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Abstract. Distances between demand points and potential sites for imple-
menting facilities are essential inputs to location-allocation models. Comput-
ing actual road distances for a given problem can be quite burdensome since
it involves digitalizing a network, while approximating these distances by lp-
norms, using for instance a geographical information system, is much easier.
We may then wonder how sensitive the solutions of a location-allocation
model are to the choice of a particular metric. In this paper, simulations are
performed on a lattice of 225 points using the k-median problem. Systematic
changes in p and in the orientation of the orthogonal reference axes are used.
Results suggest that the solutions of the k-median are rather insensitive to the
speci®cation of the lp-norm.
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1 Introduction

Facility location analysis deals with the problem of locating new facilities with
regard to existing facilities and clients in order to optimize one or several
economic criteria. During the last three decades, there has been an outburst of
developments in this area; Hansen et al. (1987) or LabbeÂ et al. (1995) give an
overview of the progress realized. Besides the theoretical works, one could
also witness an urgent call for applications, both in the private and public
sectors. The literature is plentiful with case studies for ambulance and ®re
protection services, schools, health care facilities, post o½ces, garbage dumps,
electrical power stations, warehouses, department stores, . . . Now, a successful
application requires a satisfactory representation of the geographical and
economic environment of the problem: the demands of the clients, the costs
related to the implementation and the operations of the facilities in the various
sites, the costs related to the movements of people and commodities, the
impact of the nuisance generated by the system, etc. As this generally goes



along with a huge data collecting step, a major issue in the development of
location-allocation software is the design of an interface with a geographical
information system, which o¨ers more capability to handle georeferenced data
and provides the model with its requested inputs. Moreover, such a GIS
should also be useful at assessing the outcomes of the model.

In most real-world location-allocation applications, the environment is
represented by a discrete space where demand and potential supply are located
at nodes and distances are measured along links drawn between nodes. Many
simpli®cations are made in order to represent this environment, leading to
many well-known spatial data analysis problems: how much does the level of
data aggregation a¨ect location-allocation results (e.g. Current and Shilling
1989; Fotheringham et al. 1995; Daskin et al. 1989; Ruhigira 1994; Plastria
1995; Francis et al. 1996; Hodgson et al. 1997; Bowerman et al. 1999; Erkut
and Bozkaya 1999; Francis et al. 1999)? How much does the measure of
demand in¯uence location-allocation results (e.g. Beguin et al. 1992; Thomas
1993; Owen and Daskin 1998)? Does the shape of the road network a¨ect the
location-allocation results (e.g. Peeters and Thomas 1995)? Do boundaries
a¨ect location-allocation models (e.g. Hodgson and Oppong 1989)? Data
problems are numerous and often still unsolved.

Obviously, one of the most time consuming step in applied facility location
analysis is related to the measurement of distances on a communication net-
work. Indeed, it involves the digitalization of the network, the evaluation of
the velocity along the di¨erent links, the computation of shortest paths, the
veri®cation of generally very large distance matrices, for this lengthy proce-
dure is much error-prone. Hence, distance predicting functions are used in
order to transform co-ordinates di¨erences between two points into an esti-
mate of the travel distance between them (e.g. Brimberg and Love 1993b;
Love and Morris 1972, 1979; Love et al. 1995). Distance predicting functions
allow rapid estimation of unknown actual distances between pairs of points
in a geographic region and can be easily implemented in geographical infor-
mation systems. A commonly used function is the lp norm (see e.g., Love and
Morris 1972, 1979; Brimberg and Love 1992, 1993a,b; Muller 1982). Fitting
an lp norm to distances on a transportation network means ®nding empirical
values of a parameter p as well as an orientation y of the reference axes (e.g.
Brimberg and Love 1992, 1993a; Brimberg et al. 1995). The empirical ®ts
depend upon the studied example (see Sects. 2.2 and 2.3 for more details) and
are estimated by regression methods (e.g. Brimberg et al. 1996).

Of course, approximating actual network distances by lp distances when
solving a location-allocation problem is a potential source of di½culties. The
optimal solution of the original problem may indeed di¨er from the solution
of the approximated problem. One might then wish to evaluate the gap be-
tween these solutions. However, due to the in®nite variety of layouts of data
points, it seems extremely hard to provide a general answer to this question.
A second interrogation is also of interest: how sensitive is the solution of the
approximated location-allocation problem to modi®cations of the parameters
de®ning the lp norm? The answer should tell whether the degree of accuracy
for measuring the parameters p and/or y really matters for approximating
the solution of the original problem. In this paper, we will investigate this
question. More particularly, we will test the robustness of the solutions of a
representative location-allocation model (the k-median) to variations of the
parameters characterizing the lp norm. Finally, a word of caution: it should
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be clear that our aim is not to discuss the con®dence intervals for unknown
distances (e.g. Love et al. 1995), nor to ®nd the best estimates for one partic-
ular case study (e.g. Berens and KoÈrling 1985).

The remainder of this paper is organized into three sections. Section 2
outlines the formal terms of the location-allocation problem and the distance
measurement problem; it describes the design of the experiments: the settle-
ment system (§2.1), the distance predicting function (§2.2 and 2.3), how irreg-
ularities are introduced in the grid (§2.4), and the location model chosen
(§2.5). In Sect. 3 we detail the e¨ects of p (§3.1) and y (§3.2) on the location
results when k � 3, while we summarize the ®ndings for irregular lattices of
points (§3.3) and for other values of k (§3.4). The ®nal section gives some
concluding comments.

2 Design of the experiment

2.1 The settlement system

Choosing a regular lattice rather than an irregularly shaped layout enables
one to isolate the tested problem from many other sources of variation and
to control for the spatial layout (e.g. Anselin 1986; Haining 1986; Peeters and
Thomas 1995). The chosen hypothetical settlement system can be seen to di¨er
from the shapes of many observed settlements encountered in socio-economic
research. However, it enables the researcher to conduct the tests without the
additional complexities introduced by empirical lattices, and leads to more
clear-cut interpretations of the results.

The spatial layout of the data set is a regular 15-by-15 squared lattice of
points (N � 225 points). The choice of the shape and size (N) of the lattice is
governed by preceding results (e.g. Peeters and Thomas 1995; Arnold et al.
1996): it appears to be the best compromise between feasibility, reasonable
computing time and practical results. Each point i is a demand point as well as
potential supply site. Each point i is characterized by its �xi; yi� co-ordinates,
and is a node bound by a link to its eight closest neighbors. The way of mea-
suring the length of the link is de®ned in Sects. 2.2 and 2.3. Demand is equal
for all nodes and normalized to one.

2.2 The distance predicting function

The Minkowsky distance (or lp-norm) is often used as a surrogate for travel
time as it often provides a good ®t to network distances (e.g. Love and Morris
1972, 1979; Brimberg and Love 1992, 1993b; Huriot and Perreur 1990). Its
functional form is given by:

lp�m; n� � �jdxjp � jdyjp�1=p

where dx � jxm ÿ xnj and dy � jym ÿ ynj.
When pH1, which is known as the hyperrectilinear case (see e.g. Juel and

Love 1985), the triangle inequality postulate is not always satis®ed; hence lp is
not a norm in the topological sense. On the lp-sphere, the circle bends inward
(see Fig. 1 which shows the locus of points whose distance with respect to a
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central point remains constant). A value of p smaller than 1 may however be
not totally unrealistic in applied location studies: Muller (1985, p. 191) gives
the example of a motorist taking a detour to avoid tra½c as an evidence of a
situation where the triangle inequality rule is no longer applicable.

When pF1, the distance is called rectangular or rectilinear (Manhattan or
l1). The isovectors on the lp-sphere are diamond-shaped: they take the shape
of a square from which the diagonals are parallel to the axes (Fig. 1). For
every pI1 and ®nite, the spheres are strictly convex. When pF2, distance we
have the well-known Euclidean distance. For values of pI2, the correspond-
ing Minkowsky distances are shorter than the Euclidean distance (Fig. 1) (see
e.g. Muller 1985, p. 191 for the relevance of such values of p). The balls in the
limit case pFy are squares whose sides are parallel to the axes.

Examples of empirical ®ttings of lp-distances functions to actual data are
found in the literature. They aim at ®nding the best surrogate for travel time
between cities or within cities. Empirical values of p vary from 0.9 to 2.29 (e.g.
Love and Morris 1979; Berens and KoÈrling 1985; Brimberg and Love, 1993b).
Most often cited measures of p vary between 1.5 and 2.0. Estimating empiri-
cally a travel time by an lp-distance enables one to avoid the time-consuming
task of measuring travel time for each link of the network. The aim of this
paper is not to ®nd the best estimation of travel time, but to test the e¨ects
of changes in p on location-allocation results, and therefore to examine the
necessity of ®nding an accurate value of p for distance estimation in location-
allocation modeling. 17 values of p are chosen in accordance with the litera-
ture about empirical ®ttings of p as well as with the geometry of space. In our
example, p varies from 1.0 to 9: values between 1.0 and 2.3 were selected with
a step of 0.1, while outside this range 3, 6, and 9 were chosen. Because of the
properties of the lp-distance, values of p smaller than 1 were not kept in the
simulations.

No weight to distance is considered: some authors use a weight factor
(sometimes two, one associated with each direction) which accounts for pe-
culiarities in the network: hills, bends, rivers, etc. (e.g. Love and Morris 1972,
1979; Brimberg and Love 1992, 1993a,b). This should make our network
more irregular and the results of the test less clear to interpret. Furthermore,

Fig. 1. Mathematical spheres for some critical values of p
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we assume the same value of p throughout the entire network; in practical
situations, it could be advisable to regionalize the value of the parameter to
capture the local characteristics of the transportation network.

In our simulations, 17 measures of p in the lp-distance are considered.

2.3 The orientation of the reference axes

More accuracy in estimating travel time by an lp-distance can be obtained by
allowing a rotation of the orthogonal reference axes (e.g. Huriot and Perreur
1973; Love and Morris 1973; Brimberg and Love 1992, 1993a,b, Brimberg
et al. 1995). y is the angle measuring the rotation of the orthogonal reference
axes X and Y; the original reference axes are those parallel to the edges of
the lattice of points. y is measured counter clockwise; it measures the relative
di½culty to travel in any direction: if p < 2, it is easier to travel along the
directions of the axes, while if p > 2, it is easier to follow the direction of
the bisectors; when p � 2, space is isotropic (e.g. Love and Morris 1979;
Brimberg and Love 1993a). In accordance to the demonstrated symmetry
about P=4; y takes the values 0�, 15�, 30� and 45� in our simulations. These
rotations are applied for all p values.

For each of the 17 values of p, 4 values of y in the lp-distance predicting
function are considered, leading to a total number of 68 simulations.

2.4 Irregular lattices

The choice of a regular lattice of points may be questioned on grounds that it
yields too speci®c results. To assert the robustness of our ®ndings on irregular
distributions, we have proceeded in the following way. Each of the 225 points
of our regular lattice has been considered as the mean of a bivariate normal
distribution characterized by the same standard error s in the x and y direc-
tions. For a given value of s and each of the 225 distributions, a single point
has been created using a pseudo-normal generator. The selected values for
s, which can be viewed as a measure of disorder of the lattice, were 0.00
(regular), 0.25, 0.50, and 1.00. On the four lattices obtained in this way,
selected values of p and y detailed in subsection 3.3 were used to measure the
distances.

Experiments were also carried out using a set of 225 points randomly
generated in a square. This can be considered as a maximum disordered set.

2.5 The location model

The k-median model is applied (Hakimi 1964). It yields a con®guration of k
supply sites such that the sum of the distances between the demand points
and their respective closest supply site is minimized. The model has been
chosen for its high ¯exibility, the good performance of the algorithms designed
to solve it, and its common use in location-allocation applications. Most
importantly for our purpose in this paper, distance is one of the key elements
in the formulation of the k-median problem. Distance is often used as a sur-
rogate for travel disutility encountered by the customers; thus using a «good»
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measure of distance is one of the crucial conditions to obtain meaningful
solutions. As computing actual distances between points in real spaces is gen-
erally time-consuming and prone to errors, approximating those distances by
analytical expressions using the coordinates of the points, as geographical
information systems allow to do it, seems a priori an interesting idea. Exact
solutions of the k-median model were computed using a program outlined in
Hanjoul and Peeters (1985).

But the optimal con®guration of supply sites and the value of the total
distance are not the only characteristics of a solution of a k-median problem.
The number of demand points allocated to a site gives the level of activity of
this site, thus its size in terms of human and material resources that should be
a¨ected. The shape of the area to be supplied by a site and the corresponding
distribution of distances between the demand points and the site are two other
important outcomes. The latter can be characterized either by its mean value,
its maximum value, its variance, a Lorenz curve, etc. All the measures of
spread are to be interpreted in terms of inequity among clients.

In the studied example, the number of supply sites k to be optimally located
may theoretically vary between 1 and 225. In this paper, we decided to focus
on the results obtained for k � 3; according to our experience, it was the value
that best isolates the tested e¨ect as it leads to a symmetric solution in the
chosen lattice of points. However, to assess the robustness of the ®ndings,
experiments with other values of k were also performed. The results are syn-
thesized in Sect. 3.4.

3 Computational experiments

3.1 How much does the choice of p a¨ect the k-median results?

Let us consider a ®rst set of simulations: a regular squared lattice of 225
points, reference axes parallel to the lattice of points �y � 0�� and p varying
from 1 to 9. Let us consider the outputs of the k-median for the 17 selected
values of p.

3.1.1 Average and maximum distances

Two measures of distance commonly help to evaluate the k-median results: (i)
the average distance �Dave� between all demand points and their respective
closest optimal supply site gives a measure of e½ciency of the proposed solu-
tion, and (ii) the maximum distance �Dmax� between a demand point i and the
closest facility can be considered as a measure of the equity of the optimal
solution. Their variations with p are respectively reported in Figs. 2 and 3.

A 3-median model was applied for each of the 17 values of p. Spatial dif-
ferences between the solutions were found because of the isotropy of the
studied sample of points: symmetric solutions were suggested by the model. In
this particular case, the three optimal sites are located at the vertices of a tri-
angle, sometimes on its base, sometimes on its summit, sometimes rotated
from 45� or 90�. Hence, comparability of the optimal locations was di½cult
for geometric reasons only: for a given value of the objective function, di¨er-
ent solutions can be suggested (alternative optima). A second set of simula-
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tions was therefore performed imposing one location to the model. This
enables one to avoid natural symmetries, to better compare the spatial solu-
tions and to interpret the tested e¨ects without confusion. In this studied
example, imposing one location has no e¨ect on the average distances and
little on the maximum distance for values of p < 1:5 (Fig. 3). The following
sections will refer to the constrained model only.

Both distances �Dave;Dmax� (Figs. 2 and 3) decrease with p, in accordance
to the de®nition of the lp-distance (see Sect. 2). Figure 2 compares the
relative variation with p of the average distance �Dave�, the maximum distance
�Dmax� as well as the expected distance (distance simply computed with the lp

Fig. 2. Relative variation with p of the computed lp-distance (computed ) and two outputs of the 3-
median model (the average distance and the maximum distance (Ratio � Xp=Xp�2)

Fig. 3. Computed variation of Dmax with p for the 3-median model applied with no constraint and
with one imposed location
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formula). Di¨erences are slight and insigni®cant. The ratio of the maximum
distance �Dmax� to the average distance �Dave� is often considered as a balance
between equity and e½ciency. In our simulations this ratio varies regularly
with p, but the ¯uctuation is very slight: between 2.15 to 2.26 with a minimum
value when p A �1:8; 3:0�. Relative di¨erences in the computed values of Dave

and Dmax are not insigni®cant with p, but regular.
p in¯uences the absolute value of the average and the maximum distances;

the observed variations with p are proportional to the expected one (Fig. 2).

3.1.2 Optimal locations and allocation

For k � 3 and forcing one location to be open at site j � 53, the same two
other locations are always retained as optimal, for every p in �1; 9� (Fig. 4): this
suggests that for this set of experiments, the optimal locations are not sensitive
to the choice of the lp-distance.

Each demand point i is allocated to its closest optimal supply site j. Each
supply point j is therefore characterized by a zone (a market area) including
the allocated demand points and by the size of the facility, which is propor-
tional to the number of points in the supply area. Both criteria (quantity of
demand allocated to the site; shape of the zones) are used to evaluate the k-
median results. In accordance with the preceding results, the design of the
optimal market areas are almost the same whatever p in �1; 9�. Figure 4 gives
the 3 optimal supply sites j as well as the 11 demand points i whose allocation
changes with p. The observed di¨erences are located along the perpendicular
bisectors of the triangle formed by the 3 optimal locations and are observed
for very large values of p �p > 3:0�. These locations are explained by the
geometry of the studied environment and can easily be simulated by Voronoi
diagrams.

Hence, errors made on the use of p when estimating distance by the lp-
distance have little in¯uence on the optimal locations and allocations proposed
by the k-median model. No di¨erence is observed for commonly used values
of p (see Sect. 2.2).

Fig. 4. Optimal locations and changes in allocation with p when y � 0�. �: optimal location; k:
demand point; 4: changes in allocation
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3.1.3 Distribution of distances

Let us make a last veri®cation of the tested hypothesis. The distribution of
the distances between each demand point i and its closest optimal supply site
j is another way of evaluating the e½ciency and the equity of the optimal
solutions of location-allocation models. Figures 5 to 7 illustrate the variation
of three simple statistics that describe the statistical distributions of a variable:
(1) the coe½cient of variation (CV ) which measures the dispersion of a vari-
able independently of the size of the data values; (2) the coe½cient of skewness
(sk) takes the value 0 when the data are perfectly symmetric, it is positive
when the mean is larger than the median, and negative when the mean is
smaller than the median. sk measures the tendency of a distribution to stretch
out in a particular direction; (3) the kurtosis (K ) measures the peakedness of
the distribution.

Fig. 5. Variations with p of the CV measured on the distances distribution, when y � 0�

Fig. 6. Variations with p of sk measured on the distribution of distances when y � 0�
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Whatever the studied indicator, variations with p are very slight and
insigni®cant; they are, however, regular with p: sk and K increase regularly
with p, CV reaches minimum values when p A �1:5; 2:1�.

3.1.4 Conclusions

Within the limits of this experiments, it appears that p has little in¯uence on
the location-allocation results, especially in the range widely used in practice
( p A [1.5, 2.0]). Optimal locations do not vary with p. Optimal allocations
change only slightly at the borders of the market areas. The absolute values of
the average and maximum distances vary only as theoretically expected by the
distance formulation.

3.2 How much does the orientation of the reference axes a¨ect the k-median
results?

Let us consider here a regular squared lattice of 225 points and 17 values of p,
but this time with 4 di¨erent values of y (see Sect. 2.3).

3.2.1 The e¨ect of y on the average and maximum distances

The average distance Dave was computed for each p and y values. We observed
almost no di¨erence with y between average distances computed by the 3-
median model: Dave is not signi®cantly a¨ected by the directional changes of
the reference axes, whatever p in �1; 9�. Maximum distances are reported in
Fig. 8 for each studied value of p and y. Di¨erences between maximum dis-
tances are small: for a ®xed value of p, the maximum observed di¨erence is
less than 10%, whatever y. When p is greater than 1.5 and smaller than 2.3,
di¨erences are the smallest: they are less than 3.0%.

Fig. 7. Variations with p of K measured on the distances distribution when y � 0�
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As a ®rst conclusion, average and maximum distances are slightly in¯u-
enced by the orientation of the reference axes.

Figure 9 compares the maximum distance to the average distance for each
value of p and y. The computed ratio expresses the balance between equity
and e½ciency: the highest the index, the more equity is privileged against e½-
ciency. Di¨erences are not important: the index varies between 2.1 and 2.4.
When p > 2:0, y � 0� solutions are always the best balance between equity
and e½ciency. When p < 2:0, y � 45� is the most balanced solution; this is to
be explained by the symmetry demonstrated by Brimberg and Love in 1993b.
This ®gure also illustrates the equivalence of the solutions when Euclidean
distance is considered �p � 2� and the resemblance between y � 30� and
y � 15� solutions. Di¨erences are small and regular with p.

As a conclusion, the two most often used 3-median operational outputs
are almost not a¨ected by the direction of the reference axes as far as the
commonly used values of p in the lp-distance are concerned ( p A [1.5, 2.3]).

Fig. 8. Variation with p and y of the maximum distance �Dmax�

Fig. 9. Variation with p and y of the ratio between maximum �Dmax� and average distances �Dave�
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Errors on the use of p when estimating travel time (see Sect. 2) do almost not
a¨ect the 3-median results as far as Dave and Dmax are concerned. Operational
location results (choice of j, allocation of i to j) are the same whatever p and y.

3.2.2 The e¨ect of y on the optimal location and allocation

One site is ®xed open at j � 53; the other two optimal sites proposed by the 3-
median are almost always the same as those illustrated in Fig. 4. In 1 case out
of 68, a shift of one site is observed; it occurs for a value of p � 1:0. In all
other cases, whatever y and p, the same supply sites are chosen and hence the
solutions are stable.

Figure 10 shows the variation with p and y of the quantities of demand
allocated to the 3 optimal supply sites. Small di¨erences between minimum
and maximum allocation correspond to a balance between supply sites; large
di¨erences should not be chosen by the decision-maker especially when the
service is not hierarchically organized. The ®gure shows that all p and y values
naturally lead to almost the same balanced con®guration: p and y have little
in¯uence on the allocation results (di¨erence smaller than 10%). For geomet-
ric reasons only, values of p close to 2.0 lead to totally identical values of
maximum allocations.

Figure 11 illustrates the demand points i whose allocation varies with p for
a ®xed value of y, that is to say the main di¨erences in the shape of the market
areas for a given set of reference axes. Two cases are illustrated: y � 15� and
y � 45�. In all computed cases, di¨erences are not numerous (17 points out of
225) and are always located on the perpendicular bisectors of the triangle
formed by the three optimal locations.

The same maps were designed for ®xed values of p and di¨erent values
of y. One case is illustrated (p � 1:1, Fig. 12): di¨erences in allocation are
again located on the perpendicular bisectors of the triangle and are not
numerous (13 pairs out of 225). As already mentioned, the di¨erences are
located on the perpendicular bisectors and can easily be designed by simple
Voronoi diagrams.

Fig. 10. Variations with p and y of the minimum and maximum allocation
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3.2.3 The e¨ect of y on the distributions of distances

As in Sect. 3.1, distribution of distances are summarized by three indicators:
CV, sk and K; Figs. 13, 14 and 15 refer to their variations with p and y. Once
again, di¨erences are slight and not signi®cant, but regular with p. Euclidean
distances are of course not sensitive to y changes. For geometric reasons only,
solutions with y � 0� are symmetric to those with y � 45�.

3.2.4 Evaluation of the relative e¨ects of y and p

Tables 1 and 2 summarize the amplitude of the e¨ects of the changes in p and y
on four previously measured indicators: the average and maximum distances,
the ratio between equity and e½ciency, and the coe½cient of variation mea-
sured on the individual distances between each demand point and its closest
supply site.

Fig. 11. Optimal locations and allocation changes with p, when y � 15� and y � 45�. �: optimal
location; k: demand point; 4: changes in allocation

Fig. 12. Optimal locations and allocation changes with y, when p � 1:1. �: optimal location; k:
demand point; 4: changes in allocation
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Table 1 gives the relative changes of the 4 selected indicators with p. For
each value of y, the relative di¨erence of each indicator is computed. Di¨er-
ences on the absolute values of Dave and Dmax are important due to the dis-
tortion of the space �p A �1; 9��. Computing the di¨erences for the ratio of
Dave to Dmax lead to di¨erences smaller that 11%. CV is quite stable: CV is
a relative value and has a maximum di¨erence of 7.3% between solutions.
Relative di¨erences with p between computed indicators are always smaller
than 10%.

Table 2 gives the relative changes with y for 4 ®xed values of p. Changes
are slight whatever the studied indicator (smaller than 10%).

Whatever p in �1; 9� and y, di¨erences in location-allocation results are
almost always less than 10%, that is to say little in comparison to many other
sources of errors that can be introduced when measuring real-world inputs.

Fig. 13. Variation of the variation coe½cient �CV� with p and y

Fig. 14. Variation of the skewness �sk� with p and y
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3.3 How far does irregularity in the lattice of points a¨ect the k-median
results?

In order to evaluate the robustness of the conclusions discussed in the pre-
ceding sections, further simulations were performed on irregular lattices of
points. Two sets of simulations were performed.

In the ®rst set of experiments, described in Sect. 2.4, p takes respectively
the values of 1.0, 1.5, 2.0 and 3.0 and y the values of 0�, 30�, 45� and 60�
(values of y have much more sense for irregular lattices than for regular ones).

Fig. 15. Variation of the kurtosis �K� with p and y

Table 1. Maximum di¨erences between the computed Dave, Dmax, and CV for some ®xed values
of y. �index � 100� �Xmax ÿXmin�=Xmin�

y Dmax Dave Ratio CV

0� 42.9 38.9 5.0 5.1
15� 41.5 40.6 10.6 2.7
30� 40.9 40.6 10.4 3.0
45� 39.6 40.7 3.5 7.3

Table 2. Maximum di¨erences between observed values for some ®xed values of p. (index
� 100��Xmax ÿXmin�=Xmin)

p Dmax Dave Ratio CV

1.0 8.1 0.9 7.8 5.6
1.5 3.6 0.3 3.9 1.9
2.2 1.6 0.0 1.6 0.5
9 8.0 0.6 8.3 4.3
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Hence, 16 combinations of p and y are possible for each value of s. For a 3-
median model (with one location being ®xed in j � 53), each value of s leads
to a di¨erent spatial solution (local optima) but there is no/little change in the
optimal locations with p and y for a given s (see Table 3).

The second set of simulations (17 values of p, 4 values of y) were performed
on an irregular lattice of 225 points generated randomly. The results lead
to conclusions similar to those developed in Sects. 3.1 and 3.2. They are also
con®rmed by other experiments conducted on random lattices and reported in
Peeters and Thomas 1997.

3.4 Do other values of k yield signi®cantly di¨erent results?

The same experiments were conducted for other values of k (number of
facilities). They lead to the same conclusions, but less clear-cut to present
because of the presence of numerous alternate optima. Let us take the example
of k � 9. For a regular lattice of 225 points �s � 0:00�, very slight di¨erences
are observed if none of the 9 sites is imposed. When forcing 2 locations
( j � 38 and j � 113) to avoid alternate optima, the optimum location pat-
terns are totally identical, whatever p and y. With other values of s (0.25,
0.50 or 1.00), di¨erences appear only for values of p � 1:0, all other solutions
being equal, whatever p and y.

4 Conclusions

The objective of this paper is to simply test how robust the solutions of a
location-allocation model are to changes in the parameters of a distance pre-
dicting function and consequently with what accuracy these parameters should
be estimated in real-world applications. The e¨ects of systematic changes in p

Table 3. Variation with p, s and y of the 3-median solutions (index of the 2 optimal locations)

s p 0� 30� 45� 60�

0.00
1.0
1.5
2.0
3.0

154±162
154±162
154±162
154±162

154±162
154±162
154±162
154±162

154±162
154±162
154±162
154±162

154±162
154±162
154±162
154±162

0.25
1.0
1.5
2.0
3.0

153±162
154±162
154±162
154±162

154±162
154±162
154±162
154±162

154±162
154±162
154±162
154±162

154±162
154±162
154±162
154±162

0.50
1.0
1.5
2.0
3.0

153±177
153±162
153±162
147±170

147±170
147±170
153±162
153±162

162±170
164±162
153±162
153±162

138±162
138±162
153±162
153±162

1.00
1.0
1.5
2.0
3.0

91±176
138±162
138±162
138±162

138±162
138±162
138±162
138±162

110±162
138±162
138±162
138±162

138±162
138±162
138±162
138±162
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and/or y in the lp norm are systematically analyzed on the k-median results,
using regular as well as irregular lattices of points. All simulations lead to the
following conclusion: changes in p and y have little e¨ect on the location-
allocation results.

Practical implications arising from our simulations are twofold. First, small
errors on the empirical estimation of distances by the lp distance predicting
function very slightly a¨ect the k-median results. This is particularly true for
p A [1.5, 2.3]. This result is of prime importance when considering the amount
of work involved in estimating the real-world distances by lp-distances: it saves
data collecting and computing time whenever such applications are consid-
ered. Second, preceding papers have already shown the signi®cant in¯uence of
the shape of the network on the k-median results (Peeters and Thomas 1995),
and of the in¯uence of extreme points to locate centers (Papini 1994). Given
these two preceding papers and the results suggested in this paper, one can
suggest that the co-ordinates of the points, and hence the shape of the trans-
portation network), have more importance on the k-median results than the
way the distance is measured.

The results presented here should be moderated by some critical appraisals.
Theoretical regular layouts such as the squared lattice used in this paper en-
ables to well isolate the tested e¨ect: it isolates the problem and holds constant
many sources of variation. It is theoretically very satisfactory, but practically
limits the scope of the experiment. Further research will soon be conducted in
order to see how much the tested hypothesis is sensitive to the shape of the
network or weight variations.

Acknowledgements. The authors would like to thank Pierre Hanjoul, Hubert Beguin and the
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