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Abstract. Inthis paper we present anonsmooth agorithm to minimize the maximum eigenval ue of matrices
belonging to an affine subspace of n x n symmetric matrices. We show how a simple bundle method, the
approximate eigenval ue method can be used to globalize the second-order method devel oped by M.L. Overton
in the eighties and recently revisited in the framework of the ¢{-Lagrangian theory. With no additional
assumption, the resulting algorithm generates a minimizing sequence. A geometrical and constructive proof
is given. To prove that quadratic convergence is achieved asymptotically, some strict complementarity and
non-degeneracy assumptions are needed. We also introduce new variants of bundle methods for semidefinite
programming.
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1. Introduction
1.1. Overview

Eigenval ue optimization problems have along history: as mentioned in [25], Lagrange
had aready stated in 1773 an eigenval ue optimization problem to design the shape of
the strongest axially symmetric column with prescribed length, volume and boundary
conditions. Yet it is only very recently that it became an independent area of research
with both theoretical and practical aspects. Although the mathematical models of the
underlying physical problemsare generally not convex, itisnotablethat theareahasvery
strong connectionswith convex analysis. In fact, these problems have often acomposite
structure with aconvex component. Therole of convex analysiswas first emphasi zed by
R. Bellman and K. Fan in [4]; more recently, this point of view was developed further
in[15] and [25].
We consider here a basic eigenval ue optimization problem

(P) inf 21(A()
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where A1 (X) isthe largest eigenvalue of X = A(x), element of S, the spaceof n x n
symmetric matrices and

R™ s X~ AX) := Ag+ AX (1)

isaffine: Ag € Sy and A isalinear operator fromR™ to Sp,.

Existing numerical methods to solve (P) can be arranged in two classes: interior-
point methods and nonsmooth optimization methods. The first interior-point methods
for solving (P) (intheframework of semidefinite programming) were developed by Nes-
terov and Nemirovski [30]. With the exception of Nemirovski's projective method [31,
26], all theinterior-point schemes proposed in the early 1990's (see the numerousrefer-
encesin[5, Chap. 1, Notes and References]) were path-following or potential reduction
methods. As recently explained in a clear survey by Yu. Nesterov [27], “classical”
interior-point methods can be seen as a process to transform the initial problem into
an equivalent one which can be solved “easily” thanks to an addition of structure:
self-concordance is used to obtain the polynomiality of interior-point schemes [31].
A similar presentation can be done for predictor-corrector type methods using small
neighborhoods; many variants of them can be found for semidefinite programming: to
giveonly asample we refer to [2,38,21].

Our approach is quite different but, as we will see, does not exempt us from finding
a trade-off between global and local requirements, i.e., between total complexity and
speed of convergence. Starting directly from problem (P) itself, we will use a recent
second-order theory, namely the Z/-L agrangian theory [24], to speed up the asymptotic
convergence of a first-order method developed by Cullum, Donath and Wolfe [6] for
a particular instance of (P) (A diagonal), and by Polak and Wardi [37] in a more
general framework. Using the terminology of [16, Chap. XI11], the method can be
seen as a Markovian dual bundle method: at each iteration an approximation of the
e-subdifferential is computed, via a bundling process, without using information from
the previous iterations. We call it the approximate eigenvalue method. More recently
astabilization of the cutting planes algorithm was proposed in [39] and enriched in [19,
14,23,13] with semidefinite models of the objective function; this belongs to the class
of primal bundle methods [16, Chap. XV] which are very efficient to solve large-scale
problems with a moderate accuracy.

When high accuracy is needed, second-order information must be added in the
model. Combining geometrical and Sequential Quadratic Programming approaches,
alocal agorithm was presented and analyzed in [10], [34], [36], [35] and [41]; in the
latter two papers, a quadratic rate of convergence was obtained. However, in this SQP
framework, the authors considered only local analysis; issues of global convergence
were not addressed.

In this paper, we present, as in [33], the second-order analysis of the maximum
eigenvaluefunction using the{/-L agrangian theory [ 24] and we show how to usethe ap-
proximate eigenval ue method to globalize the second-order algorithm while preserving
asymptotically a quadratic rate of convergence.

Our paper isorganized asfollows. Wefirst recall somewell-knownresultson thefirst-
order analysisof 11. Then using simplechainrules, weeasily deriveafirst-order analysis
of the composite function f := A1 o A. This enables us to simplify the approximate
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eigenvalue method developed in Sect. 3: at apoint X we consider the enlargement of the
subdifferential of 11 obtained with eigenvectorsassociated with e-maximal eigenval ues,
thisset 5. f(x) playstherole of an approximation of thethe true e-subdifferential 9. f(x).
By measuring the quality of this approximation, we provide an explicit e-strategy to
ensure global convergence of the method. In Sect. 4, we present the second-order
analysis of A1 using the U/-Lagrangian theory. We recall the main result of [33]: this
theory provides us with a second-order development of A 1 along asmooth manifold: the
set M, of matriceswhoselargest eigenvaluehasmultiplicity r. We derive similar results
for f with a so-called transversality condition. Then, in Sect. 5, we show how to use
the approximate eigenvectors (Sect. 2) to stabilize the second-order objects presented
in Sect. 4. In particular we provide a constructive characterization of the projection
of a matrix X € Sp onto the manifold r, (Theorem13). This results in a second-
order bundle method which isglobally and quadratically convergent. With no additional
assumptions, aminimizing sequenceisgenerated. Somestrict complementarity and non-
degeneracy assumptions are needed to guarantee the quadratic rate of convergence. In
Sect. 6 using some duality, we explain how the approximate eigenvaluebundiemethodis
related to a new generation of spectral proximal-type bundle methods in which second-
order information can also be introduced. Finally we have chosen anumerical example
from combinatorial optimization to illustrate a qualitative distinction between interior-
point methods and second-order bundle methods: for the latter methods, superlinear
convergence can be observed even when strict complementarity does not hold.

1.2. Basic notation and terminology

Our notation follows closely that of [24] and [15].

R™ m-dimensional Euclidean space

xTy scalar product of x, y € R™

IX|l :== +/xTx Euclidean norm of x ¢ R™

U+ orthogonal subspace of the subspace U

projc : R™ — U projection operator onto the closed convex set C ¢ R™

aff C affine hull of the nonempty set C ¢ R™

ri C relative interior of the convex set C ¢ R™

span C linear subspace generated by the nonempty set C ¢ R™

B(x, 8) open ball centered at x € R™ with radiuss > 0

RM>d+ oc(d) := SUPgec g"d the support function of the nonempty set C ¢ R™
Fc(d) := Argmax..cd" ¢ the face of the nonempty set C ¢ R™ exposed by d € R™
9 f(x) the subdifferential of the finite-valued convex function f at x € R™

3f(x) :={se R™: f(y) — f(x) > s' (y—x), foral yeR™}

f/(x; d) the directional derivative of a convex function f at x € R™ in the direction
deRM

f(x +td) — f(x)

f/(x; d) := inf
O =g t
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or equivalently (see[16, Sect. V1.1]), the support function of 3 f(x)
() = oy £(x) () )
9. f(x) the s-subdifferential of f at x € R™:
9 fX) :={seRM: f(y) — f(x) > (s, y—x) —eforal y e R™}

f/(x; d), the e-directional derivativeof f at x € Rinthedirectiond € R, isthe support
function of 9, f(x):

fi(x: ) =0, () ()

Sn space of n x n symmetric matrices

S; cone of positive semidefinite matrices

X =Y (resp. X = Y) means that the matrix X — Y € S, is positive definite (resp.
positive semidefinite)

tr X := > | Xii trace of the matrix X € S,

(X, Y) :=tr XY Frobenius scalar product of X, Y € Sp

1X] := /(X, X} Frobeniusnorm of X € Sy,

XT Moore-Penroseinverseof X: if X = Yl A (X qiT isthe spectral decomposition
of X, XT can be defined as X' := 37, x)20 it GG

A1(X) > ... > Ap(X) eigenvaluesof X € Sy, in decreasing order

E1(X) first eigenspace of X € Sy, i.e, the eigenspace associated with A1 (X)

A* : 8n — RMisthe adjoint operator of the linear operator A : R™ — S, defined by:
foral (d, D) e R™ x S,

(D, Ad) =d"A* D

When Ad = 1L, djAj, with Aj € Spfor j = 1,...,m, wehaveforal D € Sp,
A*D =[(A, D), ..., (Am, D)]T

2. First-order analysis

In this section we recall elementary results for the maximum eigenvalue function: the
subdifferential of A1 can be characterized as an exposed face of acompact section of the
cone of semidefinite matrices. Then we propose an enlargement of the subdifferential
of A1 based on the computation of approxi mate eigenvectors and a vertical devel opment
of 11, i.e,, adevelopment of the function ¢ — f/(x; d). We derive similar results for
f := A10 Ausingasimplechainrule. Thiswill lead usto the main result of this section:
any direction d separating 0 from the chosen enlargement of d f(x) isa“good” descent
direction.
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2.1. Subdifferentials and faces

Inthis paragraphwe give explicit descriptions of the subdifferential and the approximate
subdifferential of A1. In this analysis, a convex compact set plays a paramount role:
the intersection of the cone of semidefinite matrices with the hyperplane {V € Sy
trv =1},

Chi={VeS:V>0, trV=1. ©)

By analogy with the simplex of R" in linear programming, we will refer to Cy, as the
spectraplex of Sy. The following result is well-known; the proof is easy to derive via
the spectral decomposition of symmetric matrices.

Lemma 1. The spectraplex Cy, is the convex hull of rank-one matrices:

Cn=co{qq" : llql = 1}.

Using Rayleigh’s variational formulation

M(X)=  max g Xq,
qeR™ [|ql|=1
together with Lemma 1, a support function formulation is obtained (see Sect. 1.2 for
a definition of a support function):

*1(X) = o¢, (X). 4)

Asin[15], we will favor the support function formulation since it will be our main tool
in the analysis of Sect. 2.3. In order to describe the exposed faces of the spectraplex Cp,
(Theorem 1), we first establish the following technical result.

Lemma?2. Let X and Z bein Sp; let Q = [y, ..., 0] bean n x r matrix whose
columns form an orthonormal basis of ker X.

(i) Then, XZ = Oifandonlyif thereexists Y € S; suchthat Z = QYQ'.
(i) Assumein addition X, Z € S;; then (X, Z) = 0iif and only if there exists Y > 0
suchthat Z = QYQT.

Proof ((i)). Wehave XZ = Oif andonly if rangeZ C ker X = span{qs, ..., q}. This
is equivalent to saying that Z belongsto the subspace

span{gia +qjqf :i.j=1....r}=Q5Q".

[(i1)] When X and Z positive semidefinite, a consequence of the Schur product theo-
rem [17, Sect. 5.2] isthat tr XZ = 0 if and only if XZ = 0. Then, via (i), Z has the
form QYQ; it is positive semidefiniteif and only if Y > 0.

i

Thefollowing theorem recalls previously known geometrical descriptionsof ax 1(X)
(see [10] or [34]) and, along the lines of [15], makes an explicit link with the exposed
faces of Cp.
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Theorem 1. (i) Let X € S, and let Q1 be an n x r matrix whose columns form an
orthonormal basis of E1(X). The face of the spectraplex C,, exposed by X is

Fe,(X) = {Q1YQ] : Y e G} =cofaq” : [l = 1. g € Ex(X)}; (5

it isthe face exposed by any X’ € S, such that E1(X") = E1(X).
(il) The subdifferential of A1 at X isan exposed face of the spectraplex:

1 (X) = Fe, (X). (6)
Proof ((i)). Realize first that
cofoq” : llall = 1.g € Ex(X)} = {Q1YQ] : Y € G} . ©

Indeed write any normalized vector of E1(X) under the form q = Q1z, withz € R'
and ||z]| = 1. We get

co{qq” : llqll = 1, € Ex(X)} =co{Q1z2' Q] : ze R, ||z|| = 1}
= Qico{zz' :ze R, ||z = 1}Q] .

where, inview of Lemma, co{zz" : z € R, ||z|| = 1} = C;. Now, by definition of an
exposed face, Z € F¢, (X) means

ZeCy and (X, Z) = o¢,(X) = 21(X),
or equivalently,

Altogether, (5) is obtained with Lemma 2 and F¢,(X') = F¢,(X) if and only if
ker (A1(X)In — X) = ker (A1(X)In — X)), i.e,, E1(X) = Ex(X).

[(i)] It iswell known that the subdifferential of a support function o¢,, at apoint X is
the exposed face of C,, exposed by X [16, Example V1.3.1].
i

The description of the approximate subdifferential is also obtained directly from the
support function formulation of A1.

Theorem 2. For all £ > 0, we have
0:A1(X) ={Z € Cn : (Z, X) = 11(X) — &} (8)

Proof. The approximate subdifferential of a support function is given in [16, Ex-
ampleX1.1.2.5]. Then (8) follows immediately. In [44] the same result is obtained
viaan analysis of the conjugate function of A1.

i

The directional derivative of A1 has an easy expression.
Theorem 3. For all D € Sy, we have

21(X; D) = 21(Q] DQ1) .
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Proof. Use (2) and (6) to obtain

A (X; D) = 05, (x) (D) = maxyec, (D, Q1YQ])
= maxyec, (Q] DQ1, Y) = 21(Q{ DQ1).

This completesthe proof. This result was aready established using perturbation theory
in[22] and can also be foundin [15], [41].
i

Itiswell-known in nonsmooth optimization that the descent property A (X; D) < 0
of adirection D is unstable, the function X — 1/ (X; D) being discontinuous. Mini-
mization algorithms based on this mere property are usually not convergent, because
descent along such directions may be numerically insufficient. One is much moreinter-
ested in e-descent directions, for which

A’l,g(X; D) = G&;M(X)(D)

is negative. Said otherwise, these directions separate 0 from 9,11 (X). The continuity of
X A’l’a(x; D) [16, Theorem XI.4.1.3] guarantees the numerical efficiency of such
directions. Yet the difficulty hereisto get aseparation algorithm, and thisistherationale
for dua bundle methods [16, XI11,XIV]. This paper follows the same approach; but,
instead of separating O from 9.11(X), we use the structure of our specific problem to
provide atractable “good approximation” of the latter set.

2.2. Enlargement of the subdifferential

Since A1 is the support function of a convex compact set, it can be seen as an infinite-
max function. Then a first idea could be to consider the enlargement proposed in [8,
Chap. VI]: the convex hull of the gradients of s-active functions. Here the functions
are linear and it is easy to see, via (8), that the obtained enlargement is exactly the
e-subdifferential of A1. For practical reasons (see Remark 1), we will work here with
asmaller set 5.11(X) which satisfies

A1(X) C 8:11(X) C 9:A1(X) .
Definition 1. For X € S, and ¢ > 0 we define
— the set of indices of ¢-largest eigenvalues
(X)) :={i e{l,...,n}: A (X) > A1(X) — ¢}, 9)

— the e-multiplicity of A1(X) : ro :=max{i : i € [,(X)},

— thee-first eigenspace: E.(X) := ®icl,(x) Ei (X), where E; (X) is the eigenspace of
X associated with the ith eigenvalue A (X),

— itsorthogonal complement: F¢(X) := @i¢, (x) Ei (X),

— the " spectral separation” of &1 A.(X) := Ar, (X) — Ar,4+1(X).
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Pseudospectrum.  The notions of approximate eigenvalues can be connected with the
recent theory of pseudospectra of linear operators[43,42]: thisnotionis mainly used to
copewiththelack of regularity of nonsymmetric matrices; here, for symmetric matrices,
a pseudospectrum can also be useful. Indeed it enables us to recover more than first-
order regularity of the largest eigenvalue (precisely some local regularity of the set of
approximate subgradients). For a normal matrix (in particular for a symmetric matrix)
the e-pseudospectrum comprises the union of the closed balls of radius ¢ about each
eigenvalue. In fact we consider here one of these e-balls, the one centered at 11 (X),
and we take its intersection with the spectrum of X. The important role played by the
approximate eigenval uesjustifies the wording approxi mate e genval ues method.

O

Takenow ann x r, matrix Q. whose columnsform an orthonormal basis of E,(X).
Then we define the following compact convex set:

8er1(X) :=cofee’ : |le| =1, e € E.(X)}. (10)
or equivalently, via Theorem 1,
8:11(X) = {QeYQ[ 1 Y € Cr, } = Fe, (Q: Q) = 921(Q.Q7).  (11)
Thissetisan outer-approximation of 9x.1(X) and aninner-approximation of 9 A1 (X):
Proposition 1. Let X € Sp. Thenfor all ¢ > 0, we have
OA1(X) C 8A1(X) C 9:11(X) . (12)
Proof. The inclusion dA1(X) C 8:A1(X) derives directly from (5) and (10). Another
easy inclusion is 8;A1(X) C Cn. Takenow Z € 8:41(X): Z = Q.YQ] withY € ¢,
implies (Z, X) = (Y, Q] XQ,) > A, since

QI XQ; = diag (h1(X), ..., Ar, (X)) = Ar I,

and trY = 1. Together with (9), we obtain (Z, X) > A1(X) — ¢; since Z € Cy this
means, according to (8), that Z € 9.11(X).
i

A crucia point consists now in quantifying the (Hausdorff) distance between our
enlargement and the approximate subdifferential. One way to proceed isto get avertical
development of A1.

2.3. Vertical development

Thenotion of vertical developmentispresentedin[33]. It will resultin Theorem 4, which
gives an explicit upper bound for the distance between the approximate subdifferential
and the enlargement 5.1 (X). We start with some linear algebra.
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Lemma3. Let U € R™" be such that UTU = I,. Then, there exist n x n matrices
(Eg, Fe, =, T) such that

the columns of E; are unit vectors of E.(X) ()
the columns of F, are unit vectors of F.(X) (b
¥ and T are diagonal and positive semidefinite (© (13)
2 + T2 — | (d)
U=EX+FT (e

Proof. In[33, Lemmab.2], we give a constructive proof of this result for ¢ = 0. There
is no difficulty to see that the same proof can be applied here by decomposing each
columnof U on E.(X) & F.(X) =

i

The decomposition R™ = E.(X) & F.(X) provides uswith some useful relations.

Lemmad. Let(E., F., X, T)beaquadruplet satisfying(13)and ® = diag (01, . .. , 6n)
€ Cp. Then we have,

EIXF. =FTXE. =0 (@
Ao (X) < (X, (E:OE])) < 11(X) (b) (14)
(X, FeOF]) < A, 11(X) (©
tr(TOT) < [tr(TOT)]Y? (d)

Proof.

[a]: The subspaces E.(X) and F.(X) are orthogonal and invariant by X. Then the
columns of XF, are in F,(X) and they are orthogonal to the columns of E.. This
implies (a).

[b]: Since E.® EET = Zipzl eiae,-T, where the g's are the columns of E,, we have
(X, E.OF]) = Zeq Xg .

Now usethefact that for all unit vectorse € E.(X), Ar, (X) < e’ Xe < 11(X), together
with ® = diag (61, ... , 6n) € Cn, to get (b).

[c]: Similarly to [b], we have

p n
(X, FOFT) =Y "6 T X i < A 1100 61) = Ar,42(X) .
i=1 i=1

[d]: Notethat © < I, and OT is (diagonal) positive semidefinite to get

tr (TOT) < tr (OT). (15)
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Now use ® = diag(f1,...,6n) € Chand T =diag(ty, ... ,tn) = 0, together with the
concavity of the square-root function, to obtain

n n
Yat < (Y atd) 2.
i=1 i=1

In matrix notation, this means tr (OT) < [tr (TOT)]Y2. Together with (15), this
gives (d).
O

We can now give akey result toward relating the two sets of (8) and (11).

Proposition 2. Let X € Sp, ¢ = Oand n > 0. For all Z € 9,11(X), there exists
G, € §:21(X) and fiven x n matrices (E;, F, , T, ©®) such that

(Ee, Fe, =, T) satisfies (13) (a, b, ¢, d) (a)
® =diag(f1, ... .6n) € Cy (b)
Z=G,+ (E.ZOTF + F.2OTE]) + (F.TOTF] — E.TOTE]) (0
trTOT <

(16)

n — n
T 010 = Beha (0 (d)

Proof. Write the spectral decomposition of Z € 9,11(X): thereexistsU € R™", such
that UTU = I, and a diagonal matrix ©® such that Z = UOUT. In view of (8), we
have ® € Cn. Then, apply Lemma3: U = E. X + F. T where (Eg, F¢, X, T) satisfies
(13)(a.b.c.d)- Substituting this in the spectral decomposition of Z, we obtain

Z =G, + (E.ZOTF] + F.TOSE/) + (FR.TOTF] — E.TOTE]),  (17)

whereG; := E,® EgT = Zip:1 «9ie,e,-T and the g’sare unit vectorsof E.(X). According
to (11), thismeans G, € 8.A11(X). Then (a, b, ¢) aresatisfied. In order to prove (d), take
the scalar product of X with the left- and right-hand side of (17) and use (14) 3 p,c.q) tO
obtain

A1(X) + (i, +2(X) = A, XD (TOT) = (X, Z) .

Since Z € d,A1(X), we have together with (8), (X, Z) > 11(X) — n. Thisenablesusto
complete the proof.
]

The following result says that 5.11(X) is a good approximation of 9,11(X) for n
small enough, depending on the spectral separation of Definition 1.

Theorem 4. Forall ¢ > 0,7 > 0and D € Sy, we have
21,(A; D) < 055, (x)(D) + p(. €) DIl (18)
or equivalently,

where p(n, &) := (Af"x))l/z + (AEUXQ'
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Proof. Lete > 0,7 >0, D € Sy and Z € 9,A1(X). From (16) ), we obtain
(Z,D) = (G, D) + (=0T, E] DF: + F, DE.) + (TOT, F/ DF. — E] DE,).
Let us bound each of the three terms from above. First, G, € §.A1(X) implies
(Ge, D) < 05.3,(x)(D). (20)
Then, denoting (XOT) = diag (0161t1, . .. , onbntn), we have
n
(ZOT, E[DF. + F/ DE;) =) "oifiti [(D.a fi" + fig)].
i=1

Now, use the Cauchy-Schwarz inequality, together with [le f,T + fiel | = v/2, to get

(ZOT, E] DF. + F/ DE.) < v2|| D|jtr (2OT). (21)
Similarly we have for the last term

(TOT, KT DF, — ETDE.) = X1, 47 [(D, i 7 — ael)]
<tr (TOT)IDI (I fi 71l + lee™ ) (22)
< 2tr (TOT) ID|,

since || fi £, = le e || = 1. Putting together (20), (21), (14)-(d) and (22), we get
(Z, D) < 05,5,(x)(D) + V2| DIl (tr(TOTHYZ + 2D tr (TOT). (23
Together with (16) q4), we obtain (18); (19) is the geometrical form of (18).

We will use this result in asimplified form.
Corollary 1. Let X € Sp, ¢ > 0and 7 € [0, 2<X2]. Thenfor all D € Sp, we have

1/2
1y, (X D) < 0331 (x)(D) +< ) (IR (24)

Ag(X)

Proof. Sincen < 22, we have 0 < Af&) < (%)1/2 which, together with (18),
gives (24).
O

Finally, we show we have s simple expression for the support function of 5.1 (X):
itisthelargest eigenvalue of anr, x r, symmetric matrix.

Proposition 3. Let X € S,,. Thenfor all ¢ > 0and D € Sy, we have
05,2.1(X)(D) = 21(Q; DQy) . (25)

Proof. The set §.11(X) has the same structure as di1(X); the proof is then similar to
that of Theorem 3.
O

In the following paragraph we extend these results to the composite function f :=
A1 0o A.
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2.4. Composition with an affine mapping

Werecall that A denotesthelinear part of A(-) and . A*itsadjoint. First-order composition
is based on the following elementary chain rule.

Proposition 4. For x e RMand ¢ > 0,
9 f(X) = A"9:A1(AX)) . (26)

Proof. This is a straightforward application of the chain rule given in [16, Theorem
X1.3.2.1].

i
Then an enlargement of d f(x) is the following convex set:
8e F(X) := A"8e11(AX) (27)
and its associated support function
fox: d) = o5, Foo (@) - (28)

Here we use the notation f 5/ (x; d) to emphasize the analogy with the approximate
directional derivativeof f at x:

£ d) 1= 0y_f(x)(d).
Applying the linear mapping .A* in (12), it comes
af(x) C 8. f(xX) C 9, f(X), [geometric form] (29)
or equivaently
' d) < Fl0a d) < f/(x: d), [anaytic form]
The quality of this approximation is derived from inequality (24): foral ¢ > 0, n €
[0, Ac(A(x))]andd € R™,

/ ., g \2 _ g \2
f,](X7 d) < f(x; d)+ (m) [Ad| < f (x; d)+ (m) «(d]l,
(30)

wherex := SUP||x [|=1 I A(X)|| isthe largest singular value of A.

Furthermore, it is straightforward from (25) and (27) that f E/ (x; d) is also a max-
imum eigenvalue:

foox d)=21(QN (ADQ.). (31)
In particular for ¢ = 0, we have
foox: d) = £'(x; d) = A1(Qu(A Q] ). (32)

Ideally we would like to choose ¢ > 0 and find a so-called direction d of e-descent.
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Lemmab5 ([16, LemmaXI11.1.2.3]). Supposethat d € R™ isa direction of e-descent:
f/(x;d) < 0. Thenthe set of all t > O such that f(x 4+ td) < f(x) — ¢ forms anon
empty interval.

Remark 1. Thedifficulty hereisthat 9, f(X) issorichthat computingits support function
f/(x; d) for a given direction d or a fortiori looking for the best e-descent direction
Argmin g =1 f/(x; d) seemsto be as expensive as the original problem (P). Therefore
instead of working with 9, f(x) we deal with its inner approximation §. f(x). Equality
(31) quantifiesthe effort needed to evaluate f g/(x; d): it requiresthe computation of the
largest eigenvalue of anr, x r. matrix. We can now specify to what extent a direction
d € RM satisfying at x € R™

flox; d)y <o, (33)

is a“good” descent direction. The following result is an improvement of [32, Theo-
rem5.5] where the distance between the exact subdifferential of 11 at X € Sy and its
e-subdifferential was considered.

m
Theorem 5. Let x € R™, ¢ > 0and d € R™ be such that (33) holds. Then
(i) disadirection of n(x, ¢)-descent, where
7 2
nx,€) = [f 4,E’|(|d|?)} A(AX).
(if) Inaddition, assumethereexist w € [0, 1], § > 0 and ;. > 0 such that
f.06 d) < —olld?, (34)
Idll = 6 and A (A(X)) = u; then
n(x, ) = [Z_(ST“' (35)
K
Proof. Itisstraightforward from (30).
m

Remark 2. Let g € §. f(x) be such that d = —g satisfies (34) for v = 1; then g =
proj(gg f(x) 0. When w €]0, 1], g is an approximation of this projection. In Sect. 3.1, we
present a separation algorithm to obtain such directions.

i

3. First-order algorithm

We describe here an iterative process to compute n-descent directions using the infor-
mation stored in &, f(x), the parameters n and ¢ being related as in Theorem 5. Then
the step-length is determined with a (finite) dichotomous line-search for n-descent. The
approximate eigenval ue a gorithm and its convergence analysis compl ete the section.
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3.1. Projection problem

The problem we want to solveis

min 2, 36
st llall (36)

Thisisaquadratic optimization problem over the cone of positive semidefinite matrices.
Indeed, in view of (27) and (11), program (36) is equivalent to

min | A*(Q:YQ/)
Y >0

trY_=1.

H -

In [35], asimilar projection problem is encountered. The authors adopt the following
approach: instead of projecting onto &, f(x), they project onto aff 5. f(x), i.e, the con-
straintY > Oisreplaced by Y € S, . Thisleads them to a quadratic problem with linear
equality constraints which can be solved with classical (and efficient) techniques. Yet
this approach has a major drawback: when the minimizer is not positive semidefinite,
we haveno interpretation for the resulting projection; one hasto escape from the current
iteration and to change the multiplicity r.
Here we compute an approximation g of proj 8, F(X) 0: werequire

flx:—9) < —olgl?.

where w €]0, 1] is a tolerance that controls the proximity of g from the projection
proj 8 F(X) 0 (see Remark 2). The algorithm we present here is essentialy the one
proposed by J. Cullum, W.E. Donath and P. Wolfe in [6]. It is an instance of a general
scheme, called the support-black box method in[16, Sect. | X.3] to minimize aquadratic
form on aconvex set. Thisalgorithmisin fact a separation algorithm that wasfirst given
in[12].

SUPPORT-BLACK BOX METHOD

Step 0. Setl = lands =g € §, f(X).

Step 1. Compute d; = —projp O, where P = cofs, ... , 8}
Step 2. Compute §-+1 € 8 f(X) such that

shad = 05, f(x) (@)

Step 3. (Stopping criterion). If 5_f(x)(di) < —ldi||* then STOP.
Replacel by | + 1 and returnto Step 1.
O

Note that 5.1 in Step 2 has the form A* uu™ where u is a unit eigenvector associ-
ated with 11(Q] (A d) Q). During the separation process a bundle of -subgradients
{s1, ..., ]} isgenerated; in that sense the first order method presented in this section
is abundle method.

The convergence of the support-black box method is investigated in detail in [16,
Sect. 1X.3]. In particular, we have the following properties.
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Proposition 5. The support-black box method at x € R™ with » €]0, 1] convergesin
a finite number of steps. Assume that the e-Strict Complementarity condition holds at
x e RM,

(e Projs, (x) 0 € i d: f(x).
Then finite convergenceis obtained also if w = 1.

Proof. Set g. := proj 8, F(X) 0. Then the results are directly derived from Theorem

1X.3.3.3and Proposition1X.3.3.4in[16].
|

Remark 3. The complexity of the support-black box method is not explicitly known.
It seems that the number of steps will depend on the condition number of the linear
operator

S, 2 Y = Ke(Y) := A*(Q.YQ]). (38)

Requiring that . is not singular was already a condition introduced in [35] and was the
first appearance of the notion of transversality in semidefinite programming athough it
was not named as such. The connection is clearly established in [41].

i

3.2. Line-search

Let x € RMand d € R™ be produced by the support-black box method of Sect. 3.1,
so that g/(x; d) < 0. Then, according to Theorem5, the objective function can be
decreased by a positive number n(x, ¢).

The problem we consider is now: find t > 0 such that

f(x+td) < f(X) — n(x, &) (39

When assumptions of Theorem 5(ii) hold, a simple line-search for n-descent can be
presented. We expose here a line-search based on a dichotomous scheme controlled
by a n-descent stopping criterion. For an advanced implementation we refer to [16,
Remark X111.2.1.2].

LINE-SEARCH

Step 0. Sett. = 0,tr = +ooandtp = 1.

Step 1 (work). Obtain q(t) := f(x +td) and g’ () := f'(x +td, d) using (32).

Step 2 (n-descent test). If (39) holds stop.

Step 3 (Dichotomous search). If g/ () > 0 set tr := t; else set t = t. Compute
t =14

O

Theorem 6. Let x € R™, ¢ > O andd € R™ be satisfying the assumptions of Theo-
rem5 (ii). Then the line-search for n(x, ¢)-descent stops after a finite number of steps.
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Proof. From Theorem 5 (ii), the quantity n(x, ¢) is strictly positive. Use now Theo-
rem 5 (i), together with Lemma5: {t :e Ry : f(x +td) < f(X) — n(x, &)} isanon
empty interval. Therefore the dichotomous scheme will detect one of its elements after
afinite number of iterations.

o
3.3. The approximate eigenvalues algorithm

To get asimple convergence analysis, the first-order algorithm we present here will use
the following e-strategy (see Fig. 1).

X := A(z) 7\
7777777777777 e e e &
‘\\/\F(z) A1(X)
T An® B
Fig. 1. e-strategy

Choosefirst atolerances > 0. Then defineat x € R™

Re() :={r e {L,...,n =1} : & (A(X) — Ar+1(A(X) =

Sl
——

min{r :r € R:(X)} if Re(X) # ¢

nm:{ .
n otherwise, (40)

g otherwise.

rm—MMNm+%ﬁ%w#@
e(x) :=

Here, ¢ is the final tolerance: Algorithm 1 below is aimed at minimizing f within
atolerance &. With reference to Definition 1, observe that 7 (x) is the e(x)-multiplicity
of A1(A(X)). If Re(x) # ¢, the spectral separation of £(x) islarger than =. Moreover we
have Ar (A(X)) — Ar11(AX) < % forr=1,...,r(x) — 1, wheni(x) > 1.

Algorithm 1.

Step 0 (Initialization). Choose the tolerances § > 0, € > 0, w €]0, 1[; initialize x :=
Xo € R™M,

Step 1 (Separation). Set ¢ := ¢(x) and computed € —3§, f(x) satisfying (34) with the
support-black box method.
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Step 2 (Stopping criterion). If ||d| < & stop.
Step 3 (Line-search). Computet such that

f(x+td) < f(X) — n(x, &),

with the Line-Search of Sect. 3.2.
Step 5 (Update). Replace x by x + td; returnto Step 1.
i

To ensure that our problem (P) makes sense, we assume that f is bounded from
below. We have:

Lemma 6. Thefunction f isbounded frombelow if and only if

(M 0e A*(Cn),
or equivalently,
(i) (range A)* NS+ +# (0}.

Proof. From convex duality [16, Chap. X], — f*(0) = infycgm f(X), where f* is the
conjugate function of f; as shown in[44], we have

—*(0) = sup{(Z, Ag) : Z € Cn Nker A*}.

Then f isboundedfrombelow if andonly if CnNker A* £ ¢, whichisclearly equivalent
to (i) and (ii). Notethat (ii) can be directly obtained from [26].
O

Thisleads us to the following result.

Lemma?. For all x € R™, the parameter ¢(x) of (40) is not greater than &. Therefore
8ex) F(X) C 95 f(X) . (41)
Asaresult, if f isbounded from below, we have

) A(AX) = §,
(i) or 0 € e F(X). " (42)

Proof. Take x € R™ and consider the two following cases.

[R:(x) # @]: by construction of £(x) (40), (i) holds: A x)(A(X)) > £. Furthermore

5
=f Moo (A £ r L) ¢ <g:
e(X) = f(X) — A (AX) + n < (r(x) - E) nSE

together with (29) and thefact that the set-valued function e — 9, f(X) isnot decreasing,
this gives (41).
[R: = #]: we haver(x) = nand (x) = &. Hence (41) still holds. Then from (11) and
(27), we have §,(x) f(X) = A*(Cn). On the other hand, we know from Lemma6 that f
bounded means 0 € A*(Cy). Thisimplies (ii).

|
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Remark 4. In practice we will use ¢ bigger than ¢(x): at each iteration k we choose s
in [0, max{e(xi), 0%eo}[ such that A, (x) is maximized, where 6 €13, 1[ is a given
parameter which forces the convergence of ey towardse.

We are now in aposition to provefinite convergence of Algorithm 1 towards an approx-
imate solution of (P).

Theorem 7. Assumethat f isbounded frombelow. Then Algorithm 1 stops after afinite
number of iterations, yielding X satisfying the approximate minimality condition

f(y) > f(X) —& —8|ly— x| forall yeR™.

Proof. While||d|| > §,wehave0¢ 3§, (x, f(X) andaccordingtoLemma?, A, x)(A(X)) > %
Together with (35), thisgivesus f(x) — f(x+td) > n(x, &) > [F212. ThenAlgorithm1
must stop before N steps, where N isthefirst integer satisfying

ms 12
f(xp) — N [E:|

4. Second-order analysis

Aswith the first-order analysis, a convenient approach consists in studying the second-
order behavior of 11 and then deriving that for the composite function f = A1 0 A by
chainrules. Yet, eventhoughtheir formulationissimple, chainrulesare not easy to obtain
here; as explained in [33], we need to introduce a geometrical condition to get them.

4.1. ThelUd-Lagrangian of 11

For a presentation of the U/-Lagrangian theory in a more general framework we refer
to [24]. The second-order analysis we present here starts with the following idea:
consider at X € Sy, the largest subspace where 1 (X; -) islinear.

Definition 2. At X € Sy, we define
UX) == {U € Sy : A1(X; U) + 11(X; —U) = 0},

and V(X) :=U(X)*.

The subspaces i/ (X) and V(X) are also characterized as follows.
Proposition 6 ([24]). Let X € Sy.

(i) Forany G € ridr1(X), U(X) and V(X) are respectively the normal and tangent
conesto dr1(X) at G.
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(i) U(X) and V(X) are respectively the subspaces orthogonal and parallel to
aff aa1(X).

O

A first attempt to reach second order could consist in introducing the function
induced by 11 in U (X). Yet, proceeding this way we would miss a major fact: a good
model of A1 must consider the local behavior of all “active constraints’ at X. At this
stage geometry can help: it suggests fixing the multiplicity (i.e., the “activity”) of A1;
this point of view is the one adopted in [36]. The “surface of activity” is defined as

Mr = {M € Sn : )\.1(M) =...= )\,r(M) > )\r+1(M)}

Reference [3] is usually proposed to prove the smoothness of M. In fact, it can be
obtained as a simple consequence of the Constant Rank Theorem[40, Chap. 111 Sect. 9].
This gives us ageometrical interpretation of the subspacesi/ (X) and V(X).

Theorem 8 ([33, Corollary 4.8]). Let X € M,. The subspaces /(X) and V(X) are
respectively the tangent and normal spacesto M; at X:

UX)=1{U €S : QIUQ: — 1(trQJUQ1)I; =0},

43
and V(X) = {Q1YQ] : Y € &, (Y, Ir) =0}. (43)

O

Thel{-Lagrangian is a convex function which identifies locally the “ridge” of A1.

Definition 3. Let X € S, and G € 911(X). Thel/-Lagrangian of A1 at the primal-dual
pair (X, G) isthefunction

UX)3U > Ly(X, G U):= min ra(X+U+V)—(G,V).
VeV(X)

e define al so the associated set of minimizers

V(X, G; U) = Argminycpxy)21(X +U + V) — (G, V).
]

The following theorem is established in [24] for any finite valued convex function,
we expressit in our specific context.

Theorem 9. Let (X, G) € Sy x 9r1(X). Then, we have

(i) thefunction Ly (X, G; -) iswell-defined and convex over U/(X).

Assume, in addition, that G € ri 0A1(X). Then,

(i) forall U e U(X), V(X, G; U) isa nonempty compact convex set which satisfies

sup IV =o(uUlD. (44)
VeV(X,G;U)
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(iii) In particular, at U = 0, we have V(U) = {0}, Ly(X,G;0) = A1(X) and
VLy (X, G; 0) = projyx,G exists.
|

A geometrical interpretation of (44) isthat ¢/(X) istangent at X to the “ridge”:
{(X+U+V(X,G;U):Uel(X)}.

In our context we can prove that this geometrical set coincidesin a neighborhood of X
with M, when G € ri 9r1(X).

Theorem 10 ([33, Theorem 4.11]). Assume (X, G) € Sp xri 9r1(X). Thenthereexists
§ > O such that, for all U € ¢/(X) N B(O, §), V(X, G; U) is a singleton. Moreover the

map
UX)NBO,8) 32U~ X+ U+ VU) (45)
isa C*°-parameterization of the sub-manifold M.

This gives us a second-order development of 11 along M;.

Theorem 11 ([33, Theorem 4.12—Corollary 4.13]). Take (X, G) € Sp x ri 9r1(X).
Then Ly/(X, G; +) is C* in a neighborhood of U = 0 and we have the following
second-order devel opment of 11

AM(X+U+VU)) =x11(X) + (G, U + V(U))
+ %(VzLu(X, G:;0)-U,U) +o(JU?), (46)

where V2L, (X, G; 0) is known explicitly:
VZLy (X, G; 0) = projjy x, H(X, G) projyx,
and H(X, G) isthe symmetric positive semidefinite operator
SnoY > HX, G)Y := GY[A(X)In — XIT + ) 1h — XITYG.

The operator V2L, (X, G; 0) iscalled the/-Hessian of A1 at (X, G).

4.2. Composition with affine operator

When composing with the affine operator A(-), we expect the same type of results as
for A1 and we would like to have similar geometrical interpretations. It is obvious that
the subspace where f'(x; -) islinear and its orthogonal complement can be written:

Ut x) = A LUAX)) and VIx) = A VAX).

Yet, when concentrating on second-order, the first difficulty encountered is that the
inverseimage of M,,i.e,

(xeR™: AX) € M} =W,

may be nonsmooth. Then to simplify the analysis, atransversality conditionis relevant.
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Definition 4. TRANSVERSALITY We say that A(-) istransversal to M, at x € W if
and only if

(M) UAX)) +range A = S, .
O

The transversality condition guarantees a one to one relation between 9 f(x) and
L1 (AX)).

Lemma 8. Assumethat transversality holdsat x € R™ and take g € d f(x). Then there
exists a unique G € dr1(X) such that g = A*(G); if gisinriof(x), G isalsoin
ri 9r1(A(X)). Moreover

dimyfo =" 1,

47
and dimif(x) =m+1— D (47)

Proof. Apply Theorem5.5in [33]: let Q1 be an x r matrix whose columns form an
orthonormal basis of E1(A(X)); then the mapping

V(AX) 3>V — A" (V)
is nonsingular. Together with (43), this implies (47). The one-to-one relation between
the subdifferentialsis easily derived from the fact that G — G’ € V(A(X)) when G and
G’ arein ar1(A(X)).

O

Finally transversality is a sufficient condition to obtain the differentiability of the
U-Lagrangian of f and to computeits Hessian viasimple chain rules.

Theorem 12 ([33, Theorem 5.10]). Assume that the transversality condition holds at
x € R™and take g € ri 3 f(x). Then thel/-Lagrangian of f at x,

U'su— LLf,(x, g;u):= min fx+u+v) —g'v,
veVf(x)

isC* in a neighborhood of u = 0. In particular,
f .
VL, (X, 9; 0) = projys1 (59,
and
f - .
VZLy, (X, G 0) = Projj,r o, H' (X, G) projy1 )
where Hf(x, G) := A* H(A(X), G) A and G is the unique (via Lemma8) vector of

ri 911 (A(x)) such that g = A*(G).
]
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The operator VZLLf,(x, 0; 0) is caled the i/-Hessian of f at (x, g). The projection
operator proj,t , is given by the expression [33, Corollary 5.7]:

Projf x) = lm — Ko(K§Ko) K .

where KCo is obtained by taking e = 01in (38).

Thetransversality condition enabled M. L. Overton and R.S. Womersley, in [35], to
parameterize M, using exponentials of matrices and to transform the original uncon-
strained minimization problem into a smooth constrained one. Thisled them essentially
to the same second derivative formula. Going along the lines of [35] and [9], we can
provethat H(A(X), G) isthe second covariant derivative in the Euclidean metric of the
function

. 1<
Aa(M) == A (M),
i=1

which is smooth near A(x) € M, and coincideswith A1 on M;.
Yet, note that the transversality condition is only sufficient to prove the smoothness
of L]f,(x, g; -). Thefollowing example shows usthat it is not necessary either to get the

differentiability of LLf,(x, g; ) or to guarantee the smoothness of W.

Example 1. Consider the mapping from R? to Sz defined by

X1—X2 0 O
A(X1, X2) := 0 Xo—x10].
0 0 1

Wehave f(X) = max{|Xx1—X2|, 1} andat X := [ﬂ thetransversality condition doesnot
hold. We have obvioudly 9 f(X) = {« R [0,1]}. ThenVf(0,1) = R _11
is unidimensional, whereas the transversality condition would imply, via Lemma 8,
dimV (0, 1) = 2. Yet, W5 islinear and therefore smooth in a neighborhood of &:

M@:k+u%m=k+@[ﬂ.

Moreover, foral g € 3f(X) andu € & T (0, 1), v(x, g; u) = {0} and LLf,(x, g;u)=1is
trivially twice differentiable.
O

5. Global second-order algorithm

Wefirst explain how to “stabilize” the/-objects. Then we present the three steps of the
global Z/-Newton algorithm: dual, vertical and tangent steps.



A second-order bundle method for maximum eigenvalue problems 23

5.1. Enlargement of U

Fromthe enlargement of 921 (X) introducedin Sect. 2.2, wederiveeasily an enlargement
of U(X). We give here the s-version of Definition 2; note that 088A1(X)(') plays the

roleof 1} (X; ) = T91(X) OF

Definition 5. Let e > 0 and X € Sp. We define U (X) as the largest subspace where
08, 11(X) islinear:

Us(X) := (U € St 05,5, (x) (W) + 055, (x) (—U) = 0}

and Ve (X) := U (X)L
Proposition 6 can a so be extended in this context.

Proposition 7. Let ¢ > 0 and X € Sy. The subspaces U/, and V. are equivalently
characterized by:

(i) ForanyG; € rid.r1(X), U (X) and V. (X) arerespectively the normal and tangent
conesto . 11(X) at Ge.

(i) U (X) and V:(X) are the subspaces respectively orthogonal and parallel to
aff 8. 11(X).

Proposition 9 below will show that U/, (X) is just the usual ¢/ at an appropriately
shifted matrix X.. As a result, all the geometrical interpretations of Sect. 4.1 can be
reproduced.

5.2. Dual step

The dua step is essentially done in Sect. 3.1: we compute an approximation of the
projection of 0 onto §. f(x) with the support black-box method and obtain g, € §. f(x)
such that

flox—g0) < —ollgel?. (48)

In fact the support-black box also produces a matrix G, in §;A1(A(X)) such that g. =
A*(G,). The subgradient g. will be used to guarantee an efficient descent and the dual
variable G, will be needed to compute the Hessian of the I/-Lagrangian.

Actually, it is important for quadratic convergence to obtain the exact projection.
The following result shows that thisis possible.

Proposition 8. Assume (T) of Definition4 of and (SC)q of Proposition 5 hold at x* <
R™M. Thenfor 0 < ¢ < Ag(A(x*)) (Definition1) , the e-strict-complementarity condition
(), holds in a whole neighborhood of x*.
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Proof. When 0 < ¢ < Ag(A(X*)), by continuity of eigenvalues, we have r.(x) =
dimE.(A(X)) = r* when x € B(x*, p) for some p > 0. In fact, for p small enough,
we have E.(A(X)) = Ewt(A(X)), where Eyt (A(X)) is the total eigenspace for the
A1 (A(X*))-group at A(x); thisnotion is defined in [18] and used in [41,33]. Thenintro-
ducing, asin [33, Theorem 4.5], the C>* map X — Qo (X) defined in a neighborhood
of A(x*), the projection problem involved in (SC). can be written together with (11)
and (27):

Jmin [ A" (Quar (A YQui (AT | ’. (49)
Then the proof becomes similar to the one of [33, Proposition 6.9].

— Thefirst-order optimality conditions of (49) with the transversality condition at x*,
enable us to use the Implicit Function Theorem and to get a C*> map B(x*, §) >
X = Y(x) solution of (49).

— The strict complementarity condition at x* tells usthat Y(x*) is positive definite.

— The continuity of Y(-) impliesthat Y(x) is positive definite for x in a neighborhood
of x*. Thismeansthat the e-strict complementarity conditionis satisfied in the latter
neighborhood.

|

Corollary 2. Assume that (T) and (SC)p hold at x* and take 0 < ¢ < Ag(A(X¥)).
Then there exists p1 > 0 such that for all x € B(x*, p1), the support-black box method
with m = 1 produces projs_ f(x) 0in afinite number of steps.

Proof. Combine Proposition 5 with Proposition 8.

5.3. Vertical step

It would be nice to project the current point x onto the manifold W, := {x € R™ :
A(X) € M;}. Yet, evenin the case where transversality holds, such a projectionis very
hard to obtain. Nevertheless, in the space of matrices it is easy to compute a point of
M; which satisfies the first-order optimality conditions associated with the projection
problem. Consider a spectral decomposition of X € M;:

X = QSASQ;I- + R R;r ,

where A, and X, are respectively r, x r, and (n —r,) x (n —r.) diagonal matrices,
and R. isan x (n —r,) matrix whose columns form an orthonormal basis of E.(X)+.
Here the components of A, are greater than the components of X .. Then define for al
X € Sn,

. 1 &
Ae(X) == 2%,
fi=1

and
Xe = A1,:(X)Q:Q] + ReE:R! .
We have the following result.
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Theorem 13. The matrix X, satisfies the first-order optimality conditions associated
with the projection problem

min [|M — X||?. (50)

MeM

Proof. Let M be a solution of (50). From Theorem8, the manifold M, is smooth in
aneighborhoodof M anditsnormal spaceat M isV(M). Thenthe (necessary) optimality
conditions associated to (50) at M are

Me M, and X — M e V(M).

Itisobviousthat X, € M;,, that
X = Xe = QelAe — A1,(X)1r,1Q] ,

and that tr (A, — i1..(X)l;,) = 0. This proves X — X, € V(X,) and completes the
proof.
O

We will also use the following property.

Proposition 9. Lete > 0and X € Sp. We have

8er1(X) = 0r1(Xe)
UE(X) = U(Xg) and Ve(x) = V(Xe) .

Proof. By construction, A1(X,) = Xl,g(X) and E1(X;) = E.(X). Then, together with
(11) and (6), we have § .11 (X) = dA1(X,). Therest is straightforward.
|

The step (in the space of matrices) from A(X) to A.(X) := [A(X)]. will be called
avertical step or V.-step.

5.4. Tangent step

We assume that, at x € R™, the dual and vertical steps have been previously computed:
we have g.(x) = A*(G.(X)) € & f(x) and A.(X) € M;,. Then we define the following
quadratic program,

min (G, (x), U) + 3 (H(A:(X), G.(x)) U, U)
U e UA(X) (51)
A:(X) +U € Ap +range(A),

where H isdefinedin Theorem 11. When G, € ri 8.A1(A(X)), i.e., (using Proposition 9)
G, € ridr1(A: (X)), (51) is equivalent to minimizing the second-order approximation
of Ly (Ac(X), Gg; -) subject to A:(X) + U lying in the image of the affine mapping



26 Frangois Oustry

A(-): the existence of acorresponding step in the space of variablesis guaranteed. Then,
program (51) takes the following form in the space of variables:

(52)
AX) — Ac(X) + Ad € U (A(X))

To solve (52), we assume nonemptiness of the feasible domain: there exists dg € R™
such that

{ min ge(0Td+ 2dTH (x, G.(x) d

AX) — Ac(X) + Ado € U (A(X)) . (53)
When (53) isfeasible, we set u := d — dp. Then program (52) amounts to

{ min b:()Tu+ 2uTH(x, G.(x)u (5

uel (%,

where H T isdefined in Theorem 12, b (x) := g.(x) + H f (x, G+(x)) do, and L{gf X) :=
fueR": Au € U:(A(X))}. To guarantee that u is well-defined, we assume that
H f(x, G.(x)) ispositivedefinite. Then, to ensureglobal convergence, we check whether
thedirectiond := dp + u satisfies

flox d) < —o|ld?], (55)
where o’ isagiven number in 10, wl.

Remark 5. Even when applied to a smooth function, global convergence of the Newton
algorithm is an open question when the Hessian has an unbounded condition number.
This explains the need for an anti-zigzag mechanism, and we found that (55) is useful
to prove convergence.

5.5. Global algorithm

The global Z/-Newton algorithm is organized as follows.

Algorithm 2.

Step O (Initialization). Choose the tolerances § > 0, € > 0,  €]0, 1] and o’ €]0, w[;
initialize X := xgp € RM and set ¢ := &(X).

Step 1 (Dual step). Compute g.(X) € 8, f(X) and G.(A(X)) € §:A1(A(X)) satisfying
(48) using the support-black box method.

Step 2 (stopping criterion). If ||g:(X)]| < & stop.

Step 3 (Vertical Step). Compute Ag(X).

Step 4 (Horizontal Step). If (53) isfeasibleand H f(x, G, (x)) is positive definite, set d
to the solution of (52). If (55) holdsand ||d|| > § goto Step 5.

If any of these conditionsis not satisfied, set d = —g.(x).

Step 5 (Line-search). Compute t such that

f(x+td) < f(X) — n(x, ¢),

with the Line-Search of Sect. 3.2.
Step 6 (Update). Replace x by x + td and ¢ by e(x + td); return to Step 1.
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Theorem 14. Assume that f is bounded from below. Then Algorithm 2 (with w < 1)
stopsafter afinite number of iterations, yielding X satisfying the approximate minimality
condition
f(y) > f(x) —& =8|y —X| forall yeR™. (56)
Proof. Theproofisasin Theorem 7, since (55) isguaranteedto hold at each iteration.
o
Inorder to obtain quadratic convergence, weintroduce a.condition which can be seen
as the generalization of the regularity assumption needed in all Newton-type methods.

Definition 6. Let x* € R™ be a solution of (P). We say that the Srict Second-Order
Condition (SSOC) holds at x* if (T) of Definition4 and (SC)g of Proposition 5 hold at
x* and thel/-Hessian of f at (x*, 0) is positive definite.

Wefirst give consegquences of (SSOC).
Proposition 10. Assumethat x* isa solution of (P) and that (SSOC) holds at x*. Then
(i) x* istheunique solution of (P),
(ii) for any p > Othereexists @ > 0 such that
fX) < fxX)+a = xeBX", ),

(iii) for any p > Otherearee and § small enough, such that Algorithm 2 yields at least

oneiteratein B(x*, p), and all the subsequent iterates remain in B(x*, p) aswell.
Proof ((i)). . Decompose an arbitrary d € R™ asd = u+ v withu e U (x*) and v €
VT (x*). By definition of thel{-Lagrangian (see Theorem 12), f(x*+d) > LLf{(x*, 0; u).
Hence

FOC +d) > L, (<", 0 u) = fox) + %uTVZLL%x*, 0; 0) u + oflulf?) .

If dissmall, uissmall and clearly f(x* +d) > f(x*).

[(iD)]. Then argmin, pm f(X) is bounded; f has bounded level sets ([16, Proposition
IV.3.2.5]): say f(x) < f(Xxp) + 1implies||x — x*|| < M. Assume for contradiction that
there exist p > 0 and a sequence {Xk}ken Such that for k > 1,

1
f(xk) < f(x*) + P f(xo) +1 and [|xk — x*|| > p.

Then xi isbounded: ||xk — x*|| < M. Extract a subsequence converging to some X and
pass to the limit (using continuity of f) to obtain the desired contradiction:

f%) < f(x*) and [|[X — x*|| > p;
X # x* isaminimizer of f, which contradicts (i).

[(iii)]. Observe that Algorithm 2 produces a decreasing sequence of f-values: every
iterate satisfies ||x — x*|| < M. Given p > 0, takea > O asin (ii), set € and § such that
£+ 8M < o: from (56), a least the final iterate x satisfies f(x) < f(x*) + «, hence
X € B(x*, p); if this occurs before stopping, it occurs at each subsequent iteration.

i
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Thefollowing lemmawill enable usto guaranteethat, close enoughto asolution x*,
the exact multiplicity r* is identified.

Lemma9. Assumethat 0 < ¢ < Ag(A(x*)). Then, there exists p» > 0 such that for
all x € B(x*, p2),

rs(X) =r(x) =r*,
wherer (x) isdefined in (40) and rz(x) := dim Ez(X).

Proof. When 0 < & < Ag(A(X*)), itisclear in (40) that rz(x*) = F(x*) = r*. Then,
the result derives directly from continuity of all eigenvalues.
]

In the following theorem, we combine Corollary 2, Proposition 10 and Lemma 9
to show that after some iteration Algorithm 2 coincides with the Z/-Newton agorithm
presented in [33].

Theorem 15. Assume (P) has a solution x* € R™ at which (SSOC) holds. Let Algo-
rithm 2 be applied with ® = 1 and withe > 0, § > 0 and ||xg — x*|| all sufficiently
small. Assume al so that the sol ution of (52) isaccepted by Sep4 and that Sep 5 produces
t = 1. Set xt = x 4 t d. Then, there exists C > 0 such that

Ixt —x*|| < ClIx — x*|12. (57)

Proof. Consider p1 > 0 of Corollary 2 (with ¢ = £) and p> > 0 of Lemma9. Suppose
Xo € B(X*, p), with 0 < p < min{p1, p2}. By Proposition 10 (iii), al subsequent
iterates arein B(x*, p). Then, from Lemma, rz(x) = r(x) = r* and from Corollary 2
the support-black box method with m = 1 convergesin a finite number of steps. If in
addition, (55) holdsand the step lengtht = 1 isaccepted intheline-search, Algorithm 2
coincides with the local second order algorithm described in [33]. This algorithm has
a quadratic rate of convergence [33, Theorem 6.13]: for p small enough, there exists
C > Osuch that (57) holdswhen x € B(x*, p).

O

In the following section we connect thiswork with recent results on bundle methods
for semidefinite programming.

6. From dual to proximal-type bundle methods

When presenting the first-order method in Sect. 3, our main objective was to provide
an algorithm with a simple geometrical description to globalize second-order schemes
“ala’ Fletcher-Overton. Yet, for practical purposes, the following must be noted:

1. theratio (use of the information)/(computational cost) in Algorithm 1 is quite low:
subgradients and e-subgradients computed during the global process (Step 1) or
during the local line-search are used only once,
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2. the algorithm is very sensitive to the choice of the s-strategy; choosing at each
iteration ¢ = £(x) (40) ensures global convergence but may be not the best policy in
practice.

Therefore there are advantages to move from a dual Markovian bundle method to
a polyhedral-semidefinite proximal bundle method [23]. The obtained algorithm, in its
first-order version, is close to the one described by K.C. Kiwid in [19] where the
precision to compute the largest eigenvalueis also controlled by the global scheme.

Transporting old subgradients. A first step consists in using old g-subgradients as
e-subgradients at the current point for some ¢ > . This can be expressed as follows.

Proposition 11. Let k > 1. Assume that, at each point x;, we have computed g; =
A*Gj € 8 f(xj) withGj e Chfori =1, ... ,k— 1. Let Qg beann x rx matrix whose
columns form an orthonormal basis of Ez(A(Xk)). Set é := [, ... , ak_1]T € Rk,
1_1 € R*1 the vector of all onesand for ¢ > 0 consider the set

Oe = [T TG+ QYQT rax e REL, Y e s
17 1(5:k+<|rk Y) =1,
(X @iGi + QuYQL, At = fix) — e .

Then for all ¢ > &, we have
8z f(xk) € A" Gke C 0 F(Xk) . (58)

Proof. Thisis astraightforward consequence of (8) and (26).
i

Inclusion (58) suggests that the convex set A* Gy . could be taken as our new
approximation of 9, f(xx) at X.

Using some duality. Thisleads usto anew projection problem for (36):
minligl®, ge.A*Gie.

Setting Gi := Gk +o0 and denotingby G(a, Y) := Y11 i Gi + Q«YQ[ an element of
Gk, the projection problem amounts to
min||A* G(@. Y)|?, G(&.Y) € Gk
k—1 T (59)
f(x0) — (2121 @i Gi + QYQg, A(x) — ¢ < 0.

Penalizing the linear inequality constraint by introducing a multiplier 2ux > 0, we
obtain the new problem

{ min || A* G(@ Y) 1% + 2uk( f(x) — (A* G(@. Y)) Txk — (Ao. G(@. Y)) — &)

G(a,Y) € Gk. (€0
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Now, multiplying the objective function by 1/(2uk) and dropping the constant terms, it
isprovedin[13, Theorem 11.3.1] that (60) isexactly thedual (inthe sense of Lagrangian
duality [16, Chap. X11]) of the primal problem

. & _ 2
min ek(y) + S lly = %l
where ¢y is the mixed polyhedral-semidefinite model of f at x :
= max (A(Xk), G) .
wk(Y) m: gk( (Xk), G)

Recalling the variational formulation of A1 and observing that Gk O 8.A1(A(Xk)) con-
tains at least one matrix of theformqq ' whereqisaunit vector in E1(A(xk)), it iseasy
to verify that this model satisfies

ok(y) < f(y)y fordlyeR™,
and gk(y) = f(yw) —¢.

Inthisapproachthe control parameter is .k whichisupdated with asimplestrategy [20].

A contribution for large-scale problems. The resulting first-order polyhedral-semi-
definite proximal bundle method seems to be promising to solve large-scal e eigenvalue
problems: in [23], we present applications from control theory which involve 1000 x
1000 matrices depending on alarge number of decision variables (m = 500000).

7. Dropping strict complementarity: an example from combinatorial
optimization

In this paragraph we present an example from combinatorial optimization, suggested by
Yu. Nesterov [29], to illustrate a qualitative distinction between interior-point methods
and second-order bundle methods: for the latter methods, superlinear convergence can
be observed even when sctrict complementarity does not hold. This fact seems to be
corroborated by the recent theoretical work of A. Forsgren [11].

L et us consider the Bool ean quadratic maximization problem

max X' Qx
(BQM) {X c {_17 1}n ,
whereQ = —cc andc=[n—1, -1, ..., —1]. A primal semidefinite relaxation [28]

for (BQM) is

max (Q,X>, XESn

(SDP) {d(X):ln, X >0,

where d(X) isthe diagonal of X. The dual of this problemisthen

min Tu, ueR"

($®*{D®—Q5Q
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where D(u) isthe matrix with ug, ... , u, onits diagonal. It is easy to check that the
three problems (BQM), (SDP) and (SDP)* have the same zero value. The solutions of
(BQM) and (SDP)* areunique: x* = 1, andu* = 0; X* = 1,1 isasolutionof (SDP).
Strict complementarity for (SDP) [1] does not hold: the matrix D(u*) — Q + X* =
cc’ +1, 11 is not positive definite. Consider now the equival ent eigenvalueformulation
of (SDP)* [7,14]: making the change of variable u = a1, + v with v' 1, = 0, we
obtain

minna, (a,v) € R
alp = Q—D(v)
UTln = O,

which isin turn equivalent to the unconstrained eigenvalue problem
(EVP) min f(v),
veRn-1

WithR"™ 5 5 = (v1, ..., vn-1) > @) =nr1(Q — D(vy, ... , vn-1, — T vi))-
We know that the notion of strict complementarity (SC)o in Proposition5 of an eigen-
value problem coincides with the corresponding one in semidefinite programing [33,

T
Remark 6.6]. We can verify here by hand that 7* = 0and 0 ¢ ri 3(0): 0 = A*(Xln)
where A* isthelinear operator

Xll - Xnn
Sh o X A*X = —n : eR™E,
x(n—l)(n—l) - Xnn

and % isin the boundary of 9A1(Q). We run Algorithm2 forn = 10and 79 = 11
with 8§ = 1076 & = 1074, » = 0.1 and &’ = 0.001. Figure 2 can be interpreted as
follows: Attheinitia point themultiplicity is1 and the distanceto the second eigenvalue
islarge (Az(vo) = 98); thereforethefirst-line searchisvery efficient (recall Theorem5).

10 ‘ ‘ ‘ ‘ ‘ 5 s

5

ot o o o o o

_5l

10}

150

ot | — Log f(vg)

25} O Tk

30}

7 2 3 z 5 6 7 g 9

Iteration &

Fig. 2. Superlinear convergence
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Yet the descent provokes a clustering of the 9 first eigenvalues: Az (k) becomes small
but not enoughto increaser := (k) of (40) until iteration 7 where they are counted as
&-eigenvalues. Then second-order steps start to be efficient and superlinear convergence
is observed.

8. Conclusion

In this paper, we have shown how to use a second-order theory, the U/-Lagrangian
theory, to speed up the convergence of afirst-order scheme to minimize the maximum
eigenvalue function. The introduction of second-order informationin aMarkovian dual
bundle method (the approximate eigenvalue method of [6,37]) enabled us to obtain
the quadratic convergence of the resulting second-order bundle method when some
regularity conditions hold. We also have made a connection with a new generation of
bundle methods for semidefinite programming.

Acknowledgements. | wish to thank Claude Lemaréchal for the numerous and fruitful discussions we had
together. | am also greatful to M. Overton for his careful reading and his numerous suggestions to improve
the paper. Finally | thank an anonymous referee for his detailed and constructive remarks.

References

1. Alizadeh, F., Haeberly, J-PA., Overton, M.L. (1997): Complementarity and nondegeneracy in semidef-
inite programming. Math. Program. 77, 111-128
2. Alizadeh, F., Haeberly, J.-PA., Overton, M.L. (1998): Primal-dual interior-point methods for semidefinite
programming: Convergence rates, stability and numerical results. SIAM J. Optim. 8, 746768
3. Arnold, V.I. (1971): On matrices depending on parameters. Russ. Math. Surveys 26, 2943
4. Bellman, R., Fan, K. (1963): On systems of linear inequalities in Hermitian matrix variables. In: Klee,
V.L., ed., Convexity, volume 7 of Proceedings of Symposia in Pure Mathematics, pp. 1-11. American
Mathematical Society
5. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V. (1994): Linear Matrix Inequalities in System and
Control Theory, volume 15 of Studiesin Applied Mathematics. SIAM, Philadelphia, PA, June 1994
6. Cullum, J., Donath, W.E., Wolfe, P. (1975): The minimization of certain nondifferentiable sums of
eigenvalues of symmetric matrices. Math. Program. Study 3, 35-55
7. Delorme, C., Paljak, S. (1993): Laplacian eigenvalues and the maximum cut problem. Math. Program.
62, 557-574
8. Demjanov, V.F,, Maozenov, V.N. (1974): Introduction to Minimax. Wiley & Sons
9. Edelman, A., Arias, T., Smith, S.T. (1998): The geometry of algorithms with orthogonality constraints.
SIAM J. Matrix. Anal. Appl. 20, 303-353
10. Fletcher, R. (1985): Semi-definite matrix constraints in optimization. SIAM J. Control Optim. 23, 493~
523
11. Forsgren, A. (2000): Optimality conditions for nonconvex semidefinite programming. Math. Program.
88, 105-128
12. Gilbert, E.G. (1966): Aniterative procedure for computing the minimum of aquadratic form on a convex
set. SIAM J. Control 4, 61-80
13. Helmberg, C., Oustry, F. (2000): Bundle methods to minimize the maximum eigenvalue function. In:
Lieven, Vandenberghe, Saigal, R., Wolkovicz, H., eds., Handbook on Semidefinite Programming. Theory,
Algorithms and Applications, volume 27 of International Seriesin Operations Research and M anagement
Science. Kluwer Academic Publisher, March 2000
14. Helmberg, C., Rendl, F. (2000): A spectral bundle method for semidefinite programming. SIAM J. Optim.
10, 673-696
15. Hiriart-Urruty, J-B., Ye, D. (1995): Sensivity analysis of all eigenvalues of a symmetric matrix. Numer.
Math. 70, 45-72



A second-order bundle method for maximum eigenvalue problems 33

16.

27.

28.

29.

30.

31

32
33.

35.

36.

37.

38.

39.

Hiriart-Urruty, J.B., Lemaréchal, C. (1993): Convex Analysis and Minimization Algorithms. Springer-
Verlag. Two volumes

Horn, R.A., Johnson, C.R. (1991): Topicsin Matrix Analysis. Cambridge University Press

Kato, T. (1980): Perturbation Theory for Linear Operators. Springer-Verlag, New York

Kiwiel, K.C. (1986): A linearization algorithm for optimizing control systems subject to singular value
inequalities. IEEE Trans. Autom. Control AC-31, 595-602

Kiwiel, K.C. (1990): Proximity control in bundle methods for convex nondifferentiable minimization.
Math. Program. 46, 105-122

. Kojima, M., Shida, M., Shindoh, S. (1998): Local convergence of predictor-corrector infeasible-interior-

point algorithms for sdps and sdlcps. Math. Program. 80, 129-161

Lancaster, P. (1964): On eigenvalues of matrices dependent on a parameter. Numer. Math. 6, 377-387
Lemaréchal, C., Oustry, F. (1999): Nonsmooth a gorithms to solve semidefinite programs. In: El Ghaoui,
L., Niculescu, S-I., eds., Advances in LMI methods in Control, Advances in Design and Control series.
SIAM

Lemaréchal, C., Oustry, F., Sagastizébal, C. (2000): The U/-Lagrangian of a convex function. Transact.
Amer. Math. Soc. 352

Lewis, A.S., Overton, M.L. (1996): Eigenvalue optimization. Acta Numer. 5, 149-190

Nemirovsky, A., Gahinet, P. (1997): The projective method for solving linear matrix inequalities. Math.
Program. 77, 163-190

Nesterov, Yu. (1997): Interior-point methods: An old and new approach to nonlinear programming. Math.
Program. 79, 285-297, October 1997

Nesterov, Yu. (1997): Quality of semidefinite relaxation for nonconvex quadratic optimization. CORE
Discussion, Paper # 9719

Nesterov, Yu. (1998): Private communication. Center of Operations Research and Econometrics, Univer-
sité Catholique de Louvain, Belgium, May 1998

Nesterov, Yu., Nemirovsky, A. (1988): A general approach to polynomial-time agorithms design for
convex programming. Technical report, Centr. Econ. & Math. Inst., USSR Academy of Sciences, Moscow,
USSR, 1988

Nesterov, Yu., Nemirovsky, A. (1994): Interior-point polynomial methods in convex programming:
Theory and applications, volume 13 of Studies in Applied Mathematics. SIAM, Philadelphia, PA
Oustry, F. (1998): Vertical developments of a convex function. J. Convex Anal. 5, 153-170

Oustry, F. (1999): The U/-Lagrangian of the maximum eigenvalue function. SIAM J. Optim. 9, 526-549
Overton, M.L. (1992): Large-scale optimization of eigenvalues. SIAM J. Optim. 2, 88-120

Overton, M.L., Womerdley, R.S. (1995): Second derivatives for optimizing eigenvalues of symmetric
matrices. SIAM J. Matrix Anal. Appl. 16, 667—718, July 1995

Overton, M.L., Ye., X. (1994): Toward second-order methods for structured nonsmooth optimization. In:
Gomez, S., Hennart, J.-P,, eds., Advances in Optimization and Numerical Analysis, pp. 97-109. Kluwer
Academic Publishers

Polak, E., Wardi, Y. (1982): Nondifferentiable optimization algorithm for designing control systems
having singular value inequalities. Automatica 18, 267—283

Potra, F.A., Sheng, R. (1998): A superlinearly convergent primal-dual infeasible-interior-point agorithm
for semidefinite programming. SIAM J. Optim. 8, 1007-1028

Schramm, H., Zowe, J. (1992): A version of the bundle idea for minimizing a nonsmooth function:
conceptual idea, convergence analysis, numerical results. SIAM J. Optim. 2, 121-152

Schwartz, L. (1967): Coursd analyse, Vol. 1. Hermann, Paris

. Shapiro, A., Fan, M.K.H. (1995): On eigenvalue optimization. SIAM J. Optim. 5, 552-568
. Trefethen, L.N. (1997): Pseudospectra of linear operators. SIAM Rev. 39, 383-406

Trefethen, L.N., Bau, 111 D. (1997): Numerical Linear Algebra. SIAM, April 1997
Ye, D.Y. (1993): Sensitivity analysis of the greatest eigenvalue of a symmetric matrix via the -
subdifferential of the associated convex quadratic form. J. Optim. Theory Appl. 76, February 1993



