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Abstract. Weobtainlocal estimates of the distance to a set defined by equality constraints under assumptions
which are weaker than those previously used in the literature. Specifically, we assume that the constraints
mapping has a Lipschitzian derivative, and satisfies a certain 2-regularity condition at the point under consid-
eration. This setting directly subsumes the classical regular case and the twice differentiable 2-regular case,
for which error bounds are known, but it is significantly richer than either of these two cases. When applied to
a certain equation-based reformulation of the nonlinear complementarity problem, our results yield an error
bound under an assumption more general than b-regularity. The latter appears to be the weakest assumption
under which alocal error bound for complementarity problems was previously available. We also discuss an
application of our results to the convergence rate analysis of the exterior penalty method for solving irregular
problems.

Key words. error bound — C1-1-mapping — 2-regularity — nonlinear complementarity problem — exterior
penalty — rate of convergence

1. Error boundsand their applications

Among the most important tools for theoretical and numerical treatment of nonlinear
operator equations, optimization problems, variational inequalities, and other related
problems, are the so-called error bounds, i.e., upper estimates of the distance to a given
set in terms of some residual function. We refer the reader to [31] for a survey of error
boundsand their applications. When the set is defined by functional constraints, atypical
residual function is some measure of violation of constraints at the given point. When
available, error bounds can often be used to obtain a constructive local description of
the set under consideration. This description, in turn, plays a central role in the theory
of optimality conditions. As another important application of error bounds, we mention
development, implementation, and convergencerate analysis of numerical methods for
solving optimization and related problems.

In this paper, we consider error bounds for sets given by equality constraints. How-
ever, it is worth to point out that this setting implicitly includes sets of more general
structure, namely those whose constraints can be (equivalently) reformulated into equa-
tions. One such example is solution set of the nonlinear complementarity problem,
which we shall study in Sect. 3.
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Let X and Y be Banach spaces, V bean opensetin X, F : V — Y be agiven
mapping, and consider the set

D={xeV|Fx =0}. 1)
We define the distance function from a point to a set in a usua way:

dist(x, D) =§IQII; Ix—E&|l, xeX

Given some point X € D, alocal error bound is the following property:
dist(x, D) < M|[Fx)|Y” vxeU, )

where M > 0 and y > 0 are two constants, and U C V is a neighborhood of X, with
M, y and U being independent of point X appearing in (2). In this paper, we shall also
obtain somewhat more general forms of error bounds, but they can be al reduced to the
form (2) (this reduction, however, may make them less accurate in certain situations).

In what follows, for alinear operator A : X — Y, kerA = {x € X | Ax =0} is
itsnull space, andimA = {y € Y | y = Ax for somex € X} isitsimage space. By
F~1(y) we shall denote the complete pre-image of an element y € Y with respect to F,
namely

F iy ={xeV]|Fx =y}.

With this notation, F~1(F(x)) is the level surface of F passing through F(X).
It is well-known that a Lipschitzian error bound (namely, (2) with y = 1) holds
under the assumption that F is smooth and regular at X, i.e.,

imF/(x) =Y. ?3)

Specifically, the following result, sometimesreferred to as Graves-Lyusternik Theorem,
isclassical (e.g., see[15,9,2)]).

Theorem 1. Let X and Y be Banach spaces, V be a neighborhood of a point X in X.
Suppose further that the mapping F : V — Y is Fréchet-differentiable on V, its
derivative is continuous at X, and F isregular at X.

Then there exist a neighborhood U C V of X in X and a constant M > 0 such that

dist(x, F~Y(F(%))) < M||[F(X) — F(X)|| VX e U. (4)

Infact, under the regularity assumption (3), we could state a more general property
thantheerror bound givenin Theorem 1. In[2], itisreferred to asthe pseudo-Lipschitzian
property, and it has been studied extensively in the literature in a variety of settings,
see [31] for some references.

Let us define the tangent coneto D at apointX € D as

To(X) := {h € X | dist(X +th, D) = o(t), t € Ry}

As an immediate application of the error bound given in Theorem 1, we mention the
Graves-Lyusternik theorem [15, 9] describing the tangent subspace to alevel surface of

aregular mapping.
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Theorem 2. Under the assumptions of Theorem 1, the following equality holds:

Theinclusion Tg-1gx)) (X) C ker F’(x) isstandard, and holdswithout any regul arity
assumptions. To see that the error bound (4) impliesthe oppositeinclusion, it is enough
totakex = X+th, h € ker F'(X),t € R4, employ the definition of the Fréchet derivative
in the right-hand side of (4), take into account that h € ker F’(X), and use the definition
of the tangent cone. Theorem 2 is an important tool for deriving necessary optimality
conditions for optimization problemswith equality constraints.

When regularity condition (3) is not satisfied, the assertions of Theorems 1 and 2
do not hold in general. In particular, a Lipschitzian error bound is not necessarily valid.
Thisirregular caseis the main issue under consideration in the present paper.

Without the regul arity assumption (3), error bound (2) isknownto holdwhen F isan
analytic function [23]. Compared to our results (see Theorem 4 and Remark 7), for error
bounds based on analytic functions the constant y isin general unknown, except in the
guadratic case under acertain positivity condition,inwhichcasey = 2 (and, of course, in
the affinecasewith y = 1). In Sect. 3, we explainthat our resultsare of arather different
nature than those for analytic functions. We also provide an example where our results
imply an error bound for complementarity problemswith non-analyticfunctions. For the
case of twice Fréchet-differentiable F, certain error bounds were obtained in [5] under
the so-called 2-regularity condition, which is considerably weaker than (3) (seealso[18,
19]). These results are directly subsumed in our development below, so we shall not
survey them here. In Sect. 2, we shall obtain error boundsin the considerably much more
general setting where F need not be twice Fréchet-differentiable, but its first Fréchet-
derivativeis Lipschitz continuous near the point under consideration. This development
will usethe new notion of 2-regularity under relaxed smoothness assumptionsintroduced
in [17]. We obtain error bounds under regularity/smoothness assumptions for which
no such results were previously available. Specifically, we prove an estimate which
subsumes (2) with at least y = 2. As its corollary, we recover in the regular case
Theorem 1 (i.e., (2) with y = 1), Theorem 2, and the generalization of the Graves-
Lyusternik theorem about the tangent cone for the 2-regular case. We emphasize that
our extension of error bound resultsis significant, aslocal structure of mappingsin our
setting can be considerably more complicated than that of twice differentiable 2-regular
mappings or regular mappings (in the latter two cases the tangent coneto alevel surface
is necessarily two-sided, but it need not be two-sided under our assumptions, see [17,
Example 2.1]). In this paper, the significance of the new notion of 2-regularity is further
demonstrated by an application to an equation-based reformulation of the nonlinear
complementarity problem (NCP). It is well-known that useful NCP reformulations are
neither twice differentiable nor regular in the classical sense (except possibly under
certain restrictive assumptions), and so the theory previously available is usually not
directly applicable. In Sect. 3, we obtain anew error bound for NCP under a 2-regularity
condition, which we show to be weaker than b-regularity (we show that b-regularity
implies our condition, and that the converseis not true). To our knowledge, b-regularity
is the weakest condition under which alocal error bound for NCP had been known to
hold previously. As another application of our results, in Sect. 4 we discuss exterior
penalty methods and their convergencerate analysis.
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L et usintroduce some more notation. By B(x, r) we denotethe open ball with center
x € X and radiusr > 0, and by 2% we denote the set of all subsets of X. We use the
notation (D1, D») for Hausdorff distance between two sets D1, D> C X:

H(D1, D2) = max { sup dist(x, D2), sup dist(x, D1) ¢ .

xeD1 xeD2

We shall use ballsand distances only in space X, so therewould be no confusion. By v,
we denote the identity operatorinY. Let £L(X, Y) bethe space of continuouslinear op-
eratorsfrom X to'Y, normedinthe usual manner. For alinear operator A € L(X, Y),we
denote by A1 itsright inverse, thatis A=t : Y — 2%, A~1(y) = {x e X | AXx = y}.
Furthermore, we shall use the “norm”

IA7Y = sup dist(0, A~1(y)).

YeY,

llyll=1
Note that when A is one-to-one, || A ~1|| can be considered as the usua norm of the
dlement A~1 in the space £(Y, X). We denote span{x!,... . x5} := {x € X | x =
Z!‘:ltix' Jti e Ryandcone{x!, ... ,xX} :={xe X |x= Z!‘thix' ,ti e Ry} Fora

(finite-dimensional) vector X, x; will denote itsi-th component.
We completethis sectionwith thefollowing fact which will be used in the subsequent
analysis.

Theorem 3 (Set-Valued Contracting Mapping Principle [15]).

Let X be a Banach space, xX° € X andr > 0. Suppose that ® : B(x%,r) — 2Xisa
(set-valued) mapping such that @ (&) is nonempty and closed for every ¢ € B(x%,r).
Assume further that there exists a constant 6 € (0, 1) such that

H@EY, D) <0llgt — &%) veL 2 e B, ),

dist(x?, ®(x%) < (1 —o)r.
Then there exists some ¢ € B(x?, r) such that
vedw. Iv—x= ng dist(x®, @(x%).
Notethat in[15], Theorem 3wasestablishedinthe moregeneral setting of acomplete
metric space, but we do not need thislevel of generality in the present paper.
2. 2-regularity. Error boundsfor 2-regular mappings

Throughout this section we assume the following basic hypotheses.

(H1) X andY are Banach spaces, V is aneighborhood of apoint X in X.
(H2) F :V — Y isFréchet-differentiableon V, and the mapping F' : V — L(X, Y)
is continuous at X.
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(H3) The subspace Y1 = im F/(X) is closed and has a closed complementary subspace
Yo inYy.

(H4) Let P bethe projector in'Y onto Y parallel to Y1. Then the mapping PF' : V —
L(X, Y) isLipschitz continuouson V with aconstant L > 0.

Under the assumption (H3), projector P is continuous, and sois |y — P, which isthe
projectorin’Y onto Y1 parallel to Y2. Notethat if Y isaHilbert spaceand Y; isclosed then
Y1 always has aclosed complementary subspacein Y (see hypothesis(H3)). Hypothesis
(H4) always holds when F’(-) is Lipschitz continuous on V. Note that in the regular
case hypotheses (H3) and (H4) aretrividly satisfied (Y1 = Y, Yo = {0}, P = 0).

Our analysis will be based on the usual notion of directional derivatives of the
mapping PF’(-) at the point X. Given some direction h € X, the directional derivative
of PF/(-) at X with respect to h is defined by

PF/(X + th) — PF/(X)
t .

(PFY(x; h) = lim
t—0+

This derivative aways exists whenever the corresponding directional derivative of the
mapping F’(-) exists, but not vice versa: PF’(-) can be directionally differentiable even
if F/(-) isnot.

The following definitions are direct extensions of those previously introduced in
the twice differentiable case, see [3-6,18,1,16,19]. If F istwice Fréchet-differentiable
at X, our definitions reduce to standard notions of 2-regularity theory. In particular,
all directional derivatives involved will be defined via second Fréchet derivatives; for
example, (PF")'(x; h)¢ = PF”(X)[h, &£], h, & € X. But we stress once again that
the setting (H1)—(H4) is significantly different from the case of twice differentiability.
Moreover, it is also richer when it comes to applications (more on thisin Sect. 3).

If (PF")(X; h) exists, thenitisanelement of £(X, Y), and sothefollowing operator
can be defined:

Wa(h) € L(X, Y),  Wa()é := F' (& + (PF') (X; h)s. ©)

This operator is central in the theory of 2-regularity. In this paper, its role will become
clear in Theorem 4, which is our main error bound result.
Let PF/(-) bedirectionally differentiable at X with respect to an element h € X.

Definition 1. The mapping F is referred to as 2-regular at the point X with respect to
h e X,ifimWyh) =Y.

Remark 1. Itiseasy to seethat if F is2-regular at X with respect to some h € X, then
it is 2-regular with respect to th for all t > O (thisfact is based on positive homogeneity
of the directional derivative with respect to a direction).

Remark 2. Consider the case when the mapping F is regular at the point X, i.e., when
(3) halds. Then Y1 = Y, Y2 = {0}, P = 0, ¥»(h) = F/(X), and hence, F is 2-regular
with respect to every h € X.

The next notion is well-defined provided PF/(-) is directionally differentiable at x
with respect to every direction in ker F’(X).
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Definition 2. The mapping F is said to be 2-regular at the point X if it is 2-regular at
this point with respect to every element h € T \ {0}, where

To = {h € ker F'(X) | (PF")'(X; hyh = 0}.

The cone T, and 2-regularity play a central role in the description of tangent direc-
tionsto alevel surface of a nonlinear mapping (see Theorem 5).

Remark 3. If F isregular at X, then P = 0 and so PF’(-) is certainly (directionally)
differentiable. Taking further into account Remark 2, it followsthat if F isregular at X,
then it isalso 2-regular at X. Note that in the regular case T» = ker F/(X).

Finally, the following definition requires directional differentiability of PF'(-) at X
with respect to every directionin X.

Definition 3. The mapping F isreferred to as strongly 2-regular at the point X if there
exists v > 0 such that

sup | (w2() 7| < oo,
heTy,
Ihj=1
where
Ty =the X | [F'(Ohll <v, [(PF) (% hh|| < v}.

Remark 4. Clearly, if the mapping F is regular at the point X, then F is strongly 2-
regular at X. Thisfollowsfrom the fact that a surjective continuouslinear operator from
one Banach space to another has a bounded (set-valued) right inversein the sense of the
“norm” defined in Sect. 1.

Remark 5. Notethat To = T20 C T, foral v > 0. Inthe case of afinite-dimensional X,
strong 2-regularity at X is equivalent to 2-regularity at X. To see this, one has to recall
the following facts.

1. Under the hypothesis (H4) the mapping (PF’)'(X; -) : X — L(X, Y) iscontinuous
on X (in fact, this mapping is even Lipschitzian, see [34, Lemma2.1]).

2. A smal linear perturbation of a surjective linear operator resultsin a small pertur-
bation of the norm of itsright inverse [18, Theorem 2, p. 26].

3. Theunit sphere in afinite-dimensional space is compact.

In general Banach spaces, strong 2-regularity is somewhat stronger than 2-regularity
(see[6,18,16,19] for some examples and more detailed discussion of thisissue).

Inthe sequel, the following useful notion will also beinvolved. The mapping PF’ ()
is referred to as B-differentiable at the point X with respect to a cone K in X if it has
adirectional derivative at X with respect to every directionh € K, and

PF' (X + h) = PF'(X) + (PF")'(x; h)y + o(|lh]), he (V-%X NK.

We call PF'(-) B-differentiable at X, if it is B-differentiable at this point with respect
to the cone K = X. The notion of B-differentiability (with respect to K = X) was
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introduced in [35]. In the finite-dimensional setting, a mapping which is Lipschitzian
in a neighborhood of a point (recall hypothesis (H4)) is B-differentiable at this point
if, and only if, it is directionally differentiable at this point with respect to any direc-
tion [36].

Before we proceed, two technical lemmas on the properties of mappings with B-
differentiable derivatives are in order.

Lemma 1. Assume that the basic hypotheses (H1)—(H4) are satisfied. Suppose further
that the mapping PF’(-) is B-differentiable at the point X with respect toacone K in X.
Then for any ¢ > 0 there exists a constant § > 0 such that

B(x, 8) C V,
andfor all x € B(X, §) N (X + K), it holds that

Ity = PY(F(X) — F(X) — F'(0) (X = %)l < ellx — X,

H P(F(X) — F(X)) — %(PF/)/O_(; X =R (X=X < ellx — x|

Proof. Using the Mean-Value Theorem and the equality PF’(X) = 0, we have that
[(Ily = PY(F(X) — F(X) — F'(X)(x = X) || = o(lIx — X, (6)
from which follows the first assertion of the lemma.

Using additionally the Newton-Leibniz formula, for al x € (X + K) sufficiently
closeto X, we have that

1
P(F(x) — F(X)) — E(PF’)/(X; X =X)(X = X)

1
= / P(F' (X + ©(X — X)) — F'(X))(x — X)dr — %(PF’)/()_(; X —=X) (X —X)
0

+o(lx — xII?)

1
= / (PF)(X; 7(x — X)) (X — X)dt — %(PF/)’()_(; X —X)(X = X)
0

= o(Ix — x[1?), )

wherethe second equality followsfromthe B-differentiability of PF’(-) at X with respect
to K, and the last follows from the fact that the mapping (PF’)' (X; -) : K — L(X, Y)
is positively homogeneous. Relation (7) establishes the second assertion.

]

Remark 6. Obviously, for X # X one can guarantee strict inequalities in the assertions
of Lemmal.
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Lemma 2. Under the assumptions of Lemma 1, for any ¢ > 0 there exist two constants
8 > 0and y > 0 such that

B(X, 1+ p)d) CV,
andfor all x € B(X, 8§) N (X + K) and &1, £2 € B(O, y||x — X|)), it holds that
|y = PY(F(x + &1 — F(x + &%) — F'(0) (& — £2)| < ells — &7,
IP(F(x + &1 — F(x+ £%) — (PF)' (x; x = X)(E" — £9)]| < ellx — x| I§1 — &2

Proof. The argument is analogousto Lemmal.
|

In Theorem 4, we shall need the following regularity assumption. Assuming PF’(-)
isdirectionally differentiable at x with respect to every directionin some cone K in X,

Jv> Osuchthat sup | (Wa(h) ™| < oo, (8)
heK3y,

[hj=1
where
Ky =t{he K| |F®h| <v, [(PF) X hh| <v}.

Notethat for K = X thisconditionisprecisely strong 2-regularity of F at X introducedin
Definition 3. Inthe case of finite-dimensional X, thisisfurther equivalent to 2-regularity
of F at X (recall Remark 5). Another useful observationisthat if F isregular at X, (8) is
clearly satisfied for K = X with any v > 0 (recall Remark 4).

Thefollowing is our main result. After the proof, in Remark 7, we shall discussits
relation to the more standard form of error bounds, such as (2).

Theorem 4. Assumethat the basic hypotheses (H1)—(H4) are satisfied. Supposefurther
that the mapping PF’(-) is B-differentiable at the point X with respect toacone K in X,
and that the regularity condition (8) is satisfied.

Then there exist a neighborhood U c V of X in X and a constant M > 0 such that
forall x e (U N (X+ K)) \ {X} it holdsthat

: P(F(x) — F(X

X = X]|

In particular, if K = X (in which case (8) meansthat F is strongly 2-regular at X),
then (9) holdsfor all x € U \ {X}.

Proof. Let p > 0 be such that B(X, 2p) C V. Fix an arbitrary 6 € (0, 1), and denote
the constant in the left-hand side of (8) by C, C > 0. Applying Lemma 2, we conclude
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that there exist two constants § € (0, p] and y € (0, p/8] such that for al x €
B(X, 8) N (X + K) andfor al €1, £2 € B(O, y||x — X||) the following relations hold:

0
|y = PY(F(x + &1 — Fix+ £2) — F (0t - £ < zusl —&, (10
0
IP(F(x + &1) — F(x 4+ £2)) — (PF) (%, x = ) (1 = £2)|| < >clx= x|t — £2).
(11)
Next, choose
_ . Q-9y
Ve <0, mm{v, ac }) (12
First, we consider the case when
X=X 5

Definer(x) = yIx—X||, X € B(X, §). AccordingtoLemmal, Remark 6, and (12), there
existsaneighborhoodU C B(X, 8) of X in X such that for all x € (U N (X + K)) \ {X},
we have that

0
2 r(x), (14)

[y — PY(FC) — FGO)II <

2C
For each x € U, define the set-valued mapping

IP(F(X) — FO)Il <

X = X][r (x). (15

Dy BO, r(x) — 25, Dx() = & — (Wa(x — X)) H(F(X + &) — F(X)).
For al x € U \ {X} satisfying (13), by (8) and (12) (recall also Remark 1), it holds that
Dy(€) #0 VE € B(O, r(x). (16)

In the case of (13), we shall prove our assertion by applying the set-valued contracting
mapping principle (i.e., Theorem 3) to the mapping defined above. To apply Theorem 3,
we have to estimate the (Hausdorff) distance between ®y(£1) and @y (£2) for each
x € U\ {x} satisfying (13) and each £1, £2 € B(O, r(x)). By the definition, we have
that

neE D) <« Wa(x—X)n=W2(Xx —X)§ — F(Xx+§) + FX).

In particular, for each fixed & € B(0, r(x)), ®x(§) is a (nonempty, by (16)) affine set
parallel to the subspace ker Wa(x — X).
For any x' € ®x(¢'),i =1, 2, we have that

Wo(x — ) (Xt = x?) = Wo(x — X)(EL — £2) — F(x 4 1) + F(x + £2). (17)
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Observe further that by the definition (5) of W, forany & € X andt > 0, we have that
Wo(t(x — X)& = F'(0E& + (PF) (X; t(x — X))&
= F'(X)& +t(PF) (X; x — X)E.
In particular, multiplication of x — X does not affect the component in Y1 = im F/(X),

while the component in Y2 is positively homogenuous. Using this observation and (17),
we have that

X — X 1 2 X — X 1 2
'\ — = v _
2<||x—>‘<||>(x X 2(||x—>‘<||>(iS &)
—(ly — P)Y(F(x + Y — F(x + £2))
—|Ix — X LP(F(x + &Y — F(x + £2)).
Since @y (£1) and ®y(£2) aretwo paralle affine sets, we obtain that

H(Ox(ED), dx(E?) = inf  x} =%
Xleq’x(él)’
i=1,2

X — X X — X
= inf X, U —— )e=w 1_g?
" {”E”"ge 2(||x—>‘<||>‘§ 2(||x—>‘<||>(iS =
— (Iy = P)(F(x + &1 — F(x 4 £2))
— |Ix = X7 P(F(x + &1 — F<x+sz>>}

< C(J(y = P)(F(x + &Y — Fx+ &%) - F (0 (' - 82|
+lx = X THIP(FX + €Y — F(x + &%) — (PF) (% x = 0" = £9)]))
<0l — &2, (18)
wherethefirst inequality followsfrom (8), and the last inequality follows from (10) and
al)éimilarly, from (14) and (15), it followsthat for al x € U \ {X} satisfying (13) the
following relations hold:

X=X )s = (Iy — P)(F(x) — F(X))

X =X

dist(0, ®x(0)) = inf {||§|| ‘E e X, \112<

+ IIx — X T (PR — F(i))}

< C(ll(ly = PY(F(x) — F(®))|| + [Ix — X1 P(F(x) — FX)I)

< (1= 0)rx). (19)
Relations (18) and (19) (also taking into account (16)), imply that for al x € U \ {X}
satisfying (13) the mapping ® satisfiesin B(0, r(x)) all the assumptionsof Theorem 3.
Therefore, for each x € U \ {X} satisfying (13), ®x has a fixed point in B(0, r(x)).
Specifically, there exists an element v(x) € B(0, r(x)) such that

2
V) € @), IVl = 37— dist(0, ®x(0)).
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By the definition of ®y, it now follows that
FX+ ¢ (X)) = F(X), (20)
and, using the next to last inequality in (19),

2C
Ol = m(ll(lv — P)(F() — FOO) + [Ix — X[~ IP(F) — FGO)). (21)

Obvioudly, (20) and (21) imply the estimate (9) with M = 2(1 — ) ~1C (for those
x € (UN X+ K))\ {x} that satisfy (13)).

Next we turn our attention to the second case, namely when x € (V N (X + K)) \ {X}
issufficiently close to X and

X — X
X = X]|

# K3. (22)
Using (6) and (7), (22) implies that one of the following two relations must hold:

Iy = PYF) — F)| = [IF/(R)(x = R)I| + o(l|x — XIl)
> Blx — K|l + o[ — X|),

or
IP(F(x) — F(0) || = %II(PF/)’O‘(; X — %) (X = %)l + o([Ix — X||*)
> ;nx — X[1? + o(lIx — X[I?).
Hence,
Iy = PY(FO) — FR)| + [1x — X[ "HIP(F(x) — FR)|| > %ux — X[l + o(|Ix — XII),

and the desired estimate (9) is now obvious, as X € F~1(F(X)). In particular, we have
proved that forany M € (2/v, +00) there existsaneighborhoodU c V of X in X such
that (9) holds under the additional assumption (22).
Combining the two cases (13) and (22) completes the proof.
]

Note that in the regular case, because of Remark 4 and since P = 0, Theorem 4
reducesto the classical error bound result given by Theorem 1.

Remark 7. The estimate (9) in Theorem 4 implies the following error bound (possibly
with different M and U), which is in general somewhat weaker but may be more
convenient in applications:

dist(x, F1(F(%))) < M(II(ly — P)(F(x) — F)|| + [IP(F(x) — F(x)[1*?)
VxeUNX+K). (23)

To verify that (23) follows from (9), denotea := dist(x, F ~1(F(X))), b := M||(ly — P)
(F(x) — F(X))|l, and ¢ := M||P(F(x) — F(X))||. Since ||x — x|~ < a~1, from (9) we
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obtainthat a < b+ c/a. Resolving the quadraticinequality ina, namely a2 —ba—c < 0,
we obtain that a < b/2 + /b%/4+ ¢ < b+ /c, from which the bound (23) follows,
recalling definitions of the quantitiesinvolved.

To see that bound (23) can be weaker than (9), consider the case when X is not an
isolated point of the set F~1(F(x)). Then dist(x, F~1(F(x))) can tend to zero without
Ix — X|| tending to zero, in which case (9) givesalinear error bound, while (23) contains
also aterm of order 1/2. In the case when X is an isolated point of F~1(F(x)), the two
error bounds can be regarded as equivalent.

Clearly, error bound (23) can be further simplified as follows:

dist(x, F71(F(%))) < M||[F(X) — FX)|IY? VxeUn X+ K). (24)

However, the latter bound is, in turn, weaker than (23). When K = X and F(X) = 0, we
obtain aboundin theform (2) withy = 2.

Applying Theorem 4 with the cone K = {th | t € R4}, h € X, we can establish
the following generalization of the Graves-Lyusternik theorem describing the tangent
directions to a level surface of a nonlinear mapping. This theorem was first obtained
in[17] using another approach, not based on error bounds.

Theorem 5. Assume that the basic hypotheses (H1)—(H4) are satisfied, and that the
mapping PF’(-) has the directional derivative at the point X with respect to a direction
h e X.

Then the following statements hold.

(@) 1fh e Tp1(gx)) (X), thenh € ker F’(x) and (PF")'(x; h)h = 0.
(b) If h € ker F/(X) and (PF’)’(x; h)h = 0, and the mapping F is 2-regular at X with
respect to h, thenh e TF_l(F()_())()_()'

In particular, if PF'(-) isdirectionally differentiable at X with respect to every direction
in ker F'(X), and the mapping F is 2-regular at X, then

TFfl(F()f()) ()_() = Tz.
Proof. The proof of the necessary conditions of tangency (part (a)) is quite straight-
forward, and can be found in [17]. Sufficient conditions of tangency (part (b)) follow
immediately from Theorem 4 (specifically, error bound (23)), Lemma 1, and the defin-

ition of the tangent cone.
O

By Remark 3, in the regular case we have that T, = ker F/(X), and so Theorem 5
takes the form of the classical Graves-Lyusternik theorem describing the tangent sub-
space (Theorem 2). Under the assumptions of twice Fréchet-differentiability of F at X,
Theorem 5 was provedin [39] (for the special casewhen F’(x) = 0), andin[3] (without
the latter assumption). Some earlier version of this result under even stronger smooth-
ness assumptions can be found in [24]. For other related material see also [38,8,4-6,
18,1,16,19].

Theorem 5 can be used to derive optimality conditions for 2-regular problems,
including aspecial form of primal-dual conditions. Werefer thereader to[17], whereal so
an applicationto optimality conditionsfor mathematical programswith complementarity
constraintsis discussed.
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3. A new error bound for the nonlinear complementarity problem

In this section, as an application of our general results, we obtain a new error bound
for the classical nonlinear complementarity problem [30,11] (NCP). Given a (smooth)
mapping g : R™ — R™M, this problem consists of finding apoint x € R™ such that

gx) =0, x>0, (g(x),x)=0. (25)

While there exists a wide range of approaches to solving the NCP, one of the most
successful and widely used is reformulation of the NCP as a system of equations or
an optimization problem, see [27,25, 20,13, 10, 37], the collection [14], and references
therein. Among other things, such reformulations often lead to error bounds for NCP
(i.e., estimates of the distance to its solution set) in terms of the objective function in
optimization-based reformulations, or intermsof the equation residual in equation-based
reformulations[13,31].

To our knowledge, the weakest condition under which alocal error bound for NCP
was previously availableisb-regularity, introduced in [32]. Actually, there appearsto be
no explicit referencein the literature to an error bound for NCP under this assumption.
However, the result is known to experts in the field, and it follows readily from some
well-known facts, which we shall cite below.

Let X be asolution of the NCP, and define the three index sets

lo:={i=1, ..., m|g(X) =0, Xi =0},
l1:={i=1 ..., m|gX =0, X >0},
lo:={i=1, ..., mgX >0, X =0}.

Definition 4. A solution X of NCP is called b-regular, if for every A C g the submatrix
comprised by elements Gijj, i, j € AU Iy, is nonsingular, where G is the Jacobian
matrix of g at X.

By direct observation, it is easy to check that Definition 4 can be equivalently stated
in the following form (which will be more convenient for our purposes): for any pair
(A, B) of index setssuchthat AU B = lg, AN B = @, it holdsthat for h ¢ R™

(g, h)=0,ieAUl B
hi =0, ieBUIy h=0. (26)
Or equivalently,
g(X),ieAUly, €,i e BUIarelinearly independentin R™, (27)

whereel, ... €"isthestandard basisin R™, and theindex sets A and B vary as specified
above.

If X is a b-regular solution of NCP, then it is known that it is locally unique.
Furthermore, the norm of the natural residual

S:R" - R™, S =min{x;, gi(X)}, i=1,..., m,
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providesalocal error bound: there exist a constant M > 0 and a neighborhood U of X
such that
X=Xl < MISX)| V¥xeU. (28)

This error bound follows from the following facts.

1. Let Q(X) = 0, and supposethat Q is semismooth [29,34] at X, and X is BD-regular
(as defined in [34]). Then the equation residual provides alocal error bound [33,
Proposition 3], i.e,, [|[X — X|| < M||Q(x)| for al x in some neighborhood of X and
some M > 0.

2. If X isab-regular solution of NCP, then X is a BD-regular solution of S(x) = 0[21,
Proposition 3.4](see also [22, Proposition 2.10]).

3. If g(-) is continuously differentiable then the mapping () is semismooth (e.g.,
see [22, Proposition 2.7]).

In this section, we shall obtain an error bound for NCP under an assumption weaker
than b-regularity. Specifically, we shall derive an error bound using the 2-regularity
condition studied in Sect. 2, and show that it is implied by b-regularity, but not vice
versa. Our error boundwill be based on thefollowing C*- 1-equati on-based reformul ation
of NCP. Define the mapping

F:R™" > R™  F(X) =2g(X)x —(min{0, gi(X) +x P i=1 ..., m
Itis known [20], and easy to check, that solution set of NCP coincides with the set
D={xeR™|Fx) =0 (29)

We believe that our analysis can aso be applied to some other appropriate CL- 1 refor-
mulations, such asin [27,20], but we shall consider only one of them for the clarity of
presentation.

We assumethat g isdifferentiableon someneighborhoodV of X inR™, itsderivative
is Lipschitzian on V, and g is twice differentiable at X. Then it is easy to see that F
satisfies all the smoothness assumptions of Theorem 4 (with K = R™). Hence, an
error bound for NCP in terms of the residual function ||F(-)| follows immediately
from Theorem 4, whenever F is 2-regular at X (recall that in the finite-dimensional
setting 2-regularity is equivalent to strong 2-regularity). It remains to understand what
2-regularity meansin the context of this section. Let P and T be as defined in Sect. 2.
Recall also Definition 2 and (5). Observethat if h € Ty, then necessarily h € ker Wx(h)
(this follows directly from the definitions). Since in the case under consideration the
linear operator W»(h) isfrom R™M to R™, if h € T, and h # 0 then ker Wa(h) # {0},
and hence, imWo(h) # R™. It follows that F cannot be 2-regular with respect to any
h € T, \ {0}. On the other hand, if

T2 = {0}, (30)

then Definition 2 of 2-regularity is always (trivialy) satisfied. Hence, the mapping F
under consideration is 2-regular at X if, and only if, (30) holds.

We are now ready to state our error bound for NCP. Afterwards, we shall compare
our new regularity condition (30) with the condition of b-regularity defined above. In
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particular, we shall establish that the former implies the latter, and that the converseis
not true. Some exampleswill be given to illustrate those facts.

Note that if (30) holds then X is an isolated point of the set D (this follows from
Lemma 1 and compactness property of theunit spherein R™). Applying now Theorem 4
(see dlso Remark 7), we readily obtain the following error bound.

Theorem 6. Let V be a neighborhood of a point X in R™, which is a solution of NCP.
Letg: V — R™Mbedifferentiableon V, itsderivative be Lipschitz continuouson V, and
let g betwice differentiable at X. Supposefurther that F is2-regular at X (i.e., condition
(30) is satisfied).

Then there exist a neighborhood U of X in R™ and a number M > 0 such that

Ix = X[l < M(I(I = PYFGO[l + [PFOOM?) - Vx e U. (31)
Note that according to Remark 7, we can replace estimate (31) by a weaker one:
Ix = X|l < MIFOIIY? Vx e U. (32)
We proceed to establish the relationship between 2-regularity of F at X and b-
regularity.
Thefirst derivative of F isgiven by

F (%) = 2(xig () + G ()€ —min{0, gi(x) + i} (g () +€)),
i=1...,m XxeV,
whereel, ... @"isagainthe standard basisin R™. Asbefore, let X be asolution of NCP

(equivalently, x € D), and let theindex sets lg, 11 and |, be as defined above. With this
notation, we have that

0, ifi elg,
F () =21X g{()’(_), ifi elq, (33)
gxe, ifiels.

Observe that F cannot be regular at X when lg # . Among other things, this implies
that an error bound in terms of || F(-)|| could not have been obtained using the classical
results.

Obviously, the null-space of F’(X) is given by

i m| (g, h)=0,i¢€ I,
kerF(x)_{heR hi|=0,ieI2 . (34
By (33), it is further evident that
imF'(x) C span [€ i€ 11U l5). (35)

By the directional differentiability of F’, we have that for any h € R™

(PF'Y(%; hh = 0 <= (F))'(%; hhh e imF' (%) = (F/)'(x; hh=0 Vi € o,
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where the last implication follows from (35). Hence, by the definition of T,
T, Q:={heker F'®)|(F) (x:hh =0,i € lg} . (36)

Hence, a sufficient condition for 2-regularity of F at X is Q = {0}. Note that under the
assumption that

gi(X),i€l1, €,ielparelinearly independentin R™, (37

theinclusionsin (35) and (36) hold as equalities. In that case, the condition Q = {0} is
also necessary for 2-regularity of F at X. However, we point out that the linear indepen-
denceassumption (37) is not necessary for thereformulation of NCPto have 2-regularity
properties (see Example 1 below). On the other hand, it simplifies a comparison with
the b-regularity condition (27), which itself certainly subsumes (37).

By direct cal culations, weobtain thefollowing formulafor the directional derivatives
of F/():V—=RMi € lo:

(F) (% h) = 2(hi —min{0, (gf(%), h) + hi })g/ (%)
+2({g/(®), h) —min{0, (g/(x), h)+hi})€,
ielg, heRM

Using the latter formula, and taking also into account (34), it is easy to verify that

min{(g{ (%), h), hi} =0, i € o,
Q=1{heR™ (g, h)=0,ic¢€ly,
hy =0,i € lo.

It is now clear that the condition Q = {0}, which is sufficient for 2-regularity of F
at X, can be stated as follows: for any pair of index sets (A, B) suchthat AU B = I,
AN B = #, it holdsthat for h ¢ R™

(g, h)=0,h>=0,ieA
(g/(%).h)>=0,hi=0ieB
(g, h)=0i€l1
hi=0,i€l»

<— h=0. (38)

By direct comparison of (26) and (38), we concludethat the b-regularity of X always
implies 2-regularity of F at X. We have therefore established the following.

Proposition 1. LetV beaneighborhoodof apointXinR™, and supposethatg: V — R™
isdifferentiable on V with its derivative being Lipschitz continuouson V, and g istwice
differentiable at X.

If X isab-regular solution of NCP, then F is 2-regular at X.
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Combining Proposition 1 and Theorem 6, we obtain, as a corollary, a local error
bound for NCP in terms of ||F(-)|| under the assumption of b-regularity of x. We note
that this bound also follows from different considerations. Indeed, as discussed above,
an error bound under the assumption of b-regularity is known to hold in terms of the
natural residual ||S(-)||. Hence, it also holds in terms of any other residual whose local
growthrateisat |east of the same order. We refer the reader to [40], where somerelevant
comparisonscan befound. Inparticular, it holdsthat || F(x)[| /2 > ||S(x)| forall x € R™.
Hence, if X isb-regular then error bound (32) followsfrom (28) (but note that the sharper
bound (31) does not readily follow from (28)). In any case, we stress once again that
our general result (Theorem 6) is applicable beyond the case of b-regularity of X.

We could also state acorollary of Theorem 6, wherethe projector P isevaluated ex-
plicitly, at least under the assumption (37). Let Fy, 1,(-) and Fy,(-) denote the mappings
with components Fi (-), wherei € 17Ul andi € lg, respectively. Under the hypotheses
of Theorem 6, and the additional assumption (37), error bound (31) takes the form

IX — Xl < M(IIFi3, 1,01l + IFi()1Y2)  Vx e U. (39)

As before, the above bound can be replaced by a weaker bound (32), which does not
involve projectors.

The following two examples show that 2-regularity is indeed weaker than b-
regularity. The first example demonstrates that 2-regularity condition (30) can hold
even without the linear independence assumption (37), in which case b-regularity can-
not hold. The second exampleillustratesthat evenif thelinear independence assumption
(37) holds, it is till possible to have 2-regularity without b-regularity. The two exam-
plesthereforeindicate that 2-regularity isasignificantly lessrestrictive assumption than
b-regularity.

Example 1. Let m = 2 and consider NCP associated with the function

with a > 0 being any given number. Consider the point X = (0, &), which clearly is
a solution of NCP. Obviously, lo = {1}, 11 = {2}, 2 = ¥, and g,(X) = 0, so (37)
is violated. In particular, X is not a b-regular solution of NCP. Nevertheless, it is not
difficult to evaluate T, here. We have: F/(X) = 0, hence ker F/(X) = R?, Y; = {0},
Y, = R2, P istheidentity operator in R2. By direct computation, we obtain that

(F1) % h) = 4hy(hy —min{0, 2h1}), h e RZ.
Furthermore, F,(-) is smooth at X, and
F7(x)[h, h] =8ah3, heR%

It is now obviousthat (30) holds, and so F is 2-regular at X. It is further easy to see that
the error bound (32) is valid.

Note that error bound (28) using the natural residual S does not hold in this case.
Indeed, consider the sequence of points {x*}, where XX = O and x§ = a — 1/k, k =
1,2,....Then|xX — x| = 1/k, while |S(X¥) || = 1/K2.
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Before stating our second example, let us consider yet another characterization of
2-regularity (under the additional assumption (37)). Notice that (38) is equivalent to
saying that there exist no g € R™ such that the following system has a solution in
heR™

(9.h) >
(g%, h) 0, hi>0,i €A,
(g/(), h)>=0, hj =0,i € B,
(g, h)=0,i €y,
hi =0,i € ls.

By the Motzkin theorem of the alternatives|[26], the latter is equivalent to the following
system (in A, i) having asolution for all g € R™:

erurzx.g.(xw > omg®+ Y wie =q,

icA ie AUl ieBUI»
A >0, eAUB lo.

In other words,
R™ = cone(€' |i e A} + cone|g{(X)|i € B}
+ span{g{(®)]i € AU I1} +span{€/|i € BU I2}. (40)

Note that this is another way to see that b-regularity implies 2-regularity. Indeed, (27)
clearly guarantees (40), regardless of the conesin theright-hand side. On the other hand,
if b-regularity does not hold, the last two terms in (40) span a proper subspace of R™.
But it is still possible that the sum of this subspace and the cone given by the first two
terms in the right-hand side of (40), gives the whole space R™. The following example
illustrates this case.

Example 2. Let m = 2 and consider NCP associated with the function
900 = (X2, —x1), x€RZ

Clearly, x = (0, 0) isasolution of thisNCP. We havethat Io = {1, 2}, g;(X) = (0, —1),
and g5,(X) = (=1, 0). Since I1 = |2 = ¢, the linear independence assumption (37) is
setisfied. Teke A = {1} C lg, and consider the submatrix Gijj ,i, j € AU Iy, where
G is the Jacobian matrix of g at X. This submatrix consists of one element, which is
(97(X))1 = 0. Hence, X is not ab-regular solution.

However, F is2-regular at X. Indeed, under the condition (37) 2-regularity is equiva-
lent to (40). We have to consider the four possible casesin choosing index sets A and B.

If B={1,2},0r A= {12}, thenitiseasy to seethat span{€' | i € B} = R, or
span{g/(X) | i € A} = R?, respectively.

Consider now the case where A = {1}, B = {2}. In that case, we have

cone{(1, 0)} 4 cone{(—1, 0)} 4 span{(0, —1)} + span{(0, 1)} = R?,

and noticethat the conic part is crucial for the equality to hold.
Thecase A = {2}, B = {1} issimilar:

cone{(0, 1)} 4 cone{(0, —1)} + span{(—1, 0)} 4+ span{(1, 0)} = R2.
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Observethat gin Examples1 and 2isan analytic function, and so local error bounds
of some sort can also be obtained using the results of [23]. But note that in the setting of
this section 2-regularity of F at X obviously is not affected if we add to g any function
whichiszeroat x, and whosefirst two derivativesvanish at X. Now, if thisfunctionisnot
infinitely differentiable (say, the third derivative does not exist), thenitisnot analytic. If
we modify g in Examples 1 and 2 in thisway, all our results still apply, while the NCP
functionis no longer analytic.

4. Convergencerate of penalty methods

For the sake of simplicity, we shall again consider the finite-dimensional setting only.
Let V beanopensetinR", F : V — R™ be a given mapping. Consider an equality-
constrained optimization problem

minimize f(x)
subject to x € D,

where the (feasible) set D is defined in (1) and f : V — R is a given (objective)
function.

Similar to the standard exterior penalty framework [12,7,28], define the family of
functions

(41)

9up:V =R, gy )= () +alFX”, (42)

where @ > 0 isthe penaty parameter, and 8 > 0 is the power of the penalty function.
For simplicity, we shall assume g to be fixed. Consider the family of (unconstrained)
optimization problems

minimize gq, g(X)
subject to x € R",

and an associated trajectory of (possibly inexact) solutions of those problems. Specific-
ally, we assume that trgjectory x(-) : Ry — V satisfies the following conditions:

¥a, p(X) > @o, p(X(@)) Yo > Osufficiently large, (43)
X(a) > Xasa — +o0, (44)

where X isaloca solution of problem (41), (1). We note that property (43) is standard
in exterior penalty methods [28] (for example, it istrivialy satisfied if x(«) isaglobal
minimizer of ¢, g(X) over any set containing X). Condition (44) is anatural assumption
inthe context of estimating local rate of convergence of the algorithm. Some conditions
under which it holds can be found in [7, Proposition 2.2] ((44) is particularly easy to
guaranteeif solutions of (41), (1) areisolated).

We assume x(-) satisfying (43), (44) to be given, and our goal is to estimate the
rate of convergencein someway. Error bound (2) is the key for such an estimation. We
start with a general rate of convergenceresult, which perhaps should not be considered
conceptually original (although, we could not find it in this form in the literature). We
include it here to make precise the subsequent application of our error bound to obtain
a convergencerate result for apenalty method in the irregular case.
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Theorem 7. Let V bea neighborhood of a point X in R". Let afunction f : V — R be
Lipschitz continuouson V with aconstant| > 0, amapping F : V — R™ becontinuous
on 'V, and let X bealocal solution of problem (41), (1). Suppose further that there exist
a neighborhood U c V of X in R" and numbers M > 0 and y > 0 such that (2) is
satisfied.

Let x(-) : R+ — V beatrajectory of the penalty method defined by (42)—(44), with
B > 0fixed. Then the following statements hold.
(@) If By <1, then

X(a) € D, f(x(a)) = f(X) Va > 0sufficiently large. (45)
In particular, if X isan isolated local solution of problem (41), (1), then
X(a) =X Va > 0sufficientlylarge.

(b) If By > 1, then

(MIH)Av/(By—1)

0=< () — f(x(e) < UG-

YV« > 0 sufficiently large.

Proof. By the inclusion x € D, (43), (44) and (2), we obtain that for any « > 0
sufficiently large
f(%) = f(X) + || FX) |1
= ¢, p(X)
> o, p(X(@))
f(x(@)) + ol F(x(@) 1P
> f(X(@) + - (dist(x(@). D). (46)

Since F is continuous on V and X is finite-dimensional, there exists a (possibly not
unique) metric projection 7 p(X(«)) of x(«) on D. Furthermore, X € D and (44) imply
that

np(X(x)) > Xasa — +0o0.

Hence, as X isalocal solution of problem (41) and f is Lipschitz continuouson V, we
conclude that

f(X) — f(x(@) < f(rp(X(@))) — f(X(a))
<l dist(x(@), D). (47)

Combining (46) and (47), we further obtain
- o - 8 -
f(X) — f(X(@)) > W(f(x) — f(x(@)?” Va > Osufficiently large.  (48)
Define
A:={a>0]| f(X) # f(X(x))}.
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Relation (48), together with (46), imply that

B
0 < (f(x) — f(x(@))~1 < (M[T)V

Va e A sufficiently large. (49
Let By < 1. Then, by (44), theleft-hand side of (49) doesnot tendtoOasa — +oo,
while the right-hand side does. This means that A is necessarily bounded in that case,
i.e, f(x) = f(x(«)) for all o large enough. Furthermore, by the third equality in (46),
we have that f(X) — f(x(a)) > o F(x(«))||?, and it follows that x(«) is also feasible
whenever f(X) = f(x(«)). Assertion (a) is established.
Assertion (b) followsimmediately from (49) for « € A, anditistrivial fora ¢ A.
]

According to Theorem 7, decreasing parameter 8 increases the guaranteed conver-
gence rate of the penalty method (in fact, exact solution is obtained for all values of
B > 0 sufficiently small). On the other hand, decreasing B8 negatively affects smooth-
ness of the penalty function, which makes the problem less tractable numerically. The
estimate obtained in Theorem 7 gives an opportunity to find a compromise between the-
oretical rate of convergence of the method and numerical issues related to smoothness
properties of subproblems, provided y isavailable. Thisis precisely the case when there
are reasons to expect F to be regular or 2-regular at X.

We next discuss applications of Theorem 7 to problems with regular and 2-regular
constraints.

Assumethat F : V — RMisdifferentiableon V and regular at X, and its derivative
is continuous at X. Then Theorem 1 guarantees that error bound (2) holds with y = 1.
Hence, by Theorem 7, in that case

(@) If B <1, then (45) holds.
(b) If B > 1, then

(MHA/(B=D)

0 < f(x) — f(x(@)) < TV

Va > 0 sufficiently large.
Note that this result could also be obtained combining Theorem 7 with Theorem 4, as
the latter subsumes Theorem 1.

Consider now the 2-regular case. Specifically, assumethat F : V — R™M is differ-
entiable on V, its derivative is continuous at X, and the mapping PF’(-) is Lipschitz
continuous on V and B-differentiable at X, where P is the projector in R™ onto com-
plementary subspace of im F/(X) parallel to im F’(x). Assume that the mapping F is
2-regular at X (note that, by Remark 5, in the finite-dimensional case this is equivalent
to strong 2-regularity). Then Theorem 4 (recall also Remark 7) guarantees that error
bound (2) holdswith y = 2. Hence, by Theorem 7, we have that

(@) If B <1/2,then (45) holds.
(b) If B> 1/2,then
(M1)28/(2B=1)

0< f(x) — f(x(w) < T

Va > 0sufficiently large.
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Note that the case of 8 = 2 is of special interest as this is the smallest value of j
for which the penalty function is smooth, provided F is smooth. For this value of 8, in
the regular case we obtain the estimate with the term in the right-hand side of the order
O(a~1). Inthe 2-regular case, the term in the right-hand side is of the order O(«—1/3),
and this estimate cannot be improved, as illustrated by the following example.

Example3. Leen=m=1V =R,
fx)=x, FxX) =x% xeR,

and consider the point X = 0. It is easy to check that F is 2-regular at X. For every
a > 0, the penalty function ¢, » has unique critical point x(er) = —(4a)~1/3 (whichiis
in fact its global minimizer), and we havethat f(X) — f(x(e)) = (4a) /3.
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