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Abstract. We examine a variant of the uncapacitated lot-sizing model of Wagner-Whitin involving sales
instead of fixed demands, and lower bounds on stocks. Two extended formulations are presented, as well
as a dynamic programming algorithm and a complete description of the convex hull of solutions. When the
lower bounds on stocks are non-decreasing over time, it is possible to describe an extended formulation for
the problem and a combinatorial separation algorithm for the convex hull of solutions. Finally when the lower
bounds on stocksare constant, asimpler polyhedral description isobtained for the case of Wagner-Whitin costs.
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1. Introduction

The original uncapacitated single item lot-sizing model of Wagner-Whitin [15] has
been extended in many directions, to include among others backlogging [16], capaci-
ties [3], [10], start-ups [5] and production in series [9]. Thereis a vast literature both
on these problems and on more general multi-item problems containing the single-item
problem as subproblem [7], [12]. In @l these models demand is assumed to be known
exactly, and the usual objectiveisto minimizetotal cost. Recently we have encountered
several modelsconstructed by anindustrial partner inwhich demand isnot pre-specified,
but bounds on potential sales are presented, and the objectiveis profit maximization [6].
In an attempt to improve the formulation of these models, we have been led to consider
asingleitem lot-sizing problem with sales, and in addition, for reason of practical appli-
cability, we have a so incorporated lower bounds on stocks (safety stocks) in the model.

Below we first specify the ULS® problem (Uncapacitated L ot-sizing Problem with
Sales and Safety Stocks), and then formulate it as a mixed integer program. We then
derive equivalent formulations in which there is a fixed demand (positive or negative)
aswell as potential sales. Next we analyse the structure of the optimal solutions which
allows us to conclude in standard fashion that dynamic programming provides a poly-

M. Loparic: CORE, Université Catholique de Louvain. eemail: | opari c@ore. ucl . ac. be
Y. Pochet: CORE and IAG, Université Catholique de Louvain. e-mail: pochet @or e. ucl . ac. be
L.A. Wolsey: CORE and INMA, Université Catholique de Louvain. email: wol sey @or e. ucl . ac. be

* Theresearch of the first author was supported by CAPES-Brazil.
** Thistext presents research results of the Belgian Program on Interuniversity Poles of Attraction initiated
by the Belgian State, Prime Minister’'s Office, Science Policy Programming. The scientific responsability is
assumed by the authors.



488 Marko Loparic et al.

nomial algorithm for ULSS®. We then terminate the introduction with an overview of
later sections.

Problem UL S® is specified by atime horizonn, aninitial stock Lo > 0, and for each
periodt = 1, ..., n, upper boundsu; > Oonsales, lower boundson stocks Ly > 0, and
objective coefficients consisting of unit selling prices pt, unit production and storage
costs ¢; and ht, and fixed set-up costs of production f;.

Introducing variables

Xt: productionin period t,

s stock at the end of periodt (Sp: initial stock),
vt: salesin period t,

vt € {0, 1}, aset-up variable with y; = 1if x; > O,

we obtain the profit maximization formulation

n n n n
maXZ ptvt — thxt — Z five — thst,
t=1 t=1 t=1 t=1

S1+X=vn+%, fort=1,...n, (@D}

O<wvw<u, fort=1...n, 2

(F1) Xt < My;, fort=1,...n, ©)
§ >Lty, fort=1,...n, 4

S = Lo, (5)

Xxx>00<y <1 fort=1,...n, (6)

y; integral, fort=1,...n, (7)

where M is alarge positive constant. Constraint (3) forces y; to onewhen x; is positive,
but there is always an optimal solution with x; < M unlessc; + YL  h; < 0. Any
value of M greater than Zt”:l Ut + maxi=1,_..n Lt issufficient. Note that it is possible
to eliminate the variables x; or s from the objective function, and so one can assume
for convenience either that c¢; = O for al t, or that hy = Ofor all t.

Thismodel could also be interpreted as a (deterministic) lost sales model related to
classical lost sales model in (stochastic) inventory theory. In this case, the upper bound
on sales would be the demand, and the lost sales would be (u; — vt), for al t.

Wenow present an equival ent problem. Thedifferenceistheintroduction of (possibly
negative) demands di and the new stock variables ot which have lower bound of zero.
The constraints now take the form:

n n n n
maxz prur — thxt — Z fiye — Z htot,
=1 =1 =1 =1

ot—1+X =0 +v+ot, fort=1,...n, (8)

O<w=<u, fort=1,...n, (9)

(F2) Xt < My, fort=1,...n, (10)
00=0,00>0, fort=1,...n, (11)

Xx>00<y <1 fort=1,...n, (12)

yrintegral, fort=1,...n. (13)
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We go from the first formulation to the second by taking ot = & — Lt and d; =
Lt — L¢_1, foral t. To gofromthe second formulation to thefirst, wetake L o = max{0,
max([— Y t_; dil}, Lt = Lo+ Y4 di, and s = L + oy for al t. The tradeoff
between (F1) and (F2) is between having lower bounds L ; on stocks, or having external
demands d;. Figure 1 presents an instance of this transformation.

e}

sp =3 >
0 @31_

)

>4 >
Sg_\’@$4_3

>0 >0 >

0'0200'1 02 0'3 00’420
2 -3 2 -1

Fig. 1. Transforming lower bounds on stocks into demands

Defining dij = Y°)_; dy andusing oy = 3"'_; % — Y°'_; vi — dyt > Ofrom (8) to
eliminate the variables ot, we obtain athird formulation which will also be useful:

n n n
maXZ Prvt — thxt - Z fivt,
=1 =1 =1

t
> x>
i—1

v +dy, fort=1,...n, (14)

“-

I
N

(F3) O<wvi<u, fort=1,...n, (15)
Xt < My, fort=1,...n, (16)

x>0,0<w<1 fort=1,...n, (17)

yrintegral, fort=1,...n.  (18)

Note that the three formulations are equivalent in the sense that there is a 1-1 corres-
pondence between their feasible solutions. Let X C R3" be the set of feasible solutions
of (F3) described by (14)—18).

To derive an algorithm for ULS® we next consider the structure of the optimal
solutions. We suppose that fi > 0 and ¢t + > i, hi > O for all t, so that there is
always an optimal solution with x; < M. Consider formulation (F2). If y* € {0, 1}" is
fixed, the remaining problem is a minimum cost flow problem in the network shown
in Fig. 2. In abasic optimal solution (x*, v*, o*), the basic variables form an acyclic
graph[16]. Such abasic optimal solution decomposesin astandard way into a sequence
of regeneration intervals.

Wenow look atintervals|i,i+1,..., jlinwhichoi* ; = 0,07 > 0, ... ,aj*_l > 0,
and either of‘ =0,0r j =nando; > 0. Consider first an interval with o—]?" = Ocalled
aregeneration interval of Type, see Fig. 3. Clearly if 0 < x < M and0 < x* < M
withi < k < | < j, the set of basic variables forms a cycle. So there is at most one
periodk intheinterva [i, ..., jJwith xg > O.If xg > O, al variables v]" are equal to
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Fig. 3. Regeneration interval of Type 1

0 or us to avoid creating acycle. Alternatively if x; = Oforallk =1i,..., j, thenone
variable v can be basic with 0 < v < uy.

For regenerationintervalsof Type2with j = nando > 0, thesituationisasshown
inFig. 4. Again (t, s) isbasic, andthus x; = 0Oand v = Oorug foral k=i,..., j.

Fig. 4. Regeneration interval of Type 2

We now derive a dynamic program or shortest path problem using regeneration
intervals to solve ULS3.

Consider aregenerationinterval [i, ... , j] of Type 1. The value gjj of an optimal
solution within this interval can be found by solving j — i + 2 minimum cost flow
problems. There are j — i + 1 problems, one for each| = i,..., j. In the problem

associated with afixed |, we dlow x; > Oandy; = 1, and xt = yy = Ofort # I.
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Thereisalso afinal probleminwhichx; = 0fort =1i,..., j, which corresponds to
the case of no production (this aso includes the regeneration intervals of Type 2). For
[ efi,...,j},problemlis

j j
Blj =max " pr—ax — Y hor — fi,
t=i t=i
o—1+X =d +uv +o,
ot_1 =0t + vt + o, fOft:i,...j,t#',
oi—1=0,
oj =0, if j #n,
O<wv <u, fort=i,...J,
Xt,ot >0, fort=i,...j.

ﬁﬂ is defined similarly but with x; = 0 and without the cost term —f, and gjj =
max[ﬂﬂ ,maX—, . ’jﬁilj ]. Notethat it is not necessary to use a general linear program-
ming algorithm to calculate ;.

Anoptimal basic sol ution correspondsto amaximum val ue sequence of regeneration
intervals. If F(j) is defined as the cost of a maximum value sequence of regeneration
intervals covering periods from 1 up to j, F(j) can be computed by the recursion
F(j) = maxi<j{F(i — 1) + Bij}, starting with F(0) = 0. The optimal value of problem
ULS? isgiven by F(n). Working backwards |eads to an optimal solution.

We now discuss the contents of the paper. In Sect. 2 we givethe main result, afamily
of valid inequalities, called (t, S R) inequalities, that are shown to provide a complete
description of the convex hull of X. In Sect. 3 we consider the special case of ULS®
in which the lower bounds Lt are nondecreasing over time in formulation (F1), or
alternatively d; > 0 for al t in formulations (F2) and (F3). We first derive an extended
formulation allowing one to solve UL S2 directly by linear programming, and then give
a combinatorial separation algorithm for the family of (t, S R) inequalities. Finally in
Sect. 4 we provide an extended formulation for the case where d; = O for all t in
formulation (F2) and where we have “ Wagner-Whitin” costs. We terminate with a brief
discussion of open questions and extensions.

2. Theconvex hull

To motivatethe inequalities devel opedin this section, consider the small example shown
in Fig. 5, whered = (3,—-2,4,1) and u = (1,1, 1, 1). Examining periods 3 and 4,
the inflow-outflow inequalities from [14], or the (I, S inequality of [1] with | = 4,
S= {3, 4} givethevalid inequality

X3+ X4 < 5y3+ 1lys+v3+va+ 04

where the coefficient (ds + dg) of ys is the amount of inflow in x3 that could escape
through the demand nodes dz, d4, and not through the arcs vz, va or o4.
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(41 2 Vo 4 (R} 1 V4

Fig. 5. Small example

However the above inequality does not take into account the fact that d; is negative.
Because dp = -2 < 0,02 > —do — vp, and SO 02 + X3 < (d3 + dg) + v3 + va + 04
implies x3 < (d2 + d3 + dg) + v2 + v3 + v4 + 4. Thus the maximum inflow through
x3 that does not flow out through vz, v3, v4 Or 04 iSda + d3 4+ ds = 3. Thisleads usto
theinequality

X3+ X4 < 3y3 + 1ys + v2 + v3 + v4 + 04.

Now by introducing the complementary variablesvj = uj — vj for j € R= {1, 3},
we convert u; and ug into fixed demands but with additional inflow vj, leading to the

situation shownin Fig. 6:
S

3+1 Uy 2 U2 44173
Fig. 6. Small example after substitutions

Now we obtain

X3+ Xa <4y3+ 1ya+v2+va+os

with the coefficient of y3 equal to (d2 + ds + us + dg). Eliminating o4 viathe equation
S % = Yf_ vt +d1a+ o034, obtained by summing (8) fort = 1, ... , 4, theresulting
inequality is

X1+ X2 +4y3+ 1ys > 6+ vy + v3. (19

Now we describeformally afamily of valid inequalities, called (t, S R) inequalities,
generalizing the previousexampl e. We show that they provideall theinequalitiesmissing
in formulation (F3) to describe the convex hull of the solutions of ULS3.

In order to computethe coefficientsof the y variables, wedefinefor R C {1, ..., n}:

L dij = Yiyej o forl<i < j <n,dj =0,ifi > j;
2. uR ZkeR|<k<]ukaf0r1<|<J<nU =0,ifi > j;
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3. bR = maxi—o_i (UR +dyp), fori =0,....,n;
4. (R i) =min{t € {0,...,i}: (UR +dy) = bR}, fori =0,...,n;
5. B{T =B?—BiR_120,for1§i <j<n

Note that, if T = 6(R i), uf; , + diy1r > 0,for 0 <t < 7, and that uR ;  +
dr+1t <0, for r < t < i. For example, in inequality (19) with R = {1, 3}, we have
bX =8,0(R 4 =4,bR=4,60(R 2) = 1,and b}, = 4.

Observe that BiR represents the amount that has to be produced in order to satisfy
both the demand for all periods up to i and the maximum amount that can be sold for
periodsin RN{1, ... ,i}. Notethat, because demandscan be negative, thisamount must

sometimes be produced before period i . This happensin the above examplefor 6§ with
R = {1, 3}. (R, i) represents the deadline for producing this amount.

Proposition 1. The(t, S R) inequalities

D Xi+ D bRy = ) v +du, (20)

jET\S jeS jeR

are valid for X foralll <t <n, T =1{1,...,t},SC T and RC T, such that
t =0(R t).

Proof. Let (x*, y*, v*) € X. Suppose yi = Oforalli € S Thenasx® =0fori € §

S B = k= Y s 0k

jeT\S jesS jeT jeT jeR

Otherwiseletk =min{i € S: y* =1}. Lett =0(R k—1).Ast <k—-1, x}" = Ofor
j € Swith j < 7. Then

Sz Y =Yz Yuictez Y e @)

J€T\S jeT\Sj=r j=<t j<t jeRj=<t
Also,
FRv* w PR _ R _RR _ R R
Z bity > bg = b — b4 = ug + dit — (ug, +dis)
jes
= Z Uj 4+ degpt > Z UT + deyat. (22
jeRT+1<j<t jeRT+1<j<t

Adding (21) and (22), the result follows.
O

Theorem 1. The inequalities (20) together with the inequalities (15)—(17) describe
conv(X).
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Let us denote by M(c, f, p) € X the set of all optima solutions of the problem
max{> i, (—cixi — fiyi + pivi) : (X, ¥, v) € X}.

To provethetheorem we need two lemmas characterizing the solutionsof M(c, f, p),
which hold subject to certain conditions. We consider a non-negative cost (c, f, p), an
optimal solution (x*, y*, v*) € M(c, f, p) andanintegerq € {1, ..., n+1}. Wedefine
R={j: pj>0tandr =6(R g— 1). The conditions are:

Condition A: q € {1, ... ,n + 1} satisfies Condition A if either

ag=n+1or

b)g# n+1,cqg=0andeither f;=00ry; =1
ConditionB: q € {1, ... ,n+ 1} satisfies ConditionB if foreach j € {1, ..., T},

eithercj > Ooryj =0.

Given (x*, y*, v*), if q satisfies Condition A, then the production in period g can
be increased at no cost. Therefore, as (x*, y*, v*) is optimal, it is never profitable to
producein aperiod j € {g+ 1,...,n} inwhichthe cost (cj or f;) is positive. Also,
it aways pays to sell as much as possible in all periods j € {q, ..., n} with positive
unit price p;j. By definition of (R, g — 1), this argument can be extended to periodsin
{r+1,...,9—1}. Thisisformalizedin Lemma 1.

Lemma 1. If g satisfies Condition A, then

1. forj=r+1,...,n,j#q,xT:Owheneverp>0;
2. forj:r—|—1,...,n,j;éq,)fjk:Owheneverjf>0;and

3. forj=7+1...,n,vj =ujwhenever p>0.

Proof. In each case we will assume the contrary and produce a solution (x', y', v)
which has higher value than (x*, y*, v*), contradi cting the assumption of optimality for
(x*, y*, v*). Where not otherwise specified, (X', y’, v") coincideswith (x*, y*, v*).

1) Supposewe havesome j # g, 7 +1 < j < n,withc; > Oand xT > 0. Make
x} =0and v = 0fork ¢ R If g # n+ 1, make xg = X + Xj and yg = 1. To verify
that (X', ¥, v') € X, we must show that it satisfies inequality (14) foral t. If t < j or
t > g, thisfact isimmediate as

t t t t
DoXe=D Xz ) vi+du= ) vj+du
k=1 k=1 k=1 k=1

Otherwise j <t < g — 1, and it follows that

Yo Xk = Yieer X (r<t)
- YL )
= YT vt ((x*, y*. v*) isvalid)
> Y ko1 Vg +UR g g (UR g+ dry1t < 0)
> Y ker Vi +UR 1+ du (v < v ¥K)
> ket Uk + Ykersiker Uk + Ot (vk = UK. ¥K)

=Y k1 vy + dut. (vk =0,k ¢ R)
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Solution (X', ', v') isworth ¢; x}‘ more than (x*, y*, v*), sinceif g #n+1cg =0
and either fq =0ory; =y;=1and px =0fork ¢ R

2) Suppose we havesome j # g, 7+ 1 < j < n, with f; > O and y]-" =1 We
construct (x, y', v") in the same way as the above case and in addition we set y} =0.
Solution (X', y', v') isworth ¢; XT + fj morethan (x*, y*, v*). Note that ¢j and x]-" may
be zero.

3) Suppose we have some j, r + 1 < j < n, with p; > 0 and v’]-‘ < uj. Make
vj =ujandy =0fork ¢ RIfq#n+1 makex; =x5+uj—vjandy, =1
Everything shown for case 1) holds also for this case and the reader can verity the
validity of the inequalities (14) following the same steps. Solution (x’, y', v') is worth
pj(uj — v’j*) more than (x*, y*, v*).

]

Similarly, if g satisfies Condition B, then every amount produced in periods
{1,...,} in the solution (x*, y*, v*) has a positive cost. Therefore, as (x*, y*, v*)
isoptimal, in case q satisfies also Condition A it is not profitable to producein periods
{1,..., t} any amount used satisfy demand or salesin {q, ... , n}, because such an
amount could be produced at no cost in period g. So the productionin {1, ..., t} is
used only to satisfy demandsor salesin {1, ... , t}. Furthermore, because producing in
{1, ..., t} haspositive cost, saleshaveto bezeroin {1, ... , t} when unit priceis zero.
Thisisformalized in Lemma 2.

Lemma 2. If g satisfies Conditions A and B, then

1. ko1 X = D ge1 Vg + die, and
2. forj=1,... 7, v} = Owhenever p=0.

Proof. We proceed in the same way asin Lemma 1.
1) Supposethat s = Y 1 X — > 1 vi — di1. ispositive. Then, if 3¢ x¢ =0,
we have

T
—Zvﬁ—dlr >0
k=1

which implies, sinceulR, + di; > Oand v > Oforall k, that

T

Z v < ulk.

k=1,keR

Hence either Y ¢ ;1 X¢ > 0 or Y f 3 crvp < UR. It follows that there exists j €
{1, ..., t} with either x}‘ > 0,0r j € Rand UT < uj. Choose the largest such j. Then
fork=j+1...,7,x; =0and v = uxwhenk e R

Case iz Suppose first that xj > 0 and take e = min{s, Xj}. Make v =0fork ¢ R,
x} = x]-" — €, andx(q = xa + eincaseq # n+ 1. We need to show that (X', y, S) € X
by showing that it satisfies (14).
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Fort=j,..., 7 wehave

She1 X = Dker X — € (i=txf=eq>j)
=D k=1 Xk — € (¢ =0Vk=j+1....1)

> Y ket Vi + O (s>

> Y oke1 Vi + DketsLker Vi + e (t=7v=0

=Yk v + UtFil,f + di; (v =uVke R
k=j+1,...,1)

= Yl v+ du (Ul +diy1c > 0)

> Ztk=1 vy + dyt. (vl/( < v, VK)

Case ii: Suppose now that vT < Uj, j € R, and take e = min{s,uj — vT}. Make

v/j =vT+eandv|’<=Ofork¢ R If g # n+ 1, make Xq = Xj + € and y, = 1. For
t=j,...,twehave

Y1 X = Lhet X (t<q)
= D ka1 Xk (xt=0,¥k=j+1,...,1)
> >k Up +dir f€ (s>e
> > kg Vg + dig (v’jzv]f‘—i—e,vl’(fvﬁ,‘v’kyéj)
= Y ko1 Uk + Dkett1keRr Uk + Oic (vi =0, vk & R)
=Y o1 Vit U, +dic (k=7 =u,Vke R

k=j+1...,7)

> 3 ket Ui+ G (UR . +ds1c = 0)

In both cases we have shown the validity of inequalities (14) fort = j, ..., t. For
t < jort > q,thevadidity isimmediate. Finally, fort =7+ 1,...,q9— 1,

Y1 X = Der % (t<?
> D ko1 U+ di (already shown
forthecaset = 1)
> D ke VTt u$+l,t + dut (u$+1,t + 41t < 0)
> Y k1 Uk F Dkeridker Uk + Ot (v < Ui, VK)
= Y ket vk + . (v} = 0.¥k ¢ R)

In case (i) solution (X', y', v) is worth ecj more, because q satisfies Condition A.
As x’]-k > 0, then y}‘ = 1 and thus, by Condition B, ¢; > 0. In case (ii), (X', y',v) is
worth ep; more, and pj > 0asj € R

2) Suppose v’j‘ > Owith1l < j < rand pj = 0. To see that (x*, y*, v*) cannot be
an optimal solution it suffices to change it by setting v’j‘ = 0. The solution is worth the
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same, but now s = > ¢4 X — > ¢_; vi — di ispositive. Aswe have shown in part 1)
of the proof, such a solution cannot be optimal.
|

Proof of Theorem 1We use a technique due to Lovasz [8]. For an arbitrary non-zero
objective function max 1, (—cixi — fiyi + pivi) we will show case by case that all
pointsin M(c, f, p) satisfy one of the inequalities (20), (15), (16) or (17) at equality
(note that inequalities (14) are special cases of (20)). This provesthat the description of
the convex hull is complete, since when the objective function is parallel to a facet of
the polyhedron the corresponding facet-defining inequality is the only valid inequality
that is satisfied at equality by all optimal solutions.

If ¢ < Ofor somei, then M(c, f, p) C {(X,y,v) : X; = My;}. If fj < O for
somei, then M(c, f, p) C {(X,Y,v) : yi = 1}. If pi < Ofor somei, then M(c, f, p) C
{(X,y,v) : vj = 0}. We suppose next that ¢, f and p are non-negative.

As(—c, —f, p) # 0, we can definel asthelast period such that ¢, fj and p; are not
al zero.Lett =0(R 1), T={1,...,t},S={ieT:¢g=0andR={i: p > 0}.

Suppose there is k < | such that ¢k = fx = 0. Then Lemma 1 can be applied
with g = k, using | asvaue of j. If pj > 0, then M(c, f, p) C {(X,y,v) : v = ui}.
Otherwise pp = 0 and thus k < | and either ¢¢ > 0 or fi > 0. It follows that
M, f,p) C {(X,y,v) : X =0} or M(c, f, p) C {(X,¥,v) : ¥y = 0}. SO we assume
from now on that thereisno such k, andso fi > Oforalli in S

Suppose next that p; > 0 for somei > t. Then Lemma 1 can be applied with
g=1I|+1landby 3) M(c, f, p) C {(X,V,v) : vj = uj}. Sofrom now on we can assume
thaa RC T.

Consider an optimal solution (x*, y*, v*) in M(c, f, p). We now show that the
inequality (20) holds at equality.

Supposefirst that y;* = Ofor ali € S Then

* * AR+
D X =) x. and) bjyj=0.
JET\S jeT jeS

Sincel =norcgyy = fiya =0,andfori € T yf = 1limpliesthati ¢ Sand hence
¢ > 0fori <6(R/|)suchthat y; = 1, LemmaZ2 can be appliedwithq = + 1:

1) gives Y xf = vt +du,

jeT jeT

and2) gives Y vi= Y i =) oh.

jeT jeRNT jeR

Z XT+ZB}TyT :ZXTZZUT‘Fdn =Zv’jk+d1t,

jeT\S jes jeT jeT jeR

and the inequality (20) holds at equality.
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Otherwisetakek = min{i € S: y = 1}. Let t = (R k — 1). Applying Lemma 1
withg =k, yg =landck =0,

Z Xj =0using 1), (23)
jeT\Sj>r
> bRy = b, = bf — b ; using 2), and (24)
jes
> vi=ul, using3). (25)
jeR j>1

Wehaveck =0,y =1andc; > Oforal 1 < j < k—1with y]‘ = 1 by definition
of k. So applying Lemma 2 with g = k, 1) gives

DX =D vj+di, (26)

j=<t j<t
and by 2),
ZvT: Z vy (27)
j=t jeRj=t
Now using (24),

X i+ 6 = X - B

jeT\S jes jeT\S

Now, by the fact that b} ; = bR, that x* = 0if j € Sand j < v < k — 1, and from
(23),

Yoxi+bf-b, = > xi+ > xr+bf-bf,

jeT\S jeT\Sj<t jeT\S j>1

= > xf+bf—bk
j=t

From (26), (27) and the definition of bR

ZXT—FE)tR— bR = Z vj + dir +ul +dy — (Ui + diz),

i<t jeRj<t

= ) ViUt
jeRj=<t
Finally, from (25),
Z iUl g+ die = Z vl + dat,
jeRj=t jeR
and the proof is complete.
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3. UL S® with non-negative demands

Whend; > Oforall t, ULS® simplifiesinavariety of ways. Itisnatural tofix o, = 0, and
itisnolonger necessary inaregenerationinterval to consider asolutionwith0 < v < ut
asthiswould only be possibleif x; = Ofor all kintheinterval, and thenitisimpossible
to producevf > 0. Sowerestrict attention to the set X = XN{(X, v, Yy, 0) : op = 0}, and
the corresponding face conv(X)= conv(X) N {(X, v, Y, o) : on = 0}. The inequalities
Xt < My; are no longer necessary to describe conv(X). Also the value Bi'J? used in
describing facetsis given directly by Bi'J? =uf +djforl<i<j<n

Proposition 2. Every extreme pointis characterized by threesels K C {1, ..., n},
I ={ti<tr<...<tg} € Jwhere
|1 ifted,
Y'=1 0, otherwise
) g, ift e K,
Y'= 10, otherwise
tjr1—1 .
Y — iy i +d, ift=t el
0, otherwise

where we takeyt; = n+ 1.

Now we present an extended formulation for X. We let by = ut + d; for all t, and
introducethe O-1 variables gij, «ij where gij = 1if theamount d; is produced in period
i < jandejj = 1if theamount dj + uj is produced in periodi < j. The resulting
formulationis:

maxXt: pPrvy — Zt: fryr — Zt:CtXt,

Z(bjaij +djBij) = Xi, i=1...,n,
j=i
(F4) > (bjeij +djBij) =vj +dj, j=1...n
i<j

Z(Otij+ﬁij)=1, i=1,....,n,

i<j
(aij + Bij) = Vi, 1<i<j<n,
vi, Yi, Xi, o, Bij =0, 1<i<j<n,
yi <1, i=1...,n

Let P* be the polytope defined by the constraints of (F4). .
Itisreadily verified that the pointsin P* with &, B, y integer are the points of X, so
P* isavalid extended formulation for X, and conv(X) < projy,y,,P*.

Proposition 3. projy y ,P* = conv(X).
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Proof. Consider apoint (X, Y, v, «, 8) in P* and let us show that (X, y, v) isin conv(X).
It suffices to show that (x, y, v) satisfies the inequalities which describe conv(X) and

n
th ZZ(b]atJ +djBj) = ZZ(bjat] +djBj) = Zv] + dip,
t=1

t=1 j>t j=1t<j
impliesthat o, = 0. Also,

t

t t n
Z ZZ(b,akJ +djBkj) = ZZ(bJakJ +djBkj) = Z(Ul +dj).
k=1 k=

j=1k=1

= Z(btait + deBit) — dy < by Z(Oéit + Bit) — e = by — di = u,

i<t i<t
= Z(btait + deBit) — de > o Z(Olit + Bit) —dg =dy —dt =0,
i<t i<t
Xt = Z(bjatj +djBj) < ij (otj + Btj) < ijYt < My,
j=t j=t j=t

so the inequalities (14)—(16) are satisfied. Also clearly (17) holds. We complete the
proof by checking for the (t, S R) inequalities (20):

Zxk+ Z Bthyk:

keS keT\S

=Y D bja+digp+ D C Y b+ Y diyw

keS j>k keT\S j>k jeR =k jeT\R
=Y > e +dif)+Y. Y. (bjoxj+djBk) +
keS j>k,jeR keS j=k,jeT\R
22 Mk ) diw
keT\Sj>k jeR keT\Sj>k jeT\R
>3 3 bjakj+ A+ Y. djlewj + B +
keS j>k,jeR keS j>k,jeT\R
+ > Y bjlaki B+ Y, Y. dilakj+ k)
keT\Sj>k jeR keT\Sj>k,jeT\R

>y > bje i)+ Y. dilekj+ k)

keT j>k,jeR keT j>k,jeT\R
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= ZZ(bjakj +djBkj) + Z d Z(Olkj + Bkj)

jeRks]j JET\R k<]
> @ +dp+ Y dj

jeR jeT\R
= Zvj + dit.

jeR

]
Now we consider the separation problem for conv(X). Suppose that a point

(x*, y*, v*) satisfies (14)<17),and oy = 0, but isnot in conv(X). Then by Theorem 1
at least one of theinequalities

Y X+ Y bRyj =Y v+ du

JET\S ieS keR
is violated. Since d; > O for al t implies bR = u + d,t, forafixedt and T =
{1, ... .t} the separation problem can besolved by m|n|m|2|ng over R, SC{1,...,t},

the difference

Zx +Z ujt+d,t ka

JET\S jeS keR

which can be rewritten as

DX E VIO D wo ) diy - ) ok

JET\S jeS keR,j<k<t jeS keR

To minimize this expression, we take A and p respectively as the characteristic
vectorsof Sand R=T \ R. We then minimize over A and

t
Zx(l A>+Zzuky, j(1— uk>+2d,ty,x, D - o
k=1

j=1k=j
which is equivalent to minimizing

t

t t
Z(Z(Uk +diyj — X]‘)M + Zvﬁuk - ZZ UkY[ A j k-
k=1

j=1 k=] j=1lk=]

It is well known that minimizing a quadratic boolean function in which al quadratic
terms have non-positive coefficient reduces to a maximum flow problem [13]. Thus
solvingforeacht =1, ..., nleadsto apolynomial agorithm.
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4. UL S with zero demands and Wagner-Whitin costs

With d; > O for al t as in the previous section, the facet-defining inequalities still
depend on subsets Sand R. Here, when d; = O for al t, we show that the number of
facets, though still exponential, decreases by an order of magnitude in the presence of
Wagner-Whitin costs. To see this we again introduce an extended formulation.

Assume that the cost functions ¢, hy satisfy the Wagner-Whitin condition ¢; + hy >
c+1 fort = 1,...,n — 1. Alternatively eliminating the production variables from
the objective function, the resulting storage costs h; = ¢ + ht — ¢41 > 0. This
restriction saysthat, ignoring fixed costs, it is always best to produce as late as possible.
Formulationsin the presence of Wagner-Whitin costs have been studied in [11].

Asthe amount sold in period t is either O or uy in an optimal extreme solution, we
can define the following 0-1 variables:

wt = Lif vy = up inperiodt, and wy = 0if vy = 0 (wy = vi/Ut)
sl = 1if vy = u; and the stock at the end of k containsthe corresponding sale uj.

Clearly SL = max(0, wy — th:k 11 Yt) due to the Wagner-Whitin property.
Theresulting formulationiis:

n n n
maxz PrUtwt — Z fryr — Zhﬂft,
=1 =1 =1

n
ok= Y ud 1<k<t (28)
I=k+1
|
Se—wi+ Y ¥i=01l<k<l<t (29)
i=k+1
8, >0 1<k<l<t (30)
O<wk=<10<w=<1ll<kc<t (31)
yinteger 1 <k <t (32)

Proposition 4. The polyhedron Q defined by contraints (29)—(31) is integral.

Proof. In fact the constraints (29)—(31) define a totally unimodular matrix. Since the
constraints (30) and (31) are submatrices of theidentity, these rows can beignored. The
same holds for the columns of (29) corresponding to the vector 8. Let {ajj }ij be the
remaining matrix with the set of columns partitioned into set Y = {Cy, ..., Cp}, cor-
responding to vector y, and the set W = {D1, ... , Dp}, corresponding to the vector w.

We base our proof on the theorem [4] which states that {a;; };; is totally unimodular
if for any subset of columns J thereis a partition (J1, J) of J such that | ZjeJl ajj —
Ziejza;j | <1, foreveryrowi.

Let J be a subset of columns and let C, , ... , Cj, be the columns of Y in J. For
convenience, letip =1andipr; =n+1.

We dlocate aternatively Ci;, Ci,, ... ,Ci,to Jrand J; sothat Cj, € J1,Ci, € &
and so on. The columns D; in W are allocated to the same set as Cj;, where j is such
thatij <i <ijqa.
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Now let us consider one row of the matrix {ajj }ij . Suppose it corresponds to vari-
able(SL. Inthisrow the non-zeroentriesare —1for D| and 1 for Cyy1, ... , Ci. Defining
Y =D jevna & = Ljevna, & adrw =3 jcwng, &) — 2 jewna, &j, Wehaveto
show that [rw +ry| < 1.

Since {Ck11, ..., C} corresponds to an interval of columns of Y, the columns of
this set are also alternatively allocated to J; and Jo. So |ry| < 1. Clearly |rw| < 1aso,
since there is only one non-zero entry in W for each row. Suppose now that ry = 1.
Then in particular the last columnin J of theinterval Cy.1, ... , Ci isalocated to J;.
So Dy is aso allocated to Ji, and thusryw = —1. The casery = —1 is analogous.
Therefore ry +ry| < 1.

o

Now we consider the projection of Q into the spaceof theoriginal (o, v, y) variables.
Using vt = ugw; for al t, and eliminating the 8L variablesin (28) by using (29) or (30)
leads directly to the projection, and gives a proof of the next proposition.

Proposition 5. The polyhedron

|
ok=Y (—u Y ), forallUc{k+1 ... njandallk (33)

leU i=k+1
O<w<u fork=1,...,n, (34)
O<y<1, fork=1,...,n, (35)
O<ok, fork=1...,n, (36)

has y integral at all its extreme points.
Notethat the (k, U) inequalities (33) form a special subset of the (t, S R) inequali-
ties. Specifically takingt = max{i : i € U}, (33) can berewritten as
k

k t
2Xi+ P NC D upz ) ud) v,
=1

i=k+1 i<j<tjeU leu j=1

orsettingT ={1,...,t}, R=UU{l,... ,klandS={k+1,... ,t}as

Z Xj +ZBEW ZZvj.

JET\S jeS jeR

5. Extensions

Various extensions of the type studied for the classical uncapacitated |ot-sizing model
appear important. We haveinitial resultsfor the constant capacity case including apoly-
nomial algorithmand ageneralisation of the (t, S R) inequalities. Resultsfor UL S with
backlogging and start-up variables are also needed to treat certain real-life instances.
Theoretically we have only been able to separate the (t, S R) inequalitiesin poly-
nomial time when d; > O for al t. For formulation (F1), this means that the lower
bounds{L+}{!_, are nondecreasing. In practiceit is often the case that theinitial stock Lo
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isarbitrary, and Ly = L constantfort = 1, ..., n. Thusthe only difficulty arises when
Lo > L. Intermsof formulation (F3),d; = L — Lg,anddy = Ofort =2,... ,n.ltis

therefore interesting to investigate the extension of the combinatorial separation algo-
rithm described in Sect. 3 to this case. Practically we plan to devel op and test separation
heuristics both for ULS® and for fixed charge network flows, in which paths with both
positive and negative demands are treated, extending the path inequalities devel oped
in[2].
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