
Introduction

Interbody cages are porous implants which are placed be-
tween two vertebral bodies to facilitate an intervertebral
fusion. The concept for these cages was described first by
Bagby [3] along with initial animal evaluation [10]. Clin-
ical trials of these cages began in 1991 for degenerative
problems of the lumbar spine. Early clinical results and
the broader results of multicentre clinical trials have been

encouraging [21, 30]. However, some investigators have
had less success [19, 25]. Furthermore, recent studies
have found that fusion assessment with these cages is vir-
tually impossible with X-rays or CT scans [4, 15], thereby
putting into doubt some of the definitive fusion results
from the clinical studies. All in all, the effectiveness of
stand-alone interbody cages has been questioned, with
some investigators claiming that supplementary posterior
fixation is required to produce better long-term clinical re-
sults [6, 25].
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To shed light on this issue, it may be worthwhile to re-
view the basic mechanics of interbody cage fixation. A
comprehensive analysis must address both the strength
and stability of the spine-implant construct [28]. The
strength of the construct relates to the absence of struc-
tural failure of either the implant or adjacent vertebral
bone. The stability relates to the lack of motion between
adjacent vertebrae, which is important to facilitate bone
ingrowth and eventual fusion.

The objective of this paper is to review the literature
regarding the biomechanical characteristics of interbody
cages. Specifically, their three-dimensional stabilization
patterns and the compressive strength of the bone-implant
construct will be reviewed. For both stabilization and
strength, the effectiveness of supplementary posterior fix-
ation will be described.

Three-dimensional stabilization

Many biomechanical studies have been conducted over
the last 10 years to address the stabilization characteris-
tics of interbody cages. Only those studies which used a
human cadaveric model will be reviewed here. The po-
tential deficiencies of an animal model will be outlined
in the Discussion section. Further, only studies which
are truly three-dimensional are included. This entails as-
sessment of the stabilization provided by the cage in the
sagittal plane (i.e. flexion-extension), the frontal plane
(i.e. lateral bending), and the transverse plane (i.e. axial
rotation).

In the studies of cage stabilization, well-defined loads
are applied to a spine specimen in its intact, non-operated
state and after insertion of an interbody cage. Often, the
effect of supplementary posterior instrumentation is deter-
mined as a final step. In these experiments, the interverte-
bral motions are measured in the different specimen con-
ditions. Typically, the results are reported as the total
range of motion under the maximum load or as the over-
all stiffness (i.e. load per unit displacement) of the con-
struct. The cage stabilization is assessed as a percentage
of the intact spine values.

Different cage designs

In comparative studies of different cage designs, no sig-
nificant differences have been described for either ante-
rior [27] or posterior [22] cages. Mathematical modelling
of these constructs also demonstrates very similar me-
chanical behaviour for different cage designs [14]. There-
fore, the results for different cage designs will be com-
bined in the remainder of this paper. It is possible that
subtle differences do exist between cages and that the sta-
tistical power of the existing studies was insufficient.
However, at this point, we do not know if this is the case.

Anterior approach

Several studies have been reported on interbody cages in-
serted from an anterior approach which were three-dimen-
sional in human cadaveric specimens. A variety of differ-
ent interbody cages were tested, including threaded cylin-
ders such as the TIBFD (Sofamor-Danek Group, Mem-
phis, Tenn.) and the BAK cage (Sulzer Spine-Tech Inc.,
Minneapolis, Minn.) [12, 23, 27, 29], and monobloc de-
vices such as the SynCage (Mathys Medical Ltd., Bett-
lach, Switzerland) [27]. For comparison, a femoral ring
construct has been tested and the results are included
herein [12].

Several general observations can be made from a com-
pilation of these studies on cage stabilization from an an-
terior approach (Fig. 1). In flexion, the intervertebral mo-
tion is always less with the cage, on average being about
60% of the intact motion. In extension, the motion with
the cage is approximately the same as the intact motion.
In other words, the cages do not stabilize the spine in this
loading direction. In axial rotation, the cages generally do
stabilize the spine such that the cage motion is about 60%
of the intact motion. However, there is less stabilization in
axial rotation when poor end-plate fixation occurs, as ob-
served by Glazer et al. [12] for femoral ring allograft and
as described by Rathonyi et al. [29] for two of their six
specimens with BAK cages. In lateral bending, the cages
reduce motion to about 50% that of the intact spine.

Posterior approach

A variety of different interbody cages have been tested
from a posterior insertion, including a threaded cylinder
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Fig.1 Summary of three-dimensional biomechanical studies con-
ducted on interbody cages inserted from an anterior approach in a
human cadaveric model. The data points represent mean or median
values of the range of motion data presented in the original arti-
cles. Note that a ratio of 1.0 implies the same motion as intact
while a ratio less than 1.0 represents less motion than intact, or sta-
bilization



such as the Ray cage (Surgical Dynamics, Norwalk, Conn.)
[22, 33], rectangular devices such as the Brantigan cage
(Depuy-AcroMed, Warsaw, Ind.) [18, 22], and a titanium
device to fit the end-plate contours such as the Contact
Fusion Cage (Stratec Medical Ltd., Oberdorf, Switzer-
land) [22]. For comparison, a tricortical graft construct
has been tested and the results are included herein [18].

Several general observations can be made from a com-
pilation of these studies on cage stabilization from a pos-
terior approach (Fig. 2). In flexion, the intervertebral mo-
tion is always less with the cage, on average being about
60% of the intact motion. In extension, the motion with
the cage is approximately the same as the intact motion.
This implies, as with the anterior devices, that posterior
cages do not stabilize the spine in extension. In axial rota-
tion, the motion after cage insertion was always more than
in the intact spine by approximately 25%. In lateral bending,
variability was observed between studies, with some studies
observing significant stabilization [22] and others not [33].

Anterior versus posterior approach

There appear to be some differences between anterior
and posterior approaches in the stabilization provided by
cages. To enable a quick comparison, the studies sum-
marized in Figs. 1 and 2 have been averaged and com-
bined in Fig.3. There were no clear differences in flex-
ion. A slight difference existed in extension, although
there was relatively high variability in the anterior stud-
ies. In axial rotation and lateral bending, there was sub-
stantially more motion in the posterior approaches com-
pared to the anterior. Note that none of these compar-
isons are statistical.

Other factors

In Bagby’s original treatise on interbody cage stabiliza-
tion, he described the distraction-compression theory of
intervertebral stabilization [3]. The concept is that inter-
vertebral stabilization will be enhanced with increasing
distraction of the annulus fibrosus. Various clinical and
laboratory studies have shown that distraction of the disc
space does occur with interbody cages [5, 9, 24, 31], and
a recent biomechanical study showed that the degree of
stabilization is related to the amount of distraction [24].
Animal models demonstrated that some distraction is lost
postoperatively, primarily in the first 6 weeks [13, 31].
This loss of distraction will result in decreased immediate
stabilization, particularly in flexion-extension and lateral
bending [16].

Another factor which affects the stabilization of cages
is the vertebral body bone density. It was shown that for
various cage types, increased bone density enhances sta-
bilization in flexion-extension and lateral bending, but not
axial rotation [26].

Effect of supplementary posterior fixation

Many authors have recommended that posterior fixation
be added to interbody cage constructs to enhance their
stabilization. This has been studied extensively, and it is
well documented that pedicle screw fixation, translami-
nar screw fixation, and transfacet screw fixation all sub-
stantially improve the stabilization. A summary of three
studies including cages from an anterior or posterior 
approach with pedicle screws and an anterior cage 
with translaminar screw fixation demonstrates this point
(Fig.4).
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Fig.2 Summary of three-dimensional biomechanical studies con-
ducted on interbody cages inserted from a posterior approach in a
human cadaveric model. The data points represent mean or median
values of the range of motion data presented in the original articles.
Note that a ratio of 1.0 implies the same motion as intact while a ra-
tio less than 1.0 represents less motion than intact, or stabilization.
No values are shown in flextion-extension for the Hoshijima study
since the two loading directions were not reported separately

Tencer [33]
Hoshijima [18]
Lund [22]

Fig.3 Summary of the data from anterior and posterior cage stud-
ies presented in Figs. 1 and 2. The standard deviation bars repre-
sent the variation between the different studies



Cage-vertebra interface strength

Fewer studies have been conducted on the strength of the
cage-vertebra interface. Again, only those investigations
which used a human cadaveric model will be reviewed.

From an engineering perspective, the load at which a
cage will subside into a vertebral body is dependent upon
the strength of the vertebral bone and the surface area of
the interface. The complicating factor is that the strength
of the vertebral bone varies greatly between individuals
and also within the same individual. Other factors such as
surgical preparation of the vertebral body (e.g. end-plate
preservation) complicate the situation. Current studies
have enhanced our understanding of some of these factors
and these will be reviewed.

Effect of bone density

It is well known that the compressive strength of cancel-
lous bone is tied directly to its apparent density. There-
fore, it seems obvious that the strength of the cage-verte-
bra interface should be dependent upon the bone density
of the vertebral body. Recent laboratory studies have ver-
ified that this is the case [20, 32]. One of these studies ad-
dressed the strength of three different cage designs, while
the other study looked at two similar but slightly different
designs. The bone density, determined by dual energy X-
ray absorptiometry, was clearly related to compressive
strength of the interface in both studies.

Effect of end-plate preparation

The two studies referenced above and one earlier experi-
ment [17] investigated the role of the vertebral end-plate

on the strength of the cage-vertebra interface. None of the
three studies found a significant difference between cages
which preserve the subchondral end-plate and those
which penetrate it when inserted according to the guide-
lines from the manufacturer.

Effect of cage design

The study by Jost et al. [20] compared the cage-vertebra
interface strength for three different cage designs. They
detected no significant differences between the threaded
Ray cage, the rectangular Brantigan cage, and the porous
Contact Fusion cage. Steffen et al. [32] concluded that a
cage which rests peripherally on the end-plate may be bet-
ter to resist settling into the vertebral body.

Effect of supplementary posterior fixation

The study by Jost et al. [20] investigated the effect of
pedicle screw fixation on the compressive strength of the
cage-vertebra interface. They found that the compressive
strength did not change with supplementary pedicle screw
fixation.

Discussion

This literature review addresses the basic mechanics of in-
terbody cage fixation in the lumbar spine. It focusses on
two important aspects of cage performance: three-dimen-
sional stabilization and the compressive strength of the
cage-vertebra interface.

Biomechanical models for interbody cages

The scope of the literature review includes only studies
conducted with a human cadaveric model. Many studies
on interbody cages, particularly some of the initial inves-
tigations, were conducted on a variety of animal models
including porcine, bovine, and baboon [7, 8, 35]. It is well
known that there are substantial anatomic differences be-
tween these animal models and the human spine, includ-
ing different articular facet morphology and immature
growth plates. However, if these studies produced similar
results to those of the human cadaveric model, then they
may prove useful in biomechanical experiments. Unfortu-
nately, substantial differences do exist between the results
of these early studies and the most recent biomechanical
findings in human models. To demonstrate this point, we
have combined the anterior and posterior cage stabiliza-
tion results from Fig. 3 with results from these animal ex-
periments (Fig.5). Note that in loading directions other
than flexion, the results from the animal models are dra-
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Fig.4 Effect of supplementary posterior instrumentation on cage
stabilization as shown in three representative studies. The anterior
approach with interbody bone graft was conducted by Glazer et al.
[12]. The posterior approach with cages was conducted by Lund et
al. [22] and the anterior approach with cages was performed by
Rathonyi et al. [29]



matically different from the average results of several
studies in a human model. These findings make us ques-
tion the use of these animal models in characterizing in-
terbody cage mechanics and are the reason for our exclu-
sive focus on human cadaveric models in this paper.

Three-dimensional stabilization

The results of different studies on anterior and posterior
cage stabilization are remarkably similar. It seems that a
cage inserted from either direction provides good stabi-
lization in flexion but does not provide stabilization in ex-
tension. It is interesting that the anterior approach, which
destroys much of the anterior annulus and longitudinal
ligament, does not result in dramatically poorer stabiliza-
tion than the posterior approach. The lack of a difference
could be due to the facet destruction which occurs in the
posterior approach. The anterior approach produces better
stabilization than the posterior in axial rotation and lateral
bending. The primary difference between the anterior and
posterior surgical approach is that a medial facetectomy is
required in the posterior procedure. Since the facets play
such a vital role in axial rotation [1], this may explain the
better results with an anterior approach in this direction.
The role of a medial facetectomy is not as significant in
lateral bending, but could still be a factor. Another possi-
bility is that the cages from a posterior approach are
placed more centrally in an effort to avoid excessive facet
removal. This would presumably result in poorer lateral
bending stabilization. In summary, the anterior approach
seems to produce better immediate stabilization than does
the posterior approach.

Of note in both anterior and posterior approaches is the
absence of stabilization in extension after cage insertion.
It is not clear whether this is a clinical problem which re-
quires supplementary fixation. Extension motion in the
lumbar spine is small, approximately 3 degrees per level.
It seems reasonable that postoperative rehabilitation which
avoids any extension movement may be one way of avoid-
ing this direction. However, supplementary fixation is an-
other potential solution.

Clearly, adding posterior fixation to an interbody cage
construct creates the most stable construct. Pedicle screw
fixation, translaminar screws, and transfacet screws all
produce excellent biomechanical stabilization. It is possi-
ble that simpler techniques which focus on the extension
direction may be a better solution. For example, Fidler
[11] described the clinical use of a H-graft between the
spinous processes to supplement interbody bone graft,
with excellent results. The inevitable question lies in what
degree of immediate stabilization is required to create sig-
nificant bone growth into the cage and eventual fusion.
This question will be answered only by well-controlled
prospective clinical investigation.

Implant-vertebra interface strength

The compression strength of the cage-vertebra interface is
becoming better understood. It is clear that vertebral bone
density plays a very important role in preventing the cage
from penetrating into the vertebral body. However, a re-
cent clinical study addressing cage settling did not find a
significant correlation between settling and bone density
[2]. This suggests that there are other factors which are
also of importance to prevent significant cage settling.

Many surgeons emphasize the role of the vertebral
end-plate in preventing cage settling. After removal of the
cartilaginous end-plate, the subchondral end-plate is often
retained to prevent subsidence. However, the biomechan-
ical evidence suggests that the subchondral end-plate does
not have a significant role in the strength of the cage-ver-
tebra interface. It is possible that removal of the end-plate
will have a small weakening effect of the cage-vertebra
interface, but it does not appear to be as significant as
once believed. This is perfectly understandable given that
the end-plate is dense subchondral bone that is only about
0.25 mm thick [34].

The location of the cage on the end-plate probably has
a role in the potential for settling. Steffen et al. [32] sug-
gested that more peripheral contact is probably best from
a mechanical and a biological perspective. Additional
work in this area would be beneficial.

S99

Fig.5 Results of anterior and posterior approaches for cage inser-
tion in human cadaveric models compared with some early animal
results. The human data are as plotted in Fig.3. The flexion and ex-
tension animal data are from Wilder et al. [35]. The axial rotation
animal data are from Brodke et al. [7] while the lateral bending an-
imal data are from Butts et al. [8]
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