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A fast model for the simulation of non-round particles
Alexander V. Potapov, Charles S. Campbell

Abstract This paper describes a new, computationally
efficient model for the discrete element simulation of a
certain class of non-round particles. The boundaries of
the particles in this model are constructed from the cir-
cular segments of different radii in such a way that con-
nections between these segments are continuous. As such,
the model does not permit the simulation of arbitrarily
shaped particles, but it does allow a wide enough vari-
ety of shapes to assess the effects of non-round shapes (in
particular, particle interlocking) in an efficient manner.
A direct test of the model’s performance demonstrates
that the model is much more efficient than other mod-
els for non-round particles currently available and is less
than two times slower than models for the same number
of round particles.

1
Introduction
In recent years, soft particle discrete element simulations
have proven to be a powerful tool for investigating the be-
havior of granular systems. All of these simulations (see
the reviews in 1, 2) follow individual particles as they
move, rotate and interact with their neighbors. In a real
granular system the forces generated when particles are
in contact result in small changes in the particle shape,
particularly around the points of contact. However, in the
simulation, it is generally assumed for simplicity’s sake,
that individual particles do not change shape. Instead
their surfaces are allowed to overlap slightly and, in an
approximation of the true elastic response, generate a re-
pulsive response which is a function of that overlap. Virtu-
ally any imaginable dependence of the contact force on the
overlap may be incorporated into the model, e.g. simple
linear elastic, Hertzian or some other.

At present time, the majority of the soft-particle dis-
crete element simulations have been performed using round
particles for both two-dimensional and three-dimensional
systems (1, 2). The round shape is very easy to simulate
in the sense that every point on its surface can be deter-
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mined simply by knowing the position of the center and
its diameter; in particular, there is no dependence on the
orientation of the particle. As a result, it is easy to de-
termine the overlap between two particles simply the sum
of their radii minus the distance between their centers.
Also, it reduces memory requirements as only the center
position needs to be stored.

However, the use of round particles has several limita-
tions. Nearly all natural particles are not round, a qual-
ity which is shared even by artificial particles that are
intended to be round (e.g. commercial glass beads). Fur-
thermore, non-round particle shapes can create a vast dif-
ference in the mechanical behavior because they do not
roll easily. For example, bulk materials composed of round
particles have angles of repose that are much smaller than
natural materials (see 3). One solution to this problem is
to not allow the particles to rotate at all, but instead in-
teract only frictionally. Realistic angles of repose may be
obtained using this technique, but it in no way clear that
the resulting material accurately simulates all the effects of
non-round particles. In particular, realistic particles may
interlock with one another and produce behavior that can-
not be approximated by a simple friction at the surface of
round particles. Another technique is to introduce the spe-
cial force term (4) to account for the Coulomb’s law be-
havior commonly associated with granular materials, but
this moves the simulation even farther from real situation.

The most natural solution for this problem is to use
particles that are not round. Several such model have been
proposed. In general they can be divided into two classes.
In the first, an analytic representation of the shape of a
particle is used for which it is possible to simplify the con-
tact and overlap determinations. For example, algorithms
have been developed for particles with elliptic (e.g. 5–8) or
superquadric (e.g. 9, 10) shapes (the superquadric parti-
cle shape is described by the same equation as elliptic one,
the only difference is that the degree is above two). Such
particles can interlock like real materials, but they do not
resemble natural materials. Also, aspect ratios for ellip-
tical particles must be significantly different from unity
in order to obtain realistic angles of repose, which may
present other problems as the majority of natural gran-
ular materials have aspect ratios that are close to unity.
The second type of model assumes that the particles are
in the shapes of arbitrary convex polygons (11–15). (Such
a model forms the basis of the fracture simulations pre-
sented in 16–19.) More realistic looking particles may be
created in this manner, but at tremendous computational
costs. Polygonal simulations can take up to ten times more
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Fig. 1. The picture of a typical oval. The boundary of this
oval consists of four arches drawn around points O1, O2, O3

and O4, arches drawn around points O1 and O3 have the same
radius and angles α1 and α3 are the same. The same is true
about the arches drawn around points O2 and O4 and angles
α2 and α4. Points O1 and O3 are situated in such a way that
line connecting these points pass through the center of an oval,
the same is true about the line connecting the points O2 and
O4

computer time than their round counterparts. For analyti-
cally represented particle shapes, (elliptic or superquadric
cases) the majority of the computer time is spent in it-
erative solutions of the non-linear equations used to cal-
culate the particle overlap. In the polygonal simulations,
the majority of the computer time is spent calculating in-
tersections of the sides of contacting polygons which is a
necessary part of the overlap determination.

2
The description of the model
Here we propose a soft-particle discrete element model for
the simulation of non-round particles which exhibits a per-
formance that is comparable to the performance of round
particle models and is able to accommodate a much wider
variety of shapes (and more realistic shapes) than the el-
liptic or superquadric models. The idea for this model was
born from the way the ellipses are sometimes approxi-
mated in technical drawings; when appropriate elliptical
templates are not available, an oval with the same aspect
ratio is often used to approximate the ellipse. An oval is
geometric figure whose boundary is determined by four
circular arches of two different radii which are joined to-
gether in a continuous way (i.e. the first derivative is con-
tinuous between the arches) and thus can be drawn with
compasses and other standard tools used to draw circles.
However, it is possible to generate more complex shapes,
many nearly polygonal in shape, from circular arches. At
the same time, the determination of contact and overlap

Fig. 2. This picture illustrates the procedure of the calcula-
tion of the contact parameters between a pair of ovals. After
the contacting arches are determined (arches corresponding to
angles α1 and α2), the calculation of the contact parameters
can be carried out in the same way as it is done for the round
particles

between two circular arches segments is nearly identical
to the same procedures for circles. Thus a simulation of
particles generated from circular arches will allow a vari-
ety of shapes to be studied at only a small computational
cost beyond that of round particles.

To illustrate this technique, consider the typical oval
presented in Fig. 1. The boundary consists of four arches
drawn around points O1, O2, O3 and O4. In a classical
oval, the arches drawn around points O1 and O3 have the
same radius (we shall call this radius “large”) and the
angles α1 and α3 are identical. The same is true about
the arches drawn around points O2 and O4 (we shall call
this radius “small”) and the angles α2 and α4. Points O1
and O3 are situated in such a way that line connecting
these points passes through the center of an oval, as does
the line connecting the points O2 and O4.

Now suppose that we have a granular medium con-
sisting of oval shaped particles which will be simulated
using an otherwise standard soft-particle discrete element
model. To do this, we must, at every time-step, find the
particles which are overlapping, calculate the distance of
this overlap and determine the center of this overlap in
order to know the point at which contact forces are to be
applied to the contacting particles. Let us suppose that
we have a contact between two ovals as is shown in Fig. 2.
Any possible contact must occur between the arch of one
oval and the arch of the other oval. This type of contact
can be treated in the same way as the contact of the two
circular particles. Thus the overlap distance is simply the
sum of the two radii of the contacting arches minus the
distance between the points around which these arches are
drawn (i.e. distance between the points O1 and O2 in Fig-
ure 2). The center of the overlap lies in the line connecting
O1 and O2 midway between the points of intersection of
this line and the two arches (point C in the Figure 2).
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Fig. 3a–d. Examples of the construction of the particles out of
the arches continuously joined to each other (the first derivative
is the same on the both sides of the arch to arch transition
point): a approximation of a triangle, b approximation of a
square, c approximation of a pentagon and d approximation
of a heptagon

Compared to the case of round particles, the only ad-
ditional operation which is required here is to determine
which of the arches may be involved in the contact. This
can be carried out in very simple and effective way. Note
that two ovals can have the contact along a pair of arches
if, and only if, the line connecting the points around which
these arches are drawn lies within the limits of the angle
of both arches (in Fig. 2 this requires determining that
the line O1O2 lies between angles α1 and α2). This is
easy to check by calculating the dot products of the unit
vector connecting the points around which the arches are
drawn with unit vectors of the bisectors of the angles of
the arches. Plus, the dot product of the vector connecting
the centers of gravity of the ovals and the vector connect-
ing the points around which the arches are drawn should
be calculated to ensure, by its sign, that the potential con-
tacting arches are oriented towards rather than away from
each other. The calculation of these three dot products is
an additional computational step with respect to the case
of the round particles. However, it is not necessary to per-
form all three calculations at each time-step. Since the
particles do not drastically change their orientation dur-
ing a single time-step, in the vast majority of cases, it will
only be necessary to check at each time-step whether the
same two arches remain in contact. This means the calcu-
lation of only the first two dot products, which is a rather
fast and straightforward procedure. Also, it is quite likely
that any two arches that are in contact, were in contact
during the previous time-step. Consequently, much com-
puter time can be saved by simply verifying that the con-
tact continues on subsequent time-steps. The calculation

of the contacts of the ovals with the straight boundary
walls is performed in much the same way.

The model described above is easily extended beyond
the case of ovals. Ovals, like ellipses, have the disadvan-
tage of requiring relatively large aspect ratios to obtain
realistic values of the angles of repose. Much more com-
plex particles may be constructed in the same way the
ovals are constructed. If the boundary of a particle con-
sists of any number of arches which are continuously con-
nected together, one can see that the algorithm for deter-
mining contact as described above still holds true. Some
examples of this sort of particles are presented in Fig. 3.
For these particles, a large radius is used to construct the
“sides” of the particles and a smaller radius is used to con-
nected them smoothly together at the “vertices.” Clearly,
one can easily construct an approximation to a triangle,
square, pentagon and so on, and one can get very close
to an actual polygonal shape as one wishes by making
the corresponding radius of curvature of the arches that
form the sides very large and those that form the corners,
very small. (This process is limited only by roundoff er-
rors in the determination of the overlap; l.e. as the overlap
is computed by taking differences, high accuracy requires
that its magnitude be large enough relative to the radius
to be represented by several number significant digits in
its floating point representation within the computer.) If
these particles are constructed of the arches with only two
values of radii as it was done for the oval and all of the
shapes in Fig. 3, no additional memory (beyond that re-
quired for an oval) need be used for the storage of the
information about position and orientation of the parti-
cles.

One additional advantage and one additional disad-
vantage of the model proposed here should be mentioned.
The advantage is that this model has a fixed value of the
radius of curvature at every point of the surface of the
particles that is bounded by continuously joined arches.
This makes it possible to use the Hertzian contact model
(which describes the contact between particles with arbi-
trary, but finite and non-zero, radii of curvature) without
any additional assumptions - which would be a question-
able for the case of the angular particles. The disadvan-
tage of the model is that for the moment we cannot see
its simple three-dimensional implementation.

3
Demonstration of the performance of the model

It is clear from the material presented above that the per-
formance of the proposed model should be only marginally
worse than a round particle model as only a few additional
calculations are required. A direct test of this fact is de-
scribed in the following.

For the test, we have chosen the problem of settling
the particles into a rectangular box under the influence
of the gravity. In the first case, the particles are round,
in the second case, the particles are the same number of
quasi-triangles (Fig. 3a), in the third case the particles
are quasi-squares (Fig. 3b), in the fourth case, particles
are of superquadric shape with superquadric degree 3.0
which are simulated by the technique described in (10)
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Fig. 4a, b. Results of the simulation of gravity settling round
particles. This simulation has been performed in order to com-
pare the efficiencies of the models. a Initial positions of the
particles; b positions of the particles at the end of the simula-
tion

Table 1. CPU time spent on SPARC-20 for performimg of
4.69 · 104 time steps.

Particle shape CPU time (s)

Round 29
Quasi-triangle 48
Quasi-square 51
Superquadric 347
Square 114

and finally, in the fifth case particles are square and sim-
ulated by the algorithm described in (12). Linear spring
contact laws are assumed for all cases except for the case
of square particles for which the normal contact force was
based on the area of overlap (see 12). The geometry of the
boundary walls, the particle masses, particle densities, the
time step and the coefficient of the restitution of the parti-
cles were the same in all cases. The models were run on the
same Sparcstation 20 computer (75 MHZ processor), for
the same period of simulation time (4.69·104 time steps),
and the amount of CPU time expended was determined
and compared. The same contact search routine for near
neighbors (12) was used in all simulations.

The initial positions of the particles are presented in
Fig. 4a for the case of round particles, in Fig. 5a for the
case of quasi-triangular particles, in Fig. 6a for quasi-
square particles, in Fig. 7a for the superquadric particles
and in Fig. 8a for square particles. Figs. 4b, 5b and 6b, 7b
and 8b depict the final positions of the particles for these
five cases.

Fig. 5a, b. Results of the simulation of the gravity settling
of the quasi-triangular particles in a rectangular box. It was
performed for the same particle mass, same time step and same
time elapsed in the system (same number of time steps) as the
simulation for round particles presented on Fig. 4. a Initial
positions of the particles; b positions of the particles at the
end of the simulation

Fig. 6. Same as Fig. 5, but for quasi-square particles

The results of the simulation of these cases on a SPARC-
20 workstation are presented in Table 1. These results
show the CPU difference of about 66% between the case
of round particles and case of the quasi-triangular parti-
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Fig. 7a, b. Results of the simulation of gravity settling of
the same number of superquadric particles [9] as on Fig. 4. It
was performed for the same particle mass, same time step and
same time elapsed in the system (same number of time steps)
as the simulation for round particles presented on Fig. 4. a
Initial positions of the particles; b positions of the particles at
the end of the simulation

cles composed of arches. The case of quasi-square particles
is just 4% slower than the case of quasi-triangular parti-
cles, this time difference is due to slightly longer procedure
of the determination of contacting arches for quasi-square
particles than for quasi-triangular particles due to larger
number of arches. The case of superquadric particles was
more than one order of magnitude slower than the case of
round particles. (It is hard to do exact performance com-
parisons for this case since the procedure is iterational and
“exact” solution is never reached. We used four iterations
per time step here, different number of iterations may pro-
duce different results.) Finally, the model with square par-
ticles was almost four times slower than the model for
round particles and thus more than two times slower that
the model proposed in this paper. Thus, the model pre-
sented here easily outperforms every other model for non-
round particles available at the present time.

4
Conclusions
In this paper, a model has been proposed for a soft-particle
discrete element simulation of the motion of non-round
particles. This model is based on the construction of a
particle boundary out of a set of arches which are con-
nected to each other so that the first derivative at the
point of transition from one arch to another is the same
from both sides. The model allows us to vary consider-
ably the degree of roughness of a particle surface, and
it performs approximately 60% slower than a model for

Fig. 8a, b. Results of the simulation of gravity settling of
the same number of square particles as on Fig. 4. It was per-
formed for the same particle mass, same time step and same
time elapsed in the system (same number of time steps) as the
simulation for non-round particles presented on Fig. 4. a Ini-
tial positions of the particles; b positions of the particles at the
end of the simulation

the round particles, thus easily outperforming any other
model currently available for non-round particles.

The model is capable of efficiently simulating nearly
polygonal particles. The main use of this type of simu-
lation is not necessarily to simulate the actual shapes of
the particles in naturally occurring materials, but to pro-
vide a way of adding the effects of non-round shapes (in
particular, particle interlocking) into existing simulations.
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