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Abstract. We are interested in the coarsening of a spatial distribution of
two phases, driven by the reduction of interfacial energy and limited by dif-
fusion, as described by the Mullins—Sekerka model. We address the regime
where one phase covers only a small fraction of the total volume and con-
sists of many disconnected components (“particles”). In this situation, the
energetically more advantageous large particles grow at the expense of the
small ones, a phenomenon called Ostwald ripening. Lifshitz, Slyozov and
Wagner formally derived an evolution for the distribution of particle radii.
We extend their derivation by taking into account that only particles within

a certain distance, the screening length, communicate. Our arguments are
rigorous and are based on a homogenization within a gradient flow structure.

Mathematics Subject Classification (1985B27, 35Q72, 58E50, 82C26

1 Introduction
1.1 The Cahn—Hilliard model

Ostwald ripening may for instance occur in phase segregation of a two—
component mixture, as described by the Cahn—Hilliard model. The Cahn—
Hilliard model describes the state of the system at a tilmg the spatially
dependent relative concentratioe= ¢(¢, x) of, say, the first component. We
are interested in the case where the initigd spatially uniform with value

co and unstable. The latter means that the free enErtgvors two phases,
each of a characteristic value fofthe two equilibrium concentration$ <

co < ct), separated by an interfacial layer of characteristic width and of
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minimal area. The dynamics reduce the free endfgyhile preserving the
spatial average of the relative concentratiollore precisely, the dynamics
are driven by the negative gradien¥/ v of the chemical potential (which
mathematically speaking is the functional derivativegzoivith respect ta)
and limited by the diffusion of each component.

Numerical simulations show that the system evolves as follows: After an
initial stage, two phases form. In each of the two phasesaches its respec-
tive equilibrium value; the phases are separated by an interfacial layer of the
characteristic thickness, which is much smaller than the typical lengthscale
of the phase distribution. Subsequently, the system redtidgsreducing
the area of the interfacial layer. This is reflected in an increase of the typical
lengthscale of the phase distribution, which is called coarsening. Numeri-
cal simulations and heuristic arguments show that this lengthscale increases
with time ¢ like ¢1/3.

1.2 The Mullins—Sekerka model

Coarsening in the Cahn—Hilliard model is well-described by the Mullins—
Sekerka model [14,1]. The Mullins—Sekerka model is a sharp—interface
model: It describes the position of the interfacial layer by the boundary
0G of a regionG C R? (the region where: ~ ct). Itis based on the
assumption that the diffusion field, which is given by the negative gradient
—Vu of the chemical potential, is in quasistationary equilibrium given the
normal velocityv of the interfaceG. In dimensionless variables this reads

Au =0 inthe bulkR*\0G, (1)
[Vu -] =v atthe interfacéG. (2)

Hereri denotes the normal to the interfa¢®u - 7i] the jump of the normal
component of the gradieRtu - 77 across the interface. On the other hanis,

the functional derivative of/, which in the interfacial regime is proportional
to the area obG. As well-known, the first variation of the area @f is
given by its mean curvature Hence in dimensionless variables, one obtains
the so—called Gibbs—Thomson law:

u = k atthe interfacéG. 3)
Since at a given timg « is uniquely determined b§G via (1) &(3), (2),(1)

& (3) indeed formally defines an evolution ¢f. This interfacial motion
reduces the area oG while preserving the volume af.
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1.3 Small volume fraction

We are interested in the regime where the volume fraction covered by

is very small. Numerical simulations of the Cahn—Hilliard model in this
regime indicate that once the interfacial regime emergésonsists of
many disconnected components (“particles”), which quickly become ap-
proximately radially symmetric, and whose centers approximately do not
move. Subsequently, the large particles grow at the expense of small parti-
cles, which eventually vanish. This particular form of coarsening is called
Ostwald ripening. As the state of the system is described by the{r&glji

of the particles, it is tempting to try to identify the evolution law faR; };

from the Mullins—Sekerka model. By formal arguments, Lifshitz, Slyozov
and Wagner [7,20] have done this and found that this evolution reduces to an
evolution of thedistributionv of the { R; }, — a tremendous reduction. We
now have a closer look at the formal argument of LSW, in order to identify
more clearly its crucial assumptions.

1.4 The LSW argument

We introduce the following notation:

- d%, denotes particle number density, so thias the typical particle dis-
tance,

- 47”7%3 denotes the average particle volume, so tRais the typical
particle radius.

Small volume fraction means that
R < d. 4)

According to (1), the chemical potentials a harmonic function outside
the particles. Thanks to the separation of the particles expressed in (4), there
exists a functior such that

— @ is “slowly varying” in the sense that the length scale of variations of
is much larger thad,

— u =~ u “away from the particles” in the sense that the functions agree at
distances from the particles which are much larger tRan

This functionz is called the mean field. Consider namn the neighborhood
of a fixed particle of centeX; and radiusk;. We have

is harmonic forR; # |x — X;| < d according to (1)
U =4 for R; = |z — X according to (3)
for R; < |l‘—XZ| <d
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Sinceu is approximately constant for — X;| < d, this implies that

= Ril for Rz’ > |x—Xi|,
u

and thus according to (2)

. . 1 -
Ry = [Vu-7i| ~ ﬁ(Riu—l). (5)

In order to understand over which length scale the meandietaries, we

have to understand two lengths, the screening length and the correlation

length.

1.5 The screening length

The screening lengtfy., is defined as the maximal size of a box such that
the average value af, and hence, within the box is still dominated by the
boundary values from the particles outside the box. We will arguethat
scales with the mean particle radi®sand the average particle distante

as
3 1/2
Eser R (R) . (6)

This has already been done e.g. in [6,8], but for the convenience of the
reader we now present the heuristic argument in our language. We ask the
following simplified question. Consider the solutibhof

—AU =0 outside the particles
U=1 inside the particles
U=0 on the boundary of the bdg, £]3. (7)
The boundary condition (7) mimicks the influence of the particles outside

the box. Obviously, it is small,U is dominated by (7), which for instance
can be expressed as

— U? « 1. (8)
& Jogp

For sufficiently largeg, inequality (8) will become false. The cross-over
value is the sought-aftés.... By the Poincak inequality orj0, £]2, inequality
(8) is a consequence of

1

- IVU|? < 1.
& Jogp
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Now [ |VU|? is just the electrostatic capacity (see e.g. [5]) of the union of
all particles within[0, £]3. Since the particle diamet& is much smaller

than the particle distane&(4), the capacity of a finite union of particles is
approximately the sum of the capacity of the individual particles, which for
radially symmetric particles is proportional to the radius and hence scales
like R. Within the box|0, ] we have of the order offi particles. This
number might be so large that the above mentioned additivity fo the capacity
breaks down, in which case the capacity of the conglomerate behaves like
that of a single particle of diametérHence

1 VU = 1 { &R : forsmalle
€ Jjoep ¢l ¢ . forlarges
1/2
B %R : forék (%)
- 2\ 1/2
1o fores (%) /

This is our argument in favor of (6).

1.6 The correlation length

A second length scale is important for the variationgiothe correlation
lengthé,.,-. The correlation length is the minimal size of a box such that the
distribution of the particle radii within this box is a good approximation to
the distribution of all radii. As a very crude but convenient approximation to
this subtle statistic motion, we think ¢f,, as the size of a box with respect
to which the particle arrangement is periodic. On one harahd hence:
inherits this periodicity with period.,.. On the other hand; cannot vary
significantly on length scales less thgp. according to Subsect. 1.5. Hence
the regime

5601” << 5861”
is particularly simple:
u IS approximately constant in space

The value ofz is determined by (5) and the a priori known conservation of
the volume fraction, that is

%ZR?:O,
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where the sun)_, extends over all particles within the periodic JOX¢ .o,
(For convenience of later notation, we include in this sum even those particles
which may have already vanished, thatfg,= 0). Indeed, one obtains

o = D iRi0 1 _ 1
> Ri average radius of non-vanished particles

(9)

The closed system (5) and (9) is just the classical LSW-law.

The obvious but crucial observation is that (5) and (9) reduces to an
evolution of the radii distributiom (¢, r), that is

"2 (t,r) dr = number of particles with radius ifr, r2)
" VILTIAT = and center in the periodic bdf, &qo,]3.

Indeed, the system of ordinary differential equations (5) translates into the
kinetic equation

O + 0O, <:2 (ru—1) 1/) = 0, (10)
and (9) can be written as
- [vdr
= ) 11
“ [rvdr (11)

The derivation of (10) & (11) in the regimR < d and&.,, < s has
been made rigorous by the first author [10].

1.7 The modification of LSW in our regime

Marder [6,8] argues that correlations are induced by screening effects so
that it is relevant to understand the regime

~
‘Scor ~ Escm

which is the goal of this paper. As we will show, in this regime the evolution
for {R;}; reduces only to an evolution of the joint distribution of particle
radii and particle center(t, z, r), that is

"2 _ [number of particles with radius ifr;, r2)
/w/r1 v(t,z,r)drdz = {and center in the setin [0, &0, ]? ’

since (9) generalizes to

— At + 4r <ﬁ/rvdr - /udr> = 0. (12)
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The kinetic equation

O + Oy <:2 (rﬂ—l)y) =0 (13)

now hasz as a parameter. The rigorous derivation of the evolution (13) &
(12) from the Mullins—Sekerka evolution (restricted to radially symmetric
particles) is the content of this paper, the result is formulated in Theorem
3.1.

If all radii are identical, it would immediately follows from the classical
homogenization result by Cioranescu and Murat [4] thablving (1) &

(3) converges ta solving (12). Their argument can be extended to treat the
case of non—identical radii. But in order to obtain (12) with this limit, one
roughly speaking would need to know the corrector in this convergence.

Our analysis takes a different venue: We use the fact that the Mullins—
Sekerka evolution (and thus its homogenization) has the structure of a gradi-
ent flow in a physically natural way. The gradient flow perspective has been
successful in analyzing diverse problems as e.g. the porous medium equa-
tion [12] or the lubrication approximation equation [13]. Here, it allows to
exploit the Rayleigh principle, which characterizes a solution of a gradient
flow as a minimum of a quadratic functional. Hence, the analysis reduces to
identifying the"limit of this variational problem. Roughly speaking, this
amounts to homogenizing the Neumann problem (1) & (2) rather than the
Dirichlet problem (1) & (3).

The outline of the paper is as follows. In Sect. 2, we introduce the
Rayleigh principle for a gradient flow, argue that Mullins—Sekerka has the
structure of a gradient flow, and use this structure to restrict the evolution
to spherical particles (see [2,17] for a justification of this simplification). In
Sect. 3, we introduce the precise assumptions, the appropriate scaling and
state our main result. In Sect. 4, we establish several preliminary results
on the convergence of the distribution functions. In Sect. 5, we identify the
I'-limit of the functional corresponding to Rayleigh’s principle. In Sect. 6,
we translate the limiting Rayleigh principle into (13) and (12).

1.8 Outlook

The second part of the classical LSW-theory predicts the long-time behavior
of the radii distribution/;. More precisely, by a formal analysis of (5) & (9)
LSW predict that,, independently of the initial distribution, approaches a
specific self-similar solution of (5) & (9). This allows them to conclude that
the average radiu% grows Iike(%t)1/3. In [11], Pego and the first author
however show that the long time behavior is not universal. In fact, for particle
distributions with compact support the asymptotics depend sensitively onthe
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behavior of the initial distribution near the end of its support. Qualitatively
similar results to [11] but with different methods are obtained in [3] for a
simplified LSW model. In [16] a Fokker—Planck approximation of the LSW
conservation law is studied.

Even though the self similar nature can often be observed in experiments,
none of the profiles and rate constants possible for the LSW model can be
validated. One reason for these deviations is certainly that in the LSW theory
all particles of the same size evolve according to the same law and thus direct
interactions between particles are entirely neglected. For an overview we
refer the interested reader to the survey articles [6,18,19] and the references
therein.

2 The structure and the microscopic problem

Our analysis will be guided by the gradient flow structure of the evolution.
In this chapter, we start by introducing the general framework. Then we will
show that the Mullins—Sekerka free boundary problem fits into this frame-
work. We will use this structure to “restrict” Mullins—Sekerka to radially
symmetric particles and finally we argue that also the limit evolution can be
interpreted as a gradient flow.

2.1 The abstract gradient flow structure and the Rayleigh principle

A vector field f on a differentiable manifolo\ (a vector field attaches a
tangent vectoy (z) € T, M to every pointr € M) defines the dynamical
systemi = f(z). A gradient flow is a dynamical system whefds the
negative gradient-grad E' of a functionF on M. The notion of a gradient
requires a Riemannian structure, that is, a metric teqgor M (a metric
tensor endows the tangent spd¢eVt with the scalar or inner produgt,).
Indeed, the differential of a functio' on M attaches the linear form or
cotangent vectodiff £, to each pointz € M. Only the scalar produgt,
converts the cotangent vectdiff . into the tangent vectgirad E,. via

gz (gradE,,v) = (diff E,,v) forallv e T, M.
Hence the extended versionbt= —gradE,, is
Gty ((t),v) + (diff By, v) =0 forallv € T, M andt.  (14)
It is immediate from (14) that the value &f decreases along trajectories:

d

%E(x(t)) = —Go() (@(t), 2(t))- (15)
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Indeed, the intuitive understanding of a gradient flow is that of a steepest
descent in an energy landscape. The geometry of the base/spacgiven

by ¢ whereas the height is determined By The integrated version of (15),
that is,

T
BT + [ g6 d = Be©)  (@9)
will be the starting point for all our a priori estimates. For our analysis, it
will be important that (14) can be reformulated as a variational problem

For all t, z(t) is the minimizer of

1 .
5 Ja(t) (0, 0) + (diff By y), v) 17
among alb € T,y M,

which is also referred to as Rayleigh principle in the applied literature. It
will be convenient to have (17) in the more robust time integrated version

For all nonnegative functions of ¢, £ minimizes

[e%¢) 1 )
/0 B(t) <2 Ga(ry(v(t),v(t)) + <d1fsz(t),U(t)>> dt (18)
among all vector fields along the curver.

Finally, we observe that a gradient flow — as opposed to a general dynamical
system — can be naturally restricted to a lower dimensional submanifold
N C M. Indeed, both ingredient& and g restrict canonically toV. We

will use this in Subsect. 2.3.

2.2 Mullins—Sekerka as a gradient flow

We now argue that the Mullins—Sekerka free boundary problem formally
fits into the gradient flow frameworkd has to be chosen as the manifold
of all setsG' ¢ R? (the distribution of one of the two phases), which are
periodic with perioc,,,, that is,

G+&orn = G forallneZ?,
and have a fixed volume in this periodic b(x &, )3, that is
L3(GN(0,€0r)?) = const.

The tangent spacé; M in aG € M is conveniently described by all
kinematically admissible normal velocities @€, that is,

TaM = {v: 0G — R | v is & ,—periodic vdH? = 0}.
OGN[0,&€cor )3
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The metric tensor has to be chosen as
ga(vt,v?) = / vut - vt de?, (29)
(0,6cor)3

whereu® in view of (1) & (2) solves the elliptic problem

—Au® = 0 inR3\0G,
[Vu® - 7i] = v* on 0G.

An integration by part yields the representation
ga(vl,v?) = —/ ul v? dH?. (20)
OGN[0,&cor)3

The functionalZ is just the total interfacial area (within a periodic box)
E(G) = H*(0G N0, Ecor)?).
Itis well-known that the first variation of surface area is the mean curvature
(diff B, 0) = / KO dH?
OGN[0,&cor)3
for all & € T M. Therefore we have according to (20)
9c(v,0) + (diff Eg,v) = / (k —u) 0 dH?
OGN[0,&cor )3

so that the Gibbs—Thomson law (3) (up to an irrelevant additive constant)
is indeed equivalent to the gradient flow formulation (14). We observe that
the metric tensor can also be written as

go(v',v?) = (vt dH*0G, v dH?|0G) -1

where(-,-) ;-1 is the homogeneous part of tfh&~!—scalar product on the
space of periodic distributions with mean value zero, that is

Y g = /(0£ )SVul-Vu2dE3, (21)

whereu® solves the elliptic problem
—Au® = f* inR?

and is periodic with period.,-. Hence, loosely speaking, the Mullins—
Sekerka free boundary problem is the gradient flow of the surface area w. r.
t. H—1, a fact well known to the experts.
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2.3 The restriction of Mullins—Sekerka to radial particles

We now want to restrict this dynamical system to the submanif6ld M
of all setsG which are the union of disjoint balls

G = U;Bg,(Xy),

where the center§X;}; are given and the rad{iR; }; are variable. Hence
N can be identified with an open subspace of the hypersuffice=
{R;}i| Y, R} = const} in RN, whereN is the number and=1,--- , N
an enumeration of particles with centers in the periodic[bog.,.,.). There-
fore, the tangent space can be identified with the hyperplane

TpN = {V = {Vi}i| ) R}V, = 0} c RV,
7
It is obvious that the restriction of the metric tensor is

gr(VE,V?) = /( o Vul - Va2 dL?, (22)
01 cor

whereu® solves

—Au® = 0 inR3\ U; 0Bg,(X;),
[Vu® - 7i] = V,* onBg, (X;).

The restriction of the functional is simply
ER) = 2r Y R} (23)

so that

(diff Ep, V) = 47 Y R V;.

Hence the dynamical system we will investigate is the gradient flow of the
functional (23) w. r. t. the metric tensor (22) AA Existence and uniqueness

for the initial value problem of this dynamical system is not standard since
the dynamical system is not smooth at the boundasy/ pthat is, when one

of the radii goes to zero (which occurs generically) and when two of the
balls touch (which can be ruled out for the regime of small volume fraction,
see (31)). Our topic is not the existence or uniqueness, but the asymptotic
behavior for small volume fraction — hence we will always assume that a
weak solution in the sense of (18) exists.
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2.4 The gradient flow structure of the limit
Our analysis can be characterized as a homogenization of the above gradient

flow structure. Let us point out here in which sense the homogenized limit
(13), (12) is a gradient flowM is the manifold of all distributions =

v(z,r) such that
/ / rrdrde =1
(0,6cor)3 JO

and the tangent space is described by

T,,/\/l:{vzv(x,r) : / / r2vudrdx:()}.
(0,6cor)® JO

The energy is

E(v) = 27r/ / r2vdrdax
(0.8c0r)® JO

and the metric tensor turns out to be

gu(v,v) —/ |Vu|?dr + 47r/ / lo*>r3 vdrdx  (24)
(ngcor)g (075607‘)3 0

where
—Au + 47r/7“2vud7“ =0 in (0,§cm~)3-

Indeed, the main part of our analysis will be to show, that (24) is the limit
functional of (19) in an appropriate homogenization setting (cf. chapter 5).

Finally, we remark that the classical LSW-model is a gradient flow in the
above setting if one neglects the inhomogeneous yéerP dz in (24).

3 The scaling and the homogenization result

As explained in Subsect. 2.3, we consider a periodic arrangement of parti-
cles with periods.,,, described by the fixed particle cent&s= {X; €
R3},;.... v and time—dependent radk = {R; € [0,00)}i=1.... v, Which
evolve according to the gradient flow with metric tensor (22) and energy (23).
Note that we allowR; to be zero, accounting for particles which vanish over
time.
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3.1 Definition ofd, R and &,

Following Subsect. 1.4, the number densﬁyof particles is defined by
B3 1=¢, (25)

and the average vqur’rﬁgI R3 by
YRt =R 1. (26)

As in Subsect. 1.6, the suln, extends over all particles in a box of length
¢eor, €venthose which may have already vanished. Observe that the evolution
preserves the |. h. s. of (26), so thais indeed well-defined. As motivated

in Subsect. 1.5, we introduce the screening length

d3 1/2
éscr - <R> .

Our aim is to identify the evolution in the limit of vanishing volume fraction
of particles. More precisely, we consider asequence of systems characterized

by the parameter
d 1/2
€ (5) 27)

5807‘

in the limite — 0.

3.2 Three assumptions on the particle arrangement

We have to assume that particle centers are well separated in the sense that
there exists & > 0 such that

{Bya(X;)}: are disjointfor alls > 0. (28)

We have to require thanitially, the particles much larger th& do not
carry too much of the total mass, that is

N
Y <R;é0)> —0 asM — oo uniformlyine — 0. (29)

i B0 >

We want to assume that the correlation length (see Subsect. 1.6) is of order
of the screening length in the limit— 0; for simplicity

gcor = gscr' (30)
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As a consequence of (30) and the definitions (25), (26) and (27), we have

(SR < %= <

%

= ed foralliandt € [0, 00). (31)

R;i(t)

IN

It now follows from (28) that for sufficiently smad,

{Br,t)(X;)}: aredisjoint for allt € [0, cc).

3.3 The joint distribution of centers and radii

It is canonical to measure

particle centers: in units of&,.,.,
particle radiir in units of R. (32)

The LSW argument (5) suggests to measure
time ¢ in units of R3. (33)

Hence we define the joint distributiarf of particle centers and radii at a
given timet by

X; Ri(t/R?
/Cduf = <§m) ;CQW % )> for¢eCp, (34)

whereC}) stands for the space of continuous functiong ea ¢ (x, ) which

— are periodic inr w. r. t. the unit box2 = (0, 1)3,
— have compact support ine (0, co).

Note that since (z,r) = 0 for r = 0, particles which have vanished do not
enter the distribution. Hence the natural spacefoand its limity, is the
space(Cp)* of Borel measures of? x (0, c0), that is, the product of the
torus and the positive half axis. The natural space for potentials of diffusion
fields isH,), the space of functions = u(x) which

— are periodic inz w. r. t. the box(?,
— are square integrable with square integrable gradient.

Furthermore we will denote bﬁ}} the subspace QH; of functions with
mean value zero.
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3.4 The result

Theorem 3.1. There exist a subsequence, again denoted by 0, and a
weakly continuous majf), co) > ¢ = 1, € (CJ)* with

/(duf — /Cdut locally uniformly int € [0,00) forall ¢ € Cg.
This limit is non trivial, indeed

/TSth = 1.

Furthermore, there exists a measurable nf@pxo) > ¢ — a(t) € H, such
that (13) and (12) hold in the following weak sense

d |
dt/gdyt _ /&Cﬁ(ru(t)—l)dut

distributionally on(0, oc) for all ¢ € CJ with ,¢ € C)

resp.
/QVu(t)-Vde + 47T/Cu(t)rdut = 4r /Cdyt

forall ¢ € Hy anda.e.t€ (0,00).

4 Weak compactness

In this chapter we do everything which can be done by soft arguments.

4.1 Rescaling

For the ease of presentation, we will rescale the spatial variablés.by
such that

fsor = &or = 1 andhence d = &, R = &%

We also rescale andt as indicated in (32), resp. (33). In the rescaled
variables the submanifolty” from Sect. 2 is given by

NE = {R€ ={Ri}:|*Y R} = 1}
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and the tangent space by
TreN°© = {‘78 ={Viki| ) _RiVi= 0} :

In the following we will always denot¥c = {V;}, with V; = %Ri,whereas

V< will be an arbitrary element of the tangent space. Furthermore we use
the abbreviation3; := B_sg, (X;). The metric tensor foV® € Tr-N* is
computed via

e (V2. V) = [ [P (35)
Q
wherei© € ﬁ; solves

/Qvas-v<+ >

i:R; >0

1 -~
| ahic=o (36)
dB; €
forall ¢ € I}I} With the energy
E(R?) :=2n ¢’ Z R?
the energy estimate (16) reads
T
/ / \Vuf|?dadt + 4me® Y " R}(T) = 4ne® > RI(0)  (37)
0 2 i 7
for all T > 0. Note that by (25) and (26) the right hand side is uniformly
bounded byir. We observe that in the rescaled variables, the non negative
Borel measure; € (Cp)* is given by
/gduf = &) C(Xi, Ri(t)) for¢ecy.
The definitions (25) and (26) translate into the normalizations
/ dv; <1 forallt e [0,00), (38)
/r3 dvi =1 forallt e [0,00). (39)

Next tof, we introduce:; € (C))*, a signed Borel measure 6hx (0, co)
via

[cdui = 3¢ R itt) for ¢ e €.
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{us}+ is just constructed such that

[ (a0 [cat o0 [ocai)a o @0
forall ¢ € C) N C™ andB3 € C™((0,))

As will be shown in the proof of Lemma 5.3 in chapter 5, the energy dissi-
pation ratef;* [, |[Vu<|? controls

D = / e > RIVPdt
0 i:R;>0
which yields
D := liminf D° < oo. (42)
e—0

This indeed translates into the following control{of; },

0 2
/ ' [cwa| ar<p7sw [P 5 ag, 42)

/OOO/C(t)dedt < <D6/Om/|<(t)2:3dyt€dt>l/2’ .

where¢ = {t — ((t)} € C{((0,00); CD). Together with (40), (42) yields
the following weak regularity i of {v };:
9 1/2
dt)

‘/gdy; - /gdug < |ty — to) /2 (/ d/gduf
o |dt

1 1/2
< |t — 1]V (DE sxtlp/aTgQTSduf)
(44)

for¢ e CynC>.

4.2 Weak limits
By Arzela—Ascoli, the uniform control ofv{ }, encoded in (38) and (44)

is enough to ensure the existence of a weakly continuous fafniliy. of
nonnegative Borel measures @nx (0, co) such that for a subsequence

/Cdl/f — /(dyt locally uniformly in¢ € [0, o) (45)
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for ¢ in a countable subset cdfg N C*. Again by (38), we see that we
actually can extend the locally uniform convergence in (45) tq all Cg.

Of course, the normalizations (38) and (39) are conserved in a one—sided
way

/ dv, <1 forallt e [0,00), (46)
/ r3dy, <1 forallt e [0,00). (47)

By Riesz, the uniform control of.5 }, expressed in (43) ensures the exis-
tence of a € L?(r3 dvy dt) with

/Oo/lv(t)|2r3dutdt < D, (48)
0
such that for a subsequence
| s [caae > [To0 [comyana @)
forall 8 € C((0,00)) and(¢ € C}.
Of course, (40) is preserved in the limit
|7 (200 [can+s) [acowan) i =0 60

forall ¢ € C) N C™ and € C§°((0, ).

4.3 Volume conservation
The infinitesimal version of volume conservation on théevel is
/7’2 dui = 0 fora.a.t e (0,00). (51)

This is preserved in the limit. Indeed, the control (43) together with the
normalizations (38) und (39) yields for fixdd < co

T

/ /nglui\dt < (TD)"?,
0T

/ /r3d|u§|dt < (TD%)Y2.
0
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Hence (49) improves to

/mﬁ()/r i dt

%/ / (t)dvdt forall 8 CO(0,00)).  (52)

In particular, (51) turns into infinitesimal volume conservation at the limit
level

/r2v(t) dvy, = 0 fora.a.te (0,00). (53)

At time ¢ = 0, none of the unit volume (39) can escape to infinity thanks
to the tightness assumption (29). Indeed, in the rescaled setting, (29) turns
into

/ r3dvs — 0 for R — oo uniformly fore — 0.
{r>R}
Together with (38), which implies
/ rddvs — 0 for§— 0 uniformly fore — 0,
{r<é}

we see that (39) is at least preservedifer 0

/ vy = 1. (54)

We now argue on the limit level that infinitesimal volume preservation (53)
and initial unit volume (54) ensure unit volume for alSince according to
(45),t — [ ¢ dv, is continuous, we obtain from (50) for arbitrary but fixed

/gdyT = /gduo + /T/&Cv(t)dytdt forall ¢ € C) N C™.
’ (55)
We now approximate? by {¢, = ¢ (r)}n C CO N C* in the sense of
Or Cn

By monotone convergence, we then may pass to the fimit oo in the
first two terms of (55). For the last term, we observe that

T
/(8,(” —37%) u(t) dy dt’

8%_3” //r2+r |v(t)| dvy dt

re 43

Ca(r) 1 3 pointwise and — 0 uniformly.

< sup
r
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T
| Jot ) dva
0
T 1/2
(/ /\v(t)\zr?’ dvidt T Sup/dyt>
0 t
T 1/2
+ </ lo(t)|*r3 dvydt T sup/r3 dut>
0 t
(

48,46,47)
< 2(TD)V2

and

Hence (55) turns into

T
/rgduT = /r?’duo—F/ /3T2v(t)dytdt.
0

Together with (53) and (54), we obtain as desired

/r3 dvr = 1 forall T €0, 00). (56)

4.4 Lebesgue density in

In one respect, the limit measurgis nicer than thes;: Its marginal w. r. t.
x has a bounded Lebesgue density, that is, there exists a coastanio
such that

/Cdut < C/Q(da?

for all nonnegativef2—periodic¢ € C°(R?) andt € [0, 00).
(57)

Indeed, fix a periodi¢ Cl(R?’) and compute

fBA C /
o < Cdx
fo (X3) 1 dx Ned Jpy )

where\ is as in (28). Hence

/Cduf = 5325(&- <33 Z/ gdx < ;/dix.
(58)

This inequality is preserved under the convergence (45) and follows for
generall by approximation.

C(Xy) <

for all 4,
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5 The variational formulation in the limit e — 0

This section comprises the heart of our analysis where we identify the
I" —limit of Rayleigh’s variational principle. For the notion é—conver-
gence consult e.g. the monograph [9]. For the convenience of the reader we
recall Rayleigh’s principle: for all nonnegatiye= g(t) € C3°(]0, o)), it

holds forve = 4£Re that

/{)mﬂ(;gRs(V€7V5) + <diﬁE(R€),V5>) dt <
|0 (hone (V2.97) + (dif (R, V7))
0 (59)

for all V¢ such thatVe € Tr- M.
Theorem 5.1. For all nonnegatived = g(t) € C5°(]0, o)) it holds

/ B(%/|Vu|2dm + 47T/ %|U|2T3dut+ 47?/(1)—17)rdut>dt
0 9}
S/O 6<§/Q|vay2da: + 47r/ ;|@\2r3dyt>dt
(60)

forall o € L?(r® dv) such that/ 72 & dv; = 0 for almost allt and such that

(v —0)(t,z,-) = 0in a neighborhood of = 0. Hereu(t,-) € ﬁl} (and
u(t, -) resp.) is determined for a.avia

/ Va(t) - V{dz + 47T/Cr217(t) dvy =0 (61)
2

forall ¢ € fOI;

In the following we will for simplicity use the notation
dv := dv; dt.

Remark 5.2.We note that the functional

<L,C>::/Cr2f}du

is an element of.2((0, T'); (}c};)*) =~ [2((0,T); H,'). This follows from
[ r?ody =0,

1/2 1/6
/C r2ody < C </52r3 dl/> sgp (/7“3 dI/t) 1<l 2223 (02))5
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where we use (57), and the embedding frob%’((O,T);fOI;) into
L2((0,T); L?).

We first compute the limit of the metric tensor. For that we have to prove
lower semicontinuity of the metric tensor for the mimimizing sequence
V<. The second step is to construct for an arbitrarye L?(r3 dv) an
approximating sequence such that the metric tensor is upper semicontinuous
for this sequence. These two ingredients ferconvergence are contained

in the forthcoming two lemmas.

Lemma 5.3. (Lower semicontinuity)
It holds for all nonnegativ@ = [(t) € C5°([0, 00)) that

hmlnf BQRE (Ve,ve) dt—hmlnf/ ﬂ/ |Vuf|? da dt
0
2/ ﬁ/ \Vul|? dz dt + 47r/ﬁ\v\27°3d1/, (62)
0 2

where for almost alt the functionu(t, ) € POI}} is determined as i(61).

Lemma 5.4. (Construction)
For any® € L?(r®dv) with fvr dv; = 0 for almost allt the following

holds: there exists a sequen¥é with V¢ € Tr-N* such that

limsup/ ﬂgRe VE Ve) dt —hmsup/ ﬁ/ |Vae|? da dt
02

e—0 e—0
< / B/ |Va|* de dt + 4w/5|73\2r3dy (63)
0 2

for all nonnegatived = §(t) € C5°(]0,00)) and witha determined as in
(61).

Our strategy will be to splif, |Vaif|? dx into the part wher&/a€ con-
centrates, that is the neighborhood of the particles, and the rest where
is slowly varying. In the proof Lemma 5.3 we consider bahs(X;) with
l; = ve3R; and let first tend to zero and thento oo. To prove Lemma 5.4
we choosé; = [ = e and let firstz: and theny tend to zero.

Proof of Lemma 5.3:
Step 1: A lower bound fof , [Vu|?

DenoteB;, := By, (X;) with [; = ye3R; and note thaf3;, are disjoint due
to (31). We are going to show

1
/ |Vul|? do > 4ne® RS V2 (1 - > (64)
B, v
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For that purpose observe that
/ |Vuf|? dz > inf/ €2 de (65)
By, ¢ By,

where the infimum is taken over glle L?(B;,) which satisfy

1
/ §-Vqu:+/ —SWC:O
By, 8B; €

7

forall ¢ € C§°(By,). Indeed, the minimizeg of (65) satisfies
/ éydm =0
By,

for all smooth divergence—free Henceé = V¢ and¢ = const. ondBy,,
where—A¢ = 0in (B;,\B;)UB;and[V¢ - ii] = % V; 0ndB;. The solution
is given by

é‘ |z—z;]3

R 3 p2y, (—w) | B,
s e e

and we compute

R N 1
J A R
By, Bi,\B; By, \Bi |z — 2]

l:
, i1
:EbR?V;-Qélﬂ'/ —4r2dr

R, T
11
_ 6 P4 y/2
— 4 SRV (E3R¢_E>
3p.
— 47e® R} Vf(1 - gfz)

— A R3V? (1 - l)
v

which proves (64). We obtain a uniform bound ot = [;°&* >, RIV? dt
and thus (41) if we choose = 2, sum over all particles, integrate over
and use (37).

Step 2: Identify the weak limit af
We recall that the potentiafF solves (36) and observe that for @4-periodic
¢ € C>(R?)

P>

1
/ SCVi = D Anel (X)) BY Vi | dt = 0.
i:R; >0 9Bi

i:R; >0
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We obtain with (52) that
> 1
/ By / 3CVidt—>47r/ﬁ(r2vdu (67)
0 iRi>07/9Bi ©
for all 2—periodic¢ = ((z) € C*°(R3). By Remark 5.2 this also holds for
(e H[}. Consequenthu® converges weakly ith?((0, c0) x £2) to Vu.

Step 3: Lower semicontinuity
We have for almost all that

/ |Vuf|? dz = / |V |? dz + / |V |? da
Q 2\UB,, UB;,

(64) 1
> / Vu P de + 4me® Y R3 Vf(1 - 7)
Q\UBli :R;>0 v

1
:/ Vel de + 47r(1 - f) &S RV
Q\UBLL‘ v i:R; >0

Multiplying with 3 and integrating over we obtain

/ ﬁ/ \Vua\Qd:cdt>/ 6 |Vuf|? da dt
0 (7 0 Q\UBli

+47r<1—fly) /000583 S RIVRr.

i:R; >0

Arguing as in chapter 4 one finds that

liminf/ Y R?Vfdtz/ B |3 dv.
0 0

e—0 .
:R; >0

Furthermore we claim that

/ ﬁ/ \Vul|? dzdt < liminf/ B |V |? da dt
0 2 =0 Jo 2\UBy,

with [; = ye3 R;. This is a consequence of the fact that
|UBy,| < Ce%r3 / r3dvi — 0

ase — 0 and Lemma 5.5. Fofy — oo we recover the assertion of the
lemma.

Lemma55.5. Let E,, C 2 C R™ be a sequence of sets such tj&t| — 0
asn — oo. If 2, converges weakly in?(2) to a functionz then it holds

12l L2 () < Timinf |z, [| 22 0\ g,)-
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Proof: We have

/znz:/ znz—|—/ Zn?
2 n 2\Enp

< HZnHLQ(Q)HZHLQ(En) + HanLQ(Q\En)H2”L2(Q)
and the lemma follows fon — oo.

Proof of Lemma 5.4:

Step 1: Proof for smooth

Assume first that € C§°([0, 00); (C) N C>)) with [ r? & dv; = 0 for all

t. Our first idea to defin&/c := (V;); is V; := o(t, X;, R;). But thenV.

is in general not in the tangent space/df. For that reason we make the
ansatz

Vi=0(t, Xi, Bi) + f°(t) n(Rs),
wheref¢(t) is chosen such thaf. € Tr-N¢. This requires
fe(t) /nerV,f = —/177“2 dvy .
We observe that there is= n(r) € CJ((0, 00)) such that
t— /777“2 dvy is continuous and positive ij0, o).
Indeed, lety, © CJ((0, 00)) be a sequence converginglto the sense that
[ (1) — 1|72

sup ——— — 0 asn — oo.
re(0,00) L+73

Since by (46) and (47) we contrdl1 + r3) dv, uniformly in ¢, we have
/nn r2dy — /r2 dvy uniformly int¢ € (0, 00).
By volume conservation (56) we have
/7"2 dvy >0 forall ¢ € [0, 0)
and according to (45)
t— /nn r? du, is continuous for fixedh.

With (44) and the properties af we find thatf© converges uniformly in
[0, 7] to 0.
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The corresponding potentiaf to V< solves for a. at

/;\vm?d:ﬂ = inf{/ S1¢1? d :/g-vgd:c
o} 3 0 o}

+Z/ = Vi¢ =0; CeHl}.

:R; >0

As a comparison function we choose for ve, v < A,

2 3 X; . 3p. ,
¢ = R2Vie |;X\3 R < |z —X;| <l v
0 :  elsewhere

whereVae is such that is admissible. Since

/ﬁ-VCd:B:/Vﬂe-VCdﬂs—|—/(§—Vﬂ€)-VCdaj

/w Vidr — Z/ 63v4+/ ;R?‘Z-Q

©:R; >0 B

this requires

/Vu V¢ + Z/ —RV;( =0 (68)

:R; >0

forall ¢ € ﬁl. Then it holds for smalkx > 0

1
/]§|2d:r< > /B &3 R?V X|2\2dx

iRy >0 1\Bi
~X;
+ 3 / 3 R2V, xié Va© dr + L /|Vaf|2dx
i:R;>0" Bi\Bi o = Xi|
<(1+a) / 3 B2V 2 do
iRZ>O Bi\B; v — Xi?
+ > /|Vu5|2dx+ /|Vu5|2dx.
'LR>0

We observe that

~ 1
1 3 p2 2
5 e’ Ry Vi dz
2 /Bl\Bi | [z — X; ’2|

l
.256;/ —er<47r5 R} 3V
3R, T
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and conclude that

2 3 3 17,
/g| dr < (1+a)4ne® Y RILV?

1: ;>0
+— ! wg (Cy?) / |V |? du,
where
we(z) == s%p{/E%|Vu5|2dx DB < z}.

Remember thal; = 4(R;) + f°(t) n(R;), with ,n € C9 and thatf
converges uniformly t@. This gives

/ﬁe Z V2R3dt—>/602r3dy
©:R;>0

In the next step we will prove thatu® converges strongly t&'4. This leads
to

o0
limsup/ ﬂ%/ |V | da dt < (1+oz)47r/ﬂ%v2r3dy
0

e—0

QQ+—w Cy*) / BQ/ \Val? d dt,

w(z) == sup{/ \Va|>dz : |E| < z}.
e UE

Finally, let firsty and thena converge td) to obtain the assertion of the
lemma for smooth with compact support in the—variable.

where

Step 2: Strong convergence\Gti©

Our goal is to show tha¥u® as defined in (68) converges for ay> 0
strongly inL2((0,T) x §2) providedl = ~¢ for somey < \. Without loss
of generality letl” > 0 be so large such thai(¢) = 0 for all ¢ > T and
introduce the functionals

<L€,C>::/ 52/ — R?V;(dt

:R; >0
| :/ ﬁsz;O / R2V; ¢ dt,
< L. :/ glg;) /R2V§dxdt

<L,C>:=47r/ﬁ§r v dv,
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for ¢ € L?((0,7); }OII}). We will prove

a) L. — L. — 0in L%((0,7); H, 1),
b) L. — L — 0 weakly inC{([0, T]; C9)*,
c) L. is relatively compact i ([0, T; H, ).

To provea) we modify an idea used in [4], Lemma 2.3. We consider the
auxiliary function

LRI -z -XiP) X<
¢ _ 133 3 7
vit,) { 0 . elsewhere

such that) is continuous,

1 R
- R Vi(z—-X;) : |xr—Xi| <l
t,x) = S
Vit ) { 0 elsewhere

and

3 ~
—Azﬁ:?RZZVi, lz— X;| <1,

l ~
Vi i = —— R}V, lz — X;| =1
Y

With this construction it holds

<L Lg,c / ﬁ/ Vo - V¢ da dt

and

|L. — L. HLQ <C/ /|Vz/1]2dxdt

gc/ > R4V2/ |z — X;|2dt

zR>O

<C/ Z R4V247Tl
:R; >0
2
< C sup (|z7 7“4\+]f577|2)% —0 ase — 0.
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To prove parb) observe that fo¢ € C{([0, o0); Cp)

/ By (X)) 3\BZ\R2th
0

i:R; >0

/ Bar 3 ¢t Xo) R2 (3(Rs) + f2(t) n(Ry)) dt

©:R;>0

:47r/ﬂC7"2 (0 + fn)dvs dt
—>4ﬂ/ﬁ(r26du,

and

J, o

DI /R2V||Ct:r) C(t X)| da i

zR>0

<c</ > 3 R2o(R) + £ n(R)| 1 dt
1R>O
4

5 l
< C¢ sup |r?(o + f%)’@
< Ce sup |R} (D + fn)|ve — 0.

which implies statemerii). .
To prove part ¢c) we show fak. () defined via

< =) /R2V<dx for ¢ = ((x) € L3(R2)

zR>0

the following:

1) supe(o,m) Hji L2 < C.
i) || Le(t1) — Le( t2)|yL2(Q) < Oty — to|'/? forall ti,t5 € (0,7).

Then the desired result follows from the compact embeddinéj)ﬁnto
L?(£2) and the generalized Arzela—Ascoli Theorem (cf. e.g. [15], chapter
2).

Indeed,;) follows from

(Le(t).C) < sup (23] + 7 nr”)) 3 / ¢l dx

9 R; >0
< Ol < Clclize
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The equicontinuityii) follows similarly as (44) via

<ia<t1> - Es<t2>,<> < lt1 — o2

</ ‘dt jRZ /Cdm‘ dt>1/2

©:R;>0
< Oty — to]/?

. , A\ 12
><</ ‘ Z (RiVif/iJr Rzzatvi)/ ’C‘dx‘ dt)
o !, B,

:R;>0
< Oty — to]?

(/ S e ‘RVVJrRQ&

i:R; >0
< Clty — to'/?

. 1/2
x ( / / rvd + 286 + o) v dt) ¢z
0

(38)
< Cltr — to "2 1I¢ll o)

<DE sup —

The desired result follows if we show thétf¢ is uniformly bounded in
L%(0,T). But this follows from

1 _
t

/Br(WZ)dui + fa/at(n?”Q)du§>

the properties of and (41).

Z / ¢ da dt) "

2 T 1/2
[o | + T sup|r? 94| + sup ]r277|2/ 8tf5]2dt> .
0

Step 3: Approximate generalby continuous functions

In order to prove the lemma far € L?(r dv) we have to show that we
can approximate in the L?(r® dv) —norm by smooth functions,, with
compact support such that

/ ﬁ/ Vi, |? de dt + 47T/B|vn|2r3dl/
0 2
— / ﬁ/ \Va|? de dt + 47r/5@2r3du
0 7}
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asn — oo wherew, is defined according to (61). But this follows from
Remark 5.2 which finishes the proof of Lemma 5.4.

Since we computed thE-limit of the metric tensor we are ready to finish
the proof of Theorem 5.1.

Proof of Theorem 5.1The main part of the theorem has been proved in
Lemmas 5.3 and 5.4 which giie—convergence of the metric tensor. The
seemingly easy linear part of our functional

/005 (diff E(R?), V) dt (69)
0

involves some technicalities since we do not have an estimate which guar-
anteesthatr [ rv dv is well-defined. For that reason we take C§°((0,
o0)), integrate the term in (69) by parts and obtain

/oo B (diff E(R®),V®)dt = — /OO OB E(RE(t))dt
0 0
= —47r/8tﬁ r?dug dt

Since we have uniform control df(1 + 73) dv§ dt we can pass to the limit
in this term.

As a comparison function we take fiissuch that (¢, x, -) has compact
support in(0, co). With Lemmas 5.3 and 5.4 one gets

/ ﬂ;/QVuFd:vdt + 4%/5;|v\2r3d1/ — 471/8t557“2dy
0

S/ ﬁé/ \Va|* de dt + 4#/,6’%17]2r3dy + 477/67’17 dv
0 0
(70)
forall g € C§°((0, 00)) andd with compact support 0, co).
For the proof of the theorem we want to approximate a geneaal in
the statement of the theorem bywith compact support. Define
s = ns(0 + fs),

wheren; = n;s(r) € C3°((0,00)), 0 < ns < 1, andns approximateg such
that

\1—775]7‘2

sup -0 asé — 0.

re(0,00) L+73
The functionfs is determined such thg,(’tr2 ¥s dvy = 0 which requires

[(1—ns)r?ody
[nsr2dyy

fs(t) =



64 B. Niethammer, F. Otto

We conclude with similar arguments as in Step 1 of Lemma 5.4 that for
sufficiently smally the denominator is uniformly bounded in any finite time
interval [0, T']. Hence

2

/ |fs]*dt < Cr /T</(1—775)r217dut> dt
<CT/ </v2r dut/|1—n5|2rdyt> dt

< OrD s L [0+

— 0 asd — 0.

Sincev; is admissible we have by (70)

/ ﬂ%/ |Vu‘2dxdt + 47T/ﬂéfv|27“3dy _ 477/8tﬂ%?”2d1/
0 N
= 1 ~ 12 1(~.12.,.3 ~
S/ ﬁz/ ‘VU(5| dxdt—|—47'r/ﬁ2|z)5’ r dV+47T/ﬁ7“U5dI/.
0 2
(71)

We first consider the difference of the energy terms. For that we degfine
such that

g5(r) = ns(r)r,  ¢5(0) =0
and with the construction of; it follows

lgs — 57’2\

sup -0 asé — 0.
re(0,00) 1+ 3
We observe
57 — g5l
\/@B 1r? —g5) dv)| <sup 1+ 3 /|8tﬂ] + %) (72)
—0 asé — 0,
and

\/ﬁf&nardV\Z\/ﬁ(t)fa(t)/rn(;dutdt\

T
SCsup/(l—H“?’)dyt/ |fs|dt — 0 asé — 0. (73)
t 0
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Hence,
—/8t65r2d1/ — /ﬁrﬁgdu(z)—/@ﬁq(sdu
—/ﬁr@;du + o(1)

@))/ﬁqgvdy — /Br@gdv + o(1)
(E>/5n5r(v—@)du + o(1)
= /ﬂr(v—f;)dv + o(1).

For the convergence of the metric tensor#giobserve

[ o1 =Pt = [ 810 )5+ 05 15 s
< 2/6(1 —775)2\17]2r3dy + 2/5f§7“3dy
—0 asé — 0.

Furthermore we conclude

/ ﬁ/ \V&5|2dxdt—>/ 5/ \Vai|? da dt
0 02 0 9

with Remark 5.2. Thus, in the limif — 0 we obtain from (71) equation
(60) which finishes the proof of the theorem.

6 From the variational principle to the equation

In this last section we derive the expressionddrom the variational for-
mulation of Theorem 5.1 which will finish the proof of Theorem 3.1.

In the following we fix an arbitrary tim& € (0, 0o). Foranyw € L?(r® dv)
with [ r?wdy, = 0fora.a.t, w = 0in a neighborhood of = 0 we choose
U =wv+ dw in (60). Ford — 0 we obtain the first variation of (60)

—/ﬁr2uwdl/+/ﬂvwr?’dl/—i—/ﬂrwdyzo (74)
for all nonnegative? € C§°((0, c0)) andw as above.
For an arbitraryw € Cg we construct an admissible test functiorfor

(74) via

w(z,r) = w(z,r) + f(t)n(r),
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wheren € CJ((0,00)) andf is determined such thgtr? w dv; = 0 for all
€ (0,00), that is

/rzwdl/t + f(t)/rQndut—O.

Sincew(x, -) andn have compact support ii), o0), (50) implies that both
integrals are continuous inFurthermoref 72 n) dv; is positive in[0, o) for
an appropriate choice of Hence,f is bounded and continuous and thus,
alsow is bounded and continuous. Ergo we have equation (74) fostead
of w.

We want to obtain equation (74) pointwisetirt-or that we observe that

due to (46),(47), (48), Remark 5.2 and the embedding tfoqj‘rinto L2(02)
the mapping

t»—)/(—rQu(t) + r3ut) + r)wdy

is in L2(0,T). Consequently there exists a &1 of Lebesgue measufe
such that

—/r2uu_)d1/t + /rgvu_)dut + /ru_}dl/t =0

forallt ¢ E,,. Equivalently it holds
—/ 2uwdy + /Tngdyt-l- /deut —i—)\(t)/rdeVt:O
(75)

forall ¢t ¢ E,, where

1
)\(t) — W (—/T2u77d7/t+/7“37)?7th+/7”77th)-

So far the sef,, depends onw. We want to find a sefl of measure zero
such that (75) holds for all as above for almost all¢ E. This argument
is standard: we select a countable §et}; C C such that any function

w € C’g can be approximated uniformly by a sequefieg(x, -) }; such that
the sequence has uniformly compact suppofbirnx). We set

E = U E,, U Ey,
7
whereE) is such that

/ lu(t,)|?dz < oo and /1"3|v|2 dvy < 00
Q
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forall t ¢ E, and obtain (75) fotw;. By approximation we finally obtain
/{—rQu(t) +r3ut) +r + Ar?fwdy, =0

forallw € C) and allt ¢ E. This means

—r2u(t) + ro(t) +r + At)rP =0 pae inQforallt ¢ E,
(76)

where
/ Vu(t) - V{dx + 47r/§r2v(t) dvy = 0.
0

If one plugs (76) into the second term one obtains

/QVu(t)-Cd:L‘ +dn (/ Clu(t) = M) rdyy — /Cdut> _ 0

Since) is constant in space we see tliat= u — X solves

/QVu(t)-Cdac + 4W/Cu(t)rdyt:47r/gdyt

for almost allt which finishes the proof of Theorem 3.1.
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