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Abstract. In this paper we present a nonsmooth algorithm to minimize the maximum eigenvalue of matrices
belonging to an affine subspace of n × n symmetric matrices. We show how a simple bundle method, the
approximate eigenvalue method can be used to globalize the second-order method developed by M.L. Overton
in the eighties and recently revisited in the framework of the U -Lagrangian theory. With no additional
assumption, the resulting algorithm generates a minimizing sequence. A geometrical and constructive proof
is given. To prove that quadratic convergence is achieved asymptotically, some strict complementarity and
non-degeneracy assumptions are needed. We also introduce new variants of bundle methods for semidefinite
programming.
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1. Introduction

1.1. Overview

Eigenvalue optimization problems have a long history: as mentioned in [25], Lagrange
had already stated in 1773 an eigenvalue optimization problem to design the shape of
the strongest axially symmetric column with prescribed length, volume and boundary
conditions. Yet it is only very recently that it became an independent area of research
with both theoretical and practical aspects. Although the mathematical models of the
underlying physical problems are generally not convex, it is notable that the area has very
strong connections with convex analysis. In fact, these problems have often a composite
structure with a convex component. The role of convex analysis was first emphasized by
R. Bellman and K. Fan in [4]; more recently, this point of view was developed further
in [15] and [25].

We consider here a basic eigenvalue optimization problem

(P) inf
x∈Rm

λ1(A(x))
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where λ1(X) is the largest eigenvalue of X = A(x), element of Sn the space of n × n
symmetric matrices and

R
m � x �→ A(x) := A0 +A x (1)

is affine: A0 ∈ Sn and A is a linear operator from Rm to Sn .
Existing numerical methods to solve (P) can be arranged in two classes: interior-

point methods and nonsmooth optimization methods. The first interior-point methods
for solving (P) (in the framework of semidefinite programming) were developed by Nes-
terov and Nemirovski [30]. With the exception of Nemirovski’s projective method [31,
26], all the interior-point schemes proposed in the early 1990’s (see the numerous refer-
ences in [5, Chap. II, Notes and References]) were path-following or potential reduction
methods. As recently explained in a clear survey by Yu. Nesterov [27], “classical”
interior-point methods can be seen as a process to transform the initial problem into
an equivalent one which can be solved “easily” thanks to an addition of structure:
self-concordance is used to obtain the polynomiality of interior-point schemes [31].
A similar presentation can be done for predictor-corrector type methods using small
neighborhoods; many variants of them can be found for semidefinite programming: to
give only a sample we refer to [2,38,21].

Our approach is quite different but, as we will see, does not exempt us from finding
a trade-off between global and local requirements, i.e., between total complexity and
speed of convergence. Starting directly from problem (P) itself, we will use a recent
second-order theory, namely the U-Lagrangian theory [24], to speed up the asymptotic
convergence of a first-order method developed by Cullum, Donath and Wolfe [6] for
a particular instance of (P) (A diagonal), and by Polak and Wardi [37] in a more
general framework. Using the terminology of [16, Chap. XIII], the method can be
seen as a Markovian dual bundle method: at each iteration an approximation of the
ε-subdifferential is computed, via a bundling process, without using information from
the previous iterations. We call it the approximate eigenvalue method. More recently
a stabilization of the cutting planes algorithm was proposed in [39] and enriched in [19,
14,23,13] with semidefinite models of the objective function; this belongs to the class
of primal bundle methods [16, Chap. XV] which are very efficient to solve large-scale
problems with a moderate accuracy.

When high accuracy is needed, second-order information must be added in the
model. Combining geometrical and Sequential Quadratic Programming approaches,
a local algorithm was presented and analyzed in [10], [34], [36], [35] and [41]; in the
latter two papers, a quadratic rate of convergence was obtained. However, in this SQP
framework, the authors considered only local analysis; issues of global convergence
were not addressed.

In this paper, we present, as in [33], the second-order analysis of the maximum
eigenvalue function using the U-Lagrangian theory [24] and we show how to use the ap-
proximate eigenvalue method to globalize the second-order algorithm while preserving
asymptotically a quadratic rate of convergence.

Our paper is organized as follows. We first recall some well-known results on the first-
order analysis of λ1. Then using simple chain rules, we easily derive a first-order analysis
of the composite function f := λ1 ◦ A. This enables us to simplify the approximate
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eigenvalue method developed in Sect. 3: at a point x we consider the enlargement of the
subdifferential of λ1 obtained with eigenvectors associated with ε-maximal eigenvalues;
this set δε f(x) plays the role of an approximation of the the true ε-subdifferential ∂ε f(x).
By measuring the quality of this approximation, we provide an explicit ε-strategy to
ensure global convergence of the method. In Sect. 4, we present the second-order
analysis of λ1 using the U-Lagrangian theory. We recall the main result of [33]: this
theory provides us with a second-order development of λ1 along a smooth manifold: the
setMr of matrices whose largest eigenvalue has multiplicity r. We derive similar results
for f with a so-called transversality condition. Then, in Sect. 5, we show how to use
the approximate eigenvectors (Sect. 2) to stabilize the second-order objects presented
in Sect. 4. In particular we provide a constructive characterization of the projection
of a matrix X ∈ Sn onto the manifold rε (Theorem 13). This results in a second-
order bundle method which is globally and quadratically convergent. With no additional
assumptions, a minimizing sequence is generated. Some strict complementarity and non-
degeneracy assumptions are needed to guarantee the quadratic rate of convergence. In
Sect. 6 using some duality, we explain how the approximate eigenvalue bundle method is
related to a new generation of spectral proximal-type bundle methods in which second-
order information can also be introduced. Finally we have chosen a numerical example
from combinatorial optimization to illustrate a qualitative distinction between interior-
point methods and second-order bundle methods: for the latter methods, superlinear
convergence can be observed even when strict complementarity does not hold.

1.2. Basic notation and terminology

Our notation follows closely that of [24] and [15].
R

m m-dimensional Euclidean space
xT y scalar product of x, y ∈ Rm

‖x‖ := √xT x Euclidean norm of x ∈ Rm

U⊥ orthogonal subspace of the subspace U
projC : Rm → U projection operator onto the closed convex set C ⊂ Rm

aff C affine hull of the nonempty set C ⊂ Rm

ri C relative interior of the convex set C ⊂ Rm

span C linear subspace generated by the nonempty set C ⊂ Rm

B(x, δ) open ball centered at x ∈ Rm with radius δ > 0
R

m � d �→ σC(d) := supg∈C gT d the support function of the nonempty set C ⊂ Rm

FC(d) := Argmaxc∈CdT c the face of the nonempty set C ⊂ Rm exposed by d ∈ Rm

∂ f(x) the subdifferential of the finite-valued convex function f at x ∈ Rm

∂ f(x) := {s ∈ Rm : f(y)− f(x) ≥ sT (y − x), for all y ∈ Rm}

f ′(x; d) the directional derivative of a convex function f at x ∈ Rm in the direction
d ∈ Rm

f ′(x; d) := inf
t>0

f(x + td)− f(x)

t
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or equivalently (see [16, Sect. VI.1]), the support function of ∂ f(x)

f ′(x; ·) = σ∂ f(x)(·) (2)

∂ε f(x) the ε-subdifferential of f at x ∈ Rm :

∂ε f(x) := {s ∈ Rm : f(y)− f(x) ≥ 〈s, y − x〉 − ε for all y ∈ Rm}

f ′ε(x; d), the ε-directional derivative of f at x ∈ R in the direction d ∈ R, is the support
function of ∂ε f(x):

f ′ε(x; ·) := σ∂ε f(x)(·)

Sn space of n × n symmetric matrices
S+n cone of positive semidefinite matrices
X � Y (resp. X � Y ) means that the matrix X − Y ∈ Sn is positive definite (resp.
positive semidefinite)
tr X :=∑n

i=1 Xii trace of the matrix X ∈ Sn

〈X, Y〉 := tr XY Frobenius scalar product of X, Y ∈ Sn
‖X‖ := √〈X, X〉 Frobenius norm of X ∈ Sn

X† Moore-Penrose inverse of X: if X = ∑n
i=1 λi(X)qiqT

i is the spectral decomposition
of X, X† can be defined as X† := ∑

λi (X) �=0
1

λi (X)
qiqT

i
λ1(X) ≥ . . . ≥ λn(X) eigenvalues of X ∈ Sn in decreasing order
E1(X) first eigenspace of X ∈ Sn , i.e., the eigenspace associated with λ1(X)

A∗ : Sn → Rm is the adjoint operator of the linear operatorA : Rm → Sn defined by:
for all (d, D) ∈ Rm × Sn

〈D,A d〉 = dTA∗ D

When A d = ∑m
j=1 d j A j , with A j ∈ Sn for j = 1, . . . , m, we have for all D ∈ Sn ,

A∗ D = [〈A1, D〉, . . . , 〈Am, D〉]T

2. First-order analysis

In this section we recall elementary results for the maximum eigenvalue function: the
subdifferential of λ1 can be characterized as an exposed face of a compact section of the
cone of semidefinite matrices. Then we propose an enlargement of the subdifferential
of λ1 based on the computation of approximate eigenvectors and a vertical development
of λ1, i.e., a development of the function ε �→ f ′ε(x; d). We derive similar results for
f := λ1 ◦ A using a simple chain rule. This will lead us to the main result of this section:
any direction d separating 0 from the chosen enlargement of ∂ f(x) is a “good” descent
direction.
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2.1. Subdifferentials and faces

In this paragraph we give explicit descriptions of the subdifferential and the approximate
subdifferential of λ1. In this analysis, a convex compact set plays a paramount role:
the intersection of the cone of semidefinite matrices with the hyperplane {V ∈ Sn :
tr V = 1},

Cn := {V ∈ Sn : V � 0, tr V = 1} . (3)

By analogy with the simplex of Rn in linear programming, we will refer to Cn as the
spectraplex of Sn . The following result is well-known; the proof is easy to derive via
the spectral decomposition of symmetric matrices.

Lemma 1. The spectraplex Cn is the convex hull of rank-one matrices:

Cn = co{qqT : ‖q‖ = 1} .
��

Using Rayleigh’s variational formulation

λ1(X) = max
q∈Rm,‖q‖=1

qT Xq ,

together with Lemma 1, a support function formulation is obtained (see Sect. 1.2 for
a definition of a support function):

λ1(X) = σCn (X) . (4)

As in [15], we will favor the support function formulation since it will be our main tool
in the analysis of Sect. 2.3. In order to describe the exposed faces of the spectraplex Cn
(Theorem 1), we first establish the following technical result.

Lemma 2. Let X and Z be in Sn; let Q = [q1, . . . , qr] be an n × r matrix whose
columns form an orthonormal basis of ker X.

(i) Then, X Z = 0 if and only if there exists Y ∈ Sr such that Z = QYQT .
(ii) Assume in addition X, Z ∈ S+n ; then 〈X, Z〉 = 0 if and only if there exists Y � 0

such that Z = QYQT .

Proof ((i)). We have X Z = 0 if and only if range Z ⊂ ker X = span {q1, . . . , qr}. This
is equivalent to saying that Z belongs to the subspace

span
{
qiq

T
j + q jq

T
i : i, j = 1, . . . , r

} = QSr QT .

[(ii)] When X and Z positive semidefinite, a consequence of the Schur product theo-
rem [17, Sect. 5.2] is that tr X Z = 0 if and only if X Z = 0. Then, via (i), Z has the
form QYQT ; it is positive semidefinite if and only if Y � 0.

��
The following theorem recalls previously known geometrical descriptions of ∂λ1(X)

(see [10] or [34]) and, along the lines of [15], makes an explicit link with the exposed
faces of Cn .
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Theorem 1. (i) Let X ∈ Sn and let Q1 be an n × r matrix whose columns form an
orthonormal basis of E1(X). The face of the spectraplex Cn exposed by X is

FCn (X) = {
Q1YQT

1 : Y ∈ Cr
} = co{qqT : ‖q‖ = 1, q ∈ E1(X)} ; (5)

it is the face exposed by any X ′ ∈ Sn such that E1(X ′) = E1(X).
(ii) The subdifferential of λ1 at X is an exposed face of the spectraplex:

∂λ1(X) = FCn (X) . (6)

Proof ((i)). Realize first that

co{qqT : ‖q‖ = 1, q ∈ E1(X)} = {
Q1YQT

1 : Y ∈ Cr
}

. (7)

Indeed write any normalized vector of E1(X) under the form q = Q1z, with z ∈ Rr

and ‖z‖ = 1. We get

co{qqT : ‖q‖ = 1, q ∈ E1(X)} = co
{

Q1zzT QT
1 : z ∈ Rr , ‖z‖ = 1

}
= Q1 co

{
zzT : z ∈ Rr , ‖z‖ = 1

}
QT

1 ,

where, in view of Lemma 1, co{zzT : z ∈ Rr , ‖z‖ = 1} = Cr . Now, by definition of an
exposed face, Z ∈ FCn (X) means

Z ∈ Cn and 〈X, Z〉 = σCn (X) = λ1(X) ,

or equivalently,

Z ∈ Cn and 〈λ1(X)In − X, Z〉 = 0 .

Altogether, (5) is obtained with Lemma 2 and FCn (X ′) = FCn (X) if and only if
ker (λ1(X)In − X) = ker (λ1(X ′)In − X ′), i.e., E1(X) = E1(X ′).
[(ii)] It is well known that the subdifferential of a support function σCn at a point X is
the exposed face of Cn exposed by X [16, Example VI.3.1].

��
The description of the approximate subdifferential is also obtained directly from the

support function formulation of λ1.

Theorem 2. For all ε ≥ 0, we have

∂ελ1(X) = {Z ∈ Cn : 〈Z, X〉 ≥ λ1(X)− ε} (8)

Proof. The approximate subdifferential of a support function is given in [16, Ex-
ample XI.1.2.5]. Then (8) follows immediately. In [44] the same result is obtained
via an analysis of the conjugate function of λ1.

��
The directional derivative of λ1 has an easy expression.

Theorem 3. For all D ∈ Sn, we have

λ′1(X; D) = λ1
(
QT

1 DQ1
)
.
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Proof. Use (2) and (6) to obtain

λ′1(X; D) = σ∂λ1(X)(D) = maxY∈Cr

〈
D, Q1YQT

1

〉
= maxY∈Cr

〈
QT

1 DQ1, Y
〉 = λ1

(
QT

1 DQ1
)
.

This completes the proof. This result was already established using perturbation theory
in [22] and can also be found in [15], [41].

��
It is well-known in nonsmooth optimization that the descent property λ′1(X; D) < 0

of a direction D is unstable, the function X �→ λ′1(X; D) being discontinuous. Mini-
mization algorithms based on this mere property are usually not convergent, because
descent along such directions may be numerically insufficient. One is much more inter-
ested in ε-descent directions, for which

λ′1,ε(X; D) := σ∂ελ1(X)(D)

is negative. Said otherwise, these directions separate 0 from ∂ελ1(X). The continuity of
X �→ λ′1,ε(X; D) [16, Theorem XI.4.1.3] guarantees the numerical efficiency of such
directions. Yet the difficulty here is to get a separation algorithm, and this is the rationale
for dual bundle methods [16, XIII,XIV]. This paper follows the same approach; but,
instead of separating 0 from ∂ελ1(X), we use the structure of our specific problem to
provide a tractable “good approximation” of the latter set.

2.2. Enlargement of the subdifferential

Since λ1 is the support function of a convex compact set, it can be seen as an infinite-
max function. Then a first idea could be to consider the enlargement proposed in [8,
Chap. VI]: the convex hull of the gradients of ε-active functions. Here the functions
are linear and it is easy to see, via (8), that the obtained enlargement is exactly the
ε-subdifferential of λ1. For practical reasons (see Remark 1), we will work here with
a smaller set δελ1(X) which satisfies

∂λ1(X) ⊂ δελ1(X) ⊂ ∂ελ1(X) .

Definition 1. For X ∈ Sn and ε ≥ 0 we define

– the set of indices of ε-largest eigenvalues

Iε(X) := {i ∈ {1, . . . , n} : λi(X) > λ1(X)− ε} , (9)

– the ε-multiplicity of λ1(X) : rε := max{i : i ∈ Iε(X)},
– the ε-first eigenspace: Eε(X) := ⊕i∈Iε(X)Ei(X), where Ei(X) is the eigenspace of

X associated with the ith eigenvalue λi(X),
– its orthogonal complement: Fε(X) := ⊕i /∈Iε(X)Ei(X),
– the “spectral separation” of ε: �ε(X) := λrε (X)− λrε+1(X).

��
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Pseudospectrum. The notions of approximate eigenvalues can be connected with the
recent theory of pseudospectra of linear operators [43,42]: this notion is mainly used to
cope with the lack of regularity of nonsymmetric matrices; here, for symmetric matrices,
a pseudospectrum can also be useful. Indeed it enables us to recover more than first-
order regularity of the largest eigenvalue (precisely some local regularity of the set of
approximate subgradients). For a normal matrix (in particular for a symmetric matrix)
the ε-pseudospectrum comprises the union of the closed balls of radius ε about each
eigenvalue. In fact we consider here one of these ε-balls, the one centered at λ1(X),
and we take its intersection with the spectrum of X. The important role played by the
approximate eigenvalues justifies the wording approximate eigenvalues method.

��
Take now an n× rε matrix Qε whose columns form an orthonormal basis of Eε(X).

Then we define the following compact convex set:

δελ1(X) := co{eeT : ‖e‖ = 1, e ∈ Eε(X)} . (10)

or equivalently, via Theorem 1,

δελ1(X) = {
QεYQT

ε : Y ∈ Crε

} = FCn

(
QεQT

ε

) = ∂λ1
(
QεQT

ε

)
. (11)

This set is an outer-approximation of ∂λ1(X) and an inner-approximation of ∂ελ1(X):

Proposition 1. Let X ∈ Sn. Then for all ε ≥ 0, we have

∂λ1(X) ⊂ δελ1(X) ⊂ ∂ελ1(X) . (12)

Proof. The inclusion ∂λ1(X) ⊂ δελ1(X) derives directly from (5) and (10). Another
easy inclusion is δελ1(X) ⊂ Cn . Take now Z ∈ δελ1(X): Z = QεYQT

ε with Y ∈ Crε

implies 〈Z, X〉 = 〈Y, QT
ε X Qε〉 ≥ λrε since

QT
ε X Qε = diag (λ1(X), . . . , λrε (X)) � λrε Irε

and tr Y = 1. Together with (9), we obtain 〈Z, X〉 ≥ λ1(X) − ε; since Z ∈ Cn this
means, according to (8), that Z ∈ ∂ελ1(X).

��
A crucial point consists now in quantifying the (Hausdorff) distance between our

enlargement and the approximate subdifferential. One way to proceed is to get a vertical
development of λ1.

2.3. Vertical development

The notion of vertical development is presented in [33]. It will result in Theorem 4, which
gives an explicit upper bound for the distance between the approximate subdifferential
and the enlargement δελ1(X). We start with some linear algebra.
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Lemma 3. Let U ∈ Rn×n be such that UT U = In. Then, there exist n × n matrices
(Eε, Fε,�, T ) such that



the columns of Eε are unit vectors of Eε(X) (a)

the columns of Fε are unit vectors of Fε(X) (b)

� and T are diagonal and positive semidefinite (c)

�2 + T 2 = I (d)

U = Eε� + FεT (e)

(13)

Proof. In [33, Lemma 5.2], we give a constructive proof of this result for ε = 0. There
is no difficulty to see that the same proof can be applied here by decomposing each
column of U on Eε(X)⊕ Fε(X) = Rn .

��
The decompositionRm = Eε(X)⊕ Fε(X) provides us with some useful relations.

Lemma 4. Let (Eε, Fε,�, T )be a quadruplet satisfying (13) and�= diag (θ1, . . . , θn)

∈ Cn. Then we have,


ET
ε X Fε = FT

ε X Eε = 0 (a)

λrε (X) ≤ 〈
X,

(
Eε�ET

ε

)〉 ≤ λ1(X) (b)〈
X, Fε�FT

ε

〉 ≤ λrε+1(X) (c)

tr (��T ) ≤ [tr (T�T )]1/2 (d)

(14)

Proof.
[a]: The subspaces Eε(X) and Fε(X) are orthogonal and invariant by X. Then the
columns of X Fε are in Fε(X) and they are orthogonal to the columns of Eε. This
implies (a).

[b]: Since Eε�ET
ε =

∑p
i=1 θieieT

i , where the ei ’s are the columns of Eε, we have

〈
X, Eε�ET

ε

〉 = p∑
i=1

θie
T
i Xei .

Now use the fact that for all unit vectors e ∈ Eε(X), λrε (X) ≤ eT Xe ≤ λ1(X), together
with � = diag (θ1, . . . , θn) ∈ Cn , to get (b).

[c]: Similarly to [b], we have

〈
X, Fε�FT

ε

〉 = p∑
i=1

θi f T
i X fi ≤ λrε+1(X)(

n∑
i=1

θi) = λrε+1(X) .

[d]: Note that � ! In and �T is (diagonal) positive semidefinite to get

tr (��T ) ≤ tr (�T ) . (15)
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Now use � = diag (θ1, . . . , θn) ∈ Cn and T = diag (t1, . . . , tn) � 0, together with the
concavity of the square-root function, to obtain

n∑
i=1

θi ti ≤
( n∑

i=1

θi t
2
i

)1/2
.

In matrix notation, this means tr (�T ) ≤ [tr (T�T )]1/2. Together with (15), this
gives (d).

��
We can now give a key result toward relating the two sets of (8) and (11).

Proposition 2. Let X ∈ Sn, ε ≥ 0 and η ≥ 0. For all Z ∈ ∂ηλ1(X), there exists
Gε ∈ δελ1(X) and five n × n matrices (Eε, Fε,�, T,�) such that


(Eε, Fε,�, T ) satisfies (13) (a, b, c, d) (a)

� = diag (θ1, . . . , θn) ∈ Cn (b)

Z = Gε +
(
Eε��TFT

ε + Fε��TET
ε

)+ (
FεT�TFT

ε − EεT�TET
ε

)
(c)

tr T�T ≤ η
λrε (X)−λrε+1(X)

= η
�ελ1(X)

(d)

(16)

Proof. Write the spectral decomposition of Z ∈ ∂ηλ1(X): there exists U ∈ Rn×n , such
that UT U = In and a diagonal matrix � such that Z = U�U T . In view of (8), we
have � ∈ Cn . Then, apply Lemma 3: U = Eε� + FεT where (Eε, Fε,�, T ) satisfies
(13)(a,b,c,d). Substituting this in the spectral decomposition of Z , we obtain

Z = Gε +
(
Eε��TFT

ε + FεT��ET
ε

)+ (
FεT�TFT

ε − EεT�TET
ε

)
, (17)

where Gε := Eε�ET
ε =

∑p
i=1 θieieT

i and the ei’s are unit vectors of Eε(X). According
to (11), this means Gε ∈ δελ1(X). Then (a, b, c) are satisfied. In order to prove (d), take
the scalar product of X with the left- and right-hand side of (17) and use (14)(a,b,c,d) to
obtain

λ1(X)+ (λrε+1(X)− λrε (X))tr (T�T ) ≥ 〈X, Z〉 .
Since Z ∈ ∂ηλ1(X), we have together with (8), 〈X, Z〉 ≥ λ1(X)− η. This enables us to
complete the proof.

��
The following result says that δελ1(X) is a good approximation of ∂ηλ1(X) for η

small enough, depending on the spectral separation of Definition 1.

Theorem 4. For all ε ≥ 0, η ≥ 0 and D ∈ Sn, we have

λ′1,η(A; D) ≤ σδελ1(X)(D)+ ρ(η, ε) ‖D‖ , (18)

or equivalently,

∂ηλ1(X) ⊂ δελ1(X)+ B(0, ρ(η, ε)) , (19)

where ρ(η, ε) := (
2η

�ε(X)
)1/2 + (

2η
�ε(X)

).
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Proof. Let ε ≥ 0, η ≥ 0, D ∈ Sn and Z ∈ ∂ηλ1(X). From (16)(c), we obtain

〈Z, D〉 = 〈Gε, D〉 + 〈
��T, ET

ε DFε + FT
ε DEε

〉+ 〈
T�T, FT

ε DFε − ET
ε DEε

〉
.

Let us bound each of the three terms from above. First, G ε ∈ δελ1(X) implies

〈Gε, D〉 ≤ σδελ1(X)(D) . (20)

Then, denoting (��T ) = diag (σ1θ1t1, . . . , σnθntn), we have

〈
��T, ET

ε DFε + FT
ε DEε

〉 = n∑
i=1

σiθi ti
[〈

D, ei f T
i + fie

T
i

〉]
.

Now, use the Cauchy-Schwarz inequality, together with ‖ei f T
i + fieT

i ‖ =
√

2, to get〈
��T, ET

ε DFε + FT
ε DEε

〉 ≤ √2‖D‖tr (��T ) . (21)

Similarly we have for the last term〈
T�T, FT

ε DFε − ET
ε DEε

〉 = ∑n
i=1 θi t2

i

[〈
D, fi f T

i − eieT
i

〉]
≤ tr (T�T ) ‖D‖ (‖ fi f T

i ‖ + ‖eieT
i ‖

)
≤ 2tr (T�T ) ‖D‖ ,

(22)

since ‖ fi f T
i ‖ = ‖eieT

i ‖ = 1. Putting together (20), (21), (14)-(d) and (22), we get

〈Z, D〉 ≤ σδελ1(X)(D)+√2‖D‖ (tr (T�T ))1/2 + 2‖D‖ tr (T�T ) . (23)

Together with (16)(d), we obtain (18); (19) is the geometrical form of (18).
��

We will use this result in a simplified form.

Corollary 1. Let X ∈ Sn, ε ≥ 0 and η ∈ [0,
�ε(X)

2 ]. Then for all D ∈ Sn, we have

λ′1,η(X; D) ≤ σδελ1(X)(D)+
(

8η

�ε(X)

)1/2

‖D‖ . (24)

Proof. Since η ≤ �ε(X)
2 , we have 0 ≤ 2η

�ε(X)
≤ (

2η
�ε(X)

)1/2 which, together with (18),
gives (24).

��
Finally, we show we have s simple expression for the support function of δελ1(X):

it is the largest eigenvalue of an rε × rε symmetric matrix.

Proposition 3. Let X ∈ Sn. Then for all ε ≥ 0 and D ∈ Sn, we have

σδελ1(X)(D) = λ1(QT
ε DQε) . (25)

Proof. The set δελ1(X) has the same structure as ∂λ1(X); the proof is then similar to
that of Theorem 3.

��
In the following paragraph we extend these results to the composite function f :=

λ1 ◦ A.
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2.4. Composition with an affine mapping

We recall thatAdenotes the linear part of A(·) andA∗ its adjoint. First-order composition
is based on the following elementary chain rule.

Proposition 4. For x ∈ Rm and ε ≥ 0,

∂ε f(x) = A∗∂ελ1(A(x)) . (26)

Proof. This is a straightforward application of the chain rule given in [16, Theorem
XI.3.2.1].

��
Then an enlargement of ∂ f(x) is the following convex set:

δε f(x) := A∗δελ1(A(x)) , (27)

and its associated support function

f̃
′
ε(x; d) := σδε f(x)(d) . (28)

Here we use the notation f̃
′
ε(x; d) to emphasize the analogy with the approximate

directional derivative of f at x:

f ′ε(x; d) := σ∂ε f(x)(d) .

Applying the linear mappingA∗ in (12), it comes

∂ f(x) ⊂ δε f(x) ⊂ ∂ε f(x) , [geometric form] (29)

or equivalently

f ′(x; d) ≤ f̃
′
ε(x; d) ≤ f ′ε(x; d) , [analytic form]

The quality of this approximation is derived from inequality (24): for all ε ≥ 0, η ∈
[0,�ε(A(x))] and d ∈ Rm ,

f ′η(x; d) ≤ f̃
′
ε(x; d)+

(
8η

�ε(A(x))

)1/2

‖A d‖ ≤ f̃
′
ε(x; d)+

(
8η

�ε(A(x))

)1/2

κ‖d‖ ,

(30)

where κ := sup‖x‖=1 ‖A(x)‖ is the largest singular value of A.

Furthermore, it is straightforward from (25) and (27) that f̃
′
ε(x; d) is also a max-

imum eigenvalue:

f̃
′
ε(x; d) = λ1

(
QT

ε (A d)Qε

)
. (31)

In particular for ε = 0, we have

f̃
′
0(x; d) = f ′(x; d) = λ1

(
Q1(A d)QT

1

)
. (32)

Ideally we would like to choose ε > 0 and find a so-called direction d of ε-descent.
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Lemma 5 ([16, Lemma XIII.1.2.3]). Suppose that d ∈ Rm is a direction of ε-descent:
f ′ε(x; d) < 0. Then the set of all t > 0 such that f(x + t d) < f(x) − ε forms a non
empty interval.

Remark 1. The difficulty here is that ∂ε f(x) is so rich that computing its support function
f ′ε(x; d) for a given direction d or a fortiori looking for the best ε-descent direction
Argmin‖d‖=1 f ′ε(x; d) seems to be as expensive as the original problem (P). Therefore
instead of working with ∂ε f(x) we deal with its inner approximation δε f(x). Equality
(31) quantifies the effort needed to evaluate f̃

′
ε(x; d): it requires the computation of the

largest eigenvalue of an rε × rε matrix. We can now specify to what extent a direction
d ∈ Rm satisfying at x ∈ Rm

f̃
′
ε(x; d) < 0 , (33)

is a “good” descent direction. The following result is an improvement of [32, Theo-
rem 5.5] where the distance between the exact subdifferential of λ1 at X ∈ Sn and its
ε-subdifferential was considered.

��
Theorem 5. Let x ∈ Rm, ε ≥ 0 and d ∈ Rm be such that (33) holds. Then

(i) d is a direction of η(x, ε)-descent, where

η(x, ε) :=
[

f̃
′
ε(x; d)

4κ‖d‖

]2

�ε(A(x)) .

(ii) In addition, assume there exist ω ∈ [0, 1], δ > 0 and µ > 0 such that

f̃
′
ε(x; d) ≤ −ω‖d‖2 , (34)

‖d‖ ≥ δ and �ε(A(x)) ≥ µ; then

η(x, ε) ≥
[
ωδ

4κ

]2

µ . (35)

Proof. It is straightforward from (30).
��

Remark 2. Let g ∈ δε f(x) be such that d = −g satisfies (34) for ω = 1; then g =
projδε f(x) 0. When ω ∈]0, 1], g is an approximation of this projection. In Sect. 3.1, we
present a separation algorithm to obtain such directions.

��

3. First-order algorithm

We describe here an iterative process to compute η-descent directions using the infor-
mation stored in δε f(x), the parameters η and ε being related as in Theorem 5. Then
the step-length is determined with a (finite) dichotomous line-search for η-descent. The
approximate eigenvalue algorithm and its convergence analysis complete the section.
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3.1. Projection problem

The problem we want to solve is

min
g∈δε f(x)

‖g‖2 . (36)

This is a quadratic optimization problem over the cone of positive semidefinite matrices.
Indeed, in view of (27) and (11), program (36) is equivalent to


min

∥∥A∗(QεYQT
ε

)∥∥2

Y � 0
tr Y = 1 .

(37)

In [35], a similar projection problem is encountered. The authors adopt the following
approach: instead of projecting onto δε f(x), they project onto aff δε f(x), i.e., the con-
straint Y � 0 is replaced by Y ∈ Srε . This leads them to a quadratic problem with linear
equality constraints which can be solved with classical (and efficient) techniques. Yet
this approach has a major drawback: when the minimizer is not positive semidefinite,
we have no interpretation for the resulting projection; one has to escape from the current
iteration and to change the multiplicity rε.

Here we compute an approximation g of projδε f(x) 0: we require

f̃
′
ε(x; −g) ≤ −ω‖g‖2 ,

where ω ∈]0, 1] is a tolerance that controls the proximity of g from the projection
projδε f(x) 0 (see Remark 2). The algorithm we present here is essentially the one
proposed by J. Cullum, W.E. Donath and P. Wolfe in [6]. It is an instance of a general
scheme, called the support-black box method in [16, Sect. IX.3] to minimize a quadratic
form on a convex set. This algorithm is in fact a separation algorithm that was first given
in [12].

SUPPORT-BLACK BOX METHOD

Step 0. Set l = 1 and s = s1 ∈ δε f(x).
Step 1. Compute dl = −projPl

0, where Pl = co{s1, . . . , sl}.
Step 2. Compute sl+1 ∈ δε f(x) such that

sT
l+1dl = σδε f(x)(dl) .

Step 3. (Stopping criterion). If σδε f(x)(dl) ≤ −ω‖dl‖2 then STOP.
Replace l by l + 1 and return to Step 1.

��
Note that sl+1 in Step 2 has the form A∗ uuT where u is a unit eigenvector associ-

ated with λ1(QT
ε (A dl)Qε). During the separation process a bundle of ε-subgradients

{s1, . . . , sk} is generated; in that sense the first order method presented in this section
is a bundle method.

The convergence of the support-black box method is investigated in detail in [16,
Sect. IX.3]. In particular, we have the following properties.



A second-order bundle method for maximum eigenvalue problems 15

Proposition 5. The support-black box method at x ∈ Rm with ω ∈]0, 1[ converges in
a finite number of steps. Assume that the ε-Strict Complementarity condition holds at
x ∈ Rm,

(SC)ε projδε f(x) 0 ∈ ri δε f(x) .

Then finite convergence is obtained also if ω = 1.

Proof. Set gε := projδε f(x) 0. Then the results are directly derived from Theorem
IX.3.3.3 and Proposition IX.3.3.4 in [16].

��
Remark 3. The complexity of the support-black box method is not explicitly known.
It seems that the number of steps will depend on the condition number of the linear
operator

Srε � Y �→ Kε(Y ) := A∗(QεYQT
ε ) . (38)

Requiring thatKε is not singular was already a condition introduced in [35] and was the
first appearance of the notion of transversality in semidefinite programming although it
was not named as such. The connection is clearly established in [41].

��

3.2. Line-search

Let x ∈ Rm and d ∈ Rm be produced by the support-black box method of Sect. 3.1,
so that f̃

′
ε(x; d) < 0. Then, according to Theorem 5, the objective function can be

decreased by a positive number η(x, ε).
The problem we consider is now: find t > 0 such that

f(x + td) ≤ f(x)− η(x, ε) . (39)

When assumptions of Theorem 5 (ii) hold, a simple line-search for η-descent can be
presented. We expose here a line-search based on a dichotomous scheme controlled
by a η-descent stopping criterion. For an advanced implementation we refer to [16,
Remark XIII.2.1.2].

LINE-SEARCH

Step 0. Set tL = 0, tR = +∞ and t0 = 1.
Step 1 (work). Obtain q(t) := f(x + td) and q ′+(t) := f ′(x + td, d) using (32).
Step 2 (η-descent test). If (39) holds stop.
Step 3 (Dichotomous search). If q ′+(t) > 0 set tR := t; else set tL = t. Compute
t = tL+tR

2 .
��

Theorem 6. Let x ∈ Rm, ε > 0 and d ∈ Rm be satisfying the assumptions of Theo-
rem 5 (ii). Then the line-search for η(x, ε)-descent stops after a finite number of steps.
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Proof. From Theorem 5 (ii), the quantity η(x, ε) is strictly positive. Use now Theo-
rem 5 (i), together with Lemma 5: {t :∈ R+ : f(x + td) ≤ f(x) − η(x, ε)} is a non
empty interval. Therefore the dichotomous scheme will detect one of its elements after
a finite number of iterations.

��

3.3. The approximate eigenvalues algorithm

To get a simple convergence analysis, the first-order algorithm we present here will use
the following ε-strategy (see Fig. 1).

�1(X)��r(x)

"(x)

X := A(x)

�
"(x)(X)

Fig. 1. ε-strategy

Choose first a tolerance ε̄ > 0. Then define at x ∈ Rm


Rε̄(x) := {
r ∈ {1, . . . , n − 1} : λr(A(x))− λr+1(A(x)) ≥ ε̄

n

}
,

r̄(x) :=
{

min{r : r ∈ Rε̄(x)} if Rε̄(x) �= ∅
n otherwise,

ε(x) :=



f(x)− λr̄(x)(A(x))+ ε̄
2n if Rε̄(x) �= ∅

ε̄ otherwise.

(40)

Here, ε̄ is the final tolerance: Algorithm 1 below is aimed at minimizing f within
a tolerance ε̄. With reference to Definition 1, observe that r̄(x) is the ε(x)-multiplicity
of λ1(A(x)). If Rε̄(x) �= ∅, the spectral separation of ε(x) is larger than ε̄

n . Moreover we
have λr(A(x))− λr+1(A(x)) < ε̄

n , for r = 1, . . . , r̄(x)− 1, when r̄(x) > 1.

Algorithm 1.
Step 0 (Initialization). Choose the tolerances δ > 0, ε̄ > 0, ω ∈]0, 1[; initialize x :=
x0 ∈ Rm .
Step 1 (Separation). Set ε := ε(x) and compute d ∈ −δε f(x) satisfying (34) with the
support-black box method.
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Step 2 (Stopping criterion). If ‖d‖ ≤ δ stop.
Step 3 (Line-search). Compute t such that

f(x + td) ≤ f(x)− η(x, ε) ,

with the Line-Search of Sect. 3.2.
Step 5 (Update). Replace x by x + td; return to Step 1.

��
To ensure that our problem (P) makes sense, we assume that f is bounded from

below. We have:

Lemma 6. The function f is bounded from below if and only if

(i) 0 ∈ A∗(Cn) ,

or equivalently,
(ii) (rangeA)⊥ ∩ S+n �= {0} .

Proof. From convex duality [16, Chap. X], − f ∗(0) = infx∈Rm f(x), where f ∗ is the
conjugate function of f ; as shown in [44], we have

− f ∗(0) = sup{〈Z, A0〉 : Z ∈ Cn ∩ kerA∗} .
Then f is bounded from below if and only if Cn∩ker A∗ �= ∅, which is clearly equivalent
to (i) and (ii). Note that (ii) can be directly obtained from [26].

��
This leads us to the following result.

Lemma 7. For all x ∈ Rm, the parameter ε(x) of (40) is not greater than ε̄. Therefore

δε(x) f(x) ⊂ ∂ε̄ f(x) . (41)

As a result, if f is bounded from below, we have

(i) �ε(x)(A(x)) ≥ ε̄
n ,

(ii) or 0 ∈ δε(x) f(x) .
(42)

Proof. Take x ∈ Rm and consider the two following cases.
[Rε̄(x) �= ∅]: by construction of ε(x) (40), (i) holds: �ε(x)(A(x)) ≥ ε̄

n . Furthermore

ε(x) = f(x)− λr̄(x)(A(x))+ ε̄

2n
<

(
r̄(x)− 1

2

)
ε̄

n
≤ ε̄ ;

together with (29) and the fact that the set-valued function ε �→ ∂ε f(x) is not decreasing,
this gives (41).

[Rε̄ = ∅]: we have r̄(x) = n and ε(x) = ε̄. Hence (41) still holds. Then from (11) and
(27), we have δε(x) f(x) = A∗(Cn). On the other hand, we know from Lemma 6 that f
bounded means 0 ∈ A∗(Cn). This implies (ii).

��
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Remark 4. In practice we will use ε bigger than ε(x): at each iteration k we choose εk
in [0, max{ε(xk), θ

kε0}[ such that �εk(xk) is maximized, where θ ∈] 1
2 , 1[ is a given

parameter which forces the convergence of εk towards ε̄.

We are now in a position to prove finite convergence of Algorithm 1 towards an approx-
imate solution of (P).

Theorem 7. Assume that f is bounded from below. Then Algorithm 1 stops after a finite
number of iterations, yielding x̄ satisfying the approximate minimality condition

f(y) ≥ f(x̄)− ε̄− δ‖y − x̄‖ for all y ∈ Rm .

Proof. While‖d‖>δ, we have 0 /∈δε(x) f(x) and according to Lemma 7,�ε(x)(A(x))≥ ε̄
n .

Together with (35), this gives us f(x)− f(x+td) ≥ η(x, ε) ≥ [mδ
4κ
]2 ε̄

n . Then Algorithm 1
must stop before N steps, where N is the first integer satisfying

f(x0)− N

[
mδ

4κ

]2
ε̄

n
≤ − f ∗(0) .

��

4. Second-order analysis

As with the first-order analysis, a convenient approach consists in studying the second-
order behavior of λ1 and then deriving that for the composite function f = λ1 ◦ A by
chain rules. Yet, even though their formulation is simple, chain rules are not easy to obtain
here; as explained in [33], we need to introduce a geometrical condition to get them.

4.1. The U-Lagrangian of λ1

For a presentation of the U-Lagrangian theory in a more general framework we refer
to [24]. The second-order analysis we present here starts with the following idea:
consider at X ∈ Sn , the largest subspace where λ′1(X; ·) is linear.

Definition 2. At X ∈ Sn, we define

U(X) := {
U ∈ Sn : λ′1(X;U)+ λ′1(X; −U) = 0

}
,

and V(X) := U(X)⊥.
��

The subspaces U(X) and V(X) are also characterized as follows.

Proposition 6 ([24]). Let X ∈ Sn.

(i) For any G ∈ ri ∂λ1(X), U(X) and V(X) are respectively the normal and tangent
cones to ∂λ1(X) at G.
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(ii) U(X) and V(X) are respectively the subspaces orthogonal and parallel to
aff ∂λ1(X).

��
A first attempt to reach second order could consist in introducing the function

induced by λ1 in U(X). Yet, proceeding this way we would miss a major fact: a good
model of λ1 must consider the local behavior of all “active constraints” at X. At this
stage geometry can help: it suggests fixing the multiplicity (i.e., the “activity”) of λ1;
this point of view is the one adopted in [36]. The “surface of activity” is defined as

Mr := {M ∈ Sn : λ1(M) = . . . = λr(M) > λr+1(M)} .
Reference [3] is usually proposed to prove the smoothness of Mr . In fact, it can be
obtained as a simple consequence of the Constant Rank Theorem [40, Chap. III Sect. 9].
This gives us a geometrical interpretation of the subspaces U(X) and V(X).

Theorem 8 ([33, Corollary 4.8]). Let X ∈ Mr . The subspaces U(X) and V(X) are
respectively the tangent and normal spaces toMr at X:

U(X) = {
U ∈ Sn : QT

1 UQ1 − 1
r

(
tr QT

1 UQ1
)
Ir = 0

}
,

and V(X) = {
Q1YQT

1 : Y ∈ Sr , 〈Y, Ir 〉 = 0
}
.

(43)

��
The U-Lagrangian is a convex function which identifies locally the “ridge” of λ1.

Definition 3. Let X ∈ Sn and G ∈ ∂λ1(X). The U-Lagrangian of λ1 at the primal-dual
pair (X, G) is the function

U(X) � U �→ LU (X, G;U) := min
V∈V(X)

λ1(X +U + V )− 〈G, V 〉 .

We define also the associated set of minimizers

V(X, G;U) = ArgminV∈V(X)λ1(X +U + V )− 〈G, V 〉 .
��

The following theorem is established in [24] for any finite valued convex function,
we express it in our specific context.

Theorem 9. Let (X, G) ∈ Sn × ∂λ1(X). Then, we have

(i) the function LU (X, G; ·) is well-defined and convex over U(X).

Assume, in addition, that G ∈ ri ∂λ1(X). Then,

(ii) for all U ∈ U(X), V(X, G;U) is a nonempty compact convex set which satisfies

sup
V∈V(X,G;U )

‖V‖ = o(‖U‖) . (44)



20 François Oustry

(iii) In particular, at U = 0, we have V(U) = {0}, LU (X, G; 0) = λ1(X) and
∇LU (X, G; 0) = projU(X)G exists.

��
A geometrical interpretation of (44) is that U(X) is tangent at X to the “ridge”:

{X +U + V(X, G;U) : U ∈ U(X)} .
In our context we can prove that this geometrical set coincides in a neighborhood of X
withMr when G ∈ ri ∂λ1(X).

Theorem 10 ([33, Theorem 4.11]). Assume (X, G) ∈ Sn×ri ∂λ1(X). Then there exists
δ > 0 such that, for all U ∈ U(X) ∩ B(0, δ), V(X, G;U) is a singleton. Moreover the
map

U(X) ∩ B(0, δ) � U �→ X +U + V(U) (45)

is a C∞-parameterization of the sub-manifoldMr .
��

This gives us a second-order development of λ1 alongMr .

Theorem 11 ([33, Theorem 4.12–Corollary 4.13]). Take (X, G) ∈ Sn × ri ∂λ1(X).
Then LU (X, G; ·) is C∞ in a neighborhood of U = 0 and we have the following
second-order development of λ1

λ1(X +U + V(U)) = λ1(X)+ 〈G, U + V(U)〉
+ 1

2
〈∇2 LU (X, G; 0) ·U, U〉 + o(‖U‖2) , (46)

where ∇2LU (X, G; 0) is known explicitly:

∇2 LU (X, G; 0) = proj∗U(X) H(X, G) projU(X) ,

and H(X, G) is the symmetric positive semidefinite operator

Sn � Y �→ H(X, G) Y := GY [λ1(X)In − X]† + [λ1(X)In − X]†YG .

��
The operator ∇2LU (X, G; 0) is called the U-Hessian of λ1 at (X, G).

4.2. Composition with affine operator

When composing with the affine operator A(·), we expect the same type of results as
for λ1 and we would like to have similar geometrical interpretations. It is obvious that
the subspace where f ′(x; ·) is linear and its orthogonal complement can be written:

U f (x) = A−1(U(A(x))) and V f (x) = A∗V(A(x)) .

Yet, when concentrating on second-order, the first difficulty encountered is that the
inverse image ofMr , i.e.,

{x ∈ Rm : A(x) ∈Mr} =:Wr ,

may be nonsmooth. Then to simplify the analysis, a transversality condition is relevant.
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Definition 4. TRANSVERSALITY We say that A(·) is transversal toMr at x ∈ Wr if
and only if

(T ) U(A(x))+ rangeA = Sn .

��
The transversality condition guarantees a one to one relation between ∂ f(x) and

∂λ1(A(x)).

Lemma 8. Assume that transversality holds at x ∈ Rm and take g ∈ ∂ f(x). Then there
exists a unique G ∈ ∂λ1(X) such that g = A∗(G); if g is in ri ∂ f(x), G is also in
ri ∂λ1(A(x)). Moreover

dimV f (x) = r(r+1)
2 − 1 ,

and dimU f (x) = m + 1− r(r+1)
2 .

(47)

Proof. Apply Theorem 5.5 in [33]: let Q1 be a n × r matrix whose columns form an
orthonormal basis of E1(A(x)); then the mapping

V(A(x)) � V �→ A∗(V )

is nonsingular. Together with (43), this implies (47). The one-to-one relation between
the subdifferentials is easily derived from the fact that G − G ′ ∈ V(A(x)) when G and
G′ are in ∂λ1(A(x)).

��

Finally transversality is a sufficient condition to obtain the differentiability of the
U-Lagrangian of f and to compute its Hessian via simple chain rules.

Theorem 12 ([33, Theorem 5.10]). Assume that the transversality condition holds at
x ∈ Rm and take g ∈ ri ∂ f(x). Then the U-Lagrangian of f at x,

U f (x) � u �→ L f
U (x, g; u) := min

v∈V f (x)
f(x + u + v)− gT v ,

is C∞ in a neighborhood of u = 0. In particular,

∇L f
U (x, g; 0) = projU f (x)g ,

and

∇2 L f
U (x, g; 0) = proj∗U f (x) H f (x, G) projU f (x) ,

where H f (x, G) := A∗ H(A(x), G)A and G is the unique (via Lemma 8) vector of
ri ∂λ1(A(x)) such that g = A∗(G).

��
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The operator ∇2 L f
U (x, g; 0) is called the U-Hessian of f at (x, g). The projection

operator projU f (x) is given by the expression [33, Corollary 5.7]:

projU f (x) = Im −K0(K
∗
0K0)

−1K∗0 ,

where K0 is obtained by taking ε = 0 in (38).
The transversality condition enabled M. L. Overton and R.S. Womersley, in [35], to

parameterizeMr using exponentials of matrices and to transform the original uncon-
strained minimization problem into a smooth constrained one. This led them essentially
to the same second derivative formula. Going along the lines of [35] and [9], we can
prove that H(A(x), G) is the second covariant derivative in the Euclidean metric of the
function

λ̂1(M) := 1

r

r∑
i=1

λi(M) ,

which is smooth near A(x) ∈Mr and coincides with λ1 onMr .
Yet, note that the transversality condition is only sufficient to prove the smoothness

of L f
U (x, g; ·). The following example shows us that it is not necessary either to get the

differentiability of L f
U (x, g; ·) or to guarantee the smoothness ofWr .

Example 1. Consider the mapping from R2 to S3 defined by

A(x1, x2) :=

 x1 − x2 0 0

0 x2 − x1 0
0 0 1


 .

We have f(x) = max{|x1−x2|, 1} and at x̂ :=
[

0
1

]
the transversality condition does not

hold. We have obviously ∂ f(x̂) = {α
[−1

1

]
: α ∈ [0, 1]}. Then V f (0, 1) = R

[−1
1

]
is unidimensional, whereas the transversality condition would imply, via Lemma 8,
dimV f (0, 1) = 2. Yet,W2 is linear and therefore smooth in a neighborhood of x̂:

W2 = x̂ + U f (x) = x̂ +R
[

1
1

]
.

Moreover, for all g ∈ ∂ f(x̂) and u ∈ U f (0, 1), v(x, g; u) = {0} and L f
U (x, g; u) = 1 is

trivially twice differentiable.
��

5. Global second-order algorithm

We first explain how to “stabilize” the U-objects. Then we present the three steps of the
global U-Newton algorithm: dual, vertical and tangent steps.
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5.1. Enlargement of U

From the enlargement of ∂λ1(X) introduced in Sect. 2.2, we derive easily an enlargement
of U(X). We give here the ε-version of Definition 2; note that σδελ1(X)(·) plays the
role of λ′1(X; ·) = σ∂λ1(X)(·).

Definition 5. Let ε ≥ 0 and X ∈ Sn. We define Uε(X) as the largest subspace where
σδελ1(X) is linear:

Uε(X) := {U ∈ Sn : σδελ1(X)(U)+ σδελ1(X)(−U) = 0} .

and Vε(X) := Uε(X)⊥.

Proposition 6 can also be extended in this context.

Proposition 7. Let ε ≥ 0 and X ∈ Sn. The subspaces Uε and Vε are equivalently
characterized by:

(i) For any Gε ∈ ri δελ1(X), Uε(X) andVε(X) are respectively the normal and tangent
cones to δελ1(X) at Gε.

(ii) Uε(X) and Vε(X) are the subspaces respectively orthogonal and parallel to
aff δελ1(X).

Proposition 9 below will show that Uε(X) is just the usual U at an appropriately
shifted matrix Xε. As a result, all the geometrical interpretations of Sect. 4.1 can be
reproduced.

5.2. Dual step

The dual step is essentially done in Sect. 3.1: we compute an approximation of the
projection of 0 onto δε f(x) with the support black-box method and obtain gε ∈ δε f(x)

such that

f̃
′
ε(x; −gε) ≤ −ω‖gε‖2 . (48)

In fact the support-black box also produces a matrix G ε in δελ1(A(x)) such that gε =
A∗(Gε). The subgradient gε will be used to guarantee an efficient descent and the dual
variable Gε will be needed to compute the Hessian of the U-Lagrangian.

Actually, it is important for quadratic convergence to obtain the exact projection.
The following result shows that this is possible.

Proposition 8. Assume (T ) of Definition 4 of and (SC)0 of Proposition 5 hold at x∗ ∈
R

m. Then for 0 < ε < �0(A(x∗)) (Definition 1) , the ε-strict-complementarity condition
(SC)ε holds in a whole neighborhood of x∗.
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Proof. When 0 < ε < �0(A(x∗)), by continuity of eigenvalues, we have rε(x) =
dim Eε(A(x)) = r∗ when x ∈ B(x∗, ρ) for some ρ > 0. In fact, for ρ small enough,
we have Eε(A(x)) = Etot(A(x)), where Etot(A(x)) is the total eigenspace for the
λ1(A(x∗))-group at A(x); this notion is defined in [18] and used in [41,33]. Then intro-
ducing, as in [33, Theorem 4.5], the C∞ map X �→ Qtot(X) defined in a neighborhood
of A(x∗), the projection problem involved in (SC)ε can be written together with (11)
and (27):

min
Y∈Cr∗

∥∥A∗ (
Qtot(A(x))YQtot(A(x))T

)∥∥2
. (49)

Then the proof becomes similar to the one of [33, Proposition 6.9].

– The first-order optimality conditions of (49) with the transversality condition at x ∗,
enable us to use the Implicit Function Theorem and to get a C∞ map B(x∗, δ) �
x �→ Y(x) solution of (49).

– The strict complementarity condition at x∗ tells us that Y(x∗) is positive definite.
– The continuity of Y(·) implies that Y(x) is positive definite for x in a neighborhood

of x∗. This means that the ε-strict complementarity condition is satisfied in the latter
neighborhood.

��
Corollary 2. Assume that (T ) and (SC)0 hold at x∗ and take 0 < ε < �0(A(x∗)).
Then there exists ρ1 > 0 such that for all x ∈ B(x∗, ρ1), the support-black box method
with m = 1 produces projδε f(x) 0 in a finite number of steps.

Proof. Combine Proposition 5 with Proposition 8.
��

5.3. Vertical step

It would be nice to project the current point x onto the manifold Wr := {x ∈ Rm :
A(x) ∈Mr}. Yet, even in the case where transversality holds, such a projection is very
hard to obtain. Nevertheless, in the space of matrices it is easy to compute a point of
Mr which satisfies the first-order optimality conditions associated with the projection
problem. Consider a spectral decomposition of X ∈Mr :

X = Qε�εQT
ε + Rε�ε RT

ε ,

where �ε and �ε are respectively rε × rε and (n − rε) × (n − rε) diagonal matrices,
and Rε is a n × (n − rε) matrix whose columns form an orthonormal basis of Eε(X)⊥.
Here the components of �ε are greater than the components of �ε. Then define for all
X ∈ Sn ,

λ̂1,ε(X) := 1

rε

rε∑
i=1

λi(X) ,

and

Xε := λ̂1,ε(X)QεQT
ε + Rε�ε RT

ε .

We have the following result.
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Theorem 13. The matrix Xε satisfies the first-order optimality conditions associated
with the projection problem

min
M∈Mrε

‖M − X‖2 . (50)

Proof. Let M be a solution of (50). From Theorem 8, the manifoldMr is smooth in
a neighborhoodof M and its normal space at M isV(M). Then the (necessary) optimality
conditions associated to (50) at M are

M ∈Mrε and X − M ∈ V(M) .

It is obvious that Xε ∈Mrε , that

X − Xε = Qε[�ε − λ̂1,ε(X)Irε ]QT
ε ,

and that tr (�ε − λ̂1,ε(X)Irε ) = 0. This proves X − Xε ∈ V(Xε) and completes the
proof.

��
We will also use the following property.

Proposition 9. Let ε ≥ 0 and X ∈ Sn. We have

δελ1(X) = ∂λ1(Xε)

Uε(X) = U(Xε) and Vε(X) = V(Xε) .

Proof. By construction, λ1(Xε) = λ̂1,ε(X) and E1(Xε) = Eε(X). Then, together with
(11) and (6), we have δελ1(X) = ∂λ1(Xε). The rest is straightforward.

��
The step (in the space of matrices) from A(x) to Aε(x) := [A(x)]ε will be called

a vertical step or Vε-step.

5.4. Tangent step

We assume that, at x ∈ Rm , the dual and vertical steps have been previously computed:
we have gε(x) = A∗(Gε(x)) ∈ δε f(x) and Aε(x) ∈Mrε . Then we define the following
quadratic program, 


min 〈Gε(x), U〉 + 1

2 〈H(Aε(x), Gε(x)) U, U〉
U ∈ U(Aε(x))

Aε(x)+U ∈ A0 + range (A) ,

(51)

where H is defined in Theorem 11. When Gε ∈ ri δελ1(A(x)), i.e., (using Proposition 9)
Gε ∈ ri ∂λ1(Aε(x)), (51) is equivalent to minimizing the second-order approximation
of LU (Aε(x), Gε; ·) subject to Aε(x) + U lying in the image of the affine mapping
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A(·): the existence of a corresponding step in the space of variables is guaranteed. Then,
program (51) takes the following form in the space of variables:{

min gε(x)T d + 1
2 dT H f

ε (x, Gε(x)) d

A(x)− Aε(x)+A d ∈ Uε(A(x))
(52)

To solve (52), we assume nonemptiness of the feasible domain: there exists d0 ∈ Rm

such that

A(x)− Aε(x)+A d0 ∈ Uε(A(x)) . (53)

When (53) is feasible, we set u := d − d0. Then program (52) amounts to{
min bε(x)T u + 1

2 uT H f (x, Gε(x))u

u ∈ U f
ε (x) ,

(54)

where H f is defined in Theorem 12, bε(x) := gε(x)+ H f (x, Gε(x)) d0, and U f
ε (x) :=

{u ∈ Rm : A u ∈ Uε(A(x))}. To guarantee that u is well-defined, we assume that
H f (x, Gε(x)) is positive definite. Then, to ensure global convergence,we check whether
the direction d := d0 + u satisfies

f̃
′
ε(x; d) ≤ −ω′‖d2‖ , (55)

where ω′ is a given number in ]0, ω[.
Remark 5. Even when applied to a smooth function, global convergence of the Newton
algorithm is an open question when the Hessian has an unbounded condition number.
This explains the need for an anti-zigzag mechanism, and we found that (55) is useful
to prove convergence.

5.5. Global algorithm

The global U-Newton algorithm is organized as follows.

Algorithm 2.
Step 0 (Initialization). Choose the tolerances δ > 0, ε̄ > 0, ω ∈]0, 1] and ω′ ∈]0, ω[;
initialize x := x0 ∈ Rm and set ε := ε(x).
Step 1 (Dual step). Compute gε(x) ∈ δε f(x) and Gε(A(x)) ∈ δελ1(A(x)) satisfying
(48) using the support-black box method.
Step 2 (stopping criterion). If ‖gε(x)‖ ≤ δ stop.
Step 3 (Vertical Step). Compute Aε(x).
Step 4 (Horizontal Step). If (53) is feasible and H f (x, Gε(x)) is positive definite, set d
to the solution of (52). If (55) holds and ‖d‖ > δ go to Step 5.
If any of these conditions is not satisfied, set d = −gε(x).
Step 5 (Line-search). Compute t such that

f(x + td) ≤ f(x)− η(x, ε) ,

with the Line-Search of Sect. 3.2.
Step 6 (Update). Replace x by x + td and ε by ε(x + td); return to Step 1.

��
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Theorem 14. Assume that f is bounded from below. Then Algorithm 2 (with ω < 1)
stops after a finite number of iterations, yielding x̄ satisfying the approximate minimality
condition

f(y) ≥ f(x̄)− ε̄− δ‖y − x̄‖ for all y ∈ Rm . (56)

Proof. The proof is as in Theorem 7, since (55) is guaranteed to hold at each iteration.
��

In order to obtain quadratic convergence,we introduce a condition which can be seen
as the generalization of the regularity assumption needed in all Newton-type methods.

Definition 6. Let x∗ ∈ Rm be a solution of (P). We say that the Strict Second-Order
Condition (SSOC) holds at x∗ if (T ) of Definition 4 and (SC)0 of Proposition 5 hold at
x∗ and the U-Hessian of f at (x∗, 0) is positive definite.

We first give consequences of (SSOC).

Proposition 10. Assume that x∗ is a solution of (P) and that (SSOC) holds at x∗. Then

(i) x∗ is the unique solution of (P),
(ii) for any ρ > 0 there exists α > 0 such that

f(x) ≤ f(x∗)+ α ⇒ x ∈ B(x∗, ρ) ,

(iii) for any ρ > 0 there are ε̄ and δ small enough, such that Algorithm 2 yields at least
one iterate in B(x∗, ρ), and all the subsequent iterates remain in B(x∗, ρ) as well.

Proof ((i)). . Decompose an arbitrary d ∈ Rm as d = u + v with u ∈ U f (x∗) and v ∈
V f (x∗). By definition of theU-Lagrangian (see Theorem 12), f(x∗+d) ≥ L f

U (x∗, 0; u).
Hence

f(x∗ + d) ≥ L f
U (x∗, 0; u) = f(x∗)+ 1

2
uT∇2 L f

U (x∗, 0; 0) u + o(‖u‖2) .

If d is small, u is small and clearly f(x∗ + d) > f(x∗).
[(ii)]. Then argminx∈Rm f(x) is bounded; f has bounded level sets ([16, Proposition
IV.3.2.5]): say f(x) ≤ f(x0)+ 1 implies ‖x − x∗‖ ≤ M. Assume for contradiction that
there exist ρ > 0 and a sequence {xk}k∈N such that for k ≥ 1,

f(xk) ≤ f(x∗)+ 1

k
≤ f(x0)+ 1 and ‖xk − x∗‖ > ρ .

Then xk is bounded: ‖xk − x∗‖ ≤ M. Extract a subsequence converging to some x̂ and
pass to the limit (using continuity of f ) to obtain the desired contradiction:

f(x̂) ≤ f(x∗) and ‖x̂ − x∗‖ > ρ ;
x̂ �= x∗ is a minimizer of f , which contradicts (i).

[(iii)]. Observe that Algorithm 2 produces a decreasing sequence of f -values: every
iterate satisfies ‖x − x∗‖ ≤ M. Given ρ > 0, take α > 0 as in (ii), set ε̄ and δ such that
ε̄ + δM ≤ α: from (56), at least the final iterate x̄ satisfies f(x̄) ≤ f(x∗) + α, hence
x̄ ∈ B(x∗, ρ); if this occurs before stopping, it occurs at each subsequent iteration.

��
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The following lemma will enable us to guarantee that, close enough to a solution x∗,
the exact multiplicity r∗ is identified.

Lemma 9. Assume that 0 < ε̄ < �0(A(x∗)). Then, there exists ρ2 > 0 such that for
all x ∈ B(x∗, ρ2),

rε̄(x) = r̄(x) = r∗ ,

where r̄(x) is defined in (40) and rε̄(x) := dim Eε̄(x).

Proof. When 0 < ε̄ < �0(A(x∗)), it is clear in (40) that rε̄(x∗) = r̄(x∗) = r∗. Then,
the result derives directly from continuity of all eigenvalues.

��
In the following theorem, we combine Corollary 2, Proposition 10 and Lemma 9

to show that after some iteration Algorithm 2 coincides with the U-Newton algorithm
presented in [33].

Theorem 15. Assume (P) has a solution x∗ ∈ Rm at which (SSOC) holds. Let Algo-
rithm 2 be applied with ω = 1 and with ε̄ > 0, δ > 0 and ‖x0 − x∗‖ all sufficiently
small. Assume also that the solution of (52) is accepted by Step4 and that Step5 produces
t = 1. Set x+ = x + t d. Then, there exists C > 0 such that

‖x+ − x∗‖ ≤ C‖x − x∗‖2 . (57)

Proof. Consider ρ1 > 0 of Corollary 2 (with ε = ε̄) and ρ2 > 0 of Lemma 9. Suppose
x0 ∈ B(x∗, ρ), with 0 < ρ < min{ρ1, ρ2}. By Proposition 10 (iii), all subsequent
iterates are in B(x∗, ρ). Then, from Lemma 9, r ε̄(x) = r̄(x) = r∗ and from Corollary 2
the support-black box method with m = 1 converges in a finite number of steps. If in
addition, (55) holds and the step length t = 1 is accepted in the line-search, Algorithm 2
coincides with the local second order algorithm described in [33]. This algorithm has
a quadratic rate of convergence [33, Theorem 6.13]: for ρ small enough, there exists
C > 0 such that (57) holds when x ∈ B(x∗, ρ).

��
In the following section we connect this work with recent results on bundle methods

for semidefinite programming.

6. From dual to proximal-type bundle methods

When presenting the first-order method in Sect. 3, our main objective was to provide
an algorithm with a simple geometrical description to globalize second-order schemes
“à la” Fletcher-Overton. Yet, for practical purposes, the following must be noted:

1. the ratio (use of the information)/(computational cost) in Algorithm 1 is quite low:
subgradients and ε-subgradients computed during the global process (Step 1) or
during the local line-search are used only once,
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2. the algorithm is very sensitive to the choice of the ε-strategy; choosing at each
iteration ε = ε(x) (40) ensures global convergence but may be not the best policy in
practice.

Therefore there are advantages to move from a dual Markovian bundle method to
a polyhedral-semidefinite proximal bundle method [23]. The obtained algorithm, in its
first-order version, is close to the one described by K.C. Kiwiel in [19] where the
precision to compute the largest eigenvalue is also controlled by the global scheme.

Transporting old subgradients. A first step consists in using old ε̄-subgradients as
ε-subgradients at the current point for some ε ≥ ε̄. This can be expressed as follows.

Proposition 11. Let k > 1. Assume that, at each point xi , we have computed gi =
A∗Gi ∈ δε̄ f(xi) with Gi ∈ Cn for i = 1, . . . , k − 1. Let Qk be an n × rk matrix whose
columns form an orthonormal basis of Eε̄(A(xk)). Set α̃k := [α1, . . . , αk−1]T ∈ Rk−1,
1k−1 ∈ Rk−1 the vector of all ones and for ε ≥ 0 consider the set

Gk,ε :=
{∑k−1

i=1 αi Gi + QkYQT
k : α̃k ∈ Rk−1+ , Y ∈ S+rk

1T
k−1α̃k + 〈Irk , Y〉 = 1,〈 ∑k−1

i=1 αi Gi + QkYQT
k , A(xk)

〉 ≥ f(xk)− ε
}

.

Then for all ε ≥ ε̄, we have

δε̄ f(xk) ⊂ A∗ Gk,ε ⊂ ∂ε f(xk) . (58)

Proof. This is a straightforward consequence of (8) and (26).
��

Inclusion (58) suggests that the convex set A∗ Gk,ε could be taken as our new
approximation of ∂ε f(xk) at xk.

Using some duality. This leads us to a new projection problem for (36):

min ‖g‖2 , g ∈ A∗ Gk,ε .

Setting Gk := Gk,+∞ and denoting by G(α̃, Y ) := ∑k−1
i=1 αi Gi + QkYQT

k an element of
Gk, the projection problem amounts to

{
min ‖A∗ G(α̃, Y )‖2 , G(α̃, Y ) ∈ Gk

f(xk)−
〈∑k−1

i=1 αi Gi + QkYQT
k , A(xk)

〉− ε ≤ 0 .
(59)

Penalizing the linear inequality constraint by introducing a multiplier 2µk > 0, we
obtain the new problem{

min ‖A∗ G(α̃, Y )‖2 + 2µk
(

f(xk)− (A∗ G(α̃, Y ))T xk − 〈A0, G(α̃, Y )〉 − ε
)

G(α̃, Y ) ∈ Gk .
(60)
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Now, multiplying the objective function by 1/(2µk) and dropping the constant terms, it
is proved in [13, Theorem 11.3.1] that (60) is exactly the dual (in the sense of Lagrangian
duality [16, Chap. XII]) of the primal problem

min
y∈Rm

ϕk(y)+ µk

2
‖y − xk‖2 ,

where ϕk is the mixed polyhedral-semidefinite model of f at xk :

ϕk(y) := max
G∈Gk

〈A(xk), G〉 .

Recalling the variational formulation of λ1 and observing that Gk ⊃ δελ1(A(xk)) con-
tains at least one matrix of the form qqT where q is a unit vector in E1(A(xk)), it is easy
to verify that this model satisfies

ϕk(y) ≤ f(y) for all y ∈ Rm ,

and ϕk(yk) ≥ f(yk)− ε .

In this approach the control parameter is µk which is updated with a simple strategy [20].

A contribution for large-scale problems. The resulting first-order polyhedral-semi-
definite proximal bundle method seems to be promising to solve large-scale eigenvalue
problems: in [23], we present applications from control theory which involve 1000×
1000 matrices depending on a large number of decision variables (m = 500000).

7. Dropping strict complementarity: an example from combinatorial
optimization

In this paragraph we present an example from combinatorial optimization, suggested by
Yu. Nesterov [29], to illustrate a qualitative distinction between interior-point methods
and second-order bundle methods: for the latter methods, superlinear convergence can
be observed even when sctrict complementarity does not hold. This fact seems to be
corroborated by the recent theoretical work of A. Forsgren [11].

Let us consider the Boolean quadratic maximization problem

(BQM)

{
max xT Qx
x ∈ {−1, 1}n ,

where Q = −ccT and c = [n − 1,−1, . . . ,−1]. A primal semidefinite relaxation [28]
for (BQM) is

(SDP)

{
max 〈Q, X〉 , X ∈ Sn
d(X) = 1n, X � 0 ,

where d(X) is the diagonal of X. The dual of this problem is then

(SDP)∗
{

min 1T
n u , u ∈ Rn

D(u)− Q � 0 ,
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where D(u) is the matrix with u1, . . . , un on its diagonal. It is easy to check that the
three problems (BQM), (SDP) and (SDP)∗ have the same zero value. The solutions of
(BQM) and (SDP)∗ are unique: x∗ = 1n and u∗ = 0; X∗ = 1n1T

n is a solution of (SDP).
Strict complementarity for (SDP) [1] does not hold: the matrix D(u∗) − Q + X∗ =
ccT +1n1T

n is not positive definite. Consider now the equivalent eigenvalue formulation
of (SDP)∗ [7,14]: making the change of variable u = α1n + v with vT 1n = 0, we
obtain 


min n α , (α, v) ∈ Rn+1

αIn � Q − D(v)

vT 1n = 0 ,

which is in turn equivalent to the unconstrained eigenvalue problem

(EVP) min
ṽ∈Rn−1

f(ṽ) ,

with Rn−1 � ṽ = (v1, . . . , vn−1) �→ f(ṽ) = n λ1
(
Q − D(v1, . . . , vn−1,−∑n−1

i=1 vi)
)
.

We know that the notion of strict complementarity (SC)0 in Proposition 5 of an eigen-
value problem coincides with the corresponding one in semidefinite programing [33,

Remark 6.6]. We can verify here by hand that ṽ∗ = 0 and 0 /∈ ri ∂ f(0): 0 = A∗( 1n1T
n

n )

where A∗ is the linear operator

Sn � X �→ A∗X = −n




X11 − Xnn
...

X(n−1)(n−1) − Xnn


 ∈ Rn−1 ,

and 1n1T
n

n is in the boundary of ∂λ1(Q). We run Algorithm 2 for n = 10 and ṽ0 = 1n−1

with δ = 10−6, ε̄ = 10−4, ω = 0.1 and ω′ = 0.001. Figure 2 can be interpreted as
follows: At the initial point the multiplicity is 1 and the distance to the second eigenvalue
is large (�ε̄(ṽ0) = 98); therefore the first-line search is very efficient (recall Theorem 5).
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Fig. 2. Superlinear convergence
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Yet the descent provokes a clustering of the 9 first eigenvalues: �ε̄(ṽk) becomes small
but not enough to increase rk := r̄(ṽk) of (40) until iteration 7 where they are counted as
ε̄
n -eigenvalues. Then second-order steps start to be efficient and superlinear convergence
is observed.

8. Conclusion

In this paper, we have shown how to use a second-order theory, the U-Lagrangian
theory, to speed up the convergence of a first-order scheme to minimize the maximum
eigenvalue function. The introduction of second-order information in a Markovian dual
bundle method (the approximate eigenvalue method of [6,37]) enabled us to obtain
the quadratic convergence of the resulting second-order bundle method when some
regularity conditions hold. We also have made a connection with a new generation of
bundle methods for semidefinite programming.

Acknowledgements. I wish to thank Claude Lemaréchal for the numerous and fruitful discussions we had
together. I am also greatful to M. Overton for his careful reading and his numerous suggestions to improve
the paper. Finally I thank an anonymous referee for his detailed and constructive remarks.

References

1. Alizadeh, F., Haeberly, J.-P.A., Overton, M.L. (1997): Complementarity and nondegeneracy in semidef-
inite programming. Math. Program. 77, 111–128

2. Alizadeh, F., Haeberly, J.-P.A., Overton, M.L. (1998): Primal-dual interior-point methods for semidefinite
programming: Convergence rates, stability and numerical results. SIAM J. Optim. 8, 746–768

3. Arnold, V.I. (1971): On matrices depending on parameters. Russ. Math. Surveys 26, 29–43
4. Bellman, R., Fan, K. (1963): On systems of linear inequalities in Hermitian matrix variables. In: Klee,

V.L., ed., Convexity, volume 7 of Proceedings of Symposia in Pure Mathematics, pp. 1–11. American
Mathematical Society

5. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V. (1994): Linear Matrix Inequalities in System and
Control Theory, volume 15 of Studies in Applied Mathematics. SIAM, Philadelphia, PA, June 1994

6. Cullum, J., Donath, W.E., Wolfe, P. (1975): The minimization of certain nondifferentiable sums of
eigenvalues of symmetric matrices. Math. Program. Study 3, 35–55

7. Delorme, C., Poljak, S. (1993): Laplacian eigenvalues and the maximum cut problem. Math. Program.
62, 557–574

8. Demjanov, V.F., Malozenov, V.N. (1974): Introduction to Minimax. Wiley & Sons
9. Edelman, A., Arias, T., Smith, S.T. (1998): The geometry of algorithms with orthogonality constraints.

SIAM J. Matrix. Anal. Appl. 20, 303–353
10. Fletcher, R. (1985): Semi-definite matrix constraints in optimization. SIAM J. Control Optim. 23, 493–

523
11. Forsgren, A. (2000): Optimality conditions for nonconvex semidefinite programming. Math. Program.

88, 105–128
12. Gilbert, E.G. (1966): An iterative procedure for computing the minimum of a quadratic form on a convex

set. SIAM J. Control 4, 61–80
13. Helmberg, C., Oustry, F. (2000): Bundle methods to minimize the maximum eigenvalue function. In:

Lieven, Vandenberghe, Saigal, R., Wolkovicz, H., eds., Handbook on Semidefinite Programming. Theory,
Algorithms and Applications, volume 27 of International Series in Operations Research and Management
Science. Kluwer Academic Publisher, March 2000

14. Helmberg, C., Rendl, F. (2000): A spectral bundle method for semidefinite programming. SIAM J. Optim.
10, 673–696

15. Hiriart-Urruty, J.-B., Ye, D. (1995): Sensivity analysis of all eigenvalues of a symmetric matrix. Numer.
Math. 70, 45–72



A second-order bundle method for maximum eigenvalue problems 33

16. Hiriart-Urruty, J.B., Lemaréchal, C. (1993): Convex Analysis and Minimization Algorithms. Springer-
Verlag. Two volumes

17. Horn, R.A., Johnson, C.R. (1991): Topics in Matrix Analysis. Cambridge University Press
18. Kato, T. (1980): Perturbation Theory for Linear Operators. Springer-Verlag, New York
19. Kiwiel, K.C. (1986): A linearization algorithm for optimizing control systems subject to singular value

inequalities. IEEE Trans. Autom. Control AC-31, 595–602
20. Kiwiel, K.C. (1990): Proximity control in bundle methods for convex nondifferentiable minimization.

Math. Program. 46, 105–122
21. Kojima, M., Shida, M., Shindoh, S. (1998): Local convergence of predictor-corrector infeasible-interior-

point algorithms for sdps and sdlcps. Math. Program. 80, 129–161
22. Lancaster, P. (1964): On eigenvalues of matrices dependent on a parameter. Numer. Math. 6, 377–387
23. Lemaréchal, C., Oustry, F. (1999): Nonsmooth algorithms to solve semidefinite programs. In: El Ghaoui,

L., Niculescu, S.-I., eds., Advances in LMI methods in Control, Advances in Design and Control series.
SIAM

24. Lemaréchal, C., Oustry, F., Sagastizábal, C. (2000): The U -Lagrangian of a convex function. Transact.
Amer. Math. Soc. 352

25. Lewis, A.S., Overton, M.L. (1996): Eigenvalue optimization. Acta Numer. 5, 149–190
26. Nemirovsky, A., Gahinet, P. (1997): The projective method for solving linear matrix inequalities. Math.

Program. 77, 163–190
27. Nesterov, Yu. (1997): Interior-point methods: An old and new approach to nonlinear programming. Math.

Program. 79, 285–297, October 1997
28. Nesterov, Yu. (1997): Quality of semidefinite relaxation for nonconvex quadratic optimization. CORE

Discussion, Paper # 9719
29. Nesterov, Yu. (1998): Private communication. Center of Operations Research and Econometrics, Univer-

sité Catholique de Louvain, Belgium, May 1998
30. Nesterov, Yu., Nemirovsky, A. (1988): A general approach to polynomial-time algorithms design for

convex programming. Technical report, Centr. Econ. & Math. Inst., USSR Academy of Sciences, Moscow,
USSR, 1988

31. Nesterov, Yu., Nemirovsky, A. (1994): Interior-point polynomial methods in convex programming:
Theory and applications, volume 13 of Studies in Applied Mathematics. SIAM, Philadelphia, PA

32. Oustry, F. (1998): Vertical developments of a convex function. J. Convex Anal. 5, 153–170
33. Oustry, F. (1999): The U -Lagrangian of the maximum eigenvalue function. SIAM J. Optim. 9, 526–549
34. Overton, M.L. (1992): Large-scale optimization of eigenvalues. SIAM J. Optim. 2, 88–120
35. Overton, M.L., Womersley, R.S. (1995): Second derivatives for optimizing eigenvalues of symmetric

matrices. SIAM J. Matrix Anal. Appl. 16, 667–718, July 1995
36. Overton, M.L., Ye., X. (1994): Toward second-order methods for structured nonsmooth optimization. In:

Gomez, S., Hennart, J.-P., eds., Advances in Optimization and Numerical Analysis, pp. 97–109. Kluwer
Academic Publishers

37. Polak, E., Wardi, Y. (1982): Nondifferentiable optimization algorithm for designing control systems
having singular value inequalities. Automatica 18, 267–283

38. Potra, F.A., Sheng, R. (1998): A superlinearly convergent primal-dual infeasible-interior-point algorithm
for semidefinite programming. SIAM J. Optim. 8, 1007–1028

39. Schramm, H., Zowe, J. (1992): A version of the bundle idea for minimizing a nonsmooth function:
conceptual idea, convergence analysis, numerical results. SIAM J. Optim. 2, 121–152

40. Schwartz, L. (1967): Cours d’analyse, Vol. 1. Hermann, Paris
41. Shapiro, A., Fan, M.K.H. (1995): On eigenvalue optimization. SIAM J. Optim. 5, 552–568
42. Trefethen, L.N. (1997): Pseudospectra of linear operators. SIAM Rev. 39, 383–406
43. Trefethen, L.N., Bau, III D. (1997): Numerical Linear Algebra. SIAM, April 1997
44. Ye, D.Y. (1993): Sensitivity analysis of the greatest eigenvalue of a symmetric matrix via the ε-

subdifferential of the associated convex quadratic form. J. Optim. Theory Appl. 76, February 1993


