
The VLDB Journal (2000) 9: 154–173 The VLDB Journal
c© Springer-Verlag 2000

Dynamic vp-tree indexing for n-nearest neighbor search
given pair-wise distances
Ada Wai-chee Fu, Polly Mei-shuen Chan, Yin-Ling Cheung, Yiu Sang Moon

Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong; e-mail: adafu@cse.cuhk.edu.hk

Edited by T.Özsu and S. Christodoulakis. Received June 9, 1998 / Accepted January 31, 2000

Abstract. For some multimedia applications, it has been
found that domain objects cannot be represented as feature
vectors in a multidimensional space. Instead, pair-wise dis-
tances between data objects are the only input. To support
content-based retrieval, one approach maps each object to
a k-dimensional (k-d) point and tries to preserve the dis-
tances among the points. Then, existing spatial access index
methods such as the R-trees and KD-trees can support fast
searching on the resultingk-d points. However, information
loss is inevitable with such an approach since the distances
between data objects can only be preserved to a certain ex-
tent. Here we investigate the use of a distance-based in-
dexing method. In particular, we apply the vantage point
tree (vp-tree) method. There are two important problems for
the vp-tree method that warrant further investigation, then-
nearest neighbors search and the updating mechanisms. We
study ann-nearest neighbors search algorithm for the vp-
tree, which is shown by experiments to scale up well with
the size of the dataset and the desired number of nearest
neighbors,n. Experiments also show that the searching in
the vp-tree is more efficient than that for theR∗-tree and the
M -tree. Next, we propose solutions for the update problem
for the vp-tree, and show by experiments that the algorithms
are efficient and effective. Finally, we investigate the prob-
lem of selecting vantage-point, propose a few alternative
methods, and study their impact on the number of distance
computation.

Key words: Content-based retrieval – Indexing – Nearest
neighbor search – Updating – Pair-wise distances

1 Introduction

With the advent of large-scale multimedia database systems,
there is a need to efficiently answer user queries.Content-
based retrieval is typically required [18]. One advantage of
such an approach is that it bypasses the difficult problem of
specifying the desired multimedia objects in terms of formal
query languages. A popular form of content-based queries
employs the query-by-example paradigm. For example, in

a collection of images, users can use existing images as
query templates and ask the system for images similar to
the query images. This is the so-called “like-this” query.
Alternatively, the user can sketch a picture that serves as
the query template.

To support content-based retrieval, often we have to rely
on feature extraction capabilities to map each domain ob-
ject into a point in somek-d space where each object is
represented byk chosen features. An example feature vec-
tor may be color components of an image or shot cuts of
a video clip. Hence, processing content-based queries typ-
ically requires some measurement of similarity betweenk-
d points. The similarity (or distance) between two objects
is measured using some metric distance function over the
k-d space. The most common metric distance function is
the Euclidean distance. The entire problem is then formu-
lated as storing and retrievingk-d points, for which there
are many fine-tuned indexing methods available. In gen-
eral, these methods are calledmultidimensional indexing or
spatial access methods (SAMs) [30]. Some of the previous
works are [2, 3, 4, 12, 13, 15, 19, 21, 25, 26, 28, 35, 38, 34].

It has been found that the above setting cannot be applied
to certain applications. For example, [24] cites the example
of typed English words, where the similarity function is de-
fined by the minimum number of insertion, deletions, and
substitutions to transform one string to another, and the ex-
ample of matching digitized voice excerpts, which include
the consideration of time warping [31, 29]. The time-warping
problem occurs also in the similarity search in time series
[5, 1]. For other examples, [27] describes a method of mea-
suring the similarity between color images based on a color
similarity matrix which takes into account the perceptual
distance between different pairs of colors. For shape simi-
larity, a natural definition is the value of “area difference”,
for which we measure the area where two shapes do not
match when one isplaced on top of the other, e.g., one can
obtain a pixel-wise exclusive-or of the two shapes. Another
method represents a shape in terms of its boundaries, and
a string-edit-distance-based similarity measure is employed
based on the number of changes required to transform one to
the other [17]. In still other applications, it may be relatively
easier for a domain expert to assess the similarity or distance

A.W. Fu et al.: Dynamic vp-tree indexing forn-nearest neighbor search given pair-wise distances 155

between two objects rather than giving a computable defini-
tion of similarity [37]. In all of the above applications, we
are given the similarities or distances between pairs of data.
In most cases, the distances aremetric, meaning that the tri-
angle inequality property applies, and this is the assumption
we make. Given only the distance information, we still need
an indexing method to support query and update.

For this problem, one approach uses the distance infor-
mation to deducek-d points for the objects so that we can
subsequently make use of vector space model (VSM) [37]
multidimensional indexing methods such as the R-tree and
its variants. TheFastMap algorithm [24] andmultidimen-
sional scaling [23] fall in this category. The main challenge
for this approach is to preserve distances as well as possible.
It is difficult to decide on a value ofk and then map each
domain object into ak-d point while still accurately repre-
senting the similarity between objects using some metric in
that k-d space. In this paper, our experimental results show
that such an approach can incur a considerable amount of
inaccuracy forn-nearest neighbor search.

Therefore we study an alternative approach that uses
distance-based indexing, known as metric space model
(MSM) indexing. In particular we examine thevantage-point
tree (vp-tree) method [36, 39, 10]. This approach can obvi-
ously save the overhead of inferring points in a multidimen-
sional space, and can also avoid the difficulty in preserving
distances. Our main contributions are the following:

1. We apply ann-nearest neighbor search algorithm for
the vp-tree index method. From our experiments, then-
nearest neighbor search algorithm demonstrates promis-
ing performance. In the detailed implementation, we sug-
gest and implement a method for the physical cluster-
ing of vp-tree nodes. We compare the costs of then-
nearest neighbor search withR∗-tree andM -tree by ex-
periments, and show that the search of the vp-tree is
considerably more efficient.

2. The update problem has also been left open for the vp-
tree and its variants [6]. We propose mechanisms for up-
date operations on the vp-tree. We investigate two alter-
natives in the insert operation: split-first and redistribute-
first techniques; and two alternatives in the delete opera-
tion: merge-first and redistribute-first. All of these tech-
niques preserve the balanced-tree property of the vp-tree.
The split-first and merge-first strategies can also preserve
the original characteristics of the vantage points and are
found to be more efficient. We show by experiments that
the updating cost is not particularly expensive.

3. Finally we propose some alternative techniques for the
vantage point selection which can reduce the number of
distance computations. Experiments were carried out to
demonstrate that the proposed methods are efficient and
effective.

The rest of the paper is organized as follows. Previous re-
lated work is described in Sect. 2. In Sect. 3, we give exper-
imental results of the distance-preserving approach. Section
4 details the algorithm forn-nearest neighbor search in vp-
trees, along with performance results. Update mechanisms
for the vp-tree are outlined in Sect. 5 and comparison of
different approaches by experiments is given therein. Section
6 discusses some possible improvements in the selection of

v

S1
S2

µ

(v,µ)

S S1 2

Fig. 1. Partitioning mechanism of the vantage-point tree method

vantage points, with experimental results. We conclude the
paper in Sect. 7 with an outline of future work.

2 Related work

Given only pair-wise distances between objects, there are
two major approaches to the indexing methods for content-
based retrieval: the distance-preserving transformation-based
methods, and the distance-based indexing methods. We shall
briefly describe both approaches.

2.1 Distance-preserving methods

With the distance-preserving approach, we try to deduce
for each object a corresponding point in a multidimensional
space so that the distances among objects are preserved as
much as possible. One example is a method from pattern
recognition, namely, multidimensional scaling (MDS) [23].
Another is the FastMap algorithm proposed by Faloutsos
and Lin [24]. As experiments in [24] showed that FastMap
achieves dramatic computational savings over known MDS
methods, without loss in quality of the results, we shall fo-
cus only on the FastMap method. Thus, the details of other
MDS methods are omitted for brevity.

The FastMap algorithm assumes that objects are points in
some unknown high-dimensional space, and projects these
points onk mutually orthogonal directions (k being user-
defined), such that objects are mapped to points in thisk-d
space. One important requirement that FastMap must ful-
fill is to preserve distances as much as possible such that
the Euclidean distances between the points in thek-d space
match the pair-wise distances given. If the overall distances
are not preserved sufficiently, some of the information that
distinguishes the objects cannot be maintained. After the
mapping, any one of a number of highly fine-tuned spatial
access methods like the R-tree, etc., [2, 4, 19, 25, 28, 33]
can be employed to provide fast searching for range queries1

andn-nearest neighbor queries2.
FastMap introduces pre-processing costs to both index

construction and querying because all domain objects and
the query object must first be mapped to the corresponding
k-d points before an index structure is built or a query is
processed. The mapping ofN objects intoN k-d points re-
quiresk recursive calls to the function called FastMap. For
example, if our target is to deduce 2-d points forN objects,
FastMap will determine the coordinates of theN objects on
one axis in the first recursive call, and those on the other
axis in the second recursive call.

1 Example: find objects that are within distanceε from the query object.
2 Example: find then (n ≥ 1) objects that are closest to the query

object.

156 A.W. Fu et al.: Dynamic vp-tree indexing forn-nearest neighbor search given pair-wise distances

Pick a set of candidate vantage points from the data set;
For each vantage point

Pick a set of sample objects from the data set;
Compute the distance values from the vantage point to each of the sample objects;
Calculate the mean and the standard deviation of these distance values;

Endfor
Choose the candidate vantage point with the maximum standard deviation.

Fig. 2. Algorithm ChooseVantagePoint

2.2 Distance-based index structures

Quite a number of distance-based indexing structures have
been proposed. A summary of some of these methods can
be found in [6, 7]. Previous work includes techniques sug-
gested in [8], which contains some of the basic ideas for later
methods, thegeneralized hyperplane tree (gh-tree) [36], the
vantage point tree (vp-tree) [36, 39, 10], thegeometric near-
neighbor access tree (GNAT) [7], the mvp-tree [6] which is
a variation of the vp-tree, and the M-tree [11]. In [7] the
GNAT is compared to the binary vp-tree in a set of experi-
ments and is found to incur more expensive construction but
less numbers of distance computations in the range querying.
The mvp-tree uses pre-computed distance to reduce the num-
ber of distance computations, and also uses multiple vantage
points in a tree-node. In [6] it is shown by experiments that
the mvp-tree would incur less distance computations in range
querying compared to the vp-tree. However,n-nearest neigh-
bor search has not been considered for GNAT in [7] or for
the vp-tree or its variations, and both [6] and [7] focus only
on the number of distance computations for range queries.

The M-tree is a balanced tree which is able to deal with
dynamic data. In an M-tree, each internal node has a routing
object, and all objects in the subtree under the node are
within a certain distance from the routing object. Updating is
allowed and may trigger node splitting. Experimental results
show that it is a competent access method. Therefore we
shall compare our approach withM -tree.

2.2.1 The vantage-point tree method

Since we make use of the vp-tree structure [39, 10], we
describe in more detail the vp-tree method. Consider a finite
setS of N data points3. For each node in the tree, a particular
data object is selected to be the vantage point, according to
a randomized algorithm given in [39] as shown in Fig. 2.
Let the point chosen for the root node bev. Then, letµ be
the median of the distance values of all the other points in
S with respect tov, andS is partitioned into two subsets of
approximately equal sizes,S1 andS2, defined as:

S1 = {s ∈ S | d(s, v) < µ}
S2 = {s ∈ S | d(s, v) ≥ µ}
whered(p, q) is the distance between pointsp andq. Figure
1 illustrates the concept. This partitioning procedure is then
applied toS1 andS2, recursively. Every subset, such asS1
and S2, corresponds to one node of the vp-tree. At each

3 Since vp-tree uses the termpoint to refer to data objects, we shall use
the terms data points and data objects interchangeably.

node, a distinct vantage point is chosen to partition the data
points in the corresponding subset. At the leaf node, we
store a number of data points. Eventually, the entire data
set is organized as a balanced tree as in other spatial index
structures.

Them-ary vp-tree construction is similar to the case of
binary vp-trees. The data setS is split intom subsets,Si,
i = 1 to m, according to the distance values between the
chosen vantage point and other data points. Each ofSi’s
has roughly the same number of data points.µi is used to
denote the boundary distance value, so that for alls ∈ Si,
µi−1 < d(s, v) ≤ µi. Again, each of theSi’s is recursively
partitioned into smaller subsets using the same partitioning
mechanism.

Note that when we perform updating on the vp-tree, the
branching factor of a vp-tree node can be reduced after dele-
tion, therefore we shall specify a minimum branching factor.
Them value in the above is the maximum branching factor.
For example, if the minimum branching factor is 2, then we
have a 2-to-m-ary vp-tree.

The multi-vantage point tree (mvp tree) [6] incorporates
two mechanisms on top of the vp-tree to reduce the num-
ber of distance computations. The first mechanism is to keep
pre-computed distances between the data points and the van-
tage points. The second mechanism is to use more than one
vantage point to partition the space into spherical cuts at
each level. We shall adopt the first mechanism in our imple-
mentation. We shall study more about the second mechanism
in Sect. 6.

3 Motivation

The VSM methods that try to preserve the distances will
have a problem in the accuracy, since some distance in-
formation may be lost. Here we show with an experiment
the inaccuracy that may result from such a method. We im-
plemented FastMap and the R-tree in C under UNIX on a
SPARCcenter 2000. We performed tests on 8-nearest neigh-
bor queries relative to points chosen from the dataset. The
average is taken over the performance for 15 randomly cho-
sen query points. The R-tree that we implemented is able
to handlen-nearest neighbor search. In this experiment, a
synthetic dataset is used. We generated a dataset of 1500
points in 10-d space. The points form 10 clusters, with the
same number of points in each cluster. Centers of clusters are
uniformly distributed and the distances of the points in each
cluster from the centers follow a normal distribution. Our
input is the Euclidean distances between such data points.

To study the accuracy ofn-nearest neighbor search re-
sulting from the FastMap method as the dimensionalityk

A.W. Fu et al.: Dynamic vp-tree indexing forn-nearest neighbor search given pair-wise distances 157

0

20

40

60

80

100

0 1 2 3 4 5 6 7 9 9

P
er

ce
nt

ag
e

of
 Q

ue
ry

 A
cc

ur
ac

y
(%

)

Number of Dimensions

FastMap

Fig. 3. Query accuracy vs number of dimensions for the dataset of 1500
objects

σ qv

Fig. 4. The meaning of the thresholdσ

increases, we variedk from 1 to 9. Eight nearest neighbors
are to be found for each of 15 query objects. FastMap 9
sets of 1500k-d points were deduced, fork = 1 to 9. Each
set of points was then organized in an R-tree. It was also
necessary to map 15 query objects tok-d space. The result-
ing k-d queries were submitted to the R-trees whose search
algorithm was run to obtain the results.

We expressed the accuracy of ann-nearest neighbor
search as the percentage of then answers that are indeed
among then-nearest neighbors of the query object. We re-
ported an average of accuracy over the 15 queries. Figure
3 plots the percentage of query accuracy as a function of
the number of dimensions. With FastMap, the lower the di-
mensionality, the more nearest neighbors have been missed.
This is mainly because FastMap may not preserve the actual
distances between objects and the preservation problem gets
worse whenk is getting smaller.

There are enhancements proposed on the R-tree based
methods, such as the multi-stepk-nearest neighbor search
method [32, 22]. However, these are enhancements on the
efficiency of the method and would not help in enhancing
the accuracy of the method when the data is subjected to the
above information loss.

3.1 Discussion

FastMap suffers from the difficulties in preserving actual
distances and in determining a properk value to achieve
high accuracy. Therefore, we propose to use methods that
are able to locate every nearest neighbor with a fast response.
We have chosen the vp-tree approach. The advantages of the
vp-tree approach mainly lie in the following:

1. There is no need to infer multidimensional points for do-
main objects before an index can be built. Instead, we
build an index directly based on the distances given. This
avoids pre-processing steps. There are two major prob-
lems with the pre-processing in the FastMap approach:
a) The computation involved in these steps can be

costly.
b) It is difficult to determine the number of dimensions,
k, that can preserve the distances to a satisfactory
level.

2. The updates on the vp-tree are relatively easier than that
for the Fastmap method. For the Fastmap method, after a
certain amount of data objects are inserted or deleted, the
mapping for the data points will no longer be as distance-
preserving as before. There will be a point when Fastmap
has to be executed once again for all the objects, and it
is not clear how to determine what is a good time for the
re-construction. By comparison, the updates for vp-tree
are much more straightforward (see Sect. 5).

3. A distance-based indexing method such as the vp-tree is
flexible: it is not only applicable to multimedia objects
given pair-wise distances, but is also able to index ob-
jects that are represented as feature vectors of a fixed
number of dimensions (the case when feature extraction
functions are available). We also show that the perfor-
mance is much better than R*-tree and M-tree in terms
of page accesses forn-nearest neighbor search.

4 n-nearest neighbor search in vp-trees

For content-based retrieval, it is rare to have an exact match
on multimedia data, so nearest neighbor queries are more
desirable. In practice, users often ask for a certain number of
objects similar to a given query object so that they can select
part of the returned collection. Therefore, we are interested
in finding n-nearest neighbors to a query object, wheren is
usually greater than one. Here we describe an algorithm for
n-nearest neighbor search in the vp-tree. The basic idea is
similar to then-nearest neighbor search in other index trees
such as theR-tree or theM -tree [11].

The single-nearest-neighbor search algorithm in [10] re-
lies on a specific threshold,σ, which estimates an upper
bound on the distance between a query object and its near-
est neighbor. Letd(p, q) be the distance between pointsp
andq. Given aσ value, the algorithm in [10] will look for
the single nearest neighbor toq within the ranged(v, q) ± σ
(see Fig. 4). Recall that at each node of the vp-tree, a van-
tage point determinesm subsetsSi by the distancesµi. If
the hypersphere depicted in Fig. 4 falls inside the boundary
of only one subsetSi, the algorithm only needs to explore
that particular subset. Otherwise, multiple subsets (subtrees)
need to be explored. A tighter value ofσ will ensure that
less subtrees are explored, but it also increases the chance
that no nearest neighbor is found, in which case the search
has to be repeated with a greater value ofσ. In the algo-
rithm in [10] there is no specific bound on the number of
trials (passes) with increasing values ofσ.

The above mechanism can be generalized forn-nearest
neighbor search. We use a value ofσ in a similar way. The

158 A.W. Fu et al.: Dynamic vp-tree indexing forn-nearest neighbor search given pair-wise distances

Procedure nNN Search(q,n,root)
Input: the query point q, the number of nearest neighbors requested n,

the root node of a vp-tree.
Output: the set W of n nearest neighbors to q.

begin
Local variable σ : to record the distance of q to the n-th nearest neighbor discovered so far.
Search(q,n,root,σ,W);
return W;

end

Fig. 5. Procedure nNNSearch

Procedure Search(q,n,node,σ,W)
Input: the query point q, the number of nearest neighbors requested n, a node of the vp-tree,

σ = the distance of n-th nearest points discovered so far
and W is a set of n-nearest neighbors obtained so far.

Output: updated values of σ and W.
begin

if node is leaf
for each element v in node,

if d(v,q) ≤ σ
insert v to proper position in W (W always sorted in ascending order of d(w, q));

if |W | = n then σ := d(wn, q);
else

dist := d(node↑.v,q);
if dist < node↑.mu

if {dist < nodes↑.mu + σ} then Search(q,n,node↑.left, σ,W);
if {dist ≥ nodes↑.mu − σ} then Search(q,n,node↑.right, σ,W);

else
if {dist ≥ nodes↑.mu − σ} then Search(q,n,node↑.right, σ,W);
if {dist < nodes↑.mu + σ} then Search(q,n,node↑.left, σ,W);

end

Fig. 6. Procedure search

initial value of σ is set to be infinitely large. The value of
σ is dynamically improved as we discover shorter distances
between the query point and some data points that we come
across during the search.

For simplicity we focus on the binary partitioning case,
but the discussion can easily be generalized to the case of
an m-ary vp-tree, form > 2. The construction algorithm
for the vp-tree is similar to the original vp-tree construc-
tion algorithm in [39]. The pseudocode for the algorithm is
given in Fig. 5. This algorithm triggers the procedure call
Search(q,n,root,∞,φ). The procedure Search (Fig. 64) is re-
cursively activated one or more times. During the traversal,σ
is dynamically adjusted to the value of the distance between
the query object and the currentn-th nearest candidate. This
σ guarantees that then-nearest neighbors will at most be at
distanceσ from the query point. Effectively, we perform a
depth-first search, and letσ be determined by the distances
of the actual data objects at the leaf nodes that we encounter
in the search.

We have also tried some other alternative ways of setting
an initial σ that is not infinite, but our experimental results
show that setting the infinite initial value can achieve better
performance. Note that instead of a depth-first traversal, we

4 In Fig. 6, node↑.v is the vantage point at the node, node↑.mu is the
median value at the node, node↑.left is the pointer to the left child node,
and node↑.right is the pointer to the right child node.

could adopt the method that is proposed in [11] where the
best traversed node and its subtree is searched in each itera-
tion. This could lead to better pruning power. However, the
current method is simpler and our experimental results show
that it is already superior to theR∗-tree and the M-tree.

4.1 Performance evaluation

To study the performance of then-nearest neighbor search
algorithm for the vp-tree, we implemented the vp-tree and
the search algorithms in C under UNIX on an UltraSPARC.
In the experiment, we compared the vp-tree with theM -
tree and theR∗-tree. We implemented the algorithms for the
R∗-tree by Berchtold, Keim, and Kriegel [4], which is able
to supportn-nearest neighbor queries, and enhanced it with
the method proposed in [9]. We also implemented then-
nearest neighbor search algorithms for theM -tree. Next, we
describe the setup, as well as our results and observations.

4.1.1 Experimental setup

We used two synthetic datasets and one real dataset. The
synthetic datasets are similar to the ones used in [37] and
their details areas follows:

A.W. Fu et al.: Dynamic vp-tree indexing forn-nearest neighbor search given pair-wise distances 159

– Clustered 10-,20-,30-,40-,50-d: sets of 10,000, 20,000,
..., 100,000 vectors, each consisting of 100 clusters of
equal size. Each cluster was centered on a point cho-
sen from a uniform distribution in the interval [0,1] on
each dimension and each point in the cluster was uni-
formly distributed in the interval [−0.1,+0.1] relative to
the cluster center in each dimension.

– Uniform 5-,10-,15-,20-,25-d: sets of 10,000, 20,000, ...,
100,000 uniformly distributed vectors in the interval
[0,1] on each dimension.

The real dataset was provided by Berchtold, Keim, and
Kriegel [4] and contains about 70 Mb of Fourier points
of variable dimensionality, representing shapes of polygons.
We randomly extracted groups (in sizes of 10,000, 20,000,
..., 100,000) of points in dimensions of 2, 4, 6, 8, 10, 12,
14, and 16 out of the entire dataset.

Here we provide the details of our disk-based implemen-
tation of the vp-tree. In every internal node, we store one
vantage point,m−1 boundary distance values, andm child
pointers, wherem denotes the branching factor. In a leaf
node we keep the actual data objects (feature vectors).

We have carried out some experiments and found that the
branching factor affects the performance in such a way that
it should neither be too high nor too low. We also note that
for a low branching factor (say below 10), the size of a vp-
tree node is very small: we need only to keep the vantage
point, which is either an object id or a feature vector, a
median distance value, and the pointers to the child nodes.
This is much smaller than that for a node of anR∗-tree for
the same dimensionality of data points. Therefore we can
fit a number of nodes in a vp-tree in a page (a disk block).
We suggest doing the following: starting from the root, and
scanning down the tree, group the nextl levels of the subtree
under it into a page. This is repeated recursively with the
lowest level nodes stored in the page. Suppose we have a
branching factor of 5, andl is 1, then we have altogether
five vantage points to be kept in the page, and the number
of child node pointers at the bottom of this subtree in the
page is 52 = 25. Essentially, we can treat the content of the
page as a supernode which has a branching factor of 25 (see
Fig. 7). The dotted box in Fig. 7 indicates the contents in
a page. Since a search down the vp-tree typically traverses
from a parent node to one or more of its child nodes, the
above clustering of the vp-tree nodes can help us achieve a
page access rate of only a fraction of that of the node access
rate. Some preliminary experiments show that this set up can
achieve good performance in terms of the amount of page
accesses inn-nearest neighbor search, compared to some
other strategies.

Given a value ofl, the maximum branching factor of
internal nodes and the maximum number of data objects
contained in a leaf are determined by the page size. Tables
1 and 2 list the parameters that we use in the calculations. A
4-kB page size is used, and we assume vantage points and
data objects are represented as feature vectors in dimensions
of D, each dimension occupying a 4-byte float. We have
done some experiments to estimate the optimal number of
branching for internal nodes, and found that the best results
occurs for the greatest branching factor possible with the
restriction that thel levels of a subtree (such as that shown

Fig. 7. The clustering of vp-tree nodes in a page

Table 1. Parameters for calculating the branching factor of internal nodes

Parameters Descriptions
page size of a page (4 kB)
flag indicator of an internal or a leaf node (1 byte)
no of entries number of internal nodes stored in a page (4 bytes)
header flag + no of entries (5 bytes)
vantage point represented as a feature vector (4×D bytes)
sigma factor used in thesigma factor algorithm (4 bytes)
mu boundary distance value for partitioning (4 bytes)
pointer pointer to child node (4 bytes)
inode size of one internal node,

= vantage point + sigma factor + (m− 1)×mu
+ m× pointer

m, branching factor of internal nodes

in Fig. 7) can be held within one disk page. We have chosen
to store only one level of a subtree under a node in a page,
meaning that the value ofl in the above is 1. The branching
factor of internal nodes is calculated by finding the value of
m that satisfies

m =

⌊
page− header

inode

⌋

Note that each child pointer that is stored in an internal
vp-tree node is a page pointer sincel is 1. If l is greater
than 1, some pointers may be offsets within the same page.
The leaf nodes are different in structure from the internal
nodes of the vp-tree, since they keep only the data vectors.
A number of data vectors are stored in each leaf node. We
maximize the number of data vectors that can be stored when
we use one page for each leaf node of the vp-tree. Therefore
each leaf node of the vp-tree corresponds to a disk page.

For theR∗ tree, one internal node corresponds to one
disk page and we maximize the branching factor according
to the page size. For theM -tree, the internal node keeps a
data object as the center of the spherical space corresponding
to the node, and also a radius of the space. The nodes are
also arranged as in the vp-tree, so that all child nodes of a

Table 2. Parameters for calculating the maximum number of data objects
stored in a leaf node

Parameters Descriptions
page size of a page (4 kB)
flag indicator of an internal or a leaf node (1 byte)
no of entries number of data objects stored in a page (4 bytes)
header flag + no of entries (5 bytes)
data object represented as a feature vector (4×D bytes)

max. number of data objects =
 page−header
data object

�

160 A.W. Fu et al.: Dynamic vp-tree indexing forn-nearest neighbor search given pair-wise distances

0

500

1000

1500

2000

2500

3000

3500

10 20 30 40 50 60 70 80 90 100

Pa
ge

 Ac
ces

s (
no

n-l
ea

f a
nd

 lea
f)

Dataset Size (K)

Vp-tree

0

500

1000

1500

2000

2500

3000

3500

10 20 30 40 50 60 70 80 90 100

Pa
ge

 Ac
ces

s (
no

n-l
ea

f a
nd

 lea
f)

Dataset Size (K)

Vp-tree
R*-tree

0

500

1000

1500

2000

2500

3000

3500

10 20 30 40 50 60 70 80 90 100

Pa
ge

 Ac
ces

s (
no

n-l
ea

f a
nd

 lea
f)

Dataset Size (K)

Vp-tree
R*-tree
M-tree

500

1000

1500

2000

2500

3000

4 6 8 10 12 14 16 18 20

Pa
ge

 Ac
ces

s (
no

n-l
ea

f a
nd

 lea
f)

Number of Nearest Neighbors

Vp-tree

500

1000

1500

2000

2500

3000

4 6 8 10 12 14 16 18 20

Pa
ge

 Ac
ces

s (
no

n-l
ea

f a
nd

 lea
f)

Number of Nearest Neighbors

Vp-tree
R*-tree

500

1000

1500

2000

2500

3000

4 6 8 10 12 14 16 18 20

Pa
ge

 Ac
ces

s (
no

n-l
ea

f a
nd

 lea
f)

Number of Nearest Neighbors

Vp-tree
R*-tree
M-tree

(a) #nearest neighbors=8 (b) dataset size=30,000

Fig. 8a,b. Comparison with theM -tree andR∗-tree on synthetic clustered data, dimension=30

node are stored in a disk page, and the branching factor is
maximized according to this arrangement.

We measured the total number of pages accessed per
search, assuming the whole tree (except the root) is stored
on the disk. All results were averaged over 100 query points
that were randomly chosen from the test dataset.

4.1.2 Comparison with theR∗-tree and theM -tree

The partitioning strategies adopted in vp-trees andR∗-trees
are different. The vp-tree partitions the search space based
on the distances between objects (distance-based indexing),
whereas theR∗-tree uses the absolute coordinate values
of a multidimensional vector space (feature-based index-
ing). However, we believe a comparison between the two
is significant because distance-based index methods can be
applied to both the distance-based case and the vector-
space case. WhileR∗-tree is popular, it cannot be used for
distance-based indexing. Therefore, if we can show that the
vp-tree has comparatively good performance in searching,
we can argue that vp-tree is a good choice for content-based
retrieval indexing.

We also compare vp-tree withM -tree. M -tree is a
distance-based indexing. It is shown to have goodn-nearest
neighbor search performance and is capable of handling dy-
namic updates. The node structure ofM -tree has similarity
with R∗-tree in that the hyperspace occupied by different
nodes in the same level of the tree can overlap. This con-
trasts with vp-tree in which the hyperspace of sibling nodes
are disjoint.

All results were obtained by averaging the results of 100
runs of n-nearest neighbor queries. We first tested on the
synthetic clustered datasets. Figures 8 and 9 show the per-
formance of the vp-tree, theM -tree, and theR∗-tree (in
terms of page accesses) as a function of the dataset size,
the number of nearest neighbors, and the dimensionality, re-
spectively. As seen from the figures, the vp-tree consistently
outperforms theM -tree and theR∗-tree.

Figure 8a plots the results of experiments in which we
fixed the dimensionality at 30 and made 8-nearest neigh-
bor queries on varying sizes of datasets. The gap between

0

500

1000

1500

2000

2500

3000

3500

4000

10 15 20 25 30 35 40 45 50

Pa
ge

 Ac
ces

s (
no

n-l
ea

f a
nd

 lea
f)

Number of Dimensions

Vp-tree

0

500

1000

1500

2000

2500

3000

3500

4000

10 15 20 25 30 35 40 45 50

Pa
ge

 Ac
ces

s (
no

n-l
ea

f a
nd

 lea
f)

Number of Dimensions

Vp-tree
R*-tree

0

500

1000

1500

2000

2500

3000

3500

4000

10 15 20 25 30 35 40 45 50

Pa
ge

 Ac
ces

s (
no

n-l
ea

f a
nd

 lea
f)

Number of Dimensions

Vp-tree
R*-tree
M-tree

Fig. 9. Comparison withM -tree andR∗-tree on synthetic clustered data,
dataset size=30,000, #nearest neighbors=8

vp-tree and the other two trees increases with the size of
the datasets, indicating that the vp-tree method scales up
better. For different numbers of nearest neighbors, we see
that the vp-tree makes around 80% fewer page accesses than
theM -tree and theR∗-tree. Notice that the increase in the
number of nearest neighbors leads to only a small increase
in the search effort. On the other hand, the dimensionality
has much greater impact on the performance. Again the vp-
tree has significantly better performance than theM -tree and
theR∗-tree. The results also provide further support for the
findings in previous work thatR∗-trees stop being efficient
for dimensionalities greater than 20 [14, 20, 6].

The reasons why the vp-tree achieves better performance
than theR∗-tree are now discussed: (a) The partitioning
methods of the vp-tree and theR∗-tree belong to two en-
tirely different approaches. Theirn-nearest neighbor search
algorithms should accordingly have certain specific proper-
ties that make them perform differently. In particular, the
R∗-tree has the undesirable property that the tree nodes in
the same level of the tree can overlap with each other, and a
data point that lies in the overlapping area of two tree nodes
can be grouped in either one node. This property triggers
many backtracking searches especially for high-dimensional

A.W. Fu et al.: Dynamic vp-tree indexing forn-nearest neighbor search given pair-wise distances 161

2000

4000

6000

8000

10000

12000

4 6 8 10 12 14 16 18 20

Pa
ge

 Ac
ces

s (
no

n-l
ea

f a
nd

 lea
f)

Number of Nearest Neighbors

Vp-tree

2000

4000

6000

8000

10000

12000

4 6 8 10 12 14 16 18 20

Pa
ge

 Ac
ces

s (
no

n-l
ea

f a
nd

 lea
f)

Number of Nearest Neighbors

Vp-tree
R*-tree

2000

4000

6000

8000

10000

12000

4 6 8 10 12 14 16 18 20

Pa
ge

 Ac
ces

s (
no

n-l
ea

f a
nd

 lea
f)

Number of Nearest Neighbors

Vp-tree
R*-tree
M-tree

0

2000

4000

6000

8000

10000

12000

10 20 30 40 50 60 70 80 90 100

Pa
ge

 Ac
ces

s (
no

n-l
ea

f a
nd

 lea
f)

Dataset Size (K)

Vp-tree

0

2000

4000

6000

8000

10000

12000

10 20 30 40 50 60 70 80 90 100

Pa
ge

 Ac
ces

s (
no

n-l
ea

f a
nd

 lea
f)

Dataset Size (K)

Vp-tree
R*-tree

0

2000

4000

6000

8000

10000

12000

10 20 30 40 50 60 70 80 90 100

Pa
ge

 Ac
ces

s (
no

n-l
ea

f a
nd

 lea
f)

Dataset Size (K)

Vp-tree
R*-tree
M-tree

(a) #nearest neighbors=8 (b) dataset size = 30,000

Fig. 10a,b. Comparison withM -tree andR∗-tree on synthetic uniform data, dimension=20

0

2000

4000

6000

8000

10000

12000

14000

5 10 15 20 25

Pa
ge

 Ac
ces

s (
no

n-l
ea

f a
nd

 lea
f)

Number of Dimensions

Vp-tree

0

2000

4000

6000

8000

10000

12000

14000

5 10 15 20 25

Pa
ge

 Ac
ces

s (
no

n-l
ea

f a
nd

 lea
f)

Number of Dimensions

Vp-tree
R*-tree

0

2000

4000

6000

8000

10000

12000

14000

5 10 15 20 25

Pa
ge

 Ac
ces

s (
no

n-l
ea

f a
nd

 lea
f)

Number of Dimensions

Vp-tree
R*-tree
M-tree

0

1000

2000

3000

4000

5000

6000

7000

8000

10 20 30 40 50 60 70 80 90 100

Pa
ge

 Ac
ces

s (
no

n-l
ea

f a
nd

 lea
f)

Dataset Size (K)

Vp-tree

0

1000

2000

3000

4000

5000

6000

7000

8000

10 20 30 40 50 60 70 80 90 100

Pa
ge

 Ac
ces

s (
no

n-l
ea

f a
nd

 lea
f)

Dataset Size (K)

Vp-tree
R*-tree

0

1000

2000

3000

4000

5000

6000

7000

8000

10 20 30 40 50 60 70 80 90 100

Pa
ge

 Ac
ces

s (
no

n-l
ea

f a
nd

 lea
f)

Dataset Size (K)

Vp-tree
R*-tree
M-tree

(a) synthetic uniform data, dataset size=30,000 (b) real data, number of dimensions = 16

Fig. 11a,b. Comparison withM -tree andR∗-tree, dataset size=30,000, #nearest neighbors=8

data where the overlapping problem becomes more serious.
The vp-tree does not introduce overlapping area among tree
nodes in the same level. This can explain why vp-tree is
better in performance and the gap in performance increases
with the number of dimensions; (b) Since in anR∗-tree two
limits for a closed bounded interval are stored on each di-
mension, the size of an internal node of theR∗-tree is larger
than that of the vp-tree. This leads to a lower fanout and a
larger tree size, resulting in more cost on querying; (c) The
disk blocks used by the vp-tree are highly utilized. As the
R∗-tree implementation focuses on other issues, such as the
reduction of overlap between bounding boxes, the utilization
rate is typically not as high as the vp-tree’s.

For theM -tree, the disadvantages of having large inter-
nal tree nodes is avoided since like the vp-tree, it stores only
a center and a distance value to indicate the boundary of a
node. However, similar to theR∗ tree, it has a problem of
overlapping node spaces. This can explain why vp-tree is
also much superior toM -tree in searching performance.

Next, our test dataset was the synthetic uniform one.
Recall that the dimensions of this set of data are varied
from 5 to 25, much lower than those of the clustered dataset.
Figures 10 and 11 show the results. Compared to the results
for the clustered dataset, the curves in these figures display

considerable similarity in terms of the general trend; that is,
the vp-tree outperforms the other two tree structures, and
all three structures do not respond strongly to the increase
of the number of nearest neighbors. The better performance
achieved by the vp-tree can also be explained by the reasons
we have mentioned before. However, we can see that the
performance is not as good as that for the clustered datasets.
This is due to the fact that the data objects in these uniform
datasets are distant from each other, making it harder to filter
out non-qualifying objects for then-nearest neighbor search.

The curves for uniform data exhibit a slightly different
trend in that theR∗-tree can sometimes perform better than
theM -tree. We believe that for clustered data, the shape of
clusters are more spherical rather than rectangular, and hence
the spherical nodes of theM -tree are superior in handling
these clusters. However, this advantage may not hold out for
uniformly distributed data.

For the real data, we first studied the dependency on
the dataset size. We used datasets of sizes (10,000, 20,000,
..., 100,000) and fixed the maximum dimensionality at 16.
Figure 11b presents the number of page accesses versus the
dataset size. The vp-tree performs much better than theR∗-
tree and theM -tree. The gap seems to open up as the dataset
size increases. Figure 12a gives the performance results for

162 A.W. Fu et al.: Dynamic vp-tree indexing forn-nearest neighbor search given pair-wise distances

1000

2000

3000

4000

5000

6000

7000

4 6 8 10 12 14 16 18 20

Pa
ge

 Ac
ces

s (
no

n-l
ea

f a
nd

 lea
f)

Number of Nearest Neighbors

Vp-tree

1000

2000

3000

4000

5000

6000

7000

4 6 8 10 12 14 16 18 20

Pa
ge

 Ac
ces

s (
no

n-l
ea

f a
nd

 lea
f)

Number of Nearest Neighbors

Vp-tree
R*-tree

1000

2000

3000

4000

5000

6000

7000

4 6 8 10 12 14 16 18 20

Pa
ge

 Ac
ces

s (
no

n-l
ea

f a
nd

 lea
f)

Number of Nearest Neighbors

Vp-tree
R*-tree
M-tree

0

1000

2000

3000

4000

5000

6000

7000

2 4 6 8 10 12 14 16

Pa
ge

 Ac
ces

s (
no

n-l
ea

f a
nd

 lea
f)

Number of Dimensions

Vp-tree

0

1000

2000

3000

4000

5000

6000

7000

2 4 6 8 10 12 14 16

Pa
ge

 Ac
ces

s (
no

n-l
ea

f a
nd

 lea
f)

Number of Dimensions

Vp-tree
R*-tree

0

1000

2000

3000

4000

5000

6000

7000

2 4 6 8 10 12 14 16

Pa
ge

 Ac
ces

s (
no

n-l
ea

f a
nd

 lea
f)

Number of Dimensions

Vp-tree
R*-tree
M-tree

(a) dimension=16 (b) #nearest neighbor=8

Fig. 12a,b. Comparison withM -tree andR∗-tree on real data, dataset size=30,000

varying numbers of nearest neighbors. The test dataset con-
tained 30,000 16-d objects. The vp-tree outperforms both
theM -tree and theR∗-tree. The same dataset size (30,000
objects) was chosen to experiment on the impact of the di-
mensionality of data. The result is shown in Fig. 12b. Again
the vp-tree performs much better and especially for higher
dimensions.

By observing the actual number of page accesses being
reported in Figs. 11 and 12, it is clearly seen that the query
cost required for the real data is larger than that for the
clustered data, but smaller than that for the uniform data.
As mentioned before, objects in uniform datasets are distant
from each other, which explains why the cost involved in
searching through the uniform data is the most. We believe
that the original set of real data provided by Berchtold, Keim,
and Kriegel [4], like most of the real datasets, is correlated
or clustered. However, because we randomly selected only a
small part from the whole set (containing about 1.3 million
objects), the clustering effect could not be fully maintained.
Therefore, the search effort for the real data corresponds to
somewhere between what the clustered and uniform datasets
require.

Distance computation

One may see that the vp-tree andM -tree search requires
distance computation which is expensive. In fact, each node
access is accompanied by a distance computation (unless
some strategy as discussed in Sect. 6 is adopted). How-
ever, the nearest neighbor search algorithm forR∗-tree also
requires the computation of distance (MINDIST, which is
roughly the shortest distance between a query point and a
minimum bounding box of a tree node) in order to achieve
effective heuristic pruning. This computation is also used
for each node in the tree. For theR∗-tree, we have used a
page for storing each node. For the vp-tree and theM -tree,
we used the physical clustering as described in Sect. 4.1.1,
which determines the branching factor. We have used an
improved version of theM -tree implementation in that the
data-object of a node representing the center of the spherical
space is stored as an object-id rather than the entire feature
vector. In this way, the branching factor of theM -tree is
independent of the number of dimensions and is always 29

Table 3. Maximum branching factor for R-tree and vp-tree

Dimensions 10 20 30 40 50
R-tree 50 25 16 12 10
vp-tree 20 18 16 14 13

in our experiments. This should enhance the performance of
the originalM -tree method.

We compare the branching factors determined by these
arrangements for theR∗-tree, theM -tree and the vp-tree in
Table 3. The branching factor of theR∗-tree is the maximum
number of minimum bounding rectangles stored in a node
or a page, which also determines the number of distance
computations needed for each page access. For the vp-tree
or M -tree, a node may store a number of vantage points or
routing objects up to the branching factor, however, only a
fraction of these need to be considered since only the nodes
that are within the search range need to be traversed. In our
experiments, since the number of page access in the vp-tree
search is much smaller compared toR∗-tree and theM -tree,
the number of distance computation would also be smaller.

5 Update operations on VP-trees

Because of the top-down partitioning strategy, updates of
the vp-tree are complex to manage and a global reorgani-
zation of the structure may result. Unlike the B-tree and its
variants, we cannot conveniently split a node and simply
propagate the splitting up the vp-tree. This is because the
partitioning at a parent node affects the partitioning at the
child nodes, so the effect of a split needs to be propagated
downwards. Similar problems also apply to the merging of
nodes on deletion. As such, handling update operations that
can maintain a balanced tree without substantial restructur-
ing has been left as an open problem.

Here we propose algorithms for doing insertions and
deletions on the vp-tree. The maximum branching factor of
non-leaf nodes and the maximum number of objects con-
tained in a leaf are determined by the page size as described
in Sect. 4.1.1. For a non-leaf and non-root node, the number
of child nodes varies between a minimum value and a max-
imum valuem, as in a B-tree. The minimum value should

A.W. Fu et al.: Dynamic vp-tree indexing forn-nearest neighbor search given pair-wise distances 163

. . .

ba c d e f hg

to upper non-leaf nodes

leaf nodes

node L

node P

µ1 µ2

A new object e’ needs to be inserted into L
and sibling leaf nodes are not full.

(a)

. . .

ba c d e hgfe’

to upper non-leaf nodes

leaf nodes

node P

node L

µ1 µ2* *

inserted and boundary distances have been updated
All objects under P have been redistributed, e’ gets(b)

Fig. 13a,b. Redistribution among leaf nodes

. . .

hgfedcba

to upper non-leaf nodes

leaf nodes

node P

node L

µ1

e’ needs to be inserted into L and all siblings are full,
but the parent node P has room for one more child.

(a)

. . .

ba hg

to upper non-leaf nodes

leaf nodes

node P

c d e fe’

µ1 µ2*

node L node L1 2

L has been split into nodes L1 and L2,
and e’ gets inserted.

(b)

Fig. 14a,b. Splitting of leaf node

a b c d e f g h i j k l n o p q r s t um

node B node C

node L

. . . to upper non-leaf nodes

node A

µ1

µ1 µ1µ2 µ2

e’ needs to be inserted into L, the entire B subtree is full,
since the sibling subtree C has room, we choose to
redistribute objects among B and C.

(a)

a b c d e h n o p q r s t um

node B node C

node L

. . . to upper non-leaf nodes

node A

µ1 µ1µ2 µ2

gif j k l

*µ1

e’

Assume objects g and i are the farthest with respect to A’s
vantage point. After redistribution they have been moved
to the C subtree and e’ gets inserted.

(b)

Fig. 15a,b. Redistribution among subtrees

x

x

x

Points inside this ring

Therefore, their distances

New boundary between
nodes B and C

from VC must be computed

VB

VC

have to be moved to C

Old boundary between B and C

B

C

Fig. 16. Redistribution among non-leaf nodes

not be greater than
m/2�, andm should be at least 2. The
root can either be a leaf node or have at least 2 and at most
m child nodes.

5.1 Insert

To insert a new object, at each level of the vp-tree, we pick
a node, the distanced between the associated vantage point
and the new object is first computed. We then traverse the
tree, choosing the subtreeSi whose distance range coversd,
i.e., µi−1 < d ≤ µi, until a leaf nodeL is found. If there is
room inL, we insert the new object and the insertion is done.
If L is full, we employ the following strategy. Examples are
given in Figs. 13–18:

1. If any sibling leaf node ofL is not full, redistribute all
objects underP among the leaf nodes (Fig. 13).
Let F be the number of leaf nodes under P . Retrieve
all objects stored in the F leaf nodes, and let S be
the set of objects retrieved plus the new object being
inserted. Order the objects in S with respect to their
distances from P ’s vantage point v. Divide S into
F groups of equal cardinality, and let SSi be the F
subsets, for i=1,2,...,F. Finally, update the boundary
distance values and pointers stored in P as below:

164 A.W. Fu et al.: Dynamic vp-tree indexing forn-nearest neighbor search given pair-wise distances

begin
average :=
(Num(k) + Num(k + 1)) ÷ 2�;
if Num(k) > Num(k+1) then

Let S be the set of objects stored in the k-th subtree plus the new object;
Order the objects in S with respect to their distances from A’s vantage point v;
Let w be the number of data objects that will be moved from k-th subtree to (k+1)-th subtree;
w := Num(k) − average;

Divide S into 2 subsets, SS1 and SS2 in order, where
SS1 = {S1,S2, ...,SNum(k)−w} and
SS2 = {SNum(k)−w+1,SNum(k)−w+2, ...,SNum(k)};

for all si ∈ SS2, delete si from the k-th subtree;
A ↑.muk := (max{d(v, sj) | ∀sj ∈ SS1} + min{d(v, sj) | ∀sj ∈ SS2}) ÷ 2;
for all si ∈ SS2, reinsert si to the (k+1)-st subtree;

else
Let S be the set of objects stored in the (k+1)-st subtree plus the new object;
Order the objects in S with respect to their distances from A’s vantage point v;
Let w be the number of data objects that will be moved from (k+1)-st subtree to k-th subtree;
w := Num(k+1) − average;

Divide S into 2 subsets, SS1 and SS2 in order, where
SS1 = {S1,S2, ...,Sw} and SS2 = {Sw+1,Sw+2, ...,SNum(k+1)};

for all si ∈ SS1, delete si from the (k+1)-st subtree;
A ↑.muk := (max{d(v, sj) | ∀sj ∈ SS1} + min{d(v, sj) | ∀sj ∈ SS2}) ÷ 2;
for all si ∈ SS1, reinsert si to the k-th subtree;

endif
end

Fig. 17. Algorithm for redistribut-
ing objects between two adjacent
subtrees

a b c d e f g h i j k l n om

node B node C

node L

. . . to upper non-leaf nodes

node A

µ1

µ1 µ1µ2 µ2

p q s t u v xr w

e’ needs to be inserted into L, the B subtree is full and
so are the siblings, but ancestor A still has room for
one more child. We do node splitting at B.

(a)

a b

. . . to upper non-leaf nodes

node A

µ2

µ2

g h i j k le fc d e’

node Bnode B the same node C as before

µ1

µ1 µ1 µ2**

* *

**1 2

B has been split into B1 and B2, and e’ gets inserted.
Note that C remains unchanged.

(b)

Fig. 18a,b. Splitting of non-leaf node

for i = 1 to F−1
P ↑.mui := (max{d(v, sj) | ∀sj ∈ SSi}

+min{d(v, sj) | ∀sj ∈ SSi+1}) ÷ 2;
for i = 1 to F

P ↑.childi := the leaf node containing SSi.

2. Else, ifL has a parent nodeP andP has room for one
more child, split the leaf nodeL (Fig. 14).
Assume L is the k-th child of P . Retrieve all objects
stored in L, and let S be the set of objects retrieved
plus the new object. Order the objects in S with re-
spect to their distances from P ’s vantage point v.
Divide S into 2 groups of equal cardinality, and let
SS1 and SS2 be the two subsets in order. Again,
F denotes the number of leaf nodes rooted at P .
Then the following pseudocode describes how we

shift the boundary distances and pointers of P so
as to make room for a new leaf node split from L.

for i = k to F−1
P ↑.mui+1 := P ↑.mui;

P ↑.muk := (max{d(v, sj) | ∀sj ∈ SS1}
+min{d(v, sj) | ∀sj ∈ SS2}) ÷ 2;

for i = k+1 to F
P ↑.childi+1 := P ↑.childi;

P ↑.childk := the leaf node containing SS1;
P ↑.childk+1 := the leaf node containing SS2.

3. Else, suppose we can find a nearest ancestorA of L that
is not full. Let B be the immediate child node ofA,
which is also an ancestor ofL:
a) If any sibling subtree ofB is not full, locate the

nearest not-full siblingC and redistribute the objects

A.W. Fu et al.: Dynamic vp-tree indexing forn-nearest neighbor search given pair-wise distances 165

VB VB
A

BC

A

BC

Node B has to be splitted

VP

 Splitting boundary (using VP as the
vantage point).

VPx

x

x

x

A

BC

VP
x

x

B’

 vb’

vb

Result of the splitting

new node B’ created

x

Fig. 19. Splitting a non-leaf node

among the subtrees betweenB and C inclusively
(Fig. 15).
For simplicity, we focus on a case where two adja-
cent subtrees take part in the redistribution, but the
discussion can easily be generalized to cases where
any number of subtrees are involved. We shall redis-
tribute the objects kept in the k-th and the (k+1)-st
subtrees.B can be either the k-th or the (k+1)-st
subtree. Let Num(k) and Num(k+1) be the number
of objects stored in the k-th and the (k+1)-st subtrees,
respectively. We first calculate the average number of
objects stored in the two subtrees. If it is found that
the k-th subtree holds more objects than the average,
those (in the k-th subtree) farthest fromA’s vantage
point will be moved to the (k+1)-st subtree, so that
both subtrees will eventually hold the same number
of objects. The boundary distances and pointers in-
volved in the subtrees will be updated accordingly.
On the other hand, if we find that the (k+1)-st subtree
holds more objects, its objects that are the closest to
A’s vantage point will be moved to the k-th subtree.
Figure 17 gives the pseudocode description of the re-
distribution of objects between two adjacent subtrees.
An example is also shown in Fig. 16.

b) Else, sinceA is not full, it has room for one more
child, we split the non-leaf nodeB (Fig. 18 and 19).
Assume B is the k-th child of A. Retrieve all ob-
jects stored in the subtree rooted at B, and let
S be the set of objects retrieved plus the new
object. Order the objects in S with respect to
their distances from A’s vantage point v. Divide
S into two groups of equal cardinality, and let
SS1 and SS2 be the two subsets in order. Let F
be the number of subtrees rooted at A. To make
room for the new subtree that is split from B, we
shift the boundary distances and pointers of A in
the following way. Note that make vp tree is the
procedure for vp-tree construction, which will be
called to construct two subtrees on the sets SS1
and SS2 respectively:

for i = k to F−1
A ↑.mui+1 := A ↑.mui;

A ↑.muk := (max{d(v, sj) | ∀sj ∈ SS1}
+min{d(v, sj) | ∀sj ∈ SS2}) ÷ 2;

for i = k+1 to F

A ↑.childi+1 := A ↑.childi;
A ↑.childk := make vp tree(SS1);
A ↑.childk+1 := make vp tree(SS2).

4. Else, eitherL is the root node or we cannot find any
ancestor node ofL that is not full. Then we split the
root node into two new nodess1 ands2, and insert the
new data point according to the strategy as discussed
above for splitting either a leaf node or a non-leaf node.
A new root node is created withs1 and s2 as the child
nodes.

The insertion algorithm described above is based on a
redistribute-first strategy, that is, we prefer redistribution to
node splitting whenever both choices are allowed. We can
certainly adopt a split-first strategy in which case node split-
ting has a higher order of preference. We shall compare the
two strategies in our performance study.

5.2 Delete

Traverse the tree in the same way as described in the inser-
tion case until a leaf nodeL is found. Remove the object
from the leaf node and see if the node underflows. If not,
the task is done.

Let level(E) denote the level of nodeE. If E is a leaf
node, level(E)=0. Let MINleaf be the minimum number of
objects that should be stored in a leaf node, and MINfan
be the minimum number of subtrees that a non-leaf node
should have. Then MINdata(E) denotes the minimum number
of objects that should be stored in the subtree rooted at node
E, and is defined as:

MINdata(E) = MINleaf × (MINfan)
level(E)

Here we define that a leaf node underflows if the number of
objects it stores is less than MINleaf, and that a subtree at
nodeE underflows if the number of objects stored in that
subtree is less than MINdata(E).

If the leaf nodeL underflows we choose the following
scheme:

1. If L has a parent nodeP andP does not underflow, let
F be the number of leaf nodes underP and we do either
of the following:
a) If the total spare room ofL’s siblings can hold all

of the objects inL, redistribute the objects underP

166 A.W. Fu et al.: Dynamic vp-tree indexing forn-nearest neighbor search given pair-wise distances

x
x

VM

B

C

Nodes B and C will be merged

The vantage point
can be a new one, or can be
VC or VB

x

x

x

VB

VC

Fig. 20. Merging 2 nodes

amongF − 1 nodes, i.e.,L is to be merged with its
siblings.

b) Else, when the total spare room is not enough to hold
all of the objects inL, redistribute the objects under
P amongF nodes.

2. Else, locate a nearest ancestorA of L that does not un-
derflow. LetB be the immediate child node ofA, andB
is also the ancestor ofL. AssumeB is the k-th subtree
underA:
a) If either of the following three conditions is satisfied,

we perform a merge. Note that the merge involves
only adjacent subtrees. Figure 21 describes such a
merge. We show a diagram of merging two nodes in
Fig. 20, in which we show that the vantage pointVM
can be new one or an old one; in our implementation,
we choose to use an old one.
Case 1: if the (k+1)-st subtree has enough room to
hold all the objects inB, we move the objects inB
to the (k+1)-th subtree and deleteB.
Case 2: if the (k-1)-th subtree has enough room to
hold all the objects inB, we move the objects inB
to the (k-1)-th subtree and deleteB.
Case 3: if the total spare room of the (k+1)-st and the
(k-1)-th subtrees can hold all the objects inB, we first
calculate the number of objects that should be moved
to the (k-1)-th subtree (denoted by the variablemid
in Fig. 21). We then movemid objects fromB to the
(k-1)-th subtree and the rest to the (k+1)-st subtree,
and deleteB.

b) Else, when none of the above three conditions is sat-
isfied, redistribute all the objects underA among its
child subtrees. We apply the same method as in step
3(a) for insertion.

3. Else, eitherL is the root node or all ancestors ofL un-
derflow. In this case, if the root node has at least two
child nodes, we merge two child nodes of the root with
the deletion of the given data point. The merging strat-
egy in the above can be used. The original root node
is deleted and the merged node becomes the new root
node. If the root node is a leaf node, it means thatL is
the root node and the deletion is carried out in the root
node, we simply delete the data object fromL.

The check on adjacency that the three cases outlined
in step 2(a) have emphasized is to make sure that the re-
insertion involved in the merge of subtrees will not cause
redistributions. Similar to the insert algorithm, there can be
redistribute-first and merge-first strategies of doing deletes.

Table 4. Access cost of splits and redistributions at non-leaf nodes with the
redistribute-first strategy− synthetic clustered sample

Intervals of Node splitting Redistribution
insertions occurrence avg. cost occurrence avg. cost

(pages) (pages)
1 - 1000 13 67.54 6175 70.01
1001 - 2000 1 34.00 543 85.48
2001 - 3000 0 0 1100 90.34
3001 - 4000 0 0 1257 90.13
4001 - 5000 1 34.00 1357 89.53
5001 - 6000 0 38.00 1325 93.66
6001 - 7000 0 0 2753 84.33
7001 - 8000 0 0 5960 98.60
8001 - 9000 1 7012.00 0 0
9001 - 10,000 0 0 2 25.00

Table 5. Access cost of splits and redistributions at non-leaf nodes with the
split-first strategy - synthetic clustered sample

Intervals of Node splitting Redistribution
insertions occurrence avg. cost occurrence avg. cost

(pages) (pages)
1 - 1000 15 63.07 8820 67.36
1001 - 2000 0 0 302 71.07
2001 - 3000 0 0 315 71.37
3001 - 4000 0 0 415 73.05
4001 - 5000 3 38.00 900 118.84
5001 - 6000 5 38.00 3707 130.11
6001 - 7000 0 0 4804 127.95
7001 - 8000 0 0 4914 126.45
8001 - 9000 1 7012.00 0 0
9001 - 10,000 0 0 0 0

The above procedure is the merge-first strategy where redis-
tributions will take place only when adjacent nodes do not
have enough room to allow for a merge. On the other hand,
in the redistribute-first strategy merges will occur only when
all sibling nodes of the underflowing one are at the minimum
size (that is, MINleaf for leaf nodes or MINdata for non-leaf
nodes).

5.3 Performance evaluation

We conducted a number of experiments to demonstrate the
performance of our insertion and deletion algorithms for the
vp-tree. The algorithms were implemented in C under UNIX
on an UltraSPARC.

We used three samples of data (clustered 30-d, uniform
20-d and real 16-d), each containing 100,000 objects. A sep-
arate vp-tree was constructed to organize the objects of each
of the three samples5. The branching factor of the tree is
determined by the physical clustering strategy described in
Sect. 4.1.1.

Then we inserted 10,000 new objects into each tree with
the redistribute-first strategy as well as the split-first strat-
egy. For every 1000 insertions, we measured the average
page accesses required for all the insertions so far. Figure
22 plots the results for the clustered sample. We also counted
the times that node splitting and redistribution had occurred
at each interval of 1000 insertions. Tables 4 and 5 show
the count and the associated cost in page accesses for the
redistribute-first and split-first strategies, respectively. Note

5 Details of the data samples have been given in Sect. 4.1.1.

A.W. Fu et al.: Dynamic vp-tree indexing forn-nearest neighbor search given pair-wise distances 167

begin
Retrieve all objects stored in the subtree B, and let S be the set of objects retrieved;
Let F be the number of subtrees rooted at A;

if Case 1 then
for i = k to F−2, A ↑.mui := A ↑.mui+1;
for all si ∈ S, insert si to the (k+1)-st subtree;

elseif Case 2 then
for i = k−1 to F−2, A ↑.mui := A ↑.mui+1;
for all si ∈ S, insert si to the (k-1)-th subtree;

elseif Case 3 then
Let Num(i) denote the number of objects stored in the i-th subtree;
mid := {Num(k-1) + Num(k) + Num(k+1)} ÷ 2 − Num(k-1);
Order the objects in S with respect to their distances from A’s vantage point v;

Divide S into 2 subsets, SS1 and SS2 in order, where
SS1 = {S1,S2, ...,Smid} and SS2 = {Smid+1,Smid+2, ...,SNum(k)};

A ↑.muk−1 := (max{d(v, sj) | ∀sj ∈ SS1} + min{d(v, sj) | ∀sj ∈ SS2}) ÷ 2;
for i = k to F−2, A ↑.mui := A ↑.mui+1;
for all si ∈ SS1, insert si to the (k-1)-th subtree;
for all si ∈ SS2, insert si to the (k+1)-st subtree;

endif

for i = k to F−1, A ↑.childi := A ↑.childi+1;
end

Fig. 21. Algorithm for merging adjacent subtrees

50

100

150

200

250

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Pag
e A

cce
ss

(no
n-le

af a
nd

lea
f)

Number of Insertions

Split-first

50

100

150

200

250

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Pag
e A

cce
ss

(no
n-le

af a
nd

lea
f)

Number of Insertions

Split-first
Redistribute-first

Fig. 22. Insertion: synthetic clustered dataset of 100,000 objects

that we only focused on those which occurred at non-leaf
nodes because the cost for splitting and redistribution among
leaves is comparatively low.

Both of the tables show that the splitting and redistribu-
tion of non-leaf nodes occurs in a pulsate manner. During
some intervals of insertions, the cost is entirely due to splits
and redistributions among leaves. As such operations are not
costly, the curves in Fig. 22 for both strategies show lower
page access rates. However, at some other intervals, the split-
ting and redistribution of non-leaf nodes were more frequent.
This is due to the phenomenon that nodes get fuller under
more insertion and, up to a point, most insertions trigger
non-leaf node splitting or redistributions. At around 4000
insertions, we recognize that prior insertions have moved
the nodes close to saturation. Hence, more and more redis-
tributions were required, and each of these redistributions

is costly because a large number of subtrees are involved.
When no more redistribution could be done, node splitting
became necessary.

Having done the split, followed by considerable redis-
tributions, the utilization of nodes has been averaged out,
leading to a slight drop of the total page accesses after 6000
insertions. Soon after that, nodes became fuller and fuller
due to the insertion of another 2000 objects. The trend there
resembles the one at the beginning.

With the split-first strategy, choosing splitting rather than
redistribution creates much room well before nodes become
saturated. This strategy is able to avoid frequent subtree-
based redistributions. Therefore, the overall access cost made
by the split-first strategy is lower than the redistribute-first.
from 700 to 1000 insertions, of splits and

The results for the uniform and real data are shown in
Figs. 23a and 23b, respectively. We can see from the figures
that the two strategies exhibit a similar trend in that the
split-first strategy is better. omitted for brevity.

Note that there is a big difference in the performance
between the clustered data and the uniform and real data.
This is in fact due to differences in the fullness of the nodes
in the trees. For the clustered data, there are 30 dimensions,
so the leaf node can hold up to 32 data objects, and the
maximum branching factor is 15. With a tree of four levels,
the maximum number of data objects is 32×153 = 108,000.
We can see that this is very close to the number of data
objects in the database, which is 100,000. Therefore, most
of the nodes are fully packed in the beginning.

For the uniform data, there are 20 dimensions, the leaf
node can hold up to 48 data objects, and the maximum
branching factor is 17. A tree of four levels is needed to

168 A.W. Fu et al.: Dynamic vp-tree indexing forn-nearest neighbor search given pair-wise distances

10

15

20

25

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Pag
e A

cce
ss

(no
n-le

af a
nd

lea
f)

Number of Insertions

Split-first

10

15

20

25

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Pag
e A

cce
ss

(no
n-le

af a
nd

lea
f)

Number of Insertions

Split-first
Redistribute-first

6

8

10

12

14

16

18

20

22

24

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Pag
e A

cce
ss

(no
n-le

af a
nd

lea
f)

Number of Insertions

Split-first

6

8

10

12

14

16

18

20

22

24

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Pag
e A

cce
ss

(no
n-le

af a
nd

lea
f)

Number of Insertions

Split-first
Redistribute-first

(a) Synthetic uniform data (b) real dataset

Fig. 23a,b. Insertion: comparison with datasets of 100,000 objects

6

6.5

7

7.5

8

8.5

9

9.5

10

10 20 30 40 50 60 70 80 90 100

Pag
e A

cce
ss

(no
n-le

af a
nd

lea
f)

Number of Deletions (K)

Merge-first

6

6.5

7

7.5

8

8.5

9

9.5

10

10 20 30 40 50 60 70 80 90 100

Pag
e A

cce
ss

(no
n-le

af a
nd

lea
f)

Number of Deletions (K)

Merge-first
Redistribute-first

Fig. 24. Deletion: synthetic clustered dataset of 100,000 objects

hold 100,000 data objects. With a tree of four levels, the
maximum number of data objects is 48× 173 = 235,824.
Hence, most of the leaf nodes in the tree are not full.

For the real data, there are 16 dimensions, the leaf node
can hold up to 60 data objects, and the maximum branching
factor is 18. Again a tree of four levels is needed to hold
100,000 data objects. With a tree of four levels, the maxi-
mum number of data objects is 60× 183 = 349,920. Again,
most of the leaf nodes in the tree are not full.

If the leaf nodes are mostly full, we can expect a lot of
redistribution and splitting operations, and this is seen in the
case of the clustered dataset. If the leaf nodes are not full,
as in the cases of the uniform dataset and the real dataset,
insertion will not trigger much redistribution and splitting.
Therefore the page access will also be very minimal. In
fact, we have carried out another set of experiments for the
clustered data, but limited the maximal page utilization to
about 70%. The resulting number of page accesses for the
split-first/merge-first strategies is around 8.

For measuring delete performance, we removed 100,000
objects from each of the vp-trees built for the three data
samples using the redistribute-first strategy and the merge-
first strategy. We set MINfan to 2 and MINleaf to be 50% of
the maximum number of objects contained in a leaf.

For every 10,000 deletions, we measured the average
page accesses required for all the objects deleted so far.
Figures 24 and 25 give the results for the clustered, uniform
and real samples. All the curves show a similar trend. Given

that the height of the trees for clustered and uniform samples
is only 4, we observe that the first 20,000 deletions for both
samples required only the corresponding minimum cost of
deletes with both merge-first and redistribute-first strategies.
This is also true for the first 30,000 deletions for the real data
sample. In other words, deleting such amounts of objects has
not caused any underflows.

However, as more and more objects were removed, re-
distributions or merges occurred more often. Consequently,
the average number of page accesses increased steadily with
the number of deletions, as shown in all three figures. The
reason that the merge-first strategy needs fewer page ac-
cesses than the redistribute-first strategy is because merging
of nodes reduces the total number of nodes, and in turn
increases the average utilization of nodes. Thus, underflows
did not occur as frequently as in the case of redistribute-first.

Next we changed the minimum fan-out factor of the
vp-tree to
m/2�, wherem is the maximum fan-out. We
repeated similar experiments for deletion. The results are
shown in Figs. 27 and 26. Although the greater minimum
fan-out would introduce more restructuring of the tree, it
would also help to increase page utilization and shorten the
tree. We see that the average number of page accesses has
increased compared to the previous set of experiments, this
is because more redistributions and merges occurred. How-
ever, the deletion process is still quite efficient.

5.3.1 Other performance evaluation

In the previous sections, updates have been performed on top
of an existing database. Next we investigate the case where
we begin with an empty database. We incrementally updated
the database and the results are shown in Figs. 28 and 29.
The average page access is lower for the split-first strategy.
The performance is slightly worse than that for inserting on
an existing database, however, it is still acceptable as the
number of page accesses is below 15 for the split-first case
for all the cases considered.

We carried out another set of experiments interleaving
insertion and deletion operations, and the results in perfor-
mance are similar to pure insertion/deletion.

We have also performed a set of experiments to evaluate
the effect of update operations onn-nearest neighbor search.

A.W. Fu et al.: Dynamic vp-tree indexing forn-nearest neighbor search given pair-wise distances 169

6

6.5

7

7.5

8

8.5

9

9.5

10

10 20 30 40 50 60 70 80 90 100

Pag
e A

cce
ss

(no
n-le

af a
nd

lea
f)

Number of Deletions (K)

Merge-first

6

6.5

7

7.5

8

8.5

9

9.5

10

10 20 30 40 50 60 70 80 90 100

Pag
e A

cce
ss

(no
n-le

af a
nd

lea
f)

Number of Deletions (K)

Merge-first
Redistribute-first

6

6.5

7

7.5

8

8.5

9

10 20 30 40 50 60 70 80 90 100

Pag
e A

cce
ss

(no
n-le

af a
nd

lea
f)

Number of Deletions (K)

Merge-first

6

6.5

7

7.5

8

8.5

9

10 20 30 40 50 60 70 80 90 100

Pag
e A

cce
ss

(no
n-le

af a
nd

lea
f)

Number of Deletions (K)

Merge-first
Redistribute-first

(a) synthetic uniform data (b) real dataset

Fig. 25a,b. Deletion: comparison on datasets of 100,000 objects

6

6.5

7

7.5

8

8.5

9

9.5

10

10 20 30 40 50 60 70 80 90 100

Pag
e A

cce
ss

(no
n-le

af a
nd

lea
f)

Number of Deletions (K)

Merge-first

6

6.5

7

7.5

8

8.5

9

9.5

10

10 20 30 40 50 60 70 80 90 100

Pag
e A

cce
ss

(no
n-le

af a
nd

lea
f)

Number of Deletions (K)

Merge-first
Redistribute-first

5.5

6

6.5

7

7.5

8

8.5

9

10 20 30 40 50 60 70 80 90 100

Pag
e A

cce
ss

(no
n-le

af a
nd

lea
f)

Number of Deletions (K)

Merge-first

5.5

6

6.5

7

7.5

8

8.5

9

10 20 30 40 50 60 70 80 90 100

Pag
e A

cce
ss

(no
n-le

af a
nd

lea
f)

Number of Deletions (K)

Merge-first
Redistribute-first

(a) synthetic uniform data (b) real dataset

Fig. 26a,b. Deletion: comparison on datasets of 100,000 objects with minimum fan-out=�m/2�

6

6.5

7

7.5

8

8.5

9

9.5

10

10 20 30 40 50 60 70 80 90 100

Pag
e A

cce
ss

(no
n-le

af a
nd

lea
f)

Number of Deletions (K)

Merge-first

6

6.5

7

7.5

8

8.5

9

9.5

10

10 20 30 40 50 60 70 80 90 100

Pag
e A

cce
ss

(no
n-le

af a
nd

lea
f)

Number of Deletions (K)

Merge-first
Redistribute-first

Fig. 27. Deletion: synthetic clustered dataset of 100,000 objects with min-
imum fan-out =�m/2�

Instead of using the maximal page utilization of 100%, we
use a maximal page utilization of around 70% for the vp-tree,
because with node splitting, the average utilization should
be less than maximal. We chose this amount of utilization
because it has been found typical in theB+-tree indexing.
Starting with a dataset of size 100,000, we performed in-
sert or delete operations and also 8-nearest neighbor query.
We measured the average 8-nearest neighbor query perfor-
mance in terms of page accesses after each 1000 insertion
or deletion. The results for the clustered data are shown in
Fig. 30. Note that the query performances before the updat-

ing are slightly worse than those reported in Sect. 4.1 since
here we began with a node utilization of 70%. The search
performance has not been much affected by the updating.
In fact, after a certain amount of insertion or deletion, the
nodes probably became even better organized than the initial
70% utilization through the re-organization of the tree dur-
ing insertion or deletion. This is reflected in the drop in the
number of page accesses of then-nearest neighbor search.
The results show that the proposed insertion and deletion
algorithms are effective in maintaining the desired goodness
of the tree structures.

6 Vantage point selection

In a high-dimensional space, the distance calculations be-
tween data objects are expected to be computationally ex-
pensive. As such, a major concern on distance-based index-
ing is to minimize the number of distance computations in
order to aim at efficient query processing. The mvp-tree [6]
is one recent example. The mvp-tree uses two vantage points
in every node. In binary mvp-trees, the first vantage point di-
vides the space into two parts, and the second vantage point
divides each of these partitions into two, making the fanout
of a node in a binary mvp-tree four. As seen from Fig. 31,
each node of the mvp-tree can be viewed as two levels of

170 A.W. Fu et al.: Dynamic vp-tree indexing forn-nearest neighbor search given pair-wise distances

0

5

10

15

20

25

30

10 20 30 40 50 60 70 80 90 100

Pag
e A

cce
ss

(no
n-le

af a
nd

lea
f)

Number of Insertions (K)

Split-first

0

5

10

15

20

25

30

10 20 30 40 50 60 70 80 90 100

Pag
e A

cce
ss

(no
n-le

af a
nd

lea
f)

Number of Insertions (K)

Split-first
Redistribute-first

0

5

10

15

20

25

30

35

40

10 20 30 40 50 60 70 80 90 100

Pag
e A

cce
ss

(no
n-le

af a
nd

lea
f)

Number of Insertions (K)

Split-first

0

5

10

15

20

25

30

35

40

10 20 30 40 50 60 70 80 90 100

Pag
e A

cce
ss

(no
n-le

af a
nd

lea
f)

Number of Insertions (K)

Split-first
Redistribute-first

(a) synthetic uniform data (b) real dataset

Fig. 28a,b. Starting with an empty tree: comparison on inserting datasets of 100,000 objects

0

10

20

30

40

50

60

70

80

10 20 30 40 50 60 70 80 90 100

Pag
e A

cce
ss

(no
n-le

af a
nd

lea
f)

Number of Insertions (K)

Split-first

0

10

20

30

40

50

60

70

80

10 20 30 40 50 60 70 80 90 100

Pag
e A

cce
ss

(no
n-le

af a
nd

lea
f)

Number of Insertions (K)

Split-first
Redistribute-first

Fig. 29. Starting with an empty tree: comparison on inserting a synthetic
clustered dataset of 100,000 objects

a vp-tree, but involving fewer vantage points6. Because of
using more than one vantage point in a node, the mvp-tree
has fewer vantage points compared to a vp-tree. For query
processing, most of the distance computations made are be-
tween the query point and the vantage points. The mvp-tree
structure can therefore reduce a certain amount of distance
computations. The mvp-tree approach will be compared with
the two alternatives we shall present, with a number of ex-
periments.

6.1 A single vantage point per level

In vp-trees, every node of the tree is associated with a dis-
tinct vantage point. When the search operation traverses mul-
tiple branches, we have to make a different distance com-
putation at the root of each branch. Conversely, if we use a
single vantage point to partition the regions associated with
the nodes of the same level, only one distance computation
will be involved at each non-leaf level. This is the idea be-
hind our first method for minimizing distance computations.

At the root level, we choose the first vantage point with
the method depicted in Fig. 2 (also the method used in the
original vp-tree [39, 10]). Then we choose the second van-
tage point for the next level to be one of the farthest points

6 In Fig. 31, v1,v2,v3 denote the different vantage points used in the
nodes.

from the first vantage point; the third vantage point to be the
farthest from both of the previous two vantage points; and
so forth. The reason why we require the vantage points to
be far apart is to ensure a relatively effective partitioning of
the dataset.

Since there is only a single vantage point for each level,
in a search operation, the number of distance computations
at non-leaf nodes is equivalent to the number of non-leaf
levels of the tree, which can be assumed to be a small num-
ber. Because of the small quantity, we can keep the vantage
points outside the tree and keep only pointers to them in
the tree. This allows a higher fanout at the non-leaf nodes
and a smaller tree size, and consequently can enhance the
performance on querying.

6.2 Reuse of vantage points

The main drawback of using a single vantage point for each
level lies in the deviation from the original partitioning strat-
egy of the vp-tree. In the original method, every chosen
vantage point (by the algorithm in Fig. 2) should suit its
associated region to a certain extent. Although we attempt
to maintain a good partitioning as in the original method by
choosing vantage points that are distant from each other, the
one chosen vantage point may not be appropriate for each
of the nodes at the corresponding level. Our second method
tries to achieve a balance between a favorable partitioning
of the dataset and a reduction of distance computations.

Unlike the previous approach, nodes at the same level
may have different vantage points. However, not every such
vantage point will be unique. Some of them may in fact
be the same, because the vantage points are reused. Before
building the vp-tree we fix a numberp to be the maximum
number of vantage points that we shall use in total. The
selection of thesep vantage points is the same as in the pre-
vious approach: the first vantage point is selected based on
the algorithm in Fig. 2, and all of thep points are chosen to
be the farthest from each other. Then, we construct the vp-
tree using such pre-selected vantage points. In other words,
the set of pre-selected points act as the ‘candidate vantage
points’ described in Fig. 2. By increasing the numberp, our
method provides more choices of vantage points for the par-
titioning at each node. particular fixed vantage point. Clearly,

A.W. Fu et al.: Dynamic vp-tree indexing forn-nearest neighbor search given pair-wise distances 171

749

750

751

752

753

754

755

756

757

0 2 4 6 8 10

Pag
e A

cce
ss

(no
n-le

af a
nd

lea
f)

Number of Insertions (K)

split-first

735

740

745

750

755

0 2 4 6 8 10

Pag
e A

cce
ss

(no
n-le

af a
nd

lea
f)

Number of Deletions (K)

merge-first

(a) insert (b) delete

Fig. 30a,b. Updating and querying: comparison on datasets of 100,000 objects

V

2V

1

3V
µ

µ

µ
V1

V2 1µ µ 2
µ

(a) (b)

Fig. 31a,b. Node structures fora a binary vp-tree andb a binary mvp-tree

the number of distance computations at non-leaf nodes for
query processing is bounded byp. If the numberp is of
a manageable amount such that keeping them in the main
memory is not costly, we can keep thep vantage points
outside the vp-tree as in the previous approach. This can
reduce the storage size of the tree and increase the fanout
of the non-leaf nodes, in particular if the vantage points are
high-dimensional feature vectors.

It is a good idea to keepp small so that we can store all
the vantage points outside the tree and use less time to select
the p distant points out of the dataset and to determine the
best vantage point for each non-leaf node. But a minimalp
may offset good partitioning of the dataset. We believe that
a good value ofp can be found by trial and error for a given
dataset.

6.3 Performance evaluation

To compare our methods with the mvp-tree approach, we
implemented the disk-based model of the mvp-tree and ex-
tended it with then-nearest neighbor search algorithm. Our
original implementation of the vp-tree was modified accord-
ing to the two methods we proposed. The mvp-tree and the
vp-tree were both implemented in C on an UltraSPARC.

For each data pointx in the leaves of an mvp-tree, the
tree keeps the pre-computed (at construction time) distances
between the data pointx and the firstb vantage points along
the path from the root to the leaf node that keepsx. These
distances are used for effective filtering of non-qualifying
objects during search operations. The experiments in [6]
have proved the competence of such a technique. All of
the vp-trees (including the original version) and mvp-trees
we built for this performance study employed this technique.
We setb to 3, i.e., three extra distances were stored for each
data point in the leaves. For the method that reuses a fixed

Table 6. Eight-nearest neighbor search for clustered data of dimension 30

Dataset size Number of distance computations
reuse single mvpt original

10,000 492.31 502.18 498.33 509.66
20,000 1096.85 1106.77 1105.02 1125.46
30,000 1812.58 1816.85 1829.67 1876.81
40,000 2237.00 2239.46 2236.00 2320.76
50,000 2743.43 2754.07 2744.59 2832.18

numberp of vantage points, we set the value ofp to be a
reasonably small number, 20. For only the ‘single vantage
point per level’ approach, we kept the vantage points outside
the vp-trees.

Two performance metrics were used: the number of dis-
tance computations and page accesses. We counted the num-
ber of distance computations and page accesses required for
8-nearest neighbor queries by each method. All results were
averaged over 100 such queries. We used five sets of syn-
thetic clustered data, each containing a different amount of
data points in dimensions of 30. The amounts vary from
10,000 to 50,000. The details of these datasets have been
given in Sect. 4.1.1.

We present the results in Tables 6 and 7. In these tables,
the column labeled ‘reuse’ refers to the method that reuses a
fixed number of vantage points, ‘single’ refers to the method
that associates only a single vantage point with each non-
leaf level, ‘mvpt’ refers to the method adopted by the mvp-
tree, and ‘original’ refers to the original vp-tree structure.
Note that the results made by the original vp-tree are pro-
vided for reference. Table 6 reports the number of distance
computations for various dataset sizes. As seen from the ta-
ble, reusing vantage points achieves the best results, and the
mvp-tree approach is better than the ‘single’ method. This
indicates that choosing only a single vantage point for all the
nodes at the same level has certain negative effects on the
partitioning at these nodes, which leads to more multiple-
path searching, and in turn more leaf accesses. As a result,
more distance computations between the query point and the
data points are involved.

Besides the better performance it offers, the ‘reuse’
method has two other advantages over the mvp-tree method.
First, as its method for selecting vantage points is straight-
forward and the selection process is completed well before
tree construction, it makes the construction easier and less

172 A.W. Fu et al.: Dynamic vp-tree indexing forn-nearest neighbor search given pair-wise distances

Table 7. Page accesses per search for eight-nearest neighbor search for
clustered data of dimension 30

Dataset size Page accesses
reuse single mvpt original

10,000 29.23 22.76 31.91 31.06
20,000 56.04 55.70 56.79 60.18
30,000 68.57 65.45 82.92 90.07
40,000 101.86 100.83 100.66 120.15
50,000 117.12 116.90 117.99 141.79

time is required. Second, we can reduce the size of the tree
by storing all of the vantage points in use outside the tree,
when the total number of them is small enough (such as 20
in our experiments).

We also measured the page accesses to see how the three
methods affect the access cost of the vp-tree. Table 7 dis-
plays the results. All three methods in general make fewer
page accesses than the original vp-tree structure. The ‘sin-
gle’ method needs the least number of page accesses. This
is merely because the trees constructed based on this ‘single
vantage point per level’ approach are the smallest compared
to the others. With a smaller tree size, the access cost for
search operations is inevitably lower. In summary, our meth-
ods are comparable with the mvp-tree approach in terms of
the number of distance computations and additionally pro-
vide better performance in page accesses. From the perfor-
mance in searching, we believe that the reuse of vantage
points would not affect the goodness of the tree structure.
Moreover, they may facilitate the updating procedures as de-
scribed in the previous section. Reusing vantage points can
lead to less work in updating since pre-computed distances
of data objects to reused vantage points can be used.

7 Conclusions and future work

We tackle the problem of content-based retrieval for multi-
media data objects given only pair-wise distances between
data objects. One approach to solve this problem is to first
infer a feature vector for every data object from the dis-
tances provided, preserving as much as possible the dis-
tances between objects. We ran some experiments to show
that this approach may incur considerable inaccuracies in
the query results. Then we examine another approach which
is to make use of a distance-based indexing structure. Such
an approach provides a number of advantages: first, pre-
processing steps involved in inferring feature vectors can
be eliminated; second, the difficulty in preserving distances
is avoided; third, updating can be handled much more effi-
ciently; lastly, the method can be applied to data represented
as multi-dimensional vectors as well. A promising structure
for this approach as shown in [6] is the vp-tree.

We examine two of the important problems for the vp-
tree and its variants:n-nearest neighbor search and updating.
Also, we propose some methods of vantage point selection
to reduce the number of distance computation. We study
the performance of ann-nearest neighbor search algorithm
for the vp-tree. We show by experiments that the algorithm
scales up well with size of the data sets and the value ofn,
for a set of synthetic clustered data, uniform data, and a set
of real data. It also scales up well with the dimensionality.

We compare the result with theR∗-tree and theM -tree, and
show that the vp-tree outperforms both trees significantly
for n-nearest neighbor search for synthetic clustered data,
uniform data, and real data by experiments.

We propose some solutions to the update problem for
the vp-tree and its variants. The insertion and deletion pro-
cedures involve nodes redistribution, splitting, and merging,
and always preserve the balanced structure of the vp-tree.
There are two alternatives of split-first or redistribute-first
for insertion, as well as two alternatives of merge-first or
redistribute-first for deletion. We study the performance of
these methods and show that the overhead is quite accept-
able, we also show that the split-first and merge-first strategy
is superior to the redistribute-first strategy.

We propose alternatives to the vantage point selection,
by making use of the idea of reusing vantage points. This
was the basic idea in [6]. We design different methods to
reuse vantage points. It turns out that the results in terms of
reduction in distance computation are similar for the differ-
ent methods.

For future work, we may investigate some other methods
of vantage point selection. The major criticism of [7] about
vp-trees is thatthe region inside the median sphere and the
region outside the median sphere are extremely asymmetric,
and since volume grows rapidly as the radius of a sphere in-
creases, the outside of the sphere tends to be very thin. Let us
consider the convex hull enclosing all data points to be our
search space. If the vantage point creates a boundary that is
a hypersphere surface mostly within the search space, then
the above argument of [7] holds. However, if the vantage
point is far from the search space, (theoretically it can be at
an infinite distance from all points) then the boundary cre-
ated by the median in the search space will be closer to a
hyperplane that divides the search space into two regions.
The regions would then be moresymmetric. Therefore, we
may want to look for vantage points that are far away from
the center of the search space. We can locate such points ef-
ficiently by a method such as the heuristic introduced in [24]
for choosing two distant objects. We note that the space near
the spherical boundary created by the median of a vantage
point is a critical factor for the performance of query evalu-
ation, since a query that falls under such a region will likely
lead to a search on both sides of the boundary. A method
adopted in our experiments and in previous work makes use
of the standard deviation to try to ensure a small number
of data points around the boundary. We therefore look for a
vantage point that is far from the center of the search space
of the current node and which also has a high standard de-
viation. However, it is possible that the standard deviation
method would often automatically introduce vantage points
that are at the edge of the search space (see Fig. 1 in [39]),
and it is left for further investigation to see if this is true.

Finally, we would like to investigate improvements on
the vp-tree in the future. There have been enhancements on
the R∗-tree, such as introducing redundancy [16] and the
introduction of some flavor of linear search as in the X-tree
[4]. We can try to capture the ideas behind such enhance-
ments and apply them to the vp-tree.

A.W. Fu et al.: Dynamic vp-tree indexing forn-nearest neighbor search given pair-wise distances 173

Acknowledgements. We are very thankful to the authors of [4] for providing
us with the set of real data from their experimental setup. We would also
like to thank the authors of [6] for sending us a pre-published version of
their paper. We thank Kelvin, Kam Wing Chu for his enhanced version
of theM -tree implementation, and Chun Hing Cai for the implementation
of the enhancedn-nearest neighbor search of theR∗-tree. We are very
grateful to the anonymous referees who gave very thoughtful and useful
comments to enhance the paper.

References

1. W. A. Ainsworth (1988) Speech Recognition by Machine. London:
Peter Peregrinus

2. N. Beckmann, H.P. Kriegel, R. Schneider, B. Seeger (1990) The R∗-
tree: an efficient and robust access method for points and rectangles. In:
Proc. ACM SIGMOD Int. Conf. on the Manage. of Data, pp 322–331,
May 1990

3. S. Berchtold, C. Bohm, B. Braunmuller, D. A. Keim, H.P. Kriegel
(1997) Fast parallel similarity search in multimedia databases. In:
Proc. ACM SIGMOD Int. Conf. on the Manage. of Data, pp. 1–12

4. S. Berchtold, D. A. Keim, H.P. Kriegel (1996) The X-tree: an index
structure for high-dimensional data. In: Proc. 22nd Int. Conf. on VLDB,
pp. 28–39

5. D. J. Berndt, J. Clifford (1996) Finding Patterns in Time Series: a Dy-
namic Programming Approach. In: Fayyad U.M., Piatestsky-Shapiro
G., Smyth P., Uthurusamy R., (eds) Advances in Knowledge Discovery
and Data Mining, Cambridge, MA: AAAI/MIT Press

6. T. Bozkaya, M. Ozoyoglu (1997) Distance-based indexing for high-
dimensional metric spaces. In: Proc. ACM SIGMOD Int. Conf. on the
Manage. of Data, pp. 357–368

7. S. Brin (1995) Near neighbor search in large metric space In: Proc.
21st Int. Conf. on VLDB, pp 574–584

8. W. A. Burkhard, R. M. Keller (1973) Some approaches to best-match
file searching. Commun. of the ACM, 16(4): 230–236, April 1973

9. K. Cheung, A. Fu (1998) Enhanced nearest neighbour search on the
r-tree. In: ACM SIGMOD Record, 27(3): 16–21, September 1998

10. T.C. Chiueh (1994) Content-based image indexing. In: Proc. 20th
VLDB Conf., pp 582–593

11. T. Ciaccia, Patella M., Zezula P (1997) M-tree: an efficient access
method for similarity search in metric. In: Proc. 23rd Int. Conf. on
VLDB, pp 426–435, August 1997

12. G. Evangelidis, D. Lomet, B. Salzberg (1995) The hBII -tree: a modi-
fied bB-tree supporting concurrency, recovery and node consolidation.
In: Proc. 21st Int. Conf. on VLDB, pp 551–561

13. G. Evangelidis, D. Lomet, B. Salzberg (1997) The hBpi-tree: a multi-
attribute index supporting concurrency, recovery and node consolida-
tion. The VLDB J., 6(1): 1–25

14. C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack,
D. Petkovic, W. Equitz (1994) Efficient and effective querying by
image content. J. Intell. Inf. Syst., 3: 231–262, July 1994

15. J.H. Friedman, J.H. Bentley, Finkel A (1977) An algorithm for finding
best matches in logarithmic expected time. ACM Trans. on Math.
Software, 3: 209–226, September, 1977

16. A. Fu, K.L. Cheung (1997) Enhancements on the R-tree to support
efficient similarity search in high-dimensional space. In: Mphil Thesis,
Chinese Univ. of Hong Kong

17. W.I. Grosky, R. Mehrotra (1990) Index-based object recognition in
pictorial data management. Comput. Vision, 52(3): 416–436

18. V.N. Gudivada, V.V. Raghavan (1995) Content-based image retrieval
systems. IEEE Comput., 28(9): 18–22, September 1995

19. A. Guttman (1984) R-trees: a dynamic index structure for spatial
searching. In: Proc. ACM SIGMOD Int. Conf. on the Manage. of
Data, pp 47–57, June 1984

20. J. Hafner, H. S. Sawhney, W. Equitz, M. Flickner, W. Niblack (1995)
Efficient color histogram indexing for quadratic form distance func-
tions. IEEE Trans. on Pattern Anal. and Mach. Intell., 17(7): 729–736,
July 1995

21. N. Katayama, S. Satoh (1997) The SR-tree: an index structure for
high-dimensional nearest neighbor queries. In: Proc. ACM SIGMOD
Int. Conf. on the Manage. of Data, pp. 369–380

22. F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, Z. Protopapas (1996)
Fast nearest neighbor search in medical image databases. Technical
Report CS-TR-3613, University of Maryland, March 1996

23. J. B. Kruskal, M. Wish (1978) Multidimensional scaling. Beverly
Hills, CA: SAGE

24. K.I. Lin, C. Faloutsos (1995) Fastmap: a fast algorithm for indexing,
data-mining and visualization of traditional and multimedia datasets.
In: Proc. ACM SIGMOD, pp. 163–174

25. K.I. Lin, H. V. Jagadish, C. Faloutsos (1994) The TV-tree – an index
structure for high-dimensional data. VLDB J., 3: 517–542, October
1995

26. D. B. Lomet, B. Salzberg (1990) The hB-tree: a multiattribute indexing
method with good guaranteed performance. ACM TODS, 15(4): 625–
658, December 1990

27. W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman,
D. Petkovic, P. Yanker, C. Faloutsos, G. Taubin (1993) The QBIC
project: querying images by content using color, texture and shape. In:
Proc. SPIE: Storage and Retr. for Image and Video Databases, 1908,
pp 173–187, February 1993

28. N. Roussopoulos, S. Kelley, F. Vincent (1995) Nearest neighbor
queries. In: Proc. ACM SIGMOD Int. Conf. on the Manage. of Data,
pp 71–79, June 1995

29. H. Sakoe, S. Chiba (1990) Dynamic Programming Algorithm Opti-
mization for Spoken Word Recognition. In: Waibel, A., Lee K., (eds)
Readings in Speech Recognition. San Francsico, CA: Morgan Kauf-
mann

30. H. Samet (1989) The Design and Analysis of Spatial Data Structures.
Reading, MA: Addison-Wesley

31. D. Sankoff, J.B. Kruskal (1983) Time Warps, String Edits and Macro-
molecules: the Theory and Practice of Sequence Comparisons. Read-
ing, MA: Addison-Wesley

32. T. Seidl, H.P. Kriegel (1998) Optimal multi-stepk-nearest neighbor
search. In: Proc. ACM SIGMOD Int. Conf. on the Manage. of Data,
pp 154–165

33. T. Sellis, N. Roussopoulos, C. Faloutsos (1987) The R+-tree: a dynamic
index for multidimensional objects. In: Proc. 13th Int. Conf. on VLDB,
pp 507–518

34. Y. Theodoridis, T. Sellis (1996) A model for prediction of R-tree
performance. In: Proc. ACM Princ. of Database Syst., PODS, pp 161–
170

35. S. Thomas, H. Kriegel (1997) Efficient user-adaptable similarity search
in large multimedia databases. In: Proc. 23th Int. Conf. on VLDB,
pp. 506–515

36. J. Uhlmann (1991) Satisfying general proximity/similarity queries with
metric trees. Inf. Process. Lett., 40:4: 175–179, November 1991

37. D. A. White, R. Jain (1996) Algorithms and strategies for similarity
retrieval. Technical Report VCL-96-101, University of California, San
Diego, July 1996

38. D. A. White, R. Jain (1996) Similarity indexing with the SS-tree. In:
Proc. 12th IEEE Int. Conf. on Data Engin., pp 516–523, February 1996

39. P. Yianilos (1993) Data structures and algorithms for nearest neighbor
search in general metric spaces. In: Proc. 3rd Annual ACM-SIAM
Symp. on Discrete Algorithms, pp 311–321

