining existing gaps in coverage,

4. Identifying and evaluating candidate locations for new providers, and

5. Providing tools for evaluating coverage overlaps, and for assessing the impact of
reducing or eliminating them.

A primary objective of non-profit service providers is to maximize coverage of the
client population. Because this population is not uniformly distributed spatially,
distribution facilities in more sparsely populated areas will have physically larger
catchment areas, at least for a fixed distribution capacity. But when coupled with
limits on distribution time, the 45-min limit on meals on wheels delivery, for example,
it becomes more difficult for such a distributor to service a large client base.
Countering this is the possibility that average travel speeds may well be higher,
perhaps mitigating the travel distance penalty.

A second objective is to minimize facility costs. Locating facilities in densely
populated areas is cost efficient, but conflicts in an obvious way with the goal of
complete coverage. Population density in this application depends on the distribution
network (i.e., the street network), since simple physical proximity (1/2 mile away, but
across a river) doesn’t always imply a short travel time.

A third objective is to minimize travel costs. To do this, delivery routes need to be
intelligently designed. For a single delivery route, and a known set of customers, this
is the classical traveling salesman (TSP) problem. Typically, however, a facility will
have multiple “‘salesmen”, forcing a selection of multiple routes. We deal with this
non-optimally, by assigning geometrically defined sectors of the catchment area to
individual delivery people.
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Sampling and algorithmic details

To model the delivery of services, we assume initially that facility locations and client
densities are known. We discuss the estimation of client density later, in Sect. 4. Since
actual client locations change frequently, we rely on a sample of likely locations,
randomly generated using the given density and projections of Census data on the
elderly population at the block group level. We do this by selecting points from a two-
dimensional uniform distribution. Each point can be assigned an amount of the good
or service to be delivered. In the meals on wheels application, for instance, a single
client location may require the delivery of multiple meals. The distribution of meals
per location was estimated from historical data.

Each sample point is located within the existing street network, using standard GIS
procedures. If the point is not within a certain distance of a street (typically 1/8 mile),
the point is discarded. Sampling continues until the estimated number of clients has
been generated. In our application, using the ArcView GIS software, this and other
procedures are coded in the Avenue scripting language. There are other ways to
perform this sampling. For instance, one might first choose a street segment, and then
choose a point along the segment. However, the method we used is quite simple, and
the resulting distribution is faithful to the street network, since we insist that sample
points be close to a street.

For each facility, the number of routes r is known. Each facility has a fixed capacity
¢, so the next task is to attempt to supply this number of clients, subject to other
constraints such as time limitations and geographical boundaries.

The algorithm is a simple one. The area surrounding the facility is broken up into
r equal-angle wedges, using lines extending radially out from the facility location.
Each of these is assigned to a driver. Next, each wedge is bounded by a circular
segment whose center is at the facility and whose radius is, initially, rather small
(typically 1/2 mile). All of the sample points lying within this pie-shaped
geographical area constitute the client set for one driver. Using the street network,
and a heuristic TSP algorithm available in ArcView, we find the fastest route that
starts and ends at the facility and stops briefly at each client location. If the total
time is acceptable, the radius of the pie-shaped sector is increased. The goal is to
find the largest radius such that the client load within the sector can be serviced
within the specified time limit. This process is repeated for each sector. The
resulting collection of sectors (which may have different radii because of client
locations and the details of the street network) is taken to be the catchment area for
the facility.

For the catchment area estimates reported here, a “stop time” of one minute was
used for each client; this was estimated by actually riding along on several existing
routes. We used the Dynamap 2000 street maps from Geographic Data Technology.
These maps include estimates of travel times based on street type and length. We also
considered the possibility that the TSP heuristic in the GIS software package might
give routes that were far less than optimal for this difficult combinatorial problem. We
took a sample of sectors and the enclosed stop points and compared the built-in
heuristic with a known optimal TSP procedure (the Held-Karp algorithm as
implemented by the Concorde group, available at http://www.keck.caam.rice.edu/
concorde.html). We could find no differences between the heuristic and optimal
solutions, at least for our small sample. Another potential problem is inaccuracy in
finding the shortest paths between stops, the main data used by a TSP algorithm. We
could find no straightforward way to check this, and simply relied on the existing
routines in ArcView.
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A typical catchment area, for a facility with five delivery routes, is shown in Fig. 1.
The smaller dots are clients, while the facility is shown by the larger dot. The sector to
the southwest was truncated by a geographical boundary (the county line), and a
portion of another catchment area is seen to the northwest. For this facility, 70 meals
were available, but only 66 could be delivered within the 45-min time limit. In
addition, there appears to be unmet demand in the vicinity of the facility, particularly
to the northeast.

Another catchment area is shown in Fig. 2, for a facility with a capacity of 150
meals and six drivers. Our algorithm predicted that a maximum of 95 meals could be
delivered. Several features of this catchment area are worth noting. First, the client
population is very unevenly distributed. In fact, there are very few clients to the
northeast of the facility, and many un-serviced clients south of a river near the facility.
This poses a problem for the delivery algorithm, since it allocates equally spaced
sectors for each delivery route, and several of these sectors enclose almost no clients.
A decision maker would of course notice this immediately, and would attempt to re-
allocate delivery resources to the southwest.

The GIS display suggests, however, that this may not improve coverage
substantially. Note that the existing routes to the south and southwest have reached
their 45-min delivery times, and any additional routes in that direction must follow
the same path over the only bridge available. This suggests that a superior solution
might include a new facility located to the south of the river.

Other approaches to allocating clients to drivers are suggested in the literature. For
example, a p-median approach might be taken, grouping clients into p groups, where
p is the number of drivers at a kitchen. However, our problem requires that clients
simultaneously be assigned to both kitchens and drivers, that is, the collection of
clients assigned to a kitchen is not known in advance. This forces an extra layer of
allocation onto the problem (as discussed in Sect. 2), resulting in a considerably more
difficult optimization problem. Nonetheless, improvements can certainly be made to
the static wedge procedure given here. For instance, user-defined wedge angles and

Fig. 1. A typical catchment area
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orientations would allow wedges to be tailored to accommodate the clustering of
clients in the vicinity of a kitchen. We dealt with some of these problems by allowing
users to define barriers, described next.

During the process of estimating catchment areas for an existing set of facility
locations and capacities, it was quickly noticed that maximal catchment areas often
overlap. Figure 3 shows an example of this. This is probably fairly common for many
organizations maintaining multiple facilities. Obviously, though, this allocation of

Fig. 2. Another catchment area

Fig. 3. Overlapping catchment areas
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clients to facilities involves double counting, so should be eliminated in order to better
understand real shortages or over-capacity. To estimate catchment areas without
overlap, Fig. 4 shows a facility (the large central dot) for which a catchment area is to
be estimated. Since it is fairly close to a number of other facilities (the large square
dots), two “off-limits barrier” areas are defined, one to the northeast, and a larger one
to the south and west. Defining these areas effectively removes the clients within them
from consideration by the catchment algorithm. The central, roughly triangular
region is the area “assignable” to the facility. The resulting catchment is shown in
Fig. 5. This process allows the decision maker to assign territories to facilities,

Fig. 5. Resulting catchment area
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prevents multiple counting of clients, and thus makes clear where capacity is needed.
Of course, if imposing these boundaries prevents a facility from using all of its
capacity, this will be discovered as well. The decision maker can use a trial and error
process to determine an initial set of boundaries, and then modify them to
accommodate excess capacity where possible barrier boundaries are used.

4 GIS-based estimation: Allegheny County HDM

Our purpose is to provide a tool that can be used to plug gaps in the Allegheny
County meals on wheels kitchens. Our algorithm of Sect. 3 needs stops locations and
the number of clients at each stop in order to estimate a kitchen’s catchment area.

A naive forecast (tomorrow is the same as today) is often difficult to improve upon
in forecast competitions. A map of existing meals on wheels kitchens in Allegheny
County reveals, however, that there are large gaps in the coverage of elderly
populations (see Fig. 7 below). Thus, even if we were able to collect the entire
population of stops and clients per stop for existing meals on wheels routes, we would
not have all demand points for this service. Moreover, the client population is
dynamic, with clients being added and removed as time passes, and with spatial trends
decreasing elderly populations in urban areas and increasing them in suburban areas.
Clearly, then, we need to forecast stops using a model.

Our approach to making such a forecast has several steps. At the basis are three
components: 1) five-year-ahead forecasts of elderly population at the block group
level made by Claritas, Inc., 2) our estimate of the usage rate for meals on wheels (i.e.,
the percentage of elderly who use meals on wheels services), and 3) a frequency
distribution of the number of clients per stop. Gorr et al. (2000) provide an estimate
of 2% for usage rate based on a sample of stops for 25 kitchens and a regression
model for removing an underestimate bias. A tabulation of clients per stop from
existing kitchens yields the distribution in Table 1. The expected number of clients per
stop is 1.3.

Finally, to make a stop points forecast, we used the following steps for a each block
group: 1) select a random sample of points within the block group of size equal to 2
percent of the elderly population forecasted by Claritas divided by the expected
number of clients per stop and 2) reverse geocode each sample point to a street
address. One realization is in Fig. 6.

5 Application of the spatial decision support system

We implemented our algorithms in ArcView GIS, with a few additional menu items
for drawing barriers, locating a new kitchen, setting the kitchen’s design parameters,

Table 1. Distribution of clients per stop

Number of clients Frequency
per stop

1 0.80

2 0.15

3 0.02

4 0.01

5+ 0.02
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[_] Allegheny County
e Existing Kitchens
2% Stops Sample

Fig. 6. 2% sample of stops and existing kitchens

and estimating the resulting catchment area. The application presented here is a gaps
analysis of the current meals on wheels kitchens, and then an example set of new
kitchens for plugging identified gaps.

To gauge the efficiency of the current kitchen configuration, we used a conservative
demand estimate of 2% of the elderly population. This resulted in a simulated client
sample of 4379 stops and 5069 total clients. Then we applied the algorithms of Sect. 3
to estimate catchment areas for all 63 kitchens. In applying these algorithms, we used
the boundary technique to prevent overlaps of catchment areas. Current catchment
areas have considerable overlaps and therefore are either inefficient or do not
maximize coverage of clients. The result is an estimate of the maximum capacity of
existing kitchens to cover client demand.

Figure 7 is the resulting estimate of the performance of the existing kitchens,
projected five years into the future. Gaps in coverage of the elderly population are
represented by light gray points left uncovered by the filled gray catchments. It is
readily apparent that there are significant shortcomings in coverage, since about 17%
of the sample stops cannot be serviced by the existing kitchens. The gaps are largely in
suburban areas, and sometimes, as it turns out, in well-to-do areas (the latter
determined from Census block group data). While this general trend is known to, and
is a concern of, funding agencies, the DSS analysis quantifies this somewhat vague
understanding, and helps focus attention on providing assistance where it is most
needed. Furthermore, several of the areas estimated to be uncoverable by the existing
kitchen network are not obvious at all. These tend to be densely populated bands
between existing catchments, some of which could be filled by expanding existing
capacities and others that require new kitchens.

An important use of the HDM DSS is to explore the utility of adding additional
kitchens. The GIS displays are an excellent way to present coverage gaps to decision
makers, and experiment with new kitchen locations. We illustrate this by presenting
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one straightforward approach to identifying new kitchen sites and quantifying their
effects.

Figure 8 shows some candidate sites in the uncovered areas, constructed very
simply from a geocoded table of churches and K-12 schools in Allegheny County.
Since many current kitchens are in similar facilities, this provides a starting point for
identifying likely candidates for new kitchens. In practice, of course, a decision maker

Allegheny County
e Existing Kitchens

Estimated Existing
Kitchen Catchments

2% Sample

[ ] Allegheny County
Existing Kitchen
Catchments

a Schools

o Churches.

Fig. 8. Schools and churches in catchment gaps
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Fig. 9. The effect of adding seven new kitchens

would not be completely free to choose from among this collection, because of a lack
of kitchen facilities, the inability to recruit sufficient volunteers, or many other
reasons.

Nonetheless, a GIS-based analysis can show the relative value of any geographic
location, and help the decision maker develop a ranking of potential sites. Our overall
approach for identifying new kitchen sites consisted of conceptually breaking the
coverage gaps into smaller regions, and then counting the number of un-served clients
in each. Then we located a site (from Fig. 8) that was near the center of each region.
For each such site, we interactively experimented with numbers of routes, policies
such as “no return routes”, and even extending the 45-min delivery deadline to one
hour. All assumptions made about kitchen capacities and numbers of routes were
consistent with the capabilities of existing kitchens.

With the help of the DSS, it quickly became evident that even a moderate number
of new kitchens, strategically positioned, could have a significant impact on total
coverage. Figure 9 shows that adding seven new kitchens could supply an additional
10% of the client base, yielding a total coverage of 93%. Two kitchens were assumed
to supply 100 meals (which is within the scope of current kitchen capacities), while the
remaining five supplied between 40 and 60 meals apiece. Each kitchen used between
four and six routes.

Many of the remaining coverage gaps are in rural areas, far removed from the city
of Pittsburgh (which lies at the confluence of the three rivers shown in all the county
maps). The catchment areas of rural kitchens are typically considerably larger than
those closer to the city, suggesting that even if they had more capacity to provide
meals, they would find it difficult to deliver those meals within the 45-min limit. This
poses a difficult problem for planners, for whom equity considerations loom large.
Catchment gaps in more densely populated areas might best be served by expanding,
where possible, the capacity of existing kitchens.

We recognize that the approach taken above is far from globally optimal, as would
be the case if one of the more elaborate location-routing models of Sect. 2 were
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applied. Indeed, our approach is essentially a greedy one, reacting only to local
opportunities. However, as mentioned earlier, for the meals-on-wheels problem there
is no central authority that could implement a global solution. Additionally, the
equity considerations commonly applied to this kind of problem are difficult to
quantify. This suggests that a DSS approach, allowing decision makers to examine
alternate strategies, is a useful one.

6 Conclusions

Every day, non-profit agencies and volunteer groups provide countless services to
disadvantaged citizens of every stripe. This work is often very loosely organized, with
little central planning. Charitable foundations and other funding agencies, seeking to
maximize the benefit of their efforts, have traditionally found it difficult to evaluate
community needs in any systematic way. This paper suggests that the use of
geographical information systems, coupled with tools from operations research and
statistics, present a real and valuable means to support these agencies.

While this work is focused on home delivered meals, HDM is but a single example
among many for which the spatial insights provided by GIS are valuable to non-
profits. As the cost of computer hardware and software decrease, and the use of the
Internet increases, we believe it will be possible for even loosely-confederated non-
profits to share maps, street networks, and other data, resulting in improved day-to-
day performance and better long-term planning. The example in this paper considers
both of these aspects, combining demographic forecasts with current operational
data.
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