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Abstract. We will propose a branch and bound algorithm for calculating a globally optimal solution of
a portfolio construction/rebalancing problem under concave transaction costs and minimal transaction unit
constraints. We will employ the absolute deviation of the rate of return of the portfolio as the measure of risk
and solve linear programming subproblems by introducing (piecewise) linear underestimating function for
concave transaction cost functions. It will be shown by a series of numerical experiments that the algorithm
can solve the problem of practical size in an efficient manner.
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1. Introduction

This paper is concerned with a portfolio optimization problem under nonconvex (con-
cave) transaction costs and minimal transaction unit (MTU) constraints.

An investor has to pay a certain amount of fees when he/she purchases (invest)
and/or sells (disinvest) assets. Let X j be the amount of investment (or disinvestment) of
the j th asset ( j = 1, · · · , n). The transaction cost associated with X = (X1, · · · , Xn)

is usually defined as the sum of the functions
n∑

j=1

C j (X j) where each function C j (X j)

is a non-decreasing concave function up to certain point X̄ j as shown in Fig. 1. This is
because the unit transaction cost is relatively large when X j is small and it gradually
decreases as X j increases. However, the unit transaction cost increases beyond some
point X̄ j , due to the “illiquidity” effects. Let us briefly explain this phenomena.

Investment (disinvestment) of assets of an investor is associated with the disinvest-
ment (investmet) of other investors. If X j is large and if there is not enough supply
(demand), then the unit price will increase (decrease), so that C j(X j ) becomes convex
beyond point A j .

We will assume in this paper that the amount of investment (disinvestment) is
below the critical point, where the transaction cost is a well specified concave function
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Fig. 1. Transaction cost function

calculated by the transaction cost table of the agent. The portfolio optimization problem
to be treated in this paper becomes the minimization of a separable concave function
under linear constraints. This type of problems are abundant in the literature of operation
research. However, only a few problems have been solved to global optimality, at least
until recently.

People often employ a linear (convex) approximation of a transaction cost func-
tion, or entirely ignore it and adjust the resulting solution in a heuristic manner. This
manipulation may be adequate under certain circumstances, particularly if the amount
of transaction is large when a linear approximation or heuristic approach may lead to
a good solution. However, this approach may produce an erroneous result when the
amount of investment is small and it is allocated to many assets in smaller fractions.
Alternatively, one may apply integer programming approach by using piecewise linear
approximation of nonconvex cost functions. However, as reported in [7], it takes a huge
amount of computation time.

Fortunately, due to the recent progress in global optimization, one can now solve
a fairly large scale linearly constrained concave minimization problem using the special
structure of the problem (See [5,8,17] for such examples). This paper adds to the list of
these successful examples.

The first serious effort in portfolio optimization under nonconvex cost structure was
undertaken by Perold [15] in 1984. He proposed a piecewise linear convex approximation
of the cost function and implemented it in the highly reputed software “Optimizer”.
However, it is argued among the users of this software that this transaction cost routine
requires a significant amount of computation time.

More recently, authors proposed a branch and bound algorithm for solving a concave
cost portfolio optimization problem under the mean-absolute deviation framework. We
used a linear underestimating function for the concave cost function and solved the
resulting linear subproblems in a branch and bound using a well-designed problem
reduction technique. We showed in [10] that this algorithm generates a good solution
in a very efficient manner. We will show in this paper that the solution obtained by this
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approach always leads to a solution which is very close to the globally optimal solution
of the original problem. Also, we extend this algorithm to the minimal cost rebalancing
problems to be explained below.

Investors are inclined to “rebalance” the portfolio due to the change of investment
environment. The current portfolio which was located on the efficient frontier calculated
at the time of portfolio construction may deviate from the present efficient frontier.
Therefore the investor may want to sell (disinvest) and/or purchase (invest) a small
portion of the portfolio to push it back to the present efficient frontier.

We will formulate this problem as the piecewise-concave cost minimization problem
and propose a branch and bound method using a piecewise linear convex underestimation
strategy. We will extend this algorithm to even more difficult class of problem where the
amount of transaction is constrained to be the integer multiple of minimal transaction
units. In Tokyo Stock Exchange, minimal transaction unit is 1000 stocks with a few
exception. This constraint may not be ignored when the amount of fund is small. The
problem thus becomes a concave minimization problem with integer constraints on the
variables.

We will show that the branch and bound algorithm can be modified in such a way
that the generated solution consists of only a few (usually at most 3 or 4) nonintegral
variables, regardless of the number of variables in the model. Thus we can obtain an
integer solution by a simple rounding procedure, which is almost optimal in practical
sense.

In the next section, we will formulate the portfolio optimization problem under
concave transaction cost assuming that the risk function is given by the absolute de-
viation of the rate of return, instead of the standard deviation (or variance) employed
by Markowitz [12]. The mean-absolute deviation (MAD) model is now widely used in
large-scale portfolio optimization because it can be reduced to a linear programming
problem instead of a quadratic programming problem in the case of mean-variance
(MV) model. The success of our branch and bound algorithm critically depends upon
the employment of the absolute deviation as the risk measure.

In Sect. 3, we will present the branch and bound method proposed in a recent
paper [10]. Section 4 will be devoted to problem reduction technique and the treatment
of minimal transaction unit (MTU) constraints. In Sect. 5, we will extend the algorithm
presented in Sect. 3 to the rebalancing problem. Section 6 will be devoted to the result
of numerical simulation of the algorithm. It will be shown that we can solve a fairly
large scale problem in a reasonable amount of time.

2. Mean-absolute deviation model under concave transaction costs

Let there be n assets in the market and let R j be the random variable representing the
rate of return of j th asset ( j = 1, · · · , n) without transaction cost. We will assume that
the vector of random variables (R1, · · · , Rn) is distributed over a set of finitely many
points {(r1t, · · · , rnt), t = 1, · · · , T} and that the probability

pt = Pr{(R1, · · · , Rn, ) = (r1t, · · · , rnt )}, t = 1, · · · , T, (1)



236 Hiroshi Konno, Annista Wijayanayake

is known. Then the expected rate of return r j of j th asset (without transaction cost) is
given by

r j =
T∑

t=1

pt r jt . (2)

Let

x j = X j/

n∑
k=1

Xk, (3)

be the proportion of the fund to be allocated to j th asset. Then the expected rate of

return of the portfolio x=(x1, · · · , xn) is given by
n∑

j=1

r j x j . The actual expected rate of

return under transaction costs is therefore, given by

r(x) =
n∑

j=1

{
r j x j − c j (x j)

}
, (4)

where c j(x j) is a concave transaction cost associated with the investment into stock S j .
As in [10], we will employ the absolute deviation:

W[x] = E[ |R(x) − E[R(x)] | ] =
T∑

t=1

pt |
n∑

j=1

(r jt − r j )x j |, (5)

as the measure of risk. The mean-absolute deviation (MAD) model under transaction
cost is defined as the following convex maximization problem:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize f(x) ≡
n∑

j=1

{
r j x j − c j(x j)

}

subject to
T∑

t=1

pt|
n∑

j=1

(r jt − r j)x j | ≤ w,

n∑
j=1

x j = 1,

0 ≤ x j ≤ α j , j = 1, · · · , n.

(6)

where w is the specified level of risk and α j ’s are constants.
The MAD model (without transaction cost) was first proposed by one of the authors

[9] as an alternative to the classical mean-variance (MV) model [2,12]. It has been
demonstrated in [9] that this model can generate an optimal portfolio much faster than
the MV model since it can be reduced to a linear programming problem. Also, it is
shown in [9] that MV and MAD model usually generate similar portfolios. Further,
it is proved in [14] that those portfolios on the MAD efficient frontier correspond to
efficient portfolios in the sense of the second degree stochastic dominance, regardless
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of the distribution of the rate of return, which is not valid for the portfolios on the MV
efficient frontier.

First let us introduce a set of nonnegative variables yt, zt , (t = 1, · · · , T ) satisfying
the following conditions.

yt − zt = pt

n∑
j=1

(r jt − r j )x j , t = 1, · · · , T,

ytzt = 0 ; yt ≥ 0 ; zt ≥ 0, t = 1, · · · , T.

Then we have the following representation

|pt

n∑
j=1

(r jt − r j )x j | = yt + zt, t = 1, · · · , T. (7)

Therefore, the problem (6) can be rewritten as follows.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize f(x) ≡
n∑

j=1

{
r j x j − c j(x j)

}

subject to
T∑

t=1

(yt + zt) ≤ w,

yt − zt = pt

n∑
j=1

(r jt − r j )x j , t = 1, · · · , T,

ytzt = 0, t = 1, · · · , T,
n∑

j=1

x j = 1, 0 ≤ x j ≤ α j , j = 1, · · · , n,

yt ≥ 0, zt ≥ 0, t = 1, · · · , T.

(8)

Theorem 1. The complementarity constraint ytzt = 0 (t = 1, · · · , T ) can be elimi-
nated from (8).

Proof. Let (x∗
1, · · · , x∗

n, y∗
1, · · · , y∗

T , z∗
1, · · · , z∗

T ) be an optimal solution of the prob-
lem (8) without complementarity constraint and let us assume that y∗

t z∗
t > 0, t ∈

I ⊂ {1, · · · , T }. For t ∈ I, let (ŷt, ẑt) = (y∗
t − z∗

t , 0) if y∗
t ≥ z∗

t ≥ 0, and
(ŷt, ẑt) = (0, y∗

t − z∗
t , ) if z∗

t ≥ y∗
t ≥ 0,. Then (x∗

1, · · · , x∗
n, ŷ1, · · · , ŷT ẑ1, · · · , ˆzT )

satisfies all the constraints of (8). Also it has the same objective function value as
(x∗

1, · · · , x∗
n, y∗

1, · · · , y∗
T , z∗

1, · · · , z∗
T ).

��
In view of the relation

T∑
t=1

(yt − zt) =
T∑

t=1

pt

n∑
j=1

(r jt − r j )x j =
n∑

j=1

(

T∑
t=1

ptr jt − r j)x j = 0,
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we can eliminate (z1, · · · , zT ) from (8) to obtain an alternative representation:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize f(x) ≡
n∑

j=1

{
r j x j − c j(x j)

}

subject to
T∑

t=1

yt ≤ w/2,

yt ≥ pt

n∑
j=1

(r jt − r j )x j , yt ≥ 0, t = 1, · · · , T,

n∑
j=1

x j = 1, 0 ≤ x j ≤ α j , j = 1, · · · , n.

(9)

3. A branch and bound algorithm

Let us describe a branch and bound algorithm for solving the problem (9). Let x =
(x1, · · · , xn), y = (y1, · · · , yT ) and let

F = {(x, y)|
T∑

t=1

yt ≤ w/2, yt − pt

n∑
j=1

(r jt − r j)x j ≥ 0,

n∑
j=1

x j = 1, yt ≥ 0, t = 1, · · · , T }.
(10)

The problem (9) can be denoted as follows:

(P0)

∣∣∣∣∣∣∣
maximize f(x) =

n∑
j=1

{
r j x j − c j(x j)

}

subject to (x, y) ∈ F, 0 ≤ x ≤ α,

(11)

where α = (α1, · · · , αn). Let (x∗, y∗) be an optimal solution of (11) and let f ∗ = f(x∗).
Let us replace c j(x j) by a linear underestimating function δ j x j as depicted in Fig. 2

and define a linear programming problem:

(Q0)

∣∣∣∣∣∣∣
maximize g0(x) =

n∑
j=1

(r j − δ j )x j

subject to (x, y) ∈ F, 0 ≤ x ≤ α.

(12)

Let x0 be an optimal solution of (Q0). If

n∑
j=1

{
c j

(
x0

j

) − δ j x
0
j

}
≤ ε, (13)

then (x0, y0) is an approximate optimal solution of (P0) with error less than ε.
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Fig. 2. A linear underestimating function

Theorem 2. The following relation holds:

g0(x0) ≥ f ∗ ≥ f(x0). (14)

Proof. We have

g0(x0) = max {g0(x) | (x, y) ∈ F, 0 ≤ x ≤ α}
≥ max { f(x) | (x, y) ∈ F, 0 ≤ x ≤ α} = f ∗.

because g0(x) ≥ f(x),∀x ∈ [0,α]. Also f ∗ ≥ f(x0), because x0 is a feasible solution
of (12).

��
Let us consider the case when (13) does not hold. Let

cs
(
x0

s

) − δsx0
s = max

{
c j

(
x0

j

) − δ j x0
j

∣∣ j = 1, · · · , n
}
, (15)

and let

S1 = {x| 0 ≤ xs ≤ αs/2, 0 ≤ x j ≤ α j , j �= s}, (16)

S2 = {x| αs/2 ≤ xs ≤ αs, 0 ≤ x j ≤ α j ; j �= s}, (17)

and define two subproblems

(P1) maximize { f(x)| (x, y) ∈ F, x ∈ S1}, (18)

(P2) maximize { f(x)| (x, y) ∈ F, x ∈ S2}. (19)

Corresponding to subproblem (P1), we will define a piecewise linear function g1(x)

underestimating f(x) as shown in Fig. 3:
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Fig. 3. Bisection scheme

g1(x) =
∑
j �=s

(r j − δ j)x j+ (rsxs − cs1(xs)). (20)

Define a linear programming problem:

(Q1) maximize {g1(x) | (x, y) ∈ F, x ∈ S1}. (21)

If (Q1) is infeasible, then (Q1) can be fathomed. Otherwise, let x̂1 be an optimal
solution of (Q1). If

∣∣g1(x̂1
) − f(x̂1

)
∣∣ < ε, then the problem has been solved with an

approximate optimal solution x̂1. Since g1(x) ≥ f(x), ∀ x∈ S1, we have

g1(x̂1
) ≥ f(x1) ≥ f(x̂1

). (22)

Therefore, if g1(x̂1
) ≤ f(x0), then (P1) can be fathomed since f(x1) ≤ f(x0).

Algorithm 1 (Branch and bound method).

1◦ P = {(P0)}, f̂ = −∞, k = 0.

2◦ If P = {φ}, then goto 9◦; Otherwise goto 3◦.
3◦ Choose a problem (Pk) ∈ P :

(Pk)

∣∣∣∣∣∣∣∣∣

maximize f(x) =
n∑

j=1

{
r j x j − c j(x j)

}

subject to (x, y) ∈ F, βk ≤ x ≤ αk.

P = P\{(Pk)}.
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4◦ Let ck
j(x j) be a linear underestimating function of c j(x j) over the interval

βk
j ≤ x j ≤ αk

j , ( j = 1, · · · , n) and define a linear programming problem

(Qk)

∣∣∣∣∣∣∣∣∣

maximize gk(x) =
n∑

j=1

{
r j x j − ck

j(x j)
}

subject to (x, y) ∈ F, βk ≤ x ≤ αk.

If (Qk) is infeasible then go to 2◦. Otherwise let xk be an optimal solution of
(Qk).
If |gk(xk) − f(xk)| > ε then goto 8◦. Otherwise let fk = f(xk).

5◦ If fk < f̂ then goto 7◦; Otherwise goto 6◦.
6◦ If f̂ = fk; x̂ = x̂k and eliminate all the subproblems (Pt) for which

gt( xt) ≤ f̂ .
7◦ If gk(xk) ≤ f̂ then goto 2◦. Otherwise goto 8◦.
8◦ Let cs(xk

s ) − ck
s (xk

s ) = max{c j(xk
j) − ck

j(xk
j)| j = 1, · · · , n },

Sl+1 = Sk ∩ {
x

∣∣ βk
s ≤ xs ≤ (

βk
s + αk

s

)
/2

}
,

Sl+2 = Sk ∩ {
x

∣∣ (βk
s + αk

s

)
/2 ≤ xs ≤ αk

s

}
,

and define two subproblems:

(Pl+1) maximize { f(x)| (x, y) ∈ F, x ∈ Sl+1}.
(Pl+2) maximize { f(x)| (x, y) ∈ F, x ∈ Sl+2}.

P = P ∪ {Pl+1, Pl+2}, k = k + 1 and goto 3◦.
9◦ Stop: x̂ is an ε optimal solution of (P0).

Theorem 3. x̂ converges to an ε - optimal solution of (P0) as k → ∞.

Proof. See e.g. [8,17]
��

To accelerate convergence, we may replace the bisection scheme by the ω - subdivision
scheme [8], in which the interval [βk

s , α
k
s ] is divided into two subintervals [βk

s , xk
s ] and

[xk
s , α

k
s ] where xk

s is the sth component of the optimal solution x k of (Qk) as depicted
in Fig. 4. This subdivision scheme usually accelerate convergence.

This type of branch and bound algorithm was first proposed in [4]. The elabo-
rate version of the algorithm was implemented by Phong et al. [16] to obtain suc-
cessful computational results for linearly constrained concave quadratic programming
problems. Also, it has been applied to many other problems in recent years (see
[7,10,11]).
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4. Problem reduction and minimal transaction unit constraints

The problem (P0) can, in principle, be solved by Algorithm 1. However, computation
time is expected to increase rapidly as the number of assets increases. In this section,
we will discuss a problem reduction scheme using the following theorem.

Theorem 4. There exist an optimal solution x0 of (Q0), at most T + 1 components of
which satisfy 0 < x0

j < α j

Proof. Let x̂, ŷ be an optimal solution of (Q0). Then x̂ is an optimal solution of the
following linear programming problem:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize g0(x) ≡
n∑

j=1

(r j − δ j)x j

subject to pt

n∑
j=1

(r jt − r j )x j ≤ ŷt, t = 1, · · · , T,

n∑
j=1

x j = 1, 0 ≤ x j ≤ α j , j = 1, · · · , n.

(23)

By the fundamental theorem of linear programming [1], this problem has a basic optimal
solution, say x0. It is easy to see that x0 contains at most T +1 components with property
0 < x0

j < α j . Since g(x̂) = g(x0), the theorem follows.
��

This theorem implies that at least n − (T + 1) components of x0 attain their lower
bound or upper bound. For these variable x ′

js, we have the relation c j (x0
j ) = δ j x0

j .

Therefore only these variables x ′
j s such that 0 < x0

j < α j are subject to approximation
error. Let us note that the number of such variables are at most T + 1, usually less than
T/2, so that the approximation error remains small even if n is very large.
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Also, those assets with smaller amount of investment are subject to relatively large
transaction cost, since the unit transaction cost is larger when the transaction amount is
smaller. Therefore, there is a good reason to believe that those assets with x0

j = 0 are
likely to satisfy x∗

j = 0 where x∗ is an optimal solution of (P0). These observations
lead us to the following variable reduction scheme in the branch and bound procedure.

Let us assume without loss of generality that the first J(≤ T + 1) components of x0

are positive. Let us define the reduced problem:

(P′
0)

∣∣∣∣∣∣∣∣∣

maximize g0(x) =
J∑

j=1

{r j x j − c j(x j)}

subject to (x1, · · · , xJ , 0, · · · , 0, y) ∈ F,

0 ≤ x j ≤ α j , j = 1, · · · , J.

(24)

We can solve this problem much faster than the problem (P0) particularly when n > T ,
which is the case in the practical investment environment where n ≥ 1000 and T ≤ 60.

Theorem 4 plays more important role in the treatment of minimal transaction unit
(MTU) constraints. We will naturally assume in this case that α′

j s are chosen as integer

multiple of MTU. Then at least n − (T + 1) assets satisfy these constraints at x0. In the
subsequent branch and bound scheme, we will replace the bisection or ω-subdivision
scheme in such a way that the associated lower bound or upper bound to be equal to
the nearest integer multiple of MTU. It will be shown in Sect. 6 that these strategies are
remarkably effective in generating a nearly optimal solution of the problem (P0) with
or without MTU constraints.

5. Minimal cost rebalancing under concave transaction costs

The algorithm developed in Sect. 3 can be extended to the rebalancing problem. Let
x0 be the portfolio constructed at time point 0 and assume that the investor wants to
change the portfolio at some later time point, say 1 month or 3 months later, in such
a way that the new portfolio x satisfies the condition that its expected rate of return
E[R(x)] is greater than some constant ρ and that the risk is W[R(x)] is smaller than
some constant w.

Let S be an investable set. Then the minimum cost rebalancing problem can be
formulated as follows.

∣∣∣∣∣∣∣∣

minimize c(x)

subject to E[R(x)] ≥ ρ,

W[R(x)] ≤ w,

x ∈ S,

(25)

where c(x) is the rebalancing cost and

S = {x| 0 ≤ x j ≤ α j , j = 1, · · · , n}. (26)

Let us introduce a new set of variables
v = x − x0 (27)
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Then the problem (25) can be represented as follows:

(H )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize
n∑

j=1

c j (v j)

subject to
n∑

j=1

r jv j ≥ ρ −
n∑

j=1

r j x
0
j ,

T∑
t=1

|zt | ≤ w,

zt = pt

n∑
j=1

[(r jt − r j)v j + (r jt − r j )x0
j ], t = 1, · · · , T,

−x0
j ≤ v j ≤ α j − x0

j , j = 1, · · · , n,

v ∈ V,

(28)

where V is the set of feasible v′s corresponding to S, and c j(v j ) is the cost associated
with purchasing v j units (if v j > 0) and selling v j units (if v j < 0) of j th asset. Let us
assume again that c j(v j ) is piecewise concave and that c j(0) = 0 for all j (Fig. 5).

J
αβJ 0

Fig. 5. Piecewise concave cost function

We can construct a branch and bound method similar to the one discussed in Sect. 3.
Let (Hk) be a subproblem:

(Hk)

∣∣∣∣∣∣∣∣∣

minimize
n∑

j=1

c j(v j)

subject to (v, z) ∈ G,

βk
j ≤ v j ≤ αk

j , j = 1, · · · , n,
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where

G = {(v, z)|
n∑

j=1

r jv j ≥ ρ −
n∑

j=1

r j x
0
j ,

T∑
t=1

|zt | ≤ w,

zt = pt

n∑
j=1

[
(r jt − r j )v j + (r jt − r j)x0

j

]
, t = 1, · · · , T, v ∈ V }.

We will approximate the function c j(v j ) in the interval [αk
j , β

k
j ] by a piecewise-

linear convex underestimating function ck
j(v j ) as depicted in Fig. 6 and define a relaxed

0 α β
j j

0α β
j j

k k k k

Fig. 6. Piecewise linear underestimating function

subproblem:

(H̄k)

∣∣∣∣∣∣∣∣∣

minimize
n∑

j=1

ck
j(v j)

subject to (v, z) ∈ G,

βk
j ≤ v j ≤ αk

j , j = 1, · · · , n,

which can be reduced to a linear programming problem by using a standard method [1].

6. Computational experiments

We conducted numerical tests of the algorithm proposed in this paper using monthly
data of 200 stocks chosen from NIKKEI 225 Index. The program was coded by C ++
and was tested on Pentium Pro 450MHz with 256 Mbyte memory. We used the breadth
first rule for choosing subproblems in Step 30 of the Algorithm 1 and ω− subdivision
strategy throughout the test. Also we choose ε = 10−5 in our computation. We tested
the algorithm for three different levels of the investment M, namely 108, 3 × 108,

and 109 yen and using the transaction cost table of a leading security company of
Japan.
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6.1. Computational results of portfolio construction problem (P0)

Figure 7 shows computation time for solving the problem (P0) by Algorithm 1 for
different number of assets without using problem reduction strategy. We solved ten test
problems corresponding to ten different sets of historical data and plotted the average
computation time and its standard deviation.

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

5 0 1 0 0 1 5 0 2 0 0

C
P

U
 T

im
e 

(s
ec

)

Fig. 7. CPU time for solving (P0) for different n

We see from this figure that the average and the variance of the computation time
increases as n increases, but not as rapidly as we expected. This is primarily due to the
fact that the starting solution generated by (Q0) is a very good feasible solution of (P0),
so that many subproblems are fathomed by bounds.

Figure 8 shows the computation time when the problem reduction strategy is em-
ployed. We see that the average computation time is around 15% of the Algorithm 1
without problem reduction. Also, the relative difference of the objective function value
of the algorithm with and without problem reduction is at most 1.13%, usually much
less (less than 0.5%). We conclude from this that problem reduction is a very effective
strategy for solving problems with large n. The average computation time increases less
mildly as n increases (see Fig. 7). Also it is very insensitive to the level of ε.

Figures 9 and 10 show the computation time as a function of T , the number of data
when n = 200.We see that the increase of the average computation time is very mild.
We can safely conclude that the problem up to T = 60 can be solved in less than a few
minutes. Let us note that the maximal size of T is usually less than 60 in practical
applications.

6.2. Portfolio construction problem with MTU constraints

We conducted similar experiments for the problem with MTU constraints. When
the amount of investment M is fixed, there is no guarantee that there exists a so-
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Fig. 9. CPU time for solving (P0) for different T

lution satisfying MTU constraints. Therefore, we terminated computation as soon
as the error decreased below ε and round the solution to the nearest solution sat-
isfying MTU constraints. Table 1 shows the statistics of the computation time for
n = 200, T = 36, α j = 0.05, & 0.1 and for different level of investments, where the
problem reduction strategy was employed. We see that the number of assets which do
not satisfy the MTU constraints in the solution is at most 6 and the necessary amount
of fund adjustment is less than 0.5% when M = 108, but it decreases to 0.01% when
M = 109, which is almost negligible from the practical point of view.

6.3. Minimal cost rebalancing problem

We tested the branch and bound algorithm for rebalancing problem. We first calculate
the starting portfolio by solving the problem (P ′

0) using 36 monthly data for fixed value
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Fig. 10. CPU time for different T with problem reduction

Table 1. Statistical results for different level of α and M

α j ’s w M ρ # of CPU # of assets # of fund
million branch- time violating assets adjustment
(yen) ing (Sec) MTU in the

con- portfolio
straints

0.05 1.8 100 0.2850 16 32 5 24 0.5025
2.0 100 0.6148 10 18 6 24 −0.4261
2.0 300 0.8341 14 28 4 23 −0.0975
2.6 300 1.3200 12 22 2 21 0.0697
2.0 1000 1.0470 32 79 5 22 −0.0152

0.1 1.8 100 0.6527 14 23 4 13 0.255
2.0 100 0.9342 16 28 2 13 0.1806
2.0 300 1.1169 22 37 5 12 0.309
2.6 300 1.6435 6 9 2 11 0.0184
2.0 1000 1.3857 14 22 4 11 −0.0767

of w. Then we choose appropriate level of ρ and w in view of the new efficient frontier
calculated by a new set of 36 monthly data and solve the minimal cost rebalancing
problem (28).

Figure 11 shows the average and the standard deviation of the computation time
required for rebalancing after the elapse of months when α j = 0.05 ( j = 1, · · · , n).
As expected, the performance of the algorithm is more or less the same as the that of
portfolio construction problem reported in Sect. 6.1. It turns out that we sell/buy smaller
number of assets when the terminal risk is the same as the original portfolio and the
elapse of time is short enough. However, it increases as the discrepancy of ρ and w from
the original portfolio increases.

We also compared alternative rebalancing strategies in terms of net ex-post per-
formance of the portfolio. i.e. nominal return subtracted by transaction costs. Frequent
rebalancing is associated with smaller transaction cost per rebalance. However, frequent
rebalancing results in a larger total transaction costs. How frequent should we rebalance?
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Fig. 11. CPU time for rebalancing

This is a very important problem from the practical point of view. However, we will
not go into detail since it will be of little interest of mathematical programmers. More
detailed analysis of rebalancing strategies will be reported in a subsequent article.

7. Conclusions

We showed in this paper that the portfolio construction/rebalancing problem under con-
cave transaction costs can be solved in a practical amount of time. The success depends
upon the use of mean absolute deviation model, elaboration of the classical branch and
bound method using ω - subdivision strategy and the problem reduction strategy using
the special structure of the problem. Let us emphasize that there are still a number of
difficult (nonconvex) minimization problems in the field of financial optimization, some
of which may be solved successfully by applying algorithm developed in the various
fields of the mathematical programming.
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