
Digital Object Identifier (DOI) 10.1007/s101070100217

Math. Program., Ser. A 90: 273–290 (2001)

Anna Galluccio · Martin Loebl� · Jan Vondrák

Optimization via enumeration: a new algorithm for the
Max Cut Problem

Received: June 1999 / Accepted: December 2000
Published online March 22, 2001 – Springer-Verlag 2001

Abstract. We present a polynomial time algorithm to find the maximum weight of an edge-cut in graphs
embeddable on an arbitrary orientable surface, with integral weights bounded in the absolute value by
a polynomial of the size of the graph.

The algorithm has been implemented for toroidal grids using modular arithmetics and the generalized
nested dissection method. The applications in statistical physics are discussed.

Key words. cut – generating function – Pfaffian orientation – modular arithmetics

1. Introduction

The Max Cut Problem is a combinatorial optimization problem which is easy to define,
but surprisingly hard to solve:

Given a graph, divide its vertices into two parts so that the number of edges between
them is as large as possible. More generally, the edges may have arbitrary weights,
and we need to maximize the sum of weights over all the edges between the two sets of
vertices.

This combinatorial problem has a history on its own, but what makes it so widely
studied is the enormous number of applications it finds in different fields. One of these
relevant applications comes from the study of the Ising model: a theoretical physical
model of the nearest-neighbor interactions in a crystal structure. This application was
the main motivation of this work and it will be considered more closely in this paper.

The complete description of a specific Ising model is embodied in the partition
function from which all fundamental physical quantities can be derived. It turns out
that this function is very close to the generating function of cuts which is a standard
concept in enumerative combinatorics. The maximum weight of a cut can be obtained
as a by-product from the generating function of cuts; thus, computing the generating
function is usually a more difficult task. Rather than the Max Cut Problem, this work is
actually concerned with the generating function of cuts.

A. Galluccio: Istituto di Analisi dei Sistemi ed Informatica – CNR, viale Manzoni 30, 00185 Roma, Italy,
e-mail: galluccio@iasi.rm.cnr.it

M. Loebl, J. Vondrák: Department of Applied Mathematics, Charles University, Malostránske nám. 25, 11800
Praha, Czech Republic, e-mail: {loebl,vondrak}@kam.ms.mff.cuni.cz

� Supported by FONDAP on applied mathematics, GACR 201/99/0242 and GAUK 158/99

274 Anna Galluccio et al.

The general Max Cut Problem has defied any efficient solution so far, and indeed, it
was proved to be NP-hard [10], even in the case when all edge weights are equal to 1. In
spite of that, many attempts have been made to tackle the problem with approximation
and randomized algorithms. Delorme and Poljak [6] and Poljak and Rendl [20] solved
a relaxation of the problem using eigenvalues. A similar approach based on semidefinite
programming was developed by Goemans and Williamson who presented a randomized
algorithm in [12] with a performance guarantee of 0.878.

Polynomial time methods to find the exact solution of the Ising model on toroidal
square lattices were proposed in the early 60’s by Kasteleyn [17,18], and by Kac and
Ward [14]. Kasteleyn introduced the notion of Pfaffian orientations of graphs [17,16]
in order to solve some enumeration problems arising from statistical physics; he proved
fundamental results in the planar case and extended his approach to toroidal square
lattices. A Pfaffian based approach was used by Barahona [1] to provide another poly-
nomial time algorithm to solve the Max Cut Problem in toroidal square lattices; he also
treated the case of general toroidal graphs in an unpublished manuscript [2]. Further ap-
plications of Kasteleyn’s methods to the Ising models on group lattices of genus higher
than 1 may be found in [21].

Kac and Ward tried to calculate the partition function as a determinant of a 4n ×
4n matrix over complex numbers and even though their original derivation was not
quite exact, it showed that such an approach was indeed possible. A similar method
was used by the physicists Kardar and Saul [15] to obtain the partition function of
a toroidal spin glass in estimated time O(n3+ε), ε < 1. They have asked if an ef-
ficient method exists for general toroidal graphs. This paper answers the question
affirmatively.

There are also branch-and-cut algorithms which can be applied effectively to the
case of toroidal square lattices. Barahona et al. [3] and De Simone et al. [4], [5] used
integer programming to solve large instances of the Max Cut Problem for toroidal
square lattices, with general weights or with weights +1 and −1 only. The method of
De Simone et al. [5], which has been so far the most successful one to find exact spin
glass ground states, works in estimated time n3 for toroidal square lattices of n vertices,
for n ≤ 50. The method is of course non-polynomial for general n.

Several algorithms for solving the Max Cut Problem for toroidal square lattices
have been proposed and implemented by physicists (see [4], [5] for the references).
A successful Dagstuhl seminar on this subject was held in 1997 (see [13]).

Due to a recent result proved by two of the authors [8], though, it has become
possible to solve the Max Cut Problem in polynomial time for any graph of genus
bounded by a constant. The method produces actually the generating function of cuts
which contains information about all possible cuts in the graph. In terms of statistical
physics, this means the distribution of physical states over all possible energy levels of
the system. This can be of tremendous interest for anyone studying a particular Ising
model.

There are two main goals of this paper: the first one is to describe the technical
details of the polynomial time algorithm, and the second one is to develop the algorithm
to functional software.

The latter goal was achieved mainly by the third author [23], who solved all the
difficulties encountered on the way from the theoretical sketch of the algorithm to its

Optimization via enumeration: a new algorithm for the Max Cut Problem 275

implementation. Many of these implementation tricks are nontrivial and elegant, and
the result is a new type of algorithm to solve combinatorial optimization problems via
the use of generating functions.

2. The Max Cut and the Ising model

2.1. Basic definitions

A graph is a pair G = (V, E) where V is a finite set of vertices and E is a set of
unordered pairs {u, v} ⊂ V , called edges. In addition, we will denote a rational weight
associated with the edge e ∈ E. For a subset of edges α ⊂ E, w(α) means the sum of
the weights associated with the edges in α.

Let S be a set of subsets of edges of G and let us assign to each element α of S
a function l(α). Then the generating function S(G, l) of S (with respect to the function
l(α)) is

S(G, l) =
∑
α∈S

l(α).

The function l(α) may take values in any abelian group, but more usually consists
of monomials in the ring of polynomials. Typically, each element α of S will have
weight w(α) and we take the function l(α) to be xw(α), where x is an indeterminate.
Then knowing the generating function S(G, l) of a set S is equivalent to knowing the
elements of S of each weight. Thus, the concept of the generating function of a set is
a generalization of the concept of cardinality.

In this paper, we show how the generating functions can be used successfully to
solve also combinatorial optimization problems.

Definition 1. A cut of a graph G = (V, E) is a partition of its vertices into two
disjoint subsets V1, V2 ⊂ V, and the implied set of edges between the two parts:
C(V1, V2) = {{u, v} ∈ E : u ∈ V1, v ∈ V2}

The generating function of cuts is a polynomial C(G, x) which equals the sum of
xw(C) over all cuts C of G.

Definition 2. An eulerian subgraph of a graph G = (V, E) is a set of edges U ⊂ E
such that each vertex of V is incident with an even number of edges from U.

The generating function of eulerian subgraphs is a polynomialE(G, x) which equals
the sum of xw(U) over all eulerian subgraphs U of G.

Definition 3. A perfect matching of a graph G = (V, E) is a set of edges P ⊂ E such
that each vertex of V is incident with exactly one edge from P.

The generating function of perfect matchings is a polynomialP(G, x) which equals
the sum of xw(P) over all perfect matchings P of G.

These generating functions are considered in more general form in [8], where a vari-
able is associated with each edge instead of a weight. However for the purpose of this
paper the present definition is more appropriate.

276 Anna Galluccio et al.

Definition 4. The Max Cut Problem

Input: Graph G = (V, E) and weight function w : E → Z
Question: What is the maximum possible weight of a cut of G?

MAXCUT(G) = max
Ccut

∑
e∈C

we.

2.2. The Ising model

Let us consider the Ising model of a physical system: the vertices of a graph represent
particles and the edges describe interactions between pairs of particles. The most com-
mon example is a planar lattice where each particle interacts only with its neighbors.
Often, one adds edges connecting the first and last vertex in each row and column, which
represent periodic boundary conditions in the model. This makes the graph a toroidal
lattice.

Now, we assign a factor Ji j to each edge {i, j}; this factor describes the nature of the
interaction between particles i and j . A physical state of the system is an assignment
of σi ∈ {+1,−1} to each vertex i. This describes the two possible spin orientations the
particle can take. The Hamiltonian (or energy function) of the system is then defined as

H(σ) = −
∑

{i, j}∈E

Ji jσiσ j .

One of the key questions we may ask about a specific system is:

“What is the lowest possible energy (the ground state) of the system?”

Before we seek an answer to this question, we should realize that the physical states
(spin assignments) correspond exactly to the cuts of the underlying graph. Let us define:

V1 = {i ∈ V ; σi = +1},
V2 = {i ∈ V ; σi = −1}.

Then this partition of vertices encodes uniquely the assignment of spins to particles.
The edges contained in the cut C(V1, V2) are those connecting a pair of particles with
different spins, and those outside the cut connect pairs with equal spins. This allows us
to rewrite the Hamiltonian in the following way:

H(σ) =
∑

{i, j}∈C

Ji j −
∑

{i, j}∈E\C

Ji j = 2w(C) − W,

where w(C) = ∑
{i, j}∈C Ji j denotes the weight of a cut, and W = ∑

{i, j}∈E Ji j is the
sum of all edge weights in the graph.

Clearly, if we find the maximum weight of a cut, we have found the maximum
energy of the physical system. Similarly, the minimum weight of a cut corresponds to
the minimum energy of the system. Note that if we allow negative edge weights, we

Optimization via enumeration: a new algorithm for the Max Cut Problem 277

can transform the Max Cut Problem into the Min Cut Problem (and vice versa) simply
by reversing the value of each edge weight. So the two problems are equivalent (unlike
the Min Cut Problem with positive edge weights arising in the study of network flows,
which is significantly easier).

However, the analogy between cuts and physical states goes even deeper than that.
If we assign weight we = Ji j to each edge e = {i, j}, the generating function

becomes
C(G, x) =

∑
cutC

xw(C) =
∑

k

ckxk,

where ck denotes the number of cuts with weight k. But this is also equal to the number
of states with energy 2k − W . Thus, if we knew the complete generating function, we
would also know the distribution of physical states over all possible energy levels. In
the language of physics, this information is encapsulated in the partition function:

Z(β) =
∑
σ

e−βH(σ).

Substituting the equalities above and counting over cuts instead of σ assignments
yields:

Z(β) = 2
∑
cutC

e−β(2w(C)−W) = 2eβW
∑
cutC

e−2βw(C) = 2eβWC(G, e−2β).

So we can obtain the value of the partition function simply by substituting e−2β into
the generating function of cuts. The other way round, multiplying the partition function
by 1

2 e−βW and expressing it as a polynomial in e−2β yields the generating function of
cuts. The difference between the two functions is merely formal; both of them encode
the state/energy distribution in a similar way.

Finding the generating function of cuts is generally harder than solving the Max Cut
Problem, because knowing all the coefficients of the polynomial, we can simply find
the highest power xkmax with a non-zero coefficient; kmax is then the maximum weight
of a cut. Similarly, the first non-zero term of the partition function corresponds to the
ground state energy, but there is much more information contained in it.

3. Theory of Pfaffian orientations

3.1. From cuts to eulerian subgraphs

In planar graphs, there is a well-known duality between cuts and eulerian subgraphs.
Because the edges incident with a vertex correspond to a dual circle (encircling the
vertex connects all the adjacent faces), it is easy to see that a cut becomes an eulerian
subgraph of the dual graph.

However, this does not work in the general case. Yet there is a duality between the
generating function of cuts and eulerian subgraphs (of the same graph!), which was
discovered by van der Waerden [22]. We shall derive the relation for the generating
function of cuts.

278 Anna Galluccio et al.

The basic idea of van der Waerden was to substitute hyperbolic functions for the
exponential terms:

xy = cosh(x, y) + sinh(x, y) = cosh(x, y)(1 + tanh(x, y)),

where

cosh(x, y) = xy + x−y

2
, sinh(x, y) = xy − x−y

2
, tanh(x, y) = sinh(x, y)

cosh(x, y)
.

Thus we obtain the generating function in the following form: let w = (wi j ; {i, j} ∈
E(G)) and W = ∑

{i, j}∈E(G) wi j . Then

C(G, x) = 1

2
x

W
2

∑
σ

∏
{i, j}∈E

x− 1
2 wi j σiσ j =

= 1

2
x

W
2

∑
σ

∏
{i, j}∈E

cosh
(

x,−1

2
wi jσiσ j

)(
1 + tanh

(
x,−1

2
wi jσiσ j

))
=

= 1

2
x

W
2

∏
{i, j}∈E

cosh

(
x,−1

2
wi j

)∑
σ

∑
U⊂E

∏
{i, j}∈U

σiσ j tanh

(
x,−1

2
wi j

)
=

= 1

2
x

W
2

∏
{i, j}∈E

cosh

(
x,−1

2
wi j

)∑
U⊂E

(∏
{i, j}∈U

tanh

(
x,−1

2
wi j

)∑
σ

∏
i∈V

σ
dU (i)
i

)
,

where dU(i) means the number of edges in U incident with the vertex i. If we consider
the sum over all assigments σ for a given U ⊂ E, we can see that whenever there exists
a vertex i incident with an odd number of edges from U , the resulting sum will be zero.
This is because the terms arising from assigments where σi = +1 will exactly cancel
out the corresponding terms with σi = −1. On the other hand, if all vertices have even
degrees in U , the sign of all contributing terms will be positive. So if n is the total
number of vertices: ∑

σ∈{±1}n

∏
i∈V

σ
dU (i)
i = 2n

whenever U is eulerian, and zero otherwise. Finally, we get

C(G, x) = 2n−1x
W
2

∏
{i, j}∈E

cosh
(

x,−1

2
wi j

) ∑
Ueulerian

∏
{i, j}∈U

tanh
(

x,−1

2
wi j

)
=

= 2n−1x
W
2

∏
{i, j}∈E

cosh
(

x,−1

2
wi j

)
E

(
G, tanh

(
x,−1

2
wi j

))
.

So the generating function of cuts can be expressed as the generating function of
eulerian subgraphs of the same graph, with xwi j replaced by tanh(x,− 1

2wi j).

Optimization via enumeration: a new algorithm for the Max Cut Problem 279

3.2. From eulerian subgraphs to perfect matchings

Now we need a graph transformation converting eulerian subgraphs into perfect match-
ings. The transformation given here is based on Fisher’s construction described in [7].
It is local in the sense that it only modifies each vertex in a way dependent on its degree.
It can also be seen that it preserves the genus of the graph.

Definition 5. Let G = (V, E) be a graph embedded in an orientable surface of genus g,
and v ∈ V a vertex. Let e1, e2, ..., ed ∈ E denote the edges incident with v, ordered
clockwise as they spread out from v in the embedding. Then the even splitting of v is
a graph G′ = (V ′, E′) where

• V ′ = V \ {v} ∪ {v1, ..., vd, v′
1, ..., v

′
d},

• E′ = E \ {e1, e2, ..., ed} ∪ {e′
1, e′

2, ..., e′
d} ∪ E A,

• E A = {{vi, v
′
i}; i = 1, ..., d}∪{{vi, v

′
i−1}; i = 2, ..., d}∪{{v′

i, v
′
i+1}; i = 1, ..., d−1}.

The edges e′
i ∈ E′ (image edges) are obtained from ei ∈ E by replacing the vertex

v by vi . The edges E A will be called auxiliary.

Lemma 1. The graph obtained by even splitting can be again embedded in the same
surface.

Proof. The transformation replaces a vertex v ∈ V by a cluster of 2d vertices and
3d − 2 edges. The cluster itself is a planar graph which can be embedded in a small
neighborhood of the original location of the vertex v. The images of the edges incident
with v can be embedded in the same way as they were in the original graph.

��
Definition 6. Let G = (V, E) be a graph and Gs = (Vs, Es) the graph obtained by
successive even splitting of all vertices in V . If there are weights we assigned to edges
e ∈ E, we assign the same weights to their images in Es: we′ = we. The auxiliary edges
f ∈ Es get assigned w f = 0.

Theorem 1. If G is a graph of genus g, Gs has genus g as well. With the assigment of
weights described above, the generating function of perfect matchings of Gs is equal to
the generating function of eulerian subgraphs of G:

P(Gs, x) = E(G, x).

Proof. From the definition of even splitting and Lemma 1, it follows that the resulting
graph Gs can be embedded again in the same surface.

If M is a perfect matching in Gs , it must cover each of its vertices exactly once.
Because the cluster replacing every vertex has an even number of vertices, and any of
the auxiliary edges which is in M covers a pair of vertices of the cluster, there remain
an even number of vertices to be covered by the image edges incident with the cluster.
Therefore, every cluster coincides with an even number of image edges which are in M;
in other words, these edges form the image of an eulerian subgraph of G.

280 Anna Galluccio et al.

Vice versa, the image of any eulerian subgraph of G can be extended (uniquely) by
adding some of the auxiliary edges in Gs to make a perfect matching in Gs . Thus, there
is a one-to-one correspondence between the perfect matchings of Gs and the eulerian
subgraphs of G. As all the auxiliary edges have weights equal to 0, the corresponding
terms contributing to either of the generating functions are equal. Consequently, the two
generating functions are equal.

��

3.3. Perfect matchings and Pfaffians

This section deals with the generating function of perfect matchings and an efficient
way to compute it. We start out with planar graphs for which the solution was found
by Kasteleyn [18]. We shall see that the generating function can be expressed in an
algebraic form very similar to a determinant.

Definition 7. Let G = (V, E) be a graph with 2n vertices, (we; e ∈ E) the weights
assigned to edges and D an orientation (a fixed ordering of the two vertices of each
edge). Let A(D) denote the antisymmetric adjacency matrix where

• ai j = xwi, j , if (i,j) is a directed edge,
• ai j = −xwi, j , if (j,i) is a directed edge, and
• ai j = 0, if {i,j} is no edge.

The Pfaffian of this matrix is defined as

P f(A(D)) =
∑

P

sgn(P)ai1 j1ai2 j2 ...ain jn ,

where the sum is taken over all partitionings of the index set {1, 2, ..., 2n} into pairs
i1 < j1, i2 < j2,...,in < jn and sgn(P) is the sign of the permutation (i1, j1, i2, j2, ...,
in, jn).

Note. The ordering of the pairs is specified here only to remove multiple occurrences
of the same partitioning. The resulting contribution to the Pfaffian does not depend on
it, as swapping a pair of indices {ik, jk} reverses both the sign of the permutation and
the sign of the factor aik jk .

It can be observed that the non-zero terms contributing to the Pfaffian are exactly
those corresponding to perfect matchings of G (partitionings of the set of vertices into
pairs where there is an edge between each pair). However, each of them comes with
a positive or negative sign, depending on the orientation D. What we would like to find
is a special orientation which produces positive signs for all perfect matchings. Then
the Pfaffian would be exactly equal to the generating function of perfect matchings.

Definition 8. Let M and P be two perfect matchings. An alternating cycle is a cycle of
even length which contains edges from M and P alternately. In a directed graph, if the
number of edges oriented in either of the two directions around the cycle is even, the
cycle is called clockwise even, otherwise it is called clockwise odd.

Optimization via enumeration: a new algorithm for the Max Cut Problem 281

Lemma 2. Let M be a fixed perfect matching of graph G and D its orientation. Let
sgn(M) be the sign of the contribution of M to P f(A(D)) and sgn(D) be the sign of
another perfect matching D contributing to the Pfaffian. The edges in MP (symmetric
difference) form disjoint alternating cycles. Let δ(M, P) denote the number of clockwise
even cycles in MP. Then

sgn(P) = (−1)δ(M,P)sgn(M).

This observation leads to the following definition and theorem (due to Kasteleyn).

Definition 9. An orientation D is called Pfaffian, if the alternating cycles of any fixed
perfect matching M are all clockwise odd.

Theorem 2. Let G be a graph with a Pfaffian orientation D. Then

P f(A(D)) = (±)P(G, x).

Proof. Because the orientation is Pfaffian, the alternating cycles formed by any two
perfect matchings are clockwise odd. By the lemma, all the terms constituting the
Pfaffian have the same sign, which is either positive or negative. Which of the two
alternatives occurs depends only on the numbering of vertices in the matrix A(D). If
we want to make sure that the sign will be positive, we can pick an arbitrary perfect
matching, calculate the sign of the corresponding permutation, and if it comes out
negative, just exchange any two vertices in the numbering.

��
The proof that all planar graphs have a Pfaffian orientation is again due to Kaste-

leyn [17].

Theorem 3. Every planar graph has a Pfaffian orientation.

Proof. First, we shall suppose that the graph is 2-connected. We shall try to find such an
orientation that every inner face is clockwise odd. This can be accomplished by starting
out from any inner face and adding adjacent faces with suitable edge orientations. When
adding a new face, there is always at least one new edge whose orientation can be chosen
so that the face is clockwise odd. This process continues until we cover the whole graph.
(It is not necessary that the outer face comes out clockwise odd.)

If the graph is not 2-connected, we can proceed in almost the same way, effectively
ignoring the vertices and edges which do not belong to any cycle (their orientation does
not matter here). The only difference will be that the faces containing an odd number
of such vertices must be clockwise even, whereas those containing an even number of
them must be clockwise odd.

This scheme implies that every cycle encircling an even number of vertices is
clockwise odd, whereas any cycle encircling an odd number of vertices is clockwise
even. As any alternating cycle of M must contain an even number of vertices (there must
exist a partial matching inside the circle, and no edges may cross it), all the alternating
cycles are clockwise odd.

��
When we find the Pfaffian orientation, all we need is to calculate the Pfaffian of the

resulting adjacency matrix. If this can be done efficiently, we are able to solve the Max
Cut Problem, or produce the entire partition function for any planar graph.

282 Anna Galluccio et al.

4. Graphs of bounded genus

For general graphs, we cannot rely on the Pfaffian orientation, as it may not always exist.
Kasteleyn stated ([18], pp. 99–100) that for graphs of genus g the enumeration of perfect
matchings was still possible by substituting for a single Pfaffian a linear combination of
4g Pfaffians, but he did not prove his statement. A proof of Kasteleyn’s statement was
given in [8] where it was also provided an explicit description of the coefficients of the
linear combination of Pfaffians yielding the generating function of perfect matchings
of G.

Let us define surfaces and graphs of genus g in a slightly different form than usual:

Definition 10. A surface of genus g consists of a base B0 and 2g bridges Bi
j , i =

0, ..., g − 1 and j = 0, 1.

1. The base B0 is a convex 4g-gon with vertices a0, ...a4g−1.
2. The bridge Bi

j is a quadrangle with vertices k, l, m, n where the edge [k, l] is
identified with [a4i+ j , a4i+ j+1] and [m, n] is identified with [a4i+ j+2, a4i+ j+3].

Definition 11. G is a g-graph if it can be embedded in a surface of genus g, so that

1. All the vertices are contained in the base B0.
2. Every edge uses at most one bridge Bi

j .

Let E0 denote the edges embedded entirely inside the base B0 and Ei
j the edges using

bridge Bi
j . Let G0 = (V, E0) and Gi

j = (V, E0 ∪ Ei
j).

Definition 12. G is a proper g-graph if it is a g-graph satisfying the following condi-
tions:

1. The outer face of G0 is a cycle C0 embedded on the boundary of B0.
2. The edges in Ei

j are embedded entirely inside the bridge Bi
j and their endpoints are

located on the boundary of B0.
3. Every vertex is incident with at most one edge outside of E0.
4. G0 has a perfect matching M0.

For the purpose of the theorem, we shall require that the graph G is a proper g-graph.
However, any graph of genus g can be transformed into a proper g-graph by splitting
the edges traversing several bridges into paths and adding vertices and edges on the
boundary of B0 if necessary. The details may be found in [8].

Definition 13. Let G be a proper g-graph. G0 is a planar subgraph of G, therefore it
has a Pfaffian orientation D0. In addition, we can choose D0 so that M0 has a positive
sign in the Pfaffian of the matrix A(D0).

Furthermore, Gi
j can be embedded in the plane in the following way: Take the planar

embedding of G0 and add the bridge Bi
j so that it is contained in the outer face of G0.

Then the orientation D0 can be supplemented with an orientation Di
j of the edges in Ei

j

so that the orientation D0 ∪ Di
j is still Pfaffian.

Finally, we define the 4g relevant orientations of the entire graph G: The relevant
orientation Dr (where r ∈ {+1,−1}2g) is composed of D0 and r2i+ j Di

j for i =
0, ..., g − 1 and j = 0, 1 (where −Di

j means the reversed orientation Di
j).

Optimization via enumeration: a new algorithm for the Max Cut Problem 283

Theorem 4. Let G be a proper g-graph and Dr , r ∈ {+1,−1}2g its relevant orienta-
tions. Let us define

cr =
g−1∏
i=0

c(r2i, r2i+1),

where

c(+1,+1) = 1

2
, c(+1,−1) = 1

2
, c(−1,+1) = 1

2
, c(−1,−1) = −1

2
.

Then the generating function of perfect matchings of G is equal to a linear combination
of 4g Pfaffians:

P(G, x) =
∑

r∈{+1,−1}2g

cr P f(A(Dr)),

where A(Dr) is the antisymmetric adjacency matrix corresponding to the orientation Dr.

The proof of this theorem can be found in [8].
Since computing Pfaffians of antisymmetric matrices has the same computational

complexity as computing determinants, we have that the generating function of perfect
matchings can be computed efficiently for any graph of bounded genus. Needless to say,
this approach is practical only for very small values of g. For example, toroidal graphs
(i.e., 1-graphs) can be treated in the same way as planar graphs, but there will be four
relevant orientations and four Pfaffians instead of one.

5. Modular arithmetic

The approach described in Sect. 3 leads to an efficient algorithm indeed, but it still
leaves a number of questions open:

• How to treat the matrix elements? (They are symbolic functions.)
• How to calculate the Pfaffian in a polynomial number of steps?

5.1. Data structures

The first question involves a decision on the data structures, as well as the type of
programming language to use. Consider the data flow of the program:

Input: Graph G, edge weights wi j .
Intermediate data: Matrices whose elements are symbolic functions of a single
variable.
Output: Coefficients of the generating function.

At first glance, the obvious approach seems to be: treat the matrix elements as
polynomials, perform all arithmetic operations symbolically, and obtain the result in

284 Anna Galluccio et al.

a symbolic form. For this purpose, one would most probably use a symbolic com-
putation package like Mathematica. However, using a symbolic computation package
(instead of a general purpose programming language) would inevitably bring a substan-
tial loss of speed and increase the amount of required memory. Also, it is not apparent
how this symbolic computation could be parallelized.

Our solution is this: we know the generating function of cuts is a polynomial in
the variable x with integer coefficients. Instead of computing the entire polynomial at
once, we can evaluate it at sufficiently many distinct points, and then we can obtain the
polynomial coefficients by interpolation. This turns the problem of treating symbolic
functions into ordinary numeric calculation, albeit still cumbersome in a sense. As the
expected results are exponentially large (the total number of cuts in a graph with n
vertices is 2n−1), a way how to handle these huge numbers had to be resolved. Instead of
using floating point (which is imprecise) or long integer arithmetic (which is possible,
but slow and consuming lots of memory), we decided to split the task once more. The
idea is to use only elementary operations which can be performed in constant time –
the basic operations in a finite field. Of course, the results are elements of the finite
field as well, but this loss of information can be amended, as will be shown. The major
advantage is that the algorithm employs only simple integer operations and it can be
implemented easily in any general purpose programming language, like C++.

The following lemma justifies this approach in a formal way:

Lemma 3. Let P(x) be a polynomial of degree n with integer coefficients, GF[m]
a finite field of size m > n and x0, x1, ..., xn distinct elements of GF[m]. Then there
exists a unique polynomial Q(x) of degree n over GF[m] such that

Q(xi) = P(xi) mod m, i = 0, . . . , n.

Moreover, the coefficients of Q(x) are equal to the coefficients of P(x) mod m.

Proof. Let P(xi) = yi . Define Q(x) by Langrangian interpolation:

Q(x) =
n∑

i=0

∏
j �=i (x − x j)∏
j �=i (xi − x j)

(yi mod m),

where all operations are performed in GF[m]. The expression is well defined because

(i �= j �⇒ xi �= x j) �⇒
∏
j �=i

(xi − x j) �= 0,

and any non-zero element is invertible in a field.
Q(x) satisfies the conditions Q(xi) = yi mod m. Now let us suppose there is another

polynomial R(x) over GF[m], such that R(xi) = yi mod m, i = 0, . . . , n. Then, we
define the difference polynomial Z(x) = R(x) − Q(x), and it follows that

Z(xi) = R(xi) − Q(xi) = 0 (mod m), i = 0, . . . , n.

However, a non-zero polynomial of degree n in any field has at most n roots, therefore
Z(x) is a zero polynomial and R(x) = Q(x).

Optimization via enumeration: a new algorithm for the Max Cut Problem 285

The polynomial P′(x) whose coefficients are the coefficients of P(x) mod m, satis-
fies the same conditions, so by the same argument P′(x) = Q(x).

��
Note. Our polynomial can actually contain negative powers which could cause trouble
in the interpolation formula. Therefore, it is necessary to make the exponents positive
before interpolation by multiplying the function by xk for a suitable k. The degree of the
polynomial is then confined by the difference of maximum and minimum cut weights.
As we do not know these values in advance, we can only estimate them. For now, it
will suffice to know that if the edge weights are bounded by a constant, the degree is
bounded by O(m), where m is the number of edges. In graphs of bounded genus, this is
the same as O(n), where n is the number of vertices.

To summarize the lemma, if we can supply the values of our polynomial modulo
some prime p, we can also extract its coefficients modulo p. For now, we will leave aside
the question of how to evaluate the polynomial, and we will suppose we have acquired
the partial results (modulo p). What good can they be? Instead of a number a, we only
get the remainder a mod p. There is certainly less information in it than we need, even
if we only want to detect whether a given coefficient is zero. (As you may recall, finding
the maximum weight of a cut amounts to detecting the first non-zero coefficient in the
generating function of cuts.) However, we can still make a guess. If a mod p �= 0, then
surely a �= 0. But if a mod p = 0, we cannot be sure that a = 0. To estimate our chance
of success, we give the following lemma.

Lemma 4. Suppose a < N, and we pick a prime p < M at random. Then the probability
that a is divisible by p is at most P = O(

log N log M
M).

Therefore, knowing an upper bound on our polynomial coefficients (which is
N = 2n , where n is the number of vertices), we can make our chance of error small
enough by allowing ourselves to select from a wide enough range of primes. For ex-
ample, a choice of M = n2 gives P = O(

log n
n).

5.2. The Chinese Remainder Theorem

Of course, sometimes we may require the complete exact results, which are integer
numbers ranging from 0 to 2n . Even then, modular arithmetic can be useful. Consider
the Chinese Remainder Theorem:

Theorem 5. Let us select k different prime numbers p1, p2, ..., pk. Then for any

a1, a2, ..., ak, 0 ≤ ai < pi, there is exactly one x, 0 ≤ x <
∏k

i=1 pi, such that:

x mod pi = ai, i = 1, . . . , k.

This is a well-known fact, and the number x can also be efficiently constructed from
its “modulo coordinates”. Let us define

ri =
∏
j �=i

p j, qi = r−1
i (mod pi), x =

n∑
j=1

a jq jr j .

286 Anna Galluccio et al.

Then x is the desired solution, because every r j , j �= i is divisible by pi , and

x mod pi = (aiqiri) mod pi = (
airir

−1
i

)
mod pi = ai .

��
In other words, we can obtain exact results, if we choose a sufficient number of

primes p1, p2, ..., pk, so that
k∏

i=1

pi > 2n.

Then if all results are confined to the interval [0; 2n], the partial results modulo
p1, p2, ..., pk determine the complete result uniquely. Furthermore, the complete result
can be calculated from the modulo results efficiently, using long integer addition and
multiplication. Of course, this will cost us several repetitions of the computation -
in different finite fields. Suppose we can use primes from the interval [M

2 ; M]. Then
(assuming there are enough primes to choose from), we need

k = O

(
n

log M

)

primes p1, p2, ..., pk to ensure that their product is greater than 2n .
However, these computations are absolutely independent – they can be run separately

on different computers.

6. Computing Pfaffians

Being armed with the results of Sect. 5, we can assume that we reside in a finite field
GF[m], and our sole purpose is to calculate a single value of the generating function of
cuts at a specific point. As we know, it can be transformed into the generating function
of perfect matchings of a modified graph:

C(G, x) = 2n−1x
W
2

∏
{i, j}∈E

cosh

(
− 1

2
wi j

)
P

(
Gs, tanh

(
x,−1

2
wi j

))
.

Moreover, the generating function of perfect matchings can be expressed as a linear
combination of Pfaffians:

P(G, x) =
∑

r∈{+1,−1}2g

cr P f(A(Dr))

where the Pfaffian of a matrix is defined as a sum over all partitionings of the index set
into pairs:

P f(A(D)) =
∑

P

sgn(P)ai1 j1ai2 j2 ...ain jn .

The sum consists of an exponential number of terms, but (just like a determinant) it
can be calculated very efficiently.

Optimization via enumeration: a new algorithm for the Max Cut Problem 287

The first step is to define a basic operation which can be used to transform the
matrix into a special form, while the value of the Pfaffian is preserved. For instance,
determinants are invariant under elementary row/column operations and these can be
used in Gaussian elimination to calculate a determinant or to solve a system of linear
equations. Pfaffians must be treated somewhat differently, though.

Definition 14. Let A be an antisymmetric matrix of size 2n × 2n over a fieldF . A cross
of the matrix is the union of a row and a column of the same index. I.e., the k-th cross is
the following set of elements:

Ak = {aik; 1 ≤ i ≤ 2n} ∪ {ak j ; 1 ≤ j ≤ 2n}.
Definition 15. Cross operations:
Multiplying a cross Ak by a scalar α ∈ F means simply multliplying each element of Ak
by α.

Swapping crosses Ak and Al of an antisymmetric matrix A means exchanging both
the respective rows and columns. Another way of regarding the swap operation is that
it exchanges the values of k and l in both of the index positions. The resulting matrix B
is antisymmetric again.

Adding cross Ak to cross Al means adding first the k-th row to the l-th one, and then
adding the respective columns. The matrix remains antisymmetric.

These operations may be used to transform our matrix into a form where the Pfaffian
can be determined trivially.

Such algorithm needs at most O(n2) cross operations, each of which consists of
O(n) finite field operations which can be carried out in constant time. (Addition and
multiplication are trivial, and division can be reduced to multiplication with a precal-
culated table of inverse elements.) The total running time is therefore O(n3). However,
this crude estimate does not take into account the special structure of our matrix. We
achieve a better running time by employing some of the techniques developed for fast
Gaussian elimination.

We consider a method which was developed by Alan George [11] and later refined by
Lipton, Rose and Tarjan [19]. Their approach, though intended for Gaussian elimination,
can be geared to Pfaffian elimination. The details may be found in [23].

Theorem 6. For the graphs G of bounded genus, Pfaffian elimination on matrix A(D)

where D is an orientation of G and G has n vertices can be performed in O(n log n)

space and O(n
3
2) time.

7. Algorithm overview

Let us summarize the algorithm for an input graph G on n vertices and of bounded
genus g:

1. Find prime numbers p1, p2, ..., pk < 216 so that
k∏

i=1

pi > 2n .

For each of them, repeat the remaining steps of the algorithm, performing all oper-
ations in GF [pi].

288 Anna Galluccio et al.

2. Choose m + 1 distinct elements x0, ..., xm ∈ GF [pi], where m is the maximum
possible degree of the generating function. (Avoid x j = 0 because the elements
must be invertible.) For each of them, repeat the following step.

3. Construct the 4g matrices encoding the relevant orientations of the modified graph
Gs, with hyperbolic functions tanh(x,−1/2wi j) substituted for edge weights. For
every occurrence of x−1/2 substitute x−1/2 = xi and calculate the Pfaffians. From
these values, calculate the value of C(G, x−2

i).
4. Obtain the coefficients of C(G, x) (modulo pi) by inter- polation in GF [pi].
5. Apply the Chinese remainder theorem and compose the results from all the finite

fields to obtain the complete partition function.

Notes on the complexity:

• The number of finite fields is O(n), assuming there is a sufficient number of primes
in the range where our hardware is able to perform modular arithmetics in constant
time. Due to this constraint, the algorithm is actually unable to work properly for
an arbitrarily large input, and any complexity analysis in the sense of asymptotic
behavior is meaningless. On the other hand, the limit on the size of lattices we are
able to process is well beyond our practical possibilities. The product of all primes
below 216 is approximately 2216

, which means we can process lattices with at most
216 vertices. Such a computation would last 10,000 years on a typical PC. If this
should prove insufficient, we could still move to 32-bit arithmetics and the limit of
232 vertices which would be enough to keep all our computing resources busy for
more than the lifetime of our universe.

• If the edge weights are bounded by a constant, the number of evaluations in each

of the fields is O(n). A single evaluation of the polynomial takes O(n
3
2), so the

computation in each finite field takes O(n
5
2) time (recall that the constant here depends

exponentially on g). The total time complexity of Step 3 (under the restrictions

mentioned above) is therefore O(n
7
2).

• The interpolation in Step 4 and the final composition in Step 5 take O(n3) time in
total, so they are faster than the Pfaffian evaluation in Step 3.

• Steps 2, 3 and 4 can be parallelized easily. The computation in each of the finite fields
can be performed separately, and the communication is trivial – in Step 5, we only
have to send the results modulo each of the primes; i.e., data of size O(n2). With this

degree of parallelization (O(n) processors are needed), Steps 2, 3 and 4 take O(n
5
2)

time, whereas Step 5 takes O(n3). To remove this obstacle, we could parallelize it
as well; every processor would produce one of the O(n) coefficients in O(n2) time.

Then the total (parallel) time complexity would be O(n
5
2).

• As mentioned above, the computation in each of the finite fields takes O(n
5
2) time, and

one such computation suffices to know the maximum weight of a cut with very high
probability. This time complexity compares favourably with the estimated complexity
O(n3) (for toroidal grids of sizes up to (50 ×50) only) of the most successful method
using integer programming technics of [5], mentioned in the introduction.

• The complexity of our implementation is comparable with the estimated complexity
of the implementation of Kardar and Saul [15]. Apart of our method, this is the

Optimization via enumeration: a new algorithm for the Max Cut Problem 289

only method for the exact calculation of the generating function of cuts (for toroidal
square lattices) we know about. In experiments our implementation behaves better:
for instance the calculations for 10 × 10 ±J spin glass lattice take 30 sec. instead
of the 110 sec. reported in [15]. However, the main advantages are in the structure
of the algorithm: our implementation is selfcontained, short, easy to parallelize and
flexible. Moreover, computations in a few fields give the value of some coefficients
with a very high probability.

8. Implementation for toroidal lattices

One of the main goals of this work was to develop a functional implementation of the
algorithm described here for the calculations of the partition function of specific Ising
models (see also [9]). After consulting literature on computation in statistical physics
so far, it seemed natural to focus on random Ising model of toroidal lattices. In this case,
the implementation may be improved by several tricks described in [23]. Moreover, it
seems that the following quantities are most interesting for the physics applications:
the ground state energy, the number of ground states, the second lowest energy of
a state and the number of states of that energy. To obtain these values with a very
high probability, a smaller number of finite field computations needs to be performed.
At present we started to calculate some experiments. The details of this research will
appear elsewhere.

For illustration, we give here a table of the running time required for various parts
of the computation (sequentially on a Pentium/200 MHz machine):

lattice size 1 Pfaffian 1 Finite Field Complete partition function

10 × 10 0.03 s 5 s 40 s
14 × 14 0.1 s 30 s 7 min
20 × 20 0.25 s 150 s 1 hour
30 × 30 1 s 20 min 20 hours
40 × 40 3 s 2 hours 8 days
50 × 50 6 s 6 hours 40 days
100 × 100 90 s 14 days 24 years

Notes:

• 1 Pfaffian – this is the basic building block, the Pfaffian elimination of a single
matrix; in principle, each of these could be executed in parallel, if O(n2) processors
were available. However, then the communication and composition of results would
become the bottleneck of the entire computation.

• 1 Finite Field – this means the computation of the partition function in a single finite
field; it is actually the parallel complexity of the algorithm using O(n) processors, or
it can be understood as the complexity of a sequential randomized algorithm to find
the maximum weight of a cut (see Section 5).

• Complete partition function – this is the total sequential running time of the compu-
tation in all the finite fields plus the Chinese composition step which produces the
exact coefficients of the partition function.

290 Anna Galluccio et al.: Optimization via enumeration: a new algorithm for the Max Cut Problem

Acknowledgements. We would like to thank Jirka Matoušek for helpful discussions and in particular for
drawing our attention to the modular arithmetics method. We would also like to thank Giovanni Rinaldi for
enlightening discussions and continuous support.

References

1. Barahona, F. (1982): On the computational complexity of Ising spin glass models. J. Phys. A 15, 3241–
3253

2. Barahona, F. (1983): Balancing signed toroidal graphs in polynomial time. Preprint University of Chile.
Unpublished manuscript

3. Barahona, F., Grötschel, M., Jünger, M., Reinelt, G. (1988): An application of combinatorial optimization
to statistical physics and circuit layout design. Operations Research 36, 493–513

4. De Simone, C., Diehl, M., Jünger, M., Mützel, P., Reinelt, G., Rinaldi, G. (1995): Exact ground states of
Ising spin glasses: New experimental results with a branch and cut algorithm. Jour. of Stat. Physics 80,
487–496

5. De Simone, C., Diehl, M., Jünger, M., Mützel, P., Reinelt, G., Rinaldi, G. (1996): Exact ground states of
2d ± J Ising spin glasses. Jour. of Stat. Physics 84, 1363–1371

6. Delorme, C., Poljak, S. (1993): Laplacian eigenvalues and the maximum cut problem. Math. Prog. 62,
557–574

7. Fisher, M. (1966): On the dimer solution of planar Ising models. Journal of Mathematical Physics 7 10
8. Galluccio, A., Loebl, M. (1999): A theory of pfaffian orientations I: Perfect matchings and permanents.

Electronic Jour. Combinatorics 6(1), http://www.combinatorics.org/Volume_6
9. Galluccio, A., Loebl, M., Vondrák, J.V. (2000): A new algorithm for the Ising problem: partition function

for finite lattice graphs. Physical Rev. Lett. 84(26), 5924–5927
10. Garey, M.R., Johnson, D.S. (1979): Computers and Intractability. W. H. Freeman and Company, New

York
11. George, A. (1973): Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10, 345–363
12. Goemans, M.X., Williamson, D.P. (1995): Improved approximation algorithms for maximum cut and

satisfiability problems using semidefinite programming. J. of ACM 42, 1115–1145
13. Junger, M., Reinelt, G., Rieger, H., Rinaldi, G. (1997): Algorithmic Techniques in Physics. Dagstuhl-

Seminar-Report 197, Dagstuhl
14. Kac, M., Ward, J. (1952): A combinatorial solution of the two-dimensional Ising model. Physical Review

88, 1332–1337
15. Kardar, M., Saul, L. (1994): The 2D ± Ising spin glass: exact partition functions in polynomial time.

Nuclear Physics B 432, 641–667
16. Kasteleyn, P.W. (1961): The statistics of dimers on a lattice. Physica 27, 1209–1225
17. Kasteleyn, P.W. (1963): Dimer statistics and phase transitions. Jour. Math. Physics 4, 287–293
18. Kasteleyn, P.W. (1967): Graph theory and crystal physics. In: Graph theory and theoretical physics, New

York. Academic Press
19. Lipton, R., Rose, D., Tarjan, R.E. (1979): Generalized nested dissection. SIAM J. Numer. Anal. 16,

346–358
20. Poljak, S., Rendl, F. (1995): Solving the max-cut problem using eigenvalues. Discr. Appl. Math. 62,

249–278
21. Regge, T., Zecchina, R. (1996): Exact solution of the Ising model on group lattices of genus g > 1.

J. Math. Physics 37(6), 2796–2814
22. van der Waerden, B. (1941): Die lange Reichweite der regelmässigen Atomanordnung in Mischkristallen.

Z. Physik 118, 473
23. Vondrák, J. (1999): . Implementation and testing of a new algorithm for the MAX-CUT problem. Master’s

thesis, Charles University, Prague

