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Abstract. We consider a robust (minmax-regret) version of the problem of selecting p elements of minimum
total weight out of a set of m elements with uncertainty in weights of the elements. We present a polynomial
algorithm with the order of complexity O((min {p, m − p})2 m) for the case where uncertainty is represented
by means of interval estimates for the weights. We show that the problem is NP-hard in the case of an arbitrary
finite set of possible scenarios, even if there are only two possible scenarios. This is the first known example of
a robust combinatorial optimization problem that is NP-hard in the case of scenario-represented uncertainty
but is polynomially solvable in the case of the interval representation of uncertainty.
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1. Introduction

Combinatorial optimization problems with uncertainty in input data have attracted sig-
nificant research efforts because of their importance for practice. Two ways of modeling
uncertainty are usually used: the stochastic approach and worst-case analysis.

In the stochastic approach, uncertainty is modelled by means of assuming some
probability distribution over the space of all possible scenarios (where a scenario is
a specific realization of all parameters of the problem), and the objective is to find
a solution with good probabilistic performance. Models of this type are handled using
stochastic programming techniques [3,5].

In the worst-case approach, the set of possible scenarios is described deterministi-
cally, and one is looking for a solution that performs reasonably well for all scenarios,
i.e. that has the best “worst-case” performance. Specifically, the minmax-regret, or ro-
bust version of the worst-case approach seeks to minimize the worst-case loss in the
objective function value that may occur because the solution is chosen without knowing
which scenario will take place. In other words, the minmax regret approach seeks to find
a solution that is ε-optimal for any possible realization of parameters, with ε as small as
possible. Terms “minmax-regret” and “robust” are used interchangeably in this paper,
although there are several different robustness concepts in the literature (see, e.g., [7]).

Minmax-regret combinatorial optimization problems have received increasing at-
tention over the last decade. A comprehensive treatment of the state of art (up to 1997)
in minmax-regret discrete optimization and extensive references can be found in the
book [6]. However, there still are more open problems in this area than solved ones. Of
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particular interest is the computational complexity of minmax-regret combinatorial op-
timization problems. Most of known results correspond to scenario-represented models
of uncertainty (i.e. where there are finite number of possible scenarios and each one of
them is given explicitly by listing the corresponding values of parameters). It has been
observed that most classical polynomially solvable combinatorial optimization problems
become NP-hard in minmax-regret version with scenario-represented uncertainty [6].
However, there are very few results on the complexity of minmax-regret combinatorial
optimization problems with interval structure of uncertainty (where the set of possible
scenarios is described by specifying an interval of uncertainty for each parameter and
assuming that a parameter can take on any value from its interval of uncertainty). The
case of interval structure of uncertainty is usually more difficult to analyze. In particu-
lar, it has not been known so far whether there are robust combinatorial optimization
problems that are NP-hard in the case of scenario-represented uncertainty but are poly-
nomially solvable in the case of interval representation of uncertainty. In this paper, we
present the first example of a problem of this type. Specifically, we consider the robust
version of the problem of finding the minimum weight base of a uniform matroid of
rank p on a ground set of cardinality m (simply speaking, selecting a combination of p
objects of minimum total weight out of a set of m objects, where there is uncertainty
in weights). We show that this problem is NP-hard in the case of scenario-represented
uncertainty (even if there are only two possible scenarios); however, for the case of in-
terval representation of uncertainty we present a polynomial algorithm with complexity
O((min{p, (m − p)})2m). The importance of the results is in the following:

1) They settle the complexity of this class of problems;
2) The developed polynomial algorithm can have direct practical applications, since

the problem represents a class of resource allocation problems and a class of scheduling
problems;

3) The ideas used for developing the polynomial algorithm may be useful for studying
other robust combinatorial optimization problems with interval structure of uncertainty;

4) So far, robust combinatorial optimization problems that are NP-hard in the case
of scenario-represented uncertainty have usually been conjectured intractable also in the
case of interval representation. The results of this paper show that this need not to be the
case, and hopefully will stimulate new efforts in trying to obtain polynomial algorithms
for the large variety of robust combinatorial optimization problems whose complexity
in the practically important case of interval representation of uncertainty is still open.

The paper is organized as follows. In Sect. 2, notation and problem statement
are presented. In Sect. 3, we present a polynomial algorithm for the case of interval
representation of uncertainty. In Sect. 4, we prove that the problem is NP-hard in the
case of scenario-represented uncertainty, even if there are only two possible scenarios.

2. Notation and definitions

Let E be a finite set, |E| = m, and A ⊂ 2E be a set of feasible subsets of E. A vector
S = {wS

e , e ∈ E} of m real numbers will be called a scenario and will represent an
assignment of weights wS

e to elements e ∈ E. For a scenario S and a feasible subset
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X ∈ A, let us define
F(S, X) =

∑
e∈X

{
wS

e

}
.

A generic additive combinatorial optimization problem can be formulated as follows:

Problem OPT(S). Minimize {F(S, X) | X ∈ A}.
Let F∗(S) denote the optimal objective function value for Problem OPT(S). For an

X ∈ A, the value F(S, X) − F∗(S) is called the regret for the feasible set X under
scenario S.

Suppose that a set SS of possible scenarios is fixed. For any X, Y ∈ A, let us define
value REG R(X, Y ) as

REG R(X, Y ) = max
S∈SS

(F(S, X)− F(S, Y )). (1)

For an X ∈ A, let us define the worst-case regret Z(X) as follows:

Z(X) = max
S∈SS

max
Y∈A
{F(S, X)− F(S, Y )}. (2)

Alternative ways to write (2) are:

Z(X) = max
S∈SS

(F(S, X)− F∗(S)) (3)

and

Z(X) = max
Y∈A

REG R(X, Y ). (4)

The generic robust (or minmax regret) combinatorial optimization problem correspond-
ing to Problem OPT(S) is

Problem ROB. Find X ∈ A that minimizes Z(X).

Let Z∗ denote the optimal objective function value for Problem ROB. Notice that
Problem OPT(S) is a special case of Problem ROB corresponding to set SS consisting
of a single scenario.

In this paper, we consider A = {
X ⊂ 2E | |X| = p

}
for some fixed p < m, i.e.,

A is the set of all subsets of E with cardinality p. Then, Problem OPT(S) can be solved
trivially in O(m) time for any S ∈ SS (just take p elements of E with smallest weights
under scenario S). From the point of view of the underlying combinatorial structure,
A is the set of bases of a uniform matroid of rank p on the ground set E [8]. From the
application standpoint, Problem OPT(S) is a basic resource allocation problem [4]; it
can also be interpreted as a scheduling problem (elements of E represent jobs, −wS

e is
the benefit (profit) associated with processing job e ∈ E, p is the restriction (capacity)
on the number of jobs that can be processed; it is required to select jobs to process so as
to maximize the total benefit).

For any integers k, s, k ≤ s, notation [k : s] denotes the set of all integers between k
and s (including k and s).
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3. The case of interval representation of uncertainty

In this section, we suppose that set SS is defined by means of specifying lower and upper
bounds w−e and w+e respectively for the weight we of every element e ∈ E, i.e. SS is the
Cartesian product of the intervals of uncertainty [w−e , w+e ], e ∈ E. Problem ROB in this
case will be referred to as Problem ROB1. Conceptually, the minmax regret approach to
optimization problems with uncertainty in the case of interval representation has some
connections with the tolerance approach of R.Wendell in sensitivity analysis [9], in the
sense that both approaches consider simultaneous variations of all parameters of the
problem rather than variations of a single parameter.

In this section, we present an algorithm for solving Problem ROB1 that has worst-
case complexity O((min{p, (m − p)})2m). For simplicity of presentation, we make the
following assumptions that hold throughout this section unless stated otherwise.

Assumption 1. All 2m bounds w−e , w+e are distinct (i.e. unequal) numbers.

This is not a restrictive assumption; the general case can be handled with the same
techniques using a small random perturbation of equal bounds or using some consistent
rule for breaking ties (e.g., lexicographic).

Assumption 2. p ≤ 1
2 m.

Later, we show that the problem with p > 1
2 m can be reduced to an equivalent

problem with p ≤ 1
2 m.

For an X ∈ A, an optimal solution to the right-hand side of (3) is called a worst-case
scenario for X; an optimal solution to the right-hand side of (4) is called a worst-case
alternative for X.

Lemma 1. For any X ∈ A, a worst-case scenario for X can be obtained as follows:
Assign upper bounds w+e as weights to all elements e ∈ X, and assign lower bounds
w−e as weights to all elements e ∈ E \ X.

Proof. For any Y ∈ A and any S ∈ SS, value F(S, X) − F(S, Y ) cannot decrease if we
replace S with the scenario described in Lemma 1. The statement of the lemma follows
immediately.

��
The worst-case scenario for X obtained as in Lemma 1 will be denoted S∗(X), i.e.

wS∗(X )
e =

{
w+e , if e ∈ X,

w−e , if e ∈ E \ X,

e ∈ E. A worst-case alternative for X can be obtained by selecting p elements of E
with smallest weights under the scenario S∗(X); this worst-case alternative for X will
be denoted Y∗(X).

Let X∗ be an optimal solution to Problem ROB1. Consider S∗(X∗) and Y∗(X∗). Let
γ be the weight of the heaviest element of Y∗(X∗) under the scenario S∗(X∗), i.e.

γ = max
{
wS∗(X∗)

e |e ∈ Y∗(X∗)
}
. (5)
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Let e′ denote the maximizer in the right-hand side of (5). Let
B1 = {e ∈ X∗ | w+e ≤ γ },
B2 = {e ∈ X∗ | we

+ > γ },
B3 = {e ∈ E \ X∗ | w−e ≤ γ },
B4 = {e ∈ E \ X∗ | w−e > γ }.
Clearly E = B1 ∪ B2 ∪ B3 ∪ B4; element e′ belongs to either B1 or B3. Notice that

in the definition of sets B1, B2, B3, and B4 we use weights corresponding to scenario
S∗(X∗) (we = w+e if e ∈ X∗ and we = w−e if e ∈ E \ X∗). Let us define also sets

B′2 = {e ∈ B2 | w−e > γ },
B′′2 = B2 \ B′2,
B′3 = {e ∈ B3 | w+e ≤ γ },
B′′3 = B3 \ B′3.
The following three observations follow directly from the definitions and Assump-

tion 1.

Observation 1. X∗ = B1 ∪ B2; Y∗(X∗) = B1 ∪ B3; sets B1, B2, B3, B4 do not have
common elements.

Observation 2. a) |B2| = p− |B1| = |B3|;
b) |B1| ≤ p;
c) |B4| ≥ m − 2p.

Observation 3.

Z∗ = Z(X∗) =
∑
e∈B2

w+e −
∑
e∈B3

w−e . (6)

The following three observations will be proven using interchange arguments.

Observation 4. For any e2 ∈ B′2 and e4 ∈ B4, w+e4
≥ w+e2

.

Observation 5. For any e1 ∈ B1 and e3 ∈ B′3, w−e1
≤ w−e3

.

Observation 6. For any e2 ∈ B′′2 and e3 ∈ B′′3 , w+e2
+w−e2

≤ w+e3
+ w−e3

.

Proof of Observation 4. Suppose e2 ∈ B′2 and e4 ∈ B4 are such that w+e4
< w+e2

. Then
value Z(X∗) can be decreased by replacing e2 with e4 in X∗, since according to (6) the
change of Z(X∗) will be w+e4

−w+e2
< 0 (notice that Y∗(X∗)\ X∗ = B3 does not change

after such replacement), which contradicts the optimality of X∗ for Problem ROB1.
��

Proof of Observation 5. Suppose e1 ∈ B1 and e3 ∈ B′3 are such that w−e1
> w−e3

. Then
value Z(X∗) can be decreased by replacing e1 with e3 in X∗, since according to (6) the
change of Z(X∗) will be w−e3

−w−e1
< 0 (notice that X∗ \Y∗(X∗) = B2 does not change

after such replacement), which contradicts the optimality of X∗ for Problem ROB1.
��
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Proof of Observation 6. Suppose e2 ∈ B′′2 and e3 ∈ B′′3 are such that w+e2
+w−e2

> w+e3
+

w−e3
. Then value Z(X∗) can be decreased by replacing e2 with e3 in X∗, since according

to (6) the change of Z(X∗) will be w+3 −w+2 −(w−2 −w−3 ) = w+3 +w−3 −w+2 −w−2 < 0,
which contradicts the optimality of X∗ for Problem ROB1.

��
Suppose that values γ and r = |B1| are known. Then |B2| = |B3| = p − r,

|B4| = m − 2p+ r, and X∗ can be obtained as follows:
1. Obtain set C1 = {e ∈ E | w+e ≤ γ } (Clearly C1 = B1 ∪ B′3).
2. Choose r elements e of C1 with smallest w−e ; this is set B1 (according to Obser-

vation 5). The remaining |C1| − r elements of C1 form set B′3.
3. Obtain set C2 = {e ∈ E | w−e > γ } (Clearly C2 = B4 ∪ B′2)
4. Choose m − 2p+ r elements e of C2 with largest w+e ; this is set B4 (according

to Observation 4). The remaining |C2| − (m − 2p+ r) elements of C2 form set B′2.
5. Elements of E \ C1 \ C2 form B′′2 ∪ B′′3 (sets B1, B′2, B′3, B4 have already been

obtained). We know that |B′′2 | = |B2|−|B′2| and |B2| = |B3| = p−r. Select p−r−|B′2|
elements of E \ C1 \ C2 with smallest values of w+e + w−e (breaking ties arbitrarily);
this is B′′2 (using Observation 6.) Now, X∗ = B1 ∪ B′2 ∪ B′′2 .

Given values r and γ , the above procedure can be implemented in O(m) time (note
that selecting k smallest numbers out of a set of m numbers takes O(m) time [1]). Of
course we do not know values r and γ in advance; but we can try all combinations
of candidate values for r and γ , applying a procedure similar to the one above for
each combination and then choosing the best of the obtained candidate solutions (for
any X ∈ A, value Z(X) can be obtained in O(m) time using Lemma 1). There are
p+ 1 candidate values for r (integers 0,1,...,p). We know that γ = w+e or γ = w−e for
some e ∈ E; therefore, there are 2m candidate values for γ . However, it is sufficient to
consider a smaller set of candidate values for γ , using the following observations.

Observation 7. γ = w+e for some e ∈ B1 or γ = w−e for some e ∈ B3.

Observation 8. a) For any e3 ∈ B3, and any e4 ∈ B4, w−e3
< w−e4

;
b) For any e1 ∈ B1 and any e4 ∈ B4, w+e1

< w+e4
.

Let U1 be the set of 2p smallest numbers out of {w+e | e ∈ E}; let U2 be the set of
2p smallest numbers out of {w−e | e ∈ E}; and let U = U1 ∪ U2. Then Observation 8
along with Observation 2,c imply that for any e ∈ B3, w−e ∈ U2, and for any e ∈ B1,
w+e ∈ U1. With Observation 7, we obtain the following:

Observation 9. γ ∈ U .

Thus, it is sufficient to consider the set U of cardinality 4p as the set of candidate
values for γ .

This discussion justifies the algorithm for solving Problem ROB1 described below.
Speaking informally, the algorithm tries all values r̂ ∈ [0 : p] and γ̂ ∈ U as candidates
for the true values r and γ , keeping record of the best tentative solution obtained so far
(denoted X ′) and the correspondingobjective function value (denoted Z ′). The algorithm
uses Procedure CHECK(r̂, γ̂ , Z ′, X ′) that “checks” whether the input values of r̂ and γ̂
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can be used to improve upon the recorded solution. Procedure CHECK(r̂, γ̂ , Z ′, X ′) is
guaranteed to obtain an optimal solution X∗ when the input values of r̂ and γ̂ are equal
to the true values of r and γ .

Algorithm 1.
Preprocessing: Obtain the set U described above (|U| = 4p). Set X ′ = (any member
of A) (X ′ will denote the best solution obtained so far), Z ′ = Z(X ′) (value Z(X ′) can
be obtained in O(m) time using Lemma 1).

Begin
For every r̂ ∈ [0 : p] do begin

For every γ̂ ∈ U do begin
Apply Procedure CHECK(r̂, γ̂ , Z ′, X ′);

End;
End;
Set X∗ = X ′, Z∗ = Z ′;
Output X∗, Z∗;

End

Procedure CHECK(r̂, γ̂ , Z ′, X ′)
Input: r̂, γ̂ , Z ′, X ′.
Output: Z ′, X ′
Begin

1. Obtain set C1(γ̂ ) = {e ∈ E | w+e ≤ γ̂ }. If r̂ > |C1(γ̂ )|, STOP (in this case γ̂ and r̂
cannot be true values for γ and r).

2. Choose r̂ elements e of C1(γ̂ ) with smallest w−e ; denote the set of the chosen
elements as B1(γ̂ , r̂), and the set of remaining |C1(γ̂ )| − r̂ elements of C1(γ̂ ) as
B′3(γ̂ , r̂).

3. Obtain set C2(γ̂ ) = {e ∈ E | w−e > γ̂ }. If m − 2p + r̂ > |C2(γ̂ )|, STOP (in this
case γ̂ and r̂ cannot be true values for γ and r).

4. Choose m − 2p + r̂ elements e of C2(γ̂ ) with largest w+e ; denote the set of these
elements as B4(γ̂ , r̂), and the set of remaining |C2(γ̂ )| − (m − 2p+ r̂) elements of
C2(γ̂ ) as B′2(γ̂ , r̂). If |B′2(γ̂ , r̂)| > p−r̂, or if p−r̂−|B′2(γ̂ , r̂)| > |E\C1(γ̂ )\C2(γ̂ )|,
STOP (in this case γ̂ and r̂ cannot be true values for γ and r).

5. Select p − r̂ − |B′2(γ̂ , r̂)| elements of E \ C1(γ̂ ) \ C2(γ̂ ) with smallest values of
w+e + w−e (breaking ties arbitrarily); denote the set of these elements as B′′2 (γ̂ , r̂).

6. Set X ′′(γ̂ , r̂) = B1(γ̂ , r̂)∪B′2(γ̂ , r̂)∪B′′2 (γ̂ , r̂) (|X ′′(γ̂ , r̂)| = p, since |B1(γ̂ , r̂)| = r̂
and |B′2(γ̂ , r̂)| + |B′′2(γ̂ , r̂)| = p− r̂).

7. Compute Z(X ′′(γ̂ , r̂)) (this can be done in O(m) time using Lemma 1.)
8. If Z(X ′′(γ̂ , r̂)) < Z ′, update Z ′ ← Z(X ′′(γ̂ , r̂)), X ′ ← X ′′(γ̂ , r̂).

End

Theorem 1. Algorithm 1 correctly solves Problem ROB1 in O(p2m) time.

Proof. Since |U| = 4p, the algorithm applies Procedure CHECK(r̂, γ̂ , Z ′, X ′) O(p2)

times. The complexity of Procedure CHECK(r̂, γ̂ , Z ′, X ′) is O(m); the complexity
bound O(p2m) for Algorithm 1 follows.
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For any combination of γ̂ ∈ U and r̂ ∈ [0 : p], Procedure CHECK(r̂, γ̂ , Z ′, X ′)
either does not change value Z ′ and the tentative solution X ′, or finds a solution X ′′(γ̂ , r̂)
that is better than the current tentative solution X ′; in this case, Z ′ and X ′ are updated.
At every iteration of the algorithm, Z ′ ≥ Z∗. Since γ ∈ U and r ∈ [0 : p], Algorithm 1
will eventually apply Procedure CHECK(r̂, γ̂ , Z ′, X ′) with r̂ = r, γ̂ = γ ; previous dis-
cussion implies that at this iteration an optimal solution X∗ will be obtained. Therefore,
Algorithm 1 ends with X ′ = X∗ and Z ′ = Z∗.

��
In this section, we assumed p ≤ 1

2 m, and Algorithm 1 was developed using this
assumption. Suppose now that Assumption 2 does not hold and p > 1

2 m. One way
to handle this case is to include new “dummy” elements in E with sufficiently large
weight bounds w−e , w+e (so that these “dummy” elements can never be in an optimal
solution), until |E| becomes larger than 2p, and then apply Algorithm 1; the complexity
of Algorithm 1 in this case is O(m3). Below we describe a better approach that reduces
Problem ROB1 to a problem of the same type (in some sense, dual to the original
Problem ROB1) for which Assumption 2 holds. The complexity of Algorithm 1 in this
case will be O((m − p)2m) which is better than O(m3) if (m − p) = o(m).

Let Ã = {X̃ ⊂ 2E ||X̃| = m − p}, i.e. Ã is the set of all subsets of E with
cardinality m − p. Problem OPT(S) where set A is replaced with set Ã will be called
Problem OPTD(S); the optimal objective function value for Problem OPTD(S) will
be denoted F̃∗(S). Let S̃S be the Cartesian product of intervals [−w+e ,−w−e ], e ∈ E.
For a scenario S = {

wS
e , e ∈ E

}
, let −S denote the scenario

{−wS
e , e ∈ E

}
, i.e. w−S

e =
−wS

e for any e ∈ E. For any X̃ ∈ Ã, let F̃(S, X̃) = ∑
e∈X̃

{
wS

e

}
, and let Z̃(X̃) =

maxS∈SS (F̃(−S, X̃)− F̃∗(−S)) = maxS̃∈S̃S (F̃(S̃, X̃)− F̃∗(S̃)).

Observation 10. For any scenario S, F∗(S)− F̃∗(−S) =∑
e∈E wS

e .

Problem ROB1 where set A is replaced with Ã and set SS is replaced with S̃S will
be called Problem ROB1D. That is, Problem ROB1D is to find X̃ ∈ Ã that minimizes
Z̃(X̃).

Theorem 2. If X̃∗ ∈ Ã is an optimal solution to Problem ROB1D, then X∗ = E \ X̃∗
is an optimal solution to Problem ROB1.

Proof. For any X ∈ A, consider X̃ = E \ X. Clearly X̃ ∈ Ã. Notice that for any S ∈ SS,∑
e∈X wS

e −
∑

e∈X̃
w−S

e =
∑

e∈E wS
e . Taking into account Observation 10, we have that

F(S, X)− F∗(S) = F̃(−S, X̃)− F̃∗(−S),

and therefore Z(X) = Z̃(X̃). The statement of the theorem follows immediately.
��

Algorithm 1 and the bound in Theorem 1 were developed assuming p ≤ 1
2 m.

If p > 1
2 m, we can apply Algorithm 1 to Problem ROB1D (with complexity bound

O((m − p)2m)); according to Theorem 2, this will also give us an optimal solution to
Problem ROB1. Thus, we have

Theorem 3. Problem ROB1 can be solved in O((min{p, m − p})2m) time.
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4. The case of scenario-represented uncertainty

In this section, we suppose that the set SS of possible scenarios is finite, and each
scenario S from SS is given explicitly (by specifying wS

e , e ∈ E). Problem ROB in this
case is referred to as Problem ROB2. We show in this section that Problem ROB2 is
NP-hard even if there are only two possible scenarios (|SS| = 2).

Theorem 4. Problem ROB2 is NP-hard even if SS contains only two scenarios.

Proof. We use a reduction from the following decision problem that is known to be
NP-complete ([2]).

Problem PARTITION. Given is a set E ′, |E′| = 2n. Each element e ∈ E′ has a posi-
tive integer weight w′e. Is there a subset X ′ ⊂ E′ such that |X ′| = n and

∑
e∈X ′ w

′
e = K ,

where K = 1
2

∑
e∈E′ w

′
e?

Reduction. For an instance of Problem PARTITION (defined by set E ′ and positive
weights w′e, e ∈ E′) we define the corresponding instance of Problem ROB2 as follows.
Let r1 be the total weight of n− 1 heaviest elements of E ′, and r2 be the total weight of
n − 1 lightest elements of E′. Set E = E′ ∪ {b1, b2}, p = n, SS = {S1, S2}, w

S1
e = w′e

for any e ∈ E′, w
S2
e = −w′e for any e ∈ E′, w

S1
b1
= −r2, w

S2
b1
= 10K , w

S2
b2
= r1 − 2K ,

w
S1
b2
= 10K . Now, we claim that the obtained instance of Problem ROB2 has the

optimal objective value Z∗ equal to K if and only if the answer to the original instance
of PARTITION was “yes”; otherwise, Z∗ > K . Then, the NP-hardness of Problem
ROB2 follows from the NP-completeness of PARTITION.

To prove the claim, we notice that F∗(S1) = 0, F∗(S2) = −2K , and neither b1
nor b2 can belong to any optimal solution to the obtained instance of Problem ROB2
(weights w

S2
b1

and w
S1
b2

have been chosen sufficiently large to prevent such a possibility:
For any X ∈ A, if X contains b1 or b2, then Z(X) ≥ 6K ; and if X contains neither b1
nor b2, then Z(X) ≤ 4K ). So, any optimal solution to the instance of Problem ROB2
contains only elements of E′.

Now, for any X ∈ A such that X contains neither b1 nor b2, F(S2, X)−F∗(S2)=
2K−(F(S1, X)−F∗(S1)) (since F(S1, X)=−F(S2, X), F∗(S1)= 0, F∗(S2)=−2K ).
Therefore, Z(X) = max {F(S1, X)− F∗(S1), F(S2, X)− F∗(S2)} = max {F(S1, X),

2K− F(S1, X)} = max
{∑

e∈X w′e, 2K −∑
e∈X w′e

}
. Thus, Z(X) ≥ K for any X ∈ A.

If Z∗ = K , then there is X ∈ A such that Z(X) = K , X is an optimal solution to
Problem ROB2 and, as observed above, X does not contain b1 or b2; therefore, X ⊂ E′
and

∑
e∈X w′e = K , i.e. the answer to the original instance of PARTITION is “yes”. On

the other hand, if Z∗ > K , then there is no X ∈ A such that F(S1, X) = K , and the
answer to the original instance of PARTITION is “no”. The theorem is proven.

��
Remark. It is natural to ask the question about the complexity of Problem ROB in the
case where set SS is represented by a general system of linear constraints on weights,
i.e. where SS is a general polytope in Rm . Problem ROB in this case will be referred to
as Problem ROB3. Clearly Problem ROB1 is a special case of Problem ROB3. Using
Theorem 4, it is not difficult to show that Problem ROB3 is NP-hard, by means of
a polynomial reduction from Problem ROB2 with two scenarios to Problem ROB3.



272 Igor Averbakh: Combinatorial optimization with uncertainty

The reduction is obtained as follows: the polytope corresponding to set SS for Problem
ROB3 is just the convex hull of the two scenarios of Problem ROB2 in Rm (i.e. the line
segment with endpoints at the scenarios). It is easy to see that the instance of Problem
ROB3 obtained by the reduction is equivalent to the original instance of Problem ROB2.
Thus, we have the following

Corollary 1. Problem ROB3 is NP-hard.

5. Conclusion

In the paper, we considered the minmax regret version of the problem of selecting p
objects of minimum total weight out of a set of m objects, assuming uncertainty in the
weights of objects. For the problem with interval structure of uncertainty, where weights
can take on any values from the corresponding intervals of uncertainty (and, therefore, the
set of scenarios is a rectangular box in the space of weights), we presented a polynomial
algorithm with the order of complexity O((min{p, m − p})2m). We proved that the
problem with scenario-represented structure of uncertainty is NP-hard even in the case
of just two scenarios. As a corollary to this result, we obtained that the problem with
the set of scenarios represented by an arbitrary polytope is NP-hard (thus, polynomial
solvability of the interval data case is due to the special structure of the set of scenarios
which is a rectangular box).

To our knowledge, this is the first known example of a minmax regret combinatorial
optimization problem that is polynomially solvable in the case of interval representation
of uncertainty while being NP-hard in the case of scenario-represented uncertainty. It
shows that there is no direct relationship between the complexity of the case of scenario
representation of uncertainty and the complexity of the interval-data case. Hopefully,
this will stimulate new efforts in trying to obtain polynomial algorithms for numerous
interval data minmax regret combinatorial optimization problems whose complexity
is still open but which are known to be NP-hard in the case of scenario-represented
uncertainty.
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