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Abstract. We are interested in the coarsening of a spatial distribution of
two phases, driven by the reduction of interfacial energy and limited by dif-
fusion, as described by the Mullins–Sekerka model. We address the regime
where one phase covers only a small fraction of the total volume and con-
sists of many disconnected components (“particles”). In this situation, the
energetically more advantageous large particles grow at the expense of the
small ones, a phenomenon called Ostwald ripening. Lifshitz, Slyozov and
Wagner formally derived an evolution for the distribution of particle radii.
We extend their derivation by taking into account that only particles within
a certain distance, the screening length, communicate. Our arguments are
rigorous and are based on a homogenization within a gradient flow structure.

Mathematics Subject Classification (1991):35B27, 35Q72, 58E50, 82C26

1 Introduction

1.1 The Cahn–Hilliard model

Ostwald ripening may for instance occur in phase segregation of a two–
component mixture, as described by the Cahn–Hilliard model. The Cahn–
Hilliard model describes the state of the system at a timet by the spatially
dependent relative concentrationc = c(t, x) of, say, the first component. We
are interested in the case where the initialc is spatially uniform with value
c0 and unstable. The latter means that the free energyE favors two phases,
each of a characteristic value forc (the two equilibrium concentrationsc∗− <
c0 < c

∗
+), separated by an interfacial layer of characteristic width and of
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minimal area. The dynamics reduce the free energyE while preserving the
spatial average of the relative concentrationc. More precisely, the dynamics
are driven by the negative gradient−∇u of the chemical potentialu (which
mathematically speaking is the functional derivative ofE with respect toc)
and limited by the diffusion of each component.

Numerical simulations show that the system evolves as follows: After an
initial stage, two phases form. In each of the two phases,c reaches its respec-
tive equilibrium value; the phases are separated by an interfacial layer of the
characteristic thickness, which is much smaller than the typical lengthscale
of the phase distribution. Subsequently, the system reducesE by reducing
the area of the interfacial layer. This is reflected in an increase of the typical
lengthscale of the phase distribution, which is called coarsening. Numeri-
cal simulations and heuristic arguments show that this lengthscale increases
with time t like t1/3.

1.2 The Mullins–Sekerka model

Coarsening in the Cahn–Hilliard model is well–described by the Mullins–
Sekerka model [14,1]. The Mullins–Sekerka model is a sharp–interface
model: It describes the position of the interfacial layer by the boundary
∂G of a regionG ⊂ R

3 (the region wherec ≈ c∗+). It is based on the
assumption that the diffusion field, which is given by the negative gradient
−∇u of the chemical potential, is in quasistationary equilibrium given the
normal velocityv of the interface∂G. In dimensionless variables this reads

�u = 0 in the bulkR
3\∂G, (1)

[∇u · �n] = v at the interface∂G. (2)

Here�n denotes the normal to the interface,[∇u · �n] the jump of the normal
component of the gradient∇u·�n across the interface. On the other hand,u is
the functional derivative ofE, which in the interfacial regime is proportional
to the area of∂G. As well–known, the first variation of the area of∂G is
given by its mean curvatureκ. Hence in dimensionless variables, one obtains
the so–called Gibbs–Thomson law:

u = κ at the interface∂G. (3)

Since at a given timet, u is uniquely determined by∂G via (1) &(3), (2),(1)
& (3) indeed formally defines an evolution ofG. This interfacial motion
reduces the area of∂G while preserving the volume ofG.
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1.3 Small volume fraction

We are interested in the regime where the volume fraction covered byG
is very small. Numerical simulations of the Cahn–Hilliard model in this
regime indicate that once the interfacial regime emerges,G consists of
many disconnected components (“particles”), which quickly become ap-
proximately radially symmetric, and whose centers approximately do not
move. Subsequently, the large particles grow at the expense of small parti-
cles, which eventually vanish. This particular form of coarsening is called
Ostwald ripening. As the state of the system is described by the radii{Ri}i
of the particles, it is tempting to try to identify the evolution law for{Ri}i
from the Mullins–Sekerka model. By formal arguments, Lifshitz, Slyozov
and Wagner [7,20] have done this and found that this evolution reduces to an
evolution of thedistributionν of the{Ri}i — a tremendous reduction. We
now have a closer look at the formal argument of LSW, in order to identify
more clearly its crucial assumptions.

1.4 The LSW argument

We introduce the following notation:

– 1
d3 denotes particle number density, so thatd is the typical particle dis-
tance,

– 4π
3 R3 denotes the average particle volume, so thatR is the typical

particle radius.

Small volume fraction means that

R � d. (4)

According to (1), the chemical potentialu is a harmonic function outside
the particles. Thanks to the separation of the particles expressed in (4), there
exists a function̄u such that

– ū is “slowly varying” in the sense that the length scale of variations ofū
is much larger thand,

– ū ≈ u “away from the particles” in the sense that the functions agree at
distances from the particles which are much larger thanR.

This functionū is called the mean field. Consider nowu in the neighborhood
of a fixed particle of centerXi and radiusRi. We have

u




is harmonic forRi �= |x−Xi| � d according to (1),

= 1
Ri

for Ri = |x−Xi| according to (3),

≈ ū for Ri � |x−Xi| � d
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Sinceū is approximately constant for|x−Xi| � d, this implies that

u

{
= 1

Ri
for Ri ≥ |x−Xi|,

≈ (1 −Ri ū) 1
|x−Xi| + ū for Ri ≤ |x−Xi| � d,

}

and thus according to (2)

Ṙi = [∇u · �n] ≈ 1
R2

i

(Ri ū− 1). (5)

In order to understand over which length scale the mean fieldū varies, we
have to understand two lengths, the screening length and the correlation
length.

1.5 The screening length

The screening lengthξscr is defined as the maximal size of a box such that
the average value ofu, and hencēu, within the box is still dominated by the
boundary values from the particles outside the box. We will argue thatξscr
scales with the mean particle radiusR and the average particle distanced
as

ξscr ≈
(
d3

R
)1/2

. (6)

This has already been done e.g. in [6,8], but for the convenience of the
reader we now present the heuristic argument in our language. We ask the
following simplified question. Consider the solutionU of

−∆U = 0 outside the particles,

U = 1 inside the particles,

U = 0 on the boundary of the box[0, ξ]3. (7)

The boundary condition (7) mimicks the influence of the particles outside
the box. Obviously, ifξ is small,U is dominated by (7), which for instance
can be expressed as

1
ξ3

∫
[0,ξ]3

U2 � 1. (8)

For sufficiently largeξ, inequality (8) will become false. The cross-over
value is the sought-afterξscr. By the Poincaŕe inequality on[0, ξ]3, inequality
(8) is a consequence of

1
ξ

∫
[0,ξ]3

|∇U |2 � 1.
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Now
∫ |∇U |2 is just the electrostatic capacity (see e.g. [5]) of the union of

all particles within[0, ξ]3. Since the particle diameterR is much smaller
than the particle distanced (4), the capacity of a finite union of particles is
approximately the sum of the capacity of the individual particles, which for
radially symmetric particles is proportional to the radius and hence scales
like R. Within the box[0, ξ]3 we have of the order ofξ

3

d3 particles. This
number might be so large that the above mentioned additivity fo the capacity
breaks down, in which case the capacity of the conglomerate behaves like
that of a single particle of diameterξ. Hence

1
ξ

∫
[0,ξ]3

|∇U |2 =
1
ξ

{
ξ3

d3R : for smallξ
ξ : for largeξ

=




ξ2

d3R : for ξ �
(

d3

R
)1/2

1 : for ξ �
(

d3

R
)1/2

This is our argument in favor of (6).

1.6 The correlation length

A second length scale is important for the variations ofū: the correlation
lengthξcor. The correlation length is the minimal size of a box such that the
distribution of the particle radii within this box is a good approximation to
the distribution of all radii. As a very crude but convenient approximation to
this subtle statistic motion, we think ofξcor as the size of a box with respect
to which the particle arrangement is periodic. On one hand,u and hencēu
inherits this periodicity with periodξcor. On the other hand,u cannot vary
significantly on length scales less thanξscr according to Subsect. 1.5. Hence
the regime

ξcor � ξscr

is particularly simple:

ū is approximately constant in space.

The value of̄u is determined by (5) and the a priori known conservation of
the volume fraction, that is

d

dt

∑
i

R3
i = 0,
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where the sum
∑

i extends over all particles within the periodic box[0, ξcor]3

(For convenience of later notation, we include in this sum even those particles
which may have already vanished, that is,Ri = 0). Indeed, one obtains

ū =

∑
i:Ri �=0 1∑

iRi
=

1
average radius of non–vanished particles

. (9)

The closed system (5) and (9) is just the classical LSW-law.

The obvious but crucial observation is that (5) and (9) reduces to an
evolution of the radii distributionν(t, r), that is∫ r2

r1

ν(t, r) dr =
{

number of particles with radius in(r1, r2)
and center in the periodic box[0, ξcor]3.

}

Indeed, the system of ordinary differential equations (5) translates into the
kinetic equation

∂tν + ∂r

(
1
r2

(r ū− 1) ν
)

= 0, (10)

and (9) can be written as

ū =
∫
ν dr∫
r ν dr

. (11)

The derivation of (10) & (11) in the regimeR � d andξcor � ξscr has
been made rigorous by the first author [10].

1.7 The modification of LSW in our regime

Marder [6,8] argues that correlations are induced by screening effects so
that it is relevant to understand the regime

ξcor ≈ ξscr,
which is the goal of this paper. As we will show, in this regime the evolution
for {Ri}i reduces only to an evolution of the joint distribution of particle
radii and particle centerν(t, x, r), that is∫
ω

∫ r2

r1

ν(t, x, r) dr dx =
{

number of particles with radius in(r1, r2)
and center in the setω in [0, ξcor]3

}
,

since (9) generalizes to

−∆ū + 4π
(
ū

∫
r ν dr −

∫
ν dr

)
= 0. (12)
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The kinetic equation

∂tν + ∂r

(
1
r2

(r ū− 1) ν
)

= 0 (13)

now hasx as a parameter. The rigorous derivation of the evolution (13) &
(12) from the Mullins–Sekerka evolution (restricted to radially symmetric
particles) is the content of this paper, the result is formulated in Theorem
3.1.

If all radii are identical, it would immediately follows from the classical
homogenization result by Cioranescu and Murat [4] thatu solving (1) &
(3) converges tōu solving (12). Their argument can be extended to treat the
case of non–identical radii. But in order to obtain (12) with this limit, one
roughly speaking would need to know the corrector in this convergence.

Our analysis takes a different venue: We use the fact that the Mullins–
Sekerka evolution (and thus its homogenization) has the structure of a gradi-
ent flow in a physically natural way. The gradient flow perspective has been
successful in analyzing diverse problems as e.g. the porous medium equa-
tion [12] or the lubrication approximation equation [13]. Here, it allows to
exploit the Rayleigh principle, which characterizes a solution of a gradient
flow as a minimum of a quadratic functional. Hence, the analysis reduces to
identifying theΓ–limit of this variational problem. Roughly speaking, this
amounts to homogenizing the Neumann problem (1) & (2) rather than the
Dirichlet problem (1) & (3).

The outline of the paper is as follows. In Sect. 2, we introduce the
Rayleigh principle for a gradient flow, argue that Mullins–Sekerka has the
structure of a gradient flow, and use this structure to restrict the evolution
to spherical particles (see [2,17] for a justification of this simplification). In
Sect. 3, we introduce the precise assumptions, the appropriate scaling and
state our main result. In Sect. 4, we establish several preliminary results
on the convergence of the distribution functions. In Sect. 5, we identify the
Γ -limit of the functional corresponding to Rayleigh’s principle. In Sect. 6,
we translate the limiting Rayleigh principle into (13) and (12).

1.8 Outlook

The second part of the classical LSW-theory predicts the long-time behavior
of the radii distributionνt. More precisely, by a formal analysis of (5) & (9)
LSW predict thatνt, independently of the initial distribution, approaches a
specific self–similar solution of (5) & (9). This allows them to conclude that
the average radius1ū(t) grows like(4

9 t)
1/3. In [11], Pego and the first author

however show that the long time behavior is not universal. In fact, for particle
distributions with compact support the asymptotics depend sensitively on the



40 B. Niethammer, F. Otto

behavior of the initial distribution near the end of its support. Qualitatively
similar results to [11] but with different methods are obtained in [3] for a
simplified LSW model. In [16] a Fokker–Planck approximation of the LSW
conservation law is studied.

Even though the self similar nature can often be observed in experiments,
none of the profiles and rate constants possible for the LSW model can be
validated. One reason for these deviations is certainly that in the LSW theory
all particles of the same size evolve according to the same law and thus direct
interactions between particles are entirely neglected. For an overview we
refer the interested reader to the survey articles [6,18,19] and the references
therein.

2 The structure and the microscopic problem

Our analysis will be guided by the gradient flow structure of the evolution.
In this chapter, we start by introducing the general framework. Then we will
show that the Mullins–Sekerka free boundary problem fits into this frame-
work. We will use this structure to “restrict” Mullins–Sekerka to radially
symmetric particles and finally we argue that also the limit evolution can be
interpreted as a gradient flow.

2.1 The abstract gradient flow structure and the Rayleigh principle

A vector fieldf on a differentiable manifoldM (a vector field attaches a
tangent vectorf(x) ∈ TxM to every pointx ∈ M) defines the dynamical
systemẋ = f(x). A gradient flow is a dynamical system wheref is the
negative gradient−gradE of a functionE onM. The notion of a gradient
requires a Riemannian structure, that is, a metric tensorg onM (a metric
tensor endows the tangent spaceTxM with the scalar or inner productgx).
Indeed, the differential of a functionE on M attaches the linear form or
cotangent vectordiffEx to each pointx ∈ M. Only the scalar productgx
converts the cotangent vectordiffEx into the tangent vectorgradEx via

gx(gradEx, v) = 〈diffEx, v〉 for all v ∈ TxM.

Hence the extended version ofẋ = −gradEx is

gx(t)(ẋ(t), v) + 〈diffEx(t), v〉 = 0 for all v ∈ Tx(t)M andt. (14)

It is immediate from (14) that the value ofE decreases along trajectories:

d

dt
E(x(t)) = −gx(t)(ẋ(t), ẋ(t)). (15)
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Indeed, the intuitive understanding of a gradient flow is that of a steepest
descent in an energy landscape. The geometry of the base spaceM is given
by g whereas the height is determined byE. The integrated version of (15),
that is,

E(x(T )) +
∫ T

0
gx(t)(ẋ(t), ẋ(t)) dt = E(x(0)) (16)

will be the starting point for all our a priori estimates. For our analysis, it
will be important that (14) can be reformulated as a variational problem

For all t, ẋ(t) is the minimizer of
1
2
gx(t)(v, v) + 〈diffEx(t), v〉

among allv ∈ Tx(t)M,

(17)

which is also referred to as Rayleigh principle in the applied literature. It
will be convenient to have (17) in the more robust time integrated version

For all nonnegative functionsβ of t, ẋminimizes∫ ∞

0
β(t)

(
1
2
gx(t)(v(t), v(t)) + 〈diffEx(t), v(t)〉

)
dt

among all vector fieldsv along the curvex.

(18)

Finally, we observe that a gradient flow — as opposed to a general dynamical
system — can be naturally restricted to a lower dimensional submanifold
N ⊂ M. Indeed, both ingredientsE andg restrict canonically toN . We
will use this in Subsect. 2.3.

2.2 Mullins–Sekerka as a gradient flow

We now argue that the Mullins–Sekerka free boundary problem formally
fits into the gradient flow framework:M has to be chosen as the manifold
of all setsG ⊂ R

3 (the distribution of one of the two phases), which are
periodic with periodξcor, that is,

G+ ξcor n = G for all n ∈ Z
3,

and have a fixed volume in this periodic box(0, ξcor)3, that is

L3(G ∩ (0, ξcor)3) = const.

The tangent spaceTGM in a G ∈ M is conveniently described by all
kinematically admissible normal velocities of∂G, that is,

TGM =

{
v : ∂G→ R | v is ξcor–periodic,

∫
∂G∩[0,ξcor)3

v dH2 = 0

}
.
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The metric tensor has to be chosen as

gG(v1, v2) =
∫

(0,ξcor)3
∇u1 · ∇u2 dL3, (19)

whereuα in view of (1) & (2) solves the elliptic problem

−∆uα = 0 in R
3\∂G,

[∇uα · �n] = vα on ∂G.

An integration by part yields the representation

gG(v1, v2) = −
∫
∂G∩[0,ξcor)3

u1 v2 dH2. (20)

The functionalE is just the total interfacial area (within a periodic box)

E(G) = H2(∂G ∩ [0, ξcor)3).

It is well–known that the first variation of surface area is the mean curvature

〈diffEG, ṽ〉 =
∫
∂G∩[0,ξcor)3

κ ṽ dH2

for all ṽ ∈ TGM. Therefore we have according to (20)

gG(v, ṽ) + 〈diffEG, ṽ〉 =
∫
∂G∩[0,ξcor)3

(κ− u) ṽ dH2

so that the Gibbs–Thomson law (3) (up to an irrelevant additive constant)
is indeed equivalent to the gradient flow formulation (14). We observe that
the metric tensor can also be written as

gG(v1, v2) = 〈v1 dH2|∂G, v2 dH2|∂G〉H−1

where〈·, ·〉H−1 is the homogeneous part of theH−1–scalar product on the
space of periodic distributions with mean value zero, that is

〈f1, f2〉H−1 =
∫

(0,ξcor)3
∇u1 · ∇u2 dL3, (21)

whereuα solves the elliptic problem

−�uα = fα in R
3

and is periodic with periodξcor. Hence, loosely speaking, the Mullins–
Sekerka free boundary problem is the gradient flow of the surface area w. r.
t.H−1, a fact well known to the experts.
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2.3 The restriction of Mullins–Sekerka to radial particles

We now want to restrict this dynamical system to the submanifoldN ⊂ M
of all setsG which are the union of disjoint balls

G = ∪iBRi(Xi),

where the centers{Xi}i are given and the radii{Ri}i are variable. Hence
N can be identified with an open subspace of the hypersurface{R =
{Ri}i|

∑
iR

3
i = const} in R

N , whereN is the number andi = 1, · · · , N
an enumeration of particles with centers in the periodic box[0, ξcor). There-
fore, the tangent space can be identified with the hyperplane

TRN =

{
V = {Vi}i|

∑
i

R2
i Vi = 0

}
⊂ R

N .

It is obvious that the restriction of the metric tensor is

gR(V1,V2) =
∫

(0,ξcor)3
∇u1 · ∇u2 dL3, (22)

whereuα solves

−∆uα = 0 in R
3\ ∪i ∂BRi(Xi),

[∇uα · �n] = V α
i on ∂BRi(Xi).

The restriction of the functional is simply

E(R) = 2π
∑
i

R2
i (23)

so that

〈diffER, Ṽ〉 = 4π
∑
i

Ri Ṽi.

Hence the dynamical system we will investigate is the gradient flow of the
functional (23) w. r. t. the metric tensor (22) onN . Existence and uniqueness
for the initial value problem of this dynamical system is not standard since
the dynamical system is not smooth at the boundary ofN , that is, when one
of the radii goes to zero (which occurs generically) and when two of the
balls touch (which can be ruled out for the regime of small volume fraction,
see (31)). Our topic is not the existence or uniqueness, but the asymptotic
behavior for small volume fraction — hence we will always assume that a
weak solution in the sense of (18) exists.
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2.4 The gradient flow structure of the limit

Our analysis can be characterized as a homogenization of the above gradient
flow structure. Let us point out here in which sense the homogenized limit
(13), (12) is a gradient flow.M is the manifold of all distributionsν =
ν(x, r) such that ∫

(0,ξcor)3

∫ ∞

0
r3ν dr dx = 1

and the tangent space is described by

TνM =
{
v = v(x, r) :

∫
(0,ξcor)3

∫ ∞

0
r2 v ν dr dx = 0

}
.

The energy is

E(ν) = 2π
∫

(0,ξcor)3

∫ ∞

0
r2 ν dr dx

and the metric tensor turns out to be

gν(v, v) =
∫

(0,ξcor)3
|∇u|2 dx + 4π

∫
(0,ξcor)3

∫ ∞

0
|v|2r3 ν dr dx (24)

where

−∆u + 4π
∫
r2 v ν dr = 0 in (0, ξcor)3.

Indeed, the main part of our analysis will be to show, that (24) is the limit
functional of (19) in an appropriate homogenization setting (cf. chapter 5).

Finally, we remark that the classical LSW–model is a gradient flow in the
above setting if one neglects the inhomogeneous term

∫ |∇u|2 dx in (24).

3 The scaling and the homogenization result

As explained in Subsect. 2.3, we consider a periodic arrangement of parti-
cles with periodξcor, described by the fixed particle centersX = {Xi ∈
R

3}i=1,··· ,N and time–dependent radiiR = {Ri ∈ [0,∞)}i=1,··· ,N , which
evolve according to the gradient flow with metric tensor (22) and energy (23).
Note that we allowRi to be zero, accounting for particles which vanish over
time.
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3.1 Definition ofd,R andξscr

Following Subsect. 1.4, the number density1
d3 of particles is defined by

d3
∑
i

1 = ξ3cor (25)

and the average volume4π
3 R3 by∑
i

Ri(t)3 = R3
∑
i

1. (26)

As in Subsect. 1.6, the sum
∑

i extends over all particles in a box of length
ξcor, even those which may have already vanished. Observe that the evolution
preserves the l. h. s. of (26), so thatR is indeed well–defined. As motivated
in Subsect. 1.5, we introduce the screening length

ξscr =
(
d3

R
)1/2

.

Our aim is to identify the evolution in the limit of vanishing volume fraction
of particles. More precisely, we consider a sequence of systems characterized
by the parameter

ε :=
d

ξscr
=
(R
d

)1/2

(27)

in the limit ε→ 0.

3.2 Three assumptions on the particle arrangement

We have to assume that particle centers are well separated in the sense that
there exists aλ > 0 such that

{Bλ d(Xi)}i are disjoint for allε > 0. (28)

We have to require thatinitially , the particles much larger thanR do not
carry too much of the total mass, that is

d3
∑

i:Ri(0)
R ≥M

(
Ri(0)
R

)3

→ 0 asM → ∞ uniformly in ε→ 0. (29)

We want to assume that the correlation length (see Subsect. 1.6) is of order
of the screening length in the limitε→ 0; for simplicity

ξcor = ξscr. (30)
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As a consequence of (30) and the definitions (25), (26) and (27), we have

Ri(t) ≤
(∑

i

Ri(t)3
)1/3 ≤ Rξscr

d
≤ (R d)1/2

= ε d for all i andt ∈ [0,∞). (31)

It now follows from (28) that for sufficiently smallε,

{BRi(t)(Xi)}i are disjoint for allt ∈ [0,∞).

3.3 The joint distribution of centers and radii

It is canonical to measure

particle centersx in units ofξscr,

particle radiir in units ofR. (32)

The LSW argument (5) suggests to measure

time t in units ofR3. (33)

Hence we define the joint distributionνεt of particle centers and radii at a
given timet by

∫
ζ dνεt =

(
d

ξscr

)3∑
i

ζ

(
Xi

ξscr
,
Ri(t/R3)

R
)

for ζ ∈ C0
p , (34)

whereC0
p stands for the space of continuous functions onζ = ζ(x, r) which

– are periodic inx w. r. t. the unit boxΩ = (0, 1)3,
– have compact support inr ∈ (0,∞).

Note that sinceζ(x, r) = 0 for r = 0, particles which have vanished do not
enter the distribution. Hence the natural space forνεt and its limitνt is the
space(C0

p)∗ of Borel measures onΩ × (0,∞), that is, the product of the
torus and the positive half axis. The natural space for potentials of diffusion
fields isH1

p , the space of functionsu = u(x) which

– are periodic inx w. r. t. the boxΩ,
– are square integrable with square integrable gradient.

Furthermore we will denote by
◦
H1

p the subspace ofH1
p of functions with

mean value zero.
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3.4 The result

Theorem 3.1. There exist a subsequence, again denoted byε → 0, and a
weakly continuous map[0,∞) � t �→ νt ∈ (C0

p)∗ with∫
ζ dνεt →

∫
ζ dνt locally uniformly int ∈ [0,∞) for all ζ ∈ C0

p .

This limit is non trivial, indeed∫
r3 dνt = 1.

Furthermore, there exists a measurable map(0,∞) � t �→ ū(t) ∈ H1
p such

that (13) and (12) hold in the following weak sense

d

dt

∫
ζ dνt =

∫
∂rζ

1
r2

(r ū(t) − 1) dνt

distributionally on(0,∞) for all ζ ∈ C0
p with ∂rζ ∈ C0

p

resp. ∫
Ω
∇ū(t) · ∇ζ dx + 4π

∫
ζ ū(t) r dνt = 4π

∫
ζ dνt

for all ζ ∈ H1
p and a. e. t ∈ (0,∞).

4 Weak compactness

In this chapter we do everything which can be done by soft arguments.

4.1 Rescaling

For the ease of presentation, we will rescale the spatial variables byξscr
such that

ξscr = ξcor = 1 and hence d = ε, R = ε3.

We also rescaler and t as indicated in (32), resp. (33). In the rescaled
variables the submanifoldN from Sect. 2 is given by

N ε =

{
Rε = {Ri}i | ε3

∑
i

R3
i = 1

}
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and the tangent space by

TRεN ε =

{
Ṽε = {Ṽi}i |

∑
i

R2
i Ṽi = 0

}
.

In the following we will always denoteVε = {Vi}i withVi = d
dtRi, whereas

Ṽε will be an arbitrary element of the tangent space. Furthermore we use
the abbreviationBi := Bε3Ri

(Xi). The metric tensor for̃Vε ∈ TRεN ε is
computed via

gRε

(
Ṽε, Ṽε

)
=
∫
Ω
|∇ũε|2, (35)

whereũε ∈ ◦
H1

p solves∫
Ω
∇ũε · ∇ζ +

∑
i:Ri>0

∫
∂Bi

1
ε3
Ṽi ζ = 0 (36)

for all ζ ∈ ◦
H1

p . With the energy

E(Rε) := 2π ε3
∑
i

R2
i

the energy estimate (16) reads∫ T

0

∫
Ω
|∇uε|2 dx dt + 4πε3

∑
i

R2
i (T ) = 4πε3

∑
i

R2
i (0) (37)

for all T > 0. Note that by (25) and (26) the right hand side is uniformly
bounded by4π. We observe that in the rescaled variables, the non negative
Borel measureνεt ∈ (C0

p)∗ is given by∫
ζ dνεt = ε3

∑
i

ζ (Xi, Ri(t)) for ζ ∈ C0
p .

The definitions (25) and (26) translate into the normalizations∫
dνεt ≤ 1 for all t ∈ [0,∞), (38)∫

r3 dνεt = 1 for all t ∈ [0,∞). (39)

Next toνεt , we introduceµεt ∈ (C0
p)∗, a signed Borel measure onΩ×(0,∞)

via ∫
ζ dµεt = ε3

∑
i

ζ(Xi, Ri(t))Vi(t) for ζ ∈ C0
p .
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{µεt}t is just constructed such that∫ ∞

0

(
∂tβ(t)

∫
ζ dνεt + β(t)

∫
∂rζ dµ

ε
t

)
dt = 0 (40)

for all ζ ∈ C0
p ∩ C∞ andβ ∈ C∞((0,∞))

As will be shown in the proof of Lemma 5.3 in chapter 5, the energy dissi-
pation rate

∫∞
0

∫
Ω |∇uε|2 controls

Dε :=
∫ ∞

0
ε3
∑

i:Ri>0

R3
i V

2
i dt

which yields

D := lim inf
ε→0

Dε < ∞. (41)

This indeed translates into the following control of{µεt}t∫ ∞

0

∣∣∣∣
∫
ζ(t) dµεt

∣∣∣∣
2

dt ≤ Dε sup
t

∫
|ζ(t)|2 1

r3
dνεt , (42)

∣∣∣∣
∫ ∞

0

∫
ζ(t) dµεt dt

∣∣∣∣ ≤
(
Dε

∫ ∞

0

∫
|ζ(t)|2 1

r3
dνεt dt

)1/2

, (43)

whereζ = {t �→ ζ(t)} ∈ C0
0 ((0,∞);C0

p). Together with (40), (42) yields
the following weak regularity int of {νεt }t:∣∣∣∣
∫
ζ dνεt1 −

∫
ζ dνεt2

∣∣∣∣ ≤ |t1 − t2|1/2
(∫ ∞

0

∣∣∣∣ ddt
∫
ζ dνεt

∣∣∣∣
2

dt

)1/2

≤ |t1 − t2|1/2
(
Dε sup

t

∫
|∂rζ|2 1

r3
dνεt

)1/2

(44)

for ζ ∈ C0
p ∩ C∞.

4.2 Weak limits

By Arzela–Ascoli, the uniform control of{νεt }t encoded in (38) and (44)
is enough to ensure the existence of a weakly continuous familiy{νt}t of
nonnegative Borel measures onΩ × (0,∞) such that for a subsequence∫

ζ dνεt →
∫
ζ dνt locally uniformly in t ∈ [0,∞) (45)
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for ζ in a countable subset ofC0
p ∩ C∞. Again by (38), we see that we

actually can extend the locally uniform convergence in (45) to allζ ∈ C0
p .

Of course, the normalizations (38) and (39) are conserved in a one–sided
way ∫

dνt ≤ 1 for all t ∈ [0,∞), (46)∫
r3 dνt ≤ 1 for all t ∈ [0,∞). (47)

By Riesz, the uniform control of{µεt}t expressed in (43) ensures the exis-
tence of av ∈ L2(r3 dνt dt) with∫ ∞

0

∫
|v(t)|2 r3 dνt dt ≤ D, (48)

such that for a subsequence∫ ∞

0
β(t)

∫
ζ dµεt dt →

∫ ∞

0
β(t)

∫
ζ v(t) dνt dt (49)

for all β ∈ C0
0 ((0,∞)) andζ ∈ C0

p .

Of course, (40) is preserved in the limit∫ ∞

0

(
∂tβ(t)

∫
ζ dνt + β(t)

∫
∂rζ v(t) dνt

)
dt = 0 (50)

for all ζ ∈ C0
p ∩ C∞ andβ ∈ C∞

0 ((0,∞)).

4.3 Volume conservation

The infinitesimal version of volume conservation on theε–level is∫
r2 dµεt = 0 for a. a. t ∈ (0,∞). (51)

This is preserved in the limit. Indeed, the control (43) together with the
normalizations (38) und (39) yields for fixedT <∞

∫ T

0

∫
r

3
2d|µεt | dt ≤ (T Dε)1/2,∫ T

0

∫
r3d|µεt | dt ≤ (T Dε)1/2.
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Hence (49) improves to∫ ∞

0
β(t)

∫
r2 dµεt dt

→
∫ ∞

0
β(t)

∫
r2 v(t) dνt dt for all β ∈ C0

0 ((0,∞)). (52)

In particular, (51) turns into infinitesimal volume conservation at the limit
level ∫

r2 v(t) dνt = 0 for a. a. t ∈ (0,∞). (53)

At time t = 0, none of the unit volume (39) can escape to infinity thanks
to the tightness assumption (29). Indeed, in the rescaled setting, (29) turns
into ∫

{r>R}
r3 dνε0 → 0 for R→ ∞ uniformly for ε→ 0.

Together with (38), which implies∫
{r<δ}

r3 dνε0 → 0 for δ → 0 uniformly for ε→ 0,

we see that (39) is at least preserved fort = 0∫
r3 dν0 = 1. (54)

We now argue on the limit level that infinitesimal volume preservation (53)
and initial unit volume (54) ensure unit volume for allt. Since according to
(45), t �→ ∫

ζ dνt is continuous, we obtain from (50) for arbitrary but fixed
T∫

ζ dνT =
∫
ζ dν0 +

∫ T

0

∫
∂rζ v(t) dνt dt for all ζ ∈ C0

p ∩ C∞.

(55)

We now approximater3 by {ζn = ζn(r)}n ⊂ C0
p ∩ C∞ in the sense of

ζn(r) ↑ r3 pointwise and
∂rζn − 3 r2

r
3
2 + r3

→ 0 uniformly.

By monotone convergence, we then may pass to the limitn → ∞ in the
first two terms of (55). For the last term, we observe that∣∣∣∣

∫ T

0

∫
(∂rζn − 3 r2) v(t) dνt dt

∣∣∣∣
≤ sup

r

∣∣∣∣∂rζn − 3 r2

r
3
2 + r3

∣∣∣∣
∫ T

0

∫
(r

3
2 + r3) |v(t)| dνt dt
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and ∫ T

0

∫
(r

3
2 + r3) |v(t)| dνt dt

≤
(∫ T

0

∫
|v(t)|2 r3 dνt dt T sup

t

∫
dνt

)1/2

+
(∫ T

0

∫
|v(t)|2 r3 dνt dt T sup

t

∫
r3 dνt

)1/2

(48,46,47)
≤ 2 (T D)1/2.

Hence (55) turns into∫
r3 dνT =

∫
r3 dν0 +

∫ T

0

∫
3 r2 v(t) dνt dt.

Together with (53) and (54), we obtain as desired∫
r3 dνT = 1 for all T ∈ [0,∞). (56)

4.4 Lebesgue density inx

In one respect, the limit measureνt is nicer than theνεt : Its marginal w. r. t.
x has a bounded Lebesgue density, that is, there exists a constantC < ∞
such that∫

ζ dνt ≤ C

∫
Ω
ζ dx

for all nonnegative,Ω–periodicζ ∈ C0(R3) andt ∈ [0,∞).
(57)

Indeed, fix a periodicζ ∈ C1(R3) and compute

ζ(Xi) ≤ C

∫
Bλε(Xi)

ζ dx∫
Bλε(Xi)

1 dx
≤ C

λ3 ε3

∫
Bλε(Xi)

ζ dx for all i,

whereλ is as in (28). Hence∫
ζ dνεt = ε3

∑
i

ζ(Xi) ≤ C

λ3

∑
i

∫
Bλε(Xi)

ζ dx
(28)
≤ C

λ3

∫
Ω
ζ dx.

(58)

This inequality is preserved under the convergence (45) and follows for
generalζ by approximation.
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5 The variational formulation in the limit ε → 0

This section comprises the heart of our analysis where we identify the
Γ –limit of Rayleigh’s variational principle. For the notion ofΓ–conver-
gence consult e.g. the monograph [9]. For the convenience of the reader we
recall Rayleigh’s principle: for all nonnegativeβ = β(t) ∈ C∞

0 ([0,∞)), it
holds forVε = d

dtR
ε that∫ ∞

0
β
(

1
2 gRε

(
Vε,Vε

)
+
〈
diffE(Rε),Vε

〉)
dt ≤∫ ∞

0
β
(

1
2 gRε

(
Ṽε, Ṽε

)
+
〈
diffE(Rε), Ṽε

〉)
dt

(59)

for all Ṽε such thatṼε ∈ TRεM.

Theorem 5.1. For all nonnegativeβ = β(t) ∈ C∞
0 ([0,∞)) it holds∫ ∞

0
β

(
1
2

∫
Ω
|∇u|2 dx + 4π

∫
1
2 |v|2 r3 dνt + 4π

∫
(v − ṽ) r dνt

)
dt

≤
∫ ∞

0
β

(
1
2

∫
Ω
|∇ũ|2 dx + 4π

∫
1
2 |ṽ|2 r3 dνt

)
dt

(60)

for all ṽ ∈ L2(r3 dν) such that
∫
r2 ṽ dνt = 0 for almost allt and such that

(v − ṽ)(t, x, ·) = 0 in a neighborhood ofr = 0. Here ũ(t, ·) ∈ ◦
H1

p (and
u(t, ·) resp.) is determined for a.a.t via∫

Ω
∇ũ(t) · ∇ζ dx + 4π

∫
ζ r2 ṽ(t) dνt = 0 (61)

for all ζ ∈ ◦
H1

p .

In the following we will for simplicity use the notation

dν := dνt dt.

Remark 5.2.We note that the functional

< L , ζ >:=
∫
ζ r2 ṽ dν

is an element ofL2((0, T ); (
◦
H1

p )∗) ∼= L2((0, T );H−1
p ). This follows from∫

r2 ṽ dνt = 0,∫
ζ r2 ṽ dν ≤ C

(∫
ṽ2 r3 dν

)1/2

sup
t

(∫
r3 dνt

)1/6

‖ζ‖L2(L3(Ω)),
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where we use (57), and the embedding fromL2((0, T );
◦
H1

p ) into
L2((0, T );L3).

We first compute the limit of the metric tensor. For that we have to prove
lower semicontinuity of the metric tensor for the mimimizing sequence
Vε. The second step is to construct for an arbitraryṽ ∈ L2(r3 dν) an
approximating sequence such that the metric tensor is upper semicontinuous
for this sequence. These two ingredients forΓ–convergence are contained
in the forthcoming two lemmas.

Lemma 5.3. (Lower semicontinuity)
It holds for all nonnegativeβ = β(t) ∈ C∞

0 ([0,∞)) that

lim inf
ε→0

∫ ∞

0
β gRε

(
Vε,Vε

)
dt = lim inf

ε→0

∫ ∞

0
β

∫
Ω
|∇uε|2 dx dt

≥
∫ ∞

0
β

∫
Ω
|∇u|2 dx dt + 4π

∫
β |v|2 r3 dν, (62)

where for almost allt the functionu(t, ·) ∈ ◦
H1

p is determined as in(61).

Lemma 5.4. (Construction)
For any ṽ ∈ L2(r3 dν) with

∫
ṽ r2 dνt = 0 for almost allt the following

holds: there exists a sequenceṼε with Ṽε ∈ TRεN ε such that

lim sup
ε→0

∫ ∞

0
β gRε

(
Ṽε, Ṽε

)
dt = lim sup

ε→0

∫ ∞

0
β

∫
Ω
|∇ũε|2 dx dt

≤
∫ ∞

0
β

∫
Ω
|∇ũ|2 dx dt + 4π

∫
β |ṽ|2 r3 dν (63)

for all nonnegativeβ = β(t) ∈ C∞
0 ([0,∞)) and withũ determined as in

(61).

Our strategy will be to split
∫
Ω |∇ũε|2 dx into the part where∇ũε con-

centrates, that is the neighborhood of the particles, and the rest whereũε

is slowly varying. In the proof Lemma 5.3 we consider ballsBli(Xi) with
li = γε3Ri and let firstε tend to zero and thenγ to∞. To prove Lemma 5.4
we chooseli ≡ l = γε and let firstε and thenγ tend to zero.

Proof of Lemma 5.3:

Step 1: A lower bound for
∫
Ω |∇uε|2

DenoteBli := Bli(Xi) with li = γε3Ri and note thatBli are disjoint due
to (31). We are going to show∫

Bli

|∇uε|2 dx ≥ 4πε3R3
i V

2
i

(
1 − 1

γ

)
. (64)



Ostwald ripening: The screening length revisited 55

For that purpose observe that∫
Bli

|∇uε|2 dx ≥ inf
ξ

∫
Bli

|ξ|2 dx , (65)

where the infimum is taken over allξ ∈ L2(Bli) which satisfy∫
Bli

ξ · ∇ζ dx +
∫
∂Bi

1
ε3
Vi ζ = 0

for all ζ ∈ C∞
0 (Bli). Indeed, the minimizer̂ξ of (65) satisfies∫

Bli

ξ̂ · y dx = 0

for all smooth divergence–freey. Henceξ̂ = ∇φ andφ = const. on∂Bli ,
where−∆φ = 0 in (Bli\Bi)∪Bi and[∇φ · �n] = 1

ε3
Vi on∂Bi. The solution

is given by

ξ̂ =

{
ε3R2

i Vi
(x−xi)
|x−xi|3 : x ∈ Bli\Bi

0 : x ∈ Bi

(66)

and we compute∫
Bli

|ξ̂|2 dx =
∫
Bli

\Bi

|ξ̂|2 dx = ε6R4
i V

2
i

∫
Bli

\Bi

1
|x− xi|4 dx

= ε6R4
i V

2
i 4π

∫ li

ε3Ri

1
r4
r2 dr

= 4π ε6R4
i V

2
i

( 1
ε3Ri

− 1
li

)

= 4πε3R3
i V

2
i

(
1 − ε

3Ri

li

)
= 4π ε3R3

i V
2
i

(
1 − 1

γ

)
which proves (64). We obtain a uniform bound forDε =

∫∞
0 ε3

∑
iR

3
i V

2
i dt

and thus (41) if we chooseγ = 2, sum over all particles, integrate overt
and use (37).

Step 2: Identify the weak limit ofuε

We recall that the potentialuε solves (36) and observe that for allΩ–periodic
ζ ∈ C∞(R3)∫ ∞

0
β
∣∣∣ ∑
i:Ri>0

∫
∂Bi

1
ε3
ζ Vi −

∑
i:Ri>0

4πε3 ζ(Xi)R2
i Vi

∣∣∣ dt→ 0.
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We obtain with (52) that∫ ∞

0
β
∑

i:Ri>0

∫
∂Bi

1
ε3
ζ Vi dt → 4π

∫
β ζ r2 v dν (67)

for all Ω–periodicζ = ζ(x) ∈ C∞(R3). By Remark 5.2 this also holds for

ζ ∈ ◦
H1

p . Consequently∇uε converges weakly inL2((0,∞) ×Ω) to∇u.

Step 3: Lower semicontinuity
We have for almost allt that∫

Ω
|∇uε|2 dx =

∫
Ω\∪Bli

|∇uε|2 dx +
∫

∪Bli

|∇uε|2 dx
(64)
≥
∫
Ω\∪Bli

|∇uε|2 dx + 4πε3
∑

i:Ri>0

R3
i V

2
i

(
1 − 1

γ

)

=
∫
Ω\∪Bli

|∇uε|2 dx + 4π
(
1 − 1

γ

)
ε3
∑

i:Ri>0

R3
i V

2
i .

Multiplying with β and integrating overt we obtain∫ ∞

0
β

∫
Ω
|∇uε|2 dx dt ≥

∫ ∞

0
β

∫
Ω\∪Bli

|∇uε|2 dx dt

+ 4π
(
1 − 1

γ

)∫ ∞

0
β ε3

∑
i:Ri>0

R3
i V

2
i dt.

Arguing as in chapter 4 one finds that

lim inf
ε→0

∫ ∞

0
β ε3

∑
i:Ri>0

R3
i V

2
i dt ≥

∫ ∞

0
β |v|2 r3 dν.

Furthermore we claim that∫ ∞

0
β

∫
Ω
|∇u|2 dx dt ≤ lim inf

ε→0

∫ ∞

0
β

∫
Ω\∪Bli

|∇uε|2 dx dt

with li = γε3Ri. This is a consequence of the fact that

| ∪Bli | ≤ C ε6 γ3
∫
r3 dνεt → 0

asε → 0 and Lemma 5.5. Forγ → ∞ we recover the assertion of the
lemma.

Lemma 5.5. LetEn ⊂ Ω ⊂ R
n be a sequence of sets such that|En| → 0

asn→ ∞. If zn converges weakly inL2(Ω) to a functionz then it holds

‖z‖L2(Ω) ≤ lim inf
n→∞ ‖zn‖L2(Ω\En).
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Proof:We have∫
Ω
znz =

∫
En

znz +
∫
Ω\En

znz

≤ ‖zn‖L2(Ω)‖z‖L2(En) + ‖zn‖L2(Ω\En)‖z‖L2(Ω)

and the lemma follows forn→ ∞.

Proof of Lemma 5.4:
Step 1: Proof for smooth̃v
Assume first that̃v ∈ C∞

0 ([0,∞); (C0
p ∩ C∞)) with

∫
r2 ṽ dνt = 0 for all

t. Our first idea to definẽVε := (Ṽi)i is Ṽi := ṽ(t,Xi, Ri). But thenṼε

is in general not in the tangent space ofN ε. For that reason we make the
ansatz

Ṽi := ṽ(t,Xi, Ri) + fε(t) η(Ri),

wherefε(t) is chosen such that̃Vε ∈ TRεN ε. This requires

fε(t)
∫
η r2 dνεt = −

∫
ṽ r2 dνεt .

We observe that there isη = η(r) ∈ C0
0 ((0,∞)) such that

t �→
∫
η r2 dνt is continuous and positive in[0,∞).

Indeed, letηn ⊂ C0
0 ((0,∞)) be a sequence converging to1 in the sense that

sup
r∈(0,∞)

|ηn(r) − 1| r2
1 + r3

→ 0 asn→ ∞.

Since by (46) and (47) we control
∫

(1 + r3) dνt uniformly in t, we have∫
ηn r

2 dνt →
∫
r2 dνt uniformly in t ∈ (0,∞).

By volume conservation (56) we have∫
r2 dνt > 0 for all t ∈ [0,∞)

and according to (45)

t �→
∫
ηn r

2 dνt is continuous for fixedn.

With (44) and the properties of̃v we find thatfε converges uniformly in
[0, T ] to 0.
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The corresponding potentialũε to Ṽε solves for a. a.t∫
Ω

1
2 |∇ũε|2 dx = inf

ξ

{∫
Ω

1
2 |ξ|2 dx :

∫
Ω
ξ · ∇ζ dx

+
∑

i:Ri>0

∫
∂Bi

1
ε3
Ṽi ζ = 0 ; ζ ∈ ◦

H1
p

}
.

As a comparison function we choose forl = γε, γ < λ,

ξ =
{
R2

i Ṽi ε
3 x−Xi

|x−Xi|3 : ε3Ri < |x−Xi| < l
0 : elsewhere

}
+ ∇ūε,

where∇ūε is such thatξ is admissible. Since

∫
Ω
ξ · ∇ζ dx =

∫
Ω
∇ūε · ∇ζ dx +

∫
Ω

(ξ −∇ūε) · ∇ζ dx

=
∫
Ω
∇ūε · ∇ζ dx −

∑
i:Ri>0

∫
∂Bi

1
ε3
Ṽi ζ +

∫
∂Bl

ε3

l2
R2

i Ṽi ζ,

this requires ∫
Ω
∇ūε · ∇ζ +

∑
i:Ri>0

∫
∂Bl

ε3

l2
R2

i Ṽi ζ = 0 (68)

for all ζ ∈ ◦
H1

p . Then it holds for smallα > 0

1
2

∫
Ω
|ξ|2 dx ≤

∑
i:Ri>0

1
2

∫
Bl\Bi

|ε3R2
i Ṽi

1
|x−Xi|2 |

2dx

+
∑

i:Ri>0

∫
Bl\Bi

ε3R2
i Ṽi

(x−Xi)
|x−Xi|3 · ∇ūε dx + 1

2

∫
Ω
|∇ūε|2 dx

≤ (1 + α)
∑

i:Ri>0

1
2

∫
Bl\Bi

|ε3R2
i Ṽi

1
|x−Xi|2 |

2 dx

+
1
α

∑
i:Ri>0

1
2

∫
Bl

|∇ūε|2 dx + 1
2

∫
Ω
|∇ūε|2 dx.

We observe that

1
2

∫
Bl\Bi

|ε3R2
i Ṽi

1
|x−Xi|2 |

2 dx

= 4π R4
i Ṽ

2
i ε

6 1
2

∫ l

ε3Ri

1
r2
dr ≤ 4πε3R3

i
1
2 Ṽ

2
i
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and conclude that

1
2

∫
Ω
|ξ|2 dx ≤ (1 + α) 4π ε3

∑
i:Ri>0

R3
i

1
2 Ṽ

2
i

+
1
α
ωε(Cγ3) + 1

2

∫
Ω
|∇ūε|2 dx,

where

ωε(z) := sup
E

{∫
E

1
2 |∇ūε|2 dx : |E| ≤ z

}
.

Remember that̃Vi = ṽ(Ri) + fε(t) η(Ri), with ṽ, η ∈ C0
p and thatfε

converges uniformly to0. This gives∫
β ε3

∑
i:Ri>0

Ṽ 2
i R

3
i dt→

∫
β ṽ2 r3 dν.

In the next step we will prove that∇ūε converges strongly to∇ũ. This leads
to

lim sup
ε→0

∫ ∞

0
β 1

2

∫
Ω
|∇ũε|2 dx dt ≤ (1 + α) 4π

∫
β 1

2v
2 r3 dν

QQ+
1
α
ω(Cγ3 ) +

∫ ∞

0
β 1

2

∫
Ω
|∇ũ|2 dx dt,

where

ω(z) := sup
E

{∫
E
|∇ũ|2 dx : |E| ≤ z

}
.

Finally, let firstγ and thenα converge to0 to obtain the assertion of the
lemma for smooth̃v with compact support in ther –variable.

Step 2: Strong convergence of∇ūε
Our goal is to show that∇ūε as defined in (68) converges for anyT > 0
strongly inL2((0, T ) ×Ω) providedl = γε for someγ < λ. Without loss
of generality letT > 0 be so large such thatβ(t) = 0 for all t > T and
introduce the functionals

< Lε , ζ > :=
∫ ∞

0
β
∑

i:Ri>0

∫
∂Bl

ε3

l2
R2

i Ṽi ζ dt

=
∫ ∞

0
β
∑

i:Ri>0

l

γ3

∫
∂Bl

R2
i Ṽi ζ dt,

< L̃ε , ζ > :=
∫ ∞

0
β
∑

i:Ri>0

3
γ3

∫
Bl

R2
i Ṽi ζ dx dt,

< L , ζ > := 4π
∫
β ζ r2 ṽ dν,
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for ζ ∈ L2((0, T );
◦
H1

p ). We will prove

a) Lε − L̃ε → 0 in L2((0, T );H−1
p ),

b) L̃ε − L→ 0 weakly inC0
0 ([0, T ];C0

p)∗,

c) L̃ε is relatively compact inC0([0, T ];H−1
p ).

To provea) we modify an idea used in [4], Lemma 2.3. We consider the
auxiliary function

ψ(t, x) =
{ 1

γ3 R
2
i Ṽi

1
2(l2 − |x−Xi|2) : |x−Xi| < l

0 : elsewhere

such thatψ is continuous,

∇ψ(t, x) =
{− 1

γ3 R
2
i Ṽi (x−Xi) : |x−Xi| < l

0 : elsewhere

and

−∆ψ =
3
γ3 R

2
i Ṽi, |x−Xi| < l,

∇ψ · �n = − l

γ3 R
2
i Ṽi, |x−Xi| = l.

With this construction it holds

〈
L̃ε − Lε, ζ

〉
=
∫ T

0
β

∫
Ω
∇ψ · ∇ζ dx dt

and

‖L̃ε − Lε‖2
L2(H−1

p ) ≤ C
∫ T

0

∫
Ω
|∇ψ|2 dx dt

≤ C
∫ T

0

∑
i:Ri>0

1
γ6 R

4
i Ṽ

2
i

∫
Bl

|x−Xi|2 dt

≤ C
∫ T

0

∑
i:Ri>0

R4
i Ṽ

2
i

4π
5
l5

γ6

≤ C sup
(
|ṽ2r4| + |fεη|2

) ε2
γ

→ 0 asε→ 0.
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To prove partb) observe that forζ ∈ C0
0 ([0,∞);C0

p)

∫ ∞

0
β
∑

i:Ri>0

ζ(t,Xi)
3
γ3 |Bl|R2

i Ṽi dt

=
∫ ∞

0
β 4π

∑
i:Ri>0

ζ(t,Xi)
l3

γ3 R
2
i

(
ṽ(Ri) + fε(t) η(Ri)

)
dt

= 4π
∫
β ζ r2 (ṽ + fεη) dνεt dt

→ 4π
∫
β ζ r2 ṽ dν,

and ∫ ∞

0
β(t)

∑
i:Ri>0

3
γ3

∫
Bl

R2
i |Ṽi| |ζ(t, x) − ζ(t,Xi)| dx dt

≤ Cζ

∫ T

0

∑
i:Ri>0

3
γ3 R

2
i |ṽ(Ri) + fε η(Ri)| l4 dt

≤ Cζ sup |r2(ṽ + fεη)| l
4

ε3γ3

≤ Cζ sup |R2
i (ṽ + fεη)| γ ε → 0.

which implies statementb).
To prove part c) we show for̃Lε(t) defined via

〈
L̃ε(t) , ζ

〉
=
∑

i:Ri>0

3
γ3

∫
Bl

R2
i Ṽi ζ dx for ζ = ζ(x) ∈ L2(Ω)

the following:

i) supt∈(0,T ) ‖L̃ε(t)‖L2(Ω) ≤ C.

ii) ‖L̃ε(t1) − L̃ε(t2)‖L2(Ω) ≤ C|t1 − t2|1/2 for all t1, t2 ∈ (0, T ).

Then the desired result follows from the compact embedding of
◦
H1

p into
L2(Ω) and the generalized Arzela–Ascoli Theorem (cf. e.g. [15], chapter
2).

Indeed,i) follows from

〈
L̃ε(t), ζ

〉
≤ sup

(|r2 ṽ| + |fε η r2|) ∑
i:Ri>0

∫
Bl

|ζ| dx

≤ C ‖ζ‖L1(Ω) ≤ C ‖ζ‖L2(Ω).
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The equicontinuityii) follows similarly as (44) via〈
L̃ε(t1) − L̃ε(t2), ζ

〉
≤ |t1 − t2|1/2

×
(∫ T

0

∣∣∣ d
dt

∑
i:Ri>0

3
γ3 R

2
i Ṽi

∫
Bl

ζ dx
∣∣∣2 dt

)1/2

≤ C |t1 − t2|1/2

×
(∫ T

0

∣∣∣ ∑
i:Ri>0

(
Ri Vi Ṽi + R2

i ∂tṼi
) ∫

Bl

|ζ| dx
∣∣∣2 dt

)1/2

≤ C |t1 − t2|1/2

×
(∫ T

0

∑
i:Ri>0

ε3
∣∣∣Ri Vi Ṽi + R2

i ∂tṼi

∣∣∣2 ∑
i

∫
Bl

|ζ|2 dx dt
)1/2

≤ C |t1 − t2|1/2

×
(∫ T

0

∫
|r v ṽ + r2 ∂t(ṽ + fεη)|2 dνεt dt

)1/2

‖ζ‖L2(Ω)

(38)
≤ C |t1 − t2|1/2 ‖ζ‖L2(Ω)

×
(
Dε sup

|ṽ|2
r

+ T sup |r2 ∂tṽ|2 + sup |r2η|2
∫ T

0
|∂tfε|2 dt

)1/2

.

The desired result follows if we show that∂tfε is uniformly bounded in
L2(0, T ). But this follows from

∂tf
ε =

1∫
η r2 dνεt

(∫
∂tṽ r

2 dνεt −
∫
∂r(ṽ r2) dµεt + fε

∫
∂t(η r2) dµεt

)

the properties of̃v and (41).

Step 3: Approximate generalṽ by continuous functions
In order to prove the lemma for̃v ∈ L2(r3 dν) we have to show that we
can approximatẽv in theL2(r3 dν) –norm by smooth functionsvn with
compact support such that∫ ∞

0
β

∫
Ω
|∇un|2 dx dt + 4π

∫
β |vn|2 r3 dν

→
∫ ∞

0
β

∫
Ω
|∇ũ|2 dx dt + 4π

∫
β ṽ2 r3 dν
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asn → ∞ whereun is defined according to (61). But this follows from
Remark 5.2 which finishes the proof of Lemma 5.4.

Since we computed theΓ–limit of the metric tensor we are ready to finish
the proof of Theorem 5.1.

Proof of Theorem 5.1.The main part of the theorem has been proved in
Lemmas 5.3 and 5.4 which giveΓ–convergence of the metric tensor. The
seemingly easy linear part of our functional∫ ∞

0
β
〈

diff E(Rε),Vε
〉
dt (69)

involves some technicalities since we do not have an estimate which guar-
antees that4π

∫
r v dν is well-defined. For that reason we takeβ ∈ C∞

0 ((0,
∞)), integrate the term in (69) by parts and obtain∫ ∞

0
β
〈

diff E(Rε),Vε
〉
dt = −

∫ ∞

0
∂tβ E(Rε(t)) dt

= −4π
∫
∂tβ

1
2r

2 dνεt dt

Since we have uniform control of
∫

(1 + r3) dνεt dt we can pass to the limit
in this term.

As a comparison function we take firstṽ such that̃v(t, x, ·) has compact
support in(0,∞). With Lemmas 5.3 and 5.4 one gets∫ ∞

0
β 1

2

∫
Ω
|∇u|2 dx dt + 4π

∫
β 1

2 |v|2 r3 dν − 4π
∫
∂tβ

1
2 r

2 dν

≤
∫ ∞

0
β 1

2

∫
Ω
|∇ũ|2 dx dt + 4π

∫
β 1

2 |ṽ|2 r3 dν + 4π
∫
β r ṽ dν

(70)

for all β ∈ C∞
0 ((0,∞)) andṽ with compact support in(0,∞).

For the proof of the theorem we want to approximate a generalṽ as in
the statement of the theorem byṽδ with compact support. Define

ṽδ := ηδ(ṽ + fδ),

whereηδ = ηδ(r) ∈ C∞
0 ((0,∞)), 0 ≤ ηδ ≤ 1, andηδ approximates1 such

that

sup
r∈(0,∞)

|1 − ηδ| r2
1 + r3

→ 0 asδ → 0.

The functionfδ is determined such that
∫
r2 ṽδ dνt = 0 which requires

fδ(t) =
∫

(1 − ηδ) r2 ṽ dνt∫
ηδ r2 dνt

.
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We conclude with similar arguments as in Step 1 of Lemma 5.4 that for
sufficiently smallδ the denominator is uniformly bounded in any finite time
interval[0, T ]. Hence

∫ T

0
|fδ|2 dt ≤ CT

∫ T

0

(∫
(1 − ηδ) r2 ṽ dνt

)2

dt

≤ CT

∫ T

0

(∫
ṽ2 r3 dνt

∫
|1 − ηδ|2 r dνt

)
dt

≤ CT D sup
r

|1 − ηδ| r
1 + r3

sup
t

∫
(1 + r3) dνt

→ 0 asδ → 0.

Sinceṽδ is admissible we have by (70)∫ ∞

0
β 1

2

∫
Ω
|∇u|2 dx dt + 4π

∫
β 1

2 |v|2 r3 dν − 4π
∫
∂tβ

1
2 r

2 dν

≤
∫ ∞

0
β 1

2

∫
Ω
|∇ũδ|2 dx dt + 4π

∫
β 1

2 |ṽδ|2 r3 dν + 4π
∫
β r ṽδ dν.

(71)

We first consider the difference of the energy terms. For that we defineqδ
such that

q′δ(r) = ηδ(r)r, qδ(0) = 0

and with the construction ofηδ it follows

sup
r∈(0,∞)

|qδ − 1
2r

2|
1 + r3

→ 0 asδ → 0.

We observe

|
∫
∂tβ (1

2 r
2 − qδ) dν| ≤ sup

r

|12 r2 − qδ|
1 + r3

∫
|∂tβ| (1 + r3) dν

→ 0 asδ → 0,
(72)

and

∣∣ ∫ β fδ ηδ r dν ∣∣ = ∣∣
∫
β(t)fδ(t)

∫
r ηδ dνt dt

∣∣
≤ C sup

t

∫
(1 + r3) dνt

∫ T

0
|fδ| dt → 0 asδ → 0. (73)
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Hence,

−
∫
∂tβ

1
2 r

2 dν −
∫
β r ṽδ dν

(72)= −
∫
∂tβ qδ dν

−
∫
β r ṽδ dν + o(1)

(50)=
∫
β q′δ v dν −

∫
β r ṽδ dν + o(1)

(73)=
∫
β ηδ r (v − ṽ) dν + o(1)

=
∫
β r (v − ṽ) dν + o(1).

For the convergence of the metric tensor forṽδ observe∫
β |ṽδ − ṽ|2 r3 dν =

∫
β |(1 − ηδ) ṽ + ηδ fδ |2 r3 dν

≤ 2
∫
β (1 − ηδ)2 |ṽ|2 r3 dν + 2

∫
β f2

δ r
3 dν

→ 0 asδ → 0.

Furthermore we conclude∫ ∞

0
β

∫
Ω
|∇ũδ|2 dx dt→

∫ ∞

0
β

∫
Ω
|∇ũ|2 dx dt

with Remark 5.2. Thus, in the limitδ → 0 we obtain from (71) equation
(60) which finishes the proof of the theorem.

6 From the variational principle to the equation

In this last section we derive the expression forv from the variational for-
mulation of Theorem 5.1 which will finish the proof of Theorem 3.1.

In the following we fix an arbitrary timeT ∈ (0,∞). For anyw ∈ L2(r3 dν)
with

∫
r2w dνt = 0 for a.a.t,w = 0 in a neighborhood ofr = 0 we choose

ṽ = v + δ w in (60). Forδ → 0 we obtain the first variation of (60)

−
∫
β r2 uw dν +

∫
β v w r3 dν +

∫
β r w dν = 0 (74)

for all nonnegativeβ ∈ C∞
0 ((0,∞)) andw as above.

For an arbitraryw ∈ C0
p we construct an admissible test functionw̄ for

(74) via

w̄(x, r) := w(x, r) + f(t) η(r),
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whereη ∈ C0
0 ((0,∞)) andf is determined such that

∫
r2 w̄ dνt = 0 for all

t ∈ (0,∞), that is ∫
r2w dνt + f(t)

∫
r2 η dνt = 0.

Sincew(x, ·) andη have compact support in(0,∞), (50) implies that both
integrals are continuous int. Furthermore

∫
r2 η dνt is positive in[0,∞) for

an appropriate choice ofη. Hence,f is bounded and continuous and thus,
alsow̄ is bounded and continuous. Ergo we have equation (74) forw̄ instead
of w.

We want to obtain equation (74) pointwise int. For that we observe that

due to (46),(47), (48), Remark 5.2 and the embedding from
◦
H1

p intoL2(Ω)
the mapping

t �→
∫

(− r2 u(t) + r3 v(t) + r ) w̄ dνt

is in L2(0, T ). Consequently there exists a setEw of Lebesgue measure0
such that

−
∫
r2 u w̄ dνt +

∫
r3 v w̄ dνt +

∫
r w̄ dνt = 0

for all t /∈ Ew. Equivalently it holds

−
∫
r2 uw dνt +

∫
r3 v w dνt +

∫
r w dνt + λ(t)

∫
r2w dνt = 0

(75)

for all t /∈ Ew, where

λ(t) =
1∫

r2 η dνt

(
−
∫
r2 u η dνt +

∫
r3 v η dνt +

∫
r η dνt

)
.

So far the setEw depends onw. We want to find a setE of measure zero
such that (75) holds for allw as above for almost allt /∈ E. This argument
is standard: we select a countable set{wi}i ⊂ C0

p such that any function
w ∈ C0

p can be approximated uniformly by a sequence{wi(x, ·)}i such that
the sequence has uniformly compact support in(0,∞). We set

E :=
⋃
i

Ewi ∪ E0,

whereE0 is such that∫
Ω
|u(t, ·)|2dx <∞ and

∫
r3|v|2 dνt <∞
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for all t /∈ E0 and obtain (75) forwi. By approximation we finally obtain∫
{−r2 u(t) + r3 v(t) + r + λ r2}w dνt = 0

for all w ∈ C0
p and allt /∈ E. This means

− r2 u(t) + r3v(t) + r + λ(t) r2 = 0 νt a.e. inΩ for all t /∈ E,
(76)

where ∫
Ω
∇u(t) · ∇ζ dx + 4π

∫
ζ r2 v(t) dνt = 0.

If one plugs (76) into the second term one obtains∫
Ω
∇u(t) · ζ dx + 4π

(∫
ζ(u(t) − λ(t)) r dνt −

∫
ζ dνt

)
= 0

Sinceλ is constant in space we see thatū := u − λ solves∫
Ω
∇ū(t) · ζ dx + 4π

∫
ζ ū(t) r dνt = 4π

∫
ζ dνt

for almost allt which finishes the proof of Theorem 3.1.
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7. I. M. Lifshitz and V. V. Slyozov. The kinetics of precipitation from supersaturated solid
solutions. J. Phys. Chem. Solids,19: 35–50, 1961.



68 B. Niethammer, F. Otto

8. M. Marder. Correlations and Ostwald ripening. Phys. Rev. A,36: 858–874, 1987.
9. G. Dal Maso. An introduction toΓ -convergence. Birkḧauser, 1993. Progress in Non-
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