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Review and perspectives
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importance of regular joint loading in young age for the
development of a well-organized and strong articular
cartilage collagen network, which contributes to the
prevention of OA later in life. The load-bearing proper-
ties of articular cartilage as well as the main features of
the metabolism and turnover of proteoglycans (PGs)
and collagen are briefly reviewed, especially in relation
to joint loading.

Prevention of OA

The knowledge of the pathogenesis of OA and its risk
factors is today supplemented at an increasing pace,
which makes the prospects for prevention of the disease
more and more realistic [2–8]. OA is a disease with a
multifactorial etiology. It affects not only the articular
cartilage but the whole synovial joint organ. This
implies that in addition to articular cartilage, the prop-
erties of the subchondral bone and ligaments, the
weight-bearing conditions including the biomechanical
alignment of the joint, the weakness of the shock-
absorbing and weight-bearing muscles, and the integrity
and proper function of the neuromuscular system must
be taken into regard [9]. Even though the OA process in
the joint structures is accomplished by biochemical sig-
nals, i.e., cytokines, growth factors, proteins and en-
zymes, the disease appears to be primarily driven by the
local mechanical factors in the joint. Thus, the mechani-
cal etiology of OA deserves ongoing close scrutiny [9].

The primary prevention of OA emphasizes hindering
the disease from affecting healthy persons [2,5]. Large
epidemiological studies on OA have pointed out several
risk factors that can be influenced by adjusting our
lifestyles. For example, obese persons are instructed
to reduce body weight and to carry out exercises to
strengthen their lower limb muscles to reduce stress at
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Introduction

Advancement in knowledge of the basic biological and
biomechanical properties of articular cartilage and the
increasing understanding of the principles governing
the development and molecular biology of cartilage
have opened new views and possibilities for the preven-
tion of osteoarthrosis (OA) [1,2]. The fact that many
details of the molecular mechanisms of cartilage break-
down are now solved has further encouraged research-
ers to tackle the problem of OA prevention [3,4]. In
practice, deciphering realistic and effective strategies
for prevention of OA is a necessity for modern societies
because the number of individuals reaching old age con-
tinues to increase simultaneously with their greater risk
to fall ill with OA. Today the most effective cure of
severe OA of weight-bearing joints is total joint re-
placement. The operation relieves pain effectively and
restores joint mobility. However, the costs of the opera-
tion and treatment are high. Before surgery the patient
has usually suffered from pain and disability for years,
or even decades, and the ailment has caused both social
handicap and economical losses to the individual and
society. Therefore, it is understandable that effective
strategies for elimination of the risk factors and the
prevention of OA are needed [5].

In this communication we present the prevailing prin-
ciples of the prevention of OA and a hypothesis of the
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the surface of articular cartilage [10,11]. Inadequate
neuromuscular fitness has been observed to result in
greater impact upon heel strike [10]. Avoiding knee
injuries and eliminating jobs that require bending of the
knees and squatting are also measures that prevent OA
[2,5]. Secondary prevention focuses on screening of per-
sons, groups of people, or families who are at risk of
developing early OA and a manifest disorder. Persons
with a defect in a cartilage-specific molecule, such as
results from a mutated type II procollagen gene, for
example, may show familial inheritance of severe OA
or chondrodysplasia [12–14]. These persons and fami-
lies may benefit from an early intervention, even though
it is not exactly clear what would be the preventive
measures. Gender, age, and race are demographic vari-
ables that affect the development of OA. The disease
profiles are different for white, black, and Asian people
[2]. Secondary preventive measures are, in principle,
applicable to these people, as well as to those with con-
genital and developmental deformities [2,15]. In prin-
ciple, all individuals who have deformed bones and
altered weight-bearing conditions in joints would ben-
efit from the secondary prevention of OA.

Tertiary prevention of OA refers to hindering of fur-
ther damage and disability in persons who already have
the disease. Unfortunately, little is known about the
factors affecting progression of the disease [2,5]. Several
nonpharmacological and pharmacological approaches
have been suggested for this purpose, the emphasis
being on nonpharmacological treatments [10].

Load-bearing properties of articular cartilage

The basic principles of the biomechanical properties in
relation to structure and function of articular cartilage
have been reviewed recently [16–18]. Articular cartilage
is a biological composite material consisting of interact-
ing solid matrix and interstitial water. The solid matrix
is composed mainly of the collagen fibrils and PG mol-
ecules, which are responsible for the tensile, shear, and
compressive properties of articular cartilage [16]. Elec-
trostatic interactions between PGs and the electrolytes
of interstitial water produce swelling pressure, which is
transmitted to and constrained by the collagen network
[19]. Interstitial fluid pressurization prevents excessive
strains in the cartilage, also upon the collagen fibril
network, and shields the collagen–PG matrix against
mechanical failure.

Elastic modulus, which designates the “stiffness” of
articular cartilage matrix, is typically 0.5–1.0MPa in
compression [20,21]. In principle, the low modulus can-
not account for successful mechanical function during
dynamic joint stresses with peak values of up to 18MPa
[22]. However, due to the relatively small permeability

of the tissue, the interstitial water is pressurized and
supports most of the load during dynamic loading.
Therefore, cartilage stiffness increases effectively dur-
ing dynamic loading and can be tenfold higher than the
intrinsic modulus of the matrix [23,24].

Under physiological loading conditions, interstitial
compressive, tensional, and shear stresses are created in
the cartilage matrix. Collagen is primarily responsible
for the cartilage properties in tension and shear. Under
high rate loading, the shape change of the cartilage
matrix is restricted by the collagen fibrils [25]. Water
flow through the porous matrix takes place during pro-
longed loading. This stage of deformation depends sig-
nificantly on cartilage permeability, which is primarily
controlled by the PGs [20].

The structure and composition of the superficial zone
of articular cartilage affect significantly the mechanical
response of the tissue [17]. The superficial zone proper-
ties vary in different topographical regions of the joint.
For example, in canine cartilage the mean thickness of
the superficial zone and its proportion to the total
uncalcified articular cartilage is significantly greater in
the femoral than in the tibial cartilage. At the same
time, the elastic modulus, i.e., stiffness, of the femoral
cartilage is markedly higher than in the tibia even
though the PG concentration is higher in the tibial car-
tilage [17]. In OA, some of the first detectable histologi-
cal abnormalities are the separation and disorganization
of the superficial collagen fibrils, decrease of the super-
ficial PG concentration, and increase in water content
[26].

In aging cartilage and in OA, the earliest damage to
type II collagen starts in the matrix around the superfi-
cial chondrocytes and extends into deeper tissue with
progressive damage [6–8]. The simultaneous loss of PGs
leads to decreased cartilage stiffness [27,28]. In fact,
articular cartilage softening may be the first sign of the
OA process while the cartilage surface still appears in-
tact [6]. Disturbance in the content, properties, or inter-
actions of structural components (collagen, PGs, water,
and electrolytes) impairs the mechanical properties of
the tissue and renders it susceptible to further damage
during joint loading.

Joint loading and articular cartilage

Increased joint loading and weight-bearing

Early studies on animal models suggested that running,
even when strenuous, caused no untoward changes in
the articular cartilage [29–31]. Later, however, running
was reported to exert harmful effects also on articular
cartilage in mice, rabbits, and dogs [32–34]. Neverthe-
less, the prevailing view is that normal physiological
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loading does not impair the articular cartilage. It also
appears that properties of cartilage and its responses to
loading are very site specific [35]. Differences in the
magnitude and type of joint loading, e.g., degree of
shear or weight-bearing, probably explain the site-
dependent cartilage responses to loading.

We have systematically studied the response of ar-
ticular cartilage to loading in the knee (stifle) joint of
young beagles after three different training programs.
Running exercise of 4km/day on a treadmill inclined
15° uphill, 5 days per week for 15 weeks, increased the
thickness and PG content (16%–26%) in the femoral
cartilage, whereas collagen content remained practi-
cally unaltered (Fig. 1) [35–37]. A slight stiffening of the
cartilage occurred in the proximal part of the patellar
surface of the femur and tibial cartilages. The rate of
cartilage deformation during compression decreased
[38]. Running exercise of either 20 km/day or 40km/day
for up to 15 weeks reduced the glycosaminoglycan
(GAG) content in the superficial zone of femoral and
tibial condylar cartilages [39,40], increased water con-
tent, and decreased the concentration of collagen in the
cartilage of lateral femoral condyle [41]. However, the
overall PG content of the cartilage did not change
significantly during 40 km/day running [42]. Running
exercise of 20km/day did not improve the biomechani-
cal properties of articular cartilage observed after the
4km/day running program [43], and running exercise

for 40 km/day reduced the stiffness of articular cartilage
[44]. Running exercise of 40 km/day generally decreased
(24%–34%) the collagen birefringence of the superficial
zone cartilage at the weight-bearing sites of the femoral
and tibial condyles (Fig. 2) [45]. It was anticipated that
a derangement, or even a disorganization, of the
superficial collagen network would be the reason for the
birefringence decline and would also explain the soften-
ing of cartilage. Histomorphometric parameters of the
subchondral bone showed marked signs of remodeling
in all sites examined [46].

It is not known whether the negative changes after
long-distance running represented early and true de-
generative changes or, alternatively, adaptation of the
articular cartilage and the subchondral bone to long-
term joint loading. Our hypothesis is that the changes
were degenerative in nature. On the other hand, the
observed peripheral thickening of the cartilage with in-
creased bone remodeling can also be considered to rep-
resent a compensatory and an adaptive mechanism
aiming at improving congruence between contacting
articular surfaces. For example, the centrally observed
depletion of GAGs and softening of the cartilage after a
40 km/day running program may serve this purpose in-
stead of denoting early changes of OA.

Most clinical and epidemiological studies have failed
to detect any correlation between running training and
OA [47–52]. However, Marti et al. (1989) found radio-

Fig. 1. Zonal changes of proteogly-
can concentration in five regions of
the knee joint (stifle) articular carti-
lage of beagle dogs after different
running programs on treadmill in-
clined 15° uphill (4 km, 4 km/day;
20km, 20 km/day; 40km, 40 km/day,
for 15 weeks). Numbers represent the
ratios of the mean values of the run-
ner (n 5 5–10) and control (n 5 5–10)
groups. FPI, inferior section (point)
of the patellar surface of femur; FMI
and FLI, intermediate sections
(points) of the medial and lateral
condyles of femur, respectively; TMI
and TLI, intermediate sections
(points) of the medial and lateral
condyles of tibia, respectively. *P ,
0.05, **P , 0.01 (Wilcoxon matched-
pairs signed-rank test). For further
details, see text and Kiviranta et al.
[35]
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logically more degenerative changes in the hip joints
of former national team long-distance runners than in
bobsleigh competitors and the reference population
[53]. Also, runners who had sustained injuries, or who
had anatomical abnormalities but continued running
training, showed accelerated development of OA in
affected joints [54]. Different types of exercise or sports
activities, which repetitively expose joints to high levels
of impact or torsional loading, are associated with in-
creased prevalence of OA [55–60]. However, habitual
recreational physical activity of moderate degree seems
not to increase the risk of OA [55,61].

Few studies have been published on the interrelation-
ship between exercise, aging, and the articular cartilage.
Rats who ran on a treadmill between the ages of 6 and
24 months showed more severe OA in the knee joints
than did the control animals [62]. Lifelong moderate
running (1km/day) on a treadmill between 2 and 18
months of age increased the incidence and severity of
OA in the knee joints of C57BL mice [63]. However,
lifelong moderate running of beagle dogs showed no
evidence of knee articular cartilage injury after 4km/
day exercise on the treadmill, 5 days/weeks, for a total
of 550 weeks [64].

Immobilization and remobilization

Several studies have shown that lack of load-bearing
and restriction of movements in a casted joint cause
atrophic changes in articular cartilage [65]. Mechanical
forces seem to be more important than motion in sup-

porting the properties of articular cartilage because
movements of the joint in the absence of loading initiate
and maintain atrophic changes [66]. On the other hand,
rigid fixation of the joint, which increases the contact
forces between articular surfaces, produces local de-
struction of cartilage at the site of contact area [67].

Immobilization of the knee (stifle) joints of beagle
dogs in 90° flexion for 11 weeks reduced the glycosami-
noglycan (GAG) concentration of articular cartilage by
20%–48% (Fig. 3) [68]. The GAGs were depleted
mainly in the superficial zone of articular cartilage, and
immobilized cartilage was more immature in nature
[65,69]. However, total PG synthesis was not signifi-
cantly changed after immobilization [69]. Birefringence
of the collagen fibril network showed no significant
changes, but the amount of collagen cross-links was
reduced [70]. An 11-week immobilization of the canine
knee femoral and tibial articular cartilage decreased
cartilage stiffness by 25% (Fig. 4) [71]. Also, the flow
rate of interstitial fluid under compression increased in
articular cartilage of immobilized dogs. Normal carti-
lage stiffness remained in the contact area between the
patella and the patellar surface of femur, probably as a
consequence of sustained, but not totally static, com-
pressive patellofemoral load during 90° joint flexion.

After remobilization, PGs of articular cartilage in
adult dogs seemed to return to the level of the contralat-
eral limb 3 weeks after removal of the cast [66,72],
whereas rigid external fixation of the joints for 6 weeks
prevented the recovery almost totally [73]; this indicates
that articular cartilage is able to recover from immobili-

Fig. 2. Effect of running 40km/day
on collagen-induced birefringence of
beagle knee joint articular cartilage.
See legend for Fig. 1 and Arokoski
et al. [45]
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zation. However, the situation is probably more compli-
cated. Remobilization of young beagle dogs for 15
weeks, after a prior 11-week immobilization period, re-
stored the GAG content of articular cartilage in the
patellofemoral region and in condyles of tibia, while on
the summits of femoral condyles the GAG concentra-
tion remained below the control level (see Fig. 3)
[69,70,74]. Also, the equilibrium shear modulus of carti-

lage remained at a lower level and the cartilage perme-
ability at a higher level than in controls (see Fig. 4) [75].
The reduced content of PGs and the decreased CS-6/
CS-4 ratio that resulted from immobilization were re-
stored within 15 weeks of remobilization close to the
level of control dogs. However, even after 50 weeks of
remobilization there were cartilage areas where the PG
concentration of the articular cartilage remained low,

Fig. 3. Zonal changes of proteo-
glycan concentration in three regions
of the knee joint of beagle dogs
after joint immobilization in flexion
and subsequent remobilization up to
1 year. Imm, after 11 weeks of immo-
bilization; Rem15, after 15 weeks of
remobilization; Rem50, after 50
weeks of remobilization

Fig. 4. Effect of joint immobilization
and subsequent remobilization on the
biomechanical properties of beagle
dog articular cartilage expressed as
indentation stiffness
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especially in the superficial zone (Fig. 3). The arrange-
ment of collagen fibrils was not different from controls
after 50 weeks of remobilization [70]. In some regions
the stiffness of cartilage also remained below the con-
trol level (Fig. 4) [76]. These results indicate that the
immobilization-induced atrophic changes of articular
cartilage are for the most part reversible, even though
some joint regions may recover incompletely. It is also
worth noting that vigorous running exercise inhibits the
reversal of atrophic changes in the canine knee after
prolonged immobilization [77,78]. Moderate exercise
seems to exacerbate OA lesions in cartilage produced
by meniscectomy [78,79].

Articular cartilage loading in vitro

During joint loading, the collagen fibrils of articular
cartilage exhibit zone-specific deformation that is de-
pendent on the magnitude and type of loading [80].
Vigorous cyclic loading (0.5Hz, 4.1 MPa) of cartilage
plugs increases the thickness and collagen orientation in
the superficial zone, probably on account of tissue com-
pression [81]. Repeated compressive loading may cause
reduction in tensile strength of cartilage in vitro [82].
PG synthesis decreases during static pressurization of
cultured articular cartilage explants [83,84]. Dynamic
compression of cartilage explants has yielded different
results. Cyclic loading at frequencies of 0.01–1.0Hz in-
creases PG synthesis [85–88], but this effect is no longer
evident after low-frequency loading (,0.001 Hz)
[85,86]. Cyclic (0.5Hz, 5 MPa) short-term (1.5h) hydro-
static pressure applied to cartilage explants stimulated
PG synthesis but inhibited it when applied to chondro-
cyte cultures [89]. Thus, the magnitude and frequency
of pressure and the length of pressurization have an
influence on the outcome as well as whether the
chondrocytes are embedded in the extracellular matrix.

Proteoglycan synthesis and turnover in young age,
aging, and OA

The normal function of articular cartilage requires a
balance between continuous biosynthesis of extracellu-
lar matrix molecules and their catabolic pathways.
Aggrecan is the PG that is responsible for most of the
elastic properties of cartilage, and its metabolism plays
a key role in the health of the joint. PG synthesis rate
increases toward the deep zones [90,91], and the synthe-
sis varies in different locations of the joint cartilage; this
has been observed especially in the superficial zone of
articular cartilage [91]. Factors such as soluble media-
tors, mechanical stress, aging, and OA can influence the
balance and overall rate of turnover and change the
extracellular matrix protein gene expressions [92].

Within the extracellular matrix of adult cartilage,
aggrecan appears to be present in two pools. The first is
a pericellular (territorial) pool. Retention and matura-
tion of newly synthesized aggrecan molecules takes
place in this pool before their sequestration as PG
aggregates into the second pool, which resides in the
interterritorial load-bearing matrix [93]. In this inter-
territorial metabolically inert pool, the PG aggregate
degradation may occur over long time periods, perhaps
even periods approaching the lifetime of an individual
[94]. Dynamic compression stimulates PG synthesis and
deposition of the PG aggregates [95], while static load-
ing causes a decline in the tensile load-carrying capacity
of the collagen matrix, presumably associated with a
mechanical breakdown of the tissue and elevated rate of
PG turnover, especially in the pericellular matrix. This
change involves both an increased release of PG aggre-
gates and their breakdown, resulting in a spectrum of
degradation products [96]. The loss of aggregating PGs
can also be partly due to a decreased synthesis of link
protein, which may lead to a disproportionate relation-
ship between aggrecan and the link protein [97]. The
approximate mean life of articular cartilage PGs in
young rabbits has been estimated to be 90 to 130 days
but slows down to 340 days in adulthood [98]. In adult
human femoral cartilage the average mean life of
PGs was estimated to be about 1000 days, i.e., 3 years
[98].

A major cleavage site for aggrecan is located in
the interglobular domain between the two globular
domains G1 and G2 [99], a region susceptible for
both matrix metalloproteinases and aggrecanase [100].
Aggrecanases 1 and 2 are members of the ADAM (a
disintegrin and metalloproteinase) family and were re-
cently cloned [101,102]. Aggrecanases are supposed to
be the key enzymes in cartilage degradation, interleukin
1 being a major mediator. In murine OA, cleavage
products of aggrecanase were observed in the early
phase of PG depletion, while those typical for matrix
metalloproteinases were present in increased amounts
in severely damaged cartilage [103]. The small PGs
decorin, biglycan, and lumican are increased rather than
decreased in content in OA and, in contrast to aggrecan,
they are resistant to interleukin-1-induced catabolism of
cartilage [104].

Collagen metabolism and turnover in relation
to young age, aging, and OA

Collagen types II, VI, IX, and XI are synthesized by
normal articular cartilage, type II being the major col-
lagen of cartilage. Type II procollagen synthesis is rela-
tively low in the newborn, and negligible in the adult,
when compared to fetal synthesis levels [105], whereas
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synthesis activity is again markedly increased in early
OA [103,104]. In advanced OA, type II collagen synthe-
sis in the superficial zone decreases [105,106], whereas
in the deeper zones synthesis can be increased, even
though some differences are observed between the local
mRNA quantities and the level of procollagen synthesis
[105,107]. Once incorporated into the matrix, collagen
molecules have a very long lifetime (200–400 years)
[108,109].

It is the collagen network integrity that is essential for
the normal functioning of articular cartilage, and this
integrity is lost in OA [110,111]. The collagen network is
broken down by the extracellular collagenases. Collage-
nase activity appears to be a more probable cause for
degradation of the collagen network than, mechanical
damage due to overloading of the joint, for example
[112]. Therefore, medical treatments increasing col-
lagen biosynthesis and inhibiting the enzymatic activity
of collagenases could be of therapeutic value in OA
[113]. However, we do not know at present how to
restore a deranged collagen network, including the
broken interfibrillar collagen cross-links.

Cross-linking plays a key role in the regulation of the
tensile stiffness and strength of collagen fibrils [108].
During aging, the amount of mature cross-linking
residues/triple helix stays very stable but nonenzymatic
glycation increases, leading to an increased formation of
pentosidine cross-links with age [108]. Zonal variations
in the amount of lysyl cross-links suggests that matura-
tion of cartilage begins in the upper half of the cartilage
and occurs last in the deep zone close to the bone [108].
Impaired cross-linking of collagen appears to interfere
with pericellular collagen deposition and causes an
upregulation of collagen synthesis by impaired cell–
matrix interactions [114]. This finding further stresses
the importance of a balanced maintenance of extracel-
lular matrix around chondrocytes for the health of
articular cartilage.

Response of articular cartilage to regular joint loading
in young and old guinea pigs

We have studied the response of articular cartilage to
joint loading in young adult (28-week-old) and adult
mature (62-week-old) Dunkin–Hartley guinea pigs, a
breed prone to develop OA typically in the medial com-
partment of the knee, particularly in the tibia. The
animals ran on a treadmill up to 2500 m/day with a
speed of 0.33 m/s for 18 weeks. The first signs of progres-
sive, degenerative lesions appeared at the age of 3
months [115].

In the young adult guinea pigs, collagen birefringence
increased in the superficial zone of both the femoral and
tibial cartilages after running (Fig. 5). In adult mature

articular cartilage, the reaction was the opposite: run-
ning reduced significantly collagen birefringence in the
superficial zone, suggesting an early derangement or
disintegration of the collagen network (Fig. 5). In the
tibia, both the absolute and the relative thickness of
the superficial, tangentially oriented collagen zone was
thinner than in the femur. Simultaneously with the col-
lagen changes in the knee joint, 35S-sulfate incorpora-
tion in the PGs of the humerus head cartilage showed
significant changes. Running reduced 35S-sulfate incor-
poration in PGs in the young, but not in the adult
mature, runners (Fig. 6). In the adult mature runners
and controls, the 35S-sulfate distributions did not differ
except in the most superficial tissue, where an increased
35S-sulfate incorporation was detected in runners. In
young adult animals, the most active area of 35S-sulfate
incorporation was in the deep zone, whereas in adult
mature guinea pigs the most active area was in the
intermediate and superficial zones (Fig. 6); this took
place in both runners and controls.

The running program did not increase overall OA
prevalence in either the young or older guinea pigs. The
highest OA prevalence was found in the tibia. The
thicknesses of collagen fibril zones oriented tangen-
tially, obliquely, and perpendicularly to the cartilage
surface did not change as the result of running. In
conclusion, the superficial zone of articular cartilage
showed a unique response of birefringence in the young
adult and adult mature guinea pigs. The birefringence
of the collagen network increased in the young adult
and decreased in the adult mature animals. Compared
to the young adult animals, the area of the most active
PG synthesis was closer to the cartilage surface in the
adult mature guinea pigs.

Hypothesis: regular joint loading in youth assists in
the establishment and strengthening of the collagen
network of articular cartilage, which prevents
osteoarthrosis in middle and old age

It is well established that bones exposed to different
types of loading, such as immobilization, normal loco-
motion, or strenuous exercise, respond to the stress to
which they are exposed by altering the internal architec-
ture and composition of the bone. This phenomenon,
known as Wolff’s law, was observed a century ago [116].
This review indicates that the articular cartilage of
diarthrodial joints is also a dynamic tissue, responding
actively to various joint loading conditions. Accord-
ingly, articular cartilage also obeys Wolff’s law.

In many respects, articular cartilage is similar to bone.
Bone tensile strength is provided by type I collagen
fibrils, which are reinforced by covalent cross-links as
in articular cartilage with the exception that type II
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collagen dominates in articular cartilage. Compressive
strength in bone is provided by inorganic hydroxyapa-
tite crystals, whereas PGs serve this purpose in cartilage
[117]. The mineral crystals of bone are deposited in
holes between the type I collagen fibrils, and PGs fill the
spaces between the thinner type II collagen fibrils. Fur-
thermore, it is interesting to note that regular exercise at
a young age, especially around puberty, is the prerequi-
site to obtain maximum bone mineral content in the
human skeleton [118], in addition to proper nutrition
with sufficient calcium intake and supply of vitamin D.
As in articular cartilage, regular exercise and mechani-
cal strain appear to affect the organization of bone
collagen [119,120]. So, both in bone and in cartilage,
regular loading of the musculoskeletal system seems to
optimize the collagen network frame within which
either the PGs of cartilage or the mineral of bone are
deposited.

Joint movements and muscular activity are needed in
the development of the synovial joint. The gross forms
of articular structures can develop in vitro [121,122].
This fact is a proof of the participation of an “intrinsic”
guidance, i.e., genetic control, during the early stages of
joint development. However, the “extrinsic” mechani-
cal factors, generated by muscle contractions and joint
movements, are needed for the development and main-
tenance of the joint cavity and for the acquisition of final
form and size of the articular surfaces. Drachman and
Sokoloff [123] paralyzed muscular contractions in chick
embryos and found that joint cavities did not form in
these animals and that the articular surfaces became
flattened and distorted. Postnatally, during growth and
adulthood, it is the interplay between the influences of
joint function and gene expression by the chondrocytes
that governs the development of joint surfaces and car-
tilage composition [124]. The production of extracellu-

Fig. 5. Effects of running on collagen-induced birefringence
in the knee joint articular cartilage of young adult (age 28
weeks) and adult (age 62 weeks) guinea pigs. The guinea pigs,
all females, ran on a treadmill up to 2500m/day, 5 days a week,
for 18 weeks at 0.33m/s, starting at the age of 10 or 44 weeks.
Specimens were cut perpendicularly to the joint surface, from
both the femur and tibia. WB, weight-bearing region; NWB,
nonweight-bearing region of the medial condyle of femur;

TIBIA, central area of medial condyle of tibia, not covered
with meniscus; S1–S3, superficial zone layers, S1 the most
superficial and S3 the deepest layer; D1–D3, deep zone layers,
respectively. Birefringence of collagen is expressed quantita-
tively as an area-integrated retardation (AIR, µm/µm2) of the
polarized light (see Arokoski et al. [45]) (Mann–Whitney U
test used for statistical analysis)
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lar matrix molecules, PGs and collagen, is higher in the
weight-bearing areas than in the areas not carrying load.
During growth, the chondrocytes undergo mitoses and
the articular cartilage increases in thickness. Simulta-
neously, the calcified zone in the basal layer of articular
cartilage enlargens and becomes invaded by blood ves-
sels from the underlying subchondral bone. Resorption
cavities appear and new bone is formed. The result is
that both the articular surface and the subchondral bone
grow gradually toward the joint cavity, while the inter-
vening uncalcified articular cartilage roughly maintains
its thickness. It has been estimated that articular carti-
lage adds as much as 25 mm to the length of the femur
during the first 15 years of life [125]. Many details of this
development are still obscure. For example, it needs to
be elucidated to what extent the mechanical forces or
genetic factors are responsible for the development of
the so-called Benninghoff’s arcades made up by the
collagen fibrils [126].

In articular cartilage, PG synthesis and metabolism
react more actively than collagen metabolism and fibril
deposition to alterations of joint loading [34–41]. De-
pending on the mechanical stimulus, either more or less
the “filling material,” the PGs, is synthesized. PGs im-
bibe water and regulate the swelling pressure within the
constraints of the collagen fibril network. The collagen
fibril network forms the “backbone” of cartilage. The
assembly of collagen fibrils appears to react slowly to
alterations of joint loading. Nevertheless, the collagen
fibril network appears to be prone to considerable alter-
ations, especially at a young age when the growth of an
individual takes place. On this basis, and based on the

observations already presented, we put forward the hy-
pothesis that regular joint loading in youth contributes
to the establishment and strengthening of the articular
cartilage collagen fibril network and helps in prevention
of OA in middle and old age of an individual.

Based on the investigations on the accumulation of
nonenzymatic glycation products, i.e., pentosidine, by
the collagens in the human articular cartilage, it has
been confirmed that collagen turnover in articular carti-
lage beyond the age of 20 years is negligible. The
pentosidine levels are low before age 20 but then
increase linearly after this time point. It was suggested
by Bank et al. that in young age even extensive remod-
eling takes place in the articular cartilage with a consid-
erable turnover rate of collagen, whereas in adult
individuals the turnover is extremely slow, if at all de-
tectable [108,109].

There seem to exist at least two pools of both PGs
and collagens in articular cartilage. These pools show
different velocities of turnover. The fast pool molecules
with short turnover times seem to be localized in the
vicinity of chondrocytes, whereas the more permanent
structures, like collagen fibrils and mature PG aggre-
gates, are located in the interterritorial matrix of carti-
lage further away from the chondrocytes [94,127]. It
appears as if the normal adult human cartilage were
tuned to operate with a low metabolic activity. When
necessary, however, the cartilage is able to respond to
increased mechanical demands with vigorous synthetic
capacity, as happens after joint loading and during early
OA [128]. Taken all this into consideration, it is reason-
able to suggest that regular load bearing directs the

Fig. 6. Effect of age and treadmill running on 35S-sulfate in-
corporation by the chondrocytes in the different zones of
guinea-pig articular cartilage from caput of humerus deter-

mined by quantitative autoradiography (Mann–Whitney U
test)
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development and fate of the collagen fibril network of
articular cartilage in the synovial joints, especially in
young age. These effects probably contribute to the
establishment and strengthening of the network and
prevent OA in middle and old age. In this context it is
interesting to note that Otterness et al. [129] observed a
protective effect of exercise against articular cartilage
degeneration in young hamsters. Daily wheel running
(6–12km/day) for 3 months was found to prevent
fibrillation of the femoral articular cartilage. In the
group of sedentary hamsters, all the animals showed
articular cartilage fibrillation, pitting, and fissuring.

Concluding remarks

Exercise in young age can prevent articular cartilage
fibrillation and degeneration in experimental animals.
In this communication, we introduce the hypothesis that
regular joint loading in youth assists in establishing and
strengthening the collagen fibril network of articular
cartilage, which contributes to the prevention of OA
later in life. The importance of the growth period for the
foundation of the cartilage collagen network is crucial
because remodeling of cartilage and the turnover of
collagen cease after the individual reaches maturity.

This hypothesis rests on the observation that articular
cartilage obeys Wolff’s law. The law implies that the
structure, biological properties, and composition of a
tissue, in this case the articular cartilage, are regulated
by the mechanical forces to which the joints are ex-
posed. The results from experimental work confirm that
this requirement is met. In young and old experimental
animals, the responses of the collagen network to load-
ing are different. In the articular cartilage of young
guinea pigs, regular joint loading appeared to improve
the collagen network properties in comparison to older
individuals, which after similar exercise showed signs of
degeneration of the collagen fibril arrangement.
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