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Abstract. We examine a variant of the uncapacitated lot-sizing model of Wagner-Whitin involving sales
instead of fixed demands, and lower bounds on stocks. Two extended formulations are presented, as well
as a dynamic programming algorithm and a complete description of the convex hull of solutions. When the
lower bounds on stocks are non-decreasing over time, it is possible to describe an extended formulation for
the problem and a combinatorial separation algorithm for the convex hull of solutions. Finally when the lower
bounds on stocks are constant, a simpler polyhedral description is obtained for the case of Wagner-Whitin costs.
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1. Introduction

The original uncapacitated single item lot-sizing model of Wagner-Whitin [15] has
been extended in many directions, to include among others backlogging [16], capaci-
ties [3], [10], start-ups [5] and production in series [9]. There is a vast literature both
on these problems and on more general multi-item problems containing the single-item
problem as subproblem [7], [12]. In all these models demand is assumed to be known
exactly, and the usual objective is to minimize total cost. Recently we have encountered
several models constructed by an industrial partner in which demand is not pre-specified,
but bounds on potential sales are presented, and the objective is profit maximization [6].
In an attempt to improve the formulation of these models, we have been led to consider
a single item lot-sizing problem with sales, and in addition, for reason of practical appli-
cability, we have also incorporated lower bounds on stocks (safety stocks) in the model.

Below we first specify the ULS3 problem (Uncapacitated Lot-sizing Problem with
Sales and Safety Stocks), and then formulate it as a mixed integer program. We then
derive equivalent formulations in which there is a fixed demand (positive or negative)
as well as potential sales. Next we analyse the structure of the optimal solutions which
allows us to conclude in standard fashion that dynamic programming provides a poly-
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nomial algorithm for ULS3. We then terminate the introduction with an overview of
later sections.

Problem ULS3 is specified by a time horizon n, an initial stock L0 ≥ 0, and for each
period t = 1, . . . , n, upper bounds ut ≥ 0 on sales, lower bounds on stocks Lt ≥ 0, and
objective coefficients consisting of unit selling prices pt , unit production and storage
costs ct and ht , and fixed set-up costs of production f t .

Introducing variables

xt: production in period t,
st : stock at the end of period t (s0: initial stock),
vt : sales in period t,
yt ∈ {0, 1}, a set-up variable with yt = 1 if xt > 0,

we obtain the profit maximization formulation

max
n∑

t=1

ptvt −
n∑

t=1

ct xt −
n∑

t=1

ft yt −
n∑

t=1

htst ,

st−1 + xt = vt + st , for t = 1, . . .n, (1)

0 ≤ vt ≤ ut , for t = 1, . . .n, (2)

(F1) xt ≤ Myt , for t = 1, . . .n, (3)

st ≥ Lt , for t = 1, . . .n, (4)

s0 = L0, (5)

xt ≥ 0, 0 ≤ yt ≤ 1, for t = 1, . . .n, (6)

yt integral, for t = 1, . . .n, (7)

where M is a large positive constant. Constraint (3) forces yt to one when xt is positive,
but there is always an optimal solution with xt < M unless ct + ∑n

i=t hi < 0. Any
value of M greater than

∑n
t=1 ut + maxt=1,... ,n Lt is sufficient. Note that it is possible

to eliminate the variables xt or st from the objective function, and so one can assume
for convenience either that ct = 0 for all t, or that ht = 0 for all t.

This model could also be interpreted as a (deterministic) lost sales model related to
classical lost sales model in (stochastic) inventory theory. In this case, the upper bound
on sales would be the demand, and the lost sales would be (ut − vt), for all t.

We now present an equivalent problem. The difference is the introduction of (possibly
negative) demands dt and the new stock variables σt which have lower bound of zero.
The constraints now take the form:

max
n∑

t=1

ptvt −
n∑

t=1

ct xt −
n∑

t=1

ft yt −
n∑

t=1

htσt ,

σt−1 + xt = dt + vt + σt , for t = 1, . . .n, (8)

0 ≤ vt ≤ ut , for t = 1, . . .n, (9)

(F2) xt ≤ Myt , for t = 1, . . .n, (10)

σ0 = 0, σt ≥ 0, for t = 1, . . .n, (11)

xt ≥ 0, 0 ≤ yt ≤ 1, for t = 1, . . .n, (12)

yt integral, for t = 1, . . .n. (13)
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We go from the first formulation to the second by taking σt = st − Lt and dt =
Lt − Lt−1, for all t. To go from the second formulation to the first, we take L 0 = max{0,

maxt[− ∑t
i=1 di ]}, Lt = L0 + ∑t

i=1 di , and st = Lt + σt for all t. The tradeoff
between (F1) and (F2) is between having lower bounds L t on stocks, or having external
demands dt . Figure 1 presents an instance of this transformation.

Fig. 1. Transforming lower bounds on stocks into demands

Defining di j = ∑ j
t=i dt and using σt = ∑t

i=1 xi − ∑t
i=1 vi − d1t ≥ 0 from (8) to

eliminate the variables σt , we obtain a third formulation which will also be useful:

max
n∑

t=1

ptvt −
n∑

t=1

ctxt −
n∑

t=1

ft yt,

t∑
i=1

xi ≥
t∑

i=1

vi + d1t, for t = 1, . . . n, (14)

(F3) 0 ≤ vt ≤ ut, for t = 1, . . . n, (15)

xt ≤ Myt , for t = 1, . . . n, (16)

xt ≥ 0, 0 ≤ yt ≤ 1, for t = 1, . . . n, (17)

yt integral, for t = 1, . . . n. (18)

Note that the three formulations are equivalent in the sense that there is a 1-1 corres-
pondence between their feasible solutions. Let X ⊆ R3n be the set of feasible solutions
of (F3) described by (14)–(18).

To derive an algorithm for ULS3 we next consider the structure of the optimal
solutions. We suppose that ft ≥ 0 and ct + ∑n

i=t hi ≥ 0 for all t, so that there is
always an optimal solution with xt < M. Consider formulation (F2). If y∗ ∈ {0, 1}n is
fixed, the remaining problem is a minimum cost flow problem in the network shown
in Fig. 2. In a basic optimal solution (x∗, v∗, σ∗), the basic variables form an acyclic
graph [16]. Such a basic optimal solution decomposes in a standard way into a sequence
of regeneration intervals.

We now look at intervals [i , i +1, . . . , j ] in which σ∗
i−1 = 0, σ∗

i > 0, . . . , σ∗
j−1 > 0,

and either σ∗
j = 0, or j = n and σ∗

n > 0. Consider first an interval with σ∗
j = 0 called

a regeneration interval of Type 1, see Fig. 3. Clearly if 0 < x∗
k < M and 0 < x∗

l < M
with i ≤ k < l ≤ j , the set of basic variables forms a cycle. So there is at most one
period k in the interval [i , . . . , j ] with x∗

k > 0. If x∗
k > 0, all variables v∗

l are equal to
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Fig. 2. ULS3 in a network

Fig. 3. Regeneration interval of Type 1

0 or ul to avoid creating a cycle. Alternatively if x∗
k = 0 for all k = i , . . . , j , then one

variable v∗
l can be basic with 0 < v∗

l < ul .
For regeneration intervals of Type 2 with j = n and σ ∗

n > 0, the situation is as shown
in Fig. 4. Again (t, s) is basic, and thus x∗

k = 0 and v∗
k = 0 or uk for all k = i , . . . , j .

Fig. 4. Regeneration interval of Type 2

We now derive a dynamic program or shortest path problem using regeneration
intervals to solve ULS3.

Consider a regeneration interval [i , . . . , j ] of Type 1. The value β i j of an optimal
solution within this interval can be found by solving j − i + 2 minimum cost flow
problems. There are j − i + 1 problems, one for each l = i , . . . , j . In the problem
associated with a fixed l , we allow xl > 0 and yl = 1, and xt = yt = 0 for t �= l .
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There is also a final problem in which xt = 0 for t = i , . . . , j , which corresponds to
the case of no production (this also includes the regeneration intervals of Type 2). For
l ∈ {i , . . . , j }, problem l is

βl
i j = max

j∑
t=i

ptvt − cl xl −
j∑

t=i

htσt − fl ,

σl−1 + xl = dl + vl + σl ,

σt−1 = dt + vt + σt , for t = i , . . . j, t �= l,

σi−1 = 0,

σ j = 0, if j �= n,

0 ≤ vt ≤ ut, for t = i , . . . j,

xt, σt ≥ 0, for t = i , . . . j.

β0
i j is defined similarly but with xl = 0 and without the cost term − fl , and βi j =

max[β0
i j , maxl=i,... , j β

l
i j ]. Note that it is not necessary to use a general linear program-

ming algorithm to calculate βl
i j .

An optimal basic solution corresponds to a maximum value sequence of regeneration
intervals. If F( j) is defined as the cost of a maximum value sequence of regeneration
intervals covering periods from 1 up to j , F( j) can be computed by the recursion
F( j) = maxi≤ j {F(i − 1) + βi j }, starting with F(0) = 0. The optimal value of problem
ULS3 is given by F(n). Working backwards leads to an optimal solution.

We now discuss the contents of the paper. In Sect. 2 we give the main result, a family
of valid inequalities, called (t, S, R) inequalities, that are shown to provide a complete
description of the convex hull of X. In Sect. 3 we consider the special case of ULS3

in which the lower bounds Lt are nondecreasing over time in formulation (F1), or
alternatively dt ≥ 0 for all t in formulations (F2) and (F3). We first derive an extended
formulation allowing one to solve ULS3 directly by linear programming, and then give
a combinatorial separation algorithm for the family of (t, S, R) inequalities. Finally in
Sect. 4 we provide an extended formulation for the case where dt = 0 for all t in
formulation (F2) and where we have “Wagner-Whitin” costs. We terminate with a brief
discussion of open questions and extensions.

2. The convex hull

To motivate the inequalities developed in this section, consider the small example shown
in Fig. 5, where d = (3,−2, 4, 1) and u = (1, 1, 1, 1). Examining periods 3 and 4,
the inflow-outflow inequalities from [14], or the (l, S) inequality of [1] with l = 4,
S= {3, 4} give the valid inequality

x3 + x4 ≤ 5y3 + 1y4 + v3 + v4 + σ4

where the coefficient (d3 + d4) of y3 is the amount of inflow in x3 that could escape
through the demand nodes d3, d4, and not through the arcs v3, v4 or σ4.
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Fig. 5. Small example

However the above inequality does not take into account the fact that d2 is negative.
Because d2 = −2 < 0, σ2 ≥ −d2 − v2, and so σ2 + x3 ≤ (d3 + d4) + v3 + v4 + σ4
implies x3 ≤ (d2 + d3 + d4) + v2 + v3 + v4 + σ4. Thus the maximum inflow through
x3 that does not flow out through v2, v3, v4 or σ4 is d2 + d3 + d4 = 3. This leads us to
the inequality

x3 + x4 ≤ 3y3 + 1y4 + v2 + v3 + v4 + σ4.

Now by introducing the complementary variables v j = u j − v j for j ∈ R = {1, 3},
we convert u1 and u3 into fixed demands but with additional inflow v j , leading to the
situation shown in Fig. 6:

Fig. 6. Small example after substitutions

Now we obtain

x3 + x4 ≤ 4y3 + 1y4 + v2 + v4 + σ4

with the coefficient of y3 equal to (d2 + d3 + u3 + d4). Eliminating σ4 via the equation∑4
t=1 xt = ∑4

t=1 vt +d14 +σ4, obtained by summing (8) for t = 1, . . . , 4, the resulting
inequality is

x1 + x2 + 4y3 + 1y4 ≥ 6 + v1 + v3. (19)

Now we describe formally a family of valid inequalities, called (t, S, R) inequalities,
generalizing the previous example. We show that they provide all the inequalities missing
in formulation (F3) to describe the convex hull of the solutions of ULS3.

In order to compute the coefficients of the y variables, we define for R ⊆ {1, . . . , n}:
1. di j = ∑

i≤k≤ j dk, for 1 ≤ i ≤ j ≤ n, di j = 0, if i > j ;

2. uR
i j = ∑

k∈R,i≤k≤ j uk, for 1 ≤ i ≤ j ≤ n, uR
i j = 0, if i > j ;
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3. b̃R
i = maxt=0...i (uR

1t + d1t), for i = 0, . . . , n;
4. θ(R, i) = min{t ∈ {0, . . . , i } : (uR

1t + d1t) = b̃R
i }, for i = 0, . . . , n;

5. b̃R
i j = b̃R

j − b̃R
i−1 ≥ 0, for 1 ≤ i ≤ j ≤ n.

Note that, if τ = θ(R, i), uR
t+1,τ + dt+1,τ ≥ 0, for 0 ≤ t < τ , and that uR

τ+1,t +
dτ+1,t ≤ 0, for τ < t ≤ i . For example, in inequality (19) with R = {1, 3}, we have
b̃R

4 = 8, θ(R, 4) = 4, b̃R
2 = 4, θ(R, 2) = 1, and b̃R

34 = 4.

Observe that b̃R
i represents the amount that has to be produced in order to satisfy

both the demand for all periods up to i and the maximum amount that can be sold for
periods in R∩{1, . . . , i }. Note that, because demands can be negative, this amount must
sometimes be produced before period i . This happens in the above example for b̃R

2 with
R = {1, 3}. θ(R, i) represents the deadline for producing this amount.

Proposition 1. The(t, S, R) inequalities

∑
j∈T\S

xj +
∑
j∈S

b̃R
jt yj ≥

∑
j∈R

v j + d1t, (20)

are valid for X for all 1 ≤ t ≤ n, T = {1, . . . , t}, S ⊆ T and R⊆ T, such that
t = θ(R, t).

Proof. Let (x∗, y∗, v∗) ∈ X. Suppose y∗
i = 0 for all i ∈ S. Then as x∗

i = 0 for i ∈ S,

∑
j∈T\S

x∗
j +

∑
j∈S

b̃R
jt y∗

j =
∑
j∈T

x∗
j ≥

∑
j∈T

v∗
j + d1t ≥

∑
j∈R

v∗
j + d1t .

Otherwise let k = min{i ∈ S : y∗
i = 1}. Let τ = θ(R, k − 1). As τ ≤ k − 1, x∗

j = 0 for
j ∈ Swith j ≤ τ . Then

∑
j∈T\S

x∗
j ≥

∑
j∈T\S, j≤τ

x∗
j =

∑
j≤τ

x∗
j ≥

∑
j≤τ

v∗
j + d1τ ≥

∑
j∈R, j≤τ

v∗
j + d1τ . (21)

Also,

∑
j∈S

b̃R
jt y

∗
j ≥ b̃R

kt = b̃R
t − b̃R

k−1 = uR
1t + d1t − (

uR
1τ + d1τ

)
=

∑
j∈R,τ+1≤ j≤t

u j + dτ+1,t ≥
∑

j∈R,τ+1≤ j≤t

v∗
j + dτ+1,t . (22)

Adding (21) and (22), the result follows.
��

Theorem 1. The inequalities (20) together with the inequalities (15)–(17) describe
conv(X).
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Let us denote by M(c, f, p) ⊆ X the set of all optimal solutions of the problem
max{∑n

i=1(−ci xi − fi yi + pivi ) : (x, y, v) ∈ X}.
To prove the theorem we need two lemmas characterizing the solutions of M(c, f, p),

which hold subject to certain conditions. We consider a non-negative cost (c, f, p), an
optimal solution (x∗, y∗, v∗) ∈ M(c, f, p) and an integer q ∈ {1, . . . , n+1}. We define
R = { j : pj > 0} and τ = θ(R, q − 1). The conditions are:

Condition A: q ∈ {1, . . . , n + 1} satisfies Condition A if either
a) q = n + 1, or
b) q �= n + 1, cq = 0 and either fq = 0 or y∗

q = 1.

Condition B: q ∈ {1, . . . , n + 1} satisfies Condition B if for each j ∈ {1, . . . , τ},
either cj > 0 or y∗

j = 0.

Given (x∗, y∗, v∗), if q satisfies Condition A, then the production in period q can
be increased at no cost. Therefore, as (x∗, y∗, v∗) is optimal, it is never profitable to
produce in a period j ∈ {q + 1, . . . , n} in which the cost (c j or f j ) is positive. Also,
it always pays to sell as much as possible in all periods j ∈ {q, . . . , n} with positive
unit price pj . By definition of θ(R, q − 1), this argument can be extended to periods in
{τ + 1, . . . , q − 1}. This is formalized in Lemma 1.

Lemma 1. If q satisfies Condition A, then

1. for j = τ + 1, . . . , n, j �= q, x∗
j = 0 whenever cj > 0;

2. for j = τ + 1, . . . , n, j �= q, y∗
j = 0 whenever fj > 0; and

3. for j = τ + 1, . . . , n, v∗
j = u j whenever pj > 0.

Proof. In each case we will assume the contrary and produce a solution (x′, y′, v′)
which has higher value than (x∗, y∗, v∗), contradicting the assumption of optimality for
(x∗, y∗, v∗). Where not otherwise specified, (x′, y′, v′) coincides with (x∗, y∗, v∗).

1) Suppose we have some j �= q, τ + 1 ≤ j ≤ n, with cj > 0 and x∗
j > 0. Make

x′
j = 0 and v′

k = 0 for k �∈ R. If q �= n + 1, make x′
q = x∗

q + x∗
j and y′

q = 1. To verify
that (x′, y′, v′) ∈ X, we must show that it satisfies inequality (14) for all t. If t < j or
t ≥ q, this fact is immediate as

t∑
k=1

x′
k =

t∑
k=1

x∗
k ≥

t∑
k=1

v∗
k + d1t ≥

t∑
k=1

v′
k + d1t .

Otherwise j ≤ t ≤ q − 1, and it follows that∑t
k=1 x′

k ≥ ∑τ
k=1 x′

k (τ < t)

= ∑τ
k=1 x∗

k (τ < j )

≥ ∑τ
k=1 v∗

k + d1τ ((x∗, y∗, v∗) is valid)

≥ ∑τ
k=1 v∗

k + uR
τ+1,t + d1t

(
uR

τ+1,t + dτ+1,t ≤ 0
)

≥ ∑τ
k=1 v′

k + uR
τ+1,t + d1t

(
v′

k ≤ v∗
k,∀k

)
≥ ∑τ

k=1 v′
k + ∑t

k=τ+1,k∈R v′
k + d1t

(
v′

k ≤ uk,∀k
)

= ∑t
k=1 v′

k + d1t .
(
v′

k = 0,∀k �∈ R
)
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Solution (x′, y′, v′) is worth cj x∗
j more than (x∗, y∗, v∗), since if q �= n + 1 cq = 0

and either fq = 0 or y′
q = y∗

q = 1, and pk = 0 for k �∈ R.
2) Suppose we have some j �= q, τ + 1 ≤ j ≤ n, with f j > 0 and y∗

j = 1. We
construct (x′, y′, v′) in the same way as the above case and in addition we set y′

j = 0.
Solution (x′, y′, v′) is worth cj x∗

j + f j more than (x∗, y∗, v∗). Note that cj and x∗
j may

be zero.
3) Suppose we have some j , τ + 1 ≤ j ≤ n, with pj > 0 and v∗

j < u j . Make
v′

j = u j and v′
k = 0 for k �∈ R. If q �= n + 1, make x′

q = x∗
q + u j − v∗

j and y′
q = 1.

Everything shown for case 1) holds also for this case and the reader can verify the
validity of the inequalities (14) following the same steps. Solution (x′, y′, v′) is worth
pj (u j − v∗

j ) more than (x∗, y∗, v∗).
��

Similarly, if q satisfies Condition B, then every amount produced in periods
{1, . . . , τ} in the solution (x∗, y∗, v∗) has a positive cost. Therefore, as (x∗, y∗, v∗)
is optimal, in case q satisfies also Condition A it is not profitable to produce in periods
{1, . . . , τ} any amount used satisfy demand or sales in {q, . . . , n}, because such an
amount could be produced at no cost in period q. So the production in {1, . . . , τ} is
used only to satisfy demands or sales in {1, . . . , τ}. Furthermore, because producing in
{1, . . . , τ} has positive cost, sales have to be zero in {1, . . . , τ} when unit price is zero.
This is formalized in Lemma 2.

Lemma 2. If q satisfies Conditions A and B, then

1.
∑τ

k=1 x∗
k = ∑τ

k=1 v∗
k + d1τ , and

2. for j = 1, . . . , τ, v∗
j = 0 whenever pj = 0.

Proof. We proceed in the same way as in Lemma 1.
1) Suppose that s = ∑τ

k=1 x∗
k − ∑τ

k=1 v∗
k − d1τ is positive. Then, if

∑τ
k=1 x∗

k = 0,
we have

−
τ∑

k=1

v∗
k − d1τ > 0

which implies, since uR
1τ + d1τ ≥ 0 and v∗

k ≥ 0 for all k, that

τ∑
k=1,k∈R

v∗
k < uR

1τ .

Hence either
∑τ

k=1 x∗
k > 0 or

∑τ
k=1,k∈R v∗

k < uR
1τ . It follows that there exists j ∈

{1, . . . , τ} with either x∗
j > 0, or j ∈ R and v∗

j < u j . Choose the largest such j . Then
for k = j + 1, . . . , τ , x∗

k = 0 and v∗
k = uk when k ∈ R.

Case i: Suppose first that x∗
j > 0 and take ε = min{s, x∗

j }. Make v′
k = 0 for k �∈ R,

x′
j = x∗

j − ε, and x′
q = x∗

q + ε in case q �= n + 1. We need to show that (x′, y′, s′) ∈ X
by showing that it satisfies (14).
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For t = j, . . . , τ we have∑t
k=1 x′

k = ∑t
k=1 x∗

k − ε
(

j ≤ t, x∗
j ≥ ε, q > j

)
= ∑τ

k=1 x∗
k − ε

(
x∗

k = 0,∀k = j + 1, . . . , τ
)

≥ ∑τ
k=1 v∗

k + d1τ (s ≥ ε)

≥ ∑t
k=1 v∗

k + ∑τ
k=t+1,k∈R v∗

k + d1τ

(
t ≤ τ, v∗

k ≥ 0
)

= ∑t
k=1 v∗

k + uR
t+1,τ + d1τ

(
v∗

k = uk,∀k ∈ R,

k = j + 1, . . . , τ
)

≥ ∑t
k=1 v∗

k + d1t
(
uR

t+1,τ + dt+1,τ ≥ 0
)

≥ ∑t
k=1 v′

k + d1t .
(
v′

k ≤ v∗
k,∀k

)
Case ii : Suppose now that v∗

j < u j , j ∈ R, and take ε = min{s, u j − v∗
j }. Make

v′
j = v∗

j + ε and v′
k = 0 for k �∈ R. If q �= n + 1, make x′

q = x∗
q + ε and y′

q = 1. For
t = j, . . . , τ we have∑t

k=1 x′
k = ∑t

k=1 x∗
k (t < q)

= ∑τ
k=1 x∗

k

(
x∗

k = 0,∀k = j + 1, . . . , τ
)

≥ ∑τ
k=1 v∗

k + d1τ + ε (s ≥ ε)

≥ ∑τ
k=1 v′

k + d1τ

(
v′

j = v∗
j + ε, v′

k ≤ v∗
k,∀k �= j

)
= ∑t

k=1 v′
k + ∑τ

k=t+1,k∈R v′
k + d1τ

(
v′

k = 0,∀k �∈ R
)

= ∑t
k=1 v′

k + uR
t+1,τ + d1τ

(
v′

k = v∗
k = uk,∀k ∈ R,

k = j + 1, . . . , τ
)

≥ ∑t
k=1 v′

k + d1t.
(
uR

t+1,τ + dt+1,τ ≥ 0
)

In both cases we have shown the validity of inequalities (14) for t = j, . . . , τ . For
t < j or t ≥ q, the validity is immediate. Finally, for t = τ + 1, . . . , q − 1,∑t

k=1 x′
k ≥ ∑τ

k=1 x′
k (τ < t)

≥ ∑τ
k=1 v′

k + d1τ (already shown

for the case t = τ)

≥ ∑τ
k=1 v′

k + uR
τ+1,t + d1t

(
uR

τ+1,t + dτ+1,t ≤ 0
)

≥ ∑τ
k=1 v′

k + ∑t
k=τ+1,k∈R v′

k + d1t
(
v′

k ≤ uk,∀k
)

= ∑t
k=1 v′

k + d1t .
(
v′

k = 0,∀k �∈ R
)

In case (i) solution (x′, y′, v′) is worth εcj more, because q satisfies Condition A.
As x∗

j > 0, then y∗
j = 1 and thus, by Condition B, cj > 0. In case (ii ), (x′, y′, v′) is

worth εpj more, and pj > 0 as j ∈ R.
2) Suppose v∗

j > 0 with 1 ≤ j ≤ τ and pj = 0. To see that (x∗, y∗, v∗) cannot be
an optimal solution it suffices to change it by setting v∗

j = 0. The solution is worth the
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same, but now s = ∑τ
k=1 x∗

k − ∑τ
k=1 v∗

k − d1τ is positive. As we have shown in part 1)
of the proof, such a solution cannot be optimal.

��
Proof of Theorem 1.We use a technique due to Lovász [8]. For an arbitrary non-zero
objective function max

∑n
i=1(−ci xi − fi yi + pivi ) we will show case by case that all

points in M(c, f, p) satisfy one of the inequalities (20), (15), (16) or (17) at equality
(note that inequalities (14) are special cases of (20)). This proves that the description of
the convex hull is complete, since when the objective function is parallel to a facet of
the polyhedron the corresponding facet-defining inequality is the only valid inequality
that is satisfied at equality by all optimal solutions.

If ci < 0 for some i , then M(c, f, p) ⊆ {(x, y, v) : xi = Myi }. If fi < 0 for
some i , then M(c, f, p) ⊆ {(x, y, v) : yi = 1}. If pi < 0 for some i , then M(c, f, p) ⊆
{(x, y, v) : vi = 0}. We suppose next that c, f and p are non-negative.

As (−c,− f, p) �= 0, we can define l as the last period such that cl , fl and pl are not
all zero. Let t = θ(R, l ), T = {1, . . . , t}, S= {i ∈ T : ci = 0} and R = {i : pi > 0}.

Suppose there is k ≤ l such that ck = fk = 0. Then Lemma 1 can be applied
with q = k, using l as value of j . If pl > 0, then M(c, f, p) ⊆ {(x, y, v) : vl = ul}.
Otherwise pl = 0 and thus k < l and either cl > 0 or fl > 0. It follows that
M(c, f, p) ⊆ {(x, y, v) : xl = 0} or M(c, f, p) ⊆ {(x, y, v) : yl = 0}. So we assume
from now on that there is no such k, and so fi > 0 for all i in S.

Suppose next that pi > 0 for some i > t. Then Lemma 1 can be applied with
q = l + 1 and by 3) M(c, f, p) ⊆ {(x, y, v) : vi = ui }. So from now on we can assume
that R ⊆ T.

Consider an optimal solution (x∗, y∗, v∗) in M(c, f, p). We now show that the
inequality (20) holds at equality.

Suppose first that y∗
i = 0 for all i ∈ S. Then

∑
j∈T\S

x∗
j =

∑
j∈T

x∗
j , and

∑
j∈S

b̃R
jl y

∗
j = 0.

Since l = n or cl+1 = fl+1 = 0, and for i ∈ T y∗
i = 1 implies that i �∈ S and hence

ci > 0 for i ≤ θ(R, l ) such that yi = 1, Lemma 2 can be applied with q = l + 1:

1) gives
∑
j∈T

x∗
j =

∑
j∈T

v∗
j + d1t,

and 2) gives
∑
j∈T

v∗
j =

∑
j∈R∩T

v∗
j =

∑
j∈R

v∗
j .

So, ∑
j∈T\S

x∗
j +

∑
j∈S

b̃R
jl y

∗
j =

∑
j∈T

x∗
j =

∑
j∈T

v∗
j + d1t =

∑
j∈R

v∗
j + d1t,

and the inequality (20) holds at equality.
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Otherwise take k = min{i ∈ S : y∗
i = 1}. Let τ = θ(R, k − 1). Applying Lemma 1

with q = k, y∗
k = 1 and ck = 0, ∑

j∈T\S, j>τ

x∗
j = 0 using 1), (23)

∑
j∈S

b̃R
jt y

∗
j = b̃R

k,t = b̃R
t − b̃R

k−1 using 2), and (24)

∑
j∈R, j>τ

v∗
j = uR

τ+1,t using 3). (25)

We have ck = 0, y∗
k = 1 and cj > 0 for all 1 ≤ j ≤ k − 1 with y∗

j = 1 by definition
of k. So applying Lemma 2 with q = k, 1) gives∑

j≤τ

x∗
j =

∑
j≤τ

v∗
j + d1τ , (26)

and by 2), ∑
j≤τ

v∗
j =

∑
j∈R, j≤τ

v∗
j . (27)

Now using (24), ∑
j∈T\S

x∗
j +

∑
j∈S

b̃R
jt y∗

j =
∑

j∈T\S

x∗
j + b̃R

t − b̃R
k−1.

Now, by the fact that b̃R
k−1 = b̃R

τ , that x∗
j = 0 if j ∈ S and j ≤ τ ≤ k − 1, and from

(23), ∑
j∈T\S

x∗
j + b̃R

t − b̃R
k−1 =

∑
j∈T\S, j≤τ

x∗
j +

∑
j∈T\S, j>τ

x∗
j + b̃R

t − b̃R
k−1

=
∑
j≤τ

x∗
j + b̃R

t − b̃R
τ .

From (26), (27) and the definition of b̃R
i∑

j≤τ

x∗
j + b̃R

t − b̃R
τ =

∑
j∈R, j≤τ

v∗
j + d1τ + uR

1t + d1t − (
uR

1τ + d1τ

)
,

=
∑

j∈R, j≤τ

v∗
j + uR

τ+1,t + d1t.

Finally, from (25), ∑
j∈R, j≤τ

v∗
j + uR

τ+1,t + d1t =
∑
j∈R

v∗
j + d1t,

and the proof is complete.
��
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3. ULS3 with non-negative demands

When dt ≥ 0 for all t, ULS3 simplifies in a variety of ways. It is natural to fix σn = 0, and
it is no longer necessary in a regeneration interval to consider a solution with 0 < v∗

t < ut
as this would only be possible if x∗

k = 0 for all k in the interval, and then it is impossible
to produce v∗

t > 0. So we restrict attention to the set X̃ = X∩{(x, v, y, σ) : σn = 0}, and
the corresponding face conv( X̃)= conv(X) ∩ {(x, v, y, σ) : σn = 0}. The inequalities
xt ≤ Myt are no longer necessary to describe conv( X̃). Also the value b̃R

i j used in

describing facets is given directly by b̃R
i j = uR

i j + di j for 1 ≤ i ≤ j ≤ n.

Proposition 2. Every extreme point is characterized by three sets I, J, K ⊆ {1, . . . , n},
I = {t1 < t2 < . . . < tq} ⊆ J where

yt =
{

1, if t ∈ J,
0, otherwise,

vt =
{

ut, if t ∈ K,

0, otherwise,

xt =
{∑t j+1−1

i=t j
(vi + di ), if t = t j ∈ I,

0, otherwise.

where we take tq+1 = n + 1.

Now we present an extended formulation for X̃. We let bt = ut + dt for all t, and
introduce the 0-1 variables βi j , αi j where βi j = 1 if the amount dj is produced in period
i ≤ j and αi j = 1 if the amount dj + u j is produced in period i ≤ j . The resulting
formulation is:

max
∑

t

ptvt −
∑

t

ft yt −
∑

t

ctxt,

∑
j≥i

(bj αi j + dj βi j ) = xi , i = 1, . . . , n,

(F4)
∑
i≤ j

(bjαi j + dj βi j ) = v j + dj , j = 1, . . . , n,

∑
i≤ j

(αi j + βi j ) = 1, j = 1, . . . , n,

(αi j + βi j ) ≤ yi , 1 ≤ i ≤ j ≤ n,

vi , yi , xi , αi j , βi j ≥ 0, 1 ≤ i ≤ j ≤ n,

yi ≤ 1, i = 1, . . . , n.

Let P∗ be the polytope defined by the constraints of (F4).
It is readily verified that the points in P∗ with α, β, y integer are the points of X̃, so

P∗ is a valid extended formulation for X̃, and conv(X̃) ⊆ projx,y,vP∗.

Proposition 3. projx,y,vP∗ = conv(X̃).
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Proof. Consider a point (x, y, v, α, β) in P∗ and let us show that (x, y, v) is in conv(X̃).
It suffices to show that (x, y, v) satisfies the inequalities which describe conv(X) and
that σn = ∑n

t=1 xt − ∑n
t=1 vt − d1n = 0. Indeed,

n∑
t=1

xt =
n∑

t=1

∑
j≥t

(bj αt j + dj βt j ) =
n∑

j=1

∑
t≤ j

(bj αt j + dj βt j ) =
n∑

j=1

v j + d1n,

implies that σn = 0. Also,

t∑
k=1

xk =
t∑

k=1

n∑
j=k

(bj αk j + dj βk j) ≥
t∑

j=1

j∑
k=1

(bjαk j + dj βk j) =
t∑

j=1

(v j + dj ),

vt =
∑
i≤t

(btαit + dtβit ) − dt ≤ bt

∑
i≤t

(αit + βit ) − dt = bt − dt = ut,

vt =
∑
i≤t

(btαit + dtβit ) − dt ≥ dt

∑
i≤t

(αit + βit ) − dt = dt − dt = 0,

xt =
∑
j≥t

(bj αt j + dj βt j ) ≤
∑
j≥t

bj (αt j + βt j ) ≤
∑
j≥t

bj yt ≤ Myt ,

so the inequalities (14)–(16) are satisfied. Also clearly (17) holds. We complete the
proof by checking for the (t, S, R) inequalities (20):

∑
k∈S

xk +
∑

k∈T\S

b̃R
kt yk =

=
∑
k∈S

∑
j≥k

(bj αk j + dj βk j ) +
∑

k∈T\S

(
∑

j≥k, j∈R

bj yk +
∑

j≥k, j∈T\R

dj yk)

=
∑
k∈S

∑
j≥k, j∈R

(bj αk j + dj βk j ) +
∑
k∈S

∑
j≥k, j∈T\R

(bj αk j + djβk j ) +

+
∑

k∈T\S

∑
j≥k, j∈R

bj yk +
∑

k∈T\S

∑
j≥k, j∈T\R

dj yk

≥
∑
k∈S

∑
j≥k, j∈R

(bj αk j + dj βk j ) +
∑
k∈S

∑
j≥k, j∈T\R

dj (αk j + βk j ) +

+
∑

k∈T\S

∑
j≥k, j∈R

bj (αk j + βk j ) +
∑

k∈T\S

∑
j≥k, j∈T\R

dj (αk j + βk j )

≥
∑
k∈T

∑
j≥k, j∈R

(bj αk j + dj βk j ) +
∑
k∈T

∑
j≥k, j∈T\R

dj (αk j + βk j )
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=
∑
j∈R

∑
k≤ j

(bj αk j + djβk j ) +
∑

j∈T\R

dj

∑
k≤ j

(αk j + βk j)

≥
∑
j∈R

(v j + dj ) +
∑

j∈T\R

dj

=
∑
j∈R

v j + d1t .

��

Now we consider the separation problem for conv( X̃). Suppose that a point
(x∗, y∗, v∗) satisfies (14)–(17), and σ∗

n = 0, but is not in conv(X̃). Then by Theorem 1
at least one of the inequalities

∑
j∈T\S

xj +
∑
j∈S

b̃R
jt yj ≥

∑
k∈R

vk + d1t

is violated. Since dt ≥ 0 for all t implies b̃R
i j = uR

jt + djt , for a fixed t and T =
{1, . . . , t} the separation problem can be solved by minimizing over R, S⊆ {1, . . . , t},
the difference

∑
j∈T\S

x∗
j +

∑
j∈S

(
uR

jt + djt
)
y∗

j −
∑
k∈R

v∗
k

which can be rewritten as

∑
j∈T\S

x∗
j +

∑
j∈S

y∗
j (

∑
k∈R, j≤k≤t

uk) +
∑
j∈S

djt y∗
j −

∑
k∈R

v∗
k.

To minimize this expression, we take λ and µ respectively as the characteristic
vectors of Sand R = T \ R. We then minimize over λ and µ

t∑
j=1

x∗
j (1 − λ j ) +

t∑
j=1

t∑
k= j

uky∗
j λ j (1 − µk) +

t∑
j=1

djt y
∗
j λ j −

t∑
k=1

v∗
k(1 − µk)

which is equivalent to minimizing

t∑
j=1

( t∑
k= j

(uk + dk)y∗
j − x∗

j

)
λ j +

t∑
k=1

v∗
kµk −

t∑
j=1

t∑
k= j

uky∗
j λ j µk.

It is well known that minimizing a quadratic boolean function in which all quadratic
terms have non-positive coefficient reduces to a maximum flow problem [13]. Thus
solving for each t = 1, . . . , n leads to a polynomial algorithm.
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4. ULS3 with zero demands and Wagner-Whitin costs

With dt ≥ 0 for all t as in the previous section, the facet-defining inequalities still
depend on subsets S and R. Here, when dt = 0 for all t, we show that the number of
facets, though still exponential, decreases by an order of magnitude in the presence of
Wagner-Whitin costs. To see this we again introduce an extended formulation.

Assume that the cost functions ct, ht satisfy the Wagner-Whitin condition ct + ht ≥
ct+1 for t = 1, . . . , n − 1. Alternatively eliminating the production variables from
the objective function, the resulting storage costs h′

t = ct + ht − ct+1 ≥ 0. This
restriction says that, ignoring fixed costs, it is always best to produce as late as possible.
Formulations in the presence of Wagner-Whitin costs have been studied in [11].

As the amount sold in period t is either 0 or ut in an optimal extreme solution, we
can define the following 0-1 variables:

wt = 1 if vt = ut in period t, and wt = 0 if vt = 0 (wt = vt/ut )
δl

k = 1 if vl = ul and the stock at the end of k contains the corresponding sale ul .

Clearly δl
k = max(0, wl − ∑l

t=k+1 yt) due to the Wagner-Whitin property.
The resulting formulation is:

max
n∑

t=1

ptutwt −
n∑

t=1

ft yt −
n∑

t=1

h′
tσt ,

σk =
n∑

l=k+1

ulδ
l
k 1 ≤ k < t (28)

δl
k − wl +

l∑
i=k+1

yi ≥ 0 1 ≤ k < l ≤ t (29)

δl
k ≥ 0 1 ≤ k < l ≤ t (30)

0 ≤ wk ≤ 1, 0 ≤ yk ≤ 1 1 ≤ k ≤ t (31)

yk integer 1 ≤ k ≤ t (32)

Proposition 4. The polyhedron Q defined by contraints (29)–(31) is integral.

Proof. In fact the constraints (29)–(31) define a totally unimodular matrix. Since the
constraints (30) and (31) are submatrices of the identity, these rows can be ignored. The
same holds for the columns of (29) corresponding to the vector δ. Let {ai j }i j be the
remaining matrix with the set of columns partitioned into set Y = {C1, . . . , Cn}, cor-
responding to vector y, and the set W = {D1, . . . , Dn}, corresponding to the vector w.

We base our proof on the theorem [4] which states that {ai j }i j is totally unimodular
if for any subset of columns J there is a partition (J1, J2) of J such that | ∑ j∈J1

ai j −∑
j∈J2

ai j | ≤ 1, for every row i .
Let J be a subset of columns and let Ci1 , . . . , Ci p be the columns of Y in J. For

convenience, let i 0 = 1 and i p+1 = n + 1.
We allocate alternatively Ci1 , Ci2 , . . . , Ci p to J1 and J2 so that Ci1 ∈ J1, Ci2 ∈ J2

and so on. The columns Di in W are allocated to the same set as Ci j , where j is such
that i j ≤ i < i j+1.
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Now let us consider one row of the matrix {ai j }i j . Suppose it corresponds to vari-
able δl

k. In this row the non-zero entries are −1 for Dl and 1 for Ck+1, . . . , Cl . Defining
rY = ∑

j∈Y∩J1
ai j − ∑

j∈Y∩J2
ai j and rW = ∑

j∈W∩J1
ai j − ∑

j∈W∩J2
ai j , we have to

show that |rW + rY| ≤ 1.
Since {Ck+1, . . . , Cl } corresponds to an interval of columns of Y, the columns of

this set are also alternatively allocated to J1 and J2. So |rY| ≤ 1. Clearly |rW| ≤ 1 also,
since there is only one non-zero entry in W for each row. Suppose now that r Y = 1.
Then in particular the last column in J of the interval Ck+1, . . . , Cl is allocated to J1.
So Dl is also allocated to J1, and thus rW = −1. The case rY = −1 is analogous.
Therefore |rW + rY| ≤ 1.

��
Now we consider the projection of Q into the space of the original (σ, v, y) variables.

Using vt = utwt for all t, and eliminating the δl
k variables in (28) by using (29) or (30)

leads directly to the projection, and gives a proof of the next proposition.

Proposition 5. The polyhedron

σk ≥
∑
l∈U

(vl − ul

l∑
i=k+1

yi ), for all U ⊆ {k + 1, . . . , n} and all k, (33)

0 ≤ vk ≤ uk, for k = 1, . . . , n, (34)

0 ≤ yk ≤ 1, for k = 1, . . . , n, (35)

0 ≤ σk, for k = 1, . . . , n, (36)

has y integral at all its extreme points.

Note that the (k,U) inequalities (33) form a special subset of the (t, S, R) inequali-
ties. Specifically taking t = max{i : i ∈ U}, (33) can be rewritten as

k∑
j=1

xj +
t∑

i=k+1

yi (
∑

i≤ j≤t, j∈U

u j ) ≥
∑
l∈U

vl +
k∑

j=1

v j ,

or setting T = {1, . . . , t}, R = U ∪ {1, . . . , k} and S= {k + 1, . . . , t} as∑
j∈T\S

xj +
∑
j∈S

b̃R
jt yj ≥

∑
j∈R

v j .

5. Extensions

Various extensions of the type studied for the classical uncapacitated lot-sizing model
appear important. We have initial results for the constant capacity case including a poly-
nomial algorithm and a generalisation of the (t, S, R) inequalities. Results for ULS3 with
backlogging and start-up variables are also needed to treat certain real-life instances.

Theoretically we have only been able to separate the (t, S, R) inequalities in poly-
nomial time when dt ≥ 0 for all t. For formulation (F1), this means that the lower
bounds {Lt}n

t=0 are nondecreasing. In practice it is often the case that the initial stock L0
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is arbitrary, and Lt = L constant for t = 1, . . . , n. Thus the only difficulty arises when
L0 > L. In terms of formulation (F3), d1 = L − L0, and dt = 0 for t = 2, . . . , n. It is
therefore interesting to investigate the extension of the combinatorial separation algo-
rithm described in Sect. 3 to this case. Practically we plan to develop and test separation
heuristics both for ULS3 and for fixed charge network flows, in which paths with both
positive and negative demands are treated, extending the path inequalities developed
in [2].
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