
Digital Object Identifier (DOI) 10.1007/s101070000179

Math. Program., Ser. A 89: 437–448 (2001)

Jonathan H. Owen� · Sanjay Mehrotra��

A disjunctive cutting plane procedure for general
mixed-integer linear programs���

Received: January 1999 / Accepted: March 2000
Published online December 15, 2000 – Springer-Verlag 2000

Abstract. In this paper we develop a cutting plane algorithm for solving mixed-integer linear programs with
general-integer variables. A novel feature of the algorithm is that it generates inequalities at all γ -optimal
vertices of the LP-relaxation at each iteration. The cutting planes generated in the procedure are found by
considering a natural generalization of the 0-1 disjunction used by Balas, Ceria, and Cornuéjols in the context
of solving binary mixed-integer linear programs [3,4].

Key words. mixed integer programming

1. Introduction

In recent years we have seen increased research activity directed towards using disjunc-
tive programming techniques to solve linear programs with binary integer variables [3,
7,8]. This research provides ways to describe the integer hull of linear programs with
binary integer variables by using a finite set of linear inequalities. More importantly,
it has resulted in computationally better ways of generating cuts in a branch-and-cut
method for solving general binary integer linear programs [4] as well as structured
binary integer linear programs [5].

For mixed binary linear problems, the two related developments have been the
lift-and-project approach of Balas, Ceria and Cornuéjols [3] and the reformulation-
linearization technique of Sherali and Adams [8,9]. Each of these developments have
their roots in disjunctive programming (see [2]). Both Balas, Ceria and Cornuéjols [3]
and Sherali and Adams [8,9] showed that the convex hull of feasible mixed binary
solutions could be generated in a finite number of steps. Balas, Ceria and Cornuéjols
also demonstrated that the cuts generated from the lift-and-project scheme could be
used to efficiently solve these problems in a branch-and-cut framework [3,4]. The

J.H. Owen: GM R&D Center, Mail Code 480-106-359, 30500 Mound Road, Warren, MI 48090-9055, USA,
e-mail: jonathan.owen@gm.com

S. Mehrotra: Department of Industrial Engineering and Management Sciences, Robert R. McCormick School
of Engineering, Northwestern University, Evanston, Illinois 60208, USA,
e-mail: mehrotra@iems.nwu.edu

Mathematics Subject Classification (1991): 90C10, 90C11

� The work was performed when the first author was at Northwestern University.

�� The author thanks the Supreme Lord for all revelations leading to this paper. All its fruits are surrendered
to Him.

��� This work was supported in part by the ONR grant N00014-95-1-0743, and NSF grant DMI-9908038.

438 Jonathan H. Owen, Sanjay Mehrotra

convexification procedure of Balas, Ceria and Cornuéjols [3] has been extended by
Stubbs and Mehrotra [10] for convex mixed binary problems. The developments of
this paper follow more closely the description of the lift-and-project approach of Balas,
Ceria and Cornuéjols [3].

In this paper we consider using a variable disjunction to solve general mixed-integer
linear programs (MILP). We describe the variable disjunction and define our notation
in Sect. 2. In Sect. 3 we consider a convexification procedure for MILP that is based
on sequential application of the variable disjunction. We show that the procedure (1)
finitely generates the convex hull with respect to any single general-integer variable and
(2) yields in the limit the complete convex hull of mixed-integer solutions. In Sect. 4
we describe a cutting plane algorithm based on the variable disjunction that finds an
ε-optimal solution of MILP in a finite number of iterations. A novel feature of the
algorithm is that it generates cuts at all γ -optimal vertices of the relaxation of MILP at
each iteration. Practical implementations of the branch-and-cut algorithm for structured
binary problems typically decide to branch when improvements in the objective value
tail off. Our analysis suggests that generating cuts at neighboring vertices in addition to
the current optimal vertex may be a viable alternative to branching.

2. Variable disjunctions

Consider the general mixed-integer linear programming problem

minimize cT x (MILP)

subject to x ∈ F,

where

F = {x ∈ K | xi ∈ Z for i ∈ {1, . . . , p}}
and K = {x ∈ Rn | Ax ≥ b}.

That is, K is the feasible region of the usual LP-relaxation for MILP, and F is the set of
feasible mixed-integer solutions. Let conv(F) denote the convex hull of points in F. We
assume that x ≥ 0 and that K is bounded, and thus F is bounded. Under this assumption,
without loss of generality, we assume that the bound constraints

x j ≥ 0 for j = 1, . . . , n,

and x j ≤ M j for j = 1, . . . , p,

are included in the constraint set defining K .
For β ∈ Z and j ∈ {1, . . . , p}, define

P j
β(K) = conv{x ∈ K | x j ≤ β or x j ≥ β + 1}.

This variable disjunction is a natural generalization of the disjunction in Balas, Ceria
and Cornuéjols [3]. The set P j

β(K) can be described as follows:

P j
β(K) = Projx

(x, u0, u1, λ0, λ1)

∣∣∣∣∣∣∣
x = λ0u0 + λ1u1 λ0 + λ1 = 1

u0 ∈ K, u0
j ≤ β λ0, λ1 ≥ 0

u1 ∈ K, u1
j ≥ β + 1

 .

A disjunctive cutting plane procedure for general mixed-integer linear programs 439

This approach for describingP j
β(K) requires the solution of a related projection problem

(for example, see [3]).

3. Convexification procedure

In this section, we develop a procedure for constructing a set arbitrarily close to conv(F).
First we demonstrate a sequential procedure for constructing the convex hull C j(K) ≡
conv{x ∈ K | x j ∈ Z} for any given j ∈ {1, . . . , p}. Then we extend and modify
this single variable convexification procedure into an infinitely-convergent approach for
generating conv(F).

3.1. Single variable convexification

The following theorem provides a mechanism for generating C j(K) ≡ conv{x ∈ K |
x j ∈ Z} by taking the intersection of the sets P j

β for arbitrary values of β ∈ {0, . . . ,

M j − 1}.
Theorem 1. For j ∈ {1, . . . , p} and L ⊆ {0, . . . , M j − 1},

⋂
i∈L

conv(Ki) = conv

(⋂
i∈L

Ki

)
,

where Ki ≡ {x ∈ K | x j ≤ i or x j ≥ i + 1}.
Proof. Without loss of generality, assume that L = {i1, . . . , iq} where i1 < · · · < iq .
The inclusion “⊇” is trivial: Ki ⊆ conv(Ki) ⇒ ∩i Ki ⊆ ∩iconv(Ki) ⇒ conv(∩i Ki) ⊆
∩iconv(Ki), where the last implication follows since the intersection of convex sets is
a convex set. To prove that ∩i∈L conv(Ki) ⊆ conv(∩i∈L Ki), select an arbitrary point
x ∈ ∩i∈L conv(Ki). If x ∈ ∩i∈L Ki then the result follows. Otherwise, there must exist
it ∈ L such that x �∈ Kit . Since x ∈ K\Kit , we have that it < x j < it + 1. Furthermore,
since x ∈ conv(Kit) there exist y, z ∈ K such that y j ≤ it , z j ≥ it + 1, and x belongs
to the line segment (y, z). By moving towards x along the line segment (y, z), we can
assume that y j = it and z j = it + 1. It follows that both y and z are in ∩i∈L Ki , thus we
have that x ∈ conv(∩i∈L Ki), and the result follows.

��
Corollary 1. For j ∈ {1, . . . , p}, β ∈ {0, . . . , M j − 1}, and k ∈ Z+,

β+k⋂
i=β

conv(Ki) = conv

({x ∈ K | x j ≤ β}, {x ∈ K | x j = β + 1}, . . . ,

{x ∈ K | x j = β + k}, {x ∈ K | x j ≥ β + k + 1}
)

,

where Ki ≡ {x ∈ K | x j ≤ i or x j ≥ i + 1}.
��

We now state the main result of this section, which gives a sequential procedure for
generating C j(K).

440 Jonathan H. Owen, Sanjay Mehrotra

Theorem 2. For j ∈ {1, . . . , p} and any permutation {i1, i2, . . . , iM j } of {0, 1, . . . ,

M j − 1},
C j(K) =

⋂
i∈{0,... ,M j−1}

conv(Ki) = P j
i1

(
P

j
i2

(· · · (P j
iM j

(K)
) · · ·)),

where Ki ≡ {x ∈ K | x j ≤ i or x j ≥ i + 1}.
Proof. Let C be a linearly-constrained convex set. By definition of P j

i (·), we have

that P j
i (C) contains all vertices of C except for those fractional vertices whose j-th

component is strictly between i and i + 1. Furthermore, when generatingP j
i (·), no new

vertices are added with fractional j-th components. It follows that

P j
i1

(
P j

i2

(
. . .
(
P j

iM j
(K)

)
. . .
)) = conv

({x ∈ K | x j ≤ 0}, {x ∈ K | x j = 1}, . . . ,

{x ∈ K | x j = M j − 1}, {x ∈ K | x j ≥ M j }
)

.

Then from Corollary 1, the result follows.
��

3.2. An ∞-convergent convexification procedure

In the previous section we have described an approach for generating the convex hull with
respect to a single general-integer variable. In this section we describe a procedure based
on the sequential application of this approach, and we show that the procedure converges
in the limit to the convex hull of feasible mixed integer solutions for general MILP
problems. Let P0 = K , and define Pi for i = 1, 2, 3, . . . as follows:

Pi = C1
(
C2
(· · · (Cp

(
Pi−1)) · · ·))

The main result of this section is Theorem 3, which states that limi→∞ Pi = conv(F).
Let {Ci} be a sequence of compact nested sets. We say that {Ci} converges to C̄ (i.e.,

limi→∞ Ci = C̄) if for any given ε > 0 there exists an integer k̂ ∈ Z+ such that

min
x∈C̄

‖xk − x‖ < ε

for all k ≥ k̂ and any xk ∈ Ck .

Lemma 1. Let {Ci
1} and {Ci

2} be convergent sequences of nested compact sets. If
limi→∞ Ci

1 = C̄1 and limi→∞ Ci
2 = C̄2, then

lim
i→∞ conv

(
Ci

1, Ci
2

) = conv(C̄1, C̄2).

Proof. Let x ∈ conv(C̄1, C̄2). Since Ci+1
1 ⊆ Ci

1 and Ci+1
2 ⊆ Ci

2 for all i ≥ 0, it is clear
that x ∈ conv(Ci

1, Ci
2) for all i ≥ 0, which implies that x ∈ limi→∞ conv(Ci

1, Ci
2). It

follows that conv(C̄1, C̄2) ⊆ limi→∞ conv(Ci
1, Ci

2).

A disjunctive cutting plane procedure for general mixed-integer linear programs 441

Let x ∈ limi→∞ conv(Ci
1, Ci

2). By nestedness of the sets Ci
1 and Ci

2, this implies
that x ∈ conv(Ci

1, Ci
2) for all i ≥ 0. It follows that there exist sequences

{xi1} ⊆ Ci
1, {xi2 } ⊆ Ci

2, and {λi} ⊆ [0, 1] (1)

such that {λi xi1 + (1− λi)xi2} → x. Since the sequences in (1) are bounded, there exist
subsequences such that {xi1} → x1 ∈ C̄1, {xi2 } → x2 ∈ C̄2, and {λi} → λ ∈ [0, 1].
Thus x ∈ conv(C̄1, C̄2), and the result follows.

��
Theorem 3. For i = 0, 1, 2, . . . and Pi defined as above,

lim
i→∞ Pi = conv(F) = conv{x ∈ K | x j ∈ Z for j = 1, . . . , p}.

Proof. Since {Pi} is a sequence of compact convex sets such that conv(F) ⊆ Pi+1 ⊆ Pi

for all i ≥ 0, we know that {Pi} converges to some set P̂ such that conv(F) ⊆ P̂. By
construction,

Pi+1 ⊆ conv
({

x ∈ Pi | x j ≤ β
} ∪ {x ∈ Pi | x j ≥ β + 1

})
for all j ∈ {1, . . . , p} and any integer β. Taking the limit and applying Lemma 1, we
have that

P̂ = lim
i→∞ Pi+1 ⊆ lim

i→∞ conv
({

x ∈ Pi | x j ≤ β
} ∪ {x ∈ Pi | x j ≥ β + 1

})

= conv

(
lim

i→∞
{
x ∈ Pi | x j ≤ β

} ∪ lim
i→∞

{
x ∈ Pi | x j ≥ β + 1

})

= conv
({

x ∈ P̂ | x j ≤ β
} ∪ {x ∈ P̂ | x j ≥ β + 1

})
,

for all j ∈ {1, . . . , p} and any integer β. It follows that

P̂ = conv{x ∈ K | x j ∈ Z for j = 1, . . . , p}.
��

Theorem 3 shows that the sequential disjunctive procedure yields the convex hull
of mixed-integer solutions in the limit. This is a weaker result than that obtained for the
binary-integer case [3]; this is due to the fact that the inequalities arising from simple
variable disjunctions are not facial for general-integer problems [2].

4. A cutting plane algorithm for MILP

In the previous section we described a procedure for generating in the limit the convex
hull of solutions to MILP. Rather than generating the entire hull conv(F), it is desirable
to use constraints from this description of the hull as cutting planes. Although these
constraints are not immediately available, it is natural to consider using the variable
disjunctions described in Sect. 2 in a cutting plane procedure for solving MILP. The
usual approach for such a procedure involves generating cutting planes by using variable

442 Jonathan H. Owen, Sanjay Mehrotra

disjunctions obtained from a fractional component of the current optimal solution. It has
been shown by Balas, Ceria, and Cornuéjols (see [3]) that such a procedure is sufficient
to solve MILP when integer variables are restricted to binary values. A simple example,
however, shows that such a procedure is not sufficient in the case where variables
can take on general-integer values. The remainder of this section is in two parts. In
the first part, we give a two-variable example that demonstrates the inadequacy of the
straightforward variable disjunction cutting plane procedure. In the second part of this
section we describe a modified cutting plane procedure that generates inequalities at
multiple vertices of the incumbent LP-relaxation. We prove that this modified cutting
plane procedure is guaranteed to find an ε-optimal solution finitely (or terminate finitely
if no such solution exists).

4.1. Geometrical example

We motivate the need for our modified cutting plane algorithm with a simple two-variable
example. Consider the region

K =

x ∈ R2

∣∣∣∣∣∣∣∣
8x1 + 12x2 ≤ 27
8x1 + 3x2 ≤ 18

x1 ≥ 0
x2 ≥ 0

 ,

the set F = {x ∈ K | x1, x2 ∈ Z}, and the cost vector c = [−1,−1]. The regions K and
conv(F) are pictured in Fig. 1a. Observe that minimizing cT x over the region K yields
an optimal solution which is fractional (see the solution x∗ in Fig. 1a).

x� = (15
8
; 1)

x1

x2

x1

x2

(a) The regions K and F (b) Resulting region after first cutting plane

Fig. 1. Motivation for the disjunctive cutting plane procedure

Consider a straightforward cutting plane procedure for MILP where all cutting
plane inequalities are generated from variable disjunctions that are violated at an optimal

A disjunctive cutting plane procedure for general mixed-integer linear programs 443

solution to the current LP-relaxation. We leave it to the reader to see that such a procedure
will not converge to an integer solution for the given example. In particular, such
a procedure will not cut away the fractional extreme points (2.25, 0) or (0, 2.25). The
geometrical observations that are central to the needed arguments are as follows:

1. Using the deepest cuts from simple variable disjunctions, it is only possible to cut
away the extreme point (2.25, 0) by using the variable disjunction “x1 ≤ 2 or
x1 ≥ 3.” Similarly, the extreme point (0, 2.25) can only be eliminated by using the
variable disjunction “x2 ≤ 2 or x2 ≥ 3.”

2. Since the cutting plane procedure generates inequalities only at an optimal (frac-
tional) solution, the points (2.25, 0) and (0, 2.25) can only be cut away if a current
optimal solution x∗ = (x∗1, x∗2) is used to generate inequalities, where x∗1 ∈ (2, 3) or
x∗2 ∈ (2, 3) respectively.

3. Each cutting plane inequality introduces at least one new extreme point x̂ such that
x̂1 + x̂2 > 2.25. Furthermore, for each new extreme point x̂, either
(a) x̂1 ∈ {1, 2} and x̂2 �∈ (2, 3), or
(b) x̂1 �∈ (2, 3) and x̂2 ∈ {1, 2}.

Thus it follows that neither (2.25, 0) nor (0, 2.25) will be optimal solutions to the LP-
relaxation in any iteration (and thus cannot be cut away directly), and that every optimal
solution x∗ to the LP-relaxation will be fractional with x∗1 ∈ [0, 2] and x∗2 ∈ [0, 2]. Note
that in the limit the LP-relaxation will converge to the region {x ∈ K | x1 + x2 ≤ 2.25}.

4.2. The cutting plane algorithm

In this section we describe a modified cutting plane algorithm for solving MILP. In
contrast to the usual cutting plane approach, which generates inequalities only at the
current optimal solution, the modified algorithm generates inequalities at multiple ver-
tices of the incumbent LP-relaxation at each iteration. These vertices are generated by
exploring a set of near-optimal solutions of the current relaxation.

Cutting planes in the algorithm are generated based on the simple variable disjunc-
tions described in Sect. 2. In particular, given a relaxation S and a vertex solution x̄ that
is fractional in the j-th component, we solve the separation problem

min ‖x − x̄‖ (2)

s. t. x ∈ P j
�x̄ j�(S),

and generate the inequality

ξT x ≥ ξT x∗, (3)

where x∗ is an optimal solution of (2), ξ is a subgradient of ‖x − x̄‖ at x∗, and ‖ · ‖
is any norm function. The fact that (3) provides a valid cutting plane follows from
Theorem 3.4.3 of [6].

In addition to the problem information (c and K), our cutting plane procedure
requires three input parameters, γ > 0, ε > 0, and ε̄ ∈ (0, .5]. The value γ determines the
solution space that we explore at each iteration, and the value ε determines our optimality

444 Jonathan H. Owen, Sanjay Mehrotra

tolerance. The parameter ε̄ is used for integer rounding. A pseudocode description of
the algorithm is given in Fig. 2. The main result of this section is Theorem 4, in which
we prove that this modified cutting plane algorithm is guaranteed to find an ε-optimal
integer solution finitely, or that it will terminate finitely if no such solution exists. For
a convex set S, let ext(S) represent the set of extreme points of S.

01: algorithm disjunctive cutting planes (c, K, , ", �")

02: f

03: i := 0; S0 := K; /* initialization */

04:

05: while (Si 6= ;) f

06: let zi be the optimal objective value of minx2Si cTx;

07:
i := fx 2 ext(Si)
�
�cT x� zi � g;

08:

09: /* check for "-optimal solution */

10:
�" :=
�
x 2
i jminf(xj � bxjc); (dxje � xj)g < �" 8 j 2 f1; 2; : : : ; pg

	
;

11: if (
�" 6= ;) f

12: /* look for close points in F */

13: for each (x 2
�") f

14: /* rounding procedure */

15: for each (j 2 f1; : : : ; pg) f

16: if (xj � bxjc < �") then dj := bxjc;

17: else dj := dxje;

18: g

19:

20: /* fix first p components and reoptimize */

21: let �S := fx 2 Sijxj = dj for j = 1; 2; : : : ; pg;

22: if (�S 6= ;) then f

23: let �x be an optimal extreme point solution of minx2 �S cTx;

24: if (cT �x� zi < ") then STOP; /* �x is "-optimal */

25: g

26: g

27: g

28:

29: /* generate cutting planes */

30: Si+1 := Si; /* initialize region Si+1 */

31: for each (�x 2
i and j 2 f1; : : : ; pg such that �xj 62 Z) f

32: if (fx 2 Sijxj � b�xjcg = fx 2 Sijxj � d�xjeg = ;) then STOP; /* infeasible */

33:

34: /* generate a cutting plane and add it to Si+1 */

35: let x� be an optimal solution of min
x2P

j

b�xjc
(Si)

kx� �xk;

36: let � be some subgradient of kx� �xk at x�;

37: Si+1 := fx 2 Si+1
�
��T x � �T x� g; /* update region Si+1 */

38: g

39: i := i+ 1;

40: g

41: STOP; /* infeasible (since Si = ;) */

42: g

Fig. 2. Pseudocode description of disjunctive cutting plane procedure

Lemma 2. Let {Si}be a convergent sequence of bounded convex sets such that Si+1 ⊆ Si

for all i ≥ 0 and limi→∞ Si = Ŝ. For each x̂ ∈ ext(Ŝ), there exists some sequence {xi}
of points in ext(Si) with a subsequence converging to x̂.

A disjunctive cutting plane procedure for general mixed-integer linear programs 445

Proof. Consider x̂ ∈ ext(Ŝ) and a sequence {xi} → x̂ such that xi ∈ Si for all i ≥ 0.
Write xi as follows:

xi =
n+1∑
j=1

λi j xi j , where λi j ≥ 0,

n+1∑
j=1

λi j = 1, and xi j ∈ ext(Si). (4)

Each of the sequences in (4) is bounded and thus have convergent subsequences. Passing
to subsequences, we have that

x̂ =
n+1∑
j=1

λ j x
j , where {λi j } → λ j ≥ 0,

n+1∑
j=1

λ j = 1, and {xi j } → x j ∈ Ŝ.

Since x̂ is an extreme point of Ŝ it can not be written as a convex combination of other
points in Ŝ, thus {xi j } → x j = x̂ for some j ∈ {1, . . . , n} and the result follows.

��
Theorem 4. The algorithm either generates an ε-optimal solution to MILP or detects
infeasibility (i.e., F = ∅) in a finite number of iterations.

Proof. For input γ , ε, ε̄, c, and K , let Si , zi , and �i be defined as in the algorithm.
Assume, by contradiction, that the algorithm does not terminate in a finite number of
iterations. Then, since S0 (= K) is bounded, and since Si+1 ⊆ Si for all i ≥ 0, the
sequence {Si} is convergent to some set, say Ŝ. The remainder of this proof is given in
two parts; we first consider the case where Ŝ = ∅, then we proceed to the case where Ŝ
is non-empty. In both cases we show that since {Si} → Ŝ the procedure will terminate
finitely, a contradiction.

First consider the case where {Si } → Ŝ = ∅. If there exists some finite integer k
such that Sk = ∅, then the procedure will terminate (at line 41 of Fig. 2). Otherwise,
there exists a finite integer k such that {x ∈ Sk | x j ∈ Z} = ∅ for some j ∈ {1, . . . , p}.
Let ĵ be such an index. Thus for all x ∈ �k we have that

P ĵ
�x ĵ�(Sk) ≡ {

y ∈ Sk | y ĵ ≤ �x ĵ�
} = ∅

and P ĵ j�x ĵ�+(Sk) ≡ {
y ∈ Sk | y ĵ ≥ �x ĵ� + 1

} = ∅.
It follows that the procedure will terminate execution in the k-th iteration (at line 32 in
Fig. 2). We have thus shown that if {Si} → Ŝ = ∅, then the algorithm will terminate
finitely after detecting infeasibility.

Now consider the case where {Si} → Ŝ �= ∅. In this case let x̂ be an optimal extreme
point solution to the optimization problem

minimize cT x

subject to x ∈ Ŝ.

Since {Si} → Ŝ we have that {zi} → cT x̂. Furthermore, by Lemma 2 there exists
a convergent subsequence of points {x i} → x̂ where xi ∈ ext(Si). We now examine
separately the case where x̂ �∈ F and the case where x̂ ∈ F.

446 Jonathan H. Owen, Sanjay Mehrotra

In the case where x̂ �∈ F, there must exist some j ∈ {1, . . . , p} such that x̂ j �∈ Z.
Since x̂ ∈ ext(Ŝ) we know that δ > 0, where δ is defined as follows:

δ ≡ min
x∈P j

�x̂ j �(Ŝ)

‖x̂ − x‖.

Thus since {Si} → Ŝ �= ∅ and since there exists a convergent subsequence {xi} → x̂
where xi ∈ ext(Si), it follows that there exists a finite integer k such that

1. xk ∈ �k,
2. �xk

j� = �x̂ j�,
3. ‖x̂ − xk‖ < δ

2 , and
4. min

x∈P j

�xk
j �

(Sk)
‖xk − x‖ > δ

2 .

It follows that in step k the algorithm will generate a valid inequality (lines 29–38 of
Fig. 2) that is violated by x̂. As a result, x̂ �∈ Sk+1, contradicting x̂ ∈ Ŝ ⊆ Sk+1.

We now consider the case where x̂ ∈ F. Since {Si } → Ŝ �= ∅ and since there exists
a convergent subsequence {xi} → x̂ where xi ∈ ext(Si), it follows that there exists
a finite integer k such that

1. xk ∈ �k,
2. |xk

j − x̂ j | < ε̄ for all j ∈ {1, . . . , p}, which implies that xk ∈ �ε̄ in the k-th iteration,
and

3. cT x̂ − zk < ε.

Thus

zk ≤ min{x∈Sk|x j=x̂ j ∀ j∈{1,... ,p}} cT x ≤ cT x̂, (5)

where the optimization problem in the middle of (5) is solved in step 23 of the k-th
iteration. Since this will yield a solution x̄ such that cT x̄ − zK < ε, the algorithm will
terminate in the k-th iteration (line 24) with an ε-optimal solution to MILP.

��
The modified algorithm requires that the set of γ -optimal solutions, �i , be generated

at each iteration. In theory, this set can be generated by first finding the optimal solution
to the LP-relaxation and then performing an exhaustive recursive search through the
neighboring γ -optimal vertex solutions obtained by using single Simplex pivots. In
practice, the search can be terminated with a subset of γ -optimal solutions. The practical
performance of our algorithm will depend on the choice of γ . For larger choices of γ

we obtain more rapid convergence of Si to S at the cost of exploring more vertices and
generating larger LP subproblems. Computational experiments are required in order to
determine the degree to which the best choice of γ is problem dependent.

Practical implementations of the branch-and-cut algorithm typically decide to branch
when improvements in the objective value tail-off. The example given in Sect. 4.1 in-
dicates one possible reason for such tail-off behavior. As seen from the analysis of our
modified algorithm, generating inequalities at near-optimal vertices results in a conver-
gent procedure without branching. This suggests that when practical implementations

A disjunctive cutting plane procedure for general mixed-integer linear programs 447

of branch-and-cut procedures encounter tail-off in the objective value improvement,
generating cuts at near-optimal vertices may be a viable alternative to delay (or avoid)
branching.

5. Conclusions

In this paper we have studied the natural single-variable disjunction. We have shown
that this disjunction can be sequentially applied to find the convex hull with respect to
a single general-integer variable finitely, or the convex hull of all mixed-integer solutions
in the limit. In the case where all integer variables are restricted to taking binary values,
this procedure is equivalent to the sequential convexification procedure of Balas, Ceria,
and Cornuéjols [3].

We have also developed a finitely convergent cutting plane algorithm for solving
general mixed integer linear program, MILP. To the best of our knowledge this is first
such algorithm. The convergence results are obtained by generating cuts at all γ -optimal
vertices of the relaxation of MILP at each iteration. New cuts in this algorithm are
generated by solving a separation problem over a region that includes all cutting planes
found thus far. This is different from the strategy used by Balas, Ceria, and Cornuéjols
to obtain their convergence result for the 0-1 specialized cutting plane algorithm, as
described in [3], and is closer to the strategy implemented in practice.

As a result of our analysis we provide a theoretical foundation to the fundamental
idea of generating cuts at near optimal, possibly alternate optimal, vertices. Although
the analysis of the algorithm is based on generating cuts at all γ -optimal vertices,
a practical implemenation of our algorithm is likely to generate cuts only at a few
“promising” near-by vertices.

Practical implementations of the branch-and-cut algorithm for structured binary
problems typically decide to branch when improvements in the objective value tail
off. Analysis of our modified cutting plane algorithm suggests that generating cuts at
neighboring vertices in addition to the current optimal vertex may be a viable alternative
to branching, or delaying branching in these implementations. Detailed computational
experiments are necessary to determine if practical implementations would benefit from
incorporating this modification.

Acknowledgements. We would like to thank the two referees and the associate editor handling this paper for
their helpful comments. In particular, we would like to acknowledge Referee #2 for suggestions on simplifying
several proofs and help towards making the paper more readable.

References

1. Adams, W.P., Sherali, H.D. (1995): Explicit convex hull representations of discrete sets. Talk at Fall
INFORMS meeting, New Orleans, LA, USA

2. Balas, E. (1979): Disjunctive programming. In: Hammer, ed., Discrete Optimization, Part II. Ann. Discrete
Math. 5, 3–51

3. Balas, E., Ceria, S., Cornuéjols, G. (1993): A lift-and-project cutting plane algorithm for mixed 0-1
programs. Math. Program. 58, 295–324

4. Balas, E., Ceria, S., Cornuéjols, G. (1996): Mixed 0-1 programming by lift-and-project in a branch-and-
cut framework. Manage. Sci. 42, 1229–1246

448 Jonathan H. Owen, Sanjay Mehrotra: Cutting plane procedure for MILP

5. Balas, E., Ceria, S., Cornuéjols, G., Pataki, G. (1994): Polyhedral methods for the maximum clique
problem. Unpublished paper. Carnegie-Mellon University, Graduate School of Industrial Administration,
Pittsburgh, PA 15213, February 1994

6. Bazaraa, M.S., Sherali, H.D., Shetty, C.M. (1993): Nonlinear Programming, Theory and Algorithms, 2nd
edn. John Wiley & Sons, Inc., New York

7. Lovász, L., Schrijver, A. (1991): Cones of matrices and set-functions and 0-1 optimization. SIAM
J. Optim. 1, 166–190

8. Sherali, H.D., Adams, W.P. (1990): A hierarchy of relaxations between the continuous and convex hull
representations for zero-one programming problems. SIAM J. Discrete Math. 3, 411–430

9. Sherali, H.D., Adams, W.P. (1994): A hierarchy of relaxations and convex hull characterizations for
mixed-integer zero-one programming problems. Discrete Appl. Math. 52, 83–106

10. Stubbs, R.A., Mehrotra, S. (1999): A branch-and-cut method for 0-1 mixed convex programming. Math.
Program. A 86, 515–532

