The VLDB Journal (2000) 9: 154-173 The VLDB Journal
© Springer-Verlag 2000

Dynamic vp-tree indexing for n-nearest neighbor search
given pair-wise distances

Ada Wai-chee Fu, Polly Mei-shuen Chan, Yin-Ling Cheung, Yiu Sang Moon

Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong; e-mail: adafu@cse.cuhk.edu.hk

Edited by T.Ozsu and S. Christodoulakis. Received June 9, 1998 / Accepted January 31, 2000

Abstract. For some multimedia applications, it has beena collection of images, users can use existing images as
found that domain objects cannot be represented as featupery templates and ask the system for images similar to
vectors in a multidimensional space. Instead, pair-wise disthe query images. This is the so-called “like-this” query.
tances between data objects are the only input. To suppo#lternatively, the user can sketch a picture that serves as
content-based retrieval, one approach maps each object the query template.
a k-dimensional k-d) point and tries to preserve the dis- To support content-based retrieval, often we have to rely
tances among the points. Then, existing spatial access indeon feature extraction capabilities to map each domain ob-
methods such as the R-trees and KD-trees can support fagict into a point in some-d space where each object is
searching on the resultinfgd points. However, information represented bk chosen features. An example feature vec-
loss is inevitable with such an approach since the distance®r may be color components of an image or shot cuts of
between data objects can only be preserved to a certain ex video clip. Hence, processing content-based queries typ-
tent. Here we investigate the use of a distance-based incally requires some measurement of similarity betw&en
dexing method. In particular, we apply the vantage pointd points. The similarity (or distance) between two objects
tree (vp-tree) method. There are two important problems foiis measured using some metric distance function over the
the vp-tree method that warrant further investigation,sthe k-d space. The most common metric distance function is
nearest neighbors search and the updating mechanisms. Wee Euclidean distance. The entire problem is then formu-
study ann-nearest neighbors search algorithm for the vp-lated as storing and retrievingd points, for which there
tree, which is shown by experiments to scale up well withare many fine-tuned indexing methods available. In gen-
the size of the dataset and the desired number of nearestal, these methods are calledltidimensional indexing or
neighbors,n. Experiments also show that the searching inspatial access methods (SAMs) [30]. Some of the previous
the vp-tree is more efficient than that for tRé-tree and the  works are [2, 3, 4, 12, 13, 15, 19, 21, 25, 26, 28, 35, 38, 34].
M-tree. Next, we propose solutions for the update problem It has been found that the above setting cannot be applied
for the vp-tree, and show by experiments that the algorithmgo certain applications. For example, [24] cites the example
are efficient and effective. Finally, we investigate the prob-of typed English words, where the similarity function is de-
lem of selecting vantage-point, propose a few alternativefined by the minimum number of insertion, deletions, and
methods, and study their impact on the number of distancaubstitutions to transform one string to another, and the ex-
computation. ample of matching digitized voice excerpts, which include
the consideration of time warping [31, 29]. The time-warping
Key words: Content-based retrieval — Indexing — Nearestproblem occurs also in the similarity search in time series
neighbor search — Updating — Pair-wise distances [5, 1]. For other examples, [27] describes a method of mea-
suring the similarity between color images based on a color
similarity matrix which takes into account the perceptual
distance between different pairs of colors. For shape simi-
) larity, a natural definition is the value of “area difference”,
1 Introduction for which we measure the area where two shapes do not
match when one iplaced on top of the other, e.g., one can
With the advent of large-scale multimedia database systemgbtain a pixel-wise exclusive-or of the two shapes. Another
there is a need to efficiently answer user queramtent-  method represents a shape in terms of its boundaries, and
based retrieval is typically required [18]. One advantage of 3 string-edit-distance-based similarity measure is employed
such an approach is that it bypasses the difficult problem ohased on the number of changes required to transform one to
specifying the desired multimedia objects in terms of formalthe other [17]. In still other applications, it may be relatively
query languages. A popular form of content-based queriegasier for a domain expert to assess the similarity or distance
employs the query-by-example paradigm. For example, in




A.W. Fu et al.: Dynamic vp-tree indexing foer-nearest neighbor search given pair-wise distances 155

between two objects rather than giving a computable defini- (v,u)

tion of similarity [37]. In all of the above applications, we

are given the similarities or distances between pairs of data S

In most cases, the distances amgric, meaning that the tri- RN RN

angle inequality property applies, and this is the assumption TN S22

we make. Given only the distance information, we still need AN W R

an indexing method to support query and update. Fig. 1. Partitioning mechanism of the vantage-point tree method
For this problem, one approach uses the distance infor-

mation to deducé-d points for the objects so that we can , i i

subsequently make use of vector space model (VSM) [37]\/antag.e points, WI'Fh experlmental results. We conclude the

multidimensional indexing methods such as the R-tree and?@P€r in Sect. 7 with an outline of future work.

its variants. TheFastMap algorithm [24] andmultidimen-

sional scaling [23] fall in this category. The main challenge

for this approach is to preserve distances as well as possiblez. Related work

It is difficult to decide on a value of and then map each  Gjyen only pair-wise distances between objects, there are
dom_aln objec_t into &-d point Whll_e still a_ccurately 'ePré- two major approaches to the indexing methods for content-
senting the similarity between objects using some metric inyageq retrieval: the distance-preserving transformation-based

thatk-d space. In this paper, our experimental results showyaihads and the distance-based indexing methods. We shall
that such an approach can incur a considerable amount cﬂriefly describe both approaches.

inaccuracy fom-nearest neighbor search.

Therefore we study an alternative approach that uses
distance-based indexing, known as metric space mode}.1 Distance-preserving methods
(MSM) indexing. In particular we examine tlwvantage-point
tree (vp-tree) method [36, 39, 10]. This approach can obvi-With the distance-preserving approach, we try to deduce
ously save the overhead of inferring points in a multidimen-for each object a corresponding point in a multidimensional
sional space, and can also avoid the difficulty in preservingspace so that the distances among objects are preserved as
distances. Our main contributions are the following: much as possible. One example is a method from pattern
recognition, namely, multidimensional scaling (MDS) [23].
Another is the FastMap algorithm proposed by Faloutsos
.and Lin [24]. As experiments in [24] showed that FastMap

ina performance. In the detailed implementation. we su _Séchieves dramatic computational savings over known MDS
gp ; ' P Y 9 methods, without loss in quality of the results, we shall fo-
gest and implement a method for the physical cluster-

ing of vp-tree nodes. We compare the costs of the cus only on the FastMap method. Thus, the details of other

nearest neighbor search witti-tree andM/ -tree by ex- MDS methods are omitted for brevity.
. '9 w YEX- The FastMap algorithm assumes that objects are points in
periments, and show that the search of the vp-tree i

considerably more efficient. me unknown high-dimensional space, and projects these

points onk mutually orthogonal directionsk(being user-
2. The update problem has also been left open for the Vpaefined), such that objects are mapped to points inkids

tree and its variants [6]. We propose mechanisms for LJp'space. One important requirement that FastMap must ful-

datg operations on the vp—_tre(_a. We Investigate two alterﬁ" is to preserve distances as much as possible such that
natives in the insert operation: split-first and redistribute-

first techniques; and two alternatives in the delete operaJEhe Euclidean distances between the points inktdespace
tion: merge-firsf and redistribute-first. All of these tech- match the pair-wise distances given. If the overall distances
niques preserve the balanced-tree prbperty of the vp-tre are not preserved sufficiently, some of the information that

b . . %IStIHQUISheS the objects cannot be maintained. After the
The split-first and merge-first strategies can also preser

V 7 . . .
the original characteristics of the vantage points and arei1 c?:%zlg gn,1 :t% g Q ?isz 31 : uRn-]ttr)Z; O;t?:'g?lzy Znel—st)unzeg sé%atgasl]

found to be more ?‘ff'c'e”t- We show by experiments thatcan be employed to provide fast searching for range queries
the updating cost is not particularly expensive. :
3. Finally we propose some alternative techniques for theand n-nearest neighbor querfes . .

. vantage point selection which can reduce the number OE FastMap mtroduces_ pre-processing Costs to b(_)th index
distance computations. Experiments were carried out t onstruction .and querying because all domain objects e_md
demonstrate that the p.roposed methods are efficient ar?é‘e query object must first be mappeq to the correspondl_ng
effective -d points before an index structure is built or a query is

' processed. The mapping bf objects intoN k-d points re-

The rest of the paper is organized as follows. Previous reguiresk recursive calls to the function called FastMap. For
lated work is described in Sect. 2. In Sect. 3, we give experexample, if our target is to deduce 2-d points fbobjects,
imental results of the distance-preserving approach. SectiokrastMap will determine the coordinates of tNeobjects on
4 details the algorithm for-nearest neighbor search in vp- one axis in the first recursive call, and those on the other
trees, along with performance results. Update mechanismaxis in the second recursive call.
f‘?r the vp-tree are outlined II’_] SeCt'. S _and ComF_’a”SO” .Omepre:find objects that are within distancéom the query object.
different approaches by experiments is given therein. Section 2 gxample: find then (n > 1) objects that are closest to the query
6 discusses some possible improvements in the selection @bject.

1. We apply ann-nearest neighbor search algorithm for
the vp-tree index method. From our experiments,ithe



156 A.W. Fu et al.: Dynamic vp-tree indexing fernearest neighbor search given pair-wise distances

Pick a set of candidate vantage points from the data set;

For each vantage point
Pick a set of sample objects from the data set;
Compute the distance values from the vantage point to each of the sample objects;
Calculate the mean and the standard deviation of these distance values;

Endfor

Choose the candidate vantage point with the maximum standard deviation.

Fig. 2. Algorithm ChooseVantagePoint

2.2 Distance-based index structures node, a distinct vantage point is chosen to partition the data
points in the corresponding subset. At the leaf node, we
Quite a number of distance-based indexing structures havstore a number of data points. Eventually, the entire data
been proposed. A summary of some of these methods caget is organized as a balanced tree as in other spatial index
be found in [6, 7]. Previous work includes techniques sug-structures.
gested in [8], which contains some of the basic ideas for later The m-ary vp-tree construction is similar to the case of
methods, theeneralized hyperplane tree (gh-tree) [36], the  binary vp-trees. The data sétis split into m subsetsS;,
vantage point tree (vp-tree) [36, 39, 10], thgeometric near- i = 1 to m, according to the distance values between the
neighbor access tree (GNAT) [7], the mvp-tree [6] which is  chosen vantage point and other data points. Eacls;sf
a variation of the vp-tree, and the M-tree [11]. In [7] the has roughly the same number of data poiptsis used to
GNAT is compared to the binary vp-tree in a set of experi-denote the boundary distance value, so that fos adl S;,
ments and is found to incur more expensive construction buf;_; < d(s,v) < u;. Again, each of theS;'s is recursively
less numbers of distance computations in the range queryingartitioned into smaller subsets using the same partitioning
The mvp-tree uses pre-computed distance to reduce the numaechanism.
ber of distance computations, and also uses multiple vantage Note that when we perform updating on the vp-tree, the
points in a tree-node. In [6] it is shown by experiments thatbranching factor of a vp-tree node can be reduced after dele-
the mvp-tree would incur less distance computations in rangéion, therefore we shall specify a minimum branching factor.
querying compared to the vp-tree. Howewvemnearest neigh- Them value in the above is the maximum branching factor.
bor search has not been considered for GNAT in [7] or forFor example, if the minimum branching factor is 2, then we
the vp-tree or its variations, and both [6] and [7] focus only have a 2-tam-ary vp-tree.
on the number of distance computations for range queries.  The multi-vantage point tree (mvp tree) [6] incorporates
The M-tree is a balanced tree which is able to deal withtwo mechanisms on top of the vp-tree to reduce the num-
dynamic data. In an M-tree, each internal node has a routinger of distance computations. The first mechanism is to keep
object, and all objects in the subtree under the node ar@re-computed distances between the data points and the van-
within a certain distance from the routing object. Updating istage points. The second mechanism is to use more than one
allowed and may trigger node splitting. Experimental resultsvantage point to partition the space into spherical cuts at
show that it is a competent access method. Therefore weach level. We shall adopt the first mechanism in our imple-
shall compare our approach wifff-tree. mentation. We shall study more about the second mechanism
in Sect. 6.

2.2.1 The vantage-point tree method

3 Motivation
Since we make use of the vp-tree structure [39, 10], we ) )
describe in more detail the vp-tree method. Consider a finite "€ VSM methods that try to preserve the distances will
setSof N data point$. For each node in the tree, a particular have a problem in the accuracy, since some distance in-
data object is selected to be the vantage point, according tfprmation may be lost. Here we show with an experiment
a randomized algorithm given in [39] as shown in Fig. 2. the inaccuracy that may result from s_uch a method. We im-
Let the point chosen for the root node 2eThen, lety be  Plémented FastMap and the R-tree in C under UNIX on a
the median of the distance values of all the other points in SPARCcenter 2000. We performed tests on 8-nearest neigh-

Swith respect tov, andS s partitioned into two subsets of POr queries relative to points chosen from the dataset. The

approximately equal sizes; and S, defined as: average is taken over the performance for 15 randomly cho-
sen query points. The R-tree that we implemented is able

S1={s € S |d(s,v) < u} to handlen-nearest neighbor search. In this experiment, a

Sy ={seS|d(s,v) > pu} synthetic dataset is used. We generated a dataset of 1500

points in 10-d space. The points form 10 clusters, with the
same number of points in each cluster. Centers of clusters are
. , rhniformly distributed and the distances of the points in each
applied toS; and S, recursively. Every subset, such 8g cluster from the centers follow a normal distribution. Our
and 5z, corresponds to one node of the vp-tree. At eaChinput is the Euclidean distances between such data points.

3 Since vp-tree uses the temmoint to refer to data objects, we shall use To study the accuracy af-nearest neighbor search re-
the terms data points and data objects interchangeably. sulting from the FastMap method as the dimensionality



A.W. Fu et al.: Dynamic vp-tree indexing foer-nearest neighbor search given pair-wise distances 157

100

1. There is no need to infer multidimensional points for do-
asthiap main objects before an index can be built. Instead, we
o | 7] build an index directly based on the distances given. This
avoids pre-processing steps. There are two major prob-
lems with the pre-processing in the FastMap approach:
60 : a) The computation involved in these steps can be
costly.
i b) It is difficult to determine the number of dimensions,
“or il k, that can preserve the distances to a satisfactory
J— level.
2. The updates on the vp-tree are relatively easier than that
for the Fastmap method. For the Fastmap method, after a
. certain amount of data objects are inserted or deleted, the
Y s s ‘ ‘ s s ‘ mapping for the data points will no longer be as distance-
e e e e preserving as before. There will be a point when Fastmap
Fig. 3. Query accuracy vs number of dimensions for the dataset of 1500  has to be executed once again for all the objects, and it
objects is not clear how to determine what is a good time for the
re-construction. By comparison, the updates for vp-tree
.7 . are much more straightforward (see Sect. 5).
4 \ 3. A distance-based indexing method such as the vp-tree is
q | flexible: it is not only applicable to multimedia objects
given pair-wise distances, but is also able to index ob-
\ y jects that are represented as feature vectors of a fixed
~_ _ - number of dimensions (the case when feature extraction
functions are available). We also show that the perfor-
mance is much better than R*-tree and M-tree in terms
of page accesses farnearest neighbor search.

Percentage of Query Accuracy (%)

20 | - B

4 5
Number of Dimensions

Fig. 4. The meaning of the threshold

increases, we varied from 1 to 9. Eight nearest neighbors

are to be found for each of 15 query objects. FastMap 9 ) i

sets of 1500k-d points were deduced, fdr= 1 to 9. Each 4 n-nearest neighbor search in vp-trees

set of points was then organized in an R-tree. It was also ] o

necessary to map 15 query objectsitd space. The result- For content-based retrieval, it is rare to have an exact match

ing k-d queries were submitted to the R-trees whose searcRn Multimedia data, so nearest neighbor queries are more

algorithm was run to obtain the results. desirable. In practice, users often ask for a certain number of

objects similar to a given query object so that they can select

We expressed the accuracy of annearest neighbor part of the returned collection. Therefore, we are interested

search as the percentage of theanswers that are indeed in finding n-nearest neighbors to a query object, whers

among then-nearest neighbors of the query object. We re-ysually greater than one. Here we describe an algorithm for

ported an average of accuracy over the 15 queries. Figur@-nearest neighbor search in the vp-tree. The basic idea is

3 plots the percentage of query accuracy as a function o§jmilar to then-nearest neighbor search in other index trees
the number of dimensions. With FastMap, the lower the di-such as thek-tree or theM -tree [11].

mensionality, the more nearest neighbors have been missed. i ) , )
This is mainly because FastMap may not preserve the actual 1he single-nearest-neighbor search algorithm in [10] re-
distances between objects and the preservation problem gel{§S on a specific threshold;, which estimates an upper
worse whenk is getting smaller. bound_on the distance between a query object and its near-
There are enhancements proposed on the R-tree bas€§t neighbor. Leti(p, ¢) be the distance between poinis
methods, such as the multi-stépnearest neighbor search @ndg. Given ao value, the algorithm in [10] will look for
method [32, 22]. However, these are enhancements on th§€ Single nearest neighbor gowithin the rangei(v, ) + o
efficiency of the method and would not help in enhancing(S€€ Fig. 4). Recall that at each node of the vp-tree, a van-

the accuracy of the method when the data is subjected to thi@9€ Point determines: subsetsS; by the distanceg;. If
above information loss. the hypersphere depicted in Fig. 4 falls inside the boundary

of only one subsef;, the algorithm only needs to explore

that particular subset. Otherwise, multiple subsets (subtrees)
3.1 Discussion need to be explored. A tighter yalue of_will ensure that

less subtrees are explored, but it also increases the chance

FastMap suffers from the difficulties in oreserving actual that no nearest neighbor is found, in which case the search
P b 9 has to be repeated with a greater valuesofin the algo-

e T, e o roas I 1 101 et i 1o spcifc bound o the numor of

: ’ ! : ials (passes) with increasing valuescof
are able to locate every nearest neighbor with a fast response.
We have chosen the vp-tree approach. The advantages of the The above mechanism can be generalizednforearest
vp-tree approach mainly lie in the following: neighbor search. We use a valueooin a similar way. The



158 A.W. Fu et al.: Dynamic vp-tree indexing fernearest neighbor search given pair-wise distances

Procedure nNN_Search(g,n,root)

Input: the query point g, the number of nearest neighbors requested n,
the root node of a vp-tree.

Output: the set W of n nearest neighbors to q.

begin
Local variable o : to record the distance of ¢ to the n-th nearest neighbor discovered so far.
Search(q,n,root,o,W);
return W;

end

Fig. 5. Procedure nNNSearch

Procedure Search(g,n,node,o,W)
Input: the query point g, the number of nearest neighbors requested n, a node of the vp-tree,
o = the distance of n-th nearest points discovered so far
and W is a set of n-nearest neighbors obtained so far.
Output: updated values of o and W.
begin
if node is leaf
for each element v in node,
ifd(v,q) <o
insert v to proper position in W (W always sorted in ascending order of d(w, q));
if |W| =n then o := d(wn, q);
else
dist := d(nodet.v,q);
if dist < nodef.mu
if {dist < nodest.mu + o} then Search(qg,n,nodet.left, o,W);
if {dist > nodest.mu — o} then Search(qg,n,nodet.right, o,W);
else
if {dist > nodestT.mu — o} then Search(qg,n,nodet.right, o,W);
if {dist < nodest.mu + o} then Search(qg,n,nodet.left, o,W);
end

Fig. 6. Procedure search

initial value of o is set to be infinitely large. The value of could adopt the method that is proposed in [11] where the

o is dynamically improved as we discover shorter distancesest traversed node and its subtree is searched in each itera-

between the query point and some data points that we comgon. This could lead to better pruning power. However, the

across during the search. current method is simpler and our experimental results show
For simplicity we focus on the binary partitioning case, that it is already superior to thB*-tree and the M-tree.

but the discussion can easily be generalized to the case of

an m-ary vp-tree, form > 2. The construction algorithm

for the vp-tree is similar to the original vp-tree construc- 41 performance evaluation

tion algorithm in [39]. The pseudocode for the algorithm is

given in Fig. 5. This algorithm triggers the procedure call

Search(qg,n,rootp,¢). The procedure Search (Fig}@s re-

cursively activated one or more times. During the traversal,

is dynamically adjusted to the value of the distance betwee

the query object and the curremith nearest candidate. This

o guarantees that the-nearest neighbors will at most be at

distances from the query point. Effectively, we perform a

depth-first search, and let be determined by the distances

of the actual data objects at the leaf nodes that we encount

in the search. ;
We have also tried some other alternative ways of settingdescrlbe the setup,

an initial o that is not infinite, but our experimental results

show that setting the infinite initial value can achieve better

performance. Note that instead of a depth-first traversal, wé.1.1 Experimental setup

To study the performance of thenearest neighbor search
algorithm for the vp-tree, we implemented the vp-tree and
IRhe search algorithms in C under UNIX on an UltraSPARC.
In the experiment, we compared the vp-tree with fife

tree and thek*-tree. We implemented the algorithms for the
R*-tree by Berchtold, Keim, and Kriegel [4], which is able
to supportn-nearest neighbor queries, and enhanced it with
élpe method proposed in [9]. We also implemented the
nearest neighbor search algorithms for fHetree. Next, we

as well as our results and observations.

4n Fig. 6, nodé.v is the vantage point at the node, nodeu is the VW€ Used two synthetic datasets and one real dataset. The
median value at the node, nddeft is the pointer to the left child node, Synthetic datasets are similar to the ones used in [37] and
and nodé.right is the pointer to the right child node. their details areas follows:



A.W. Fu et al.: Dynamic vp-tree indexing fer-nearest neighbor search given pair-wise distances 159

— Clustered 10-,20-,30-,40-,50-d: sets of 10,000, 20,000,

equal size. Each cluster was centered on a point cho-
sen from a uniform distribution in the interval [0,1] on
each dimension and each point in the cluster was uni-
formly distributed in the interval-0.1, +0.1] relative to
the cluster center in each dimension. 3 ;
— Uniform 5-,10-,15-,20-,25-d: sets of 10,000, 20,000, ...,: W¢H .o W¢H |
100,000 uniformly distributed vectors in the interval j
[0,1] on each dimension. R CaRLETTEEE LR P LR PP PR P DEER P LR PR E PP ‘
Fig. 7. The clustering of vp-tree nodes in a page
The real dataset was provided by Berchtold, Keim, and
Kriegel [4] and contains about 70 Mb of Fourier points Table 1. Parameters for calculating the branching factor of internal nodes

,,,,,,,,,,,,,,,,

of variable dimensionality, representing shapes of polygons-parameters Descriptions

We randomly extracted groups (in sizes of 10,000, 20,000, page size of a page (4 kB)

..., 100,000 ) of points in dimensions of 2, 4, 6, 8, 10, 12, flag indicator of an internal or a leaf node (1 byte)

14, and 16 out of the entire dataset. no-of_entries number of internal nodes stored in a page (4 bytes)
Here we provide the details of our disk-based implemen- header flag + no_of entries (5 bytes)

vantage_point represented as a feature vectox (3 bytes)

tation of th_e vp-tree. In every !nternal node, we sto_re ON€ ;' ma. factor used in thesigma factor algorithm (4 bytes)
vantage pointyn — 1 boundary distance values, andchild mu boundary distance value for partitioning (4 bytes)
pointers, wheren denotes the branching factor. In a leaf pointer pointer to child node (4 bytes)
node we keep the actual data objects (feature vectors). inode size of one internal node,

We have carried out some experiments and found that the = vantage-point + sigma-factor + (m — 1)xmu
branching factor affects the performance in such a way that + m X pointer

m, branching factor of internal nodes

it should neither be too high nor too low. We also note that
for a low branching factor (say below 10), the size of a vp-
tree node is very small: we need only to keep the vantage o )

point, which is either an object id or a feature vector, ain Fig. 7) can be held within one disk page. We have chosen
median distance value, and the pointers to the child noded0 store only one level of a subtree under a node in a page,
This is much smaller than that for a node of R-tree for ~ meaning that the value d¢fin the above is 1. The branching
the same dimensionality of data points. Therefore we carfactor of internal nodes is calculated by finding the value of
fit a number of nodes in a vp-tree in a page (a disk block).m that satisfies

We suggest doing the following: starting from the root, and

scanning down the tree, group the nélavels of the subtree m = L
under it into a page. This is repeated recursively with the
lowest level nodes stored in the page. Suppose we have a

branching factor of 5, and is 1, then we have altogether vp-tree node is a page pointer sintés 1. If [ is greater

five vantage points to be kept in the page, and the n_umbelrhan 1, some pointers may be offsets within the same page.
of child node pointers at the bottom of this subtree in thérpg 1oaf nodes are different in structure from the internal

page is § = 25. Essentially, we can treat the content of the oo of the vp-tree, since they keep only the data vectors.
page as a supernode Wh.'Ch _has a _bra_nchmg factor of 25 (_5% number of data vectors are stored in each leaf node. We
Fig. 7). The dotted box in Fig. 7 indicates the contents N maximize the number of data vectors that can be stored when

? page. Since a sdearch down the vp—t][ge tyﬁ?ﬁjally ;raverﬁe@e use one page for each leaf node of the vp-tree. Therefore
rom a parent node to one or more of its child nodes, they, .1y 1eaf node of the vp-tree corresponds to a disk page.
above clustering of the vp-tree nodes can help us achieve

. & For the R* tree, one internal node corresponds to one
page access rate of only a fraction of that of the node accesgisk page and we maximize the branching factor according

rate. Some preliminary expe_riments show that this set up cagy the page size. For thé/-tree, the internal node keeps a
achieve good performance in terms of the amount of Pagey,a opject as the center of the spherical space corresponding

accesses im-nearest neighbor search, compared t0 SOM&, e node, and also a radius of the space. The nodes are

other. strategies. . . also arranged as in the vp-tree, so that all child nodes of a
Given a value ofl, the maximum branching factor of

internal nodes and the maximum number of data objects

Comaineq in a leaf are determined by the page Size-.Tab|eﬁable 2. Parameters for calculating the maximum number of data objects
1 and 2 list the parameters that we use in the calculations. Atored in a leaf node

page — header
inode

Note that each child pointer that is stored in an internal

4-kB page size is used, and we assume vantage points antzameters Descriptions
data objects are represented as feature vectors in dimensionggge size of a page (4 kB)
of D, each dimension occupying a 4-byte float. We have fiag indicator of an internal or a leaf node (1 byte)
done some experiments to estimate the optimal number of no-of_entries  number of data objects stored in a page (4 bytes)
branching for internal nodes, and found that the best results header flag + no.of entries (5 bytes)

data_object represented as a feature vectox (@ bytes)

occurs for the greatest branching factor possible with the
restriction that thd levels of a subtree (such as that shown

max. number of data objects [2age—header |
data_object




160 A.W. Fu et al.: Dynamic vp-tree indexing fernearest neighbor search given pair-wise distances

3500

3000 . 3000 [~ -

2500 [~ e - 800 -

...................................

2000 - i L B
. 2000 |- 4

1500 |- e > -

Page Access (non-eaf and leal)
X
Page Access (non-eaf and leaf)

1s00 |- m
1000 |- A T -

X"‘ 1000 |- -

10 20 30 a0 s0 60 70 80 20 100 a 6 8 10 12 14 16 18 20
Dataset Size (K) Number of Nearest Neighbors

(a) #nearest neighbors=8 (b) dataset size=30,000
Fig. 8a,b. Comparison with the\/-tree andR*-tree on synthetic clustered data, dimension=30

4000

node are stored in a disk page, and the branching factor is
maximized according to this arrangement.

We measured the total number of pages accessed per
search, assuming the whole tree (except the root) is stored soeo - i
on the disk. All results were averaged over 100 query points T e
that were randomly chosen from the test dataset. el ]

3500 |-

2000 |- -

Page Access (non-leaf and leal)

4.1.2 Comparison with th&*-tree and thel/-tree

1500 [~ .

1000 . -

The partitioning strategies adopted in vp-trees &tfetrees
are different. The vp-tree partitions the search space based ... | i
on the distances between objects (distance-based indexing),

whereas theR*-tree uses the absolute coordinate values T R R
of a multidimensional vector space (feature-based index- nemper or imensiens

ing). However, we believe a comparison between the twaig- 9. Cqmparison withM -tree anR*—tree on synthetic clustered data,

is significant because distance-based index methods can [jgtaset size=30,000. #nearest neighbors=8

applied to both the distance-based case and the vector-

space case. Whil&*-tree is popular, it cannot be used for

distance-based indexing. Therefore, if we can show that thep-tree and the other two trees increases with the size of

vp-tree has comparatively good performance in searchingthe datasets, indicating that the vp-tree method scales up

we can argue that vp-tree is a good choice for content-basebetter. For different numbers of nearest neighbors, we see

retrieval indexing. that the vp-tree makes around 80% fewer page accesses than

We also compare vp-tree witli/-tree. M-tree is a the M-tree and theR*-tree. Notice that the increase in the
distance-based indexing. It is shown to have gaeatkarest number of nearest neighbors leads to only a small increase
neighbor search performance and is capable of handling dyin the search effort. On the other hand, the dimensionality
namic updates. The node structureMfttree has similarity has much greater impact on the performance. Again the vp-
with R*-tree in that the hyperspace occupied by differenttree has significantly better performance thanthdree and
nodes in the same level of the tree can overlap. This conthe R*-tree. The results also provide further support for the
trasts with vp-tree in which the hyperspace of sibling nodedfindings in previous work thak*-trees stop being efficient
are disjoint. for dimensionalities greater than 20 [14, 20, 6].

All results were obtained by averaging the results of 100 The reasons why the vp-tree achieves better performance
runs of n-nearest neighbor queries. We first tested on thethan the R*-tree are now discussed: (a) The partitioning
synthetic clustered datasets. Figures 8 and 9 show the pemethods of the vp-tree and th@*-tree belong to two en-
formance of the vp-tree, thé@/-tree, and theR*-tree (in tirely different approaches. Their-nearest neighbor search
terms of page accesses) as a function of the dataset sizalgorithms should accordingly have certain specific proper-
the number of nearest neighbors, and the dimensionality, reties that make them perform differently. In particular, the
spectively. As seen from the figures, the vp-tree consistentlyz*-tree has the undesirable property that the tree nodes in
outperforms thel/-tree and theR*-tree. the same level of the tree can overlap with each other, and a

Figure 8a plots the results of experiments in which wedata point that lies in the overlapping area of two tree nodes
fixed the dimensionality at 30 and made 8-nearest neighean be grouped in either one node. This property triggers
bor queries on varying sizes of datasets. The gap betweemany backtracking searches especially for high-dimensional




A.W. Fu et al.: Dynamic vp-tree indexing foer-nearest neighbor search given pair-wise distances 161
12000
12000 |~
10000 |- 4
= -
10000 |- . = ,,)(”
________ . )
8000 |- }(, i
) ) ’ g
E B x =<
8§ sooo |- 4 ] ] L
é, é 6000 |- * /x/ i
.-_%’ 6000 |- - .5%’ "‘
4000 - ",v/x‘ -
4000 |~ -1 2000
2000 L L L o
a 6 8 10 12 14 16 i8s 20 10 20 30 40 50 60 70 80 90 100
Number of Nearest Neighbors Dataset Size (K)
(a) #nearest neighbors=8 (b) dataset size = 30,000
Fig. 10a,b. Comparison withM -tree andR*-tree on synthetic uniform data, dimension=20

8000

14000

7000 |- A
12000 |- -

6000 |- e -

10000 |-

5000 |- > -

sooo [~

4000 |- 2 m

6000 | e .

Page Access (non-eaf and leal)
*
Page Access (non-eaf and leal)

3000 |- 7 -

4000 - 1 Tk

2000 |- - e -

2000 |- A . o .
’ 1000 |- -~ L .

s 10 15 20 25 10 20 30 40 50 60 70 ER) 20
Number of Dimensions Dataset Size (K)

(a) synthetic uniform data, dataset size=30,000 (b) real data, number of dimensions = 16
Fig. 11a,b. Comparison withM -tree andR*-tree, dataset size=30,000, #nearest neighbors=8

100

data where the overlapping problem becomes more seriougsonsiderable similarity in terms of the general trend; that is,
The vp-tree does not introduce overlapping area among trethe vp-tree outperforms the other two tree structures, and
nodes in the same level. This can explain why vp-tree isall three structures do not respond strongly to the increase
better in performance and the gap in performance increasesf the number of nearest neighbors. The better performance
with the number of dimensions; (b) Since in &’-tree two  achieved by the vp-tree can also be explained by the reasons
limits for a closed bounded interval are stored on each diwe have mentioned before. However, we can see that the
mension, the size of an internal node of tRe-tree is larger  performance is not as good as that for the clustered datasets.
than that of the vp-tree. This leads to a lower fanout and arhis is due to the fact that the data objects in these uniform
larger tree size, resulting in more cost on querying; (c) Thedatasets are distant from each other, making it harder to filter
disk blocks used by the vp-tree are highly utilized. As the out non-qualifying objects for the-nearest neighbor search.
R*-tree implementation focuses on other issues, such as the The curves for uniform data exhibit a slightly different
reduction of overlap between bounding boxes, the utilizationtrend in that theR*-tree can sometimes perform better than
rate is typically not as high as the vp-tree’s. the M-tree. We believe that for clustered data, the shape of
For the M-tree, the disadvantages of having large inter-clusters are more spherical rather than rectangular, and hence
nal tree nodes is avoided since like the vp-tree, it stores onlyhe spherical nodes of th&/-tree are superior in handling
a center and a distance value to indicate the boundary of these clusters. However, this advantage may not hold out for
node. However, similar to th&* tree, it has a problem of uniformly distributed data.
overlapping node spaces. This can explain why vp-tree is For the real data, we first studied the dependency on
also much superior td/-tree in searching performance. the dataset size. We used datasets of sizes (10,000, 20,000,
Next, our test dataset was the synthetic uniform one...., 100,000) and fixed the maximum dimensionality at 16.
Recall that the dimensions of this set of data are variedrigure 11b presents the number of page accesses versus the
from 5 to 25, much lower than those of the clustered datasetdataset size. The vp-tree performs much better tharkthe
Figures 10 and 11 show the results. Compared to the resultsee and thél/-tree. The gap seems to open up as the dataset
for the clustered dataset, the curves in these figures displagize increases. Figure 12a gives the performance results for



162 A.W. Fu et al.: Dynamic vp-tree indexing fernearest neighbor search given pair-wise distances

5

oo
oo

FeTe e I

i
1

7000 |-

6000 - - 6000 ; i

5000 |- — 5000 | /’ -
4000 |- / -

4000 |- B

3000 |- 7 .

Page Access (non-eaf and leal)
Page Access (non-eaf and leaf)

3000 [- £

2000 -/ e 1
2000 - - / -

1000 | N 4
1000 |- B K

a 6 8 10 12 14 16 is 20 2 a 6 8 10 12 14 16
Number of Nearest Neighbors Number of Dimensions

(a) dimension=16 (b) #nearest neighbor=8
Fig. 12a,b. Comparison withM -tree andR*-tree on real data, dataset size=30,000

varying numbers of nearest neighbors. The test dataset cor}é?!€ 3- Maximum branching factor for R-tree and vp-tree
tained 30,000 16-d objects. The vp-tree outperforms both # Dimensions 10 20 30 40 50
the M-tree and theR*-tree. The same dataset size (30,000 R-tree 50 25 16 12 10
objects) was chosen to experiment on the impact of the di- vP-tree 2 18 16 14 13
mensionality of data. The result is shown in Fig. 12b. Again
the vp-tree performs much better and especially for higher
dimensions. !

n our experiments. This should enhance the performance of

. - iginal M -tree method.
By observing the actual number of page accesses bemES‘e origina . .
reported in Figs. 11 and 12, it is clearly seen that the query We compare the branching factors determined by these

: ; ts for th&*-tree, theM -tree and the vp-tree in

cost required for the real data is larger than that for thedfrangemen ) ' I . .

clustered data, but smaller than that for the uniform data.-rabIe 3.The branchlng factqr of thie -tree is the maximum
umber of minimum bounding rectangles stored in a node

As mentioned before, objects in uniform datasets are distal ) . .
or a page, which also determines the number of distance

from each other, which explains why the cost involved in tati ded f h For th 0
searching through the uniform data is the most. We beliey&OMputations needed for each pageé access. ror né vp-tree
or M-tree, a node may store a number of vantage points or

that the original set of real data provided by Berchtold, Keim, i biect o the b hing factor. h |

and Kriegel [4], like most of the real datasets, is correlategtOUting ODJECIS up 1o the branching tactor, however, only a

or clustered. However, because we randomly selected only action of_th_ese need to be considered since only the nodes

small part from the whole set (containing about 1.3 million at are within jche search range need to be trav_ersed. In our
experiments, since the number of page access in the vp-tree

objects), the clustering effect could not be fully maintained. ;
Therefore, the search effort for the real data corresponds t earch is much s_maller compared_Rb—tree and thel-tree,
e number of distance computation would also be smaller.

somewhere between what the clustered and uniform datase
require.

Distance computation 5 Update operations on VP-trees

One may see that the vp-tree ahfitree search requires Because of the top-down partitioning strategy, updates of
distance computation which is expensive. In fact, each nod¢he vp-tree are complex to manage and a global reorgani-
access is accompanied by a distance computation (unlegmtion of the structure may result. Unlike the B-tree and its
some strategy as discussed in Sect. 6 is adopted). Howariants, we cannot conveniently split a node and simply
ever, the nearest neighbor search algorithmAo6+tree also  propagate the splitting up the vp-tree. This is because the
requires the computation of distance (MINDIST, which is partitioning at a parent node affects the partitioning at the
roughly the shortest distance between a query point and ahild nodes, so the effect of a split needs to be propagated
minimum bounding box of a tree node) in order to achievedownwards. Similar problems also apply to the merging of
effective heuristic pruning. This computation is also usednodes on deletion. As such, handling update operations that
for each node in the tree. For th& -tree, we have used a can maintain a balanced tree without substantial restructur-
page for storing each node. For the vp-tree andMhéree, ing has been left as an open problem.
we used the physical clustering as described in Sect. 4.1.1, Here we propose algorithms for doing insertions and
which determines the branching factor. We have used amleletions on the vp-tree. The maximum branching factor of
improved version of the\/-tree implementation in that the non-leaf nodes and the maximum number of objects con-
data-object of a node representing the center of the sphericéhined in a leaf are determined by the page size as described
space is stored as an object-id rather than the entire featuia Sect. 4.1.1. For a non-leaf and non-root node, the number
vector. In this way, the branching factor of thié-tree is  of child nodes varies between a minimum value and a max-
independent of the number of dimensions and is always 29mum valuem, as in a B-tree. The minimum value should



A.W. Fu et al.: Dynamic vp-tree indexing foer-nearest neighbor search given pair-wise distances 163

= = = to upper non-leaf nodes = = = to upper non-leaf nodes

node P

Jer][ ]

node L node L
lalb[ | | [c[dlelf] [a h] [ | —rearmotes [a]bc|] | [d[ele] | [ g[h[ | - teatnodes
(@) A new object e’ needs to be inserted into L (b) All objects under P have been redistributed, e’ gets
and sibling leaf nodes are not full. inserted and boundary distances have been updated

Fig. 13a,b. Redistribution among leaf nodes

T' = = to upper non-leaf nodes  + « to upper noneat nodes
node P node P
I
node L node ly node b
‘a‘b}c‘d‘ ‘e‘f’g‘h‘ ~— leaf nodes \a\b}c\d\ ‘e‘e’f‘ ‘ Pg\h[ ‘ ‘&,eafnodes

(a) € needs to be inserted into L and all siblings are full,(b) L has been split into nodes L1 and L2,
but the parent node P has room for one more child. and e’ gets inserted.

Fig. 14a,b. Splitting of leaf node

node A

r = = = to upper non-leaf nodes

la[oiciddddb[ [ K [mag|leatf[sth] [ao[dd[de

ALk ) ml o oif[ b bFol] 5kt fu]

node L node L
(@) €’ needs to be inserted into L, the entire B subtree is full, (b) Assume objects g and i are the farthest with respect to A's
since the sibling subtree C has room, we choose to vantage point. After redistribution they have been moved
redistribute objects among B and C. to the C subtree and e’ gets inserted.

Fig. 15a,b. Redistribution among subtrees

Old boundary between B and C

New boundary between
nodes B and C

5.1 Insert

To insert a new object, at each level of the vp-tree, we pick

o a node, the distancé between the associated vantage point
Points inside this ring

have to be moved to C and the new object is first computed. We then traverse the
herefore, their distances tree, choosing the subtrét whose distance range covets
from VC must be computed i.e., pni—1 < d < p;, until a leaf nodel is found. If there is

room in L, we insert the new object and the insertion is done.
If L is full, we employ the following strategy. Examples are
given in Figs. 13-18:

1. If any sibling leaf node of is not full, redistribute all
objects under® among the leaf nodes (Fig. 13).
Let F be the number of leaf nodes under P. Retrieve
all objects stored in the F leaf nodes, and let S be
the set of objects retrieved plus the new object being
inserted. Order the objects in S with respect to their
distances from P’s vantage point v. Divide S into
not be greater thafin /2], andm should be at least 2. The F groups of equal cardinality, and let SS; be the F
root can either be a leaf node or have at least 2 and at most subsets, for i=1,2,...,F. Finally, update the boundary
m child nodes. distance values and pointers stored in P as below:

Fig. 16. Redistribution among non-leaf nodes



164 A.W. Fu et al.: Dynamic vp-tree indexing fernearest neighbor search given pair-wise distances

begin
average := [(Num(k) + Num(k + 1)) + 2];
if Num(k) > Num(k+1) then
Let S be the set of objects stored in the k-th subtree plus the new object;
Order the objects in S with respect to their distances from A’s vantage point v;
Let w be the number of data objects that will be moved from k-th subtree to (k+1)-th subtree;
w := Num(k) — average;

Divide S into 2 subsets, SS; and SS, in order, where
SS1 = {S1,S2, ---» Snum(—w and
SS2 = {SnumE —w+1> SNumE)—w+25 -++» SNum(k) }5

for all s; € SS,, delete s; from the k-th subtree;
A t.muy = (max{d(v, s)) | ¥s; € SS1} + min{d(v,s)) | Vs; € SS,}) + 2;
for all s; € SS,, reinsert s; to the (k+1)-st subtree;
else
Let S be the set of objects stored in the (k+1)-st subtree plus the new object;
Order the objects in S with respect to their distances from A’s vantage point v;
Let w be the number of data objects that will be moved from (k+1)-st subtree to k-th subtree;
w := Num(k+1) — average;

Divide S into 2 subsets, SS; and SS, in order, where
SS1 = {S1,S2,...,Sw} and SSz = {Sw+1, Sw+2; s SNumk+1) }5

for all s; € SS;, delete s; from the (k+1)-st subtree;
A t.muy = (max{d(v, s)) | ¥s; € SS1} + min{d(v,s)) | Vs; € SS,}) + 2;
for all sj € SS;, reinsert s; to the k-th subtree;
endif
end

Fig. 17. Algorithm for redistribut-
ing objects between two adjacent
subtrees

r = = = to upper non-leaf nodes

node A r * = = to upper non-leaf nodes

node A

node B the same node C as before

[a[blcid[dqdn[{iKi [mAdp|lalr]s| 4]y vwl

[a[ o] [ J[c[d] | |]e

el f[ ] [ol [ [ JTa[i[ [ [t | ]

(@) €' needs to be inserted into L, the B subtree is full and
so are the siblings, but ancestor A still has room for
one more child. We do node splitting at B.

(b) B has been split into B1 and B2, and e’ gets inserted.
Note that C remains unchanged.

Fig. 18a,b. Splitting of non-leaf node

for i=1toF-1

P t.mu; := (max{d(v, sj) | Vs; € SS;}

. +min{d(v, s;) | Vs; € SSi+1}) + 2; for = kitoF_1
for IJ_D % écr)]illztj- := the leaf node containin i P1.Muiyg = P T.mu;;

' b g SSi P t.muy = (max{d(v,s;) | Vs; € SS1}
+min{d(v, s;) | Vs; € SS2}) + 2,

for i=k+tltoF

P #.childiy; := P 1.child;;
P 1.childg := the leaf node containing SSy;
P 1.childy,, := the leaf node containing SS,.

shift the boundary distances and pointers of P so
as to make room for a new leaf node split from L.

2. Else, if L has a parent nod® and P has room for one
more child, split the leaf nodé (Fig. 14).
Assume L is the k-th child of P. Retrieve all objects
stored in L, and let S be the set of objects retrieved
plus the new object. Order the objects in S with re-

spect to their distances from P’s vantage point v.
Divide S into 2 groups of equal cardinality, and let
SS; and SS; be the two subsets in order. Again,
F denotes the number of leaf nodes rooted at P.
Then the following pseudocode describes how we

. Else, suppose we can find a nearest ancestafr L that

is not full. Let B be the immediate child node of,

which is also an ancestor df:

a) If any sibling subtree ofB is not full, locate the
nearest not-full sibling” and redistribute the objects



A.W. Fu et al.: Dynamic vp-tree indexing foer-nearest neighbor search given pair-wise distances

Node B has to be splitted

Splitting boundary (using VP as the
vantage point).

Fig. 19. Splitting a non-leaf node

b)

among the subtrees betweéh and C' inclusively
(Fig. 15).

For simplicity, we focus on a case where two adja-

165

Result of the splitting
new node B’ created

A t.childiy; == A t.child;;
A 1.childg := make_vp_tree(SS;);
A 7T.childg+1 := make_vp_tree(SS,).

cent subtrees take part in the redistribution, but the
discussion can easily be generalized to cases wherel. Else, eitherL is the root node or we cannot find any

any number of subtrees are involved. We shall redis-
tribute the objects kept in the k-th and the (k+1)-st
subtrees.B can be either the k-th or the (k+1)-st

subtree. Let Num(k) and Num(k+1) be the number
of objects stored in the k-th and the (k+1)-st subtrees,
respectively. We first calculate the average number of

ancestor node of that is not full. Then we split the
root node into two new nodes and sy, and insert the
new data point according to the strategy as discussed
above for splitting either a leaf node or a non-leaf node.
A new root node is created withy and s, as the child
nodes.

objects stored in the two subtrees. If it is found that

the k-th subtree holds more objects than the average,

those (in the k-th subtree) farthest frafis vantage

The insertion algorithm described above is based on a
redistribute-first strategy, that is, we prefer redistribution to

point will be moved to the (k+1)-st subtree, so that Node splitting whenever both choices are allowed. We can
both subtrees will eventually hold the same numbercertainly adopt a split-first strategy in which case node split-
of objects. The boundary distances and pointers in{ing has a higher order of preference. We shall compare the
volved in the subtrees will be updated accordingly. tWo strategies in our performance study.

On the other hand, if we find that the (k+1)-st subtree

holds more objects, its objects that are the closest to

A’s vantage point will be moved to the k-th subtree. 5.2 Delete

Figure 17 gives the pseudocode description of the re-

distribution of objects between two adjacent subtrees Traverse the tree in the same way as described in the inser-

An example is also shown in Fig. 16.

Else, sinced is not full, it has room for one more

child, we split the non-leaf nodB (Fig. 18 and 19).
Assume B is the k-th child of A. Retrieve all ob-
jects stored in the subtree rooted at B, and let
S be the set of objects retrieved plus the new
object. Order the objects in S with respect to
their distances from A’s vantage point v. Divide
S into two groups of equal cardinality, and let
SS; and SS; be the two subsets in order. Let F
be the number of subtrees rooted at A. To make
room for the new subtree that is split from B, we
shift the boundary distances and pointers of A in
the following way. Note that make_vp_tree is the
procedure for vp-tree construction, which will be
called to construct two subtrees on the sets SS;
and SS; respectively:

for i=ktoF-1
A T.mujy; = A T.mu;;
At.muy = (max{d(v,s;) | Vs; € SS;}
+min{d(v, s;) | Vs; € SS5}) + 2;

for i=k+1ltoF

tion case until a leaf nodé is found. Remove the object
from the leaf node and see if the node underflows. If not,
the task is done.

Let level(£)) denote the level of nodé&. If F is a leaf
node, levelf)=0. Let MIN;gzs be the minimum number of
objects that should be stored in a leaf node, and pMIN
be the minimum number of subtrees that a non-leaf node
should have. Then MIM:{(F) denotes the minimum number
of objects that should be stored in the subtree rooted at node
E, and is defined as:

MIN gat E) = MIN jear X (MIN 5)®¢'®

Here we define that a leaf node underflows if the number of
objects it stores is less than M, and that a subtree at
node E underflows if the number of objects stored in that
subtree is less than ML E).

If the leaf nodeL underflows we choose the following
scheme:

1. If L has a parent nod® and P does not underflow, let
F be the number of leaf nodes und@rand we do either
of the following:

a) If the total spare room of's siblings can hold all
of the objects inL, redistribute the objects undét



166 A.W. Fu et al.: Dynamic vp-tree indexing fernearest neighbor search given pair-wise distances

Table 4. Access cost of splits and redistributions at non-leaf nodes with the
redistribute-first strategy- synthetic clustered sample

Intervals of Node splitting Redistribution
insertions occurrence avg. cost occurrence avg. cost

(pages) (pages)

1- 1000 13 67.54 6175 70.01

1001 - 2000 1 34.00 543 85.48

2001 - 3000 0 0 1100 90.34

3001 - 4000 0 0 1257 90.13

The vantage pom™—< " 4001 - 5000 1 34.00 1357 89.53

can be a new one, or can be 5001 - 6000 0 38.00 1325 93.66

Nodes B and C will be merged VC or VB 6001 - 7000 0 0 2753 84.33

Fig. 20. Merging 2 nodes 7001 - 8000 0 0 5960 98.60
8001 - 9000 1 7012.00 0 0

9001 - 10,000 0 0 2 25.00

amongF — 1 nodes, i.e.L is to be merged with its
g L 9 Table 5. Access cost of splits and redistributions at non-leaf nodes with the

siblings. Iy .
. lit-first strategy - synthetic clustered sample
b) Else, when the total spare room is not enough to hold™ ooy _ P -
all of the objects inL, redistribute the objects under  Intervals of Node splitting Redistribution
P amongF nOdes insertions occurrence avg. cost occurrence avg. cost
: ages ages
2. Else, locate a nearest ancestoof L that does not un-  ——555 15 (pﬁg 07) 8830 (p6? 36)
'derﬂOW. LetB be the immediate Chlld node Gf, andB 1001 - 2000 0 0 302 71.07
is also the ancestor df. AssumeB is the k-th subtree 2001 - 3000 0 0 315 71.37
under A: 3001 - 4000 0 0 415 73.05
a) If either of the following three conditions is satisfied, 4001 - 5000 3 38.00 900 118.84
we perform a merge. Note that the merge involves Zggi - ?888 g 38600 j’ggj 1123709151
only adjacent subtre.es. Figure 21 Qescnbes such 24001 - 8000 0 0 4914 126.45
merge. We show a diagram of merging two nodes in ggg1 - 9000 1 7012.00 0 0

Fig. 20, in which we show that the vantage pdild/ 9001 - 10,000 0 0 0 0
can be new one or an old one; in our implementation,
we choose to use an old one.
Case 1: if the (k+1)-st subtree has enough room toThe above procedure is the merge-first strategy where redis-
hold all the objects inB, we move the objects i tributions will take place only when adjacent nodes do not
to the (k+1)-th subtree and deleie have enough room to allow for a merge. On the other hand,
Case 2: if the (k-1)-th subtree has enough room toin the redistribute-first strategy merges will occur only when
hold all the objects inB, we move the objects i all sibling nodes of the underflowing one are at the minimum
to the (k-1)-th subtree and deleie size (that is, MINsys for leaf nodes or MINg, for non-leaf
Case 3: if the total spare room of the (k+1)-st and thenodes).
(k-1)-th subtrees can hold all the objectdinwe first
calculate the number of objects that should be moved
to the (k-1)-th subtree (denoted by the variabiil 5.3 Performance evaluation
in Fig. 21). We then movenid objects fromB to the
(k-1)-th subtree and the rest to the (k+1)-st subtree We conducted a number of experiments to demonstrate the
and deleteB. performance of our insertion and deletion algorithms for the
b) Else, when none of the above three conditions is satvp-tree. The algorithms were implemented in C under UNIX
isfied, redistribute all the objects unddramong its  on an UltraSPARC.
child subtrees. We apply the same method as in step We used three samples of data (clustered 30-d, uniform
3(a) for insertion. 20-d and real 16-d), each containing 100,000 objects. A sep-
3. Else, eitherl is the root node or all ancestors bHfun- arate vp-tree was constructed to organize the objects of each
derflow. In this case, if the root node has at least twoof the three samplés The branching factor of the tree is
child nodes, we merge two child nodes of the root with determined by the physical clustering strategy described in
the deletion of the given data point. The merging strat-Sect. 4.1.1.
egy in the above can be used. The original root node Then we inserted 10,000 new objects into each tree with
is deleted and the merged node becomes the new rodhe redistribute-first strategy as well as the split-first strat-
node. If the root node is a leaf node, it means thas egy. For every 1000 insertions, we measured the average
the root node and the deletion is carried out in the rootpage accesses required for all the insertions so far. Figure
node, we simply delete the data object frdm 22 plots the results for the clustered sample. We also counted
. . the times that node splitting and redistribution had occurred
_ The check on adjacency that the three cases outlined; o, .1, interval of 1000 insertions. Tables 4 and 5 show
in step 2(a) have emphasized is to make sure that the r§ne ooint and the associated cost in page accesses for the

i”S‘?”i‘.’” ipvolveq i!‘ the merge of subtrges will not cause g istripute-first and split-first strategies, respectively. Note
redistributions. Similar to the insert algorithm, there can be

redistribute-first and merge-first strategies of doing deletes. 5 Details of the data samples have been given in Sect. 4.1.1.




A.W. Fu et al.: Dynamic vp-tree indexing foer-nearest neighbor search given pair-wise distances 167

begin
Retrieve all objects stored in the subtree B, and let S be the set of objects retrieved;
Let F be the number of subtrees rooted at A;

if Case 1 then
for i=ktoF—2, At.mu; := A T.MUjyq;
for all sj € S, insert s; to the (k+1)-st subtree;

elseif Case 2 then
for i=k—1toF—2, At.mu; := A T.MUjyq;
for all s; € S, insert s; to the (k-1)-th subtree;

elseif Case 3 then
Let Num(i) denote the number of objects stored in the i-th subtree;
mid := {Num(k-1) + Num(k) + Num(k+1)} = 2 — Num(k-1);
Order the objects in S with respect to their distances from A’s vantage point v;

Divide S into 2 subsets, SS; and SS, in order, where
SS1 = {S1,S2, -+, Smid} and SSz = {Spid+1; Smid+25 > SNum(K)

Aft.mu_; = (max{d(v,s)) | Vsj € SS1} + min{d(v, s)) | V¥s; € SSz}) + 2;
for i=ktoF—2, At.muj = A T.MUjysq;

for all s; € SSy, insert s; to the (k-1)-th subtree;

for all s; € SS,, insert s; to the (k+1)-st subtree;

endif
for i =ktoF—1, A t.child; := A 71.child;y;
end
Fig. 21. Algorithm for merging adjacent subtrees
= e BT is costly because a large number of subtrees are involved.
When no more redistribution could be done, node splitting

- became necessary.

/™ Having done the split, followed by considerable redis-
tributions, the utilization of nodes has been averaged out,
leading to a slight drop of the total page accesses after 6000
insertions. Soon after that, nodes became fuller and fuller
due to the insertion of another 2000 objects. The trend there
resembles the one at the beginning.

With the split-first strategy, choosing splitting rather than
redistribution creates much room well before nodes become
saturated. This strategy is able to avoid frequent subtree-

OO0 EO00 000 20 imbar of insariona. o0 0090 xe0ee based redistributions. Therefore, the overall access cost made
Fig. 22. Insertion: synthetic clustered dataset of 100,000 objects by the split-first strategy is lower than the redistribute-first.
from 700 to 1000 insertions, of splits and

The results for the uniform and real data are shown in

that we only f d on th which rred at non-| igs. 23a and 23b, respectively. We can see from the figures
at we only focused on thosé which occurred at non-i€ay, 4 he o strategies exhibit a similar trend in that the
nodes because the cost for splitting and redistribution amongplit-first strategy is better. omitted for brevity

leaves is comparatively low. ; L .
- . Note that there is a big difference in the performance
. Both of the tables show tha_t the splitting and red'smb.u'between the clustered datg and the uniform zgnd real data.
tion Of. non-leaf n(_)des occurs in a pglsate. manner. Du”r.]gThis is in fact due to differences in the fullness of the nodes
some intervals of insertions, the cost is entirely due to splitg, the trees. For the clustered data, there are 30 dimensions
and redistributions among leaves. As such operations are NQY the leaf node can hold up to 5,2 data objects, and the,
costly, the curves in Fig. 22 for both sirategies show lower aximum branching factor is 15. With a tree of fou’r levels
page access rates. However, at some other intervals, the spI{ Je maximum number of data objects is:325° = 108 000 ’
ting and redistribution of non-leaf nodes were more frequent,, .. " .-\ "sce that this is very close to the number of data
This 1S due.to the phenomenon_that node_s get.fuller .undeBbjects in the database, which is 100,000. Therefore, most
more insertion and, up to a point, most insertions tr99€r it the nodes are fully pécked in the béginning '
non-leaf node splitting or redistributions. At around 4000 For the uniform data. there are 20 dimens.ions the leaf
insertions, we recognize that prior insertions have movednode can hold up to 4é data objects, and the r'naximum

th_e n_odes close to saturation. Hence, more and more r.Ed'?)'ranching factor is 17. A tree of four levels is needed to
tributions were required, and each of these redistributions

Page Access (nonea and ea)




168 A.W. Fu et al.: Dynamic vp-tree indexing fernearest neighbor search given pair-wise distances

£

Split-first i
25 b Redistribhte first -—--s<---- RedistribUte first --—-s<-—-
22 [ B
20 - /4
20 [ Vi
is |- / -

16 [ e -

as |- 1a | e B

Page Access (nor-eaf and ea)
Page Access (norveafand eaf)
X,

e
iz 'l' |
10 - / |

10 |-

s |- y u

=3
1000 2000 3000 4000 S000 6000 7000 8000 9000 10000 1000 2000 S000 4000 5000 6000 7000 8000 S000 10000
Number of Insertions Number of Insertions

(a) Synthetic uniform data (b) real dataset
Fi

0. 23a,b. Insertion: comparison with datasets of 100,000 objects

10

that the height of the trees for clustered and uniform samples
os | - . is only 4, we observe that the first 20,000 deletions for both
T samples required only the corresponding minimum cost of
< deletes with both merge-first and redistribute-first strategies.
as | i This is also true for the first 30,000 deletions for the real data
/ sample. In other words, deleting such amounts of objects has
; not caused any underflows.
vs b . However, as more and more objects were removed, re-
* distributions or merges occurred more often. Consequently,
the average number of page accesses increased steadily with
os E the number of deletions, as shown in all three figures. The
. ﬁ reason that the merge-first strategy needs fewer page ac-
e %0 RWieerorpeitaon= a0 %0 cesses than the redistribute-first strategy is because merging
g. 24. Deletion: synthetic clustered dataset of 100,000 objects of nodes reduces the total number of nodes, and in turn
increases the average utilization of nodes. Thus, underflows
did not occur as frequently as in the case of redistribute-first.

hold 100,000 data objects. With a tree of four levels, the ~Next we changed the minimum fan-out factor of the

maximum number of data objects is 48178 = 235824,  VP-tree to[m/2], wherem is the maximum fan-out. We

Hence, most of the leaf nodes in the tree are not full. repeate_d S|_m|Iar experiments for deletion. The res_ul_ts are
For the real data, there are 16 dimensions, the leaf nod&hown in Figs. 27 and 26. Although the greater minimum

can hold up to 60 data objects, and the maximum branchinéa”'OUt would mtro_duce more restructuring of the tree, it

factor is 18. Again a tree of four levels is needed to holgWwould also help to increase page utilization and shorten the

100,000 data objects. With a tree of four levels, the maxi-{ree. We see that the average number of page accesses has

mum number of data objects is 6018 = 349 920. Again, !ncreased compared to _the previous set of experiments, this

most of the leaf nodes in the tree are not full. is because more redistributions and merges occurred. How-
If the leaf nodes are mostly full, we can expect a lot of 8ver, the deletion process is still quite efficient.

redistribution and splitting operations, and this is seen in the

case of the clustered dataset. If the leaf nodes are not full,

as in the cases of the uniform dataset and the real datasét;3.1 Other performance evaluation

insertion will not trigger much redistribution and splitting.

Therefore the page access will also be very minimal. InIn the previous sections, updates have been performed on top

fact, we have carried out another set of experiments for thef an existing database. Next we investigate the case where

clustered data, but limited the maximal page utilization towe begin with an empty database. We incrementally updated

about 70%. The resulting number of page accesses for ththe database and the results are shown in Figs. 28 and 29.

split-first/merge-first strategies is around 8. The average page access is lower for the split-first strategy.
For measuring delete performance, we removed 100,000 he performance is slightly worse than that for inserting on

objects from each of the vp-trees built for the three dataan existing database, however, it is still acceptable as the

samples using the redistribute-first strategy and the mergaaumber of page accesses is below 15 for the split-first case

first strategy. We set MIf, to 2 and MINe4s to be 50% of  for all the cases considered.

the maximum number of objects contained in a leaf. We carried out another set of experiments interleaving
For every 10,000 deletions, we measured the averagmsertion and deletion operations, and the results in perfor-

page accesses required for all the objects deleted so famance are similar to pure insertion/deletion.

Figures 24 and 25 give the results for the clustered, uniform  We have also performed a set of experiments to evaluate

and real samples. All the curves show a similar trend. Giverthe effect of update operations emearest neighbor search.

Page Access (nor+eaf and lea)

Fi



A.W. Fu et al.: Dynamic vp-tree indexing foer-nearest neighbor search given pair-wise distances 169

10 °

o roro =t ————
Redistribute first - Redictbe et e
p -

Page Access (nor-eaf and ea)
o
T
1
Page Access (norveafand eaf)
N
o
T
1

10 20 30 a0 50 60 70 80 S0 100 10 20 30 ao so ) 70 B0 s0 100
Number of Deletions (K) Number of Deletions (K)

(a) synthetic uniform data (b) real dataset
Fig. 25a,b. Deletion: comparison on datasets of 100,000 objects

10 >
T —— e
RedsiBe TS e T

(o=t J——

o.5 - B

Page Access (non-eaf and leaf)
h 0 ¢
T
1
Page Access (toneafand laf)

10 20 30 a0 50 60 70 80 20 100 10 20 30 a0 s0 60 70 80 20 100
Number of Deletions (K) Number of Deletions (K)

(a) synthetic uniform data (b) real dataset
Fig. 26a,b. Deletion: comparison on datasets of 100,000 objects with minimum fan-out2]

* o ing are slightly worse than those reported in Sect. 4.1 since
os |- 7 here we began with a node utilization of 70%. The search
- performance has not been much affected by the updating.

°r ,( x i In fact, after a certain amount of insertion or deletion, the
as T nodes probably became even better organized than the initial

70% utilization through the re-organization of the tree dur-
) ing insertion or deletion. This is reflected in the drop in the
s b . number of page accesses of thaearest neighbor search.
* The results show that the proposed insertion and deletion
! algorithms are effective in maintaining the desired goodness

os | /_,\ of the tree structures.

6
10 EL) 30 ao s0 ) EC) B0 so 100
Number of Deletions (K)

Fig. 27. Deletion: synthetic clustered dataset of 100,000 objects with min-
imum fan-out =[m/2] 6 Vantage point selection

Instead of using the maximal page utilization of 100%, weln a high-dimensional space, the distance calculations be-
use a maximal page utilization of around 70% for the vp-tree tween data objects are expected to be computationally ex-
because with node splitting, the average utilization shouldpensive. As such, a major concern on distance-based index-
be less than maximal. We chose this amount of utilizationing is to minimize the number of distance computations in
because it has been found typical in tB&-tree indexing. order to aim at efficient query processing. The mvp-tree [6]
Starting with a dataset of size 100,000, we performed in-is one recent example. The mvp-tree uses two vantage points
sert or delete operations and also 8-nearest neighbor querin every node. In binary mvp-trees, the first vantage point di-
We measured the average 8-nearest neighbor query perfovides the space into two parts, and the second vantage point
mance in terms of page accesses after each 1000 insertiativides each of these partitions into two, making the fanout
or deletion. The results for the clustered data are shown irf a node in a binary mvp-tree four. As seen from Fig. 31,
Fig. 30. Note that the query performances before the updateach node of the mvp-tree can be viewed as two levels of



170 A.W. Fu et al.: Dynamic vp-tree indexing fernearest neighbor search given pair-wise distances

30 ao

S T as |

s0 |- - 4
/ <

20 [ / E 7

2s | E

15 ]

10 20 30 a0 S0 60 70 B0 20 100 10 EL) 30 ao so 60 70 B0 S0 100
Number of Insertions (K) Number of Insertions (K)

20 |- /’ ~

Page Access (nor-eaf and ea)
Page Access (norveafand eaf)

s |/ B

20 , J\_f

(a) synthetic uniform data (b) real dataset
Fig. 28a,b. Starting with an empty tree: comparison on inserting datasets of 100,000 objects

B0

from the first vantage point; the third vantage point to be the
ok farthest from both of the previous two vantage points; and
so forth. The reason why we require the vantage points to
“r T 1 be far apart is to ensure a relatively effective partitioning of
so | 7 1 the dataset.
T Since there is only a single vantage point for each level,
=T T 1 in a search operation, the number of distance computations
ot . at non-leaf nodes is equivalent to the number of non-leaf
levels of the tree, which can be assumed to be a small num-
ber. Because of the small quantity, we can keep the vantage

Page Access (nor+eaf and lea)

zo F -

wb— ] points outside the tree and keep only pointers to them in
. the tree. This allows a higher fanout at the non-leaf nodes
R S S and a smaller tree size, and consequently can enhance the

Fig. 29. Starting with an empty tree: comparison on inserting a synthetic Performance on querying.
clustered dataset of 100,000 objects

. . 6.2 Reuse of vantage points
a vp-tree, but involving fewer vantage poiht8ecause of

using more than one vantage point in a node, the mvp-tre . . : .
has fewer vantage points compared to a vp-tree. For queﬁ-he main drawback of using a single vantage point for eai:h
evel lies in the deviation from the original partitioning strat

processing, most of the distance computations made are be: of the vo-tree. In the original method. every chosen
tween the query point and the vantage points. The mvp-treggy b ; 9 ' y

structure can therefore reduce a certain amount of distanc\éantage point (by the algorithm in Fig. 2) should suit its

: : .. -associated region to a certain extent. Although we attempt
computations. The mvp-tree approach will be compared Wm}o maintain a good partitioning as in the original method by

:)heeri:xvg nflslternatlves we shall present, with a number of eX'choosing vantage points that are distant from each other, the

one chosen vantage point may not be appropriate for each
of the nodes at the corresponding level. Our second method
tries to achieve a balance between a favorable partitioning
of the dataset and a reduction of distance computations.

Unlike the previous approach, nodes at the same level

6.1 A single vantage point per level

I_n vp-trees, every node of the tree is asso_mated with a dis; ay have different vantage points. However, not every such
tinct vantage point. When the search operation traverses mul-

tiple branches, we have to make a different distance Com_antage point will be unique. Some of them may in fact
P ' be the same, because the vantage points are reused. Before

putation at the root of each branch. Conversely, if we use ébuilding the vp-tree we fix a numberto be the maximum
single vantage point to partition the regions associated W'ﬂhumber of vantage points that we shall use in total. The

the nodes of the same level, only one distance computatlogelection of thesp vantage points is the same as in the pre-

m'rl]l dbgulp;?sl)cler}r?e?r:o%a?; %ﬁg;:ﬁé‘;r:ev(;gt;gfe'igge ﬁ;;‘o?g vious approach: the first vantage point is selected based on
9d put . the algorithm in Fig. 2, and all of thg points are chosen to
At the root Ie_vel, we c_hoose the first vantage point .W'th be the farthest from each other. Then, we construct the vp-
fyhrie iTaelﬂ\]/O(-jtr((jeipigtgedllor})FI%\ezn(sxlzocthhoeo;?aemgdsgigr? d'r\‘/g:]_ree using such pre-selected vantage points. In other words,
ginal vp ’ : .~ the set of pre-selected points act as the ‘candidate vantage
tage point for the next level to be one of the farthest pomtspoints’ described in Fig. 2. By increasing the numpgour
6 In Fig. 31, v1,v2,v3 denote the different vantage points used in theMethod provides more choices of vantage points for the par-

nodes. titioning at each node. particular fixed vantage point. Clearly,



A.W. Fu et al.: Dynamic vp-tree indexing foer-nearest neighbor search given pair-wise distances 171

Page Access (non-eaf and lea)

) B a 3 ) 10 o B a & s 10
Number of Insertions (KK) Number of Deletion: s (<)

(a) insert (b) delete
Fig. 30a,b. Updating and querying: comparison on datasets of 100,000 objects

Table 6. Eight-nearest neighbor search for clustered data of dimension 30

Dataset size Number of distance computations
\%! m reuse single mvpt original
valilwr [)I" [ we |, 10,000 49231 50218 49833  509.66
| | 20,000 1096.85 1106.77 1105.02 1125.46
(b) 30,000 1812.58 1816.85 1829.67 1876.81
. . . 40,000 2237.00 2239.46 2236.00 2320.76
Fig. 31a,b. Node structures foa a binary vp-tree anth a binary mvp-tree 50,000 274343 275407 274459 283218

the number of distance computations at non-leaf nodes for

query processing is bounded by If the numberp is of ~ numberp of vantage points, we set the value pto be a

a manageable amount such that keeping them in the maifeasonably small number, 20. For only the ‘single vantage

memory is not costly, we can keep thevantage points point per level’ approach, we kept the vantage points outside

outside the vp-tree as in the previous approach. This cathe vp-trees.

reduce the storage size of the tree and increase the fanout Two performance metrics were used: the number of dis-

of the non-leaf nodes, in particular if the vantage points ardance computations and page accesses. We counted the num-

high-dimensional feature vectors. ber of distance computations and page accesses required for
It is a good idea to keep small so that we can store all 8-nearest neighbor queries by each method. All results were

the vantage points outside the tree and use less time to selegveraged over 100 such queries. We used five sets of syn-

the p distant points out of the dataset and to determine théhetic clustered data, each containing a different amount of

best vantage point for each non-leaf node. But a minimal data points in dimensions of 30. The amounts vary from

may offset good partitioning of the dataset. We believe thatl0,000 to 50,000. The details of these datasets have been

a good value ofp can be found by trial and error for a given given in Sect. 4.1.1.
dataset. We present the results in Tables 6 and 7. In these tables,

the column labeled ‘reuse’ refers to the method that reuses a

fixed number of vantage points, ‘single’ refers to the method
6.3 Performance evaluation that associates only a single vantage point with each non-

leaf level, ‘mvpt’ refers to the method adopted by the mvp-
To compare our methods with the mvp-tree approach, wdree, and ‘original’ refers to the original vp-tree structure.
implemented the disk-based model of the mvp-tree and exNote that the results made by the original vp-tree are pro-
tended it with then-nearest neighbor search algorithm. Our vided for reference. Table 6 reports the number of distance
original implementation of the vp-tree was modified accord-computations for various dataset sizes. As seen from the ta-
ing to the two methods we proposed. The mvp-tree and thdle, reusing vantage points achieves the best results, and the
vp-tree were both implemented in C on an UltraSPARC. mvp-tree approach is better than the ‘single’ method. This

For each data point in the leaves of an mvp-tree, the indicates that choosing only a single vantage point for all the

tree keeps the pre-computed (at construction time) distancesodes at the same level has certain negative effects on the
between the data pointand the first) vantage points along partitioning at these nodes, which leads to more multiple-
the path from the root to the leaf node that keepShese path searching, and in turn more leaf accesses. As a result,
distances are used for effective filtering of non-qualifying more distance computations between the query point and the
objects during search operations. The experiments in [6Pata points are involved.
have proved the competence of such a technique. All of Besides the better performance it offers, the ‘reuse’
the vp-trees (including the original version) and mvp-treesmethod has two other advantages over the mvp-tree method.
we built for this performance study employed this technique.First, as its method for selecting vantage points is straight-
We setb to 3, i.e., three extra distances were stored for eactiorward and the selection process is completed well before
data point in the leaves. For the method that reuses a fixettee construction, it makes the construction easier and less



172 A.W. Fu et al.: Dynamic vp-tree indexing fernearest neighbor search given pair-wise distances

Table 7. Page accesses per search for eight-nearest neighbor search fi

clustered data of dimension 30 We compare the result with the*-tree and thel/-tree, and

show that the vp-tree outperforms both trees significantly

Dataset size p— sinij?(ge ac;e\/s;es g for n-nearest neighbor search for synthetic clustered data,
16,000 2953 2576 3191 3106 uniform data, and real data by experiments.

20,000 56.04 5570 56.79  60.18

30,000 68.57 6545 8292  90.07

40,000 101.86 100.83 100.66  120.15

50,000 117.12  116.90 117.99  141.79 We propose some solutions to the update problem for

the vp-tree and its variants. The insertion and deletion pro-
cedures involve nodes redistribution, splitting, and merging,
time is required. Second, we can reduce the size of the treand always preserve the balanced structure of the vp-tree.
by storing all of the vantage points in use outside the treeThere are two alternatives of split-first or redistribute-first
when the total number of them is small enough (such as 2@or insertion, as well as two alternatives of merge-first or
in our experiments). redistribute-first for deletion. We study the performance of
We also measured the page accesses to see how the thitbese methods and show that the overhead is quite accept-
methods affect the access cost of the vp-tree. Table 7 disable, we also show that the split-first and merge-first strategy
plays the results. All three methods in general make feweis superior to the redistribute-first strategy.
page accesses than the original vp-tree structure. The ‘sin- We propose alternatives to the vantage point selection,
gle’ method needs the least number of page accesses. Thiy making use of the idea of reusing vantage points. This
is merely because the trees constructed based on this ‘singleas the basic idea in [6]. We design different methods to
vantage point per level’ approach are the smallest comparerbuse vantage points. It turns out that the results in terms of
to the others. With a smaller tree size, the access cost fareduction in distance computation are similar for the differ-
search operations is inevitably lower. In summary, our meth-ent methods.
ods are comparable with the mvp-tree approach in terms of For future work, we may investigate some other methods
the number of distance computations and additionally pro-of vantage point selection. The major criticism of [7] about
vide better performance in page accesses. From the perfowp-trees is thathe region inside the median sphere and the
mance in searching, we believe that the reuse of vantageegion outside the median sphere are extremely asymmetric,
points would not affect the goodness of the tree structureand since volume grows rapidly as the radius of a spherein-
Moreover, they may facilitate the updating procedures as deereases, the outside of the sphere tends to be very thin. Let us
scribed in the previous section. Reusing vantage points canonsider the convex hull enclosing all data points to be our
lead to less work in updating since pre-computed distancesearch space. If the vantage point creates a boundary that is
of data objects to reused vantage points can be used. a hypersphere surface mostly within the search space, then
the above argument of [7] holds. However, if the vantage
point is far from the search space, (theoretically it can be at
7 Conclusions and future work an infinite distance from all points) then the boundary cre-
ated by the median in the search space will be closer to a
We tackle the problem of content-based retrieval for multi- hyperplane that divides the search space into two regions.
media data objects given only pair-wise distances betweerfhe regions would then be mosgmmetric. Therefore, we
data objects. One approach to solve this problem is to firsfnay want to look for vantage points that are far away from
infer a feature vector for every data object from the dis-the center of the search space. We can locate such points ef-
tances pro\/ided, preser\/ing as much as possib|e the d|§|.C|ent|y by a method such as the heuristic introduced in [24]
tances between objects. We ran some experiments to shof@r choosing two distant objects. We note that the space near
that this approach may incur considerable inaccuracies ifthe spherical boundary created by the median of a vantage
the query results. Then we examine another approach whicRoint is a critical factor for the performance of query evalu-
is to make use of a distance-based indexing structure. Sucition, since a query that falls under such a region will likely
an approach provides a number of advantages: first, préead to a search on both sides of the boundary. A method
processing steps involved in inferring feature vectors carfdopted in our experiments and in previous work makes use
be eliminated; second, the difficulty in preserving distances?f the standard deviation to try to ensure a small number
is avoided; third, updating can be handled much more effi-0f data points around the boundary. We therefore look for a
ciently; lastly, the method can be applied to data representedantage point that is far from the center of the search space
as multi-dimensional vectors as well. A promising structure©f the current node and which also has a high standard de-
for this approach as shown in [6] is the Vp_tree_ viation. However, it is pOSSible that the standard deviation
We examine two of the important problems for the vp- method would often automatically introduce vantage points
tree and its variantsi-nearest neighbor search and updating.that are at the edge of the search space (see Fig. 1 in [39]),
AISO, we propose some methods of Vantage point se|ectioﬁnd it is left for further investigation to see if this is true.
to reduce the number of distance computation. We study Finally, we would like to investigate improvements on
the performance of an-nearest neighbor search a|gorithm the vp-tree in the future. There have been enhancements on
for the vp-tree. We show by experiments that the algorithmthe R*-tree, such as introducing redundancy [16] and the
scales up well with size of the data sets and the value, of introduction of some flavor of linear search as in the X-tree
for a set of synthetic clustered data, uniform data, and a sdf]. We can try to capture the ideas behind such enhance-
of real data. It also scales up well with the dimensionality. ments and apply them to the vp-tree.



A.W. Fu et al.: Dynamic vp-tree indexing foer-nearest neighbor search given pair-wise distances 173

Acknowledgements. We are very thankful to the authors of [4] for providing 20.

us with the set of real data from their experimental setup. We would also
like to thank the authors of [6] for sending us a pre-published version of
their paper. We thank Kelvin, Kam Wing Chu for his enhanced version

of the M-tree implementation, and Chun Hing Cai for the implementation 21.

of the enhancech-nearest neighbor search of thi“-tree. We are very
grateful to the anonymous referees who gave very thoughtful and useful

comments to enhance the paper. 22.

References

23.

J. Hafner, H. S. Sawhney, W. Equitz, M. Flickner, W. Niblack (1995)
Efficient color histogram indexing for quadratic form distance func-
tions. IEEE Trans. on Pattern Anal. and Mach. Intell., 17(7): 729-736,
July 1995

N. Katayama, S. Satoh (1997) The SR-tree: an index structure for
high-dimensional nearest neighbor queries. In: Proc. ACM SIGMOD
Int. Conf. on the Manage. of Data, pp. 369-380

F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, Z. Protopapas (1996)
Fast nearest neighbor search in medical image databases. Technical
Report CS-TR-3613, University of Maryland, March 1996

J. B. Kruskal, M. Wish (1978) Multidimensional scaling. Beverly
Hills, CA: SAGE

24. K.l. Lin, C. Faloutsos (1995) Fastmap: a fast algorithm for indexing,

1. W. A. Ainsworth (1988) Speech Recognition by Machine. London:
Peter Peregrinus

2. N. Beckmann, H.P. Kriegel, R. Schneider, B. Seeger (1990) The R g

tree: an efficient and robust access method for points and rectangles. In:
Proc. ACM SIGMOD Int. Conf. on the Manage. of Data, pp 322-331,
May 1990

3. S. Berchtold, C. Bohm, B. Braunmuller, D. A. Keim, H.P. Kriegel
(1997) Fast parallel similarity search in multimedia databases. In:

Proc. ACM SIGMOD Int. Conf. on the Manage. of Data, pp. 1-12 27.

4. S. Berchtold, D. A. Keim, H.P. Kriegel (1996) The X-tree: an index
structure for high-dimensional data. In: Proc. 22nd Int. Conf. on VLDB,
pp. 28-39

5. D. J. Berndt, J. Clifford (1996) Finding Patterns in Time Series: a Dy-
namic Programming Approach. In: Fayyad U.M., Piatestsky-Shapiro,g
G., Smyth P., Uthurusamy R., (eds) Advances in Knowledge Discovery
and Data Mining, Cambridge, MA: AAAI/MIT Press

6. T. Bozkaya, M. Ozoyoglu (1997) Distance-based indexing for high- 5q
dimensional metric spaces. In: Proc. ACM SIGMOD Int. Conf. on the
Manage. of Data, pp.357-368

7. S. Brin (1995) Near neighbor search in large metric space In: Proc.
21st Int. Conf. on VLDB, pp 574-584

8. W. A. Burkhard, R. M. Keller (1973) Some approaches to best-match
file searching. Commun. of the ACM, 16(4): 230-236, April 1973

9. K. Cheung, A. Fu (1998) Enhanced nearest neighbour search on the
r-tree. In: ACM SIGMOD Record, 27(3): 16—21, September 1998

10. T.C. Chiueh (1994) Content-based image indexing. In: Proc. 20thg,
VLDB Conf., pp 582-593

11. T. Ciaccia, Patella M., Zezula P (1997) M-tree: an efficient access
method for similarity search in metric. In: Proc. 23rd Int. Conf. on 34
VLDB, pp 426—435, August 1997

12. G. Evangelidis, D. Lomet, B. Salzberg (1995) The hiree: a modi-
fied bB-tree supporting concurrency, recovery and node consolidationg,
In: Proc. 21st Int. Conf. on VLDB, pp 551-561

13. G. Evangelidis, D. Lomet, B. Salzberg (1997) The hBpi-tree: a multi-
attribute index supporting concurrency, recovery and node consolidang
tion. The VLDB J., 6(1): 1-25

14. C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack,
D. Petkovic, W. Equitz (1994) Efficient and effective querying by 34
image content. J. Intell. Inf. Syst., 3: 231-262, July 1994

15. J.H. Friedman, J.H. Bentley, Finkel A (1977) An algorithm for finding 37
best matches in logarithmic expected time. ACM Trans. on Math.
Software, 3: 209-226, September, 1977

16. A. Fu, K.L. Cheung (1997) Enhancements on the R-tree to supporig
efficient similarity search in high-dimensional space. In: Mphil Thesis,
Chinese Univ. of Hong Kong

17. W.l. Grosky, R. Mehrotra (1990) Index-based object recognition in
pictorial data management. Comput. Vision, 52(3): 416-436

18. V.N. Gudivada, V.V. Raghavan (1995) Content-based image retrieval
systems. IEEE Comput., 28(9): 18-22, September 1995

19. A. Guttman (1984) R-trees: a dynamic index structure for spatial
searching. In: Proc. ACM SIGMOD Int. Conf. on the Manage. of
Data, pp 47-57, June 1984

data-mining and visualization of traditional and multimedia datasets.
In: Proc. ACM SIGMOD, pp. 163-174

K.I. Lin, H. V. Jagadish, C. Faloutsos (1994) The TV-tree — an index
structure for high-dimensional data. VLDB J., 3: 517-542, October
1995

26. D. B. Lomet, B. Salzberg (1990) The hB-tree: a multiattribute indexing

method with good guaranteed performance. ACM TODS, 15(4): 625—
658, December 1990

W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman,
D. Petkovic, P. Yanker, C. Faloutsos, G. Taubin (1993) The QBIC
project: querying images by content using color, texture and shape. In:
Proc. SPIE: Storage and Retr. for Image and Video Databases, 1908,
pp 173-187, February 1993

. N. Roussopoulos, S. Kelley, F. Vincent (1995) Nearest neighbor

queries. In: Proc. ACM SIGMOD Int. Conf. on the Manage. of Data,
pp 71-79, June 1995

. H. Sakoe, S. Chiba (1990) Dynamic Programming Algorithm Opti-

mization for Spoken Word Recognition. In: Waibel, A., Lee K., (eds)
Readings in Speech Recognition. San Francsico, CA: Morgan Kauf-
mann

30. H. Samet (1989) The Design and Analysis of Spatial Data Structures.

Reading, MA: Addison-Wesley

31. D. Sankoff, J.B. Kruskal (1983) Time Warps, String Edits and Macro-

molecules: the Theory and Practice of Sequence Comparisons. Read-
ing, MA: Addison-Wesley

. T. Seidl, H.P. Kriegel (1998) Optimal multi-stépnearest neighbor

search. In: Proc. ACM SIGMOD Int. Conf. on the Manage. of Data,
pp 154-165

. T. Sellis, N. Roussopoulos, C. Faloutsos (1987) Thér&e: a dynamic

index for multidimensional objects. In: Proc. 13th Int. Conf. on VLDB,
pp 507-518

. Y. Theodoridis, T. Sellis (1996) A model for prediction of R-tree

performance. In: Proc. ACM Princ. of Database Syst., PODS, pp 161
170

. S. Thomas, H. Kriegel (1997) Efficient user-adaptable similarity search

in large multimedia databases. In: Proc. 23th Int. Conf. on VLDB,
pp. 506-515

. J. Uhlmann (1991) Satisfying general proximity/similarity queries with

metric trees. Inf. Process. Lett., 40:4: 175-179, November 1991

. D. A. White, R. Jain (1996) Algorithms and strategies for similarity

retrieval. Technical Report VCL-96-101, University of California, San
Diego, July 1996

. D. A. White, R. Jain (1996) Similarity indexing with the SS-tree. In:

Proc. 12th IEEE Int. Conf. on Data Engin., pp 516-523, February 1996

39. P. Yianilos (1993) Data structures and algorithms for nearest neighbor

search in general metric spaces. In: Proc. 3rd Annual ACM-SIAM
Symp. on Discrete Algorithms, pp 311-321



