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Abstract. We obtain local estimates of the distance to a set defined by equality constraints under assumptions
which are weaker than those previously used in the literature. Specifically, we assume that the constraints
mapping has a Lipschitzian derivative, and satisfies a certain 2-regularity condition at the point under consid-
eration. This setting directly subsumes the classical regular case and the twice differentiable 2-regular case,
for which error bounds are known, but it is significantly richer than either of these two cases. When applied to
a certain equation-based reformulation of the nonlinear complementarity problem, our results yield an error
bound under an assumption more general than b-regularity. The latter appears to be the weakest assumption
under which a local error bound for complementarity problems was previously available. We also discuss an
application of our results to the convergence rate analysis of the exterior penalty method for solving irregular
problems.

Key words. error bound – C1,1-mapping – 2-regularity – nonlinear complementarity problem – exterior
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1. Error bounds and their applications

Among the most important tools for theoretical and numerical treatment of nonlinear
operator equations, optimization problems, variational inequalities, and other related
problems, are the so-called error bounds, i.e., upper estimates of the distance to a given
set in terms of some residual function. We refer the reader to [31] for a survey of error
bounds and their applications. When the set is defined by functional constraints, a typical
residual function is some measure of violation of constraints at the given point. When
available, error bounds can often be used to obtain a constructive local description of
the set under consideration. This description, in turn, plays a central role in the theory
of optimality conditions. As another important application of error bounds, we mention
development, implementation, and convergence rate analysis of numerical methods for
solving optimization and related problems.

In this paper, we consider error bounds for sets given by equality constraints. How-
ever, it is worth to point out that this setting implicitly includes sets of more general
structure, namely those whose constraints can be (equivalently) reformulated into equa-
tions. One such example is solution set of the nonlinear complementarity problem,
which we shall study in Sect. 3.
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Let X and Y be Banach spaces, V be an open set in X, F : V → Y be a given
mapping, and consider the set

D = {x ∈ V | F(x) = 0}. (1)

We define the distance function from a point to a set in a usual way:

dist(x, D) = inf
ξ∈D

‖x − ξ‖, x ∈ X.

Given some point x̄ ∈ D, a local error bound is the following property:

dist(x, D) ≤ M‖F(x)‖1/γ ∀ x ∈ U, (2)

where M > 0 and γ > 0 are two constants, and U ⊂ V is a neighborhood of x̄, with
M, γ and U being independent of point x appearing in (2). In this paper, we shall also
obtain somewhat more general forms of error bounds, but they can be all reduced to the
form (2) (this reduction, however, may make them less accurate in certain situations).

In what follows, for a linear operator 	 : X → Y , ker	 = {x ∈ X | 	x = 0} is
its null space, and im	 = {y ∈ Y | y = 	x for some x ∈ X} is its image space. By
F−1(y) we shall denote the complete pre-image of an element y ∈ Y with respect to F,
namely

F−1(y) = {x ∈ V | F(x) = y} .
With this notation, F−1(F(x̄)) is the level surface of F passing through F(x̄).

It is well-known that a Lipschitzian error bound (namely, (2) with γ = 1) holds
under the assumption that F is smooth and regular at x̄, i.e.,

im F′(x̄) = Y. (3)

Specifically, the following result, sometimes referred to as Graves-Lyusternik Theorem,
is classical (e.g., see [15,9,2]).

Theorem 1. Let X and Y be Banach spaces, V be a neighborhood of a point x̄ in X.
Suppose further that the mapping F : V → Y is Fréchet-differentiable on V , its
derivative is continuous at x̄, and F is regular at x̄.

Then there exist a neighborhood U ⊂ V of x̄ in X and a constant M > 0 such that

dist(x, F−1(F(x̄))) ≤ M‖F(x) − F(x̄)‖ ∀ x ∈ U. (4)

In fact, under the regularity assumption (3), we could state a more general property
than the error bound given in Theorem 1. In [2], it is referred to as the pseudo-Lipschitzian
property, and it has been studied extensively in the literature in a variety of settings,
see [31] for some references.

Let us define the tangent cone to D at a point x̄ ∈ D as

TD(x̄) := {h ∈ X | dist(x̄ + th, D) = o(t), t ∈ R+}.
As an immediate application of the error bound given in Theorem 1, we mention the
Graves-Lyusternik theorem [15,9] describing the tangent subspace to a level surface of
a regular mapping.
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Theorem 2. Under the assumptions of Theorem 1, the following equality holds:

TF−1(F(x̄))(x̄) = ker F′(x̄).

The inclusion TF−1(F(x̄))(x̄) ⊂ ker F′(x̄) is standard, and holds without any regularity
assumptions. To see that the error bound (4) implies the opposite inclusion, it is enough
to take x = x̄+th, h ∈ ker F ′(x̄), t ∈ R+, employ the definition of the Fréchet derivative
in the right-hand side of (4), take into account that h ∈ ker F ′(x̄), and use the definition
of the tangent cone. Theorem 2 is an important tool for deriving necessary optimality
conditions for optimization problems with equality constraints.

When regularity condition (3) is not satisfied, the assertions of Theorems 1 and 2
do not hold in general. In particular, a Lipschitzian error bound is not necessarily valid.
This irregular case is the main issue under consideration in the present paper.

Without the regularity assumption (3), error bound (2) is known to hold when F is an
analytic function [23]. Compared to our results (see Theorem 4 and Remark 7), for error
bounds based on analytic functions the constant γ is in general unknown, except in the
quadratic case under a certain positivity condition, in which case γ = 2 (and, of course, in
the affine case with γ = 1). In Sect. 3, we explain that our results are of a rather different
nature than those for analytic functions. We also provide an example where our results
imply an error bound for complementarity problems with non-analytic functions. For the
case of twice Fréchet-differentiable F, certain error bounds were obtained in [5] under
the so-called 2-regularity condition, which is considerably weaker than (3) (see also [18,
19]). These results are directly subsumed in our development below, so we shall not
survey them here. In Sect. 2, we shall obtain error bounds in the considerably much more
general setting where F need not be twice Fréchet-differentiable, but its first Fréchet-
derivative is Lipschitz continuous near the point under consideration. This development
will use the new notion of 2-regularity under relaxed smoothness assumptions introduced
in [17]. We obtain error bounds under regularity/smoothness assumptions for which
no such results were previously available. Specifically, we prove an estimate which
subsumes (2) with at least γ = 2. As its corollary, we recover in the regular case
Theorem 1 (i.e., (2) with γ = 1), Theorem 2, and the generalization of the Graves-
Lyusternik theorem about the tangent cone for the 2-regular case. We emphasize that
our extension of error bound results is significant, as local structure of mappings in our
setting can be considerably more complicated than that of twice differentiable 2-regular
mappings or regular mappings (in the latter two cases the tangent cone to a level surface
is necessarily two-sided, but it need not be two-sided under our assumptions, see [17,
Example 2.1]). In this paper, the significance of the new notion of 2-regularity is further
demonstrated by an application to an equation-based reformulation of the nonlinear
complementarity problem (NCP). It is well-known that useful NCP reformulations are
neither twice differentiable nor regular in the classical sense (except possibly under
certain restrictive assumptions), and so the theory previously available is usually not
directly applicable. In Sect. 3, we obtain a new error bound for NCP under a 2-regularity
condition, which we show to be weaker than b-regularity (we show that b-regularity
implies our condition, and that the converse is not true). To our knowledge, b-regularity
is the weakest condition under which a local error bound for NCP had been known to
hold previously. As another application of our results, in Sect. 4 we discuss exterior
penalty methods and their convergence rate analysis.
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Let us introduce some more notation. By B(x, r)we denote the open ball with center
x ∈ X and radius r > 0, and by 2X we denote the set of all subsets of X. We use the
notationH(D1, D2) for Hausdorff distance between two sets D1, D2 ⊂ X:

H(D1, D2) = max

{
sup

x∈D1

dist(x, D2), sup
x∈D2

dist(x, D1)

}
.

We shall use balls and distances only in space X, so there would be no confusion. By IY ,
we denote the identity operator in Y . Let L(X, Y ) be the space of continuous linear op-
erators from X to Y , normed in the usual manner. For a linear operator	 ∈ L(X, Y ), we
denote by 	−1 its right inverse, that is 	−1 : Y → 2X ,	−1(y) = {x ∈ X | 	x = y}.
Furthermore, we shall use the “norm”

‖	−1‖ = sup
y∈Y,

‖y‖=1

dist(0, 	−1(y)) .

Note that when 	 is one-to-one, ‖	−1‖ can be considered as the usual norm of the
element 	−1 in the space L(Y, X). We denote span {x1 , . . . , xk} := {x ∈ X | x =∑k

i=1 ti xi , ti ∈ R} and cone {x1 , . . . , xk} := {x ∈ X | x = ∑k
i=1 ti xi , ti ∈ R+}. For a

(finite-dimensional) vector x, xi will denote its i-th component.
We complete this section with the following fact which will be used in the subsequent

analysis.

Theorem 3 (Set-Valued Contracting Mapping Principle [15]).
Let X be a Banach space, x0 ∈ X and r > 0. Suppose that 
 : B(x0, r) → 2X is a
(set-valued) mapping such that 
(ξ) is nonempty and closed for every ξ ∈ B(x0, r).
Assume further that there exists a constant θ ∈ (0, 1) such that

H(
(ξ1) ,
(ξ2)) ≤ θ‖ξ1 − ξ2‖ ∀ ξ1, ξ2 ∈ B(x0, r),

dist(x0,
(x0)) < (1 − θ)r.

Then there exists some ψ ∈ B(x0, r) such that

ψ ∈ 
(ψ) , ‖ψ − x0‖ ≤ 2

1 − θ
dist(x0,
(x0)).

Note that in [15], Theorem 3 was established in the more general setting of a complete
metric space, but we do not need this level of generality in the present paper.

2. 2-regularity. Error bounds for 2-regular mappings

Throughout this section we assume the following basic hypotheses.

(H1) X and Y are Banach spaces, V is a neighborhood of a point x̄ in X.
(H2) F : V → Y is Fréchet-differentiable on V , and the mapping F ′ : V → L(X, Y )

is continuous at x̄.
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(H3) The subspace Y1 = im F′(x̄) is closed and has a closed complementary subspace
Y2 in Y .

(H4) Let P be the projector in Y onto Y2 parallel to Y1. Then the mapping PF ′ : V →
L(X, Y ) is Lipschitz continuous on V with a constant L > 0.

Under the assumption (H3), projector P is continuous, and so is IY − P, which is the
projector in Y onto Y1 parallel to Y2. Note that if Y is a Hilbert space and Y1 is closed then
Y1 always has a closed complementary subspace in Y (see hypothesis (H3)). Hypothesis
(H4) always holds when F ′(·) is Lipschitz continuous on V . Note that in the regular
case hypotheses (H3) and (H4) are trivially satisfied (Y1 = Y ,Y2 = {0} , P = 0).

Our analysis will be based on the usual notion of directional derivatives of the
mapping PF ′(·) at the point x̄. Given some direction h ∈ X, the directional derivative
of PF′(·) at x̄ with respect to h is defined by

(PF′)′(x̄; h) = lim
t→0+

PF′(x̄ + th)− PF′(x̄)
t

.

This derivative always exists whenever the corresponding directional derivative of the
mapping F ′(·) exists, but not vice versa: PF′(·) can be directionally differentiable even
if F′(·) is not.

The following definitions are direct extensions of those previously introduced in
the twice differentiable case, see [3–6,18,1,16,19]. If F is twice Fréchet-differentiable
at x̄, our definitions reduce to standard notions of 2-regularity theory. In particular,
all directional derivatives involved will be defined via second Fréchet derivatives; for
example, (PF′)′(x̄; h)ξ = PF′′(x̄)[h, ξ], h, ξ ∈ X. But we stress once again that
the setting (H1)–(H4) is significantly different from the case of twice differentiability.
Moreover, it is also richer when it comes to applications (more on this in Sect. 3).

If (PF′)′(x̄; h) exists, then it is an element ofL(X, Y ), and so the following operator
can be defined:

�2(h) ∈ L(X, Y ), �2(h)ξ := F′(x̄)ξ + (PF′)′(x̄; h)ξ. (5)

This operator is central in the theory of 2-regularity. In this paper, its role will become
clear in Theorem 4, which is our main error bound result.

Let PF′(·) be directionally differentiable at x̄ with respect to an element h ∈ X.

Definition 1. The mapping F is referred to as 2-regular at the point x̄ with respect to
h ∈ X, if im�2(h) = Y.

Remark 1. It is easy to see that if F is 2-regular at x̄ with respect to some h ∈ X, then
it is 2-regular with respect to th for all t > 0 (this fact is based on positive homogeneity
of the directional derivative with respect to a direction).

Remark 2. Consider the case when the mapping F is regular at the point x̄, i.e., when
(3) holds. Then Y1 = Y , Y2 = {0}, P = 0, �2(h) = F′(x̄), and hence, F is 2-regular
with respect to every h ∈ X.

The next notion is well-defined provided PF ′(·) is directionally differentiable at x̄
with respect to every direction in ker F ′(x̄).
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Definition 2. The mapping F is said to be 2-regular at the point x̄ if it is 2-regular at
this point with respect to every element h ∈ T2 \ {0}, where

T2 = {h ∈ ker F′(x̄) | (PF′)′(x̄; h)h = 0}.
The cone T2 and 2-regularity play a central role in the description of tangent direc-

tions to a level surface of a nonlinear mapping (see Theorem 5).

Remark 3. If F is regular at x̄, then P = 0 and so PF ′(·) is certainly (directionally)
differentiable. Taking further into account Remark 2, it follows that if F is regular at x̄,
then it is also 2-regular at x̄. Note that in the regular case T2 = ker F′(x̄).

Finally, the following definition requires directional differentiability of PF ′(·) at x̄
with respect to every direction in X.

Definition 3. The mapping F is referred to as strongly 2-regular at the point x̄ if there
exists ν > 0 such that

sup
h∈T ν2 ,‖h‖=1

∥∥(�2(h))
−1

∥∥ <∞,

where

T ν2 = {h ∈ X | ‖F′(x̄)h‖ ≤ ν, ‖(PF′)′(x̄; h)h‖ ≤ ν}.
Remark 4. Clearly, if the mapping F is regular at the point x̄, then F is strongly 2-
regular at x̄. This follows from the fact that a surjective continuous linear operator from
one Banach space to another has a bounded (set-valued) right inverse in the sense of the
“norm” defined in Sect. 1.

Remark 5. Note that T2 = T 0
2 ⊂ T ν2 for all ν ≥ 0. In the case of a finite-dimensional X,

strong 2-regularity at x̄ is equivalent to 2-regularity at x̄. To see this, one has to recall
the following facts.

1. Under the hypothesis (H4) the mapping (PF ′)′(x̄; ·) : X → L(X, Y ) is continuous
on X (in fact, this mapping is even Lipschitzian, see [34, Lemma 2.1]).

2. A small linear perturbation of a surjective linear operator results in a small pertur-
bation of the norm of its right inverse [18, Theorem 2, p. 26].

3. The unit sphere in a finite-dimensional space is compact.

In general Banach spaces, strong 2-regularity is somewhat stronger than 2-regularity
(see [6,18,16,19] for some examples and more detailed discussion of this issue).

In the sequel, the following useful notion will also be involved. The mapping PF ′(·)
is referred to as B-differentiable at the point x̄ with respect to a cone K in X if it has
a directional derivative at x̄ with respect to every direction h ∈ K , and

PF′(x̄ + h) = PF′(x̄)+ (PF′)′(x̄; h)+ o(‖h‖), h ∈ (V − x̄) ∩ K.

We call PF′(·) B-differentiable at x̄, if it is B-differentiable at this point with respect
to the cone K = X. The notion of B-differentiability (with respect to K = X) was
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introduced in [35]. In the finite-dimensional setting, a mapping which is Lipschitzian
in a neighborhood of a point (recall hypothesis (H4)) is B-differentiable at this point
if, and only if, it is directionally differentiable at this point with respect to any direc-
tion [36].

Before we proceed, two technical lemmas on the properties of mappings with B-
differentiable derivatives are in order.

Lemma 1. Assume that the basic hypotheses (H1)–(H4) are satisfied. Suppose further
that the mapping PF ′(·) is B-differentiable at the point x̄ with respect to a cone K in X.
Then for any ε > 0 there exists a constant δ > 0 such that

B(x̄, δ) ⊂ V,

and for all x ∈ B(x̄, δ) ∩ (x̄ + K ), it holds that

‖(IY − P)(F(x)− F(x̄))− F′(x̄)(x − x̄)‖ ≤ ε‖x − x̄‖,
∥∥∥∥P(F(x)− F(x̄))− 1

2
(PF′)′(x̄; x − x̄)(x − x̄)

∥∥∥∥ ≤ ε‖x − x̄‖2.

Proof. Using the Mean-Value Theorem and the equality PF ′(x̄) = 0, we have that

‖(IY − P)(F(x)− F(x̄))− F′(x̄)(x − x̄)‖ = o(‖x − x̄‖) , (6)

from which follows the first assertion of the lemma.
Using additionally the Newton–Leibniz formula, for all x ∈ (x̄ + K ) sufficiently

close to x̄, we have that

∥∥∥∥P(F(x)− F(x̄))− 1

2
(PF′)′(x̄; x − x̄)(x − x̄)

∥∥∥∥
=

∥∥∥∥
∫ 1

0
P(F′(x̄ + τ(x − x̄))− F′(x̄))(x − x̄)dτ − 1

2
(PF′)′(x̄; x − x̄)(x − x̄)

∥∥∥∥
=

∥∥∥∥
∫ 1

0
(PF′)′(x̄; τ(x − x̄))(x − x̄)dτ − 1

2
(PF′)′(x̄; x − x̄)(x − x̄)

∥∥∥∥ + o(‖x − x̄‖2)

= o(‖x − x̄‖2) , (7)

where the second equality follows from the B-differentiability of PF ′(·) at x̄ with respect
to K , and the last follows from the fact that the mapping (PF ′)′(x̄; ·) : K → L(X, Y )
is positively homogeneous. Relation (7) establishes the second assertion.

��

Remark 6. Obviously, for x �= x̄ one can guarantee strict inequalities in the assertions
of Lemma 1.
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Lemma 2. Under the assumptions of Lemma 1, for any ε > 0 there exist two constants
δ > 0 and γ > 0 such that

B(x̄, (1 + γ)δ) ⊂ V,

and for all x ∈ B(x̄, δ) ∩ (x̄ + K ) and ξ1, ξ2 ∈ B(0, γ‖x − x̄‖), it holds that

∥∥(IY − P)(F(x + ξ1)− F(x + ξ2))− F′(x̄)(ξ1 − ξ2)
∥∥ ≤ ε‖ξ1 − ξ2‖,

‖P(F(x + ξ1)− F(x + ξ2))− (PF′)′(x̄; x − x̄)(ξ1 − ξ2)‖ ≤ ε‖x − x̄‖‖ξ1 − ξ2‖.

Proof. The argument is analogous to Lemma 1.
��

In Theorem 4, we shall need the following regularity assumption. Assuming PF ′(·)
is directionally differentiable at x̄ with respect to every direction in some cone K in X,

∃ ν > 0 such that sup
h∈K ν

2 ,‖h‖=1

∥∥(�2(h))
−1

∥∥ < ∞, (8)

where

Kν
2 = {h ∈ K | ‖F′(x̄)h‖ ≤ ν, ‖(PF′)′(x̄; h)h‖ ≤ ν}.

Note that for K = X this condition is precisely strong 2-regularity of F at x̄ introduced in
Definition 3. In the case of finite-dimensional X, this is further equivalent to 2-regularity
of F at x̄ (recall Remark 5). Another useful observation is that if F is regular at x̄, (8) is
clearly satisfied for K = X with any ν > 0 (recall Remark 4).

The following is our main result. After the proof, in Remark 7, we shall discuss its
relation to the more standard form of error bounds, such as (2).

Theorem 4. Assume that the basic hypotheses (H1)–(H4) are satisfied. Suppose further
that the mapping PF ′(·) is B-differentiable at the point x̄ with respect to a cone K in X,
and that the regularity condition (8) is satisfied.

Then there exist a neighborhood U ⊂ V of x̄ in X and a constant M > 0 such that
for all x ∈ (U ∩ (x̄ + K )) \ {x̄} it holds that

dist(x, F−1(F(x̄))) ≤ M

(
‖(IY − P)(F(x)− F(x̄))‖ + ‖P(F(x)− F(x̄))‖

‖x − x̄‖
)
. (9)

In particular, if K = X (in which case (8) means that F is strongly 2-regular at x̄),
then (9) holds for all x ∈ U \ {x̄}.

Proof. Let ρ > 0 be such that B(x̄, 2ρ) ⊂ V . Fix an arbitrary θ ∈ (0, 1), and denote
the constant in the left-hand side of (8) by C, C > 0. Applying Lemma 2, we conclude
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that there exist two constants δ ∈ (0, ρ] and γ ∈ (0, ρ/δ] such that for all x ∈
B(x̄, δ) ∩ (x̄ + K ) and for all ξ1, ξ2 ∈ B(0, γ‖x − x̄‖) the following relations hold:

∥∥(IY − P)(F(x + ξ1)− F(x + ξ2))− F′(x̄)(ξ1 − ξ2)
∥∥ ≤ θ

2C
‖ξ1 − ξ2‖, (10)

‖P(F(x + ξ1)− F(x + ξ2))− (PF′)′(x̄; x − x̄)(ξ1 − ξ2)‖ ≤ θ

2C
‖x − x̄‖‖ξ1 − ξ2‖.

(11)

Next, choose

ν̄ ∈
(

0, min

{
ν,
(1 − θ)γ

4C

})
. (12)

First, we consider the case when

x − x̄

‖x − x̄‖ ∈ K ν̄
2 . (13)

Define r(x) = γ‖x − x̄‖, x ∈ B(x̄, δ). According to Lemma 1, Remark 6, and (12), there
exists a neighborhood U ⊂ B(x̄, δ) of x̄ in X such that for all x ∈ (U ∩ (x̄ + K )) \ {x̄},
we have that

‖(IY − P)(F(x)− F(x̄))‖ < 1 − θ

2C
r(x), (14)

‖P(F(x)− F(x̄))‖ < 1 − θ

2C
‖x − x̄‖r(x). (15)

For each x ∈ U , define the set-valued mapping


x : B(0, r(x)) → 2X , 
x(ξ) = ξ − (�2(x − x̄))−1(F(x + ξ)− F(x̄)).

For all x ∈ U \ {x̄} satisfying (13), by (8) and (12) (recall also Remark 1), it holds that


x(ξ) �= ∅ ∀ ξ ∈ B(0, r(x)). (16)

In the case of (13), we shall prove our assertion by applying the set-valued contracting
mapping principle (i.e., Theorem 3) to the mapping defined above. To apply Theorem 3,
we have to estimate the (Hausdorff) distance between 
x(ξ

1) and 
x(ξ
2) for each

x ∈ U \ {x̄} satisfying (13) and each ξ1, ξ2 ∈ B(0, r(x)). By the definition, we have
that

η ∈ 
x(ξ) ⇔ �2(x − x̄)η = �2(x − x̄)ξ − F(x + ξ)+ F(x̄).

In particular, for each fixed ξ ∈ B(0, r(x)), 
x(ξ) is a (nonempty, by (16)) affine set
parallel to the subspace ker�2(x − x̄).

For any xi ∈ 
x(ξ
i), i = 1, 2, we have that

�2(x − x̄)(x1 − x2) = �2(x − x̄)(ξ1 − ξ2)− F(x + ξ1)+ F(x + ξ2). (17)
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Observe further that by the definition (5) of �2, for any ξ ∈ X and t > 0, we have that

�2(t(x − x̄))ξ = F′(x̄)ξ + (PF′)′(x̄; t(x − x̄))ξ

= F′(x̄)ξ + t(PF′)′(x̄; x − x̄)ξ.

In particular, multiplication of x − x̄ does not affect the component in Y1 = im F′(x̄),
while the component in Y2 is positively homogenuous. Using this observation and (17),
we have that

�2

(
x − x̄

‖x − x̄‖
)
(x1 − x2) = �2

(
x − x̄

‖x − x̄‖
)
(ξ1 − ξ2)

−(IY − P)(F(x + ξ1)− F(x + ξ2))

−‖x − x̄‖−1 P(F(x + ξ1)− F(x + ξ2)).

Since 
x(ξ
1) and 
x(ξ

2) are two parallel affine sets, we obtain that

H(
x(ξ
1), 
x(ξ

2)) = inf
xi∈
x(ξ

i),
i=1, 2

‖x1 − x2‖

= inf

{
‖ξ‖

∣∣∣∣ ξ ∈ X, �2

(
x − x̄

‖x − x̄‖
)
ξ = �2

(
x − x̄

‖x − x̄‖
)
(ξ1 − ξ2)

− (IY − P)(F(x + ξ1)− F(x + ξ2))

− ‖x − x̄‖−1 P(F(x + ξ1)− F(x + ξ2))

}
≤ C

(∥∥(IY − P)(F(x + ξ1)− F(x + ξ2))− F′(x̄)(ξ1 − ξ2)
∥∥

+‖x − x̄‖−1‖P(F(x + ξ1)− F(x + ξ2))− (PF′)′(x̄; x − x̄)(ξ1 − ξ2)‖)
≤ θ‖ξ1 − ξ2‖, (18)

where the first inequality follows from (8), and the last inequality follows from (10) and
(11).

Similarly, from (14) and (15), it follows that for all x ∈ U \ {x̄} satisfying (13) the
following relations hold:

dist(0, 
x(0)) = inf
{
‖ξ‖

∣∣∣∣ ξ ∈ X, �2

(
x − x̄

‖x − x̄‖
)
ξ = (IY − P)(F(x)− F(x̄))

+ ‖x − x̄‖−1(P(F(x)− F(x̄))

}
≤ C(‖(IY − P)(F(x)− F(x̄))‖ + ‖x − x̄‖−1‖P(F(x)− F(x̄))‖)
< (1 − θ)r(x). (19)

Relations (18) and (19) (also taking into account (16)), imply that for all x ∈ U \ {x̄}
satisfying (13) the mapping
x satisfies in B(0, r(x)) all the assumptions of Theorem 3.
Therefore, for each x ∈ U \ {x̄} satisfying (13), 
x has a fixed point in B(0, r(x)).
Specifically, there exists an element ψ(x) ∈ B(0, r(x)) such that

ψ(x) ∈ 
x(ψ(x)), ‖ψ(x)‖ ≤ 2

1 − θ
dist(0, 
x(0)).
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By the definition of 
x , it now follows that

F(x + ψ(x)) = F(x̄), (20)

and, using the next to last inequality in (19),

‖ψ(x)‖ ≤ 2C

1 − θ

(‖(IY − P)(F(x)− F(x̄))‖ + ‖x − x̄‖−1‖P(F(x)− F(x̄))‖). (21)

Obviously, (20) and (21) imply the estimate (9) with M = 2(1 − θ)−1C (for those
x ∈ (U ∩ (x̄ + K )) \ {x̄} that satisfy (13)).

Next we turn our attention to the second case, namely when x ∈ (V ∩ (x̄ + K ))\ {x̄}
is sufficiently close to x̄ and

x − x̄

‖x − x̄‖ �∈ K ν̄
2 . (22)

Using (6) and (7), (22) implies that one of the following two relations must hold:

‖(IY − P)(F(x)− F(x̄))‖ = ‖F′(x̄)(x − x̄)‖ + o(‖x − x̄‖)
> ν̄‖x − x̄‖ + o(‖x − x̄‖),

or

‖P(F(x)− F(x̄))‖ = 1

2
‖(PF′)′(x̄; x − x̄)(x − x̄)‖ + o(‖x − x̄‖2)

>
ν̄

2
‖x − x̄‖2 + o(‖x − x̄‖2).

Hence,

‖(IY − P)(F(x)− F(x̄))‖ + ‖x − x̄‖−1‖P(F(x)− F(x̄))‖ > ν̄

2
‖x − x̄‖ + o(‖x − x̄‖),

and the desired estimate (9) is now obvious, as x̄ ∈ F−1(F(x̄)). In particular, we have
proved that for any M ∈ (2/ν̄ ,+∞) there exists a neighborhood U ⊂ V of x̄ in X such
that (9) holds under the additional assumption (22).

Combining the two cases (13) and (22) completes the proof.
��

Note that in the regular case, because of Remark 4 and since P = 0, Theorem 4
reduces to the classical error bound result given by Theorem 1.

Remark 7. The estimate (9) in Theorem 4 implies the following error bound (possibly
with different M and U), which is in general somewhat weaker but may be more
convenient in applications:

dist(x, F−1(F(x̄))) ≤ M
(‖(IY − P)(F(x)− F(x̄))‖ + ‖P(F(x)− F(x̄))‖1/2)

∀ x ∈ U ∩ (x̄ + K ) . (23)

To verify that (23) follows from (9), denote a := dist(x, F−1(F(x̄))), b := M‖(IY − P)
(F(x) − F(x̄))‖, and c := M‖P(F(x) − F(x̄))‖. Since ‖x − x̄‖−1 ≤ a−1, from (9) we
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obtain that a ≤ b+c/a. Resolving the quadratic inequality in a, namely a2−ba−c ≤ 0,
we obtain that a ≤ b/2 + √

b2/4 + c ≤ b + √
c, from which the bound (23) follows,

recalling definitions of the quantities involved.
To see that bound (23) can be weaker than (9), consider the case when x̄ is not an

isolated point of the set F−1(F(x̄)). Then dist(x, F−1(F(x̄))) can tend to zero without
‖x − x̄‖ tending to zero, in which case (9) gives a linear error bound, while (23) contains
also a term of order 1/2. In the case when x̄ is an isolated point of F−1(F(x̄)), the two
error bounds can be regarded as equivalent.

Clearly, error bound (23) can be further simplified as follows:

dist(x, F−1(F(x̄))) ≤ M‖F(x) − F(x̄)‖1/2 ∀ x ∈ U ∩ (x̄ + K ). (24)

However, the latter bound is, in turn, weaker than (23). When K = X and F(x̄) = 0, we
obtain a bound in the form (2) with γ = 2.

Applying Theorem 4 with the cone K = {th | t ∈ R+}, h ∈ X, we can establish
the following generalization of the Graves-Lyusternik theorem describing the tangent
directions to a level surface of a nonlinear mapping. This theorem was first obtained
in [17] using another approach, not based on error bounds.

Theorem 5. Assume that the basic hypotheses (H1)–(H4) are satisfied, and that the
mapping PF ′(·) has the directional derivative at the point x̄ with respect to a direction
h ∈ X.

Then the following statements hold.

(a) If h ∈ TF−1(F(x̄))(x̄), then h ∈ ker F ′(x̄) and (PF ′)′(x̄; h)h = 0.
(b) If h ∈ ker F ′(x̄) and (PF ′)′(x̄; h)h = 0, and the mapping F is 2-regular at x̄ with

respect to h, then h ∈ TF−1(F(x̄))(x̄).

In particular, if PF′(·) is directionally differentiable at x̄ with respect to every direction
in ker F′(x̄), and the mapping F is 2-regular at x̄, then

TF−1(F(x̄))(x̄) = T2.

Proof. The proof of the necessary conditions of tangency (part (a)) is quite straight-
forward, and can be found in [17]. Sufficient conditions of tangency (part (b)) follow
immediately from Theorem 4 (specifically, error bound (23)), Lemma 1, and the defin-
ition of the tangent cone.

��
By Remark 3, in the regular case we have that T2 = ker F′(x̄), and so Theorem 5

takes the form of the classical Graves-Lyusternik theorem describing the tangent sub-
space (Theorem 2). Under the assumptions of twice Fréchet-differentiability of F at x̄,
Theorem 5 was proved in [39] (for the special case when F ′(x̄) = 0), and in [3] (without
the latter assumption). Some earlier version of this result under even stronger smooth-
ness assumptions can be found in [24]. For other related material see also [38,8,4–6,
18,1,16,19].

Theorem 5 can be used to derive optimality conditions for 2-regular problems,
including a special form of primal-dual conditions. We refer the reader to [17], where also
an application to optimality conditions for mathematical programs with complementarity
constraints is discussed.
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3. A new error bound for the nonlinear complementarity problem

In this section, as an application of our general results, we obtain a new error bound
for the classical nonlinear complementarity problem [30,11] (NCP). Given a (smooth)
mapping g : Rm → Rm , this problem consists of finding a point x ∈ Rm such that

g(x) ≥ 0, x ≥ 0, 〈g(x), x〉 = 0. (25)

While there exists a wide range of approaches to solving the NCP, one of the most
successful and widely used is reformulation of the NCP as a system of equations or
an optimization problem, see [27,25,20,13,10,37], the collection [14], and references
therein. Among other things, such reformulations often lead to error bounds for NCP
(i.e., estimates of the distance to its solution set) in terms of the objective function in
optimization-based reformulations, or in terms of the equation residual in equation-based
reformulations [13,31].

To our knowledge, the weakest condition under which a local error bound for NCP
was previously available is b-regularity, introduced in [32]. Actually, there appears to be
no explicit reference in the literature to an error bound for NCP under this assumption.
However, the result is known to experts in the field, and it follows readily from some
well-known facts, which we shall cite below.

Let x̄ be a solution of the NCP, and define the three index sets

I0 := {i = 1, . . . , m | gi(x̄) = 0, x̄i = 0},
I1 := {i = 1, . . . , m | gi(x̄) = 0, x̄i > 0},
I2 := {i = 1, . . . , m | gi(x̄) > 0, x̄i = 0}.

Definition 4. A solution x̄ of NCP is called b-regular, if for every A ⊂ I0 the submatrix
comprised by elements Gi j , i, j ∈ A ∪ I1, is nonsingular, where G is the Jacobian
matrix of g at x̄.

By direct observation, it is easy to check that Definition 4 can be equivalently stated
in the following form (which will be more convenient for our purposes): for any pair
(A, B) of index sets such that A ∪ B = I0, A ∩ B = ∅, it holds that for h ∈ Rm

〈g′
i(x̄), h〉 = 0, i ∈ A ∪ I1

hi = 0, i ∈ B ∪ I2

}
⇐⇒ h = 0 . (26)

Or equivalently,

g′
i(x̄) , i ∈ A ∪ I1 , ei , i ∈ B ∪ I2 are linearly independent in Rm , (27)

where e1, . . . em is the standard basis in Rm , and the index sets A and B vary as specified
above.

If x̄ is a b-regular solution of NCP, then it is known that it is locally unique.
Furthermore, the norm of the natural residual

S : Rm → Rm, Si(x) = min{xi, gi(x)}, i = 1, . . . , m,
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provides a local error bound: there exist a constant M > 0 and a neighborhood U of x̄
such that

‖x − x̄‖ ≤ M‖S(x)‖ ∀ x ∈ U. (28)

This error bound follows from the following facts.

1. Let Q(x̄) = 0, and suppose that Q is semismooth [29,34] at x̄, and x̄ is BD-regular
(as defined in [34]). Then the equation residual provides a local error bound [33,
Proposition 3], i.e., ‖x − x̄‖ ≤ M‖Q(x)‖ for all x in some neighborhood of x̄ and
some M > 0.

2. If x̄ is a b-regular solution of NCP, then x̄ is a BD-regular solution of S(x) = 0 [21,
Proposition 3.4](see also [22, Proposition 2.10]).

3. If g(·) is continuously differentiable then the mapping S(·) is semismooth (e.g.,
see [22, Proposition 2.7]).

In this section, we shall obtain an error bound for NCP under an assumption weaker
than b-regularity. Specifically, we shall derive an error bound using the 2-regularity
condition studied in Sect. 2, and show that it is implied by b-regularity, but not vice
versa. Our error bound will be based on the following C 1, 1-equation-based reformulation
of NCP. Define the mapping

F : Rm → Rm, Fi(x) = 2gi(x)xi − (min{0, gi(x)+ xi})2, i = 1, . . . , m.

It is known [20], and easy to check, that solution set of NCP coincides with the set

D = {x ∈ Rm | F(x) = 0}. (29)

We believe that our analysis can also be applied to some other appropriate C1, 1 refor-
mulations, such as in [27,20], but we shall consider only one of them for the clarity of
presentation.

We assume that g is differentiable on some neighborhood V of x̄ in Rm , its derivative
is Lipschitzian on V , and g is twice differentiable at x̄. Then it is easy to see that F
satisfies all the smoothness assumptions of Theorem 4 (with K = Rm). Hence, an
error bound for NCP in terms of the residual function ‖F(·)‖ follows immediately
from Theorem 4, whenever F is 2-regular at x̄ (recall that in the finite-dimensional
setting 2-regularity is equivalent to strong 2-regularity). It remains to understand what
2-regularity means in the context of this section. Let P and T2 be as defined in Sect. 2.
Recall also Definition 2 and (5). Observe that if h ∈ T2, then necessarily h ∈ ker�2(h)
(this follows directly from the definitions). Since in the case under consideration the
linear operator �2(h) is from Rm to Rm , if h ∈ T2 and h �= 0 then ker�2(h) �= {0},
and hence, im�2(h) �= Rm . It follows that F cannot be 2-regular with respect to any
h ∈ T2 \ {0}. On the other hand, if

T2 = {0}, (30)

then Definition 2 of 2-regularity is always (trivially) satisfied. Hence, the mapping F
under consideration is 2-regular at x̄ if, and only if, (30) holds.

We are now ready to state our error bound for NCP. Afterwards, we shall compare
our new regularity condition (30) with the condition of b-regularity defined above. In
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particular, we shall establish that the former implies the latter, and that the converse is
not true. Some examples will be given to illustrate those facts.

Note that if (30) holds then x̄ is an isolated point of the set D (this follows from
Lemma 1 and compactness property of the unit sphere in Rm). Applying now Theorem 4
(see also Remark 7), we readily obtain the following error bound.

Theorem 6. Let V be a neighborhood of a point x̄ in Rm, which is a solution of NCP.
Let g : V → Rm be differentiable on V , its derivative be Lipschitz continuous on V , and
let g be twice differentiable at x̄. Suppose further that F is 2-regular at x̄ (i.e., condition
(30) is satisfied).

Then there exist a neighborhood U of x̄ in Rm and a number M > 0 such that

‖x − x̄‖ ≤ M(‖(I − P)F(x)‖ + ‖PF(x)‖1/2) ∀ x ∈ U. (31)

Note that according to Remark 7, we can replace estimate (31) by a weaker one:

‖x − x̄‖ ≤ M‖F(x)‖1/2 ∀ x ∈ U. (32)

We proceed to establish the relationship between 2-regularity of F at x̄ and b-
regularity.

The first derivative of F is given by

F′
i (x) = 2

(
xi g

′
i(x)+ gi(x)e

i − min{0, gi(x)+ xi}
(
g′

i(x)+ ei)),
i = 1, . . . , m, x ∈ V,

where e1, . . . em is again the standard basis in Rm . As before, let x̄ be a solution of NCP
(equivalently, x̄ ∈ D), and let the index sets I0 , I1 and I2 be as defined above. With this
notation, we have that

F′
i (x̄) = 2




0, if i ∈ I0,

x̄i g′
i(x̄), if i ∈ I1,

gi(x̄)ei , if i ∈ I2.

(33)

Observe that F cannot be regular at x̄ when I0 �= ∅. Among other things, this implies
that an error bound in terms of ‖F(·)‖ could not have been obtained using the classical
results.

Obviously, the null-space of F ′(x̄) is given by

ker F′(x̄) =
{

h ∈ Rm
∣∣∣∣
〈
g′

i(x̄), h
〉 = 0, i ∈ I1,

hi = 0, i ∈ I2

}
. (34)

By (33), it is further evident that

im F′(x̄) ⊂ span
{
ei | i ∈ I1 ∪ I2

}
. (35)

By the directional differentiability of F ′, we have that for any h ∈ Rm

(PF′)′(x̄; h)h = 0 ⇐⇒ (F′)′(x̄; h)h ∈ im F′(x̄) $⇒ (
F′

i

)′
(x̄; h)h = 0 ∀ i ∈ I0 ,
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where the last implication follows from (35). Hence, by the definition of T2,

T2 ⊂ Q := {
h ∈ ker F′(x̄)

∣∣(F′
i

)′
(x̄; h)h = 0 , i ∈ I0

}
. (36)

Hence, a sufficient condition for 2-regularity of F at x̄ is Q = {0}. Note that under the
assumption that

g′
i(x̄) , i ∈ I1 , ei , i ∈ I2 are linearly independent in Rm , (37)

the inclusions in (35) and (36) hold as equalities. In that case, the condition Q = {0} is
also necessary for 2-regularity of F at x̄. However, we point out that the linear indepen-
dence assumption (37) is not necessary for the reformulation of NCP to have 2-regularity
properties (see Example 1 below). On the other hand, it simplifies a comparison with
the b-regularity condition (27), which itself certainly subsumes (37).

By direct calculations, we obtain the following formula for the directional derivatives
of F′

i (·) : V → Rm , i ∈ I0:

(
F′

i

)′
(x̄; h) = 2

(
hi − min

{
0,

〈
g′

i(x̄), h
〉 + hi

})
g′

i(x̄)

+2
(〈

g′
i(x̄), h

〉 − min
{
0,

〈
g′

i(x̄), h
〉 + hi

})
ei,

i ∈ I0, h ∈ Rm .

Using the latter formula, and taking also into account (34), it is easy to verify that

Q =


h ∈ Rm

∣∣∣∣∣∣∣
min

{〈
g′

i(x̄), h
〉
, hi

} = 0, i ∈ I0,〈
g′

i(x̄), h
〉 = 0, i ∈ I1,

hi = 0, i ∈ I2.


 .

It is now clear that the condition Q = {0}, which is sufficient for 2-regularity of F
at x̄, can be stated as follows: for any pair of index sets (A, B) such that A ∪ B = I0,

A ∩ B = ∅, it holds that for h ∈ Rm

〈
g′

i(x̄), h
〉 = 0, hi ≥ 0, i ∈ A〈

g′
i(x̄), h

〉 ≥ 0, hi = 0, i ∈ B〈
g′

i(x̄), h
〉 = 0, i ∈ I1

hi = 0, i ∈ I2




⇐⇒ h = 0 . (38)

By direct comparison of (26) and (38), we conclude that the b-regularity of x̄ always
implies 2-regularity of F at x̄. We have therefore established the following.

Proposition 1. Let V be a neighborhood of a point x̄ in Rm, and suppose that g : V →Rm

is differentiable on V with its derivative being Lipschitz continuous on V , and g is twice
differentiable at x̄.

If x̄ is a b-regular solution of NCP, then F is 2-regular at x̄.
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Combining Proposition 1 and Theorem 6, we obtain, as a corollary, a local error
bound for NCP in terms of ‖F(·)‖ under the assumption of b-regularity of x̄. We note
that this bound also follows from different considerations. Indeed, as discussed above,
an error bound under the assumption of b-regularity is known to hold in terms of the
natural residual ‖S(·)‖. Hence, it also holds in terms of any other residual whose local
growth rate is at least of the same order. We refer the reader to [40], where some relevant
comparisons can be found. In particular, it holds that ‖F(x)‖1/2 ≥ ‖S(x)‖ for all x ∈ Rm .
Hence, if x̄ is b-regular then error bound (32) follows from (28) (but note that the sharper
bound (31) does not readily follow from (28)). In any case, we stress once again that
our general result (Theorem 6) is applicable beyond the case of b-regularity of x̄.

We could also state a corollary of Theorem 6, where the projector P is evaluated ex-
plicitly, at least under the assumption (37). Let FI1, I2(·) and FI0 (·) denote the mappings
with components Fi(·), where i ∈ I1 ∪ I2 and i ∈ I0, respectively. Under the hypotheses
of Theorem 6, and the additional assumption (37), error bound (31) takes the form

‖x − x̄‖ ≤ M
(‖FI1, I2(x)‖ + ‖FI0 (x)‖1/2) ∀ x ∈ U. (39)

As before, the above bound can be replaced by a weaker bound (32), which does not
involve projectors.

The following two examples show that 2-regularity is indeed weaker than b-
regularity. The first example demonstrates that 2-regularity condition (30) can hold
even without the linear independence assumption (37), in which case b-regularity can-
not hold. The second example illustrates that even if the linear independence assumption
(37) holds, it is still possible to have 2-regularity without b-regularity. The two exam-
ples therefore indicate that 2-regularity is a significantly less restrictive assumption than
b-regularity.

Example 1. Let m = 2 and consider NCP associated with the function

g(x) = (
x1, −(x2 − a)2

)
, x ∈ R2,

with a > 0 being any given number. Consider the point x̄ = (0, a), which clearly is
a solution of NCP. Obviously, I0 = {1}, I1 = {2}, I2 = ∅, and g′

2(x̄) = 0, so (37)
is violated. In particular, x̄ is not a b-regular solution of NCP. Nevertheless, it is not
difficult to evaluate T2 here. We have: F′(x̄) = 0, hence ker F ′(x̄) = R2, Y1 = {0},
Y2 = R2, P is the identity operator in R2. By direct computation, we obtain that(

F′
1

)′
(x̄; h) = 4h1(h1 − min{0, 2h1}), h ∈ R2.

Furthermore, F ′
2(·) is smooth at x̄, and

F′′
2 (x̄)[h, h] = 8ah2

2, h ∈ R2.

It is now obvious that (30) holds, and so F is 2-regular at x̄. It is further easy to see that
the error bound (32) is valid.

Note that error bound (28) using the natural residual S does not hold in this case.
Indeed, consider the sequence of points {xk}, where xk

1 = 0 and xk
2 = a − 1/k , k =

1, 2, . . . . Then ‖xk − x̄‖ = 1/k, while ‖S(xk)‖ = 1/k2.
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Before stating our second example, let us consider yet another characterization of
2-regularity (under the additional assumption (37)). Notice that (38) is equivalent to
saying that there exist no q ∈ Rm such that the following system has a solution in
h ∈ Rm :

〈q, h〉 > 0,〈
g′

i(x̄), h
〉 = 0, hi ≥ 0, i ∈ A,〈

g′
i(x̄), h

〉 ≥ 0, hi = 0, i ∈ B,〈
g′

i(x̄), h
〉 = 0, i ∈ I1,

hi = 0, i ∈ I2.

By the Motzkin theorem of the alternatives [26], the latter is equivalent to the following
system (in λ ,µ) having a solution for all q ∈ Rm :∑

i∈A
λi ei + ∑

i∈B
λi g′

i(x̄)+
∑

i∈A∪I1

µi g′
i(x̄)+

∑
i∈B∪I2

µiei = q,

λi ≥ 0 , i ∈ A ∪ B = I0.

In other words,

Rm = cone{ei | i ∈ A} + cone
{
g′

i(x̄)
∣∣i ∈ B

}
+ span

{
g′

i(x̄)
∣∣i ∈ A ∪ I1

} + span
{
ei

∣∣i ∈ B ∪ I2
}
. (40)

Note that this is another way to see that b-regularity implies 2-regularity. Indeed, (27)
clearly guarantees (40), regardless of the cones in the right-hand side. On the other hand,
if b-regularity does not hold, the last two terms in (40) span a proper subspace of Rm .
But it is still possible that the sum of this subspace and the cone given by the first two
terms in the right-hand side of (40), gives the whole space Rm . The following example
illustrates this case.

Example 2. Let m = 2 and consider NCP associated with the function

g(x) = (−x2, −x1), x ∈ R2.

Clearly, x̄ = (0, 0) is a solution of this NCP. We have that I0 = {1, 2}, g′
1(x̄) = (0,−1),

and g′
2(x̄) = (−1, 0). Since I1 = I2 = ∅, the linear independence assumption (37) is

satisfied. Take A = {1} ⊂ I0, and consider the submatrix Gi j , i, j ∈ A ∪ I1, where
G is the Jacobian matrix of g at x̄. This submatrix consists of one element, which is
(g′

1(x̄))1 = 0. Hence, x̄ is not a b-regular solution.
However, F is 2-regular at x̄. Indeed, under the condition (37) 2-regularity is equiva-

lent to (40). We have to consider the four possible cases in choosing index sets A and B.
If B = {1, 2}, or A = {1, 2}, then it is easy to see that span{ei | i ∈ B} = R2, or

span{g′
i(x̄) | i ∈ A} = R2, respectively.

Consider now the case where A = {1} , B = {2}. In that case, we have

cone{(1, 0)} + cone{(−1, 0)} + span{(0,−1)} + span{(0, 1)} = R2,

and notice that the conic part is crucial for the equality to hold.
The case A = {2} , B = {1} is similar:

cone{(0, 1)} + cone{(0,−1)} + span{(−1, 0)} + span{(1, 0)} = R2.
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Observe that g in Examples 1 and 2 is an analytic function, and so local error bounds
of some sort can also be obtained using the results of [23]. But note that in the setting of
this section 2-regularity of F at x̄ obviously is not affected if we add to g any function
which is zero at x̄, and whose first two derivatives vanish at x̄. Now, if this function is not
infinitely differentiable (say, the third derivative does not exist), then it is not analytic. If
we modify g in Examples 1 and 2 in this way, all our results still apply, while the NCP
function is no longer analytic.

4. Convergence rate of penalty methods

For the sake of simplicity, we shall again consider the finite-dimensional setting only.
Let V be an open set in Rn , F : V → Rm be a given mapping. Consider an equality-
constrained optimization problem

minimize f(x)
subject to x ∈ D,

(41)

where the (feasible) set D is defined in (1) and f : V → R is a given (objective)
function.

Similar to the standard exterior penalty framework [12,7,28], define the family of
functions

ϕα, β : V → R, ϕα, β(x) = f(x)+ α‖F(x)‖β, (42)

where α > 0 is the penalty parameter, and β > 0 is the power of the penalty function.
For simplicity, we shall assume β to be fixed. Consider the family of (unconstrained)
optimization problems

minimize ϕα, β(x)
subject to x ∈ Rn,

and an associated trajectory of (possibly inexact) solutions of those problems. Specific-
ally, we assume that trajectory x(·) : R+ → V satisfies the following conditions:

ϕα, β(x̄) ≥ ϕα, β(x(α)) ∀α > 0 sufficiently large, (43)

x(α) → x̄ as α → +∞, (44)

where x̄ is a local solution of problem (41), (1). We note that property (43) is standard
in exterior penalty methods [28] (for example, it is trivially satisfied if x(α) is a global
minimizer of ϕα, β(x) over any set containing x̄). Condition (44) is a natural assumption
in the context of estimating local rate of convergence of the algorithm. Some conditions
under which it holds can be found in [7, Proposition 2.2] ((44) is particularly easy to
guarantee if solutions of (41), (1) are isolated).

We assume x(·) satisfying (43), (44) to be given, and our goal is to estimate the
rate of convergence in some way. Error bound (2) is the key for such an estimation. We
start with a general rate of convergence result, which perhaps should not be considered
conceptually original (although, we could not find it in this form in the literature). We
include it here to make precise the subsequent application of our error bound to obtain
a convergence rate result for a penalty method in the irregular case.
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Theorem 7. Let V be a neighborhood of a point x̄ in Rn. Let a function f : V → R be
Lipschitz continuous on V with a constant l > 0, a mapping F : V → Rm be continuous
on V , and let x̄ be a local solution of problem (41), (1). Suppose further that there exist
a neighborhood U ⊂ V of x̄ in Rn and numbers M > 0 and γ > 0 such that (2) is
satisfied.

Let x(·) : R+ → V be a trajectory of the penalty method defined by (42)–(44), with
β > 0 fixed. Then the following statements hold.

(a) If βγ ≤ 1, then

x(α) ∈ D, f(x(α)) = f(x̄) ∀α > 0 sufficiently large. (45)

In particular, if x̄ is an isolated local solution of problem (41), (1), then

x(α) = x̄ ∀α > 0 sufficiently large.

(b) If βγ > 1, then

0 ≤ f(x̄)− f(x(α)) ≤ (Ml)βγ/(βγ−1)

α1/(βγ−1)
∀α > 0 sufficiently large.

Proof. By the inclusion x̄ ∈ D, (43), (44) and (2), we obtain that for any α > 0
sufficiently large

f(x̄) = f(x̄)+ α‖F(x̄)‖β
= ϕα, β(x̄)

≥ ϕα, β(x(α))

= f(x(α))+ α‖F(x(α))‖β
≥ f(x(α))+ α

Mβγ
(dist(x(α), D))βγ . (46)

Since F is continuous on V and X is finite-dimensional, there exists a (possibly not
unique) metric projection πD(x(α)) of x(α) on D. Furthermore, x̄ ∈ D and (44) imply
that

πD(x(α))→ x̄ as α → +∞.

Hence, as x̄ is a local solution of problem (41) and f is Lipschitz continuous on V , we
conclude that

f(x̄)− f(x(α)) ≤ f(πD(x(α)))− f(x(α))

≤ l dist(x(α), D). (47)

Combining (46) and (47), we further obtain

f(x̄)− f(x(α)) ≥ α

(Ml)βγ
( f(x̄)− f(x(α)))βγ ∀α > 0 sufficiently large. (48)

Define

A := {α > 0 | f(x̄) �= f(x(α))}.
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Relation (48), together with (46), imply that

0 ≤ ( f(x̄)− f(x(α)))βγ−1 ≤ (Ml)βγ

α
∀α ∈ A sufficiently large. (49)

Let βγ ≤ 1. Then, by (44), the left-hand side of (49) does not tend to 0 as α → +∞,
while the right-hand side does. This means that A is necessarily bounded in that case,
i.e., f(x̄) = f(x(α)) for all α large enough. Furthermore, by the third equality in (46),
we have that f(x̄) − f(x(α)) ≥ α‖F(x(α))‖β , and it follows that x(α) is also feasible
whenever f(x̄) = f(x(α)). Assertion (a) is established.

Assertion (b) follows immediately from (49) for α ∈ A, and it is trivial for α �∈ A.
��

According to Theorem 7, decreasing parameter β increases the guaranteed conver-
gence rate of the penalty method (in fact, exact solution is obtained for all values of
β > 0 sufficiently small). On the other hand, decreasing β negatively affects smooth-
ness of the penalty function, which makes the problem less tractable numerically. The
estimate obtained in Theorem 7 gives an opportunity to find a compromise between the-
oretical rate of convergence of the method and numerical issues related to smoothness
properties of subproblems, provided γ is available. This is precisely the case when there
are reasons to expect F to be regular or 2-regular at x̄.

We next discuss applications of Theorem 7 to problems with regular and 2-regular
constraints.

Assume that F : V → Rm is differentiable on V and regular at x̄, and its derivative
is continuous at x̄. Then Theorem 1 guarantees that error bound (2) holds with γ = 1.
Hence, by Theorem 7, in that case

(a) If β ≤ 1, then (45) holds.
(b) If β > 1, then

0 ≤ f(x̄)− f(x(α)) ≤ (Ml)β/(β−1)

α1/(β−1)
∀α > 0 sufficiently large.

Note that this result could also be obtained combining Theorem 7 with Theorem 4, as
the latter subsumes Theorem 1.

Consider now the 2-regular case. Specifically, assume that F : V → Rm is differ-
entiable on V , its derivative is continuous at x̄, and the mapping PF ′(·) is Lipschitz
continuous on V and B-differentiable at x̄, where P is the projector in Rm onto com-
plementary subspace of im F ′(x̄) parallel to im F′(x̄). Assume that the mapping F is
2-regular at x̄ (note that, by Remark 5, in the finite-dimensional case this is equivalent
to strong 2-regularity). Then Theorem 4 (recall also Remark 7) guarantees that error
bound (2) holds with γ = 2. Hence, by Theorem 7, we have that

(a) If β ≤ 1/2, then (45) holds.
(b) If β > 1/2, then

0 ≤ f(x̄)− f(x(α)) ≤ (Ml)2β/(2β−1)

α1/(2β−1)
∀α > 0 sufficiently large.
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Note that the case of β = 2 is of special interest as this is the smallest value of β
for which the penalty function is smooth, provided F is smooth. For this value of β, in
the regular case we obtain the estimate with the term in the right-hand side of the order
O(α−1). In the 2-regular case, the term in the right-hand side is of the order O(α−1/3),
and this estimate cannot be improved, as illustrated by the following example.

Example 3. Let n = m = 1, V = R,

f(x) = x, F(x) = x2, x ∈ R,

and consider the point x̄ = 0. It is easy to check that F is 2-regular at x̄. For every
α > 0, the penalty function ϕα, 2 has unique critical point x(α) = −(4α)−1/3 (which is
in fact its global minimizer), and we have that f(x̄)− f(x(α)) = (4α)−1/3.

Acknowledgements. The first author thanks IMPA, where he was a visiting professor during the completion
of this work. The second author is supported in part by CNPq Grant 300734/95-6, by PRONEX–Optimization,
and by FAPERJ.

References

1. Arutyunov, A.V. (1997): Extremum Conditions. Abnormal and Degenerate Cases. Factorial, Moscow,
Russia. In Russian

2. Aubin, J.-P., Frankowska, H. (1990): Set-Valued Analysis. Birkhäuser, Boston
3. Avakov, E.R. (1985): Extremum conditions for smooth problems with equality-type constraints. USSR

Comput. Math. Math. Phys. 25, 24–32
4. Avakov, E.R. (1989): Necessary extremum conditions for smooth abnormal problems with equality- and

inequality constraints. Math. Notes 45, 431–437
5. Avakov, E.R. (1990): Theorems on estimates in the neighborhood of a singular point of a mapping. Math.

Notes 47, 425–432
6. Avakov, E.R., Agrachyov, A.A., Arutyunov, A.V. (1992): The level-set of a smooth mapping in a neigh-

borhood of a singular point, and zeros of a quadratic mapping. Math. USSR Sbornik 73, 455–466
7. Bertsekas, D.P. (1982): Constrained Optimization and Lagrange Multiplier Methods. Academic Press,

New York
8. Buchner, M., Marsden, J., Schecter, S. (1983): Applications of the blowing-up construction and algebraic

geometry to bifurcation problems. J. Diff. Equations 48, 404–433
9. Dmitruk, A.V., Milyutin, A.A., Osmolovskii, N.P. (1980): Lyusternik’s theorem and the theory of extrema.

Russ. Math. Surveys 35, 11–51
10. Facchinei, F., Soares, J. (1997): A new merit function for nonlinear complementarity problems and

a related algorithm. SIAM J. Optim. 7, 225–247
11. Ferris, M.C., Pang, J.-S., eds. (1997): Complementarity and variational problems: State of the Art. SIAM

Publications
12. Fiacco, A.V., McCormick, G.P. (1968): Nonlinear Programming: Sequential Unconstrained Minimization

Techniques. John Wiley & Sons, New York
13. Fukushima, M. (1996): Merit functions for variational inequality and complementarity problems. In: Di

Pillo, G., Giannessi, F., eds., Nonlinear Optimization and Applications, pp. 155–170. Plenum Publishing
Corporation, New York, New York

14. Fukushima, M., Qi, L., eds. (1999): Reformulation – Nonsmooth, Piecewise Smooth, Semismooth and
Smoothing Methods. Kluwer Academic Publishers

15. Ioffe, A.D., Tikhomirov, V.M. (1974): Theory of Extremal Problems. North–Holland, Amsterdam, Hol-
land

16. Izmailov, A.F. (1998): On certain generalizations of Morse’s lemma. Proceedings of the Steklov Institute
of Mathematics 220, 138–153

17. Izmailov, A.F., Solodov, M.V. (2000): The theory of 2-regularity for mappings with Lipschitzian deriva-
tives and its applications to optimality conditions. Manuscript, January 2000

18. Izmailov, A.F., Tretyakov, A.A. (1994): Factor-Analysis of Nonlinear Mappings. Nauka, Moscow. In
Russian



Error bounds for 2-regular mappings and applications 435

19. Izmailov, A.F., Tretyakov, A.A. (1999): 2-Regular Solutions of Nonlinear Problems. Theory and Numer-
ical Methods. Fizmatlit, Moscow. In Russian

20. Kanzow, C. (1994): Some equation-based methods for the nonlinear complementarity problem. Optim.
Methods Software 3, 327–340

21. Kanzow, C., Fukushima, M. (1998): Solving box constrained variational inequality problems by using
the natural residual with D-gap function globalization. Oper. Res. Lett. 23, 45–51

22. De Luca, T., Facchinei, F., Kanzow, C. (2000): A theoretical and numerical comparison of some semi-
smooth algorithms for complementarity problems. Comput. Optim. Appl. 16, 173–205

23. Luo, Z.-Q., Pang, J.-S. (1994): Error bounds for analytic systems and their applications. Math. Program.
67, 1–28

24. Magnus, R.J. (1976): On the local structure of the zero-set of a Banach space valued mapping. J. Funct.
Anal. 22, 58–72

25. Mangasarian, O.L., Solodov, M.V. (1993): Nonlinear complementarity as unconstrained and constrained
minimization. Math. Program. 62, 277–297

26. Mangasarian, O.L. (1969): Nonlinear Programming. McGraw–Hill, New York
27. Mangasarian, O.L. (1976): Equivalence of the complementarity problem to a system of nonlinear equa-

tions. SIAM J. Appl. Math. 31, 89–92
28. Mangasarian, O.L. (1986): Some applications of penalty functions in mathematical programming. In:

Conti, R., De Giorgi, E., Giannessi, F., eds., Optimization and Related Fields. pp. 307–329. Springer,
Heidelberg, Lecture Notes in Mathematics 1190

29. Mifflin, R. (1977): Semismooth and semiconvex functions in constrained optimization. SIAM J. Control
Optim. 15, 957–972

30. Pang, J.-S. (1995): Complementarity problems. In: Horst, R., Pardalos, P., eds., Handbook of Global
Optimization. pp. 271–338. Kluwer Academic Publishers, Boston, Massachusetts

31. Pang, J.-S. (1997): Error bounds in mathematical programming. Math. Program. 79, 299–332
32. Pang, J.-S., Gabriel, S.A. (1993): NE/SQP: A robust algorithm for the nonlinear complementarity prob-

lem. Math. Program. 60, 295–337
33. Pang, J.-S., Qi, L. (1993): Nonsmooth equations: motivation and algorithms. SIAM J. Optim. 3, 443–465
34. Qi, L. (1993): Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper.

Res. 18, 227–244
35. Robinson, S.M. (1987): Local structure of feasible sets in nonlinear programming, part III: stability and

sensitivity. Math. Program. Study 30, 45–66
36. Shapiro, A. (1990): On concepts of directional differentiability. J. Optim. Theory Appl. 66, 477–487
37. Solodov, M.V. (2000): Implicit Lagrangian. In: Floudas, C., Pardalos, P., eds., Encyclopedia of Optimiza-

tion. Kluwer Academic Publishers
38. Szulkin, A. (1979): Local structure of the zero-sets of differentiable mappings and applications to

bifurcation theory. Math. Scandinavica 45, 232–242
39. Tretyakov, A.A. (1984): Necessary and sufficient conditions for optimality of p-th order. USSR Comput.

Math. Math. Phys. 24, 123–127
40. Tseng, P. (1996): Growth behavior of a class of merit functions for the nonlinear complementarity

problem. J. Optim. Theory Appl. 89, 17–37


